
IBML

VM/ESA
Network Computing with Java and NetRexx

Kris Buelens ** Bengt Heijnesson ** Dave Jones ** SalvadorTorres

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-5148-00

International Technical Support Organization

VM/ESA
Network Computing with Java and NetRexx

November 1998

SG24-5148-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 161.

First Edition (November 1998)

This edition applies to Virtual Machine/Enterprise Systems Architecture (VM/ESA), Version 2 Release 3.0, Program
Number 5654-030, and subsequent releases.

 Note

This book is based on a pre-GA version of a product and may not apply when the product becomes generally
available. We recommend that you consult the product documentation or follow-on versions of this redbook
for more current information.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xii i
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Introduction . 1

Chapter 2. Overview of NetRexx and Java on VM/ESA 3
2.1 Java, NetRexx, OpenEdition, and the BFS 3
2.2 Overview of the SFS . 3

2.2.1 SFS Servers and File Pools . 3
2.3 Overview of the BFS . 8

2.3.1 POSIX Terminology . 8
2.3.2 Directory Entries for POSIX BFS Usage 10

2.4 Some Common SFS and BFS Commands 11
2.5 The Java Environment Under VM . 12
2.6 SFS and BFS Directory Structures . 13

2.6.1 An SFS File Space . 13
2.6.2 A BFS File Space . 14
2.6.3 Combining File Spaces : SFS Aliases - BFS Links 14

2.7 Installing Java and NetRexx without the Shell and Utilities 16
2.7.1 Major Steps to Install “Shell-less” Java and NetRexx 17

2.8 Adding a NetRexx Developer User ID . 20

Chapter 3. Tools Used During the Project . 21
3.1 XEDIT . 21

3.1.1 PROFILE XEDIT . 21
3.2 BFSLIST - Listing the Contents of a BFS Directory 22

3.2.1 OPENVM LISTFILE . 22
3.2.2 POSIX Shell and Utilities . 23
3.2.3 BFSLIST . 24

3.3 BFSTREE - Listing a BFS Directory Tree . 27
3.4 NetRexx Compile . 29

3.4.1 NRC EXEC - NetRexx Compile . 29
3.4.2 NRC XEDIT - NetRexx Compile . 30

3.5 JC EXEC - Java Compile . 31
3.6 NetRexx Run . 31

3.6.1 NRR EXEC - NetRexx Run . 31
3.6.2 NRR XEDIT - NetRexx Run . 32

3.7 Tools for the POSIX Shell Users . 32
3.8 SETCENV - Setting C Environment Variables 33

3.8.1 Important Environment Variables . 33
3.8.2 Setting Environment Variables from CMS 34
3.8.3 More About Classpath . 34

Chapter 4. Comparing REXX to NetRexx . 37
4.1 REXX′s Position . 37

4.1.1 The REXX Language . 37

 Copyright IBM Corp. 1998 iii

4.1.2 REXX Compilers . 38
4.1.3 Hello World in REXX . 38

4.2 NetRexx′s Position . 38
4.2.1 Hello World in NetRexx . 38
4.2.2 Hello World in Java . 38
4.2.3 The NetRexx Language . 39
4.2.4 NetRexx and Compilers . 39

4.3 NetRexx Syntax Introduction . 39
4.3.1 Basic Syntax Differences . 40
4.3.2 Data Types . 40
4.3.3 Case . 42
4.3.4 REXX Instructions . 42
4.3.5 Function Calls . 45
4.3.6 Subroutines and User Defined Functions 47
4.3.7 Exit or Return . 49
4.3.8 Stems - Array Variables - Indexed Strings 50
4.3.9 The main() Method - Input Parameters 52
4.3.10 Comparing NetRexx to Object Oriented REXX 53

Chapter 5. AboutFrame, a Reusable Class . 55
5.1 The AboutFrame Picture . 55
5.2 What is AboutFrame? . 55
5.3 AboutFrame: User Interface . 56
5.4 AboutFrame: Program Interface . 56

5.4.1 Approach with Classic Languages . 56
5.4.2 An OO Solution . 56

5.5 Classes and Methods . 57
5.5.1 Class - What is it? . 57
5.5.2 Methods - What are they? . 58
5.5.3 Variables in the Class . 60

5.6 AboutFrame: the Class Definition . 60
5.6.1 AboutFrame: Overview of the Program 61
5.6.2 AboutFrame Section One: The Class Itself 63
5.6.3 AboutFrame Section Two: The Constructor Method 64
5.6.4 AboutFrame Section Three: Other Methods 66
5.6.5 AboutFrame Section Four: Event Classes 67
5.6.6 Avoiding Empty Frames . 73

Chapter 6. Reading and Writing Files from NetRexx 75
6.1 Reading BFS Character Data Files . 75

6.1.1 Reading CMS Character Data Files . 75
6.2 Reading from the console . 77

6.2.1 Useful Control Sequences . 77
6.3 Writing BFS Character Data Files . 78

6.3.1 Writing CMS Character Data Files . 78
6.4 Working With Binary Files . 79

Chapter 7. Code Pages - ASCII <> EBCDIC Issues 81
7.1 History, Experience . 81
7.2 Background Information - Codepages . 82
7.3 Internationalization . 83

7.3.1 Streams? . 83
7.3.2 Java IO Support . 83

7.4 VM Java Codepage . 84
7.4.1 Solution for Client Server Programs . 84

iv VM/ESA Network Computing with Java and NetRexx

7.5 IBM Network Station and Codepages . 85

Chapter 8. TCP/IP Networking . 87
8.1 Translating between EBCDIC and ASCII . 87

8.1.1 readLine() and printLn() . 87
8.2 Simple TCP/IP Client . 88
8.3 Simple TCP/IP Server . 88

8.3.1 Extending the Server . 91
8.3.2 Starting the Server . 91

Chapter 9. Java and CMS . 93
9.1 Executing non-Java Programs . 93

9.1.1 Using Runtime.exec() . 93
9.1.2 Using JNI . 94

9.2 The cms.util Package . 94
9.3 Running CMS Execs . 95

9.3.1 The CMSRexx Class . 95
9.4 Running CMS Pipelines with NetRexx . 96

9.4.1 f i t t ing *>java . 96
9.4.2 f i t t ing *<java . 97
9.4.3 The CMSPipe Class . 97

9.5 Installation Instructions . 100

Chapter 10. The GUIMON Sample Program 101
10.1 GUIMON - Pictures . 101
10.2 GUIMON - Installation Instructions . 103

10.2.1 Installing the GUIMON Monitor . 103
10.2.2 Installing the GUIMON Client . 105
10.2.3 Installing the GUIMON Server . 106
10.2.4 Installing Client and Server Files . 107

10.3 GUIMON - Functional Overview . 110
10.3.1 GUIMON - the Monitor . 110
10.3.2 GUIMON - the Server . 111
10.3.3 GUIMON - the Client . 112

10.4 GUIMON - the Client-Server Communication 113
10.4.1 Request Formats . 113

10.5 GUIMON Record Format Requirements 117

Chapter 11. Running NetRexx and Java Applications on a Network Station 121
11.1 Network Computing - Extending VM/ESA Resources into the Network 121
11.2 VM/ESA as a Network Station Server . 122
11.3 Support Delivery Mechanism . 122
11.4 Hardware Requirements for VM/ESA . 122
11.5 Software Requirements for VM/ESA . 122
11.6 Major Steps to Install VM/ESA Network Station Code 123

11.6.1 Download the Network Station Code 123
11.6.2 Prepare for the Installation of the Network Station Client Code . . 123
11.6.3 Plan the Byte File System File Space Structure 125
11.6.4 IBM Network Station Browser for VM/ESA 126
11.6.5 IBM Network Station Customization 127

11.7 Java Programs on the IBM Network Station 127
11.8 Setting up to Run Java and NetRexx Programs 128

11.8.1 How to Copy the NetRexx Runtime Environment 128
11.9 Starting a Java or NetRexx Program on your IBM Network Station . . 130
11.10 How to Tailor the Local File System . 131

Contents v

11.10.1 Performance Considerations . 133
11.11 Using NSM to Add a Java Application to the Menu Bar 133
11.12 Starting the GuiMon Application on the Network Station 136

11.12.1 Login to the Network Station . 137
11.12.2 Start GuiMon from the Menu Bar 137
11.12.3 Summary . 139

Appendix A. Frequently Asked Questions . 141
A.1 NullPointerException - General Problem 141
A.2 NullPointerException - With Compound Variables 141
A.3 NetRexx: No Data Type Problems Anymore? 142
A.4 Error Messages Not Always Very Accurate 142
A.5 File Not Found . 142
A.6 Threads Class Not Found . 142
A.7 External Link Files Not Found . 143
A.8 Reading Java Abend Messages . 143
A.9 Virtual Storage Requirements . 143
A.10 Killing the Java Virtual Machine in VM 144
A.11 Runtime Problems . 145
A.12 Installation Problems . 145

Appendix B. NetRexx Language Quick Start 147
B.1 Introduction . 147
B.2 NetRexx Programs . 147
B.3 Expressions and Variables . 148
B.4 Control Statements . 149
B.5 NetRexx Arithmetic . 150
B.6 Doing Things with Strings . 151
B.7 Parsing Strings . 151

B.7.1 Parsing into Words . 152
B.7.2 Literal Patterns . 152
B.7.3 Positional Patterns . 152

B.8 Indexed Variables . 152
B.9 Arrays . 153
B.10 Tracing . 154
B.11 Exception and Error Handling . 154
B.12 Things that aren′ t Strings . 155

B.12.1 Programs are Classes . 156
B.13 Extending Classes . 156

B.13.1 Optional Arguments . 158
B.14 Binary Types and Conversions . 158

B.14.1 Binary Types in Practice . 159
B.15 Summary and Information Sources . 159

Appendix C. Special Notices . 161

Appendix D. Related Publications . 163
D.1 International Technical Support Organization Publications 163
D.2 Redbooks on CD-ROMs . 163
D.3 Other IBM Publications . 163
D.4 At Your Local Bookstore . 164
D.5 On the Web . 164

How to Get ITSO Redbooks . 165
How IBM Employees Can Get ITSO Redbooks 165

vi VM/ESA Network Computing with Java and NetRexx

How Customers Can Get ITSO Redbooks . 166
IBM Redbook Order Form . 167

Glossary . 169

List of Abbreviations . 183

Index . 185

ITSO Redbook Evaluation . 187

Contents vii

viii VM/ESA Network Computing with Java and NetRexx

Figures

 1. GUIMON - The Sample NetRexx VM/ESA Application 1
 2. SFS file pool disk structure . 4
 3. VMSYSU File Pool Server Directory . 5
 4. VMSYSR File Pool Server Directory . 6
 5. VMSYS File Pool Server Directory . 6
 6. Special Characters . 9
 7. Typical BFS ROOT Tree Structure . 10
 8. Java Architecture . 12
 9. AboutFrame, Displays Information . 55
10. AboutFrame, Program Overview . 61
11. AboutFrame, Class Definition and Properties 63
12. AboutFrame, Constructor Method . 64
13. AboutFrame, Other Methods . 66
14. AboutFrame, Event Classes . 67
15. AboutFrame, Event Classes . 68
16. AboutFrame, Event Handling with More Classes 70
17. AboutFrame, a Main Method . 72
18. AboutFrame, Empty Frame Problem . 73
19. readAfile.nrx . 75
20. writeAfile.nrx . 78
21. factTable.nrx . 79
22. Socket Client Program . 81
23. Socket Server Program . 82
24. Simple NetRexx TCP/IP Client . 88
25. TCP/IP Server in NetRexx . 89
26. ServerHandler.nrx, Extending the TCPServer.nrx Class 91
27. GUIMON Prompting for Host Address . 101
28. GUIMON Listing the Performance Information Found 102
29. GUIMON Plotting a Performance Variable 102
30. Extract of GUIMON′s Server Code . 115
31. Extract of GUIMON′s Server Code . 116
32. Extract of GUIMON′s Server Code - INDICATE Request 117
33. Extract of GUIMON′s Server Code - PERFLOG DESCRIBE Example . . 119
34. Byte File System Structure . 125
35. Copy the NetRexx Runtime Environment Using the Shell 129
36. Copy the Codepage 1047 Class Files Using the Shell 129
37. NETCPY EXEC to Copy the NetRexx and Cp1047 Classes 130
38. Network Configuration . 131
39. IBM Network Station Manager Login Screen 134
40. IBM Network Station Manager Administrator Main Menu 134
41. IBM Network Station Manager Startup Menus 135
42. IBM Network Station Manager Java Application Menu Items 136
43. IBM Network Station Login Screen . 137
44. Built by GuiMon Classes Loaded from Germany 138
45. Built by the AboutFrame classes Loaded from Sweden 138

 Copyright IBM Corp. 1998 ix

x VM/ESA Network Computing with Java and NetRexx

Tables

 1. Some SFS and BFS Tasks . 11
 2. Useful control sequences . 77

 Copyright IBM Corp. 1998 xi

xii VM/ESA Network Computing with Java and NetRexx

Preface

Java is the hot new programming language for the nineties and beyond and for
developing a whole new category of Internet aware applications. NetRexx
′ improves ′ upon Java by blending the best features of classic REXX with the
object model and semantics of Java and the Java Virtual Machine execution
environment. Together, these languages provide powerful new tools for enabling
VM/ESA systems to fully participate on both the Internet and on organizations′
internal ′ intra-nets′. Coupled with the new IBM Network Station, VM/ESA can
now provide a powerful solution for bringing network aware applications to large
numbers of simultaneous users in a very cost effective manner.

This redbook describes how to install and configure both Java and NetRexx
using the IBM provided installation files and scripts. It also covers a selection of
VM tools that make using NetRexx and Java easier and less trouble-prone to the
applications developer. There is a detailed comparison of NetRexx to classic
REXX to help guide VM/REXX programmers through the similarities and
differences and introduce them to the novel capabilities of NetRexx. Also
included are hints and tips on good NetRexx design and a wealth of examples of
NetRexx application programming techniques in the CMS environment.

The book culminates with a complete demonstration application, comprised of a
multithreaded CMS server written entirely in NetRexx and a graphical client,
written in a mixture of NetRexx and Java, that may be run on IBM Network
Stations or other Java platforms, which provides various graphical views of VM
performance statistics. Detailed instructions for configuring a network station
environment to support the execution of such VM/ESA-based applications are
also included.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Böblingen Center.

The authors of this redbook are:

Kris Buelens is a Systems Engineer in IBM Belgium, professional services. All
his experience, since 1978, is based on field work, initially VM and VSE, the last
15 years VM only.

Bengt Heijnesson is an IT specialist in IBM Sweden professional services. He
has 12 years of experience in the VM arena. His areas of expertise are CP, CMS
(application programming in assembler and REXX), TCP/IP and Network Stations.

Dave Jones is a software developer for Velocity Software, Inc., based in Houston,
Texas. His areas of expertise include application development using PL/I, REXX,
and CMS Pipelines as well as VM/ESA performance monitoring and analysis.

Salvador Torres is an IT Specialist in IBM USA, Global Services. He has 15
years of experience in the VM arena. He holds a degree in Computer Science
from Loyola University in Chicago. His areas of expertise include CMS, OV/VM,
and networking products. He has programmed extensively in REXX, Pipelines
and C.

 Copyright IBM Corp. 1998 xiii

The residency that produced this redbook was coordinated by:

Stephen Record
International Technical Support Organization, Böblingen Center

Thanks to the following people for their invaluable contributions to this project:

Marci Beach
IBM Endicott

Mike Cowlishaw
IBM Hursley

Jack Crast
IBM Endicott

Mike Donovan
IBM Endicott

Tim Preece
IBM Hursley

Günter Schmid
IBM Böblingen

Reinhold Walter
IBM Böblingen

Gudrun Wiedemann
International Technical Support Organization, Böblingen Center

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 187 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

• Send us a note at the following address:

redbook@us.ibm.com

xiv VM/ESA Network Computing with Java and NetRexx

Chapter 1. Introduction

This redbook introduces the new programming environments NetRexx and Java
for VM/ESA Version 2, Release 3. The book focuses on these areas:

• deploying NetRexx and Java on VM/ESA

• approaching NetRexx from a REXX background

• developing VM/ESA-based applications in Java and NetRexx

First, we provide an overview of NetRexx, Java, and their key components. The
NetRexx and Java implementations under VM/ESA V2.3 will be covered as well,
along with details of VM-specific considerations. We also describe how to install
and configure NetRexx and Java on VM/ESA. Included in this section is
information on how to set up and configure the SFS and BFS components of
VM/ESA, which NetRexx and Java require. We further discuss a number of
helpful tools and techniques developed during the residency for managing the
Java and NetRexx program development and execution environment under CMS.

With that foundation established, we then provide a guide for classic REXX
programmers to the NetRexx language and some of the most useful principles
and techniques of object oriented programming. After that we explore various
important NetRexx programming techniques for the CMS environment, and
provide numerous illustrative examples.

Finally, we present a complete VM/ESA application built using NetRexx and
Java. Both the client side graphical user interface and the server side CMS
application are coded entirely in NetRexx and Java The application presents to
the user a chart of a VM/ESA system′s performance data and allows the user to
“point and click” to select different data sets to view. Communication between
the server and the client is accomplished using the native Java interfaces to
TCP/IP sockets. This sample application, known as GUIMON, is depicted in the
following diagram:

Figure 1. GUIMON - The Sample NetRexx VM/ESA Application

 Copyright IBM Corp. 1998 1

Throughout the residency we used IBM Network Stations as our end-user
workstations, both as emulated 3270 terminals for logging on to VM/ESA and as
the client platform for the GUIMON graphical user interface. This redbook also
includes a detailed discussion of how to configure both the IBM Network Station
and the VM/ESA server system in order to make effective use of the IBM
Network Station as a NetRexx program development and execution platform.

All of the programs developed during the residency and described in this
redbook are available for download on the VM/ESA download page on the World
Wide Web at URL http://www.vm.ibm.com/download/. See 2.7.1.5, “Download and
Install the SG245148 Package” on page 19 for information on obtaining the entire
package of sample programs for your VM/ESA system.

2 VM/ESA Network Computing with Java and NetRexx

Chapter 2. Overview of NetRexx and Java on VM/ESA

2.1 Java, NetRexx, OpenEdition, and the BFS
Java has its roots in systems that support a Unix-style hierarchical
tree-structured file directory. Therefore, it′s not surprising to find that Java (and
by extension, NetRexx) requires access to a hierarchical file system in order to
function correctly. Such a file store is provided by the Byte File System (BFS), an
integral part of OpenEdition VM/ESA. BFS files and directories are stored in CMS
file pools that are managed by the Shared File System (SFS). This chapter
explains what you need to know about the BFS in order to be able to deploy and
use Java and NetRexx effectively on VM/ESA.

2.2 Overview of the SFS
The Shared File System (SFS) is the component of VM/ESA that provides a
hierarchical, managed file system to CMS users, as opposed to the traditional
CMS minidisk file system. Some of the advantages to using the SFS instead of
the traditional CMS minidisk file system are:

• multiple safe READ/WRITE sharing of files;

• better data organization in a hierarchical tree structure;

• better utilization of existing DASD space, due to the elimination of wasted
space on minidisk volumes;

• cross-system file access, similar to that provided by NFS;

• and, of course, the ability to support the BFS.

Information on the following SFS topics is important in installing and deploying
the IBM Network Station, Java, and NetRexx effectively. This information can be
found in VM/ESA CMS File Pool Planning, Administration, and Operation,
SC24-5751; an overview is given here for your convenience.

2.2.1 SFS Servers and File Pools

2.2.1.1 Servers
An SFS server is an ordinary service virtual machine, usually autologged by the
system at IPL time, that executes the SFS “data base engine” to manage CMS
files using a set of control, log, and user data disks as shown in Figure 2 on
page 4.

 Copyright IBM Corp. 1998 3

Figure 2. SFS fi le pool disk structure

A file pool is a collection of minidisks that are managed by the SFS server virtual
machine. The file pool contains:

Storage Groups 2, 3, n: minidisks within the file pool that contain the users′ data
files.

Catalog Storage Group: the storage group within the file pool that contains the
catalog and other information on the users′ authorizations and user
directories, similar to the File Status Table (FST) entries for a regular
CMS minidisk.

Log Minidisks: A set of independent minidisks holding log information;
maintained in a “fail-safe” dual-write method allowing changes to
user files to be either committed or rolled back.

Control Data: Minidisk(s) containing information about the DASD space
allocations and availability of data blocks in the file pool.

It is critically important that the appropriate file pool parameters and minidisk
number and sizes be correctly defined when the SFS file pool is built. Detailed
installation planning instructions and suggested configuration parameter values

4 VM/ESA Network Computing with Java and NetRexx

may be found in Chapter 20, “File Pool Server Start-up Parameters,” of the
VM/ESA CMS File Pool Planning, Administration, and Operation, SC24-5751,
manual referenced above.

An SFS server can also make file pools available to remote VM/ESA systems
through the services of the Inter-System Facility for Communications (ISFC), the
Transparent Service Access Facility (TSAF), and APPC/VM VTAM Support (AVS).
For complete information on VM connectivity capabilities, refer to VM/ESA
Connectivity Planning, Administration, and Operation, SC24-5756.

2.2.1.2 Standard File Pool Names
VM/ESA Version 2 Release 3 is shipped with a number of SFS file pools ready to
be installed by the installation process. Three of these predefined file pools are:

VMSYS SFS file pool for system resources; for example, program products

VMSYSU SFS file pool for general user data files and directories

VMSYSR CRR recovery server file pool for coordinated resource recovery
across multiple file pools and improved SFS performance

Since these file pools all have names that start with VMSYS... they are not
eligible for access by remote VM systems. Here is the USER DIRECT entry for
the VMSYSU file pool server, VMSERVU, that we use here at the ITSO Center in
Böblingen for this residency.

USER VMSERVU VMSERVU 32M 32M BG
 ACCOUNT 1 VMSERVU
 MACH XC
 OPTION MAXCONN 2000 NOMDCFS APPLMON ACCT QUICKDSP SVMSTAT
 SHARE REL 1500
 XCONFIG ADDRSPACE MAXNUMBER 100 TOTSIZE 8192G SHARE
 XCONFIG ACCESSLIST ALSIZE 1022
 IUCV ALLOW
 IUCV *IDENT RESANY GLOBAL
IPL CMS

 POSIXOPT SETIDS ALLOW
 CONSOLE 009 3215 T MAINT
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 193 193 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 MDISK 191 3380 0645 003 230W01 MR RSERVER WSERVER
 MDISK 301 3380 0995 010 230W01 WR RCONTROL WCONTROL
 MINIOPT NOMDC
 MDISK 302 3380 1005 016 230W01 WR RLOG1 WLOG1
 MINIOPT NOMDC
 MDISK 303 3380 1021 016 230W01 WR RLOG2 WLOG2
 MINIOPT NOMDC
 MDISK 304 3380 1037 003 230W01 WR RCATALOG WCATALOG
 MDISK 305 3380 1040 007 230W01 WR RDATA WDATA
 MDISK 306 3380 0182 138 230W01 WR RDATA WDATA
 MDISK 307 3380 0053 008 230W01 WR RCATALOG WCATALOG
 MDISK 308 3380 0622 0300 230W02 WR RDATA WDATA
 MDISK 309 3380 0923 0020 230W02 WR RCATALOG WCATALOG

Figure 3. VMSYSU File Pool Server Directory

for the VMSYSR file pool server, VMSERVR,

Chapter 2. Overview of NetRexx and Java on VM/ESA 5

USER VMSERVR VMSERVR 32M 32M BG
 ACCOUNT 1 VMSERVR
 MACH XA
 OPTION MAXCONN 2000 APPLMON ACCT QUICKDSP SVMSTAT
 SHARE REL 1500
 IUCV ALLOW
 IUCV *IDENT RESANY GLOBAL
IPL CMS

 CONSOLE 009 3215 T MAINT
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 193 193 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 MDISK 191 3380 0648 002 230W01 MR RSERVER WSERVER
 MDISK 301 3380 1047 002 230W01 WR RCONTROL WCONTROL
 MINIOPT NOMDC
 MDISK 302 3380 1049 001 230W01 WR RLOG1 WLOG1
 MINIOPT NOMDC
 MDISK 303 3380 1050 001 230W01 WR RLOG2 WLOG2
 MINIOPT NOMDC
 MDISK 304 3380 1051 002 230W01 WR RCATALOG WCATALOG
 MINIOPT NOMDC
 MDISK 305 3380 1053 001 230W01 WR RDATA WDATA
 MINIOPT NOMDC
 MDISK 306 3380 1054 002 230W01 WR RCRRLOG1 WCRRLOG1
 MINIOPT NOMDC
 MDISK 307 3380 1056 002 230W01 WR RCRRLOG2 WCRRLOG2
 MINIOPT NOMDC

Figure 4. VMSYSR File Pool Server Directory

and, lastly, for the VMSYS file pool server, VMSERVS:

USER VMSERVS VMSERVS 32M 32M BG
 ACCOUNT 1 VMSERVS
 MACH XC
 OPTION MAXCONN 2000 NOMDCFS APPLMON ACCT QUICKDSP SVMSTAT
 SHARE REL 1500
 XCONFIG ADDRSPACE MAXNUMBER 100 TOTSIZE 8192G SHARE
 XCONFIG ACCESSLIST ALSIZE 1022
 IUCV ALLOW
 IUCV *IDENT RESANY GLOBAL
IPL CMS

 POSIXOPT SETIDS ALLOW
 CONSOLE 009 3215 T MAINT
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 193 193 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 MDISK 191 3380 0642 003 230W01 MR RSERVER WSERVER
 MDISK 301 3380 0650 005 230W01 WR RCONTROL WCONTROL
 MINIOPT NOMDC
 MDISK 302 3380 0655 005 230W01 WR RLOG1 WLOG1
 MINIOPT NOMDC
 MDISK 303 3380 0660 005 230W01 WR RLOG2 WLOG2
 MINIOPT NOMDC
 MDISK 304 3380 0665 030 230W01 WR RCATALOG WCATALOG
 MDISK 305 3380 0695 300 230W01 WR RDATA WDATA
 MDISK 306 3380 2370 001 230RES WR RDATA WDATA
 MDISK 307 3380 2536 066 230RES WR RDATA WDATA
 MDISK 308 3380 0423 074 230W01 WR RDATA WDATA
 MDISK 309 3380 2371 111 230RES WR RDATA WDATA
 MDISK 30A 3380 2107 162 230RES WR RDATA WDATA

Figure 5. VMSYS File Pool Server Directory

6 VM/ESA Network Computing with Java and NetRexx

The amount of DASD space allocated to these VM users′ minidisks is more than
sufficient to support all of the Java, NetRexx, and IBM Network Station
development and testing this Redbook documents. They ′re good starting values
for your site, too.

In each of these USER DIRECT directory entries, the 191 minidisk holds the
POOLDEF file, the 301 minidisk is the file pool control minidisk, minidisks 302 and
303 hold the log files, and minidisk 304 is the file pool catalog (Storage Group 1)
minidisk. In VMSERVU, because the number of user data files and directory can
be quite large in a file pool, the 307 and 309 minidisks are also allocated to the
file pool catalog storage group as well. All of the other minidisks defined in the
directory entries are allocated to hold the user data files and directories in
Storage Groups 2 through N.

2.2.1.3 SFS Backup and Restore Issues
Due to the amount and value of data stored in a typical site′s SFS/BFS file pool,
some careful thought should be given to file pool backup and restore issues. We
recommend that both the user data and control data components of the SFS be
backed up at regular intervals. You can use either the native backup/restore
facilities that SFS provides or you can use some other non-file pool server aware
backup technique, such as the standard VM/ESA facility DDR (DASD Dump
Restore) program.

Obviously, you can buy a product to manage SFS backups; such solutions often
offer incremental backup facilities. Here we only mention the SFS backup
methods natively available in any VM/ESA system.

If you elect to back up only the user data component, (storage groups 2, 3,...N),
and not the control data component (catalog, file pool control disks, and
POOLDEF disk), and you lose either the control disk or the storage group 1
(catalog) disks, you will be forced to regenerate your file pool and restore every
user storage group. For large SFS collections, this can be a very lengthy
process. On the other hand, if you only back up the control component and not
the user data component, you will lose the entire file pool if any one disk in the
SFS becomes corrupted. There is no way to recover from this situation.

The recommended approach to backing up and restoring an SFS file pool is to
use the native SFS BACKUP and RESTORE facilities. SFS provides the FILEPOOL
BACKUP and FILEPOOL RESTORE administrator commands to back up and
restore SFS file pools. Use the FILEPOOL BACKUP command to make backups of
the user data areas (storage groups 2 through N), and use the FILEPOOL
CONTROL BACKUP command to make backups of the control disks, catalog
storage group 1, and the POOLDEF disk. One important feature of using these
commands is that the file pool can still be made available to end users (although
in read-only mode) while the backup is taking place. Another feature is that
individual users or files can be restored (using the FILEPOOL RELOAD
command). These commands and their operands are documented in the manual
CMS File Pool Planning, Administration, and Operation, SC24-5751.

If you elect to use a non-file pool server aware backup method, such as DDR,
you should be aware of the following issues:

• the SFS file pool must be completely shutdown while the backup is made;
the end user cannot have even read-only access to the data

Chapter 2. Overview of NetRexx and Java on VM/ESA 7

• you must back up all of the file pool minidisks on which the file pool resides
at the same time . You cannot back up half of the minidisks today, start the
file pool server for normal operations, and then back up the remaining
minidisks tomorrow.

A file pool is a single logical entity. The data on the file pool minidisks are
logically intertwined in a complex manner. Without using the native SFS file pool
backup and restore commands (or a similar product) that are aware of the
logical interrelationships of the data, the file pool must be backed up or restored
as a unit. It is not possible to restore only a portion of the file pool.

2.3 Overview of the BFS
The redbook OpenEdition for VM/ESA Implementation and Administration Guide,
SG24-4747, contains an outstanding description of the whole OpenEdition
environment. For your convenience a shorter overview is included here.

OpenEdition for VM/ESA provides a POSIX compliant file system called the Byte
File System (BFS). Unlike the conventional record-oriented CMS file systems,
both minidisk-based and SFS, the BFS treats files as nothing more than an
ordered collection of bytes. It imposes no other structure on the data stored in
files. The POSIX concept of a file system was derived conceptually from the file
systems first developed for Unix systems. The BFS has different semantics, file
naming conventions, and file structures from the conventional CMS file systems.

The BFS allows files to be created and used in a Unix-style format. Like files in
the SFS, BFS files are stored in CMS file pools. A BFS file space can be in the
same file pool as SFS file spaces, and more than one BFS file space can be
enrolled in the same file pool.

The POSIX defined interfaces for the “C” programming language are provided as
callable library routines in the VM/ESA provided Language Environment runtime
library, SCEERUN LOADLIB. For other programming environments and languages
(for example, REXX, PL/I, Assembler), access to POSIX functions is provided by a
set of Callable Services Library (CSL) routines. OpenEdition for VM/ESA also
provides a set of CMS Pipeline stages and a set of OPENVM subcommands to
support the BFS. Some native CMS commands (for example, XEDIT) can also
support access to BFS files and directories, using extensions to the CMS record
file system interface.

2.3.1 POSIX Terminology
Here are the definitions of some of the more common POSIX terms that arise
when using the BFS.

Path name A character string that identifies a path to a file or
directory. OpenEdition supports path names up
to 1023 characters long.

Relative path name A path name that identifies the path to a file or
directory from the current working directory.
Relative path names do not begin with a slash (/).

Absolute path name A path name that identifies the path to a file or
directory from the file system root. Absolute path
names always begin with a slash (/).

8 VM/ESA Network Computing with Java and NetRexx

File name A character string that names a file within a
directory. OpenEdition supports file names up to
255 characters long.

Directory A special file that contains directory entries.
Directory entries must be unique within a given
directory, but different directory entries can
associate different names to the same file.

Current (or working) directory The directory associated with a process (for
example, the shell) that is used to resolve relative
path names.

The characters used in file and path names should be drawn from the POSIX
portable character set, but this is not enforced by OpenEdition for VM/ESA. The
portable character set consists of:

• the upper case letters A-Z.

• the lower case letters a-z.

• the digits 0-9.

• the special characters dot (.), underscore (_) and hyphen (-).

A compliant name cannot start with a hyphen. A valid POSIX file name might be:

karen.nrx

and its corresponding absolute path name might look like this:

/home/dave/netrexx/examples/karen.nrx

Note that everything up to and including the last slash (/) in the above example
is part of the directory path, and everything after the last slash is the file name
itself. When the current directory is set to /home/dave the relative path name is:

netrexx/examples/karen.nrx

Because the slash (/) is the path separator character, it cannot be used in a file
name. Also, because the standard OpenEdition shell interpreter assigns special
meanings to the following characters, it′s not a good idea to use them in file or
directory names either:

(blank) * # / \ < > | & $? () { }

Figure 6. Special Characters

Make files names easy to remember. Unlike VM/ESA, which restricts both file
names and file types to eight (or less) characters, OpenEdition permits file
names to be up to 255 characters long. Use the dot (.) or the underscore (_) to
make file names more readable and easy to remember; for example:

will_jones_birthday_gift_list

Over the years, users of Unix-style operating systems have developed a set of
conventions for arranging the initial directories off the main or root directory.
The POSIX BFS follows these conventions as implemented by OpenEdition for
VM/ESA, so you are likely to see a first-level directory structure that looks
something like this:

Chapter 2. Overview of NetRexx and Java on VM/ESA 9

/ (← the root directory)
bin (contains executable commands)
dev (support for hardware devices)
etc (contains administration files, the toolbox)
home (contains user directories and files)
lib (symbolic link to /usr/lib libraries and shared libraries)
opt (contains DCE administration files)
tmp (contains system temporary files and work areas)
u (symbolic link to /home)
usr (contains system executable files, administration files, etc.)
var (contains log files, security and spool files, etc.)

Figure 7. Typical BFS ROOT Tree Structure

2.3.2 Directory Entries for POSIX BFS Usage
In order for a VM user ID to be able to use the BFS and the OpenEdition for
VM/ESA Shell and Utilities, some POSIX directory control statements may need
to be added in the user directory entry. These directory control statements are:

• POSIXINFO

• POSIXOPT

• POSIXGLIST

2.3.2.1 The POSIXINFO Statement
The POSIXINFO statement is probably the most important of these three control
statements. It defines the user ′s POSIX user database information, such as the
POSIX user ID associated with this VM user ID, the POSIX group ID, the initial
working directory, the initial user program (that is, POSIX shell) to run, and the
file system mount point. For example, the VM user ID SRRES3 directory entry has
the following POSIXINFO statement in it:

POSIXINFO UID 0 GNAME staff IWDIR /home/dave/

This sets user SRRES3′s POSIX user ID (uid) to 0 (zero), his POSIX group name
(gname) to staff, and the initial working BFS directory (iwdir) to /home/dave/. See
the manual VM/ESA Planning and Administration, SC24-5750, for more details on
the operands and syntax of the POSIXINFO statement.

2.3.2.2 The POSIXOPT Statement
The POSIXOPT statement specifies option settings that are related to a VM user
ID′s POSIX capabilities. The capabilities include authorization to query and set
certain POSIX process and database information. For example, to allow a VM
user ID to set any other users′ POSIX security values and query any other users′
POSIX database information, the following POSIXOPT statement would be placed
in the user′s directory entry:

POSIXOPT SETIDS ALLOW QUERYDB ALLOW

See the manual VM/ESA Planning and Administration, SC24-5750, for more
details on the operands and syntax of the POSIXOPT statement.

10 VM/ESA Network Computing with Java and NetRexx

2.3.2.3 The POSIXGLIST Statement
The POSIXGLIST statement specifies which POSIX groups a user ID is a member
of. Each group can be specified either by the group id (gid) or by the group name
(gname). To specify that a user ID is a member of gid 0 and gnames staff and
operations, code the following POSIXGLIST statement in the user′s directory
entry:

POSIXGLIST GID 0 GNAMES staff operations

See the manual VM/ESA Planning and Administration, SC24-5750, for more
details on the operands and syntax of the POSIXGLIST statement.

2.4 Some Common SFS and BFS Commands
Some readers may be new to BFS and even SFS. Therefore, the commands
listed in Table 1 may be useful.

To get more information about SFS commands, issue HELP CMS cmd or HELP
SFSADMIN cmd .

To get more information about BFS commands, issue HELP OPENVM cmd or
HELP OPENVM MENU .

Table 1. Some SFS and BFS Tasks

Task SFS command BFS command

Enroll a user ENROLL USER xyz ENROLL USER xyz (BFS

Create a directory CREATE DIR dirid OPENVM CREATE DIR path

Erase a directory ERASE dirid OPENVM ERASE path

Create an alias CREATE ALIAS ... OPENVM CREATE LINK ...
OPENVM CREATE EXTLINK ...
OPENVM CREATE SYMLINK ...

Define default
directory

ACCESS dir A OPENVM SET DIR path

Copy a file COPYFILE ... OPENVM GETBFS ...
OPENVM PUTBFS ...

Erase a file ERASE fn ft fm OPENVM ERASE path

Move a file or
directory

RELOCATE ... OPENVM RENAME ...

Xedit a file XEDIT fn ft fm XEDIT path (NAMET BFS

Set permissions GRANT AUTH ...
REVOKE AUTH ...

OPENVM PERMIT ...

Get access to files ACCESS dir fm OPENVM MOUNT ...

Drop access to files RELEASE fm OPENVM UNMOUNT ...

Chapter 2. Overview of NetRexx and Java on VM/ESA 11

2.5 The Java Environment Under VM
As shown in Figure 8, the Java architecture is one that

Figure 8. Java Architecture

takes as input a program coded in Java (or, in our case, one coded in NetRexx
as well) and produces a machine and operating system independent output
termed Java byte code. This byte code, in turn, is interpreted by a Java virtual
machine program to produce the desired output. Since there are now many
implementations of the Java virtual machine for many different machines and
operating systems, the byte code has come to be called machine independent or
“write once, run anywhere” code.

The Java virtual machine that interprets the Java byte code is nothing more
sophisticated than a large “C” program. The VM version of the Java virtual
machine is written to conform to POSIX standards. It assumes that the

12 VM/ESA Network Computing with Java and NetRexx

underlying hardware and software can provide the services (for example, file I/O,
memory allocation, and process management) defined by the POSIX standard. In
VM/ESA, the POSIX support is provided by the OpenEdition feature and by the
BFS; thus, in VM the Java and NetRexx packages are installed into the BFS,
using the facilities of OpenEdition.

2.6 SFS and BFS Directory Structures
Even though both SFS and BFS file spaces are managed by an SFS server, there
are quite some organizational and usage differences.

2.6.1 An SFS File Space
With an SFS, when an end-user is enrolled, he gets what is called a “file space.”
The following command enrolls user KRIS in the SFS named VMSYS, and allows
him to use up to 10000 4K data blocks.

 ENROLL USER KRIS VMSYS (BLOCKS 10000

The end-users organize their file space as they want. From the directory names,
it is clear who owns what. The DIRLIST command can be used to see the
directories of a file space. For example DIRLIST VMSYS:KRIS. could produce:

� �
KRIS DIRLIST A0 V 319 Trunc=319 Size=5 Line=1 Col=1 Alt=0
Cmd Fm Directory Name

A VMSYS:KRIS.
- VMSYS:KRIS.BFSLIST_AND_CO
Z VMSYS:KRIS.GUIMON
- VMSYS:KRIS.GUIMON.NEW
- VMSYS:KRIS.NRTOOLS

1= Help 2= Refresh 3= Quit 4= Sort(fm) 5= Sort(dir) 6= Auth
7= Backward 8= Forward 9= 10= 11= Filelist 12= Cursor

====>� �

Mostly files in an SFS directory are used after having accessed it: with the
ACCESS command a letter is assigned to the directory. This letter is used to
refer to the files in the directory and also defines the place in the CMS search
order. The QUERY ACCESSED command can be used to list the search order

� �
 access vmsys:srecord.jnr_res.samples D (forcerw
Ready;
 q accessed
Mode Stat Files Vdev Label/Directory
A R/W 175 DIR VMSYS:KRIS.
B R/W 233 DIR VMSYS:SRECORD.JNR_RES
C R/O 195 DIR VMSYS:SRECORD.REDBOOK
D R/W 93 DIR VMSYS:SRECORD.JNR_RES.SAMPLES
E R/O 198 100 ICPR
F R/O 10579 101 FONTS
I R/O 877 104 GDDM
S R/O 712 190 MNT190
X/X R/O 828 19B TOOLS
Y/S R/O 992 19E MNT19E
Z R/W 28 DIR VMSYS:KRIS.GUIMON
Ready;� �

Chapter 2. Overview of NetRexx and Java on VM/ESA 13

2.6.2 A BFS File Space
With BFS, file spaces still exist and are also created with the ENROLL command.
For example:

 ENROLL USER ROOT VMSYS (BLOCKS 10000 BFS

This file space can only be used after “mounting,” for example:

 OPENVM MOUNT /../VMBFS:VMSYS:ROOT/ /

From then on all files and directories stored in the ROOT file space can be used.
Unlike CMS, one does not use an ACCESS command to define the search order
(a PATH definition is used). And, normally it is not only the end-user named
“ROOT” that uses the files and directories: all POSIX users use the ROOT file
space.

In POSIX some directory naming conventions1 exist: directory “/bin” for example
contains executables and “/home” hosts the directories for end-user files. In our
system one can find:

/home/bengt/...
/home/dave/...
/home/kris/...
/home/sal/...

End-users then create their own directories under “/home/userid/ . ”

Remember: Unless using tricks (such as symbolic links), the space for BFS
end-users is all located in file space ROOT.

2.6.3 Combining File Spaces : SFS Aliases - BFS Links
In an SFS, one can use aliases to assign multiple names to a given file or to
make the same file visible in multiple directories or file spaces. For example:

 CREATE ALIAS REXXTRY EXEC VMSYS:KRIS.MYEXECS REXXTRY XEDIT VMSYS:KRIS.XEDITS

In BFS, one can create links , symbolic links , and external links to define
alias-like objects. But links are more powerful than SFS aliases: with a link even
a directory (and everything below it) can be made visible at other places. For
example, when the GUIMON sample application is located in directories below
“/home/kris/guimon,” KRIS and SAL would see it as their own after issuing:

 OPENVM CREATE SYMLINK /home/kris/guimon /home/sal/guimon

This would create the following structure in “/home”

/home
/home/kris
/home/kris/guimon
/home/kris/guimon/client
/home/kris/guimon/server
/home/sal
/home/sal/guimon -> /home/kris/guimon
/home/sal/jnrCMS

To SAL, however, his “/home” directory would simply look like:

1 More information about the conventions can be found in Figure 7 on page 10.

14 VM/ESA Network Computing with Java and NetRexx

/home
/home/sal/guimon
/home/sal/guimon/client
/home/sal/guimon/server
/home/sal/jnrCMS

It is even possible to create links in one BFS to objects residing in another BFS
server. For example, suppose that “/home/kris” is located in the ROOT file
space of VMSYS, but “/home/bengt” in TESTROOT of VMSYSU.

 OPENVM UNMOUNT /
 OPENVM MOUNT /../VMBFS:VMSYSU:TESTROOT/ /
 OPENVM CREATE SYMLINK /home/bengt/guimon /../VMBFS:VMSYS:ROOT/home/kris/guimon

Links are very practical and heavily used by the VM Java and NetRexx
installation process: Java and NetRexx are installed in separate BFS file spaces,
but symbolic links allow one to find everything as if it were installed in the ROOT
file space.

After installation, the ROOT file space in the BFS could look like:

/
/dev
/etc
/home
/home/kris
/home/kris/guimon
/home/kris/guimon/client
/home/kris/guimon/server
/home/sal
/home/sal/guimon -> /home/kris/guimon
/home/sal/jnrCMS
/lib -> /usr/lib
/opt
/usr
/usr/bin
/usr/include
/usr/include/sys
/usr/java -> /../VMBFS:VMSYS:_JAVA/./J1.1/
/usr/lib
/usr/lib/nls
/usr/lib/nls/msg
/usr/lib/nls/msg/C.IBM-1047
/usr/lib/nls/msg/En_US.IBM-1047
/usr/lpp
/var/spool/mail
/usr/openvm
/usr/openvm/java -> /../VMBFS:VMSYS:_OVMJAVA/java
/usr/openvm/NetRexx -> /../VMBFS:VMSYS:_NETREXX/NetRexx
/usr/pub
/usr/NetRexx -> /../VMBFS:VMSYS:_NETREXX/./NetRexx

From the above, one can conclude that Java is installed in a BFS file space
_JAVA, but a link in ROOT′s “usr” directory makes it visible to all users
mounting ROOT.

After the installation of the Java packages we also issued a QUERY LIMITS
command to see what file spaces exist and how many 4K blocks are used.

Chapter 2. Overview of NetRexx and Java on VM/ESA 15

q limits all
Userid Storage Group 4K Block Limit 4K Blocks Committed Threshold
_JAVA 2 12000 7322-61% 100%
_NETREXX 2 1000 425-42% 100%
_OVMJAVA 2 125 57-45% 100%
KRIS 2 10000 2019-20% 90%
MAINT 2 0 0-00% 90%
MAINT220 2 100000 82838-82% 90%
ROOT 2 10000 2535-25% 100%
RTMESA 2 1000 209-20% 90%
TMP 2 1000 0-00% 100%
VAR 2 1000 0-00% 100%
Ready; T=0.01/0.01 18:42:54

2.7 Installing Java and NetRexx without the Shell and Utilities
At the time of writing this book, the VM/ESA platform′ s port of the Java
Developer Kit, as developed to run with the OpenEdition Shell and Utilities
feature, is proceeding through the Java Compatible test process. It will be made
Generally Available (“GA”) and will carry the Java Compatible logo once it is
proven to pass the Java Compatible test suite.

An alternative execution environment, created by the VM platform developers in
Endicott together with the authors of this redbook in Böblingen, removes the
need for customers to purchase the OpenEdition Shell and Utilities feature by
offering a “shell-less” Java implementation. As this environment has not yet
been verified as Java Compatible, it is offered as a “Beta” release only.

The following steps will guide you through the installation of Java and NetRexx
without the OpenEdition Shell and Utilities feature being installed on your
system.

Before you begin to install Java and NetRexx you must have access to the Byte
File System. If you do not have a file pool installed on your base VM/ESA
system, please see section 2.2, “Overview of the SFS” on page 3 and the
manual CMS File Pool Planning, Administration, and Operation, SC24-5751, for
more information on how to build a file pool.

It is useful to know that Java and NetRexx are installed using LOADBFS control
files.

JAVA LOADBFS This file controls the installation of Java: a BFS
user is enrolled, two TAR files are unpacked and
links are created in ROOT.

NETREXX LOADBFS This file controls the installation of NetRexx: a
BFS user is enrolled, one TAR files is unpacked
and links are created in ROOT.

You can tailor these LOADBFS files, for example to change the filepool to your
needs. Detailed tailoring instructions are provided in the files. To install using
these LOADBFS files, the POSIX Shell and Utilities are not required.

Warning: You may have to increase the virtual machine size of MAINT to 200MB
because of the size of one of the files you will use.

16 VM/ESA Network Computing with Java and NetRexx

2.7.1 Major Steps to Install “Shell-less” Java and NetRexx
 1. Obtain the VM/ESA Java and NetRexx code

 2. Set up the Java and NetRexx environment

 3. Build Java and NetRexx

 4. Download and install the OVMJAVA package

 5. Download and install the SG245148 package

2.7.1.1 Obtain the VM/ESA Java and NetRexx Code
Complete information on how to obtain the Java and NetRexx code for VM/ESA
may be found on the Web, starting from the VM Java home page at URL
http://www.vm.ibm.com/java/. There are two choices:

 1. You may download the Java and NetRexx code directly from the Web by
following the Downloads link from the VM Java home page.

 2. You may order the Java and NetRexx code as service, using the PTF
numbers that may be found by following the Service link from the VM Java
home page. (As we go to press, the current PTF numbers are UM28908 for
Java and UM28789 for NetRexx.)

Note: In either case, you must also ensure that CMS PTFs UM28787 and
UM28862 have been applied since they provide necessary CMS support for the
JVM.

2.7.1.2 Set up the Java and NetRexx Environment
�1�Log on to the MAINT user ID.

�ENTER� logon maint

Ready; T=n.nn/n.nn hh:mm:ss

�2�Set up the Java and NetRexx environment.

Approximately 80 cylinders of 3380 DASD, or its equivalent, is required. If you do
not have this much free space available already, then allocate it now before any
build steps.

�a�Determine if you need to allocate additional space.

query filepool minidisk vmsys:

Examine the allocated size of storage group 2 and use this information to
determine how much to increase the filepool space to accommodate the
12,000 4K blocks needed for Java and NetRexx.

�b�If needed, add minidisks to storage group 2 in the filepool VMSYS. (The
user ID for VMSYS is VMSERVS.) See CMS Filepool Planning, Administration
and Operation, SC24-5751, for more information on adding space to a storage
group.

�3�Create the BFS file space for ROOT.

Creating the basic BFS setup can be done by issuing the LOADBFS BFS command.
Note that the following entries are required in the CP directory.

Chapter 2. Overview of NetRexx and Java on VM/ESA 17

DIRECTORY ...
GLOBALDEFS
...
POSIXGROUP system 0
POSIXGROUP staff 1
POSIXGROUP bin 2
POSIXGROUP sys 3
POSIXGROUP adm 4
POSIXGROUP mail 6
POSIXGROUP security 7
POSIXGROUP nobody 4294967294
...

* Userids for Posix

USER ROOT NOLOG 32M 32M G
 POSIXINFO UID 0 GNAME system
USER DAEMON NOLOG 32M 32M G
 POSIXINFO UID 1 GNAME staff
USER BIN NOLOG 32M 32M G
 POSIXINFO UID 2 GNAME bin
USER SYS NOLOG 32M 32M G
 POSIXINFO UID 3 GNAME sys
USER ADM NOLOG 32M 32M G
 POSIXINFO UID 4 GNAME adm
USER NOBODY NOLOG 32M 32M G
 POSIXINFO UID 4294967294 GNAME nobody
USER DEFAULT NOLOG 32M 32M G
 POSIXINFO UID 4294967294 GNAME DEFAULT

If you plan to enroll ROOT into a Byte File System other than VMSYS, you have
two choices. You may modify the BFS LOADBFS file on MAINT 193 appropriately
before running LOADBFS BFS. Alternatively, you may follow the procedure outlined
below, referencing your file pool name instead of VMSYS.

�a�Enroll user ROOT into VMSYS.

enroll user root vmsys: (blocks 1000 storgroup 2 bfs

�b�Mount the Byte File System.

Note: All commands from this point are case sensitive.

openvm mount /../VMBFS:VMSYS:ROOT/ /

�c�Create directory usr

openvm create directory /usr

�d�Create directory home

openvm create directory /home

The directory home is not really needed for the installation, but might be a
good place to put your own tools.

18 VM/ESA Network Computing with Java and NetRexx

2.7.1.3 Build Java and NetRexx
If you plan to install Java and NetRexx into a Byte File System other than
VMSYS, you need to update JAVA LOADBFS and NetRexx LOADBFS to specify
the file pool you wish to use. You should replace all VMSYS references with your
file pool name.

�4�Build Java

vmfbld ppf esa cmsprod dmsbljav (all setup

DMSBLJAV is the name of the build list for Java.

�5�Build NetRexx

vmfbld ppf esa cmsprod dmsblnrx (all setup

DMSBLNRX is the name of the build list for NetRexx.

2.7.1.4 Download and Install the OVMJAVA Package
The OVMJAVA package provides an interface for executing Java commands that
does not require prior installation of the Open Edition VM/ESA Shell and Utilities
feature. The components of OVMJAVA are organized as follows:

• The /usr/openvm/java/bin directory created by the installation of this
package contains CMS modules which allow calls to JDK tools using the
openvm run command.

• The /usr/openvm/java directory contains sample REXX execs which can be
copied to a CMS minidisk or SFS directory for use.

• The /usr/openvm directory ties together Java, NetRexx, and the SG245148
package described below (see 2.7.1.5, “Download and Install the SG245148
Package”) to allow the use of the JC, NRC, and NRR commands developed
during the residency (see 3.5, “JC EXEC - Java Compile” on page 31, 3.4,
“NetRexx Compile” on page 29, and 3.6, “NetRexx Run” on page 31,
respectively, for complete descriptions).

The default CLASSPATH includes the individual CLASSPATH entries required to
use these three packages as well as the current working directory. Additional
search elements can be appended to the start of the CLASSPATH search list
using the SETCENV command (described in 3.8, “SETCENV - Setting C
Environment Variables” on page 33).

The OVMJAVA package may be obtained from the VM Download Library, located
on the World Wide Web at URL http://www.vm.ibm.com/download/. Complete
instructions for downloading packages from the library are provided there;
specific instructions for installing OVMJAVA are included in the OVMJAVA
package.

2.7.1.5 Download and Install the SG245148 Package
All of the programs developed during the residency and described in this
redbook are also available in the VM/ESA Download Library, located on the
World Wide Web at URL http://www.vm.ibm.com/download/, in the SG245148
package. Included, as you will discover as you continue your reading of this
redbook, are an extensive collection of Java and NetRexx examples, featuring a
package of CMS utility classes and a complete, sample distributed application,
as well as a set of program development tools that were critical to our
productivity during the residency.

Chapter 2. Overview of NetRexx and Java on VM/ESA 19

Complete instructions for downloading packages may be found on the initial
Download Library web page. Installation instructions for the various sample
program packages are included with the descriptions of the programs that
appear elsewhere in this redbook.

2.8 Adding a NetRexx Developer User ID
Because authorizations are different in a POSIX environment, each CMS user ID
may need a uid and gid added to its CP user directory entry. In addition you may
want to establish a default mount point and initial working directory. All of these
options are defined by using the POSIXINFO Directory Control Statement.

You should create a BFS file space for each user to develop NetRexx
applications, or a file space to be shared by a department. Use the CMS ENROLL
command with the BFS parameter to enroll the user ID in the file pool of your
choice.

To use these additional file spaces, external links or additional mounts will be
required.

To attach a user BFS file space to a directory tree so that the user file space is
implicitly mounted when the user enters his or her home directory, use the
OPENVM CREATE EXTLINK facility. For example:

/* Create a mount external link */
openvm create extlink /../VMBFS:VMSYSU:ROOT/home/cmsuser ,

MOUNT /../VMBFS:VMSYSU:CMSUSER/

Finally, you need to be aware of POSIX security issues. What kind of file
permission should users have? Should any one with access to BFS have access
to your NetRexx application?

20 VM/ESA Network Computing with Java and NetRexx

Chapter 3. Tools Used During the Project

Regular CMS users may find the OPENVM SHELL a strange and confusing
environment. Given the demands imposed by the business, taking the time to
learn a new command environment may not be an option. Also the cost of the
VM/ESA OpenEdition Shell and Utilities feature may be not an option for some
VM installations.

During the project several tools were created to make the life of a CMS NetRexx
and Java programmer easier. They provide the basic capabilities needed to
develop and run Java and NetRexx programs. These tools are included in the
sample program set for this book. See 2.7.1.5, “Download and Install the
SG245148 Package” on page 19 for information on obtaining the entire package
of sample programs for your VM/ESA system.

The whole environment centers around the XEDIT, BFSLIST, NRC, and NRR
commands.

3.1 XEDIT
XEDIT allows you to create and modify BFS files. It works just as in CMS, but you
need a special parameter NAMETYPE BFS. To create or modify a file, simply
type its BFS pathname, for example:

xedit /home/steve/myFirstProgram.nrx (nametype bfs

If you have the correct CP directory statement to set your current directory you
do not need to specify your home directory explicitly. You can also set the
current working directory with the OPENVM SET DIRECTORY command.

3.1.1 PROFILE XEDIT
Many programmers will have to modify their PROFILE XEDIT to make it work for
BFS files.

First of all, the PROFILE XEDIT must be written in REXX to be able to edit BFS
files.

Some XEDIT profiles analyze the fileid for which XEDIT is being called, for
example:

Parse Arg fn ft fm ′ (′ options

However, when a user issues “x AboutFrame.nrx (nametype bfs,” the Parse Arg
shown above yields:

fn = ″ABOUTFRA″
ft = ″″
fm = ″″
options=″ NAMETYPE BFS ″

So there is no variable holding the BFS requested fileid.

As BFS fileids can even contain spaces or parentheses, a Parse Arg as shown
above cannot easily be used to extract the fileid. Therefore XEDIT passes the
BFS fileid as arg(2) to PROFILE XEDIT.

 Copyright IBM Corp. 1998 21

A simple solution might be:

BFS=(arg()>1) /* Is this is a BFS file ? */
if bfs then parse arg ′ (′ options , fn ′ ′ ft fm

else parse arg fn ft fm ′ (′ options
...
′ COMMAND LOAD′ fn ft fm ′ (′ options
...

When the PROFILE XEDIT wants to do some setup depending on the filetype, a
few changes are required as well. An example analyzing a BFS fileid:

′ COMMAND EXTRACT /FN/FT/FM/PNAME/′
if pname.2<> ′ ′ then do /* This is a BFS file */

Parse Value Reverse(pname.2) with ext ′ . ′ +0 name ′ / ′ +0 Path
Path = Reverse(Path)
name = Reverse(name)
type = Reverse(ext)
end

else type=ftype.1
...

3.2 BFSLIST - Listing the Contents of a BFS Directory
As mentioned earlier, Java programs are stored in the BFS. As FILELIST cannot
be used to list BFS files, you feel lost, you cannot easily see what files and
directories are available. There is the OPENVM LISTFILE command and the ls
POSIX Shell command. But as illustrated below, they produce line mode output,
hence don′ t compare with FILELIST but with LISTFILE. Note also that both OPENVM
LISTFILE and the shell command ls -al return a GMT time as time of last
change whereas we are used to seeing local times.

3.2.1 OPENVM LISTFILE
Below you can find the console output of a few OPENVM commands. Before using a
BFS, a file system must be mounted. In a native CMS environment this is done
by the OPENVM MOUNT command. Then we issue OPENVM SET DIR to define our
working directory.

Readers with a Unix background are used to the above terminology. Readers
with CMS experience may need some help: one could compare OPENVM MOUNT
with CP LINK someuser somedev 191 M or with SET FILEPOOL mypool. Whereas OPENVM
SET DIR can be compared accessing the “A-disk”: ACCESS somedev A or
ACCESS someuser.somesubdir A.

Note: The BFS is a case sensitive file repository (all of Unix is case sensitive: ls
is not the same as Ls). Therefore all parameters of the OPENVM command that
refer to files are case sensitive too: /home/kris exists in BFS, but /home/KRIS
doesn ′ t.

22 VM/ESA Network Computing with Java and NetRexx

� �
openvm mount /../VMBFS:VMSYS:ROOT/ /
Ready; T=0.05/0.06 10:12:01

openvm set dir /home/kris
Ready; T=0.01/0.01 10:12:38

openvm q dir
Directory = ′ / home/kris′
Ready; T=0.01/0.01 10:13:12

openvm listfile
Directory = ′ / home/kris′
Update-Dt Update-Tm Type Links Bytes Path name component
02/19/1998 19:10:24 F 1 444 ′ . profile′
02/17/1998 09:34:57 F 1 954 ′ abc.class′
02/17/1998 09:34:48 F 1 106 ′ abc.crossref′
02/17/1998 13:50:16 F 1 410 ′ abc.nrx′
02/03/1998 19:52:05 E1 - - ′ cmsddr′
02/04/1998 16:30:46 E1 - - ′ cmspipe′
02/19/1998 08:41:45 F 1 1003 ′ getProperties.class′
02/19/1998 08:41:36 F 1 114 ′ getProperties.crossref′
02/19/1998 08:41:58 F 1 129 ′ getProperties.nrx′
02/04/1998 16:09:42 F 1 2097 ′ kris2.class′
02/04/1998 16:09:32 F 1 85 ′ kris2.crossref′
02/04/1998 15:59:23 F 1 216 ′ kris2.nrx′
02/03/1998 16:48:45 F 1 5 ′ kris3.nrx′
02/19/1998 11:06:30 F 1 2675 ′ myCanvas.class′
02/24/1998 10:40:33 F 1 654 ′ myCloseMenu.class′
02/24/1998 10:40:33 F 1 3819 ′ myEventClass.class′
02/24/1998 10:40:33 F 1 634 ′ myFrameController.class′
02/24/1998 12:32:00 D - - ′ testDirectory′
02/24/1998 09:40:33 L - - ′ testLink21′
...� �

Automatic Mount

 Helpful Hint

When becoming a regular BFS user, you might want to make your user “BFS
ready” automatically. This may be done either by updating the POSIXINFO
statement in the CP directory, for example:

 POSIXINFO UID 0 GNAME staff IWDIR /home/kris/,
FSROOT ′ / . . / VMBFS:VMSYS:ROOT/′

or by adding two calls to OPENVM to your PROFILE EXEC, such as:

′ EXEC OPENVM Mount /../VMBFS:VMSYS:ROOT/ /′
′ EXEC OPENVM Set Dir /home/kris′

3.2.2 POSIX Shell and Utilities
With the POSIX Shell and Utilities feature of VM, one gets the common Unix
commands, such as ls, mkdir and mount. The POSIX Shell is started by entering
POSIX on the command line.

Most CMS users have a PROFILE EXEC that is run to personalize their CMS
environment. In the POSIX Shell a .profile file performs a similar function for
the Unix environment: a filesystem is mounted and a working directory is
defined. So for brevity we don′ t show mount or cd commands in the console that
follows.

Chapter 3. Tools Used During the Project 23

� �
posix

Licensed Material - Property of IBM
5654-030 (C) Copyright IBM Corp. 1995
(C) Copyright Mortice Kern Systems, Inc., 1985, 1993.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

kris #
pwd
/home/kris
kris #

ls -al
total 952
-rwxrwxrwx 1 kris system 444 Feb 19 18:10 .profile
-rw-rw-r-- 1 kris system 7398 Feb 6 13:48 ClntSock.class
-rw-rw-r-- 1 kris system 550 Feb 6 13:48 ClntSock.crossref
-rw-rw-r-- 1 kris system 3501 Feb 6 10:29 ClntSock.java.keep
-rw-rw-rw- 2 kris system 1716 Feb 10 10:58 ClntSock.nrx
-rw-rw-rw- 1 kris system 744 Feb 16 12:47 Game.nrx
-rw-rw-rw- 1 kris system 1165 Feb 16 12:46 Game2.nrx
-rw-rw-r-- 1 kris system 1620 Feb 16 14:08 Game3.class
-rw-rw-r-- 1 kris system 178 Feb 16 14:07 Game3.crossref
-rw-rw-rw- 1 kris system 821 Feb 16 13:20 Game3.nrx
-rw-rw-rw- 1 kris system 875 Feb 6 15:46 GetHead.nrx
-rw-rw-r-- 1 kris system 14173 Feb 24 12:51 GetPerf.class
-rw-rw-r-- 1 kris system 1425 Feb 24 12:50 GetPerf.crossref
drwxrwxrwx 1 kris system 0 Feb 24 12:32 testDirectory
lrwxrwxrwx 1 kris system 12 Feb 24 09:40 testLink21 -> test/test21/
...� �

3.2.3 BFSLIST
Being spoiled with fullscreen tools such as FILELIST and DIRLIST, having to work
with linemode only tools feels like returning to the stone age. In addition, when
BFS, with Unix file structures, is new to you, you will feel even more lost. Only
when you start getting an overview of the BFS directories and files will you begin
to feel at home.

In a previous project a fullscreen tool, named BFSLIST was created to provide
CMS users with a more user-friendly interface to the BFS. It is offered with
redbook OpenEdition for VM/ESA Implementation and Administration, SG24-4747.
That version of BFSLIST had some shortcomings and did no longer work perfectly
in VM/ESA 2.3.0. So we greatly enhanced it.

The new version of BFSLIST is pictured below. The end-user interface is now
more like FILELIST: you can enter commands against the listed BFS objects.

24 VM/ESA Network Computing with Java and NetRexx

� �
KRIS BFSLIST A0 V 1000 Trunc=1000 Size=94 Line=1 Col=1 Alt=0
DIRECTORY: /home/kris/
--> cmd: X(Xedit/list) A(asciiXedit) D(del) R(ren) C(copy) Q(qLink) T(tree)
cmd T Fileid Privs Owner Group Size Date Time

F GetPerf.class rw-rw-r-- kris system 13K 1998/02/24 12:51:20
F GetPerf.crossref rw-rw-r-- kris system 1K 1998/02/24 12:50:56
F GetPerf.nrx rw-rw-rw- kris system 4K 1998/02/24 12:50:08
F TimeFrame.class rw-rw-r-- kris system 9K 1998/02/24 12:32:01
F TimeFrameAction.c rw-rw-r-- kris system 2K 1998/02/24 12:32:01
F TimeFrameClose.cl rw-rw-r-- kris system 665 1998/02/24 12:32:01
F TimeFrameControll rw-rw-r-- kris system 645 1998/02/24 12:32:01
F TimeFrameEvents.c rw-rw-r-- kris system 2K 1998/02/24 12:32:01
D testDirectory rwxrwxrwx kris system 0 1998/02/24 12:32:00
l testLink21 rwxrwxrwx kris system 0 1998/02/24 12:30:08
F GuiMon.nrx rw-rw-rw- kris system 9K 1998/02/24 11:12:42
F myCloseMenu.class rw-rw-r-- kris system 654 1998/02/24 09:40:33
F myEventClass.clas rw-rw-r-- kris system 3K 1998/02/24 09:40:33
F myFrameController rw-rw-r-- kris system 634 1998/02/24 09:40:33
F myMenuAction.clas rw-rw-r-- kris system 10K 1998/02/24 09:40:33
F TestFrame.class rw-rw-r-- kris system 11K 1998/02/24 09:40:33
F GuiMon.class rw-rw-r-- kris system 978 1998/02/24 09:40:32
F GuiMon.crossref rw-rw-r-- kris system 2K 1998/02/24 09:39:55
F GuiMon.java.keep rw-rw-r-- kris system 31K 1998/02/24 09:30:53
F TimeGraph.class rw-rw-r-- kris system 3K 1998/02/24 08:46:28
F TimeGraph.java rw-rw-rw- kris system 4K 1998/02/24 08:44:54
F GuiMonVM.class rw-rw-r-- kris system 3K 1998/02/23 19:50:50
F GuiMonVM.crossref rw-rw-r-- kris system 749 1998/02/23 19:50:38
F GuiMonVM.nrx rw-rw-rw- kris system 2K 1998/02/23 19:49:57
F GuiMon-1.nrx rw-rw-rw- kris system 7K 1998/02/20 17:17:49

1= Help 2= Refresh 3= Quit 4= Sort(NAME) 5= All 6= Sort(SIZE)
7= Backward 8= Forward 9= Dirs 10= Parent 11= XEDIT/List 12= All(.nrx)� �

A few usage notes are appropriate.

3.2.3.1 BFS File Naming - BFSLIST Terminology
BFSLIST uses the terms filename and filetype. They do have a slightly different
meaning than in a traditional CMS environment. Let′s take the third file shown
by BFSLIST as an example:

F GetPerf.nrx rw-rw-rw- kris system 9K 1998/02/24 12:50:08

The full name of this file is /home/kris/GetPerf.nrx, which is called a pathname in
the POSIX environment (in CMS you can issue HELP OPENVM PATHNAME to learn
more about pathnames).

In this pathname we can distinguish a path: /home/kris/ and a name:
GuiPerf.nrx. CMS users may tend to say: “GetPerf is the filename and nrx is the
filetype.” This seems OK as there are two distinct parts in the name, just as in
traditional CMS file names.

But remember that /home/kris/GuiMon.java.keep is a valid BFS file name too. As
it has three parts in the name, the CMS filename and filetype terms are no
longer appropriate.

On the other hand, a BFS holds different types of objects: files, directories, links,
symbolic links and external links (issue HELP OPENVM MENU to learn more about
links).

Therefore, in BFSLIST we use filetype to refer to the type of object. The filetype is
the first word of each BFSLIST line. You can expect to see the following types:

Chapter 3. Tools Used During the Project 25

F stands for a file
D stands for a directory
d stands for a symbolic link or an external MOUNT
l (lowercase l) stands for a link
? is an external link (for example to a CMS file)
others issue HELP PIPE BFSSTATE to find a description for other types.

You can use BFSLIST′ s Q command to find more information about link objects.

3.2.3.2 Execution Parameters
BFSLIST accepts one parameter: the pathname to list. The default is your current
working directory, as defined in the POSIX Shell or with the OPENVM SET DIR
command.

To list the root directory, issue BFSLIST /.

3.2.3.3 Walking Through the Directory Tree
PF9 can be used to only see directories, and PF11 will open the directory pointed
to with the cursor. Use PF3 to close a directory and PF5 to see all entries of the
listed directory.

PF10, Parent, opens the parent directory of the directory being listed.

3.2.3.4 Sorting
The list of objects can be sorted, either by entering sort commands in the
command line, or by using a predefined PF key. The following sort commands
are defined: SNAME, SDATE, SSIZE, and STYPE.

3.2.3.5 Commands
With the current version of BFSLIST you still cannot execute any arbitrary user
command. Only commands defined in $BFSEXEC XEDIT can be executed. The
most important commands are listed on top of the screen. You will be happy to
find the most common ones:

X to XEDIT a file or list a directory (this is also PF11)

A to XEDIT an ASCII encoded file (this is also PF23; uses the ASCXED EXEC)

C copy a file (you will be prompted for the new name)

D delete a file or directory (you′ ll be asked for confirmation)

R rename a file or directory (you will be prompted for the new name)

L create a LINK to a file or a directory (a prompt for the name follows)

Q to query a LINK (or for a FILE: show the complete name)

T to start BFSTREE

= to execute the same command as before

? to retrieve the last saved command

/ makes this line the top line of BFSLIST

GET copies a BFS file onto a CMS minidisk or SFS directory

NRC executes the NetRexx compiler (NetRexx Compile)

NRR executes a NetRexx class file (NetRexx Run)

JC executes the Java compiler (Java Compile)

26 VM/ESA Network Computing with Java and NetRexx

JR executes a class file (Java Run)

3.2.3.6 Installing
Installing BFSLIST is nothing special: copy the files to a public minidisk or
directory. This is a list of the required files:

 BFSLIST EXEC = Starts a BFSLIST
$BFSLIST XEDIT = The ″PROFILE″ and ″lister″ for BFSLIST
$BFSEXEC XEDIT = The ″EXECUTE″ for BFSLIST and BFSTREE

 BFSLIST HELPCMS = Some online help

As the files are placed in a PACKAGE, it is also possible to execute:

FILEList BFSLIST PACKAGE (Filelist

3.2.3.7 Shortcomings
BFSLIST has several shortcomings:

• You can only execute predefined commands. Entering options for these
commands is impossible too. So entering a FILELIST-like command as
RENAME / newname is not supported.

• The visible part of the lines is not refreshed after the execution of a
command. Use PF2 to refresh the whole list.

• BFSLIST has partial support for pathnames that use the special characters:
blank, ′, ″, (,), *, and =. The XEDIT, COPY, RENAME and DELETE commands will
work, others may fail.

• BFSLIST does not accept wildcards. BFSLIST /home/kris/*.nrx for example
will simply yield an error message: File or directory does not exist. As a
bypass: use XEDIT′ s ALL command while in BFSLIST, for example ALL /.nrx/.

3.2.3.8 Tailoring
As opposed to FILELIST, there is no separate PROFILE macro. So users cannot
easily tailor their own PF keys, colors, or other preferences.

The good news though is that BFSLIST is based on classic tools: REXX, CMS
Pipelines (BFSDIRECT and BFSSTATE), and a few calls to the OPENVM command.

BFSLIST EXEC This exec does almost nothing, it starts $BFSLIST XEDIT.

$BFSLIST XEDIT This is the exec that creates the list, and defines the PF keys,
colors and so on. Change the “Profile:” routine to tailor these
attributes.

$BFSEXEC XEDIT This macro executes the commands you enter in BFSLIST and
BFSTREE. Adding your own commands can be done in
routine “Execute.”

3.3 BFSTREE - Listing a BFS Directory Tree
BFSTREE is a bit similar to BFSLIST, but it lists all directories found from a given
starting point.

 Warning

Beware: BFSTREE can consume significant system resources especially for
the command BFSTREE / as then you request BFSTREE to scan the whole BFS
space starting at the ROOT directory. The BFS server seems to have to do a
lot of work with that. Using BFSLIST / is not that costly.

Chapter 3. Tools Used During the Project 27

Note as well that while BFSTREE is running, the BFS server holds locks for you;
the longer these locks are held, the more other people may become annoyed
with you.

The display produced by BFSTREE /home/ is printed below:

� �
KRIS BFSTREE A0 V 1000 Trunc=1000 Size=139 Line=0 Col=1 Alt=2
 Viewing tree starting at: /home/

/home/
bengt
dave
java
classes
java
applet
awt
datatransfer
event
image
peer
.......... some lines suppressed

kris
test
test21
test31
test32
test4
test33
test22
testLink21 -> test/test21/
test1
sal
client
v1

1= Help 2= Refresh 3= Quit 4= 5= 6=
7= Backward 8= Forward 9= 10= Parent 11= List 12=
====>� �

Note that BFSTREE shows directories that are links or symbolic links as:

linkpath -> realpath

BFSTREE could have scanned for all directories in that link too, but that effort
would even be more computing resource intensive. You can enter the T or the X
command to list the link′s contents.

3.3.1.1 Commands
The commands supported by BFSTREE are a subset of those of BFSLIST. Only
commands defined in $BFSEXEC XEDIT can be executed.

X to list a directory (this is also PF11)

D delete a directory (you′ ll be asked for confirmation)

R rename a directory (you will be prompted for the new name)

L create a LINK to the a directory (a prompt for the name follows)

T to start BFSTREE on the directory

= to execute the same command as before

28 VM/ESA Network Computing with Java and NetRexx

/ makes this line the top line of BFSLIST

? to retrieve the last saved command

3.3.1.2 Tailoring
BFSTREE is similar to BFSLIST in this area too: users cannot easily tailor their own
PF keys, colors, or other attributes.

The following REXX procedures are used:

BFSTREE EXEC This exec does all the work, including the definition of the PF
keys, colors and so on. Change the “XEDIT:” routine to tailor these
attributes.

$BFSEXEC XEDIT This macro executes the commands you enter in BFSTREE and
BFSLIST. Adding your own commands can be done in routine
“Execute.”

3.4 NetRexx Compile
Obviously during the project a lot of NetRexx compiles were started as you might
expect. Two procedures helped us here.

3.4.1 NRC EXEC - NetRexx Compile
The NRC EXEC has a few nice advantages:

• The parameters for the NetRexx compiler can be passed in a VM fashion and
abbreviations are permitted, for example:

NRC myTestNet.nrx (Keep strictc

• The current directory is temporarily set to the location of the NetRexx
source. This is required when wanting to get the compiler output stored in
the same directory as the NetRexx source.

• We verify that the LE/370 runtime library (SCEERUN LOADLIB) is in the
global loadlib list. If not, the GLOBAL LOADLIB list is updated.

• The NetRexx compiler is a Java program also, and quite an amount of virtual
storage is required during compilation. The NRC EXEC specifies 5MB in the
Java option (refer to A.9, “Virtual Storage Requirements” on page 143 for
more information about virtual storage requirements).

• Another option we pass to Java is the wanted classpath (refer to 3.8.1,
“Important Environment Variables” on page 33 for more information about
classpath).

• After a successful compilation, the compiled program is started (unless the
NORUN option is specified).

The format to start the NRC EXEC is as follows:

NRC pgmname < (<options> <PARMS execution parms> >

Where

pgmname is the, case sensitive, name of the NetRexx program to compile.

options are the options for the NetRexx compiler or for the NRC EXEC. The
recognized options are:

Chapter 3. Tools Used During the Project 29

NORUN tells not to run the compiled program
-xxxx any option starting with a -sign is passed untouched

to the NetRexx compiler.
PARMS xxx everything following PARMS is passed untouched

to the compiled program when it is started.
The following runtime NetRexx options are recognized, the minimum
abbreviation is shown in uppercase.
Binary Crossref COMpile Diag Explicit
Format Keep Logo Replace SOUrcedir
STRICTARgs STRICTASsign STRICTCase STRICTSignal Time
Trace Utf8

Note: The NetRexx language has an OPTION statement by which you can define
most of the above compile options. The options entered on the OPTION
statement overrule those specified at runtime.

The result of the compilation are one or more “class” files. The name of a class
file ends with .class and the NRC EXEC stores them in the same directory as the
NetRexx source. For example:

 NRC /home/kris/test/myServer.nrx

will generate (at least) the following file:

/home/kris/test/myServer.class

3.4.2 NRC XEDIT - NetRexx Compile
What does a NetRexx programmer want to do after using XEDIT to apply some
changes to the program source? That ′s right, compile it! Therefore, we also
created NRC XEDIT.

NRC XEDIT will call the NRC EXEC, passing the name of the program being edited.

The format to start NRC XEDIT is as follows:

NRC <any option understood by NRC EXEC>

As an example, suppose you are editing myTestNet.nrx, and want to compile it
with the KEEP option, just enter nrc keep in XEDIT′s command line.

An extra advantage, not found in the NRC EXEC, is that you can define “standard”
options for the NRC EXEC. Include one or two special comment lines in the first 20
source lines, starting in column 1:

--NRC-XEDIT-OPTIONS non-overridable options for NRC
--NRC-XEDIT-DEFAULTS overridable options for NRC

This is not the same as using the NetRexx OPTION statement because:

• the NetRexx options “nocompile,” “keep,” and “time” cannot be entered
on the OPTION statement.

• the NORUN and PARMS options are understood only by the NRC EXEC.

So our options cards do complement NetRexx ′s OPTION statement. The
differences between our two cards are:

• When NRC XEDIT finds a --NRC-XEDIT-OPTIONS card, all options on that card
are passed to the NRC EXEC. The major use probably is for NORUN. For

30 VM/ESA Network Computing with Java and NetRexx

example a NetRexx program that uses the AWT class cannot run on VM. You
would include a --NRC-XEDIT-OPTIONS NORUN card in its source.

• The --NRC-XEDIT-DEFAULTS card is only used when you enter NRC without
any options. If on the other hand you enter NRC blabla, NRC XEDIT will not
even look for a --NRC-XEDIT-DEFAULTS card.

Note: As mentioned above, the NRC EXEC does not scan the source for these
option cards.

3.5 JC EXEC - Java Compile
The JC EXEC can be used to compile a Java program. It is less evolved than the
NRC EXEC.

The only “special” things it does are:

• The current directory is temporarily set to the location of the Java source.
This is required when wanting to get the compiler output stored in the same
directory as the Java source.

• We verify that the LE/370 runtime library (SCEERUN LOADLIB) is in the
global loadlib list. If not, the GLOBAL LOADLIB list is updated.

3.6 NetRexx Run

3.6.1 NRR EXEC - NetRexx Run
The NRR EXEC can be used to run a NetRexx program. In practice, the NRR EXEC
can start any Java program. Obviously, to run a NetRexx program it must have
been previously compiled, meaning that some .class files must exist.

The official way to have the Java virtual machine start a .class file is:

java <runtime options> classfile <program parameters>

An example:

java myServer

Java looks for the .class files only in what has been defined as classpath . Most
users will include the “current directory” in their classpath (refer to 3.8.1,
“Important Environment Variables” on page 33 for more information about
classpath).

The NRR EXEC makes it a bit easier to run class files stored somewhere else.

The format to start NRR EXEC is as follows:

NRR fileid <any input for the program>

The NRR EXEC splits the fileid in three pieces: the path, the first part of the
filename and the remainder. Only the first two are used.

For example, the two important parts taken from

NRR /home/kris/test/myServer.class blabla

are: /home/kris/test/ and myServer. The NRR EXEC will set the current directory to
/home/kris/test and then start Java with java myServer blabla.

Chapter 3. Tools Used During the Project 31

As NRR doesn′ t care about the extension of the file, you can actually enter:

NRR /home/kris/test/myServer.nrx blabla

3.6.2 NRR XEDIT - NetRexx Run
NRR XEDIT is similar to NRR EXEC with the extra advantage that you don′ t have to
enter the program name.

The command to start NRR XEDIT is:

NRR <any input for the program>

Note: NRR XEDIT extracts the name of the BFS file being edited and then calls the
NRR EXEC. And as NRR doesn′ t care about the extension of the file, you can
actually enter NRR while XEDITing the NetRexx source.

3.7 Tools for the POSIX Shell Users
As we sometimes also used the POSIX Shell, a few basic functions were added
to our .profile files. We also defined a classpath reflecting our environment.
Here is our .profile file.

� �
PS1=′ $LOGNAME′ : ′ $PWD′ : ′ > ′
export PS1
NRX=′ / usr/NetRexx′
export CLASSPATH=/home/java/classes:$NRX/lib/NetRexxC.zip:$NRX/bin:.
alias x=″xedit″
alias dir=″ls -al″
function nrc {
java -mx5m COM.ibm.netrexx.process.NetRexxC $1
return
}

function nrr {
java $1
return
}

function bfslist {
cms ″BFSLIST″ $1
return
}

function xedit {
cms ″XEDIT ′ $1′ (NAMETYPE BFS″
return
}� �

Notice that thanks to the created functions, it is possible to start a few CMS
commands without having to prefix them with “cms.” Also, we can type “dir” to
list our files. This is the list:

x ... to XEDIT a file. Which is shorter than cms ″X ...″
bfslist ... to start BFSLIST
nrc ... to compile a NetRexx program
nrr .. to run a NetRexx program

The NetRexx related functions are not elaborated as we did most of the work
from under native CMS.

32 VM/ESA Network Computing with Java and NetRexx

3.8 SETCENV - Setting C Environment Variables
Unix and PC/DOS environments have so called environment variables . In the
POSIX Shell one uses the export command to define them. For example export
TZ=cet1win could be used to define the timezone (central european time, one
hour offset in this example). The echo command can be used to show a value:
echo $TZ displays cet1win in our example.

3.8.1 Important Environment Variables
Some variables are more important than others. We′ ll list only the most
important ones. If you are looking for more information, refer to the Unix
documentation or to the redbook OpenEdition for VM/ESA Implementation and
Administration, SG24-4747, section 2.7, “Environment Variables.”

PATH This is definitely the most important environment variable. It defines
the directories that the system searches to find programs to execute.
Ours was very simple:

/bin:/usr/java/bin

Notice that a colon (:) separates the different directories, so directory
/bin is searched, then /usr/java/bin. Also notice that the directory
names are case sensitive.

CLASSPATH In its turn this is the most important variable for Java users: it
defines the directories that Java searches to find class files.

The CLASSPATH we used is as follows:

.:/home/java/classes:/usr/NetRexx/lib/NetRexxC.zip:/usr/NetRexx/bin

Pay special attention to the period (.) at the beginning. It means that
the current directory has to be searched before any other directory.

 Beware

Don′ t use the classpath shown in the example above. It is only the
classpath we used with VM′s beta version of Java. The initial
classpath defined during installation can be found in the
installation files JAVA LOADBFS and NETREXX LOADBFS, as well
as in BFS file /etc/profile. The default classpath for an installation
without NetRexx might be

usr/java/classes:/usr/java/lib/classes.zip:.

Refer to 2.7, “Installing Java and NetRexx without the Shell and
Utilit ies” on page 16 for pointers to further installation information.

Note: Java also has a -classpath option. Whereas the CLASSPATH
environment variable complements a hardcoded search path, the
-classpath option replaces the search path for class files. See 3.8.3,
“More About Classpath” on page 34 for an additional discussion of
these alternatives.

Chapter 3. Tools Used During the Project 33

3.8.2 Setting Environment Variables from CMS
In CMS, the C environment variables can be set using GLOBALV, group CENV.
The OPENVM command passes any GLOBALV variable defined in the CENV
group to the C environment.

A problem arrives when the value for the variable must be mixed case. When
entering

Globalv select cenv setp TZ cet1win

on the console, CMS translates everything to uppercase. The actual command
thus becomes

GLOBALV SELECT CENV SETP TZ CET1WIN

Whereas uppercasing is no real problem for timezone definition, it is a real
problem when defining paths (or programs names). Executing the GLOBALV
command from inside a REXX EXEC, which must use address command , allows
the definition of mixed case values.

We provide a general solution: the SETCENV EXEC. It preserves the case of the
value for the environment variable. The format to call SETCENV is:

 SETCENV varname value
 SETCENV Query (this is default)
 SETCENV GETSHELL <varname>

Where the parameters mean:

varname Is the name of the environment variable. SETCENV uppercases this
name as the C environment variable names are uppercase.

value Is the contents of the environment variable, it starts after the blank
that delimits varname. The case is preserved. The maximum length is
255, imposed by GLOBALV. SETCENV produces an error message
when attempting to define something longer.

QUERY List the environment variables defined in the POSIX Shell profile
/etc/profile and those defined in GLOBALV.

GETSHELL When no variable name is specified, SETCENV lists all environment
variables defined in the POSIX Shell profile /etc/profile.

When a variable name is specified, SETCENV extracts the requested
environment variable from the POSIX Shell profile /etc/profile and
defines the same in GLOBALV.

SETCENV saves what you ask in storage and on disk in LASTING GLOBALV A.

3.8.3 More About Classpath
As Java is an interpretive language, the search for a Java program doesn′ t
follow the directories defined in the PATH. Java looks for the environment
variable CLASSPATH to find that search path for class files. An alternative is
Java′s -classpath option; it overrides the environment variable.

When neither of these are defined, Java uses a hardcoded search path.

What to choose if the hardcoded path doesn′ t fit your case?

The POSIX Shell users have two choices to make a permanent change:

34 VM/ESA Network Computing with Java and NetRexx

• Include an export CLASSPATH=yourstuff in the system profile: /etc/profile.
This way the new class path is available to all POSIX Shell users.

• Include an export CLASSPATH=yourstuff in the user′s profile:
/home/xxxxxx/.profile (where xxxxxx is the user′s user ID).

CMS users can also select between two options. But, even though we have a
system profile too (SYSPROF EXEC S), it is not common to define GLOBALV
variables there. This leaves the next obvious options:

• Most probably, one will have an EXEC to start a Java program. On the call to
Java, add the -classpath option; for example, MYJAVA1 EXEC

� �
 address command /* Be sure to have case preservation */

/* and not to call EXECs ″by accident″ */
 Appl1Dir =′ / JavaApplication1/′
 MainClass=′ MainStuf′
 /* do we have the C runtime lib ? */
′ PIPE COMMAND QUERY LOADLIB′ ,

′ | SPEC w3-* 1|PAD 5|CHANGE 1.5 /NONE //|VAR libs′ ,
′ | SPLIT|FIND SCEERUN|TAKE|COUNT LINES|VAR HaveC′

 if haveC then nop
else ′ GLOBAL LOADLIB SCEERUN′ libs

/* Adapt the current directory to the dir of the application */
′ PIPE LITERAL CD|BFSQUERY|VAR CD′
′ EXEC OPENVM SET DIR′ Appl1Dir

 Say ′ Calling Java program′ MainClass′ . class ...′
′ EXEC OPENVM RUN /usr/java/openvm/java′ ,

′ -classpath :/myOtherStuffForJava:′ | | ,
′ / home/java/classes:/usr/NetRexx′ | | ,

MainClass
 src=rc

′ EXEC OPENVM Set Dir′ cd /* Restore current directory */
 exit(src)� �

• For a user-by-user approach, have the user execute SETCENV CLASSPATH
yourstuff once, or have them include the SETCENV call in their PROFILE
EXEC:

� �′ EXEC SETCENV CLASSPATH .:/MyJavaStuff:...etc....′� �

Chapter 3. Tools Used During the Project 35

36 VM/ESA Network Computing with Java and NetRexx

Chapter 4. Comparing REXX to NetRexx

In this chapter we will try to compare REXX with NetRexx. We hope that at the
end readers will be able to position both languages, as well as being able to
read NetRexx programs and can code simple programs. We assume that our
readers have some knowledge of REXX.

Our goal is not to replace existing documentation, nor to provide a NetRexx
reference. We can strongly recommend redbook Creating Java Applications
Using NetRexx, SG24-2216 to learn about using NetRexx and Java, as well as
Mike Cowlishaw ′s The NetRexx Language for NetRexx reference. The first book
gives innumerable examples; in areas such as NetRexx introduction, coding GUI
applications, exploiting multitasking.

4.1 REXX′s Position
REXX is often termed as being a scripting language. The authors of this book do
not agree with this statement. REXX definitely has a broader scope than that.

Surely on VM, the birthplace of REXX, REXX is used by many mission critical
applications. So REXX is a true programming language.

On the other hand, we admit that only on VM, REXX can reach everything and
everything can reach REXX. On other platforms though, can REXX often only use
a subset of the available interfaces, in which case the usefulness of REXX is
much reduced.

4.1.1 The REXX Language
REXX is an interpreter, maybe one of the reasons why some people name it “a
scripting language.” An inherent advantage is that no compile step is required.
The cycle is write and test, as opposed to write, compile (= wait) and test. This
is fast development, but many errors that a compiler would detect are detected
only at runtime.

The REXX language is standard on all platforms, and has a rich function set for
string manipulation. Furthermore REXX is a “typeless” language, transparently
converting numbers to strings when required. Add to this that variables don ′ t
need to be declared and you understand why REXX is so easy to use.

At the other side, REXX itself provides a limited interface to the outside world:
only file reading and writing has been defined. Platforms can (and do) add
functions and make other APIs available to REXX, but those extra functions often
are not portable.

More recent REXX programs on VM often interface with CMS Pipelines, a very
powerful combination, but can then only run on VM (these Pipelines are also
available on OS/390, but not widely spread).

 Copyright IBM Corp. 1998 37

4.1.2 REXX Compilers
On both VM and OS/390 REXX compilers exist; they provide improved
performance and protect source code from modification and copying.

4.1.3 Hello World in REXX
Coding a REXX program that says “Hello world” and running it is trivial: create a
file with two lines, and type its name to run it. Our “Hello world” program is
advanced as it also tells how much 1+1 is.

� �
 /* This REXX program greets the world */
 Say ′ Hello world, 1+1=′ 1+1 ′today.′� �

4.2 NetRexx ′s Position
NetRexx is a new language, built on top of Java. Its goal is to make writing Java
programs easier, and to bring some of REXX′s advantages to the Java world.

NetRexx is not an interpreted language - it must be compiled. The NetRexx
compiler translates the NetRexx source into a Java program and then calls the
Java compiler for you. As Java is platform independent, NetRexx programs are
portable too.

As compiled NetRexx programs become Java classes, NetRexx programs can be
called by Java programs also..

Note: NetRexx provides some Java classes as well. Using mainframe
technology, one can term these classes the “NetRexx runtime library.”

4.2.1 Hello World in NetRexx
Coding a ″Hello world″ program in NetRexx is a simple as in REXX. Running it
is easy too: type “java” followed by the name of the program. But, it must have
been compiled.

� �
 /* This NetRexx program greets the world */
 Say ′ Hello world, 1+1=′ 1+1 ′today.′� �

4.2.2 Hello World in Java
As a comparison, here is the same ″Hello world″ program written in Java.
Beware: Java is case sensitive; except for the string “Hello world.” everything
must be coded in the case shown.

� �
 /* This Java program greets the world */
 class HelloWorld {

public static void main (String args[]) {
System.out.println(″Hello world, 1+1= ″+ (1+1) + ″ today.″) ;

}
 }� �

38 VM/ESA Network Computing with Java and NetRexx

4.2.3 The NetRexx Language
The base NetRexx language is similar to REXX, and almost all REXX string
functions and operators are supported. In addition, the complete Java toolkit is
available at your fingertips. This means, for example, that you can now write
programs that use such things as multitasking, or GUI interfaces. in a REXX
fashion.

Java′s GUI interface, based on the AWT class, is not supported on VM. Even
though GUI programs can be written and compiled on VM, they must run on
another platform supporting Java ′s AWT class, such as OS/2 or the IBM Network
Station.

As Java is platform independent, your programs can run on many more
platforms.

4.2.4 NetRexx and Compilers
A compiled NetRexx program is a Java program, or a class file (to use Java
terms). But, using mainframe terms, one can say that NetRexx has a runtime
library. In Java terminology: NetRexx provides some class files. The Java virtual
machine must be able to find them, else not all NetRexx programs can run.

The NetRexx compiler, first a REXX program, now is a NetRexx program itself.
This means you can use NetRexx on any platform with Java support.

Java itself is also a kind of interpretive language. It differs from REXX in that
Java does not interpret the source of the program, but a kind of compiled
version. The compiled version of the program, class files, are still machine
independent. To improve the performance many platforms now provide “Just in
Time” compilers that compile a Java class file in machine dependent format just
before execution.

4.3 NetRexx Syntax Introduction
A problem while designing NetRexx was that it should appeal to REXX users as
well as to Java users. Don′ t forget that Java is a pure Object Oriented (OO)
environment. REXX and Java are very different; for example, REXX is insensitive
to both case and data type, while Java is very sensitive to both.

Combining these two worlds in one language, NetRexx, is surely not easy. And
Mike Cowlishaw decided not to make NetRexx 100% upward compatible with
REXX. As a result, some shortcomings of classic REXX could be overcome in
NetRexx.

We can distinguish a few topics in the REXX and NetRexx language:

Basic syntax Here we classify how to continue a line, how to make a
comment line, how to code a string and so on.

Data types REXX is a language without data types (everything is a
string). NetRexx allows the use of data types, but gives
freedom too.

Case REXX and NetRexx are both case insensitive. The symbols
“kris” and “Kris” are the same.

REXX instructions In this topic we discuss the (Net)REXX instructions and a few
examples: do , parse , if , ...

Chapter 4. Comparing REXX to NetRexx 39

Function calls REXX always had a rich set of functions, some examples
being left() , translate() , word() , ... NetRexx provides most of
them and provides a few new ones. But calling them is a bit
different.

Subroutines This is how a programmer can subdivide a program, or
re-use software. As OO is all about re-using software, you
should not be surprised that here NetRexx differs greatly
from REXX.

We go now through these topic one by one. Our goal is not to give a complete
list of differences. Our goal merely is that the reader can understand the
examples in this book, and to give enough information to start coding. It is fairly
safe to assume that items we don′ t mention are identical in REXX and NetRexx,
or of little importance. Furthermore we assume the reader is familiar with REXX.

4.3.1 Basic Syntax Differences
Even though most of the basic syntax of REXX and NetRexx is identical, some
differences exist.

Line continuation: In REXX a comma at the end is used to indicate line
continuation. In NetRexx a minus sign is used instead:

LongLine = ′ This is a long line that′ -
′ spans two source lines′

catLine = ′ Concatenation is just li′ | | -
′ ke this′

Comments

Comments can be written as in REXX. In addition NetRexx provides an easier
way: everything following two minus signs is also a comment.

 /* This is a comment, just like in REXX */
 /* Comments like this can span lines

as we show here. */
 -- But this is a comment in NetRexx only
 say ′ Is it′ time -- tell how late it is

The remainder of the basic syntax is identical.

4.3.2 Data Types
REXX is a data type-less language, designed for humans, not for computers.
NetRexx follows a similar concept, but it can work with data types as well.

In most classic languages one can basically see two data types only: character
strings and numbers.

Object Oriented languages extend the data type principle quite a bit: a date data
type is an example easily understood, more complex examples are a push
button, or even a whole frame. In fact, the data type of an object equals the class
of the object. Thanks to this, an OO language can, for example, know that the
“add()” method for an object of class “date” is different from the “add()” method
for an object of class “frame” and that an object of class “String” has no “add()”
method at all. Look at Chapter 5, “AboutFrame, a Reusable Class” on page 55
for an explained class example.

40 VM/ESA Network Computing with Java and NetRexx

REXX Data Types

To REXX everything is a string. Because of this, there is no need to “declare”
variables; REXX defines them when first encountered. A small drawback is that
more runtime errors are possible. When issuing: Say a ′ + ′ b ′ yields′ a+b

REXX has to convert the strings a and b to numbers, and that can fail. In a
compiled language, the compiler might detect that “a” or “b” is not defined as a
numeric data type and produce a compile time error.

NetRexx Data Types

To NetRexx anything that hasn′ t been predefined becomes an object of class
REXX, which is similar to Java′s string class. This is similar to REXX.

When required, NetRexx converts the data type. Again this means that some
conversion problems are only detected at run time. Just as in classic REXX, one
can do arithmetic with variables that are REXX strings.

In a NetRexx program you cannot only use data types defined by NetRexx, but all
data types (or classes) known to Java as well. Native data types are really basic,
not implemented as classes. Some of the native data types are:

 boolean, byte, char, int, float

Declaring Variables

In REXX it is impossible to declare variables before using them. In NetRexx it is
possible. A variable that is only declared has a data type, but no content. Here
follow some NetRexx definition examples:

a = ′ test′ -- a becomes an object of type REXX
b = REXX -- b is declared as a REXX type object

-- but, the object does not yet exist
c = string ′ test′ -- c is a native Java string
d = string -- declare a native Java string
e = int 7 -- e is the integer 7
f = Frame(′ test′) -- f is a Frame with ′ test′ as title
g = Frame -- g is a declared Frame
h = myTestClass -- h is of type myTestClass

Not Initialized Variables

As opposed to REXX, not initialized variables are not allowed. Variables must be
initialized before being referred to or a compile time error will occur. The two
line program

� �
hello=′ Hi there′
say hello to the world� �

displays in REXX “Hi there TO THE WORLD,” but it cannot be compiled in
NetRexx. So NetRexx has no need for the Signal on NoValue instruction.

Empty Variables

In REXX a variable can be considered “empty” for two reasons:

Chapter 4. Comparing REXX to NetRexx 41

• The variable referred to is not defined. REXX defines its content then as the
uppercase of the variable name. An example of testing this:
if Symbol(′ myVar1′)<>′VAR′ then ...

• The variable holds a zero length string. An example of testing this:
if myVar2=′ ′ then ...

In NetRexx the situation is different: undefined variables cannot exist (the
NetRexx compiler detects them). On the other hand, variables can have a new
state: declared only. As for REXX there are two cases:

• The variable referred to is declared only. Using it in a Say yields a program
abend: “NullPointerException.” Testing for this case can be done as:
if myVar1=null then ...

• The variable holds a zero length string. An example of testing this:
if myVar2=′ ′ then ...

Both cases are different; myVar2 is not null.

4.3.3 Case
REXX and NetRexx are both case insensitive. The symbols “kris” and “Kris” are
the same.

While comparing strings, the case is preserved. So, when defined as follows,
“ a b c = ′Test′” and “de f= ′ test′,” the contents of “abc” and “def” are not
identical.

Java class names are case sensitive, so the class file names resulting from a
NetRexx compile are also case sensitive. NetRexx will use the case of your class
definition.

When using Java classes from NetRexx it is not required to exactly match the
case of the Java class name; NetRexx resolves the problem at compile time.
First a search is made with the case as coded in the program, and if no match is
found a case insensitive search is attempted.

4.3.4 REXX Instructions
Only a few major differences do exist. The new class and method instructions
are handled later.

Grouping Code
 The Do Instruction

In REXX the do instruction is used for two purposes. Here we discuss the use of
Do to group a set of instructions. For example:

if something=bad then do
...

end

This remains the same in NetRexx, except that there are extensions. The most
important extensions are the catch and finally instructions:

42 VM/ESA Network Computing with Java and NetRexx

if something=bad then do
...instruction set 1...
catch <exception>
...instruction set 2...
finally
...instruction set 3...

end

The normal instructions are ...instruction set 1...″. If the named exception
occurs, instructions ...instruction set 2... are executed. An example of an
exception is “file not found.” The instructions ...instruction set 3... are
always executed at the end, both in normal and exceptional conditions.

Looping Through Code
 The Do or Loop Instruction

Here we discuss how a set of instructions can be iterated. In REXX we also use
the Do instruction. For example:

do i=1 by 5 to 99
...

end

This has been changed: in NetRexx you have to use the Loop instruction instead.
The While, Until and Forever options exist as well. A NetRexx example:

loop i=1 by 5 to 99
...instruction set 1...
catch <exception>
...instruction set 2...
finally
...instruction set 3...

end i

The Select Instruction

This is compatible, but a Select group can also include the catch and finally
instructions, with the same usage as in a Loop construct.

The Label option

To end the changes for Do, Loop, and Select we must mention the Label option.
When nesting do blocks in REXX it is sometimes hard to match the
corresponding do and end statements. Only for REXX′s do i= . . . variant it is
allowed to code end i .

NetRexx gives an improvement in this area with the Label name option. This
“Label” option can be used on Do , Loop , and Select to assign a name to the
coding block. This name can then be used on Leave , Iterate , and End statements.
Two NetRexx examples, side by side:

Chapter 4. Comparing REXX to NetRexx 43

Select Label myTest | Loop i=1 to 9 Label myLoop
when xyz=false then do | ...
... | do label InnerDo
end | ...
Otherwise | leave myLoop
.... | end innerDo
catch <exception> | catch <exception> ...
finally ... | finally ...

end myTest | end myLoop

Note that it is still valid to use the control variable as the name of the group (“i”
in the above example). For example:

do i=1 to 9 ... leave i ... end i

The Parse Instruction

The instruction still exists but the defined input sources are limited to the next
four:

parse term template (analyzes “term”)
parse ASK template (reads an input stream)
parse SOURCE template
parse VERSION template

 Where “term” must be a string or result in a string, as:
parse ′ Something is strange′ what verb how
parse what.left(4) begin 2 rest

Notice that parse ARG template, the format most often used in REXX, no longer
exists. The reason is that NetRexx is an OO language in which input parameters
for “subroutines” are predefined and pre-parsed (some examples follow). In OO
terminology, subroutines are called “methods” as is explained below.

In some examples you will find a parse ARG ... instruction. But in these
examples the input for the method has been placed in variable “arg,” either
explicitly or by the “Method” instruction that is added by the NetRexx compiler.
The parse ARG becomes in fact an ordinary parse term.

The parse upper ... construct no longer exists. The Upper method should be used
instead, and (thanks, Mike) there is also a Lower method.

Getting Keyboard Input: The REXX instructions to get keyboard input on VM,
parse pull ... and parse external ... can be replaced by either ask or parse ask .
An example:

pool = REXX -- ″pool″ must be declared before the ″Loop″
Loop until pool <> ′ ′

Say ′ Give the name of a swimming pool please′
parse ask pool 0 test .
if pool = ′ ′ then Say ′ I asked you something′

end
test=test.upper()
if test = ′ MINERALTHERME′ then do

Say ′ Yes indeed the pool′ pool ′ is great′
Say ′ Do they have a sauna too ?′
yesno = ask
if ′ YES′ . abbrev(yesno.upper(),1) then

Say ′ You must have been there′
end

44 VM/ESA Network Computing with Java and NetRexx

The ADDRESS instruction

Even though many REXX programmers don′ t know well what the Address
instruction exactly does, it is used all the time. With the Address instruction
REXX is told what to do with statements that are neither REXX instructions nor
assignments.

The default in a VM EXEC is address CMS which means: “pass those statements
to CMS.” In an XEDIT macro the default is address XEDIT which instructs REXX to
pass those statements to the XEDIT editor. Some examples:

address commmand /* a STATEMENT, so for REXX itself */
abc=′ Q DISK′ /* an ASSIGNMENT, for REXX too */
if xyz<> ′ ′ then /* 2 STATEMENTs, for REXX */

abc ′ A′ /* no STATEMENT, no ASSIGNMENT ...
==> resolved and passed to the ...

current ″address″ = ″command″ */

Well, NetRexx has no Address instruction . This means that a NetRexx program
cannot execute CMS, CP, or XEDIT commands.

To Remember

This is one of the major differences from REXX: a NetRexx program cannot
be used as a command scripting language. Just as C and PL/I, NetRexx is
only an application programming language, but a very powerful one.

Through the use of a C or an Assembler program, execution of CMS commands
is possible from Java, hence from NetRexx as well.

The good news is that with this redbook a C program is delivered that allows a
Java program to execute a CMS Pipeline. And, in CMS Pipelines everything is
possible. See Chapter 9, “Java and CMS” on page 93 for more details.

4.3.5 Function Calls
One of the basics any REXX programmer has to know is that a word followed by
a parenthesis is a call to a function, and the function will return something. The
result can be an empty string, but even that is a result. A REXX example:

atext=′ It happened in 1998′
year=word(atext,4)
==> year holds ″1998″

Functions cannot only be used in assignments. The next example surely is
uncommon (and it will end your VM session quickly when executed):

subword(′ The CP LOGOFF command is a fast way out′ , 2 , 2)

This example is important though for another reason.

In general, in REXX it is uncommon to code

somefunction(parameters)

as it would cause the execution of a host command (see “The ADDRESS
instruction”). When the programmer is not interested in the result of the function
two alternatives are commonly used:

Chapter 4. Comparing REXX to NetRexx 45

junk = SomeFunction(parameters)
call SomeFunction parameters

In NetRexx, however, such code is written all the time, and it will not result in
execution of host commands.

NetRexx Function Calls: Just as in REXX, NetRexx comes with many string
manipulation functions. The way to use them is different, however. These
functions are now called methods , and NetRexx uses the same syntax as Java to
code a call to a method. Next follows a simple example of extracting the fifth
word from a string:

 ==== NetRexx ==================== | ==== REXX =======================
 team= ′ Bengt Dave Kris Sal Steve′ | team =′ Bengt Dave Kris Sal Steve′
 ProjectLeader = team.word(5) | ProjectLeader = word(team,5)

REXX people can remember that what used to be the main input to a function is
now coded before the function call.

In NetRexx the syntax is different as it is based on another philosophy: a method
acts upon an object. In the above example, the object is named “team” and the
method is called “word.” The parameters that the word() method needs are
specified between parentheses, and define how the method will act upon the
object for which it is called.

The example that follows is used to explain more complex calls, one of which is
known in REXX as “nested function calls.”

 ==== NetRexx ==================== | ==== REXX =======================
 VmRedbook=′ Written on 1998-02-27′ | VmRedbook=′ Written on 1998-02-27′
 when=VmRedBook.word(3) | when=word(VmRedBook,3)
 -- ′ when′ holds ″1998-02-27″ | /* ′ when′ holds ″1998-02-27″ */

|
 year=VmRedBook.word(3).left(4) | year=left(word(VmRedBook,3),4)
 -- ′ year′ holds ″1998″ | /* ′ year′ holds ″1998″ */

|
 Say ′ *′ . left(52,′ = ′) ′*′ | Say left(′ *′ , 5 2 , ′ = ′) ′*′
 Say ′ *′ | | year.center(51)′ *′ | Say ′ *′ | | center(year,51)′ *′
 Say ′ *′ . left(52,′ = ′) ′*′ | Say left(′ *′ , 5 2 , ′ = ′) ′*′

Both display “1998” in a rectangle:

===
* 1998 *
===

Let′s have a closer look at the year = VmRedBook.word(3).left(4) statement. The
first interesting part is VmRedBook.word(3): the word() method is called for object
“VmRedbook.” Word() returns a new string object. This new string object is then
acted upon by the left() method. Left() returns a newly created string object too,
and thanks to year =, object year refers to it. As we did not declare a data type
for year, NetRexx assigns it class REXX.

The construct ′ *′ . left(52,′ = ′) shows that REXX′s string handling methods can
act upon a hard-coded string as well (a single * character in our example).

Once one is used to the NetRexx notation, it is easier to read than REXX′s
notation:

46 VM/ESA Network Computing with Java and NetRexx

NetRexx simply read from left to right; stop at each dot and interpret; iterate
this process. A longer example:
In20Century = VmRedBook.word(3).left(2).pos(′ 19 ′)

REXX find the innermost function call and interpret, then expand to the left
and to the right to find the next function and so on. The same
example:
In20Century = pos(left(word(VmRedBook,3),2),′ 19 ′)

Nested NetRexx Methods

Worth noting though is that truly nested method calls are encountered in
NetRexx too, but with a lesser frequency than in REXX. Here are two short
examples; the first shows how the Abbrev method has to be used in NetRexx.
The second illustrates the addition of a “Label” object to a frame.

�1� if ′ YES′ . abbrev(yesno.upper(),1) then ... -- he said Yes

�2� myFrame.add(Label(″End time:″))

It can be seen that nested method calls are only used when two (or more)
objects are used in a single statement.

�1� the inner method call reads yesno.upper(): the object “yesno” (a REXX
string) is translated uppercase. The result becomes a parameter to abbrev()
method. Method abbrev() works on object “YES”.

�2� the inner method call reads Label(″End time:″) , which is a call to create a
new “Label” object. This new object becomes a parameter to the add() method.
The add() method works on object “myFrame.”

4.3.6 Subroutines and User Defined Functions
This is how a programmer can subdivide a program, or re-use software. In
REXX, the difference between subroutines and functions is that a function must
return a result, whereas a subroutine can return a result. As this difference is
not important here, we will use the more general term subroutine.

Without being very far from the truth one could say that methods are
subroutines. But, the possibilities of OO methods are much more elaborate than
those of subroutines in classic REXX.

Classic REXX allows subroutines to be stored in files other than the main
program. But, whereas such external subroutines are indeed callable from any
other program, there are quite some drawbacks.

Below follows a list of problems encountered in classic REXX.

• Each time an external routine is called, it is read from disk, which incurs
much overhead if the routine is frequently called. Programmers can use
VM ′s EXECLOAD command to load them in storage, but it is not automatic.

Java will keep methods that are being used in storage, surely as long as the
objects using them live.

• When an external routine stops running, all its variables are cleared. So it is
very difficult to call an external subroutine several times and have it work on
the same task. The external routine will have to save intermediate values, in
GLOBALV for example.

Chapter 4. Comparing REXX to NetRexx 47

In an OO language, methods work on an object, and the class can define
which variables live as long as the object lives. So it becomes very easy to
divide work in pieces. Here follows a short comparison; refer to Chapter 5,
“AboutFrame, a Reusable Class” on page 55 for a complete, working,
NetRexx example.

 ==== main REXX pgm =========== ==== Main NetRexx pgm ============ ====
 ... | ...
 rslt=SomeExec(′ INIT task1′) | task1=SomeClass() -- create object
 ... | ...
 rslt=SomeExec(′ STEP1 task1′) | task1.Step1() -- perform step1
 ... | ...
 rslt=SomeExec(′ STEP2 task1′) | task1.Step2() -- perform step2
 ... | ...
 rslt=SomeExec(′ DONE task1′) | task1.Done() -- tell we′ re done
 ... | ...

With the methods a program can complete the definition of an object in small
steps.

• In REXX the variable pool of external subroutines is completely isolated from
the main program. There are some tricks by which an external subroutine
can fetch (or even update) variables from the calling program, but they are
tricks, not architected ways. An example:

 ==== main exec =============== ==== external subroutine SUBR EXEC ====
 address command |
 SomeName=′ abc′ |
′ EXEC SUBR′ | address command

| ′ PIPE VAR SomeName 1|Var SomeVar′
| ==> we copied callers ″SomeName″ into
| or variable ″SomeVar″
| ′ PIPE Literal DEFghi|Var SomeName 1′
| exit

 Say SomeName |
==> now displays ″DEFghi″ |

It works perfectly well, but when such a program needs maintenance, the
programmer may forget that some subroutines are accessing the program ′s
variables. A seemingly harmless change to a variable name causes the
′ trick ′ to fail.

In an OO language the programmer of a class can easily decide which
variables are public and which private. Public variables can be updated by
any program (so mostly not a good idea because changes are not checked).
Therefore, one normally defines methods allowing access to variables in a
controlled way.

Here ′s an example of a class with only two variables that can be used from
the outside. The first one can be changed freely, the second one only
through the methods.

 === mySpecialClass NetRexx source ==========
 Class mySpecialClass
Properties public
myPublicVariable REXX -- a public variable

Properties inheritable
someVarUnderControl REXX -- a variable available in the class

method mySpecialClass() -- constructor method
myPublicVariable = ′123′ -- set some string in this var
someVarUnderControl = ′ *′ -- set a default too

method SetmyPrivVar(hisInput = REXX)

48 VM/ESA Network Computing with Java and NetRexx

if hisInput = ... OK ... then
someVarUnderControl = hisInput

method GetmyPrivVar() returns REXX
return someVarUnderControl

 === Using mySpecialClass from NetRexx ===============
/* First create an object of type mySpecialClass */
myThing = mySpecialClass()
/* Updating public variable is like this: */
myThing.myPublicVariable = ′ test′
/* An update using a method is like this: */
myThing.SetmyPrivrateVar(′ test2′)
/* Using class variables is straight forward as well: */
say myThing.myPublicVariable
Say myThing.GetmyPrivrateVar()

Define and Change At Once

Note that the call to a constructor and a method can be coded in single
statement.

mySpecialClass().SetmyPrivVar(′ test2′)

The first part of the statement mySpecialClass() is a call to the constructor, so a
new object is created. The handle to this newly created object becomes input to
the SetmyPrivVar(′ test2′) method call. It should be clear that after this
statement our program has no handle to the created object. So we can never
reference it again, what makes this technique not appropriate all the time.

Parameter Checks

Worth mentioning is also that a basic check of the parameters is made at
compile time. With our class definition above, the next statements would give a
compile error:

myThing.SetmyPrivVar(′ Calw′ , ′ city′) -- too many parms
myThing.SetmyPrivVar() -- too few parms
Say myThing.GetmyPrivVar(′ Altensteig′) -- too many parms
myThing.Left(4) -- undefined method ″Left″

Because of the mentioned drawbacks, many REXX programmers don′ t use
external subroutines. When starting with NetRexx they should change their
habits.

4.3.7 Exit or Return
In an external subroutine, a REXX programmer can code Exit or Return ; both can
be used to return to the caller.

In NetRexx, Exit means “stop the Java virtual machine” and the whole
application stops, not just the method. So NetRexx methods must use Return .
Note though that when a Return is issued in a coding block with a Finally
instruction, the statements following the Finally instruction are still executed.

Chapter 4. Comparing REXX to NetRexx 49

4.3.8 Stems - Array Variables - Indexed Strings
The real name for a REXX “Stem” is a “compound variable.” A compound
variable is any symbol that includes a period. It is composed of a stem and a tail
separated by a period. Some examples;

name.1 = ′ Koen′ /* stem is NAME ; tail is 1 */
name.2 = ′ Karlien′
name.3 = ′ Hanne′
son = name.1

 drive = ′ bike′
name.son.drive=′ velo′ /* ==> NAME.Koen.bike = velo */
mother. = ′ --Unknown--′ /* Define a default value */
mother.son = ′ Greet′ /* ==> MOTHER.Koen = Greet */
...
drop mother. name. /* Drop them */

From the example one can conclude that a tail does not have to be numeric, and
that multiple dimensions are possible.

In NetRexx you can use different kinds of compound variables. But, as the period
character is already used in method calls, the period is no longer used to
indicate compound variables. Square brackets are used instead.

Using square brackets often causes NLS problems. The expected hex code in
EBCDIC for [and] are X′AD′ and X′BD′. To verify if your terminal produces the
right hexadecimal characters the following pipeline can be issued:

� �
pipe literal []|spec 1-* c2x 1|cons
ADBD <-- all is OK if ADBD is displayed
Ready;� �

If this poses problems with your terminal, consider to include the next lines in
your PROFILE EXEC:

′ SET INPUT [AD′
′ SET INPUT] BD′
′ SET OUTPUT AD [′
′ SET OUTPUT BD]′

Note: To remove these input and output translations, just issue SET INPUT and
SET OUTPUT.

Let′s look at NetRexx′s first type of compound variables.

Compound Strings

These compare very well with REXX stems, but they can only be used for objects
of data type REXX. And the “stem” part must have been assigned a value before
one can use it as a “stem.” The same examples as shown above for REXX.

50 VM/ESA Network Computing with Java and NetRexx

name = ′ ′ /* Required before using []*/
name[1] = ′ Koen′
name[2] = ′ Karlien′
name[3] = ′ Hanne′
son = name[1]
drive = ′ bike′
name[son,drive]=′ velo′
mother = ′ --Unknown--′ /* Define a default value, REQUIRED */
mother[son] = ′ Greet′
...
mother = null ; name = null /* Drop them */

NetRexx is a bit better than REXX in that between the square brackets you can
place an expression.

i=1 ; Say ′ kids = ′ name[i] name[i+1] name[i+2]
/* and even this works as expected */
loop i=1 to 3

Say ′ Mother of′ name[i] ′= ′ mother[name[i]]
end i
/* Or, when using a new possibility */
loop index over name

Say ′ Mother of′ name[index] ′= ′ mother[name[index]]
end

The Loop Over construct has no equivalent in REXX. In NetRexx it can be used to
get all defined elements of the compound variable, but in an undefined order.

Fixed Size Arrays

This is the second type of compound variable a NetRexx program can use. In
this case, tails can only be numbers, and the size must be defined before using
the array. But, the data type is not limited to REXX.

REXX programmers beware: the first element has index number 0 . To obtain the
size of the array, the public length variable can be used.

abc = int[9] -- create an array to store 9 integers
xyz = string[13] -- create an array for 13 strings
square = REXX[5,5] -- a 5x5 array with REXX Strings
say abc.length -- should display 9

Sometimes it is required to declare an array, but the size is only known at
execution time. This is possible too.

 === myArrayClass NetRexx source ==========
 Class myArrayClass
Properties inheritable
someArray REXX[] -- declare an array of unknown size

method myArrayClass(i=int) -- constructor method
someArray REXX[i] -- Now create the array, only then one

-- can use it.
method SetmyArray (i=int , s=REXX)
if s <> ...bad...

then someArray[i] = s

Chapter 4. Comparing REXX to NetRexx 51

 === Using myArrayClass from NetRexx ===============
/* First create an object of type myArrayClass */
myThing = myArrayClass(5) -- ask for 5 entries in ″myArray″
/* Setting an entry using a method */
myThing.SetmyArray(0,′ first city is Freudenstadt′)
myThing.SetmyArray(1,′ second city is Freiburg′)
myThing.SetmyArray(4,′ last, nice, city is Tuebingen′)

Java Vectors

If a NetRexx program needs an array of varying, unlimited size, it can create an
object of Java′s Vector class. Then, however, all access must be done using the
methods provided by the Vector class. Here is a simple example or a NetRexx
program using a Java vector.

 nameList=Vector(); -- create a new vector
 nameList.addElement(″Kika″) -- add element string objects
 nameList.addElement(″Sieka″)
 nameList.addElement(″MrRogers″)

 nameList.removeElementAt(1) -- remove second object,from 0
 e =nameList.elements() -- get ready to enumerate
 Say ″List of names:″
 Loop While e.hasMoreElements() -- loop thru the vector

name = e.nextElement() -- get next object in vector
Say ″ . . . ″ name
End

4.3.9 The main() Method - Input Parameters
When starting the Java virtual machine the name of a class file to execute is
passed. The Java virtual machine passes control to the method named main() .
Therefore, any Java program that must be started from the console needs such
a method; programs without a “main” method can only be used from another
Java class.

It is possible to pass arguments to the started program, where “main” can
analyze them.

Parameters for main(), NetRexx Style

When in a NetRexx program no Class statement exists, the NetRexx compiler
inserts a Class statement and a “main” method. It also places all arguments in
variable “arg.” As a result of these conventions, the following is a complete,
valid NetRexx program:

� �
parse arg word1 word2 word3
Say ′ The first word you gave is =′ word1
Say ′ The second word you gave is=′ word2
Say ′ The third word you gave is =′ word3� �

However, explicitly coding a Class statement is required when your program
needs to define some class Properties.

52 VM/ESA Network Computing with Java and NetRexx

Parameters for main(), Java Style: When coding the “main()” method yourself,
Java requires that it read: Method main(args=String[]). Beware , “main” is case
sensitive, even in a NetRexx program: because Java is calling us, the search is
not case insensitive.

In a first attempt you could change the above program a tiny bit:

� �
 Class MyPgm
Method main(arg=String[]) public static
parse arg word1 word2 rest
Say ′ The first word you gave is =′ word1
Say ′ The second word you gave is=′ word2
Say ′ The remainder is =′ rest� �

This however doesn′ t work: the input is an array of Java String objects.

The parse arg instruction compiles OK as variable “arg” exists. But, “arg”
contains the handle to an array, and the parse might be analyzing something
like [Ljava.lang.String;@a4487 instead of the program′s input parameters.

A second attempt is a bit better:

� �
 Class MyPgm
Method main(arg=String[]) public static
Say ′ The first word you gave is =′ arg[0]
Say ′ The second word you gave is=′ arg[1]
Say ′ The third word you gave is =′ arg[2]� �

But a runtime exception is thrown when, for example, the startup parameter
contains only two words, and the program attempts to address a third one:
arg[2].

Here ′s a better example:

� �
 Class MyPgm
Method main(args=String[]) public static
-- Place all arguments in a REXX style string:
arg=′ ′
loop i=1 to args.length

arg=arg args[i-1]
end
-- Parse the REXX style string:
parse arg word1 word2 word3
Say ′ The first word you gave is =′ word1
Say ′ The second word you gave is=′ word2
Say ′ The remainder is =′ rest� �

4.3.10 Comparing NetRexx to Object Oriented REXX
Even though Object Oriented REXX (OO-REXX for short) is not available on VM, it
may be worthwhile to highlight a major difference between OO-Rexx and
NetRexx.

OO-REXX is indeed another flavor of REXX, and it is an OO language also. The
good thing about OO-REXX is that it is upward compatible with classic REXX.

Chapter 4. Comparing REXX to NetRexx 53

But with Java one gets a rich set of classes, all of which can be used by
NetRexx. OO-Rexx cannot use the Java classes.

54 VM/ESA Network Computing with Java and NetRexx

Chapter 5. AboutFrame, a Reusable Class

In this chapter we use a NetRexx class file, written during the project, to explain
more basics of the NetRexx language, Java classes and OO principles.

Even though VM/ESA does not natively support Java′s GUI, the AWT class, the
example used in this chapter uses a GUI. We specifically chose it for its
illustrative value as an example: a GUI program uses quite a few classes, and
many of the objects are visualized, making the discussion less theoretical.

5.1 The AboutFrame Picture
First of all a picture of a running instance of the AboutFrame Class is shown.
Figure 9 shows AboutFrame as called by the GuiMon sample application.

Figure 9. AboutFrame, Displays Information. Version information is currently selected.

5.2 What is AboutFrame?
Many GUI applications have an “about” panel, used to display various
information, such as the program′s version and the authors.

Eager to become famous, we wanted to provide a similar frame. But as our goal
must be broader than just fame, we decided to write the code required for such
a frame in a reusable way. As this code is fairly simple, it is used to explain
some OO principles. It also illustrates how reusable NetRexx code can be
created and used.

First of all the requirements for AboutFrame from an end-user perspective are
given. Then programming aspects are discussed.

 Copyright IBM Corp. 1998 55

5.3 AboutFrame: User Interface
The AboutFrame class provides an advanced about frame, in which the end-user
cannot only see author names, but also some extra information about the
authors.

At the right side of the frame, a list box lists all authors. When the end-user
selects an author a first piece of information related to the author is shown at
the right side of the frame. When the end-user double clicks on an author, the
second piece of author information is shown.

Note: Program version information is also listed as if it were an author.

5.4 AboutFrame: Program Interface
For an application to use AboutFrame it must be able to provide a list of authors,
and for each of them one or two strings of information. In addition, some
tailorable title information is welcome.

5.4.1 Approach with Classic Languages
When deciding that the AboutFrame routine must be usable from other
programs, a problem is found immediately: how do we pass many different
parameters, when the number of parameters is not even fixed. Obviously one
could pass all this information in one long string and define some separation
characters. This though is not practical, nor a structured way of working.

Let′s concentrate on other solutions a REXX programmer may attempt.

Imbedding the AboutFrame Code as a Subroutine

This is a possibility, all variables of the main program can be exposed in the
subroutine. So a REXX “stem” variable could be used. But, when the
AboutFrame program is changed, all other programs imbedding it must be
changed too. Problems arrive when AboutFrame and the main program use the
same variable names. One can use REXX′s Procedure Expose instruction to
isolate most of the subroutine′s variables from those of the main program.

Practice does however reveal that this is not always easy. Surely when
subroutines start calling each other the list of exposed variables can become
lengthy. So most REXX programmer no longer even attempt to isolate variables.

Using CMS Pipelines to Obtain the Variables

This is indeed a -relatively new- possibility. But it is cheating a bit: for readers
of the main program it may be hard to guess that some of the program′s
variables are also used by another program. See 4.3.6, “Subroutines and User
Defined Functions” on page 47 for a discussion.

5.4.2 An OO Solution
With an OO language, this problem can be solved easily.

We define a class for the AboutFrame. The class file can be compared to an
external subroutine in classic REXX.

56 VM/ESA Network Computing with Java and NetRexx

• It holds definitions for variables which are used to build an AboutFrame
object. The general name in OO terminology for such variables is “object
attributes.” In NetRexx they are termed properties .

The properties that are most easily understood are those holding variable
information that a program using the class must pass.

• The class definition also includes coding groups. These coding groups are
named methods . Each method can be called separately. One can compare a
method of a class with a function in classic REXX.

Methods are used to create an object of the class as well as to extract or
update the properties of the object(s). Often a method is very simple,
containing only a few lines of code.

Depending on the design of the class, a program using it can build an object
in bits and pieces. With each call to a method, the definition of the object
becomes more complete.

For our AboutFrame, we can easily distinguish a few properties, just by looking
at Figure 9 on page 55, top down and left to right:

• The title of the frame
• The information message
• The list of authors
• The information about each author

Before discussing the actual implementation of the AboutFrame class, some
more theory about classes and methods is appropriate. Most of the following
theory is illustrated when discussing AboutFrame in 5.6, “AboutFrame: the Class
Definition” on page 60.

5.5 Classes and Methods
In this section, some more OO principles are explained, with NetRexx as the
language. As we want a broad public we don′ t want to be 100% exact or
complete. This would frighten readers without OO skills.

When in the text below we write “our users,” “the users,” or “the class users”
we refer to the application using the class, not the end-user using an
AboutFrame.

5.5.1 Class - What is it?
A class can be seen as a plan to build an object, it is not an object yet. It defines
variables required to build and manage the object, as well as methods that the
class user calls to interact with the object of the class.

In other words: a class just defines how an object of that kind (= class) can be
built and how it can be handled (= what methods do exist). The code itself of
the methods is also included in the class file.

Class Instance

When an object of the class is created two terms are used: the object is an
instance of the class and the class has been instanciated. To give a practical
example: it is not because we -the team that wrote the redbook- provide the

Chapter 5. AboutFrame, a Reusable Class 57

AboutFrame class, that somewhere in the world an object of class AboutFrame
is actually active at this time. The class exists, the objects may or may not.

Class Types

Different types of classes can exist. Multiple classes can be defined in the same
source file. User defined classes can extend already defined classes.: Some
important class types are:

Public classes can be used by any program.
Private classes can only be called by code in the same source file.

5.5.2 Methods - What are they?
Methods define ways to create an object of the class (“instanciate the class”)
and to work with the created object. A class mostly needs more than just one
method.

One of the reasons that an OO language solves AboutFrame′s parameter
problem is that many methods can be defined: one to pass each set of
information. Each of the methods can work on the same object, until it is built
completely.

Besides the methods that must be available to our users, the class itself may
need methods for its own use. Basically we can distinguish two kinds of
methods:

Public methods can be used by any program using the class.
Private methods can only be called by code of the class itself.
Inheritable methods can be called by code of the same class, or subclasses.
Static methods work on class level, and not on an object.

There is more to be said about methods, such as what a constructor method is.

5.5.2.1 Constructor Method
This method is always required: a class is a definition plan for an object, not an
object yet. When a program wants to use our services, it first must call a
constructor method of the class.

The name of the constructor method is the same as the class name. This
method may or may not need parameters.

The code in the constructor method actually creates an object and may define
some variables for it. A constructor returns the handle to the created object. A
handle is a kind of pointer to the object.

Handle

When the constructor method ends, the class has instanciated an object of the
class. Very often a class allows many objects of the class to be instanciated. So
each time another class method is called, the caller has to pass the “handle” of
the instance that must be addressed. If the caller loses the handle, the object
can no longer be reached.

In the AboutFrame example, the constructor creates a standard Java Frame
object and populates it with the list box and alike. We also create empty arrays
to hold all authors, amongst other things.

58 VM/ESA Network Computing with Java and NetRexx

5.5.2.2 Other Methods
These methods often are the only way to pass data between the class user and
the object. Such methods compare very well with REXX functions, but as
opposed to REXX functions, some methods return data, others don′ t.

In our example we provide at least three methods (and the code implementing
the method): define an author: setAuthor(...), define the frame′s top information
line: SetApplText(...) and a method to start displaying the frame: ShowAbout().

5.5.2.3 Method Arguments - Signatures
When a method is called, the caller can (or must) specify arguments. The
number and data type of these arguments must match a definition of the method.
For example, the Substr() method of class REXX might have been defined in
three formats:

Substr(nr) with one number as input.
Example: Say name.Substr(5)

Substr(nr,nr) with two numbers as input.
Example: Say name.Substr(5,8)

Substr(nr,nr,char) with two numberS and a padding character.
Example: Say name.Substr(5,8,′ -′)

This means that a call to Substr() without any parameter would fail at compile
time, just as a call with four parameters or a call with a string instead of a
number as first parameter. The example above illustrates that a method with a
given name can be defined with multiple signatures . The definition could
basically appear so:

Class REXX ...
method Substr(start=int)

...
method Substr(start=int,lng=int)

...
method Substr(start=int,lng=int,pad=char)

...

Note though that NetRexx wants to be data type-less, so the Substr() method has
been defined with one, two or three REXX strings as input. Only at runtime does
NetRexx verify that the first two can be converted to a number and that the third
is a single character.

5.5.2.4 Handle - Parameters - The this Variable
Except for the call to a constructor method, a method must always be called for
an object (“for an instance of the class”). This is done by writing the handle
before the name of the method; parameters are specified between brackets after
the method.

�1� name=REXX(′ Greet Hermans′) -- create the ″name″ object
�2� Say name.Substr(1,5) -- call method Substr()

�1� We explicitly call the constructor to build a brand new REXX string object,
passing one parameter. The shorter form name=′ Greet Hermans′ would produce
the same result, but that a constructor is called is less clear. Anyway, the result
is that “name” is a handle to the REXX string object.

Chapter 5. AboutFrame, a Reusable Class 59

�2� When we code name.Substr(...) the Substr() method knows which object it
must act upon. The method does not get the handle to the object as a
parameter; when required it can refer to it by using the this variable.

5.5.3 Variables in the Class
Just as there are different kinds of methods, a class can have different kinds of
variables. So all variables do not have the same scope, cannot be “seen”
everywhere, do not have the same lifetime. Three basic types can be
distinguished.

Local variables

By default, all variables used by a method are “local,” which has a few
consequences:

• When the method ends all local variables are deleted.
• Other methods cannot reach them, not even methods of the same class.
• When the same method runs concurrently (for two different objects), each

instance of the method has its own set.

Method arguments

All arguments passed to a method are local variables too.

Properties

Alongside the class definition instruction, one can define variables that are not
local, they all survive the end of the method using them. Such variables are the
“Properties” of the class. It can be said that Properties are global variables, but
different types exist. Below is a list of a few commonly encountered types.

Constant Inheritable These variables belong to the class, live as long as the
class lives, cannot be changed once the class is activated, and
are visible to all methods of the (sub)class.

Static Inheritable These variables are similar to those above, except that
they can be changed by class methods. Such variables could be
used, for example, to keep track of how many objects of the given
class have been created.

Inheritable Such variables go with an instance of the class (or with an
object). They are visible to the (sub)class methods.

For example: it is possible that two programs would create an
AboutFrame object (one program using two about frames is
similar). Then there are two instances of the AboutFrame class.
Each frame should have its own set of authors.

We can now look at the actual code of the AboutFrame class.

5.6 AboutFrame: the Class Definition
Even though the AboutFrame is relatively small, it must be analyzed in smaller
pieces. Therefore Figure 10 on page 61 only prints the main parts. Many lines
have been removed. The complete source for the AboutFrame may be found in
the sample program set for this book.

60 VM/ESA Network Computing with Java and NetRexx

5.6.1 AboutFrame: Overview of the Program
Before going into too much detail, here is an overview of the NetRexx program
source. Remember that in Figure 10 quite some source lines have not been
printed. What is printed should allow the reader to see that we define:

• Variables required to build and manage the frame
• Methods by which the calling program passes the required author

information
• Methods to act on end-user actions in the frame. In our case, we need

methods to react to end-user requests (such as the selection of an author).

�1�--NRC-XEDIT-DEFAULTS NoCrossRef
--NRC-XEDIT-OPTIONS NoRun

--
�2�class AboutFrame extends Frame

�3� Properties inheritable
LstWho = List(5) -- define a List Box
authors = int -- declare number of authors
authDesc = String[] -- declare this array
authDescL= String[] -- declare this array

�4�Method AboutFrame(MaxAuthors=int)
-- As our class is a frame extension, we should not call Frame()
-- else we′ d create yet another frame
-- win = Frame(″About″)
-- But, we can call the our parent class to set a frame title.
nbrFrames=nbrFrames+1
super.SetTitle(″About″) -- define default title
win=this

AuthDesc = String[MaxAuthors] -- create this array
AuthDescL= String[MaxAuthors] -- create this array
authors=-1 -- first arrays item = 0

TxtAppl=Label(′ The application has been written by′)
win.add(″North″ ,TxtAppl)
win.add(″West″ ,LstWho) -- add List Box to the frame

setSize(300,200) -- define size of window.
�5�

Method SetTitle(t=String) -- Define title of the window
super.setTitle(t) -- Must be preceeded by ″super″ else we

-- call ourselves

Method SetApplText(t=String) -- Define the title of the window
TxtAppl.setText(t)

Figure 10 (Part 1 of 2). AboutFrame, Program Overview

Chapter 5. AboutFrame, a Reusable Class 61

Method SetAuthor(Author=String,Descript=String)
authors=authors+1
LstWho.add(Author)
authDesc[authors]=Descript
Method SetAuthor(Author=String,Descript=String,DescLong=String)
authors=authors+1
LstWho.add(Author)
authDesc[authors]=Descript
authDescL[authors]=DescLong
Method SelectAuthor(ix=int)
if ix<=authors then LstWho.select(ix)

Method ShowAbout()
-- As ″we″ the object are in fact a frame, no need to code
-- this.setVisible(...) or win.setVisible(...)
setVisible(1)

 --------- This class handles Action Events with objects in the frame
�6�class AboutActionClass implements ActionListener,ItemListener

Properties inheritable
frm = AboutFrame -- frm is an object of class AboutFrame
myEventName = String -- a string is passed and available in the class

-- Constructor
method AboutActionClass(x = AboutFrame, anEvent = String)

frm = x
myEventName = String anEvent

method itemStateChanged(e = ItemEvent)
ix=frm.LstWho.getSelectedIndex() -- Get the selected line -if any
Say ′ Select event in Listbox, item:′ ix

if ix >= 0 then frm.TxtWho.setText(frm.authDesc[ix])
else frm.TxtWho.setText(′ ′)

Figure 10 (Part 2 of 2). AboutFrame, Program Overview

Below are a few words about the areas referenced in the figure. Remember that
with this figure we only want to give an overview of the program. More details
follow in later figures.

�1� The NRC XEDIT macro, explained in 3.4.2, “NRC XEDIT - NetRexx Compile”
on page 30, that we use to compile NetRexx programs reads these two comment
lines to find runtime options. In this case we ask not to produce a variable cross
reference and not to run the program after a successful compilation. It is indeed
impossible to run AboutFrame on VM as it uses Java ′s AWT class, which is not
supported on VM.

�2� Class is the first real NetRexx statement. We define the class that the
NetRexx compiler should build. If you don′ t code a Class statement, the NetRexx
compiler will insert one. Coding a Class statement is required if it needs extra
options or Properties are coded.

�3� Following the Class statement, Properties for the class are defined.
Remember that with properties we define variables that are not local to a single
method. All properties must be defined before the first method.

�4� This is a constructor method as it has the same name as the class itself.
Notice that following this Method instruction some real coding follows: a frame is
built and some property variables get a value.

62 VM/ESA Network Computing with Java and NetRexx

�5� Here other methods are defined. All methods of our class follow, with their
NetRexx code.

�6� Here we start a new class. This illustrates that in one source file more than a
single class can be defined. The class defined here has its own methods, they
are used to react to events on the frame, such as the end-user selecting an
author in the list box.

Having seen the structure of a NetRexx source, sections of the program are
analyzed one by one below. We no longer remove some code from the printout.

5.6.2 AboutFrame Section One: The Class Itself
In Figure 11 we concentrate on the class definition and its properties.

�1�class AboutFrame extends Frame
�2� Properties inheritable static -- some vars for the whole class

NbrFrames = 0
�3� Properties inheritable

TxtWho = TextArea(′ ′ ,40 ,90 ,TextArea.SCROLLBARS_NONE)
LstWho = List(5) -- define a List Box
TxtAppl = Label -- declare read-only text
PbtCncl = Button(′ Enough′) -- define a push button
authors = int -- declare number of authors
authDesc = String[] -- declare this array
authDescL= String[] -- declare this array

Figure 11. AboutFrame, Class Definit ion and Properties

�1� “AboutFrame” is defined as a class. The extends Frame parameter indicates
that AboutFrame inherits from Java′s “Frame” class. In other words: an
AboutFrame is a Frame, but a special one; one with special properties.2 As
AboutFrame has “Frame” as its super Class all Methods of the Frame class can
be used on an AboutFrame object.

�2� The Property “NbrFrames” is defined as “Static,” meaning it exists only once
for the whole Class. But as it is inheritable, all Methods can access it. We use it
to count the number of AboutFrames created this far. As we code NbrFrames = 0,
it will be initialized to 0 as soon as the AboutFrame Class is activated.

�3� Here we define the other inheritable Properties. All variables that must
survive the end of a Method must be defined here (the “authDesc” strings array
is an example). Another reason to define a variable as a Property is when it
must be used by more than one Method (the handle to the list box “LstWho” is
an example).

Before going to the next section of AboutFrame, notice that some Properties are
declared only. For example the “authDesc” array can only be declared as the
size of the array is not fixed. It is created when an AboutFrame object is created.

2 The above sentence il lustrates very well what a Property really is. In this case, the word “property” can be interpreted in its
normal English meaning, or taken as NetRexx ′s term.

Chapter 5. AboutFrame, a Reusable Class 63

5.6.3 AboutFrame Section Two: The Constructor Method
In Figure 12 the constructor method for the AboutFrame class is discussed.

�1� Method AboutFrame(MaxAuthors=int)
nbrFrames=nbrFrames+1 method AboutFrame(MaxAuthors=int)
Say ′ Constructing the frame, max authors=′ MaxAuthors -

′ this is AboutFrame nbr′ nbrFrames
-- As our class is a frame extension, we should not call Frame()
-- else we′ d create yet another frame
-- win = Frame(″About″) -- should not be coded

�2� win=this -- ″win″ is nicer than ″this″
-- We can call the parent class to set a frame title.

�3� super.SetTitle(″About″) -- define default frame title

�4� AuthDesc = String[MaxAuthors] -- create this array
AuthDescL= String[MaxAuthors] -- create this array
authors=-1 -- no authors defined yet
-- To close the window from the system menu work with WindowListener

�5� anObject = AboutFrameController() -- Create this object

-- Because ″we″ are a frame, no need to write ″win.add″
-- but it may be clearer for some readers.

win.addWindowListener(anObject)
-- To be able to react to end-user frame events

pbtCncl.addActionListener(AboutActionClass(this,′ pbtCncl′))
lstWho.addActionListener(AboutActionClass(this,′ lstWho′))
lstWho.addItemListener(AboutActionClass(this,′ lstWho′))

�6� -- add the visible objects to the frame
TxtAppl=Label(′ The application has been written by′)

TxtWho.setEditable(0) -- make this area read only
win.add(″North″ ,TxtAppl) -- add these objects to the frame
win.add(″West″ ,LstWho)
win.add(″Center″ ,TxtWho)
p=Panel() -- Host the button in a ″panel″ to keep it small
win.add(″South″ ,p) -- add the ″panel″ to the frame

 p.add(PbtCncl) -- place the button in the ″panel″
-- use some colors

hYell = color(255,255,128) -- define a color object
TxtAppl.setBackground(color.white) -- color of application text
setBackground(color.white) -- color of our frame
pbtCncl.setBackground(color.lightGray) -- color of our button
LstWho.setBackground(hYell) -- color of our LISTBOX
TxtWho.setBackground(hYell) -- color of our text area

Figure 12 (Part 1 of 2). AboutFrame, Constructor Method

64 VM/ESA Network Computing with Java and NetRexx

�7� ----- calculate a good place for our frame ---------------
setSize(300,200) -- define size of window.
offset= (NbrFrames-1) *10 -- don′ t place all at same place

d = getToolkit().getScreenSize() -- get size of the screen
s = getSize() -- get size of our frame
SetLocation((d.width - s.width) %6 + offset, -

(d.height - s.height)%6 + offset)

Figure 12 (Part 2 of 2). AboutFrame, Constructor Method

�1� The constructor method is defined. AboutFrame provides only one
constructor: an integer is expected as parameter. This integer is the number of
authors the AboutFrame must be able to handle. This integer is automatically
placed in local variable ″MaxAuthors″ when the method starts. Notice again that
unlike REXX, NetRexx doesn′ t use “parse arg” to obtain the method′s
arguments.

�2� As “Frame” is the parent class of AboutFrame, any instance of AboutFrame
is a Frame already and the variable “this” points to it. If we would explicitly code
win=Frame(...), a second frame object would be created, and “win” would point
to it. This can lead to problems, refer to 5.6.6, “Avoiding Empty Frames” on
page 73 for more details.

�3� With this statement NetRexx is explicitly requested to call the SetTitle
method of class “Frame,” our super class. If the statement had been
“SetTitle(...)” our own method “SetTitle” method would have been called (see
Figure 13 on page 66 item �1�).

�4� As mentioned above, the “AuthDesc” array has been declared as a property,
only now it will actually be created, with the argument passed by our user as its
size. As “AuthDesc” is an “inheritable property,” each instance of AboutFrame
gets its own copy of this array, all copies can have a different size and different
contents.

�5� When programs needs to react to end-user actions on a frame, the program
needs to provide special methods in other frame related classes. More
information is provided in Figure 14 on page 67.

�6� In this section, the layout of the frame is defined. Without going into details,
the default frame layout has five places, each is named to an orientation: North,
East, Center, West, and South. Each place can get one object; when more
objects are required, a Panel object can be used and subdivided again. A good
section about window layout strategies can be found in redbook Creating Java
Applications Using NetRexx, SG24-2216, chapter 7. Another, more complex,
layout example can be found in the GUIMON program which is discussed in
Chapter 10, “The GUIMON Sample Program” on page 101.

�7� The last section discussed here is the sizing of the AboutFrame and its
placement on the screen. We make the placement depend on the size of the
terminal being used. Without extra precautions, all AboutFrames would be
placed at exactly the same place, and the last one would hide all others.
Therefore, an extra offset is calculated, and multiple about frames are shown as
a cascade.

Chapter 5. AboutFrame, a Reusable Class 65

Sample Call Format

A NetRexx programmer can create an AboutFrame by coding:

myAbout = AboutFrame(7) -- Create an AboutFrame, 7 authors

5.6.4 AboutFrame Section Three: Other Methods
In Figure 13 the non-constructor methods of AboutFrame are printed.

�1�Method SetTitle(t=String) -- Define title of the window
super.setTitle(t) -- Must be preceeded by ″super″ else we

-- call ourselves

Method SetApplText(t=String) -- Define the title of the window
TxtAppl.setText(t)

�2�Method SetAuthor(Author=String,Descript=String)
authors=authors+1 -- add an element to the authors list box
LstWho.add(Author)
authDesc[authors]=Descript -- add his description to array

�3�Method SetAuthor(Author=String,Descript=String,DescLong=String)
authors=authors+1
LstWho.add(Author)
authDesc[authors]=Descript
authDescL[authors]=DescLong
Method SelectAuthor(ix=int)
if ix<=authors then LstWho.select(ix)

�4�Method ShowAbout()
-- As ″we″ the object are in fact a frame, no need to code
-- this.setVisible(...) or win.setVisible(...)
setVisible(1)

Figure 13. AboutFrame, Other Methods

�1� The first method deserving some attention is SetTitle, which allows our user
to define the title for the AboutFrame. The only parameter the method gets is
placed in local variable t; its data type must be a String. The method is very
simple: it calls the SetTitle method in AboutFrame′s super class Frame. So the
method is completely useless: if we wouldn ′ t have provided this method, the
programmer could stil l code myAbout.SetTitle(′ About xyz′) . NetRexx would have
found that Frame, the super class of AboutFrame has a SetTitle method and call
it. We opted to code the method as it gives the opportunity to explain that one
can override methods.

�2� and �3� illustrate a method, SetAuthor, with two signatures: the first one
accepts two strings, the second one is called when the user codes three strings
as parameters. The code for �3� could have been shortened by coding:

 Method SetAuthor(Author=String,Descript=String,DescLong=String)
SetAuthors(Author,Descript)
authDescL[authors]=DescLong

�4� When our user has completed the building process of his AboutFrame he
should make the frame visible by calling the ShowAbout method.

66 VM/ESA Network Computing with Java and NetRexx

Sample Call Format

Some examples of calls to AboutFrame′s methods are:

myAbout.SetTitle(′ About xyz′) /* Set frame title */
myAbout.SetApplText(′ Information about ...′)
myAbout.SetAuthor(′ Mr x′ , ′ is the author′)
myAbout.SetAuthor(′ Mrs G.′ , ′ is co-author.′ , ′ Born in Belgium′)
myAbout.ShowAbout()

5.6.5 AboutFrame Section Four: Event Classes
First closing a frame is covered, then other events are handled.

5.6.5.1 Principles of Window Closing
For completeness we repeat a section from Figure 12 on page 64 in Figure 14.

Class AboutFrame extends Frame
...
Method AboutFrame(MaxAuthors=int)
...

�1� -- To close the window from the system menu work with WindowListener
anObject = AboutFrameController() -- Create this object

-- Because ″we″ are a frame, no need to write ″win.add...″
-- but it may be clearer for some readers.

�2� win.addWindowListener(anObject)
&invellipsis.
�3�class AboutFrameController extends WindowAdapter

method windowClosing(e = WindowEvent)
Say ′ Closed by system menu′
exit

Figure 14. AboutFrame, Event Classes

Statements �1� and �2� allow the user to close the AboutFrame window by
double clicking in the upper left corner of the frame.

Java will call Method WindowClosing of Class WindowAdapter, or a class
extending it, when the user wants to close the window. Java′s default Method
ignores the request, so we have to code our own Class and Method, overriding
Java′s (�3�).

�1� As our action routines are classes, they don′ t exist as long as a constructor
method isn′ t called. Here we explicitly call the constructor of the
AboutFrameController class, to create an instance of the class and get the
handle to it. The handle to the instance is stored in “anObject.”

�2� We add the created instance of AboutFrameController as “windowListener”
to the frame object. Statements �1� and�2� could have been combined in a
single, even more obscure, statement:
addWindowListener(AboutFrameController())

�3� The class AboutFrameController and its methods are defined here. The name
of the class can be selected at will; the names of the methods are predefined by
Java. A simple interpretation of the Class keyword extends in combination with

Chapter 5. AboutFrame, a Reusable Class 67

Method windowClosing could be: “we don′ t like the actions of the default
method, hence we create our own, overriding the default.”

5.6.5.2 Handling Other Events
For completeness we repeat a section from Figure 12 on page 64 in Figure 15.

Class AboutFrame extends Frame
...
Method AboutFrame(MaxAuthors=int)
...
-- Make handing other events possible

�1� someObject=AboutActionClass(this,′ pbtCncl′)
�2� pbtCncl.addActionListener(someObject)
�3� lstWho.addActionListener(AboutActionClass(this,′ lstWho′))

lstWho.addItemListener(AboutActionClass(this,′ lstWho′))
...

�4�class AboutActionClass implements ActionListener,ItemListener
Properties inheritable
frm = AboutFrame -- frm is an object of class AboutFrame
myEventName = String -- a string is passed and available in the class

-- Constructor
�5� method AboutActionClass(x = AboutFrame, anEvent = String)

frm = x
myEventName = String anEvent

�6� method actionPerformed(e = ActionEvent)
Say ′ Event happened for:′ myEventName
Select
when myEventName=′ pbtCncl′ then do
Say ′ Closed by Cancel button′
frm.dispose()
return
end
when myEventName=′ lstWho′ then do -- double click in List Box

-- Beware: testing if ..[] = ′ ′ is dangerous, it may yield a
-- null pointer exception. So test for ″null″

ix=frm.LstWho.getSelectedIndex() -- Get the selected line
t= ′ ′
if frm.authDescL[ix] <> null then

if frm.authDescL[ix] <> ′ ′ then
t=frm.authDescL[ix]

if t<>′ ′ then do
frm.TxtWho.setForeground(color.black)
frm.TxtWho.setText(t)

end
else do

frm.TxtWho.setForeground(color.red)
frm.TxtWho.setText(′ More information about′ -

frm.LstWho.getSelectedItem()-
′ is not available′)

end
end

Figure 15 (Part 1 of 2). AboutFrame, Event Classes

68 VM/ESA Network Computing with Java and NetRexx

Otherwise
Say ′ Problem:′ myEventName ′ is unknown′

end
�7�method itemStateChanged(e = ItemEvent)

Select
when myEventName=′ lstWho′ then do
ix=frm.LstWho.getSelectedIndex() -- Get the selected line -if any
Say ′ Select event in Listbox, item:′ ix

frm.TxtWho.setForeground(color.black)
if ix >= 0 then frm.TxtWho.setText(frm.authDesc[ix])

else frm.TxtWho.setText(′ ′)
end
Otherwise
Say ′ Problem:′ myEventName ′ is unknown′

end

Figure 15 (Part 2 of 2). AboutFrame, Event Classes

When a program needs to react to events in the frame, the program needs to
“enhance” other, predefined Java classes. The keyword implements (see �4�) is
required on the class here.

Coding handlers for other events is similar to the code to close frames: Classes
and Methods have to be defined and instanciated. The instanciated classes have
to be added as “listeners” to the objects.

�1� At this line the constructor of AboutActionClass is called, with two
parameters: this, which is the handle to the AboutFrame; and a string. The
constructor method �5� saves these parameters in two inheritable properties:
“frm” and “myEventName.” This means that each instance of AboutActionClass
has its own copy of it. Note that it is very important that the handle to the frame
(“this”) is passed to the methods, otherwise the methods cannot know which
instance of AboutFrame needs to be addressed (remember than more than one
AboutFrame can be active at the same time).

�2� Here, the AboutActionClass object is added as a “listener” to the push
button named pbtCncl. Java′s GUI support can then call the ActionPerformed
Method of class AboutActionClass when the end-user selects the push
button.pbtCncl.

�3� For the list box, similar coding is created, but, both creating an
AboutActionClass object and adding it as a “listener” are done in a single
statement.

�4� Here our Class to handle events of objects in the frame is defined. The Class
keyword implements has another meaning than extends. It means that the
classes ActionListener and ItemLister only define the methods and their
parameters, but that our class has to provide the actual program logic.

�5� Is the constructor of AboutFrame′s class to handle end-user events. We save
the parameters in inheritable properties.

�6� In AboutFrame, method ActionPerformed can be called for two cases:

• The user selected the “Enough” push button (named “pbtCncl”).
• The end-user double clicked on a line in the list box.

Chapter 5. AboutFrame, a Reusable Class 69

The code in the method “knows” what event it was by a string that has been
saved at construction time of the AboutActionClass objects.

�7� The second method, ItemSelected, is called when the end-user selects a line
in the list box.

Note: The action handling code could have been written differently. Our REXX
experience means that we often use if or select statements. Programmers with
more OO experience might code more Classes as illustrated in Figure 16.

...
-- To close the window from the system menu work with WindowListener
win.addWindowListener(AboutFrameController())
-- To be able to react to other events
pbtCncl.addActionListener(AboutClassPbtAction(this,′ pbtCncl′))
lstWho.addActionListener(AboutClassLstAction(this,′ lstWho′))
lstWho.addItemListener(AboutClassLstItem(this,′ lstWho′))
...

--------- This class handles events on the frame itself ----------
class AboutFrameController extends WindowAdapter
method windowClosing(e = WindowEvent)
exit

--------- This class handles Action Events for all Push Buttons
class AboutClassPbtAction implements ActionListener
 Properties inheritable

frm = AboutFrame -- frm is an object of class AboutFrame
myEventName = String --a string is passed and available in the class

 method AboutClassPbtAction(x = AboutFrame, anEvent = String)
frm = x
myEventName = String anEvent

 method actionPerformed(e = ActionEvent)
-- as we only have one button no need for ″if myEventName=′ pbtCncl′ . . ″
frm.dispose()

Figure 16 (Part 1 of 3). AboutFrame, Event Handling with More Classes

70 VM/ESA Network Computing with Java and NetRexx

--------- This class handles Action Events for all List Boxes
class AboutClassLstAction implements ActionListener
 Properties inheritable

frm = AboutFrame -- frm is an object of class AboutFrame
myEventName = String --a string is passed and available in the class

-- Constructor
 method AboutClassLstAction(x = AboutFrame, anEvent = String)

frm = x
myEventName = String anEvent

 method actionPerformed(e = ActionEvent)
-- Only one LstBox, so no need for an ″if myEventName=′ lstWho′ . . ″
ix=frm.LstWho.getSelectedIndex() -- Get the selected line
t= ′ ′
if frm.authDescL[ix] <> null then

if frm.authDescL[ix] <> ′ ′ then t=frm.authDescL[ix]
if t<>′ ′ then do

frm.TxtWho.setForeground(color.black)
frm.TxtWho.setText(t)

end
else do

frm.TxtWho.setForeground(color.red)
frm.TxtWho.setText(′ More information about′ -

frm.LstWho.getSelectedItem()-
′ is not available′)

end

--------- This class handles Item Events for all List Boxes
class AboutClassLstItem implements ItemListener
 Properties inheritable

frm = AboutFrame -- frm is an object of class AboutFrame
myEventName = String --a string is passed and available in the class

 method AboutClassLstItem(x = AboutFrame, anEvent = String)
frm = x

 method itemStateChanged(e = ItemEvent)
-- Only one LstBox, so no need for an ″if myEventName=′ lstWho′ . . ″

 ix=frm.LstWho.getSelectedIndex() -- Get the selected line -if any

 frm.TxtWho.setForeground(color.black)
if ix >= 0 then frm.TxtWho.setText(frm.authDesc[ix])

else frm.TxtWho.setText(′ ′)

Figure 16 (Part 2 of 3). AboutFrame, Event Handling with More Classes

5.6.5.3 AboutFrame, Adding a Main Method
Up to now, concentration was on the methods for users of AboutFrame. To end
this chapter, an example of how AboutFrame can be called from a program is
given.

The example serves yet another purpose: when starting the Java virtual machine
the name of a class file to execute is passed. The Java virtual machine passes
control to the Method named main() . Therefore, if AboutFrame must be started
from the console, a “main” method must be added, as shown in Figure 17 on
page 72.

Chapter 5. AboutFrame, a Reusable Class 71

-- Declare a MAIN, else JAVA gives a warning and
-- cannot start this class as first program.
-- At the same time we can refuse to start on VM/ESA

�1�method main(args=String[]) public Static
�2� Osname = System.getProperty(′ os.name′) ;

If Osname=′ VM/ESA′ then Say ′ Java GUI is n/a on VM/ESA′
else do

�3� abf = AboutFrame(3) /* Build our frame, 3 authors */
�4� abf.SetTitle(′ About About′) /* Set a title */

abf.SetApplText(′ Info about this NetRexx application′)
abf.SetAuthor(′ Kris Buelens′ , ′ is the author of AboutFrame.′ , -

′ He comes from Belgium and loves VM′)
abf.SetAuthor(′ ** version **′ , ′ This is version 1.2 of AboutFrame.′ -

′ Created at 27 February 1997, in Boeblingen, Germany.′)
abf.SetAuthor(′ ** project **′ , ′ AboutFrame has been written during′ -

′ a redbook project: Java and NetRexx in VM/ESA′ -
′ (double click for more info).′ , -
′ The output of this project is a redbook. It explains′ -
′ how Java and NetRexx can be used in VM/ESA and′ -
′ contains some sample coding′)

abf.SelectAuthor(0) /* Select first author */
�5� abf.ShowAbout() /* Show it */
�6� bbf = AboutFrame(1) /* Build our frame, max 1 author */

bbf.SetTitle(′ About Christiaan′) /* Set a title */
bbf.SetAuthor(′ Mr C. Buelens′ , ′ Alias Kris′ , -

′ Comes from Belgium, loves his wife more than VM′)
bbf.ShowAbout() /* Show it */
end

Figure 17. AboutFrame, a Main Method

�1� The signature for “main” must be as shown: an array of Java String objects.
AboutFrame doesn ′ t use the parameters.

�2� This statement can serve as a usage example of the “System” class. The
getProperty method makes it possible, for example, to check in which operating
system the Java virtual machine is running. As VM/ESA does not support Java
frames, AboutFrame gives a message and stops.

�3� At this line, an AboutFrame object is created, asking for room for three
authors. Variable “abf” is the handle to this object.

�4� From here on, the information for the AboutFrame is completed by calling
methods of the AboutFrame class. On each call the handle “abf” must be
specified, only this way the methods know on which instance of the AboutFrame
class they work.

�5� As the information is now complete, the “abf” AboutFrame can be presented
to the end-user.

�6� Just for fun, and to show that the AboutFrame class can manage multiple
AboutFrame objects, the program creates a second AboutFrame. The handle to it
is stored in “bbf.” Note that it would have been possible to intermix the calls
building both AboutFrames.

72 VM/ESA Network Computing with Java and NetRexx

5.6.6 Avoiding Empty Frames
If the constructor method of AboutFrame, shown in Figure 12 on page 64, were
to include win=Frame(″About″) , then the interaction diagrammed in Figure 18
would occur.

=== application =========== ======== Class AboutFrame ======
Class AboutFrame extends Frame

�1� abf=AboutFrame(3) =====> �2� Method AboutFrame(MaxAuthors=int)
�3�
�4� win=Frame(″About″)
�5� win.add(...)

�6� <===== �6� ...
�7� abf.SetXxxx(...)
�8� abf.ShowAbout

Figure 18. AboutFrame, Empty Frame Problem

�1�The application calls AboutFrame′s constructor.

�2�The constructor is started.

�3�The class knows that AboutFrame is a Frame, and calls the constructor of the
parent: Frame() to create a frame. Variable “this” points to this frame.

�4�Here, yet another frame is created; “win” points to it.

�5�This second window is populated with the list boxes and so on.

�6�When the constructor ends, the class returns “this” to the application.
Consequently its variable “abf” points to the first empty frame.

�7�The application calls other methods of AboutFrame.

�8�When the build process is complete, the application calls a method to show
the frame pointed to by “abf.” This is the empty frame.

The solution is simple: AboutFrame′s construction should not create an extra
frame, but simply use the first one. This may be made explicit in the code as
follows:

Method AboutFrame(MaxAuthors=int)
add(...)

or if one wants to make it clearer that “add” is called for a frame:

Method AboutFrame(MaxAuthors=int)
 win = this
 win.add(...)

Chapter 5. AboutFrame, a Reusable Class 73

74 VM/ESA Network Computing with Java and NetRexx

Chapter 6. Reading and Writing Files from NetRexx

6.1 Reading BFS Character Data Files
The mechanics of reading a BFS file from NetRexx include the creation of a
FileReader object and a BufferedInputStream from it, and then using
BufferedInputStream′s read methods. We check for EOF by testing for a null
returned object from readline().

Figure 19 shows how to read a BFS file.

/* readAfile.nrx - how to read a file from netrexx */
Parse Arg path
 If path = ′ ′ Then path = ′ / usr/NetRexx/nrover.doc′
 Do

inFile = FileReader(path)
source = BufferedReader(inFile)

 Catch r=IOException
Say ′ Can not open file′ r.getMessage()
Exit 28

 End
 Do

Loop Forever
line = source.readLine()
If line = null Then Leave
Say line
End

source.close()
 Catch r2=IOException

Say ′ read I/O error′ r2.getMessage()
Exit 1

 End

Figure 19. readAfile.nrx

6.1.1 Reading CMS Character Data Files
You can read CMS files from NetRexx by creating a BFS external link. A way to
create an external link is by using the OPENVM command. For example, if you
wanted to read DAVE CHILI A as pathname /home/sal/jailhouse and then run the
readAfile class,

 Copyright IBM Corp. 1998 75

� �
OPENVM CREATE EXTL /home/sal/jailhouse CMSDATA //DAVE.CHILI.A,&&&
Ready; T=0.04/0.05 13:21:39
NRR /home/sal/readAfile /home/sal/jailhouse
Calling Java program readAfile.class

1.0 DAVE′ S FAVORITE TEXAS CHILI RECIPES
 NOTE: These are authentic Texas recipes, so there are NO BEANS in any
of them. You can, of course, cook up a batch of red or pinto beans to
be served on the side.

1.1 LONE STAR CHILI
o 8 lbs. chuck (beef), coarsely ground
o 3 (8oz.) cans tomato sauce
o 2 onions, chopped
o 5 garlic cloves, finely minced
o Chili powder - lots of it
o Cumin to taste
o Oregano to taste
o Salt to taste
o Masa
Method: Brown beef in an iron skillet and transfer to chili pot. Add
tomato sauce and equal amount of water. Add onions, garlic and chili
powder. Simmer for 20 minutes. Add cumin, oregano, and salt to taste.
Simmer covered for 30 minutes to an hour. Add masa to achieve desired
thickness. Cook 10 additional minutes. Correct seasonings to taste.

1.2 DALLAS JAILHOUSE CHILI
o 1/2 (1/2) cup olive oil
o 2 lbs. coarsely ground beef
o 2 cloves garlic, minced
o 1 & 1/2 (1 1/2) Tbs. paprika
o 1 Tbs. comino seeds
o 3 Tbs. chili powder
o 1 Tbs. salt
o 1 tsp. white pepper
o 3 cups water
Method: Heat oil. Add meat, garlic and seasonings. Cover and cook slowly
for 4 hours, stirring occasionally. Add water and continue cooking until
slightly thickened, about 1 more hour. Legend holds that this chili was
so good that the good guys turned bad just to get thrown in jail for a
taste of it!

1.3 UNITS OF MEASUREMENT
o lb. (lbs.) pound; 1 pound = 2.2 kilograms
o tsp. teaspoon
o Tbs. tablespoon

Ready; T=1.40/1.67 13:22:58� �

From then on (or until the link is removed by using the OPENVM ERASE
command, for example) you can use the pathname /home/sal/jailhouse to refer
to the DAVE CHILI A file just like any other BFS pathname.

Notes:

 1. The filemode defaults to * if not specified.

 2. The path (directory) part of the pathname must exist.

 3. You can specify read/write access by using ″&&&″ after the name.

 4. The file must be on an accessed CMS minidisk or SFS directory.

76 VM/ESA Network Computing with Java and NetRexx

6.2 Reading from the console
Use the NetRexx ASK statement to read console input.

Say ″Enter 0 or 1″
answer=Ask
Say answer

6.2.1 Useful Control Sequences
The are several control sequences that can be use while your NetRexx program
is running. All the control sequences start with the cent sign (¢), X′ 4A′ . If your
keyboard has no cent sign key, include the following in your PROFILE EXEC to
set a PFKey to enter it for you. For example, to set PF2 to generate the control
sequence introducer:

/* set pf2 as cent sign */
″CP TERM LINEDEL OFF″
″CP SET PF2 DELAY″ ′4A′ X

Note: By default the cent sign is CP′s “line delete” character. So to be able to
use these control sequences one must change CP′s LINEDEL setting. As on 3270
terminals LINEDEL (and CHARDEL) are not very useful, we recommend turning it
off. This can be done on a system wide level in the SYSTEM CONFIG file (usually
on MAINT CF1) or on a virtual machine level using CP′s TERMINAL command.

Hints:

 1. Use < E T O > < E T O > to simulate end of file.

 2. Try < S Y N > to terminate a process (SIGQUIT).

 3. Try < E X T > to kil l a running process (SIGINT).

The following sequence creates two input lines after the ENTER key is pressed:

Line one¢mLine two

 Remember

To cancel a running Java program, enter ¢c . It is less disruptive than #CP IPL
or HX.

For more information on the escape sequences, see OpenEdition for VM/ESA
User′s Guide, SC24-5727.

Table 2. Useful control sequences

Control Character ASCII Control Sequence OpenEdition Sequence

< b a c k s p a c e > control-H ¢h

< c a r r i a g e - r e t u r n > control-M ¢m

< E O T > control-D ¢d

< E X T > control-C ¢c

< N A K > control-U ¢u

< t a b > control-I ¢i

< S Y N > control-V ¢v

Chapter 6. Reading and Writing Files from NetRexx 77

6.3 Writing BFS Character Data Files
The usual way to write a file from NetRexx is by creating a FileWriter object and
then creating a PrintWriter or BufferedWriter class from it. If you want to output
textual representations of primitive values and objects you should use the print
methods of the PrintWriter class. To write a Java String you can use the
BufferedWriter.write() method.

Figure 20 shows a copy program that read and writes text lines:

/* writeAfile.nrx - a simple copyfile program */
Parse Arg inPath outPath .
 If inPath = ′ ′ Then Do

inPath = ′ / usr/NetRexx/nrover.doc′
outPath = ′ . / my.nrover.doc′
End

 Say ′ input.:′ inPath
 Say ′ output:′ outPath
Do
 inFile = FileReader(inPath)
 source = BufferedReader(inFile)
 If outPath = ′ ′ Then outFile = OutputStreamWriter(System.out);
 Else outFile = FileWriter(outPath)
 dest = BufferedWriter(outFile)
 Loop Forever

text = String source.readLIne()
If text = null Then Leave
dest.write(text,0,text.length())
dest.newline()
dest.flush()
End

 source.close()
 dest.close()
Catch io=IOException
 Say ′ IOException′ io.getMessage()
End

Figure 20. writeAfile.nrx

6.3.1 Writing CMS Character Data Files
Just as you have to create an external link to read a CMS file, you must also
create an external link to write a CMS file. An external link that will be used for
output should explicitly include the appropriate access mode string and file
attributes For example, to create a file called QTIME TEMP A using the writeAfile
class, one needs to create a BFS external link to that CMS file first. Let ′s call it
/home/dave/qtime.f; then, using OPENVM:

openvm create extl /home/dave/qtime.f cmsdata //QTIME.TEMP.A,&&&,
recfm=v,lrecl=80

After that, one can run the writeAfile class with /home/dave/qtime.f as the output
file to create the QTIME TEMP A file:

nrr writeAfile /usr/NetRexx/qtime.nrx /home/dave/qtime.f

78 VM/ESA Network Computing with Java and NetRexx

6.4 Working With Binary Files
There are four classes that are used in conjuction with primitive data types,
DataInputStream, DataOutputStream, RandomAccessFile, and PrintWriter.

Use DataInputStream and DataOutputStream to read and write integers, floats,
characters, bytes, and UTF strings. RandomAccessFile is a combination of the
two, but with the ability to seek. It is not a member of the Stream class family.
PrintWriter allows you to display primitive data types in a textual manner.

Figure 21 shows a program that creates a file of factorial numbers, then reads
the file backwards and prints the numbers just read.

/* factTable.nrx - write and read factorial integers*/
 table = ′ . / factorial.table′
 outFile = FileOutputStream(table)
 dest = DataOutputStream(outFile)
 Say ′ Creating factorial table′ table
 iterations = 10
 fact = int 1
 Loop i=1 to iterations

fact = fact * i
dest.writeInt(fact)
Say fact
Catch IOException
Say ′ got IOException - writing′

End
 dest.close()
 source = RandomAccessFile(table,′ r′)
 printFile = PrintWriter(System.out);
 printFile.println(″Reading factorial table backwards″)
 intSize = 4 -- a Java integer is 4 bytes long
 offset = (iterations * intSize) - intSize; -- point to last int
 Loop While offset > -1

source.seek(offset) -- re position file pointer
fact = source.readInt() -- read the integer
printFile.println(fact) -- PrintWriter.println(int)
printFile.flush()
offset = offset - intSize -- move backwards by one int size
Catch IOException
Say ′ got IOException - reading′

End
Do
 source.close()
 printFile.close()
Catch c=IOException
 Say ′ IOException′ c.getMessage()
End

Figure 21. factTable.nrx

Chapter 6. Reading and Writing Files from NetRexx 79

80 VM/ESA Network Computing with Java and NetRexx

Chapter 7. Code Pages - ASCII <> EBCDIC Issues

7.1 History, Experience
One of the first attempts during the project was making a Java client and server
“talk” to each other.

We used two simple examples from the OS/2 NetRexx redbook Creating Java
Applications Using NetRexx, SG24-2216. The client program is shown in
Figure 22. The server program is shown in Figure 23 on page 82.

/* Client HTTP program, sends a request to an HTTP server:
Usage: Java ClntSock <server> <portnumber> <requeststring> */

parse arg server port str -- capture + test arguments
if server=′ ′ | port=′ ′ then
do
say ′ Usage: java ClntSock <server> <portnumber> <requeststring>′
exit 1

end

parse str get rest -- check requeststring
if get <> ′ ′ then do

if get <> ′ GET′ then do
say ′ Request string must be: GET /http-page′
exit 8

end
str = ′ GET′ rest -- make get uppercase

end

do -- ready to process
say ′ Connecting to server:′ server ′ (port:′ port′) ′
mysocket = Socket(server, port) -- actual connect
say ′ Requesting:′ str -- what we want
say

-- output: send
out = PrintWriter(OutputStreamWriter(mysocket.getOutputStream()))

-- input: receive
 in = BufferedReader(InputStreamReader(mysocket.getInputStream()))
out.printLn(str) -- send our requeststring
out.flush() -- needed on some platforms
say ′ Response:′
line = String(in.readLine()) -- read response
loop while line \= null

say ′ ′ line -- print it out
line = in.readLine()

end
catch e=IOException
say ′ IOException (′ e ′) caught:\n′ e.getMessage()

end

Figure 22. Socket Client Program

 Copyright IBM Corp. 1998 81

/* Server HTTP program, accepts a request from an HTTP client:
Usage: Java SrvSock <portnumber> */

do
if arg = ′ ′ then arg = 80 -- default port
serverS = ServerSocket(arg) -- register at port: server socket
say ′ Server:′ serverS
loop forever
serviceS = serverS.accept() -- listen/accept client: service socket
say serviceS ′ \n connected at:′ Date()
ptrW = PrintWriter(OutputStreamWriter(serviceS.getOutputStream()))
sIS = BufferedReader(InputStreamReader(serviceS.getInputStream()))
loop while sIS.ready() -- consume HTTP request
line = String(sIS.readLine())

end
filename = ′ SrvSock.nrx′ -- always returning the source file
fileBR = BufferedReader(FileReader(filename))
line = String(fileBR.readLine())
loop while(line <> null) -- add lines of source file

ptrW.printLn(line)
line = fileBR.readLine()

end -- end loop while(line <> null)
ptrW.close() -- close output and socket
serviceS.close()

catch e=IOException
say ′ IOException caught:′ e.getMessage() -- error message

end -- end loop forever
end

Figure 23. Socket Server Program

When the server and the client both run on VM, everything works fine.

During another test, we started the server in a PC and ran the client on VM. This
no longer worked well. The server and the client didn′ t understand each other:
when the client sent its GET request, the server just hung.

We figured out that we could avoid the hang by appending X′ 0D25′ to the GET
request sent from VM (X′ 0D25′ is the EBCDIC equivalent of CR/LF). But then the
display of the data sent back by the server was unreadable. Only after
translating the VM console from ASCII to EBCDIC did the display start making
sense.

This is how we discovered the ASCII - EBCDIC issues that originate when
running Java on VM/ESA or OS/390.

7.2 Background Information - Codepages
When using Java on VM, you should be surprised it works, because:

• The S/390 world, where VM is running, is using EBCDIC. This means, for
example, that X′ 81′ displays as the letter A, and X′ F1′ is the character 1.

• The internet, where Java feels at home, is using ASCII. This means that
X′ 31′ displays as the character 1 and X′ 41′ is an A.

Even though these character sets are different, Java and NetRexx work fine on
VM. Java and NetRexx source files are stored in the BFS in EBCDIC format. The
class files, however, are stored in ASCII.

82 VM/ESA Network Computing with Java and NetRexx

It can work because Java 1.1 has what is called Internationalization support.

7.3 Internationalization
With this support, platforms running Java can define a codepage . A codepage
defines how hexadecimal values are displayed.

Even in EBCDIC, different code pages do exist. For example in Belgium, where
codepage 500 is being used, X′ 4F′ displays as an exclamation point (!). In the
US, and most other countries, X′ 4F′ displays as a vertical bar (|).

With the internationalization support, Java defines a whole new set of methods
to read and write. They allow the specification of a codepage to use on the
stream one is reading from or writing to.

This new IO support is fully described on the internet:

http://java.sun.com/products/jdk/1.1/docs/guide/io/index.html

Internationalization means more to Java than just codepages. Other examples
are date and number formats. A good starting point to learn about the
internationalization can be found on the internet:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/index.html

7.3.1 Streams?
Readers without some experience in the workstation world are probably not
familiar with the term stream .

In the S/390 environment, programs read records from files. A record is just a
piece of a file, and the filesystem keeps track of the length of each record.

In the Unix and PC environment, records are not defined. A file simply is a series
(or a stream) of bytes; record boundaries are not really defined. A program can
divide the file in elements (or records) any way it likes. Often the combination of
CR/LF (CarriageReturn/LineFeed) is recognized as record boundaries.

So in the Unix and PC programming environment, one often uses the term
“stream” to refer to a file. As the same methods are used to read/write to the
TCP/IP network, the term “stream” is a better choice than “file.”

7.3.2 Java IO Support
Prior to Java 1.1, Java knew only byte streams , to which no codepage is defined.
The inputStream and outputStream classes and their subclasses defined the
methods to use these streams.

With the internationalization, Java introduces the term character stream . A
character stream is externally similar to a byte stream, but internally contains
16-bit Unicode characters instead of 8-bit characters. The 16-bit Unicode allows
us to represent almost any character. The classes Reader and Writer and their
subclasses define the methods to use these character streams.

The InputStreamReader and OutputStreamWriter classes can act as a bridge
between byte streams and character streams. They allow the specification of a
codepage to convert between byte and character streams.

Chapter 7. Code Pages - ASCII <> EBCDIC Issues 83

7.4 VM Java Codepage
The Java implementation on VM/ESA and OS/390 uses codepage 1047 as default.
As 1047 is an EBCDIC codepage, Java programs reading “normal” VM files and
displaying them on a virtual console work fine.

However, if a Java program uses VM data (from a file or from the console) and
sends it to the network, the client is probably unhappy as it is expecting to get
ASCII encoded data. Similarly when a VM program reads from the network, it
probably gets ASCII encoded data. When this data is to be used on VM some
translation must be done.

You can use the System class to find the default codepage set by the Java
virtual machine. This small NetRexx program will display them all:

� �
p = Properties System.getProperties();
p.list(System.out)� �

A direct reference to the default codepage can be made by:

� �
 cp = System.getProperty(′ file.encoding′)
Say ′ we use codepage′ cp� �

7.4.1 Solution for Client Server Programs
The solution which allows client and servers to communicate is using ASCII on
anything that is sent to the network. The InputStreamReader and
OutputStreamWriter classes can be used for that.

To make the sample client and server work, only two lines in the client program
have to be changed:

� �
out = PrintWriter(OutputStreamWriter(mysocket.getOutputStream(), -

′8859_1′))
-- input: receive

inStream= InputStreamReader(mysocket.getInputStream(),′8859_1′)

� �

For the server program the changes are minor, too:

� �
ptrW = PrintWriter(OutputStreamWriter(serviceS.getOutputStream(),-

′8859_1′))
sIS = BufferedReader(InputStreamReader(serviceS.getInputStream(),-

′8859_1′))

fileBR = BufferedReader(InputStreamReader(FileReader(filename),′ Cp1047′))� �

Note: In the last line above we explicitly set the codepage to “Cp1047” for the
file being read. But as “Cp1047” is VM′s default, that change is not required
when the server runs on VM. If, however, the server would run on an IBM
Network Station and read a VM EBCDIC file, specifying “Cp1047” is a must.

84 VM/ESA Network Computing with Java and NetRexx

Java′s character stream classes define a method which allows you to find out
which codepage has been defined (or defaulted) for the stream:

say ′ Encoding of ″instream″ is′ inStream.GetEncoding()

 Remember

Every Java program running on VM/ESA or OS/390 must make sure it sends
ASCII encoded data to the network, because the internet network is an ASCII
world.

When installing an existing Java networking program on VM/ESA or OS/390,
you may have to apply a few changes just to make it use ASCII for its
network interfaces.

7.5 IBM Network Station and Codepages
Users of IBM Network Station may want to refer to 11.8.1.2, “Codepages - ASCII
<> EBCDIC for Network Stations” on page 129 for some important items.

Chapter 7. Code Pages - ASCII <> EBCDIC Issues 85

86 VM/ESA Network Computing with Java and NetRexx

Chapter 8. TCP/IP Networking

8.1 Translating between EBCDIC and ASCII
As mentioned previously in this redbook (see 7.4, “VM Java Codepage” on
page 84), by default input and output streams in the VM/ESA implementation of
Java assume codepage CP1047 (EBCDIC). Most TCP/IP servers use code page
8859 (ASCII). If you take a Java or NetRexx TCP/IP client or server off the shelf
there is a chance that it might not work on VM/ESA.

This problem can be solved if you have access to the NetRexx or Java source
code. Solving the problem includes instantiating the correct Java classes to do
the translation between ASCII and EBCDIC.

The key classes are InputStreamReader and OutputStreamReader. When
instantiating the classes use ″8859_1″ as the encoding string to get a stream that
talks ASCII to the outside world. The following NetRexx sample shows you how
to do it:

connection = Socket(host,port)
asciiIn = InputStreamReader(connection.getInputStream() ,′8859_1′)
asciiOut= OutputStreamWriter(connection.getOutputStream(),′8859_1′)
fromNet = BufferedReader(asciiIn)
toNet = BufferedWriter(asciiOut)

8.1.1 readLine() and printLn()
Many Java Networking programs written prior to the JDK 1.1 use the methods
DataInputStream.readLine() and PrintStream.printLn() to exchange text lines.
Both methods display their shortcomings when run in a multi-platform
environment.

DataInputStream.readline() has been deprecated and PrintStream.printLn() was
superseded in JDK 1.1. Java programs utilizing these methods should be
modified in order to operate correctly in a CMS environment. The standard
networking boiler plate used prior to JDK 1.1:

InputStream inStream = socket.getInputStream();
DataInputStream in = new DataInputStream(inStream);
OutputStream outStream = socket.getOutputStream();
PrintStream out = new PrintStream(outStream);

can be changed as follows in order to operate correctly in the CMS environment:

InputStream inStream = socket.getInputStream();
InputStreamReader in = new InputStreamReader(inStream,′8859_1′)
OutputStream outStream = socket.getOutputStream();
OutputStreamWriter outWriter = new OutputStreamWriter(outStream,′8859_1′);
PrintWriter out = new PrintWriter(outWriter);

readUTF and writeUTF

You should not have any difficulties if your Java client and server use the
DataInputStream.readUTF and DataOutputStream.writeUTF methods to
exchange Java strings.

 Copyright IBM Corp. 1998 87

8.2 Simple TCP/IP Client
Figure 24 shows a simple implementation of a NetRexx client that exchanges
text lines with an ASCII server.

/* Client.nrx - simple ascii client */
Parse Arg host port

If host=′ ′ | port=′ ′ Then Do
Say ″Usage error. Client <host> <port>″
Exit 27
End

Do
connection = Socket(host,port)
asciiIn = InputStreamReader(connection.getInputStream() ,′8859_1′)
asciiOut= OutputStreamWriter(connection.getOutputStream(),′8859_1′)
fromNet = BufferedReader(asciiIn)
toNet = PrintWriter(asciiOut)
Loop Forever
Say ″Enter request or quit :″
request=Ask
If request = ′ quit′ Then Leave
toNet.printLn(request)
toNet.flush()
response = fromNet.readLine()
If response = null Then Leave
Say ′ Response:′ response
End

connection.close();
Catch netEx=IOException
Say ″Got some kind of Error:″ netEx.getMessage()

End

Figure 24. Simple NetRexx TCP/IP Client

8.3 Simple TCP/IP Server
Figure 25 on page 89 shows the server code familiar to many UNIX/Networking
Java programmers. It tries to simulate the fork()/exec() paradigm, now translated
to NetRexx.

88 VM/ESA Network Computing with Java and NetRexx

/* TCPServer.nrx */
import java.net.
import java.io.

�1�Class TCPServer public implements Runnable,Cloneable
Properties Inheritable
runner = Thread null
server = ServerSocket null
data = Socket null

Method TCPServer()
super()

�2�Method StartServer(port=int) Public Signals IOException Protect
If runner = null Then Do
server = ServerSocket ServerSocket(port)
runner = Thread Thread(this)

�3� runner.start()
End

Method StopServer() public Protect
If server <> null Then runner.stop()

�4�Method run()
If server <> null Then Do

�5� Loop Forever
datasocket = Socket server.accept()
newSocket = (TCPServer clone())
newSocket.server = null
newSocket.data = datasocket
newSocket.runner= Thread Thread()

�6� newSocket.runner.start()
Catch se=Exception
Say ″While creating new client th -ex:″se.getMessage()

End
End

Else
�7� run(data)

Figure 25 (Part 1 of 2). TCP/IP Server in NetRexx

Chapter 8. TCP/IP Networking 89

�8�Method run(s_=Socket)
Say ″New Client:″ s_
Do
sIn = BufferedReader(-

InputStreamReader(s_.getInputStream(),″8859_1″))
sOut= PrintWriter(-

OutputStreamWriter(s_.getOutputStream(),″8859_1″))
Catch se=IOException
Say ″Error while opening Client Socket″ se.getMessage()
End

�9� runUser(sIn,sOut)
Do
sOut.close()
sIn.close()

Catch ce=IOException
Say ″Error while closing client″ ce.getMessage()

End
�10�Method runUser(sIn_=BufferedReader,sOut_=PrintWriter)

Do
l = sIn_.readLine();
If l = null Then Return
sOut_.printLn(″echo:″ l)
sOut_.flush();

Catch rwe=IOException
Say ″Error while reading/writing″ rwe.getMessage()

Finally
Say ″end of Client job″

End

Figure 25 (Part 2 of 2). TCP/IP Server in NetRexx

�1� The TCPServer class implements the Runnable interface so it can be run as
a thread. It also uses the Cloneable interface to make copies of itself.

�2� After the TCPServer class is instantiated, the StartServer method gets called
to get things started. If not a client thread, it creates a new ServerSocket to
listen at a port number and a new thread with the current object ′s data and
methods, then �3� starts the new thread by calling the Thread.start() method.

�4� run() is called when the new thread is up and running, ready to do work.

�5� If it is the server thread, loop waiting for new clients. For each new client,
clone the current object (using the Object′s default method), so it can be used as
a new client thread, set some properties for a client thread, create a new thread
and �6� start the newly created thread.

�4� run() gets called for this client thread. Since this is not the server thread, �7�
run(data) is called.

�8� run(Socket) receives control. Note that it has the same name as run(), but it
has a different signature. This is called overloading. Using the Socket reference,
ASCII input and output streams are created and �9� runUser() is called.

�10� runUser() is a simple echo program that echos the client ′s request and
terminates the client thread.

90 VM/ESA Network Computing with Java and NetRexx

8.3.1 Extending the Server
A nice thing about Object Oriented programming is that you can modify the
methods of a class to behave the way you want. This is called extending a class.
On the TCPServer class, the run(Socket) or runUser() method can be overridden
to work the way you want.

In all cases you will need to override the runUser() method to make the server
perform useful work. You may also want to override the run(Socket) method if
you need to use other codepages or other Stream classes. Figure 26 shows you
how to override the runUser() method by extending the TCPServer class.

import java.net.
import java.io.
�1�class ServerHandler public extends TCPServer
�2� Method runUser(input=BufferedReader,output=PrintWriter)

Loop Forever
request = input.readLine();
If request = null Then Leave
Select
When request = ′ QUIT′ Then Leave
When request = ′ TIME′ Then Do
p=CMSPipe(′ cp q time|take 1|fitting *>java′)
answer=p.readto()
p.endPipe()
If answer = null Then answer=′ could not get time′
End

Otherwise
answer = ″Invalid request″

End
output.printLn(answer)
output.flush();

Catch IOException
Say ′ got error while reading/writing′

End

Figure 26. ServerHandler.nrx, Extending the TCPServer.nrx Class

�1� The extends keyword tells NetRexx that your ServerHandler class will inherit
all of the public or inheritable variables and methods of the TCPServer class.

�2� The ServerHandler.runUser method will override the old method in the
superclass TCPServer.runUser. Basically, now your ServerHandler class is the
TCPServer with an updated runUser() method.

8.3.2 Starting the Server
To start the server you need a simple NetRexx script or class to create a new
instance of ServerHandler and then invoke ServerHandler.startServer(port).

/*--*/
/* This NetRexx program starts a multithreading TCP/IP server */
/*--*/
Parse Arg port
 If port = ′ ′ Then Do

Say ′ Usage: myserver <port> ′
Exit 27
End

Chapter 8. TCP/IP Networking 91

 serv = ServerHandler ServerHandler()
 serv.startServer(port)

Note: If you get the following NetRexx error message while extending a class:

Error: Checked exception ...

then NetRexx is telling you that you are not catching all the exceptions
that you should catch. This may be because the superclass calling that
method does not know how to handle a new exception that might be
thrown by your code.

92 VM/ESA Network Computing with Java and NetRexx

Chapter 9. Java and CMS

As long as all software is not written in Java there will be a need to interface
with it. Java offers two ways to communicate with non-Java applications: the
Runtime.exec() method and the Java Native Interface (JNI). We chose to write
our own interfaces for more convenient access to CMS services.

9.1 Executing non-Java Programs

9.1.1 Using Runtime.exec()
It is possible to run other OpenEdition programs from inside the Java virtual
machine. Each Java virtual machine has a Runtime class associated with it. You
can call the static Runtime.getRuntime method to get a reference to the current
Runtime class. The exec() method of the Runtime class can then be used to
create a new Java Process class.

The Process class describes the program running externally to the Java
interpreter. The Process class has many methods to manipulate the running
program. You cannot directly create a Process class; instead, you must ask Java
to create one for you by calling the Runtime.exec method.

The cook book method of starting an external program from inside the Java
virtual machine is as follows:

/* */
r = Runtime Runtime.getRuntime() -- get a reference to runtime
p = Process null -- create a new process reference
do
p = r.exec(″ /bin/ls″) -- call exec to get a new process
p.waitFor(); -- use the Process waitFor method

-- to wait for the program to end
catch Exception -- got here if an error
Say ″could not start program″

end

Another feature of the Runtime.exec method is that its redirects the stdin, stdout,
and stderr streams of the running program. Every C program has them: stdin to
read from the terminal, stdout to type to the terminal, stderrr to type out error
messages. You can use the getInputStream(), getOutputStream(), and
getErrorStream() methods of the Process class to get at them.

Changing the previous example so that we can see the results of the /bin/ls
command yields the following:

/* */
r = Runtime Runtime.getRuntime() -- get a reference to runtime
p = Process null -- create a new process reference
do
p= r.exec(″ /bin/ls″) -- call exec to get a new process
iS = InputStreamReader(p.getInputStream()) -- get stdout
in = BufferedReader(iS) -- buffered
Loop Forever
list = in.readLine() -- read next line from stdout
If list = null Then Leave -- done? - leave

 Copyright IBM Corp. 1998 93

Say ′ File:′ list
End

p.waitFor(); -- use the Process waitFor method
rc=p.exitValue() -- let′ s get the return code and
Say ″Rc=″rc -- display it

catch Exception -- got here if an error
Say ″could not start program″

end

Note - Cp1047 translation under the covers - Stream Classes

By default, Java streams will translate data to or from the default codepage
while exchanging data with your program. If you want to exchange binary
data, use the DataInputStream or DataOutputStream classes. Otherwise, if
you use any of the other Stream classes, you are setting yourself up for a
nice surprise. Take a look at the following NetRexx code:

p= r.exec(″Cprogram″)
out= OutputStreamWriter(p.getOutputStream())
Loop i=0 to 5 --write six numbers 0-5
out.write(int i)
End

Subsequent reads from a C or Assembler program, for example using getc(),
will result in:

′00 ′x ′01 ′x ′02 ′x ′03 ′x ′37 ′x ′2D′ x

This is because X′ 04′ is ASCII <EOT>, which gets translated to X ′ 37′ ,
EBCDIC <ETO>; similarly, X ′ 05′ is ASCII <ENQ>, which gets translated to
X′ 2D′ , EBCDIC <ENQ>.

Similar results can be expected if you write to a file or a network socket.

9.1.2 Using JNI
Another way to interface Java to the outside world would be to use the JNI API,
which involves writing a C DLL program. The JNI API was not explored during
this residency.

9.2 The cms.util Package
We created a NetRexx package called cms.util that allows you to run CMS execs
and CMS pipelines from NetRexx and Java programs. You must use the import
cms.util. NetRexx statement in your NetRexx program and have the correct
CLASSPATH environment variable. The installation script JNRCMS LOADBFS,
supplied with the JNRCMS PACKAGE that is included with the sample program
set for this redbook (see 2.7.1.5, “Download and Install the SG245148 Package”
on page 19), will set the correct CLASSPATH and directory structure. To utilize
the classes, just add the import statement at the beginning of your program (do
not forget the trailing dot); for example:

/* example.nrx */
import cms.util.
...
p=CMSPipe(...)
...

94 VM/ESA Network Computing with Java and NetRexx

In the following sections we describe the facilities provided in the cms.util
package.

9.3 Running CMS Execs
The beauty of OpenEdition for VM/ESA is that it is still CMS, and you can use its
underlying facilities to get your work done. Calling a REXX exec is as simple as
writing a C program that calls the DMSCCE CSL routine. The CMSRexx class and
its support module JCMSREXX module accomplish this.

9.3.1 The CMSRexx Class
Use the CMSRexx class to invoke a REXX exec from a NetRexx application.

Class CMSRexx Public
-- constructor

Method CMSRexx() Public
-- instance methods

Method exec(nameArgs=String) Public Returns String
Method exec(execName=String,Args=String) Public Returns String
Method getRc() Public Returns int

 1. Constructor

CMSRexx() Creates a new CMSRexx object

 2. Methods

exec(nameArgs=String) Public Returns String Executes the CMS REXX
exec specified as the first token of nameArgs string and treats the
succeeding tokens as the exec ′s arguments

exec(execName=String,execParms=String) Public Returns String Executes
the CMS REXX exec specified in execName with the string Args
as the exec′s arguments

getRc() Returns int Gets the return code from the last REXX exec executed

9.3.1.1 Usage Notes
 1. The CMSRexx.exec method has a limit on the size of its returned string, 8K.

A return code of 200 will be set if larger.
 2. The CMSRexx.exec method has a limit on the size of its input string,

nameArgs (or execNamec plus execParms); it can not be larger than 8K.
 3. Once the CMSRexx object has been instantiated (created), the exec method

can be called multiple times with different execs and arguments.
 4. The getRc method returns the return code received after a call to DMSCCE.

See the VM/ESA CMS Application Development Reference, SC24-5761, for
details.

9.3.1.2 Example
The following example creates a CMSRexx object called cmd and calls a CMS
exec JTEST$1 by invoking the CMSRexx′s exec method twice. The first time it
uses a string with the exec′s name and arguments concatenated together, and
the second time they are specified as separate parameters. JTEST$1 exec
simply returns the reverse of its argument.

Chapter 9. Java and CMS 95

 /* testCMSRexx.nrx */
 import cms.util. -- import the classes
 cmd = CMSRexx() -- create the CMSRexx obj
 parm = ″Kika the cat!″
 Say ″calling JTEST$1 with parm″ parm
 result = cmd.exec(″JTEST$1″ parm); -- call method exec
 Say ″Result:″ result
 --do it again
 parm = ″Sam the doggy!″
 fn = ″JTEST$1″
 Say ″calling″ fn ″with parm″ parm
 result = cmd.exec(fn,parm); -- call method exec again
 Say ″Result:″ result
 exit

 /* JTEST$1 EXEC */
 Parse Arg parm
 Return (reverse(parm))

9.4 Running CMS Pipelines with NetRexx
As a CMS developer, sooner or later you will want to run a CMS Pipeline with
your NetRexx program. Also, the ability to read or write a single pipeline record
at a time from a NetRexx application is highly attractive.

The prototype CMSPipe class tries to accomplish this. In order to read or write a
record at a time from NetRexx, one needs to be able to suspend the currently
running pipeline. Thanks to John Hartmann′s foresight, this is possible by
creating a Co-pipe as described in his paper “PIPE Command Programming
Interface,” available from the Pipelines Run Time Distribution Web page at URL
http://pucc.princeton.edu/∼ pipeline/. We implemented this as a cooperative
program using the facilities of the Java Runtime class described previously in
9.1.1, “Using Runtime.exec()” on page 93, hence some of its limitations. A better
implementation should be possible using the Java JNI API, but we did not
attempt to explore the use of the JNI during this residency.

The way that a PIPE exchanges data with the NetRexx application is via a fitting
stage. From the previously mentioned paper: ″A fitting stage is the space warp
through which records move between the pipeline and the application program.
A fitting stage is the application′s agent in the pipeline.″

Two fitting stages are recognized by the CMSPipe class: f i t t ing *>java to read
records from the pipeline and f i t t ing *<java to write records to the pipeline.

9.4.1 fitting *>java
Use the f i t t ing *>java stage to consume records from the pipeline. It should be
the end point of the pipeline specification. CMSPipe.readto() returns the next
record in the pipeline as a Java String.

96 VM/ESA Network Computing with Java and NetRexx

9.4.2 fitting *<java
Use the f i t t ing *<java stage to produce records for the pipeline. It should be the
first stage in the pipeline specification. CMSPipe.output() writes its Java String
argument to the pipeline.

9.4.3 The CMSPipe Class
Use the CMSPipe class to create a CMS Pipeline and run it as a co-pipeline from
a NetRexx application.

Class CMSPipe Public
-- constructor

Method CMSPipe(pipeSpecification=String) Public
-- instance methods

Method readto() Public Returns String
Method getReadtoRc() Public returns int
Method severInput() Public
Method output(record=String) Public Returns int
Method getOutputRc() Public returns int
Method severOutput() Public
Method endPipe() Public
Method getPipeRc() Public returns int
Method killPipe() Public

1 Constructor

CMSPipe(pipeSpecification=String) Public
Creates a new CMSPipe object with the pipeline specification
you want to run. You can use the special fitting stages fitting
* < j a v a and f i t t ing*>java to input and output records to the
pipeline respectively.

2 Methods

readto(nameArgs=String) Public Returns String
Reads data from the pipeline if you specified the f i t t ing *>java
stage as the end point of your pipeline specification. The pipeline
record is returned as a Java string. If EOF a null String object is
returned.

getReadtoRc() Public returns int
Returns the return code set after the last readto call. It is set to
12 if EOF, to 0 otherwise.

severInput() Public
Indicates that the NetRexx/Java application does not wish to
process further data from the pipeline. Any subsequent calls to
readto result in a null string returned, and getReadtoRc returns
12.

output(record=String) Public Returns int
Writes out data to the pipeline if you specified the f i t t ing *<java
as the first stage in the pipeline specification. The Java string is
sent as record to the pipeline. A return code is returned, set to
12 if EOF and 0 otherwise.

getOutputRc() Public returns int
Returns the return code set after the last output call. It is set to
12 if EOF and 0 otherwise.

Chapter 9. Java and CMS 97

severOutput() Public
Indicates that the NetRexx/Java application does not wish to
produce further data for the pipeline. Any calls to output result in
a return code of 12, and getReadtoRc returns 12.

endPipe() Public
Sets both input/output streams to EOF and terminates the
pipeline.

getPipeRc() Public returns int
Returns the pipeline′s return code after it has ended. If the
pipeline is still running, a zero is returned.

killPipe() Public
Terminates the pipeline. EOF on input/output are not set. Data
may be lost.

9.4.3.1 Usage Notes
1 Two special pipeline stages are used to transfer data between the NetRexx

application and the CMS Co-pipe. The f i t t ing *>java stage is used to read
data from the pipeline and the f i t t ing *<java stage is used to write data to
the pipeline.

2 To read data from the pipeline, use the f i t t ing *>java stage as the last
stage in the pipeline. The valid methods for this kind of pipeline are: readto,
getReadtoRc, severInput, endPipe, killPipe, and getPipeRc.

3 To write data to the pipeline, use the f i t t ing *<java stage as the first stage
in the pipeline. The valid methods for this kind of pipeline are: output,
getOutputRc, severOutput, endPipe, killPipe, and getPipeRc.

4 Do not transfer non-character data as it will be translated by Java.

5 You can run pipeline specifications without any Java fitting stages. The
pipeline will be run to completion when the CMSPipe constructor is called.
The only valid methods for this kind of pipeline are endPipe() and
getPipeRc().

6 Once the CMSPipe is used up, in order to run another pipeline you must
create a new CMSPipe object. You can reuse the CMSPipe reference after
a call to endPipe().

Correct:

 p=CMSPipe(first pipe)
...
 p.endPipe() p=CMSPipe(second
pipe)

Incorrect:

p=CMSPipe(first pipe)
...
p=CMSPipe(second pipe) -- lost reference to first pipe,

-- pipeline in limbo

7 You should always use the endPipe() method to terminate the pipeline;
otherwise you may have some memory leakage.

8 After the endPipe() method you can safely reuse the CMSPipe′s object
reference.

9 You will get a return code of 65 if you forget to type fitting and have only
* < j a v a or * > j a v a .

 10 If you use the incorrect methods for the fitting that you specified (for
example, readto with f i t t ing *<java), you will get a return code of 12.

98 VM/ESA Network Computing with Java and NetRexx

 11 An invalid pipeline specification will set a non-zero return code after the
CMSPipe constructor is executed, and the Co-pipe will terminate.

 12 For more information about Co-pipes, refer to John Hartmann′s paper,
“PIPE Command Programming Interface,” cited above.

9.4.3.2 Examples
 1. Reading data from a pipeline. The following example reads the results of the

CP QUERY NAMES command:

 /* jexample1.nrx */
 import cms.util. -- import the CMSPipe.class
 mypipe = CMSPipe(″cp q names| split ,| fitting *>java″)
�1�rc=mypipe.getPipeRc()
 if rc <> 0 Then Exit rc
 Loop Forever

line = mypipe.readto()
�2� If line = null Then Leave

Say line
End

�3�rc=mypipe.getPipeRc()
 Say ′ The CMS pipeline ended with retcode′ rc
 mypipe.endPipe()

�1� This statement is used to test if the pipeline has been started correctly.
Literally, getPipeRc() can only return the pipeline′s returncode after the
pipeline has ended. But if the returncode is already non-zero now, it means
that the pipeline didn′ t even start. There must have been a syntax error in
the pipeline′s specification.

�2� This is a Java/NetRexx way of testing if a line was read from the
pipeline. Programmers used to coding pipeline subroutines in REXX would
maybe code:

if mypipe.getReadtoRc() <> 0 then leave

�3� At this time, the pipeline has ended and we can obtain the returncode of
the whole pipeline. In our very simple example the returncode obtained here
can only be zero.

 2. Writing data to a pipeline. The following example writes a couple of Java
Strings to a CMS file:

 /* jexample2.nrx */
 import cms.util. -- import the CMSPipe.class
 pObj = CMSPipe(″fitting *<java | xlate | > $TEMP $JLINES A″)
 rc=pObj.getPipeRc()
 If rc <> 0 Then Exit rc
 Loop i=1 to 10

line = ′ This is line number:′ i
rc=pObj.output(line)
If rc <> 0 Then Leave
End

 pObj.endPipe()

Note that this illustrates an alternative to the use of external links (described
previously in 6.1.1, “Reading CMS Character Data Files” on page 75 and
6.3.1, “Writing CMS Character Data Files” on page 78) for accessing CMS
minidisk or SFS files from Java or NetRexx programs.

For some more usage examples, refer to 10.4, “GUIMON - the Client-Server
Communication” on page 113.

Chapter 9. Java and CMS 99

9.5 Installation Instructions
For your convenience, the programs described above are made available to you
in the sample program set for this redbook (see 2.7.1.5, “Download and Install
the SG245148 Package” on page 19). They are grouped in a CMS PACKAGE file.
For easy handling issue:

FILEList JNRCMS PACKAGE (Filelist

To see the file description comments, issue:

Xedit JNRCMS PACKAGE

Except for the sources of the C programs, all files must be installed in a BFS.

In order to install the JNRCMS package into your BFS, you need access to
MAINT′s 193 (for the LOADBFS command), admin authority for the default BFS
filepool, VMSYS, and POSIX superuser privileges. Since the JNRCMS LOADBFS
changes your /etc/profile, you may want to create a backup copy of it.

In order to install the JRNCMS package, simply enter the following command:

loadbfs jnrcms

The preceding command will:

 1. create a new BFS filespace called _JNRCMS, with 1000 blocks
 2. load all the executable and source file to that BFS filespace
 3. create a symbolic link to it, named /usr/jnrcms
 4. modify the CLASSPATH environment variable in /etc/profile to include

/usr/jnrcms

Note: Java requires the path to C programs to be fully qualified. Therefore, the
programs “jcopipe” and “jnrcms” must be installed in the indicated directories
unless the CMSRexx.nrx and CMSPipe.nrx programs are changed and
recompiled.

Testing

There are six sample programs that you can run and use as templates to get
you started.

To test the installation of CMSRexx run:

java testCMSRexx

To test the installation of CMSPipe run:

java testCopipeReadto1 cp q time

Loading the JNRCMS package on a different filepool

If you want to install the JNRCMS package in a different file pool, create a copy
of the JNRCMS LOADBFS file and modify the VMSYS string to the filepool name
that you want.

100 VM/ESA Network Computing with Java and NetRexx

Chapter 10. The GUIMON Sample Program

GUIMON is the major sample application provided with the book. It uses quite a
few components. Three parts can be distinguished in GUIMON:

The client A NetRexx program using a GUI to show VM performance data. This
program must run on a system supporting Java′s GUI class, AWT (for
example, OS/2, IBM Network Station, or Windows/NT).

This part of GUIMON is called the client in the remainder of this
chapter.

The server A NetRexx server program running in VM/ESA. It waits on a TCP/IP
port for requests from a GUIMON client.

This part of GUIMON is called the server .

The monitor A VM service machine collecting performance data and/or a set of
CMS files containing historical performance data.
This part of GUIMON is called the monitor ; the files created or held by
the monitor are named PERFLOG files.

With the GUIMON sample program, we want to illustrate a few facts:

• Creating networked applications with Java and NetRexx is easy.
• Existing data in VM can be presented in a modern way.
• Exploiting the multitasking provided with Java and NetRexx is simple.

In the remainder of the chapter, a detailed study of the involved code is not
attempted. Concentration is at a higher level: what are the components, and how
do they interact. This should give you enough information to allow you to
enhance GUIMON, or use GUIMON to display other kinds of data.

10.1 GUIMON - Pictures
The first picture of GUIMON, shown in Figure 27, prompts the user to enter the
address of a VM host.

Figure 27. GUIMON Prompting for Host Address

 Copyright IBM Corp. 1998 101

After entering an IP address and a port number, the end-user must select the
Open push button. GUIMON then seeks contact with GUIMON′s server in the
indicated host.

If all goes well, the frame should look like Figure 28.

Figure 28. GUIMON Listing the Performance Information Found

It can be seen that the server sent back the performance information that is
available: which files do exist and which performance indicators can be plotted.

In the picture, two list boxes can be seen. The one on the far left displays the
dates for which performance files are available. The one in the middle lists the
performance values found in these files. Using the scroll bars on the right-hand
side of these list boxes, the end-user can locate the time period and statistic to
plot.

When the Graph push button is selected, a graphic is shown, such as the one
that can be admired in Figure 29.

Figure 29. GUIMON Plotting a Performance Variable

Selecting the Graph push button is not the only way to get a plot; a double click
in the files list box or in the performance variables list box is as effective.

102 VM/ESA Network Computing with Java and NetRexx

GUIMON has one other feature: the Indicate pull down menu item can be used to
get some real-time data from the VM server. The end-user can request the
current usage of CPU, Minidisk cache, Storage, and Expanded storage. When an
item is selected, the server executes a CP INDICATE command and sends the
requested response back. As INDICATE keeps no historical information, the
output is a line of text, shown at the top of the frame, not a graph.

Eye Pleasing?

It probably is clear to the reader that our time was not invested in producing the
best possible look for the frame. Some more time should be invested to make
the layout of GUIMON′s frame better.

Having seen what GUIMON can produce, it is now time to explain how the
GUIMON client/server program is installed. Later in this chapter an overview of
the GUIMON program logic is given, including the communication protocol
between the client and the server.

10.2 GUIMON - Installation Instructions
The installation instructions are grouped in three sections: the monitor, the
server, and the client. All of the files required to install the entire GUIMON
application are included with the sample program set for the redbook (see
2.7.1.5, “Download and Install the SG245148 Package” on page 19).

10.2.1 Installing the GUIMON Monitor
The files composing the GUIMON monitor are all listed in MONREAD PACKAGE.
For easy handling issue the following command:

FILEList MONREAD PACKAGE (Filelist

To see the file description comments, issue:

Xedit MONREAD PACKAGE

To install the GUIMON monitor, there are two alternatives:

• Just install our sample PERFLOG files, from which performance data of our
system can be shown.

• Install the MONREAL EXEC, and thus capture real performance data of your
system. Note that GUIMON′s monitor can perfectly well coexist with (for
example) MONWRITE since more than one user can be connected to CP′s
monitor service.

10.2.1.1 A Dummy Installation
For a dummy installation, just copy the following files to some minidisk or SFS
directory:

 GETDATA REXX ** a Pipe subroutine used by the server
 PERFLOG DESCRIBE ** the file describing the PERFLOG files
19980310 PERFLOG ** sample files with performance data
19980309 PERFLOG
19980306 PERFLOG
19980305 PERFLOG

Chapter 10. The GUIMON Sample Program 103

10.2.1.2 A Real Installation
For a real monitor installation, proceed as follows.

 1. Decide what the monitor gets as A-disk: a minidisk or an SFS directory. We
recommend an SFS directory as this allows GUIMON ′s server to have access
to the latest collected data. If a minidisk is being used, the SERVER should
issue an ACCESS command before LISTFILE and GETDATA requests are
handled. The coding in ServerHandler.nrx does not execute such an ACCESS
command.

If using an SFS directory, be sure to XAUTOLOG GUIMON′s monitor only
after the SFS server has been started. To enroll the monitor in the SFS, issue

 ENROLL USER monread VMSYSU (BLOCKS 2000

 2. Create a GUIMON monitor user ID. The sample directory entry we provide,
as MONREAD DIRECT, looks as follows:

� �
USER MONREAD MONREAL 16M 64M EG
 MACHINE XA
 SPOOL 000C 2540 READER *
 SPOOL 000D 2540 PUNCH A
 SPOOL 000E 1403 A
 CONSOLE 009 3215 T
 LINK MAINT 0190 0190 RR
 LINK MAINT 019D 019D RR
 LINK MAINT 019E 019E RR
 IUCV *MONITOR PRIORITY MSGLIMIT 255
 IPL CMS PARM FILEPOOL VMSYSU AUTOCR� �

 3. Copy the following files to the monitor ′s 191 minidisk or SFS directory:

GETDATA REXX ** a Pipe subroutine used by the server
PERFLOG DESCRIBE ** the file describing the PERFLOG files
MONREAD PROFILE ** sample PROFILE EXEC
MONREAD EXEC ** the real code

 4. Have a look in MONREAD EXEC; a few variables can be tailored:

� �
/*--------------------- Tailoring -------------------------------*/
MonitorSegment=′ MONDCSS′ /* Name of monitor NSS */
ErrorsToUserid=′ SRRES2′ /* Userid can be RSCS */
ErrorsToTagInfo=′ ′ /* A must if RSCS; else must be blank */
KeepLogs=14 /* How many performance logs to keep */

/*--------------------- End -------------------------------------*/

� �
 5. XAUTOLOG the monitor user.

Verify the operation:

• Directly when started, it should at least create a yyyymmdd PERFLOG file on
its A-disk/directory.

• Verify that the CP monitor is started (the MONREAD EXEC tries to start it if
required) and that your GUIMON ′s monitor user is connected to it.

104 VM/ESA Network Computing with Java and NetRexx

� �...
MONITOR SAMPLE ACTIVE

INTERVAL 1 MINUTES
RATE 2.00 SECONDS

MONITOR DCSS NAME - MONDCSS
CONFIGURATION SIZE 241 LIMIT 1 MINUTES
CONFIGURATION AREA IS FREE
USERS CONNECTED TO *MONITOR - MONREAD
MONITOR DOMAIN ENABLED
SYSTEM DOMAIN ENABLED
PROCESSOR DOMAIN DISABLED
STORAGE DOMAIN DISABLED
USER DOMAIN ENABLED
...� �

Note: The MONREAD EXEC has difficulty knowing when the data for a monitor
interval is complete. Therefore, the data is written with a delay of one monitor
interval. An example, supposing a monitor interval of three minutes, could be
this:

23:09:00 �1� record with CPU consumption
between 23:06:00 and 23:09:00
for CPU 1 arrives

23:09:00 �2� record with CPU consumption
between 23:06:00 and 23:09:00
for CPU 2 arrives

...
23:12:00 �3� record with CPU consumption

between 23:09:00 and 23:12:00
for CPU 1 arrives

At �3�, MONREAD detects a “long” delay between the records, and so decides a
new monitor interval has started. So only at 23:12:00 can it calculate the average
CPU consumption between 23:06:00 and 23:09:00 by calculating the average of
records �1� and�2�. Similarly, only at 23:15:00 is MONREAD able to calculate the
average CPU consumption for the interval 23:09:00 to 23:12:00.

The data is correctly calculated (we hope), but it appears in the PERFLOG file a
bit late. Avoiding this delay seems possible by making the Pipeline in the
MONREAD EXEC more complex by inserting some extra DELAY stages.

10.2.2 Installing the GUIMON Client
The client of GUIMON can be any workstation with Java and NetRexx support.
NetRexx installation instructions for IBM Network Station users are provided in
11.8, “Setting up to Run Java and NetRexx Programs” on page 128. To install
NetRexx on another platform, refer to:

http://www2.hursley.ibm.com/netrexx/

When the workstation setup for Java and NetRexx is OK, make sure that the
workstation has access to the files listed below. Two alternatives seem to be
available:

• download them from VM to the workstation, or
• leave them in the BFS on VM and use VM′s new NFS support in TCP/IP to

mount the BFS directory on the workstation.

In any case, the workstation must have access to the following class files, in a
directory that is included in the workstation′s CLASSPATH.

Chapter 10. The GUIMON Sample Program 105

--- classes compiled out of GuiMon.nrx ---------------------------------
 GuiMon.class the base program
 GuiMonActions.class action handling
 GuiMonFrame.class the frame it creates
 GuiMonFrameController.class closes frame
 GuiMonMenuAction.class handles menu actions
 GuiMonTimeScroll.class handles movement of the two scroll bars
--- class compiled out of GetPerf.nrx --------------------------------
 GetPerf.class forward requests from GuiMonXxxx to VM
--- classes compiled out of AboutFrame.nrx ---------------------------
 AboutFrame.class the base program
 AboutActionClass.class action handling
 AboutFrameController.class closes frame
--- class compiled out of TimeGrap.java ------------------------------
 TimeGraph.class produces the bar-chart like graph

The file identifiers are too long to fit in CMS′s normal filename filetype structure,
so they are delivered with a temporary CMS name. Refer to 10.2.4, “Installing
Client and Server Files” on page 107 for more information.

10.2.3 Installing the GUIMON Server
The server uses a few NetRexx programs and one C program (the C program is
the interface with CMS Pipelines). As the GUIMON server runs under VM, the
class files and the C program must be installed in the BFS.

Here is the list of the class files and the C program.

TCPServer.class provides multi tasking support
MyServer.class starts a TCPServer object
ServerHandler.class the core code of the GUIMON server

 --- parts of JNRCMS --
CMSPipe.class interface with C program
jcopipe C program taking to CMS Pipelines

The .class files must be installed in a BFS directory included in the server′s
CLASSPATH. Note that GUIMON′s server uses the “JNRCMS” code, explained in
9.4, “Running CMS Pipelines with NetRexx” on page 96, so that must be
installed too. The C program must be installed in a hardcoded BFS directory
(see 9.5, “Installation Instructions” on page 100).

The server can run in any CMS user, on two conditions:

• The minidisk (or SFS directory) of the GUIMON monitor must be accessed as
P. If SFS is used, the following GRANT commands should be given:

GRANT AUTH mypool:myMonitor. TO myServer (READ NEWREAD
GRANT AUTH * * mypool:myMonitor. TO myServer (READ

If our names are used, these would be:

GRANT AUTH VMSYSU:MONREAD. TO GUIMONSR (READ NEWREAD
GRANT AUTH * * VMSYSU:MONREAD. TO GUIMONSR (READ

• The user must have BFS read authorization on the .class files and execute
authorization on the C program.

• The user has mounted a filesystem, either by using OPENVM MOUNT, or as
specified the CP directory (see “Automatic Mount” on page 23).

• The user′s CLASSPATH must include the BFS directories where JNRCMS
and GUIMON are installed. The LOADBFS file for GUIMON and JNRCMS will
update the CLASSPATH in /etc/profile. This means that the CLASSPATH is

106 VM/ESA Network Computing with Java and NetRexx

OK for POSIX Shell users. CMS users must update their CLASSPATH
definition in GLOBALV, for example by executing SETCENV GETSHELL CLASSPATH.

This is what we use to start the server:

′ ACCESS VMSYSU:MONREAD. P′
 if rc<>0 then do

Say ′ Can not run. Disk P must be accessed.′
... cry for help ...
exit 9876

 end
′ EXEC SETCENV GETSHELL CLASSPATH′ /* get CLASSPATH from /etc/profile*/
′ EXEC NRR /usr/guimon/server/MyServer.class 81′

Note that we start the server using the NRR EXEC since it takes care of
GLOBALling the C runtime library and setting the current directory to the path of
the class file. This means that the server must have access to the place where
the NRR EXEC is installed. Alternatively, insert the following in the server′s
startup EXEC:

′ ACCESS VMSYSU:MONREAD. P′
 if rc<>0 then do

Say ′ Can not run. Disk P must be accessed.′
... cry for help ...
exit 9876

 end
′ GLOBAL LOADLIB SCEERUN′
′ EXEC SETCENV GETSHELL CLASSPATH′ /* get CLASSPATH from /etc/profile*/
′ EXEC OPENVM SET DIR /usr/guimon/server/′
′ EXEC OPENVM RUN java MyServer 81′

Note: The SETCENV EXEC, explained in 3.8, “SETCENV - Setting C Environment
Variables” on page 33, is also included in the sample program set for the
redbook (see 2.7.1.5, “Download and Install the SG245148 Package” on page 19).

10.2.4 Installing Client and Server Files
First of all it is important to remember that the server uses JNRCMS, the Java -
CMS Pipelines interface provided with this book (see 9.4, “Running CMS
Pipelines with NetRexx” on page 96). Therefore, JNRCMS must be installed
before one can use or compile the GUIMON NetRexx programs (refer to 9.5,
“Installation Instructions” on page 100).

To install GUIMON′s client and server programs into a BFS, a LOADBFS control
file is provided. A LOADBFS file contains instructions to create BFS objects (such
as files and directories). LOADBFS files are handled by the LOADBFS EXEC,
which can be found on MAINT 193.

You may like to tailor “GUIMON LOADBFS” to your needs. An explanation of the
LOADBFS control instructions can be found in the LOADBFS EXEC.

Basically the GUIMON LOADBFS file defines where the GUIMON files will be
installed. There are three types of files: for the server, for the client, and the
source files. You may or may not want to install all three types in the same
location. The sample LOADBFS file:

 1. creates a BFS file space named _GUIMON,
 2. stores the source and the class files for the server in the “ /guimon/server”

directory,

Chapter 10. The GUIMON Sample Program 107

 3. stores the source and the class files for the client in the “/guimon/c l ient”
directory, and

 4. creates “ /usr /gu imon/ ” as symbolic link, so you can easily find the GUIMON
application in “/usr.”

In order to install the GUIMON package into your system, you need access to
MAINT′s 193 (for the LOADBFS command), admin authority for the default BFS
filepool, VMSYS, and POSIS superuser authority. Since the GUIMON LOADBFS
changes your /etc/profile, you may want to create a backup copy of it.

In order to install GUIMON, type the following command:

loadbfs guimon (noisy

It is wise to verify the installation a bit, especially the CLASSPATH. Issue the
following commands:

openvm mount /../VMBFS:VMSYS:ROOT/ / -- Mount a file system
bfslist /usr/guimon/server -- 5 files are expected
bfslist /usr/guimon/client -- 15 files are expected
xedit /etc/profile (namet bfs -- Verify CLASSPATH

The classpath is expected to be a long line, as:

 export CLASSPATH=$CLASSPATH/usr/jav/usr/java/lib/classes.zip.......

We expect the following directories to be included:

/usr/java/classes and /usr/java/lib/classes.zip
/usr/NetRexx/bin and /usr/NetRexx/lib/NetRexxC.zip
/usr/guimon/server and /usr/jnrcms

When the classpath looks fine, execute SETCENV GETSHELL CLASSPATH in all users
that will run the GUIMON server code (or that plan to use JNRCMS).

Using the GUIMON Client on a Workstation

When, for example, the client code has to be installed on a PC, but you did not
install the files into the BFS, you need to know the relation between the CMS
fileid and the real name. Here is a table, extracted from the GUIMON LOADBFS
file, showing the equivalences:

 CMS fname ftype | type | Install as
---------------------+-----------+-------------------------------------
 TCPSER1 CLASSBIN | server | TCPServer.class
 TCPSER2 NRX | source | TCPServer.nrx
 MYSERVER NRX | source | MyServer.nrx
 MYSERVER CLASSBIN | server | MyServer.class
 SERVER1 CLASSBIN | server | ServerHandler.class
 SERVER2 NRX | source | ServerHandler.nrx
 CMSPIPE CLASSBIN | server | CMSPipe.class
 CMSPIPE NRX | source | CMSPipe.nrx
 JCOPIPE NONEBIN | server | jcopipe

| |
 TIMEGR1 JAVA | source | TimeGraph.java
 TIMEGR2 CLASSBIN | client | TimeGraph.class

| |
 GUIMON NRX | source | GuiMon.nrx
GUIMON CLASSBIN | client | GuiMon.class
GUIMON1 CLASSBIN | client | GuiMonActions.class
GUIMON2 CLASSBIN | client | GuiMonFrame.class
GUIMON3 CLASSBIN | client | GuiMonFrameController.class

108 VM/ESA Network Computing with Java and NetRexx

GUIMON4 CLASSBIN | client | GuiMonMenuAction.class
GUIMON5 CLASSBIN | client | GuiMonTimeScroll.class
GETPERF NRX | source | GetPerf.nrx
GETPERF CLASSBIN | client | GetPerf.class

| |
ABOUTA1 CLASSBIN | client | AboutActionClass.class
ABOUTF1 CLASSBIN | client | AboutFrame.class
ABOUTF2 CLASSBIN | client | AboutFrameController.class
ABOUTF3 NRX | source | AboutFrame.nrx

When the CMS filetype ends in BIN, the file must be transferred as a binary file.
The “type” column indicates who needs the file, the client or the server; files of
type “source” are required only if you want to modify or study the GUIMON
application.

One of the possible methods to transfer files from VM to workstations is FTP.
Here is an example of how FTP can be used on a PC to obtain files stored in an
SFS on VM.

� �
C:\>ftp 9.164.xxx.yy
Connected to 9.164.xxx.yy.
220-FTPSERVE IBM VM V2R4 at SRGAST1.YOUR.DOMAIN.NAME, 13:56:32 CET WEDNESDAY 03
/11/98
220 Connection will close if idle for more than 5 minutes.
User (9.164.xxx.yy:(none)): srres2
331 Send password please.
Password:
230 SRRES2 logged in; no working directory defined
ftp> cd vmsysu:srres2.
250 SFS working directory is VMSYSU:SRRES2.
ftp> bin
200 Representation type is IMAGE.
ftp> get nnnnn.CLASSBIN
200 Port request OK.
150 Storing file ′ nnnnn.CLASSBIN′
250 Transfer completed successfully.
31574 bytes sent in 0,12 seconds (263,12 Kbytes/sec)� �

In the next example FTP is used to directly extract the files from the VM BFS.

Chapter 10. The GUIMON Sample Program 109

� �
C:\>ftp
ftp> open 9.164.yyy.xxx
Connected to 9.164.yyy.xxx.
220-FTPSERVE IBM VM V2R4 at SRGAST1.YOUR.DOMAIN.NAME, 14:21:57 CET WEDNESDAY 03
/11/98
220 Connection will close if idle for more than 5 minutes.
User (9.164.yyy.xxx:(none)): srres2
331 Send password please.
Password:
230 SRRES2 logged in; no working directory defined
ftp> cd /../VMBFS:VMSYS:ROOT/
250 BFS working directory is /../VMBFS:VMSYS:ROOT/
ftp> cd home/kris
250 BFS working directory is /../VMBFS:VMSYS:ROOT/home/kris/
ftp> lcd /temp
Local directory now C:\TEMP
ftp> bin
200 Representation type is IMAGE.
ftp> get GuiMon.class
200 Port request OK.
150 Sending file ′ GuiMon.class′
250 Transfer completed successfully.
994 bytes received in 0,06 seconds (16,57 Kbytes/sec)� �

Note: To use BFS in FTP, the cd command must be done in two steps as shown
above; the next connection request in one step fails:
cd /../VMBFS:VMSYS:ROOT/home/kris

10.3 GUIMON - Functional Overview
In this section an overview of the GUIMON application is provided. As mentioned
before, GUIMON is composed of three parts: a client running on a workstation, a
server running on VM, and a performance monitor also running on VM. First, the
easiest part is discussed: the monitor.

10.3.1 GUIMON - the Monitor
This part of GUIMON is in fact optional for a GUIMON demonstration. What
GUIMON needs is performance data in CMS files, called PERFLOG files, stored
in a minidisk or SFS directory. The only requirement is that GUIMON′s server
can read them. The required record format is detailed in 10.5, “GUIMON Record
Format Requirements” on page 117.

But, as we wanted to provide a complete demonstration package, a simple
real-time performance monitor has been written, too. It is written using classic
REXX and CMS Pipelines. The provided sample monitor extracts CPU usage,
page read, page write, spool read, and spool write statistics. It could be
extended easily to collect more data.

There is only one important program, MONREAD EXEC. It does all that is
required:

• If the Monitor saved segment does not exist, it creates it.

• If the CP monitor is not started, it will be started.

• A CMS Pipeline is started:

− It connects to the monitor and extracts the record types required to
calculate CPU usage, page read, pages write, spool read, and spool

110 VM/ESA Network Computing with Java and NetRexx

write statistics. The data is written to a normal CMS file named
yyyymmdd PERFLOG A. An extract from our test system looks like:

� �
* Time %CPU PageR PageW SpoolR SpoolW
21:30:01 0.17 0 0 0 0
21:31:01 9.10 183 5741 0 0
21:32:01 38.68 884 700 0 0
21:33:01 37.16 191 0 2 4� �

− Just before midnight, the connection to the monitor is stopped. After
midnight, PERFLOG files that are too old are erased and a new one is
started. (A variable in the MONREAD EXEC defines how many PERFLOG
files are kept.)

10.3.2 GUIMON - the Server
The major task of the GUIMON server is twofold: list the performance files
created by the monitor, and read such a file so that the client can produce a
graph.

The GUIMON server is a NetRexx application that waits on a TCP/IP port for
incoming requests. The requests generated by the client are listed in 10.4,
“GUIMON - the Client-Server Communication” on page 113.

The classes used are:

MyServer This is the starting point, the class that must be started by the Java
virtual machine. It takes one argument, a port number (the default is
81). It calls only TCPServer, which will listen on the specified port.

TCPServer This class, explained in 8.3, “Simple TCP/IP Server” on page 88,
allows the GUIMON server to handle multiple clients concurrently.
When a request comes in on the designated port, TCPServer calls
method “runUser” in class “ServerHandler.”

ServerHandler This is the main class to be written by the GUIMON programmer.
It reads lines from the TCP/IP socket, each of which starts with a
request keyword (explained in 10.4, “GUIMON - the Client-Server
Communication” on page 113). It performs the requested action and
sends the result (or ERROR information) back to the client.

All requests are handled by calling a CMS Pipeline. We can call CMS
Pipelines by using the CMSPipe class.

CMSPipe This is the class that, using the “jcopipe” C program, makes CMS
Pipelines available to Java and NetRexx programs. See 9.4, “Running
CMS Pipelines with NetRexx” on page 96 for information.

In addition to these classes, the server needs:

jcopipe
The C program to interface with CMS Pipelines. It must be stored in a
directory included in the PATH of the server.

GETDATA REXX
This is a Pipeline subroutine performing two functions that the server
will request:

• obtaining the weekday for each performance file (they are named
yyyymmdd PERFLOG).

Chapter 10. The GUIMON Sample Program 111

• calculating averages: GUIMON′s graphic has been defined with
room to display 90 numbers. When, for example, a whole day
must be represented, averages must be calculated.

This means that GETDATA REXX must be stored on a minidisk or SFS
directory which is ACCESSed by the server. To keep it simple, the
installation instructions propose placing it on the GUIMON
performance monitor ′s A-disk.

This ends the overview of the GUIMON server.

10.3.3 GUIMON - the Client
The GUIMON client is a NetRexx application that presents a GUI to the end-user.
End-user actions result in requests sent to the server. The requests are detailed
in 10.4, “GUIMON - the Client-Server Communication” on page 113.

Three NetRexx source files are being used to create the GUIMON client:
GuiMon.nrx, GetPerf.nrx, and AboutFrame.nrx.

After compilation more class files are created, a short description of each of
which follows:

GuiMon
This is the starting point, the class that must be started by the Java
virtual machine on the end-user′s workstation. The GUIMON source
file defines more than a single class: all classes, listed below, whose
name starts with GuiMon.

GuiMonFrame
The Frame of GUIMON is constructed by this class. It also includes
supporting methods, such as one to show error messages. Two other
methods are very important:

 1. OpenVMSession() is called when “opening” a session with a VM
system. OpenVmSession calls the GetPerf class; the information
returned by GetPerf is then listed in the two list boxes on the
frame.

 2. GetTheData() is called when the end-user requests a graph. Also
in this case, GetPerf is called and the information returned by
GetPerf is then shown as a graph.

GuiMonActions
All actions caused by push buttons and listboxes are handled by
methods defined here.

GuiMonFrameController
This class has only one function: end the application when the user
selects “close” from the system menu.

GuiMonMenuAction
All pull down menu events are handled here. It is here that GUIMON′s
AboutFrame can be called.

GuiMonTimeScroll
This class implements the adjustmentValueChanged() method which
is called when the end-user changes the scroll bar. The two scroll bar
objects define the start and end time of the data to plot. When the
scroll bar′s position is changed, a time value is calculated out of it
and displayed on the frame. In addition, we refuse any scroll bar

112 VM/ESA Network Computing with Java and NetRexx

action that would cause the start time being bigger than the end time,
or vice versa.

GetPerf
Methods in this class handle the communication with the VM host.
The communication is explained in 10.4, “GUIMON - the Client-Server
Communication.”

AboutFrameXxxx
These classes are called when the user selects the “About” pull
down menu entry. AboutFrame is completely explained in Chapter 5,
“AboutFrame, a Reusable Class” on page 55.

10.4 GUIMON - the Client-Server Communication
As VM/ESA does not support Java′s GUI (the AWT class), any VM application
with GUI written in Java or NetRexx must be designed as a client-server
application. This seems more difficult than it really is.

The usage of TCP/IP sockets from inside NetRexx (or Java) is very simple
indeed. There are only two problems to be resolved:

• On the basic socket interface, one reads a number of bytes, and as long as
that many bytes did not arrive the application waits. This problem is
somewhat hidden by the Java methods we call: we read and write records.
But if by accident the application is “talking” to a partner using another
convention, you can end up waiting forever.

• The partners need to understand what they request from each other. For
example, they must know when the data sent by the other side is complete
to stop reading. Or in our case, we must know when the last record arrives
and then stop reading.

The protocol used in GUIMON is kept very simple.

Client The client always sends a single record. A blank delimited keyword
describes the request, and some requests also have blank delimited
options.

Server The server replies to each request with one or more records. Each
record starts with a keyword, too. The last record sent to the client
always has a keyword DONE or ERROR.

To make it easier to study what GUIMON does, the application shows on the
server console what records are sent or received.

10.4.1 Request Formats
To describe the record formats, we position ourselves at the client side. The
requests are generated by the GUIMON client application, but any application
using the protocol defined here could use GUIMON′s server.

Following each request, the expected reply records are listed.

Chapter 10. The GUIMON Sample Program 113

10.4.1.1 LISTFILE Request
This is the first request a client is expected to send; in response, the server tells
which performance files are found and which data they contain. The request is
generated when the end-user selects the “Open” push button.

Request record format:

LISTFILE

The server issues a few CMS Pipe commands and sends the records described
below back. The code can be found in file Serverhandler.nrx, method ListFile(),
an extract is reproduced in Figure 30 on page 115. The records sent back are:

IDENT To personalize the GUIMON frame a bit, an IDENT record can be sent
back.

IDENT server at nodeid blabla ...

Only one IDENT record should be sent. The GUIMON client expects
that the first three words read “userid at nodeid.”

FILE FILE records specify the PERFLOG files found on the server′s P disk.
The records sent to the client look like:

FILE xxxYyyyMmDd xxxYyyyMmDd ...

For example:

FILE Thu19980312 Wed19980311 Tue19980310 Mon19980309

More than one FILE record is allowed; entries of all FILE records are
appended by the client, forming one long list. Sending many entries
per FILE record improves performance.

The GUIMON client reformats the entries a bit and lists them as:

Thu 1998-03-12
Wed 1998-03-11
Tue 1998-03-10
Mon 1998-03-09

DESC The DESC records define what the user can select as performance
variables to plot. Each DESC record defines one entry, in the following
format:

DESC performance_variable

Examples:

DESC %CPU used
DESC Page Read/sec
...

In practice, the VM server reads the file PERFLOG DESCRIBE, which
is described in 10.5.1.2, “The PERFLOG DESCRIBE File” on page 118,
and sends the information found therein to the client.

114 VM/ESA Network Computing with Java and NetRexx

Method ListFile(input=BufferedReader,output=PrintWriter) -
Signals InterruptedException

 /* -- Issue a PIPE to find who and where we are -----*/
mypipe = CMSPipe(′ Command IDENTIFY′ - -- Issue an IDENTIFY cmd

′ | Split|Take 3′ - -- Take first 3 words
′ | Append CP Q CPUID′ - -- What CPU is being used ?
′ | | Spec W3′ - -- Keep Cpuid only
′ | | Spec /on/ 1 9.4 Nw′ - -- Only CPU Model

′ | Join * / /′ - -- reconstruct 1 record
′ | Change w2 /AT/at/′ - -- Mixed case is nicer
′ | fitting *>java′) -- output back to Java

rc=mypipe.getPipeRc() -- if PIPE already ended, syntax error
if rc <> 0 Then do

output.printLn(′ ERROR Syntax error′ rc ′ in IDENTIFY Pipe′)
output.flush();
return

end
line = mypipe.readto() -- read 1 PIPE record
if line <> null then do

output.printLn(′ IDENT′ line)
output.flush();

end
mypipe.endPipe() -- Close this pipe nicely

Figure 30. Extract of GUIMON′s Server Code. It i l lustrates how the DESC record is buil t
and sent.

10.4.1.2 GETDATA Request
With the GETDATA verb the client requests the server to send the specified
performance data back. The server extracts the specified time period out of the
PERFLOG file, calculates averages and sends the result back. A GETDATA
request is generated when the end-user selects the “Graph” push button.

Request record format:

GETDATA perf_file startTime endTime bySecs perf_var

Where:

″perf_file″ formatted yyyymddd, is the filename of a PERFLOG file
″startTime″ formatted hh:mm:ss, defines the start of the graph
″endTime″ formatted hh:mm:ss, defines the end of the graph
″bySecs″ is a number of seconds, used to calculate averages
″perf_var″ defines what to plot (it is a DESC record operand)

The server issues a CMS Pipe command to read the requested PERFLOG file
and get the data. The code can be found in file Serverhandler.nrx, method
GetData(); an extract is reproduced in Figure 31 on page 116. There is only one
record-type that can be sent back:

DATA value1 value2 value3 ...
DATA valuen valuen+1 TIMES start end

As illustrated, multiple DATA records can be sent. Placing many values on a
DATA record improves performance. A DATA record can contain a TIMES
section which is used for the following reason:

Chapter 10. The GUIMON Sample Program 115

The end-user might request a graph from 08:00:00 to 18:00:00. The PERFLOG
file might, however, cover only the 09:30:00 to 15:12:00 time period. To inform
the user, a TIMES section can be used; in our case it would read
TIMES 09:30:00 15:12:00. The GUIMON client code displays this TIMES
information to the user.

getWord = perfloc[perf_desc]
parse startTime h′ : ′ m′ : ′ s ; FromSec=(h*3600+m*60+s).right(5,0)

CalcSeconds= - -- PIPE: Convert hh:mm:ss to seconds
′ h: 1.2 . m: 4.2 . s: 7.2 .′ - -- Take Hours, minutes &

′ Print h*3600+m*60+s′ - -- Convert to seconds
′ Picture 99999 1′ -- Print them with leading 0′ s

ThePipe =′< ′ perf_file ′ PERFLOG′ fmode- -- Read the file
′ | UNPACK′ - -- Unpack it (if required)
′ | NFIND *′ | | - -- No comment records
′ | FROMTARGET PICK 1.8 >>= ″ ′ startTime′ ″ ′ -
′ | NOT FROMTARGET PICK 1.8 >> ″ ′ endTime′ ″ ′ -
′ | SPEC′ - -- Rearrange record:

CalcSeconds- -- Cvt hh:mm:ss to second
getWord ′ NextWord′ - -- Take nbr asked by user

′ | Rexx GETDATA′ FromSec bySecs- -- Calc average by time
′ | JOIN 20 / /′ - -- Group per 20 items
′ | fitting *>java′ -- Pass to Java

mypipe = CMSPipe(ThePipe) -- Run the Pipeline
 ... test returncode ...

loop forever -- reading PIPE records: REXX style ..
line = mypipe.readto() -- Read a record
rc=mypipe.getReadtoRc() -- Was there a record ?
If rc<>0 then leave -- no, leave loop
output.printLn(′ DATA ′ line)

end
mypipe.endPipe() -- Close this pipe nicely
output.printLn(′ DONE′) ; output.flush()

Figure 31. Extract of GUIMON′s Server Code. It i l lustrates how the data is obtained from
a PERFLOG file.

10.4.1.3 INDICATE Request
To make some use of pull down menu entries, we decided it might be nice if the
end-user could request some real-time information. This information is extracted
from CP′s INDICATE command.

Thanks to our general client-server communication structure, adding these extra
items was not difficult, and could be done with little effort.

INDICATE request record format:

INDICATE keyword

Where keyword basically is the string which identifies the beginning of the
relevant part of INDICATE′s response.

The server code, that can found in file Serverhandler.nrx, method GetIndicate(),
is trivial; it is reproduced in Figure 32 on page 117.

116 VM/ESA Network Computing with Java and NetRexx

Method GetIndicate(input=BufferedReader,output=PrintWriter,request=Rexx)-
Signals InterruptedException

parse request . what .
Select
when what=′ CPU′ then find=′ AVGPROC′
when what=′ MDC′ then find=′ MDC′
otherwise find=what
end

 /* -- Issue a PIPE to get the current INDICATE -----*/
mypipe = CMSPipe(′ CP INDICATE′ - -- Issue an INDICATE

′ | Find′ find || - -- Take first 3 words
′ | Join * / /′ - -- reconstruct 1 record
′ | fitting *>java′) -- output back to Java

rc=mypipe.getPipeRc() -- if PIPE already ended, syntax error
if rc <> 0 Then do

output.printLn(′ ERROR Syntax error′ rc ′ in INDICATE Pipe′)
output.flush();
return

end
line = mypipe.readto() -- reading 1 PIPE record
mypipe.endPipe() -- Close this pipe nicely
if line = null then do

if what=′ XSTORE′
then line= ′ Expanded storage is not available on this VM system.′
else line= what ′ is not found in CP INDICATE′

end
output.printLn(′ INDICATE′ line);output.flush()
output.printLn(′ DONE′) ; output.flush()

Figure 32. Extract of GUIMON′s Server Code - INDICATE Request

10.5 GUIMON Record Format Requirements
Without changing the GUIMON code, GUIMON can be easily used to allow your
end-users to plot other performance data. Only the format of the PERFLOG files
and the PERFLOG DESCRIBE file must be understood and adapted.

With minimal effort the GUIMON could be changed a bit and so allow the plot of
other VM data.

10.5.1.1 The PERFLOG File Format
Each PERFLOG file must have a date as filename, formatted yyyymmdd; the
filetype must be PERFLOG and it must reside on the P-disk of the GUIMON
server.

For the record formats, there is only one restriction: each record must start with
a timestamp formatted hh:mm:ss. The remainder of each record contains data;
almost any format will do, so long as CMS Pipeline′s SPECS stage can convert it
to a number. The PERFLOG file made by GUIMON′s performance monitor is
simple:

Chapter 10. The GUIMON Sample Program 117

 * Time %CPU PageR PageW SpoolR SpoolW
09:03:01 1.48 0 0 0 0
09:04:01 1.88 2 0 0 4
09:05:01 12.49 157 379 0 3
09:06:01 4.85 0 0 0 0
09:07:01 0.76 0 0 0 0
09:08:01 57.12 756 6525 0 0
09:09:01 9.49 574 71 0 0

Thanks to the PERFLOG DESCRIBE file, other performance files can be handled
by GUIMON too. The only real requirement is that they contain a time flag in
columns 1-8.

10.5.1.2 The PERFLOG DESCRIBE File
The PERFLOG DESCRIBE file describes what performance data is available in
the PERFLOG files. The file describing our PERFLOG files looks as follows:

 %CPU used = w2
 Page Read/sec = w3
 Page Write/sec = w4
 Spool Read/sec = w5
 Spool Write/sec = w6

The general format is:

 performance variable = SPECS parms

Where:

performance variable is what the end-user will see as description.

= is a separator that must be preceded and followed by one
blank.

SPECS parms defines how a CMS Pipelines SPECS stage can get the
data.

As an example, the first line in our PERFLOG DESCRIBE file tells us that
performance variable “%CPU used” is “word 2” of each record.

If you would have a file where “%CPU used by CP” is stored in columns 20 to 27
as a floating point number, and “%Minidisk cache hits” in columns 45 to 47, you
would code:

 %CPU used by CP = 20-27 c2f
 %Minidisk cache hits = 45-47

When the server reads the PERFLOG file, it stores the relation between the
performance variables and the SPECS operand to use in a NetRexx compound
variable. By consulting the compound variable, the server knows which data to
extract when the end-user sends a request.

Figure 33 on page 119 contains the NetRexx code used for the compound
variable. In classic REXX, the same could be achieved with a stem variable.

118 VM/ESA Network Computing with Java and NetRexx

 class ServerHandler public extends TCPServer
Properties Inheritable

�1� perfloc = Rexx -- Indexed variable holding location of perf data
...

 Method ListFile(input=BufferedReader,output=PrintWriter)
...
/* -- Read file describing the performance data files ------------*/
mypipe = CMSPipe(′< PERFLOG DESCRIBE′ fmode - -- read the file

′ | Nfind *|Strip Trailing′ - -- cleanup a bit
′ | fitting *>java′)

... check retcode ...
�2� perfloc = ′ ′ -- Now actually create the ″stem″

loop forever -- reading PIPE records: REXX style ..
line = mypipe.readto() -- Read
... check retcode ...
rc=mypipe.getReadtoRc() -- Was there a record ?
parse line desc ′ = ′ loc .

�3� perfloc[desc]=loc
output.printLn(′ DESC ′ desc)
output.flush()

end
...

 --
 Method GetData(input=BufferedReader,output=PrintWriter,request=Rexx) -

...
�4� getWord = perfloc[perf_desc]

...

CalcSeconds= - -- PIPE: Convert hh:mm:ss to seconds
′ h: 1.2 . m: 4.2 . s: 7.2 .′ - -- Take Hours, minutes & seconds

′ Print h*3600+m*60+s′ - -- Convert to seconds
′ Picture 99999 1′ -- Print them with leading 0′ s

ThePipe =′< ′ perf_file ′ PERFLOG′ fmode- -- Read the file
′ | UNPACK′ - -- Unpack it (if required)
′ | NFIND *′ | | - -- No comment records
′ | FROMTARGET PICK 1.8 >>= ″ ′ startTime′ ″ ′ -
′ | NOT FROMTARGET PICK 1.8 >> ″ ′ endTime′ ″ ′ -
′ | SPEC′ - -- Rearrange record:

CalcSeconds- -- Cvt hh:mm:ss to second
getWord ′ NextWord′ - -- Take nbr asked by user

′ | Rexx GETDATA′ FromSec bySecs- -- Make average by time
′ | JOIN 20 / /′ - -- Group per 20 items
′ | fitting *>java′ -- Pass to Java

mypipe = CMSPipe(ThePipe)

Figure 33. Extract of GUIMON′s Server Code - PERFLOG DESCRIBE Example. It
illustrates how the DATA are obtained from a PERFLOG file.

At line �1� we define the compound variable as a class property. This is required
as the compound variable is used by more than one method of the class (in
simple words: it must be a kind of global variable).

�2� Here we actually initilize the compound variable and give a default value to
all tails. This compares to Rexx′s statement myStem.=′ ′

Chapter 10. The GUIMON Sample Program 119

�3� For each record in the PERFLOG DESCRIBE file we create a compound
variable. Expanding on our sample PERFLOG DESCRIBE file, one entry would
look like: perfloc[%CPU used]=w2

�4� Here the compound variable is consulted.

120 VM/ESA Network Computing with Java and NetRexx

Chapter 11. Running NetRexx and Java Applications on a Network
Station

This chapter describes what you need to do before running your NetRexx and
Java applications on an IBM Network Station. Complete information on installing
and configuring IBM Network Stations may be found in the redbook S/390 - IBM
Network Station - Getting Started, SG24-4954.

11.1 Network Computing - Extending VM/ESA Resources into the Network
With VM/ESA V2.3.0 acting as a server and with the Network Station family, you
can take data and software off your desktop and put it on the network. Each
member of the IBM Network Station family of network computers offers solutions
to a wide range of business needs. Whether the demand is for basic server
access to multiple servers, powerful Internet access, or Java application support,
there ′s a Network Station Series to suit your needs.

• Series 100: It′s about access

• Series 300: It′s about the Internet

• Series 1000: It′s about Java

This is the really good part.

The Network Station is a very flexible piece of equipment that gives customers,
both large and small, access to:

• Terminal emulators for S/390, AS/400, and RS/6000 hosts

• Web browser for Internet and intranet applications and data

• Java virtual machine

Run native Java applications. These applications execute in the Network
Station, but reference data on one or several remote servers such as
VM/ESA.

• IBM Network Station Manager software

Hosts that you are able to access and the applications you will be using are
determined by the network administrator. The administrator can configure
the Network Station so that a minimum of time is spent on configuration
details involving communications protocols, IP addresses, and host names.
In addition, you will not have to worry about upgrading software on the
Network Station. Upgrading software is much easier since all software
resides on the servers and not on the desktops.

Benefits

• Low initial cost and lower total cost of ownership compared to PCs.

• Broader functionality and connectivity than non-programmable terminals.

• Centralized file storage, backup, and desktop management.

 Copyright IBM Corp. 1998 121

11.2 VM/ESA as a Network Station Server
As a server platform for the IBM Network Station, VM/ESA can act in several
different roles:

• Boot server

VM/ESA can provide the Network Station with network parameters and boot
support. The two boot server protocols currently implemented are BOOTP
(Boot Protocol) and TFTP (Trivial File Transfer Protocol).

• Management server

VM/ESA can manage all Network Station configuration and preference files.
This is done by the IBM Network Station Manager (NSM).

• Application server

VM/ESA can serve a variety of applications to Network Stations; examples
include:

− IBM Network Station Browser (5648B08A)
− Terminal emulators (tn3270 and tn5250)
− User applications written in Java and NetRexx

11.3 Support Delivery Mechanism
Network Station Client support is not part of TCP/IP 310, nor is the Network
Station Manager support part of VM/ESA V2.3.0.

This is because all the Network Station support will become a separate product.
Until the product is available, there will be a 2.5+ level of the Network Station
code available from the VM Network Station page:

http://www.vm.ibm.com/networkstation/

11.4 Hardware Requirements for VM/ESA
There are no special hardware requirements.

11.5 Software Requirements for VM/ESA
TCP/IP 310 is a priced feature of VM/ESA V2.3 that is installed with the operating
system. TCP/IP V2.4 will be supported in VM/ESA V2.3 but does not exploit any of
the new CP and CMS functions. For more information about TCP/IP see:

http://www.vm.ibm.com/related/tcpip/

The VM/ESA OpenEdition Shell and Utilities feature is required to install the IBM
Network Station common code into the Byte File System (BFS).

To use the Network Station Manager, required for customizing Network Station
user profiles, you will need both a JavaScript capable Web browser and a Web
server. Three Web servers for VM/ESA are available. The following list briefly
describes each of them. Further information may be found in the redbook Web
Server Solutions for VM/ESA, SG24-4874.

• Webshare is a no-cost Web server written in CMS Pipelines and REXX. It
gives VM the ability to serve text, graphics, sound and video on the Web.

122 VM/ESA Network Computing with Java and NetRexx

• EnterpriseWeb from Beyond Software Inc. is built on the Webshare base. The
original code was modified to use the CMS Pipelines dispatcher to interleave
requests with I/O operations.

• VM:Webserver from Sterling Software is built on an integrated assembler
nucleus using technology ported from existing Sterling applications.

11.6 Major Steps to Install VM/ESA Network Station Code
 1. Download the Network Station code

 2. Prepare for the installation

 3. Plan the Byte File System file space structure

 4. Install the Network Station code

 5. Perform Network Station customization

11.6.1 Download the Network Station Code
See the VM Network Station home page at URL

http://www.vm.ibm.com/networkstation/

for information on how to obtain the Network Station code. There you will find
step by step instructions for downloading and installing the Network Station
code. In the following sections we provide a summary of the installation
procedure based on our experience, highlighting those points that may deserve
special consideration. You should, however, follow the instructions provided on
the Web to ensure that you are using the most current information available.

11.6.2 Prepare for the Installation of the Network Station Client Code
For the P735FALQ user ID (installation user for TCP/IP) make sure that:

• Sufficient virtual storage is defined. At least 128M is needed to process the
TARBIN file.

• It is defined as a POSIX super user. The following control statement should
appear in its user directory entry:

POSIXINFO UID 0 GID 0

• It is enrolled with administrator authority in the Shared File System (SFS).
See VM/ESA File Pool Planning, Administration, and Operation, SC24-5751,
for a detailed explanation of SFS administrator authority. In our case, the
command used was:

ENROLL ADMINISTRATOR P735FALQ VMSYSU:

• The OpenEdition Shell and Utilities feature for VM/ESA is installed.

11.6.2.1 TFTPD Virtual Machine Definition
For complete information on configuring the TFTPD virtual machine, see TCP/IP
Function Level 310 Planning and Customization, SC24-5847. The following items
should be considered:

• The size of the virtual machine depends upon the number of files to be
cached in virtual storage. A 32M virtual machine is a good starting point.

• The performance of the TFTP daemon may depend on the scheduling share
value set for the TFTPD virtual machine. You might also want to specify
OPTION QUICKDSP for TFTPD.

Chapter 11. Running NetRexx and Java Applications on a Network Station 123

Note: As with any changes of this type, you should consult your local
performance expert for guidance.

11.6.2.2 VMNFS Virtual Machine Support and Definition
The Network Station requires a file system with stream oriented files and a
directory tree structure in which to keep the configuration files. The Network File
System server available with TCP/IP 310 (VMNFS) supports mounting of Shared
File System (SFS) and Byte File System (BFS) directories. This enhancement
means that a Network Station can now access files on a VM/ESA boot or target
server system using either NFS or TFTP.

In the current (2.5 or 2.5+) release of the VM Network Station code, TFTP is the
only supported way of downloading the kernel to the Network Station. During the
residency, however, we experimented briefly with VMNFS and were able to
download the kernel successfully with it.

To use NFS instead of TFTP to download the kernel you need Network Station
client code release 2.5 or 2.5+ and TCP/IP 310 with VMNFS installed on your
VM/ESA 2.3.0 system. To configure VMNFS, follow the instructions in TCP/IP
Function Level 310 Planning and Customization, SC24-5847. Be sure to change
the TAG.ANONYMOUS to Yes in the IBM DTCPARMS file.

Information on configuring the IBM Network Station to use NFS may be found in
the redbook S/390 - IBM Network Station - Getting Started, SG24-4954. The NFS
boot directory must be specified as a fully qualified BFS directory path. Since
VMNFS is not able to resolve mount external links, the QIBM file space must be
specified explicitly in the NFS boot directory parameter; in our configuration, the
value of this parameter was:

/../VMBFS:VMSYSU:QIBM/ProdData/NetworkStation/

Note: Official support of NFS will be available in the next release of the Network
Station client code.

11.6.2.3 BOOTPD Virtual Machine Definition
Complete information on configuring the BOOTPD virtual machine may also be
found in TCP/IP Function Level 310 Planning and Customization, SC24-5847. The
following items should be considered:

• The required size of the BOOTPD virtual machine depends upon the number
of entries in the ETC BOOTPTAB server table file. A 32M virtual machine is a
good starting point.

• The performance of the BOOTP daemon may be influenced by the scheduling
share value set for the BOOTPD virtual machine. You might also want to
specify OPTION QUICKDSP for BOOTPD.

Note: As with any changes of this type, you should consult your local
performance expert for guidance.

11.6.2.4 NSLD Virtual MACHINE Definitions
The IBM Network Station Login daemon (NSLD) is part of the Network Station
Manager software. NSLD performs user authentication, provides data for user
configuration, and responds to client requests for login information about a user
ID on the system. See the VM Network Station home page at URL

http://www.vm.ibm.com/NetworkStation/

124 VM/ESA Network Computing with Java and NetRexx

for information on how to obtain the Network Station Manager and Network
Station Login Server (NSLD) code.

11.6.3 Plan the Byte File System File Space Structure
The TFTP daemon mounts a Byte File System file space from which to download
the Network Station kernel and other files to the Network Station. To hold the
Network Station support file tree, we used the VMSYSU: file pool, following the
default installation procedure. Figure 34 illustrates the Byte File System
structure used in our environment.

Figure 34. Byte File System Structure

Make sure that sufficient BFS file space is available to hold the client code files
when the nets.tar file is exploded. The nets.tar file itself is approximately 7000 4K
blocks in size, and an additional 10000 4K blocks are required to hold the
expanded client code structure. Issue the following command to check that there
is sufficient physical space available in VMSYSU:

QUERY FILEPOOL MINIDISK VMSYSU:

If you need to add more space, follow the instructions given in CMS File Pool
Planning, Administration, and Operation, SC24-5751.

Chapter 11. Running NetRexx and Java Applications on a Network Station 125

11.6.3.1 Build the BFS Structure for the IBM Network Station
Support
If you plan to install the client code files into a byte file system other then
VMSYSU, the NSTATION LOADBFS control file must be updated to specify the
file space you wish to use. Also if you installed the Byte File System and ROOT
directory in a filepool other than default (VMSYS), you need to update NSTATION
LOADBFS references to VMSYS to reflect the BFS root file space on your
system. The following steps create the byte file system that will contain the IBM
Network Station client code:

• Log on to the installation user ID, P735FALQ, and access the minidisk that
contains the NSTATION LOADBFS and NSTATION TARBIN files. Make sure
that the MAINT 193 minidisk is accessed.

• Unpack the NSTATION TARBIN file using the command:

COPYFILE NSTATION TARBIN fm = = = (OLDDATE REPLACE UNPACK

• Run the LOADBFS command against the NSTATION LOADBFS file. This will
create the QIBM file space in the appropriate filepool. It will also create a
mount external link (MEL) called /QIBM and write the NSTATION TARBIN file
out to the BFS file space as nets.tar. The command to use is:

LOADBFS NSTATION

If there are any problems during this step, review the NSTATION LBFSLOG.

• Then mount the BFS root directory which contains the OpenEdition Shell and
Utilities. This command and others following are case sensitive.

openvm mount /../VMBFS:VMSYS:ROOT/ /

• Start the OpenEdition for VM/ESA shell and enter the shell environment.

openvm shell

• If you are re-exploding the tar file into a structure you had created earlier,
you must remove the earlier version of this structure.

rm -Rf /QIBM/ProdData

• Change the current directory to /QIBM external link directory.

cd /QIBM/

• Explode the tar file to create the necessary BFS directory structure and place
all files in the appropriate directories.

pax -rzf /nets.tar

• Remove the tar file from the Byte File System.

rm /nets.tar

• Exit the OpenEdition for VM/ESA shell.

exit

11.6.4 IBM Network Station Br owser for VM/ESA
See the VM Network Station home page at URL

http://www.vm.ibm.com/NetworkStation/

for information on how to obtain the Network Station Browser. Follow the step by
step instructions to download and install the Network Station Browser.

126 VM/ESA Network Computing with Java and NetRexx

11.6.5 IBM Network Station Customization

11.6.5.1 IBM Network Station Configuration Files
The IBM Network Station Manager for VM/ESA should be used to configure your
IBM Network Station networking environment. See the VM Network Station Web
page

http://www.vm.ibm.com/NetworkStation/

for information on how to obtain the Network Station Manager and Network
Station Login Server (NSLD) code.

We found that it was necessary initially to access the Network Station Manager
from a PC-based Web browser in order to set options on the administrator ′s
″setup tasks″ menu. After this had been done, the Network Station Manager
could be accessed successfully from the Network Station Browser.

Also, before attempting to save any configuration information directly from
applications such as the 3270 or 5250 emulators or the Network Station Browser,
the user must first save preferences for each application using the Network
Station Manager. The directory that these applications will try to write to does
not exist until this is done.

11.6.5.2 IBM Network Station Boot Configuration
Before you boot an IBM Network Station, ensure that the BOOTPD or DHCPD,
TFPTD and NSLD servers have been properly initialized and are operational.
Specifically, the IBM Network Station requires that the TFTPD server run with the
XFERMODE OCTET command option in effect, so that it will not attempt to
translate files that are requested as NETASCII. It is also necessary to specify the
CREATION /QIBM command option to allow the Network Station Manager to
create or update configuration files using TFTP.

11.7 Java Programs on the IBM Network Station
The only application programming capability available on the IBM Network
Station is provided through the Java language and the Java virtual machine. Two
fundamentally different forms of Java programs may be written for use on a
Network Station:

Applets are small, reusable components that run in conjunction with, and under
the control of the IBM Network Station Web browser.

Applications are complete, stand-alone programs that are loaded either during
Network Station startup or later by launching the application from the menu bar
on the IBM Network Station.

In either case, the executable program, in the form of one or more Java class
files, is downloaded from a server via either NFS or TFTP, depending on how
your network is set up.

Note: Release 2.5+ of the Network Station client code permits only one Java
program, either application or applet, to be executed at a time. This restriction
may be lifted in a later release.

Chapter 11. Running NetRexx and Java Applications on a Network Station 127

11.8 Setting up to Run Java and NetRexx Programs
When running a Java or NetRexx program on the IBM Network Station, the
appropriate class libraries must reside on directories that are known and
mounted on the local file system. This is not a problem for the Java classes
because the Network Station client code distribution includes the Java class
library in both zipped and unzipped format.

The NetRexx classes, however, are not shipped with the Network Station client
code. To make it possible to run the GuiMon sample application or any other
NetRexx program, the NetRexx class library must be visible in the local file
system of the Network Station.

For our work during the residency, we chose to copy the NetRexx classes from
the NetRexx file space structure to the Network Station client code file space
structure /QIBM/ProdData/ that already contained the Java classes. The reason
is that we did not want to create an additional mount point for the NetRexx
standard classes, instead keeping all standard classes in one base file structure.
Copying the NetRexx classes into the /QIBM/ProdData/ structure is also a good
investment from the standpoint of performance; see 11.10.1, “Performance
Considerations” on page 133 for further discussion of this subject.

Since the installation and service procedure for the Network Station client code
completely replaces the /QIBM/ProdData/ structure, the copying of the NetRexx
classes must be redone each time the client code is serviced or refreshed.

11.8.1 How to Copy the NetRexx Runtime Environment
You can copy the NetRexx classes to the Network Station client code BFS
structure using either the shell or standard CMS facilities. In the following
sections, we illustrate both methods. Of course, in either case your user ID must
have write access to the QIBM file space.

11.8.1.1 Copying the NetRexx Classes with the Shell
After starting up the shell, use the mkdir command to create the netrexx/lang
directory structure in the java/classes subdirectory, and then copy the NetRexx
classes into it with the cp command. Figure 35 on page 129 illustrates how we
did this on our test system. If you have changed the default installation of either
NetRexx or the Network Station client code, then you will may have to alter the
directory specifications accordingly.

128 VM/ESA Network Computing with Java and NetRexx

� �
Ready; T=0.01/0.01 15:13:51
openvm mount /../VMBFS:VMSYS:ROOT/ /
Ready; T=0.01/0.02 15:13:57
openvm shell

IBM
Licensed Material - Property of IBM
5654-030 (C) Copyright IBM Corp. 1995
(C) Copyright Mortice Kern Systems, Inc., 1985, 1993.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

maint:/: >
cd /QIBM/ProdData/NetworkStation/java/classes
maint:/QIBM/ProdData/NetworkStation/java/classes: >
mkdir -p netrexx/lang
maint:/QIBM/ProdData/NetworkStation/java/classes: >
cp /usr/NetRexx/netrexx/lang/*.* netrexx/lang
maint:/QIBM/ProdData/NetworkStation/java/classes: >

� �
Figure 35. Copy the NetRexx Runtime Environment Using the Shell

11.8.1.2 Codepages - ASCII <> EBCDIC for Network Stations
The Java class library shipped with the Network Station client code does not
include the two class files (ByteToCharCp1047.class and
CharToByteCp1047.class) required to support the EBCDIC codepage 1047 used
by OpenEdition. Thus, you will want to copy these two class files from the sun/io
subdirectory of your VM Java class library to the corresponding part of your
Network Station client code structure as well. Figure 36 shows how this can be
done in the shell environment, continuing from where we left off at the end of
Figure 35.

� �
maint:/QIBM/ProdData/NetworkStation/java/classes: >
cp /usr/java/classes/sun/io/*Cp1047.class sun/io
maint:/QIBM/ProdData/NetworkStation/java/classes: >

� �
Figure 36. Copy the Codepage 1047 Class Files Using the Shell

See Chapter 7, “Code Pages - ASCII <> EBCDIC Issues” on page 81 for further
information on codepage issues.

11.8.1.3 Copying the NetRexx and Cp1047 Classes without the
Shell
Figure 37 on page 130 displays the NETCPY EXEC, included with the sample
program set for this redbook, which uses the CMS OPENVM and PIPE commands
to accomplish the same operations shown in Figure 35 and Figure 36 without
the shell.

Chapter 11. Running NetRexx and Java Applications on a Network Station 129

/**/
/* Use this exec to create directories java/classes/netrexx/lang and */
/* to copy the standard NetRexx classes and the Cp1047 code page */
/* classes to the Network Station client code BFS file structure. */
/**/
address command
′ EXEC OPENVM CREAT DIR /QIBM/ProdData/NetworkStation/java/classes/netrexx′
′ EXEC OPENVM CREAT DIR /QIBM/ProdData/NetworkStation/java/classes/netrexx/lang′
′ PIPE bfsdirectory /usr/NetRexx/netrexx/lang | spec w1 | stem file.′
do i=1 to file.0

′ PIPE bfs /usr/NetRexx/netrexx/lang/′ file.i,
′ | bfs /QIBM/ProdData/NetworkStation/java/classes/netrexx/lang/′ file.i

end
′ PIPE bfs /usr/java/classes/sun/io/ByteToCharCp1047.class′ ,

′ | bfs /QIBM/Prodata/NetworkStation/java/classes/sun/io/ByteToCharCp1047.class′
′ PIPE bfs /usr/java/classes/sun/io/CharToByteCp1047.class′ ,

′ | bfs /QIBM/Prodata/NetworkStation/java/classes/sun/io/CharToByteCp1047.class′
exit

Figure 37. NETCPY EXEC to Copy the NetRexx and Cp1047 Classes

11.9 Starting a Java or NetRexx Program on your IBM Network Station
In the following sections we explain how to run the demonstration application
GuiMon (described in detail in Chapter 10, “The GUIMON Sample Program” on
page 101 and included in the sample program set for this redbook) on an IBM
Network Station.

The client side of GuiMon is a stand-alone Java application which may be
executed by the IBM Network Station Java Virtual Machine (JVM). The JVM is in
charge of controlling the Java execution environment and obtaining resources
from the Network Station kernel. To start a Java application you must call the
JVM and pass to it a series of parameters such as the name of the initial class
of the application. Since this might be a rather long and complicated command
string, you will find it more convenient to define a Menu Bar item to allow the
application to be started by simply clicking the appropriate button on the Menu
Bar. The procedure for doing this is described in 11.11, “Using NSM to Add a
Java Application to the Menu Bar” on page 133.

The class files comprising the application must be installed in a server file
system that is accessible to the Network Station kernel. Since you will want to
keep application class files separate from the standard Java and NetRexx class
libraries, you will in general have to tailor the local file system of the IBM
Network Station to define the additional server file structures that are to be
mounted by the kernel. We explain how to do this file system tailoring in 11.10,
“How to Tailor the Local File System” on page 131.

In a Network Computing world, applications may be stored on many different
hosts, not just the one used as a boot server. In fact, the class files used by a
single Java or NetRexx application could reside on multiple VM/ESA servers. To
show you how this can be done, we will use GuiMon as an example.

The client side of the GuiMon application consists of eleven class files. To show
how resources can be shared among different systems we installed:

130 VM/ESA Network Computing with Java and NetRexx

• The basic GuiMon class files in directory /home/demo on VM1

GuiMon.class GuiMonMenuAction.class
GuiMonActions.class GuiMonTimeScroll.class
GuiMonFrame.class GetPerf.class
GuiMonFrameController.class TimeGraph.class

• The AboutFrame class files in directory /home/demo on VM2

AboutActionClass.class
AboutFrame.class
AboutFrameController.class

where VM1 is a VM system in Germany and VM2 is a VM system in Sweden.
Our network configuration is illustrated in Figure 38.

Figure 38. Network Configuration

11.10 How to Tailor the Local File System
The kernel running in the Network Station needs a file system structure from
which to serve applications ′ file requests. This structure is known as the local
file system but effectively consists of mounts of remote directories since the IBM
Network Station has no local file storage of any kind. Many directories are
automatically mounted during the initialization process including:

• All of the font directories

• The keyboard definitions directory

• The loadable modules directory

The file-service-table parameter allows you to specify any number of additional
directories on any hosts that are to be mounted on the local file structure. Each
entry in the list is composed of the following positional parameters:

Chapter 11. Running NetRexx and Java Applications on a Network Station 131

local-unix-mount-point The UNIX style local name for this file service
access point.

local-vms-mount-point This value should always be nil .

server The symbolic name or the IP address of the host.

protocol For S/390 hosts, either tftp or nfs .

server-mount-point The name of the service access point on the file
server.

file-name-type We recommend you always speciy unix .

retransmission-timeout The amount of time in seconds between
successive transmissions of a file service request.

transaction-timeout The amount of time in seconds to attempt a file
service request before a failure situation is
declared.

read-size The amount of data in bytes to be requested in a
single read request. If you experience problems
reading files across gateways, try decreasing this
parameter to 1024 for nfs or 512 for tftp.

write-size The amount of data in bytes to be requested in a
single write request. If you experience problems
writing files across gateways, try decreasing this
parameter to 1024 for nfs or 512 for tftp.

In order to make our Network Station be able to run the GuiMon application we
need to create a file service table. This operation is not supported by the current
release of the NSM, and thus the configuration file in which the file service table
is defined must be edited manually. The file that has to be altered is one of the
special files called defaults.dft that resides in the file structure in the
/QIBM/UserData/NetworkStation/StationConfig subdirectory.

IBM Network Station configuration files are stored in ASCII and thus cannot be
directly edited; an exec called ASCXED is provided to temporarily translate an
ASCII file into EBCDIC for editing, then translate it back to ASCII after it is saved.

Use ASCXED to tailor the file by entering:

ASCXED /QIBM/UserData/NetworkStation/StationConfig/defaults.dft

Our file service table to support distributed GuiMon looked like this:

� �
This file service table is for the host in Germany
set file-service-table[-1] = {

″ / VM1/″ nil 9.164.155.115 tftp
″ / home/demo/″ unix 6 30 512 512 }

This file-service-table is for the host in Sweden
set file-service-table[-1] = {

″ / VM2/″ nil 9.52.39.189 tftp
″ / home/demo/″ unix 6 30 512 512 }

� �

132 VM/ESA Network Computing with Java and NetRexx

Notes:

 1. Each mount point needs its own file-service-table [-1] entry because the
environment variable file-service-table can support only one mount point.
This might be changed in a later release.

 2. The subscript [-1] is very important; it informs actlogin that the
file-service-table entries are to be appended to its list.

11.10.1 Performance Considerations
When planning to share an application class library between two systems, or
simply to have (as we strongly recommend) the standard class library and the
application′s classes on different directories in one system, it is important to
keep in mind how the Java Virtual Machine in the Network Station will request
resources from the Network Station kernel. When you issue the Java command,
JVM initialization involves loading a large number of class files that are part of
the standard Java class library. Subsequently, the first application class file is
loaded, and during its execution additional class files will be loaded as required.
In all cases, the JVM searches each directory path in the current classpath , in
the order in which they are specified, until the requested class file is found.

For example, if the JVM is invoked as follows:

java -classpath /VM2:/VM1:/QIBM/ProdData/NetworkStation/java/classes ...

then each time a class file must be read, whether it is a standard Java or
NetRexx class or an application class, the JVM will look for it first in directory
path /VM2, then in /VM1, and finally in the path containing the standard Java
library. In our case, since /VM2 is a mount point for a file system on a remote
host, this means that every request to load a class file is going to require a
network interaction to interrogate the remote file system.

From the network point of view, the search order is very important. Since the
vast majority of the class files that will be used during the execution of most
Java or NetRexx applications will come from the Java class library, not from the
application class libraries, the classpath in the example should be specified like
this to improve performance:

Java -classpath /QIBM/ProdData/NetworkStation/java/classes:/VM1:/VM2 ...

11.11 Using NSM to Add a Java Application to the Menu Bar
The IBM Network Station Manager program is a browser based application
program with which you may perform many of the setup and management tasks
that are associated with administering IBM Network Stations and supporting
Network Station users. If you are unfamiliar with the basic function and operation
of the NSM, we refer you to the description in the redbook S/390 - IBM Network
Station - Getting Started, SG24-4954, for a thorough introduction. In the
remainder of this section, we describe how to use the NSM to add a Java
Application Menu Item.

To add the Java application GuiMon to your Network Station Menu Bar follow
these steps:

• Type the NSM administrator user name and password on the login screen
shown in Figure 39 on page 134.

Chapter 11. Running NetRexx and Java Applications on a Network Station 133

Figure 39. IBM Network Station Manager Login Screen

• Click on OK to reach the administrator main menu shown in Figure 40.

Figure 40. IBM Network Station Manager Administrator Main Menu

• Click on Startup in the Setup Tasks list.

• Click on Menus in the expanded Startup sublist.

• Select User Defaults and type in a user name. We used perfmon , as can be
seen in Figure 41 on page 135.

134 VM/ESA Network Computing with Java and NetRexx

Notes:

 1. The name is automatically folded to upper case by the NSM.

 2. A corresponding user ID must exist in the CP user directory of the
VM/ESA boot server in order for the NSLD to perform authentication at
Network Station login time.

Figure 41. IBM Network Station Manager Startup Menus

• Click on Next .

• Scroll down to Java Application Menu Items.

• In the “Menu item label” field, type GuiMon .

• In the “Application (class) name” field, also type GuiMon .

• In the “Class path” field, type the following:

/QIBM/ProdData/NetworkStation/java/classes:/VM1:/VM2

as illustrated in Figure 42 on page 136.

Points to Remember:

 1. The class path is a list of all the directory paths to the classes needed by
the application, including the standard Java class library. Each time the
JVM must load a class file, these directory paths are searched in the
order specified.

 2. In our example, we have defined VM1 and VM2 as mount points in the
file service table (see 11.10, “How to Tailor the Local File System” on
page 131 for details). VM1 defines the location of the GuiMon classes on

Chapter 11. Running NetRexx and Java Applications on a Network Station 135

the local VM server, and VM2 identifies the directory path to the About
Frame classes on a remote VM server.

 3. To reduce network traffic and improve responsiveness, it is very
important to order the directory path specifications in the class path list
so as to minimize the likely search time for a class file. In general this
means that the standard Java class library should be listed ahead of the
application class libraries, and that directories on nearby servers should
be listed before those on more remote servers. See 11.10.1,
“Performance Considerations” on page 133 for more information..

Figure 42. IBM Network Station Manager Java Application Menu Items

• Click on the Finish icon.

• Click on the Back icon.

• Click on Close IBM Network Station Manager .

11.12 Starting the GuiMon Application on the Network Station
GuiMon is a client/server application that exploits the Java and NetRexx
execution capabilities of both the IBM Network Station and VM/ESA V2R3M0 to
illustrate the potential utility of this powerful combination of platforms. By
installing the GuiMon client code in two packages, the GuiMon classes on the
VM/ESA boot server in Germany and the AboutFrame classes on a separate
VM/ESA server in Sweden, we further demonstrate how flexible network
computing can be and how the Network Station is a major player in this
environment. The configuration work described above in 11.10, “How to Tailor
the Local File System” on page 131 and 11.11, “Using NSM to Add a Java
Application to the Menu Bar” on page 133 means that the details of the network
configuration are transparent to the end user.

136 VM/ESA Network Computing with Java and NetRexx

11.12.1 Login to the Network Station
When the IBM Network Station has completed downloading and booting the
kernel, or when the previous user of a running Network Station has logged out,
the Network Station Login Screen is displayed. Type the user ID (perfmon in our
example, as shown in Figure 43) and press Enter or click on OK .

Figure 43. IBM Network Station Login Screen

On the next screen type the password and again press Enter or click on OK . As
password validation proceeds, the NSLD displays progress messages; when
validation is complete, and the message “Authentication completed
successfully” appears, click on Done to allow login to continue.

11.12.2 Start GuiMon from the Menu Bar
When the login process has completed the initialization of the user′s Network
Station environment, based on the configuration information previously saved by
the NSM, the Menu Bar will appear at the bottom of the screen. Click on the
GuiMon button to start the GuiMon application.

First the JVM initializes, requiring the loading of a large number of class files
from the standard Java class library. When JVM initialization is complete, the
main application class file, GuiMon.class, is requested and found in directory
path /VM1. During its initialization, GuiMon requires additional class files which
are also located in and loaded from /VM1. When GuiMon is ready to accept
requests, it displays the window shown in Figure 44 on page 138.

Chapter 11. Running NetRexx and Java Applications on a Network Station 137

Figure 44. Built by GuiMon Classes Loaded from Germany

Up to this point the AboutFrame class files located in directory path /VM2 have
not been required. If we now click on About in the action bar, and then select
AboutFrame from the resulting pulldown menu, the necessary AboutFrame
classes are downloaded from the system in Sweden, producing the display
illustrated in Figure 45.

Figure 45. Built by the AboutFrame classes Loaded from Sweden

To make the international distinction more apparent, we have translated the
AboutFrame title, action bar text, and push button label, all of which are coming
from the VM2 system, into Swedish (compare to the original version shown in
Figure 9 on page 55); but the data in the list boxes, derived from VM1, remains
English.

138 VM/ESA Network Computing with Java and NetRexx

11.12.3 Summary
This very simple example of distributing the parts of an application across
multiple network-connected systems demonstrates, in part by its very simplicity,
how flexible network computing can be, how powerful the Network Station can
be, and above all how readily VM/ESA can be a major player in this style of
network computing, acting as both a boot and an application server to Network
Stations.

Chapter 11. Running NetRexx and Java Applications on a Network Station 139

140 VM/ESA Network Computing with Java and NetRexx

Appendix A. Frequently Asked Questions

Here is a list of questions you might have, or problems you might encounter.

A.1 NullPointerException - General Problem
A NullPointerException is most of the time caused by a program trying to use a
not initialized variable. An example, reading a file:

loop until line = null
�1� line = String(SomeFile.readLine())
�2� Say ′ read=′ line

end

When at �1� no more records exist in the file, variable line becomes undefined,
or null. Then the execution of �2� results in a NullPointerException. The next
alternatives avoid the problem:

loop forever
line = String(SomeFile.readLine())
if line = null then leave
Say ′ read=′ line

end
...
line = String(SomeFile.readLine())
loop while line<>null

Say ′ read=′ line
line = String(SomeFile.readLine())

end

A.2 NullPointerException - With Compound Variables
In 4.3.8, “Stems - Array Variables - Indexed Strings” on page 50 it has been
mentioned that before using a NetRexx array, the stem has to get a value
assigned to it. In OO terms: the stem has to be an object already. If this is
forgotten, the result can be a NullPointerException.

For example, suppose that both place and loc are variables that have been
assigned a value, but that description is a variable that has only been declared.
At execution time the following error is seen:

8 *=* description = Rexx -- Declare it as a property
...

 19 *=* place=′ Boeblinger MineralTerme′
 20 *=* loc=′ nice′

...
 31 *=* description[place]=loc
java.lang.NullPointerException

at testsubf.main(testsubf.nrx:31)

Initially one is very confused and thinks that either the variable loc or the
variable place is undefined. One just tends to forget that the cause of the error
can be that the variable description is not initialized.

The solution is to create the stem variable explicitly by inserting description=′ ′
before line 31.

 Copyright IBM Corp. 1998 141

A.3 NetRexx: No Data Type Problems Anymore?
Even though NetRexx does indeed hide many data type problems, sometimes it
still fails, as shown below.

A program, GuiMon, contained this statement to obtain the string selected in a
list box.

Afile = theFrame.lstFile.GetSelectedItem() -- Selected file

At compile time an error is seen:

 308 +++ Afile = Afile.word(2).Translate(′ ′ , ′ -′) . space(0) -- Keep only
+++ ¬¬¬¬
+++ Error: The method ′ word(byte)′ cannot be found in class

′ java.lang.String′ or a superclass

This means that NetRexx assigned data type “String” to variable “Afile.” The
solution is simple: explicitly set a data type when “Afile” is first used:

Afile = Rexx theFrame.lstFile.GetSelectedItem() -- Selected file

A.4 Error Messages Not Always Very Accurate
One of the things you have to keep in mind is that error messages seldom give a
detailed reason. This may set you on the wrong track when searching for a
solution.

For example: “Can′ t find class file.” This error message is issued both when

• the file cannot be found in the classpath, and
• the class file is unusable.

The latter case can be caused by the class file having been accidentally
translated to EBCDIC. Class files must be ASCII. When transporting them
between platforms, be sure to transport them as BINARY files.

A.5 File Not Found
This a variation of A.4, “Error Messages Not Always Very Accurate.”

A.6 Threads Class Not Found
When Java refuses to start with an error message as shown in the example
below, verify the CLASSPATH definition

EXEC JAVA javatest
Unable to initialize threads: cannot find class java/lang/Thread

The CLASSPATH must reflect the directories in which Java and NetRexx are
installed, refer to 3.8.1, “Important Environment Variables” on page 33 for more
information about CLASSPATH.

142 VM/ESA Network Computing with Java and NetRexx

A.7 External Link Files Not Found
When an external link is created to a CMS file, “file not found” conditions may
be encountered if the &&& option is not specified on the OPENVM CREATE
EXTLINK command.

A.8 Reading Java Abend Messages
Here is a Java abend message caused by a misbehaving NetRexx program:

java.lang.NullPointerException
at ServerHandler.ListFile(ServerHandler.nrx:101)
at ServerHandler.runUser(ServerHandler.nrx:24)
at TCPServer.run(TCPServer.nrx:56)
at TCPServer.run(TCPServer.nrx:43)
at java.lang.Thread.run(Thread.java)

The error here is a NullPointerException. Java prints a “traceback” of the
methods active at the time. Most of the time the first line gives enough
information to correct the problem.

In our case, ServerHandler.ListFile(ServerHandler.nrx:101) means that the
problem occurred in source file ServerHandler.nrx at line 101.

We found that sometimes the problem is caused by what is mentioned on the
last line of the printout. As has been said, NetRexx can convert data types, and
when this fails the first line tells what NetRexx was trying to do.

Here is an example; a NetRexx trace shows what tried to execute.

 25 *=* z=′ sss′
 26 *=* Say ′ Mineraltherme in Boeblingen are cool′ . word(z)
java.lang.NumberFormatException: Not a number

at netrexx.lang.Rexx.intcheck(Rexx.nrx:832)
at netrexx.lang.Rexx.subword(Rexx.nrx:1255)
at netrexx.lang.Rexx.word(Rexx.nrx:1303)
at testsubf.main(testsubf.nrx:26)

In the above case, it is clear that “z” has to be converted to an integer.
Sometimes though, it is not obvious that a data type conversion is required (as
REXX programmers we are no longer used to data types). Reading the whole
traceback printout, bottom up, reveals what NetRexx is trying to do.

A.9 Virtual Storage Requirements
A very important fact to remember is that Java cannot automatically use all the
DEFINEd STORAGE of a virtual machine.

Java provides two options to control virtual storage use.

-ms<number> set the initial Java heap size
-mx<number> set the maximum Java heap size

With the current VM/ESA (and OS/390) Java implementation, “ms” and “mx” are
treated equally, and all the memory is taken at once, in one big piece.

Appendix A. Frequently Asked Questions 143

When compiling the GuiMon NetRexx program, we soon had out-of-memory
errors.

It appears that the version of Java used during this residency had a default of
mx value that is too small to compile some NetRexx programs. Therefore, we
updated our NRC EXEC to specify a 4MB mx value:

′ EXEC OPENVM RUN /usr/java/openvm/java -mx4m ...

By the time that Java and NetRexx become generally available on VM, the
default mx value for the NetRexx compiler may have been changed to 8MB.

Beware : As on VM Java allocates the whole mx value at once, in one big piece,
specifying an mx value that is too high is not always good either. Remember that
when a CMS user has a DEFINEd STORAGE of 32M, not all 32 megabytes are
available. Usually quite a few saved segments are located between 16M and
32M.

On our test system the default storage allocation looks like:

� �
q nss name cms map

 FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMG
 0122 CMS NSS 0000256K 00000 0000D EW A 00033 00-15 N

00020 00023 EW
00F00 013FF SR

 Ready;
q segment

 Space Name Location Length Loaded Attribute
CMSVMLIB DMSRTSEG 01796B00 0003FBE0 YES SYSTEM
CMSVMLIB VMLIB 01700000 00096AC0 YES SYSTEM
CMSPIPES RXSOCKET 0188F498 0000FC88 YES SYSTEM
CMSPIPES PIPES 01800000 0008F458 YES SYSTEM
INSTSEG CMSINST 01400000 001C57E0 YES SYSTEM
Ready;
q v stor

 STORAGE = 0032M
 Ready;� �

You can see above that CMS itself is located from 15M through 19M, other saved
segments are located at 20M, 23M, and 24M. When taking into account that CMS
very soon uses dome storage in the upper part of virtual storage, it can be clear
the biggest piece we can ever get is 7MB.

Therefore, we recommend a DEFINEd STORAGE that is bigger than 32M for
NetRexx program development, for example 64M.

A.10 Killing the Java Virtual Machine in VM
Sometimes it can be required to stop the Java virtual machine on VM, some
servers cannot be stopped otherwise. An easy choice that always works
obviously is entering:

 #CP IPL

This has as side effect that you lose all ACCESSed disks and so on. Therefore, it
is useful to know two other possibilities. Enter:

¢c cancel
 ¢v cancel and produce a minidump

144 VM/ESA Network Computing with Java and NetRexx

Note, the ¢ character stands for X′4A′. If your keyboard has no key for it, update
your PROFILE EXEC to include, for example:

′ CP SET PF02′ ′4A′ x

For more information on OpenEdition terminal control sequences, see 6.2.1,
“Useful Control Sequences” on page 77.

A.11 Runtime Problems
A couple of remarks may help you to avoid some problems we encountered.

• Running Java programs under CMS Rel 13 does not work. You need CMS
Rel 14 (the one coming with VM/ESA 2.3.0) and a recent maintenance level.
Similar remarks apply to the LE/370 library: use the one delivered with
VM/ES 2.3.0, and apply the latest fixes.

When using backlevel versions, one of the observed failures is a CPU loop.

• The SCEERUN LOADLIB must be included in the GLOBAL LOADLIB. Failure
to do so may simply result in a non-zero return code being displayed, as in
the example below:

openvm run /usr/java/openvm/java -version
Ready KRIS at SRGAST1 (01255); T=0.17/0.28 18:24:35

A.12 Installation Problems
A couple of times the installation of Java failed. When having problems please
verify the following:

• The installer virtual machine needs a large amount of virtual storage (for
example, CP DEFINE STORAGE 200M).

• The installer virtual machine needs to be an SFS administrator: the
installation of Java and NetRexx requires the enrollment of new SFS users
_JAVA and _NETREXX.

• The BFS must be initialized with some basic users and directories (“root” for
example). This also means that “ROOT” must be present in the CP directory
(see 2.7, “Installing Java and NetRexx without the Shell and Utilities” on
page 16).

• Using the LE/370 library delivered with previous versions of VM/ESA results
in CMS abends during installation (protection or addressing exceptions).

− Ensure that the Y-disk is the one coming with VM/ESA 2.3.0.
− Also verify that the saved segments SCEE and SCEEX correspond to the

level of VM/ESA 2.3.0. This remark is very important to installations that
for example run CMS Level 13 alongside the new CMS Level 14. In that
case it is very likely that the SCEE and SCEEX saved segments are those
of VM/ESA 2.2.0 instead of those of VM/ESA 2.3.0. A bypass is simple:
remove the entries for SCEE and SCEEX from the SYSTEM SEGID on
CMS 14′s S-disk (remove the PSEG and dependent LSEG cards).

• We believe that the installation of Java and NetRexx in the BFS may fail
when the SFS server has to perform a control data backup during the
installation. Therefore it may be wise to issue:

CP SET SECUSER VMSERVx *
CP SEND VMSERVx BACKUP

Appendix A. Frequently Asked Questions 145

before starting the installation. Keeping the secondary user ID set to the
installer user ID during the installation is good as well. It will allow you to
easily spot problems in the server, such as disk full or control data backups.

146 VM/ESA Network Computing with Java and NetRexx

Appendix B. NetRexx Language Quick Start

For your convenience we reproduce the NetRexx introduction text that can be
found as “NROVER.DOC” amongst the files delivered with the NetRexx software.
It has been written for NetRexx level 1.125.

Remember that Redbook Creating Java Applications Using NetRexx, SG24-2216 is
a good starting point to write NetRexx applications. It has been written for OS/2
but applies to nearly all platforms where NetRexx can be used.

B.1 Introduction
NetRexx is a new programming language derived from both REXX and Java; it is
a dialect of REXX that retains the portability and efficiency of Java, while being
as easy to learn and to use as REXX.

NetRexx is an effective alternative to the Java language. With NetRexx, you can
create programs and applets for the Java environment more easily than by
programming in Java. Using Java classes is especially easy in NetRexx as you
rarely have to worry about all the different types of numbers and strings that
Java requires.

This document summarizes the main features of NetRexx, and is intended to
help you start using it quickly. It′s assumed that you have some knowledge of
programming in a language such as REXX, C, BASIC, or Java, but a knowledge
of “object-oriented” programming isn ′ t needed.

This is not a complete tutorial, though -- think of it more as a “taster”; it covers
the main points of the language and shows some examples you can try or
modify.

For more samples (and examples of using Java classes from NetRexx), and for
more formal details of the language, please see the other NetRexx documents at
URL

http://www2.hursley.ibm.com/netrexx/

You′ ll find the NetRexx software to download there, too.

B.2 NetRexx Programs
The structure of a NetRexx program is extremely simple. This sample program,
“toast,” is complete, documented, and executable as it stands:

/* This wishes you the best of health. */
say ′ Cheers!′

This program consists of two lines: the first is an optional comment that
describes the purpose of the program, and the second is a SAY statement. SAY
simply displays the result of the expression following it -- in this case just a
literal string (you can use either single or double quotes around strings, as you
prefer).

 Copyright IBM Corp. 1998 147

To run this program, edit a file called toast.nrx and copy or paste the two lines
above into it. You can then use the NetRexxC Java program to compile it, and
the java command to run it:

java COM.ibm.netrexx.process.NetRexxC toast
java toast

You may also be able to use the NETREXXC command to compile and run the
program with a single command (details may vary -- see the installation and
user ′s guide document):

 netrexxc toast -run

Of course, NetRexx can do more than just display a character string. Although
the language has a simple syntax, and has a small number of statement types, it
is powerful; the language allows full access to the rapidly growing collection of
Java programs known as “class libraries,” and allows new class libraries to be
written in NetRexx.

The rest of this document introduces most of the features of NetRexx. Since the
economy, power, and clarity of expression in NetRexx is best appreciated with
use, you are urged to try using the language yourself.

B.3 Expressions and Variables
As with SAY in the “toast” example, many statements in NetRexx include
expressions that will be evaluated. NetRexx provides arithmetic operators
(including integer division, remainder, and power operators), several
concatenation operators, comparison operators, and logical operators. These
can be used in any combination within a NetRexx expression (provided, of
course, that the data values are valid for those operations).

All the operators act upon strings of characters (known as REXX strings), which
may be of any length (typically limited only by the amount of storage available).
Quotes (either single or double) are used to indicate literal strings, and are
optional if the literal string is just a number. For example, the expressions:

′2′ + ′3′
′2′ + 3
2 + 3

would all result in “5.”

The results of expressions are often assigned to variables, using a conventional
assignment syntax:

var1=5 /* sets var1 to ′ 5 ′ */
 var2=(var1+2)*10 /* sets var2 to ′70 ′ */

You can write the names of variables (and keywords) in whatever mixture of
uppercase and lowercase that you prefer; the language is not case-sensitive.

This next sample program, “greet,” shows expressions used in various ways:

/* A short program to greet you. */
/* First display a prompt: */
say ′ Please type your name and then press ENTER:′
answer=ask /* Get the reply into ANSWER */

/* If no name was entered, then use a fixed greeting, */
/* otherwise echo the name politely. */

148 VM/ESA Network Computing with Java and NetRexx

if answer=′ ′ then say ′ Hello Stranger!′
else say ′ Hello′ answer′ ! ′

After displaying a prompt, the program reads a line of text from the user (“ask”
is a keyword provided by NetRexx) and assigns it to the variable ANSWER. This
is then tested to see if any characters were entered, and different actions are
taken accordingly; if the user typed “Fred” in response to the prompt, then the
program would display:

Hello Fred!

As you see, the expression on the last SAY (display) statement concatenated the
string “Hello” to the value of variable ANSWER with a blank in between them
(the blank is here a valid operator, meaning “concatenate with blank”). The
string “!” is then directly concatenated to the result built up so far. These
unobtrusive operators (the blank operator and abuttal) for concatenation are very
natural and easy to use, and make building text strings simple and clear.

The layout of statements is very flexible. In the “greet” example, for instance,
the IF statement could be laid out in a number of ways, according to personal
preference. Line breaks can be added at either side of the THEN (or following the
ELSE).

In general, statements are ended by the end of a line. To continue a statement to
a following line, you can use a hyphen (minus sign) just as in English:

say ′ Here we have an expression that is quite long, so′ -
′ it is split over two lines′

This acts as though the two lines were all on one line, with the hyphen and any
blanks around it being replaced by a single blank. The net result is two strings
concatenated together (with a blank in between) and then displayed.

When desired, multiple statements can be placed on one line with the aid of the
semicolon separator:

if answer=′ Yes′ then do; say ′ OK!′ ; exit; end

(Many people find multiple statements on one line hard to read, but sometimes it
is convenient.)

B.4 Control Statements
NetRexx provides a selection of control statements, whose form was chosen for
readability and similarity to natural languages. The control statements include
IF... THEN... ELSE (as in the “greet” example) for simple conditional processing:

if ask=′ Yes′ then say ″You answered Yes″
else say ″You didn′ t answer Yes″

SELECT... WHEN... OTHERWISE... END for selecting from a number of
alternatives:

select
when a>0 then say ′ greater than zero′
when a<0 then say ′ less than zero′
otherwise say ′ zero′
end

DO... END for grouping:

Appendix B. NetRexx Language Quick Start 149

if a>3 then do
say ′ A is greater than 3; it will be set to zero′
a=0
end

and LOOP... END for repetition:

loop i=1 to 10 /* repeat 10 times; I changes from 1 to 10 */
say i
end

The LOOP statement can be used to step a variable TO some limit, BY some
increment, FOR a specified number of iterations, and WHILE or UNTIL some
condition is satisfied. LOOP FOREVER is also provided. Loop execution may be
modified by LEAVE and ITERATE statements that significantly reduce the
complexity of many programs.

B.5 NetRexx Arithmetic
Character strings in NetRexx are commonly used for arithmetic (assuming, of
course, that they represent numbers). The string representation of numbers can
include integers, decimal notation, and exponential notation; they are all treated
the same way. Here are a few:

′1234′
′12.03′
′ -12′
′120e+7′

The arithmetic operations in NetRexx are designed for people rather than
machines, so are decimal rather than binary, do not overflow at certain values,
and follow the rules that people use for arithmetic. The operations are
completely defined by the ANSI standard for REXX, so correct implementations
will always give the same results.

An unusual feature of NetRexx arithmetic is the NUMERIC statement: this may
be used to select the arbitrary precision of calculations. You may calculate to
whatever precision that you wish, for financial calculations, perhaps, limited only
by available memory. For example:

numeric digits 50
say 1/7

which would display

0.14285714285714285714285714285714285714285714285714

The numeric precision can be set for an entire program, or be adjusted at will
within the program. The NUMERIC statement can also be used to select the
notation (scientific or engineering) used for numbers in exponential format.

NetRexx also provides simple access to the native binary arithmetic of
computers. Using binary arithmetic offers many opportunities for errors, but is
useful when performance is paramount. You select binary arithmetic by adding
the statement:

options binary

at the top of a NetRexx program. The language processor will then use binary
arithmetic instead of REXX decimal arithmetic for calculations, throughout the
program.

150 VM/ESA Network Computing with Java and NetRexx

B.6 Doing Things with Strings
Another thing REXX is good for is manipulating strings in various ways. NetRexx
provides the same facilities as REXX, but with a syntax that is more like Java or
other similar languages:

phrase=′ Now is the time for a party′
say phrase.word(7).pos(′ r′)

The second line here can be read from left to right as ″take the variable
“phrase,” find the seventh word, and then find the position of the first “r” in that
word″. This would display “3” in this case, because “r” is the third character in
“par ty . ”

In REXX, the second line above would have been written using nested function
calls:

say pos(′ r′ , word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack
from right to left to work out exactly what ′s going on.

In the NetRexx syntax, at each point in the sequence of operations some routine
is acting on the result of what has gone before. These routines are called
methods, to make the distinction from functions (which act in isolation). NetRexx
provides (as methods) most of the functions that were evolved for REXX, for
example:

• changestr (change all occurrences of a substring to another)
• copies (make multiple copies of a string)
• lastpos (find rightmost occurrence)
• left and right (return leftmost/rightmost character(s))
• reverse (swap end-to-end)
• space (pad between words with fixed spacing)
• strip (remove leading and/or trailing white space)
• pos and wordpos (find the position of string or a word in a string)
• verify (check the contents of a string for selected characters)
• word, wordindex, wordlength, and words (work with words)

These and the others like them, and the parsing described in the next section,
make it especially easy to process text with NetRexx.

B.7 Parsing Strings
The previous section described some of the string-handling facilities available;
NetRexx also provides REXX string parsing, which is a fast and simple way of
breaking up strings of characters using simple pattern matching.

A PARSE statement first specifies the string to be parsed, often taken simply
from a variable. This is followed by a template which describes how the string is
to be split up, and where the pieces are to be put.

Appendix B. NetRexx Language Quick Start 151

B.7.1 Parsing into Words
The simplest form of parsing template consists of a list of variable names. The
string being parsed is split up into words (sequences of characters separated by
blanks), and each word from the string is assigned (copied) to the next variable
in turn, from left to right. The final variable is treated specially in that it will be
assigned a copy of whatever is left of the original string and may therefore
contain several words. For example, in:

parse ′ This is a sentence.′ v1 v2 v3

the variable v1 would be assigned the value “This,” v2 would be assigned the
value “is,” and v3 would be assigned the value “a sentence..”

B.7.2 Literal Patterns
A literal string may be used in a template as a pattern to split up the string. For
example

parse ′ To be, or not to be?′ w1 ′ , ′ w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point;
each section is then treated in just the same way as the whole string was in the
previous example.

Thus, w1 would be set to “To be,” w2 and w3 would be assigned the values “or”
and “not,” and w4 would be assigned the remainder: “to be?.” Note that the
pattern itself is not assigned to any variable.

The pattern may be specified as a variable, by putting the variable name in
parentheses. The following statements:

comma=′ , ′
parse ′ To be, or not to be?′ w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

B.7.3 Positional Patterns
The third kind of parsing mechanism is the numeric positional pattern. This
works just like the string pattern except in syntax; it specifies a column number
(which may be absolute or relative, and derived from a variable if necessary).

String patterns and positional patterns can be mixed.

B.8 Indexed Variables
NetRexx provides an indexed variable mechanism, adapted from the compound
variables of REXX.

NetRexx string variables can be referred to simply by name, or also by their
name qualified by another string (the index). When an index is used, a value
associated with that index is either set or extracted; in the latter case, the initial
value of the variable is returned if the index has not been used to set a value.
For example, the program:

dognoise=′ bark′
dognoise[′ pup′] = ′yap′
dognoise[′ bulldog′] = ′grrrrr′
say dognoise[′ pup′] dognoise[′ terrier′] dognoise[′ bulldog′]

152 VM/ESA Network Computing with Java and NetRexx

would display

yap bark grrrrr

Any expression may be used inside the brackets; the resulting string is used as
the index. Multiple dimensions may be used, if required:

dognoise=′ bark′
dognoise[′ spaniel′ , ′ brown′] = ′ruff′
say dognoise[′ spaniel′ , ′ brown′] dognoise[′ terrier′]

which would display

ruff bark

Here ′s a more complex example, a test program with a function (called a
constant method in NetRexx) that removes all duplicate words from a string of
words:

/* justonetest.nrx -- test the justone function. */
say justone(′ to be or not to be′) /* simple testcase */
exit

/* This removes duplicate words from a string, and */
/* shows the use of a variable (HADWORD) which is */
/* indexed by arbitrary data (words). */
method justone(wordlist) constant
hadword=0 /* show all possible words as new */
outlist=′ ′ /* initialize the output list */
loop while wordlist\=′ ′ /* loop while we have data */
/* next, split WORDLIST into first word and residue */
parse wordlist word wordlist
if hadword[word] then iterate /* loop if had word */
hadword[word]=1 /* remember we have had this word */
outlist=outlist word /* add word to output list */
end

return outlist /* finally return the result */

Running this program would display just the four words “to,” “be,” “or,” and
“not . ”

This example also uses the built-in string parsing provided by the PARSE
statement. In this instance, the value of WORDLIST is parsed, with the first word
of the value being assigned to the variable WORD and the remainder being
assigned back to WORDLIST (replacing the original value).

[Author ′s note: since the notation for indexed variables looks just like arrays
(see the next section), but does not suffer the restrictions of arrays, I like to call
them disarrays.]

B.9 Arrays
NetRexx also supports Java′s fixed-size arrays. These are an ordered set of
items, indexed by integers. To use an array, you first have to construct it; an
individual item may then be selected by an index whose value must be in the
range 0 through N-1, where N is the number of items in the array:

Appendix B. NetRexx Language Quick Start 153

array=String[3] -- make an array of three Java Strings
array[0]=′ String one′ -- set each array item
array[1]=′ Another string′
array[2]=′ foobar′
loop i=0 to 2 -- display them
say array[i]
end

This example also shows NetRexx line comments; the sequence “--” (outside of
literal strings or “/*” comments) indicates that the remainder of the line is not
part of the program and is commentary.

B.10 Tracing
Defined as part of the language, NetRexx tracing often provides useful debugging
information. The flow of execution of programs may be traced, and the execution
trace can be viewed as it occurs or captured in a file. The trace can show each
clause as it is executed, and optionally show the results of expressions, and so
on. For example, the program:

trace results
number=1/7
parse number before ′ . ′ after
say after′ . ′ before

would result in the trace:

2 *=* number=1/7
>v> number ″0.142857143″

3 *=* parse number before ′ . ′ after
>v> before ″0″
>v> after ″142857143″

4 *=* say after′ . ′ before
>>> ″142857143.0″

where the lines marked with “*=*” are the statements in the program, lines with
“>v>” show resul ts ass igned to local var iab les, and l ines wi th “>>>” show
results of unnamed expressions.

B.11 Exception and Error Handling
NetRexx doesn′ t have a GOTO statement, but a SIGNAL statement is provided
for abnormal transfer of control, such as when something unusual occurs. Using
SIGNAL raises an exception; all control statements are then “unwound” until the
exception is caught by a control statement that specifies a suitable CATCH
statement for handling the exception.

Exceptions are also raised when various errors occur, such as attempting to
divide a number by zero. For example:

say ′ Please enter a number:′
number=ask
do
say ′ The reciprocal of′ number ′ is:′ 1 /number

catch Exception
say ′ Sorry, could not divide ″ ′ number′ ″ into 1′

end

Here, the CATCH statement will catch any exception that is raised when the
division is attempted (conversion error, divide by zero, and so on).

154 VM/ESA Network Computing with Java and NetRexx

Any control statement that ends with END (DO, LOOP, or SELECT) may be
modified with one or more CATCH statements to handle exceptions.

B.12 Things that aren ′t Strings
In all the examples so far, the data being manipulated (numbers, words, and so
on) is expressed as a string of characters. Many things, however, can be
expressed more easily in some other way, so NetRexx allows variables to refer
to other collections of data, which are known as objects.

Objects are defined by a name that lets NetRexx determine the data and
methods that are associated with the object. This name identifies the type of the
object, and is usually called the class of the object.

For example, an object of class Oblong might represent an oblong to be
manipulated and displayed. The oblong could be defined by two values: its
width and its height. These values are called the properties of the Oblong class.

Most methods associated with an object perform operations on the object; for
example a “size” method might be provided to change the size of an Oblong
object. Other methods are used to construct objects (just as for NetRexx arrays,
an object must be constructed before it can be used). In NetRexx and Java,
these constructor methods always have the same name as the class of object
that they build (Oblong, in this case).

Here ′s how an Oblong class might be written in NetRexx (by convention, this
would be written in a file called Oblong.nrx; Java expects the name of the file to
match the name of the class inside it):

/* Oblong.nrx -- simple oblong class */
class Oblong
width -- size (X dimension)
height -- size (Y dimension)

/* Constructor method to make a new oblong */
method Oblong(new_width, new_height)
-- when we get here, a new (uninitialized) object has been
-- created. Copy the parameters we have been given to the
-- properties of the object:
width=new_width; height=new_height

/* Change the size of an Oblong */
method size(new_width, new_height) returns Oblong
width=new_width; height=new_height
return this -- return the resized object

/* Change the size of an Oblong, relative to its current size */
method sizerelative(rel_width, rel_height) returns Oblong
width=width+rel_width; height=height+rel_height
return this

/* ′ Print′ what we know about the oblong */
method print
say ′ Oblong′ width ′ x′ height

To summarize:

 1. A class is started by the “c lass” statement, which names the class.

Appendix B. NetRexx Language Quick Start 155

 2. The class statement is followed by a list of the properties of the object.
These can be assigned initial values, if required.

 3. The properties are followed by the methods of the object. Each method is
introduced by a method statement which names the method and describes
the arguments that must be supplied to the method. The body of the method
is ended by the next method statement (or by the end of the file).

The Oblong.nrx file is compiled just as any other NetRexx program, and should
create a class file called Oblong.class. Here′s a program to try out the Oblong
class:

/* tryOblong.nrx -- try the Oblong class */

first=Oblong(5,3) -- make an oblong
first.print -- show it

 first.sizerelative(1,1).print -- enlarge it and print it again

second=Oblong(1,2) -- make another oblong
second.print -- and print it

When “tryOblong.nrx” is compiled, you ′ ll notice that the cross-reference listing of
variables shows that the variables “first” and “second” have type “Oblong.”
These variables refer to Oblongs, just as the variables in earlier examples
referred to REXX strings.

Once a variable has been assigned a type, it can only refer to objects of that
type. This helps avoid errors where a variable refers to an object that it wasn′ t
meant to.

B.12.1 Programs are Classes
It′s worth pointing out here, that all the example programs in this document are
in fact classes (you may have noticed that compiling them creates xxx.class files,
where xxx is the name of the source file). The Java environment will allow a
class to run as a stand-alone application if it has a constant method called
“main” which takes an array of Java Strings as its argument.

If necessary (that is, if there is no class statement) NetRexx automatically adds
the necessary class and method statement, and also a statement to convert the
array of strings (each of which holds one word from the command string) to a
single REXX string. The “toast” example could therefore have been written:

/* This wishes you the best of health. */
class toast
method main(argwords=String[]) constant; arg=Rexx(argwords)
say ′ Cheers!′

B.13 Extending Classes
It′s common, when dealing with objects, to take an existing class and extend it.
One way to do this is to modify the source code of the original class -- but this
isn′ t always available, and with many different people modifying a class, classes
could rapidly get over-complicated.

Languages that deal with objects, such as NetRexx, therefore allow new classes
of objects to be set up which are derived from existing classes. For example, if
you wanted a different kind of Oblong in which the Oblong had a new property

156 VM/ESA Network Computing with Java and NetRexx

that would be used when printing the Oblong as a rectangle, you might define it
thus:

/* charOblong.nrx -- an oblong class with character */
class charOblong extends Oblong
printchar -- the character for display

/* Constructor method to make a new oblong with character */
method charOblong(new_width, new_height, new_printchar)
super(new_width, new_height) -- make an oblong
printchar=new_printchar -- and set the print character

/* ′ Print′ the oblong */
method print
loop for super.height
say printchar.copies(super.width)
end

There are several things worth noting about this example:

 1. The “extends Oblong” on the class statement means that this class is an
extension of the Oblong class. The properties and methods of the Oblong
class are inherited by this class (that is, appear as though they were part of
this class).

Another common way of saying this is that “charOblong” is a subclass of
“Oblong” (and “Oblong” is the superclass of “charOblong”).

 2. This class adds the “pr intchar” property to the properties already defined for
Oblong.

 3. The constructor for this class takes a width and height (just as with Oblong)
and adds a third argument to specify a print character. It first invokes the
constructor of its superclass (Oblong) to build an Oblong, and finally sets the
printchar for the new object.

 4. The new charOblong object also prints differently, as a rectangle of
characters, according to its dimension. The “print” method (as it has the
same name and arguments -- none -- as that of the superclass) replaces
(overrides) the “print” method of Oblong.

 5. The other methods of Oblong are not overridden, and therefore can be used
on charOblong objects.

The charOblong.nrx file is compiled just as Oblong.nrx was, and should create a
file called charOblong.class. Here′s a program to try it out:

/* trycharOblong.nrx -- try the charOblong class */

first=charOblong(5,3,′ # ′) -- make an oblong
first.print -- show it

 first.sizerelative(1,1).print -- enlarge it and print it again

second=charOblong(1,2,′ *′) -- make another oblong
second.print -- and print it

This should create the two charOblong objects, and print them out in a simple
“character graphics” form. Note the use of the method “sizerelative” from
Oblong to resize the charOblong object.

Appendix B. NetRexx Language Quick Start 157

B.13.1 Optional Arguments
All methods in NetRexx may have optional arguments (omitted from the right) if
desired. For an argument to be optional, you must supply a default value. For
example, if the charOblong constructor was to have a default printchar value, its
method statement could have been written:

method charOblong(new_width, new_height, new_printchar=′ X′)

which indicates that if no third argument is supplied then “X” should be used. A
program creating a charOblong could then simply write:

first=charOblong(5,3) -- make an oblong

which would have the same effect as if “X” were specified as the third argument.

B.14 Binary Types and Conversions
The Java environment supports, and indeed requires, the notion of
fixed-precision “primitive” binary types, which correspond closely to the binary
operations usually available at the hardware level in computers. In brief, these
types are:

byte, short, int, and long signed integers that will fit in 8, 16, 32, or 64 bits
respectively

float and double signed floating point numbers that will fit in 32 or or 64 bits
respectively.

char an unsigned 16-bit quantity, holding a Unicode character

boolean a 1-bit logical value, representing “false” or “true.”

Objects of these types are handled specially by the environment “under the
covers” in order to achieve maximum efficiency; in particular, they cannot be
constructed like other objects -- their value is held directly. This distinction rarely
matters to the NetRexx programmer: in the case of string literals an object is
constructed automatically; in the case of an int literal, an object is not
constructed.

Further, NetRexx automatically allows the conversion between the various forms
of character strings in Java (String, char, char[] , and REXX) and the primitive
types listed above. The “golden rule” that is followed by NetRexx is that any
automatic conversion which is applied must not lose information: either it can be
determined at compile time that the conversion is safe (as in int -> String) or it
will be detected at run time if the conversion fails (as in String -> int).

The automatic conversions greatly simplify the writing of programs for the Java
environment: the exact type of numeric and string-like method arguments rarely
needs to be a concern of the programmer.

For certain applications where early checking or performance override other
considerations, NetRexx provides options for different treatment of the primitive
types:

 1. options strictassign -- ensures exact type matching for all assignments. No
conversions (including those from shorter integers to longer ones) are
applied. This option provides stricter type-checking than Java, and ensures
that all types are an exact match.

158 VM/ESA Network Computing with Java and NetRexx

 2. options binary -- uses Java fixed precision arithmetic on binary types (also,
literal numbers, for example, will be treated as binary, and local variables
will be given “native” Java types such as int or String, where possible).

Binary arithmetic currently gives better performance than Rexx decimal
arithmetic, but places the burden of avoiding overflows and loss of
information on the programmer.

The options statement (which may list more than one option) is placed before
the first class statement in a file.

You may also explicitly assign a type to an expression or variable:

i=int 3000000 -- ′ i′ is an ′ int′ with initial value 3000000
j=int 4000000 -- ′ j′ is an ′ int′ with initial value 4000000
k=int -- ′ k′ is assigned type ′ int′ , with no initial value
say i*j -- carry out multiplication and display the result
k=i*j -- carry out multiplication and assign result to ′ k′

This example also illustrates one difference between “options nobinary” and
“options binary.” With the former (the NetRexx default) the SAY would display
“1.20000000E+13” and a Conversion overflow would be reported when the same
expression is assigned to the variable “k.”

With “options binary,” binary arithmetic would be used for the multiplications,
and so no error would be detected; the SAY would display “-138625024” and the
variable “k” takes the incorrect result.

B.14.1 Binary Types in Practice
In practice, explicit type assignment is only occasionally needed in NetRexx.
Those conversions that are necessary for using existing classes (or those that
use “options binary”) are generally automatic. For example, here is an ″Applet″
for use by Java-enabled browsers:

/* A simple graphics Applet */
class Rainbow extends Applet
method paint(g=Graphics) -- called to repaint the window
maxx=size.width-1
maxy=size.height-1
loop y=0 to maxy
col=Color.getHSBColor(y/maxy, 1, 1) -- select a colour
g.setColor(col) -- set it
g.drawLine(0, y, maxx, y) -- and fill a slice

end y

In this example, the variable “col” will have type “Color,” and the three
arguments to the method “getHSBColor” will all automatically be converted to
type “float.” As no overflows are possible in this particular example, “options
binary” may be added to the top of the program with no other changes being
necessary.

B.15 Summary and Information Sources
The NetRexx language, as you will have seen, allows the writing of programs for
the Java environment with a minimum of overhead and “boilerplate syntax”;
using NetRexx for writing Java classes could increase your productivity by 30%
or more.

Appendix B. NetRexx Language Quick Start 159

Further, by simplifying the variety of numeric and string types of Java down to a
single class that follows the rules of REXX strings, programming is greatly
simplified. Where necessary, however, full access to all Java types and classes
is available.

Other examples are available, including both stand-alone applications and
samples of applets for Java-enabled browsers (for example, an applet that plays
an audio clip, and another that displays the time in English). You can find these
from the NetRexx web pages, at URL

http://www2.hursley.ibm.com/netrexx/

Also at that location, you′ ll find a more in-depth treatment of the language, and
downloadable packages containing the NetRexx software and documentation.
The software should run on any platform that supports the Java Development Kit.

160 VM/ESA Network Computing with Java and NetRexx

Appendix C. Special Notices

This publication is intended to help VM/ESA technical professionals and
programmers to deploy Java and NetRexx applications using VM/ESA as a
server platform. The information in this publication is not intended as the
specification of any programming interfaces that are provided by Java, NetRexx,
or VM/ESA Version 2 Release 3. See the PUBLICATIONS section of the IBM
Programming Announcement for NetRexx, and for VM/ESA Version 2 Release 3,
for more information about what publications are considered to be product
documentation.

As this redbook is being written, the VM/ESA platform′ s port of the Java
Developer Kit, as developed to run with the OpenEdition Shell and Utilities
feature, is proceeding through the Java Compatible test process. It will be made
Generally Available (“GA”) and will carry the Java Compatible logo once it is
proven to pass the Java Compatible test suite.

An alternative execution environment, created by the VM platform developers in
Endicott together with the authors of this redbook in Poughkeepsie, removes the
need for customers to purchase the OpenEdition Shell and Utilities feature by
offering a “shell-less” Java implementation. As this environment has not yet
been verified as Java Compatible, it is offered as a “Beta” release only.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate

 Copyright IBM Corp. 1998 161

them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

VM/ESA

162 VM/ESA Network Computing with Java and NetRexx

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 165.

• Creating Java Applications Using NetRexx, SG24-2216

• OpenEdition for VM/ESA Implementation and Administration Guide,
SG24-4747

• Web Server Solutions for VM/ESA, SG24-4874

• S/390 - IBM Network Station - Getting Started, SG24-4954

D.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

D.3 Other IBM Publications
These publications are also relevant as further information sources:

• OpenEdition for VM/ESA User′s Guide, SC24-5727

• OpenEdition for VM/ESA Command Reference, SC24-5728

• VM/ESA Planning and Administration, SC24-5750

• VM/ESA CMS File Pool Planning, Administration, and Operation, SC24-5751

• VM/ESA Connectivity Planning, Administration, and Operation, SC24-5756.

• TCP/IP Function Level 310 Planning and Customization, SC24-5847.

• PIPE Command Programming Interface, available from the Pipelines Run
Time Distribution web page at http://pucc.princeton.edu/∼ pipeline/

 Copyright IBM Corp. 1998 163

D.4 At Your Local Bookstore
We′ve found these textbooks to be useful during the development of this
Redbook; the more stars (•), the more useful. These publications are available
through your local book vendor:

• Cowlishaw, M. F., 1997. The NetRexx Language, • • • • ISBN 0-13-806332-X.
Prentice Hall, Inc.

• Flanagan, D., 1997. Java in a Nutshell (second edition), • •
ISBN 1-56592-262- X. O′Reilly and Associates

• Lemay, L. and C. L. Perkins, 1997. Teach Yourself Java 1.1 in 21 Days •
ISBN 1-57521-142-4. Sams.net Publishing

• Heller, P. and S. Roberts, 1997. Java 1.1 Developer′s Handbook, • • •
ISBN 0-7821-1919-0. SYBEX

• Deitel, H., and P. Deitel, 1998. Java: How To Program (second edition), •
ISBN 0-13-899394-7. Prentice Hall, Inc.

• Naughton, P., 1996. The Java Handbook, ISBN 0-07-882199-1. McGraw-Hill

• Gosling, J., et. al. , 1996. The Java Application Programming Interface, Vol. 1
(Core Packages), • • ISBN 0-201-63453-8. Addison-Wesley Publishing
Company

• Gosling, J., B. Joy and G. Steele, 1996. The Java Language Specification,
ISBN 0-201-63456-2. Addison-Wesley Publishing Company

• Arnold, K. and J. Gosling, 1996. The Java Programming Language,
ISBN 0-201-63455-4. Addison-Wesley Publishing Company

• Lindholm, T. and F. Yellin, 1997. The Java Virtual Machine Specification,
ISBN 0-201-63452-X Addison-Wesley Publishing Company

D.5 On the Web
The following are electronic publications, available on the World Wide Web at the
URLs listed:

• VM/ESA Java and NetRexx Home Page

http://www.vm.ibm.com/java/

• NetRexx Home Page

http://www2.hursley.ibm.com/netrexx/

• IBM ′s Java-related Technology

http://ncc.hursley.ibm.com/javainfo/

• Sun Microsystems Java Technology Home Page

http://www.javasoft.com/

• VM/ESA Support for IBM Network Stations

http://www.vm.ibm.com/networkstation/

• IBM Network Station Technical Support and Services

http://www.pc.ibm.com/networkstation/support/

164 VM/ESA Network Computing with Java and NetRexx

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

• PUBORDER — to order hardcopies in the United States

• Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

• REDBOOKS Category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1998 165

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone Orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

• On the World Wide Web

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

I B M M A I L Internet
In United States: usib6fpl at ibmmail us ib6fp l@ibmmai l .com

In Canada: caibmbkz at ibmmai l lmannix@vnet . ibm.com

Outside North America: dk ibmbsh at ibmmai l bookshop@dk. ibm.com

United States (toll free) 1-800-879-2755

Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)

(+45) 4810-1320 - Danish

(+45) 4810-1420 - Dutch

(+45) 4810-1540 - English

(+45) 4810-1670 - Finnish

(+45) 4810-1220 - French

(+45) 4810-1020 - German

(+45) 4810-1620 - Ital ian

(+45) 4810-1270 - Norwegian

(+45) 4810-1120 - Spanish

(+45) 4810-1170 - Swedish

I B M Publ icat ions

Publications Customer Support

P.O. Box 29570

Raleigh, NC 27626-0570

USA

I B M Publ icat ions

144-4th Avenue, S.W.

Calgary, Alberta T2P 3N5

Canada

IBM Direct Services

Sortemosevej 21

DK-3450 Allerød

Denmark

United States (toll free) 1-800-445-9269

Canada 1-403-267-4455

Outside North America (+45) 48 14 2207 (long distance charge)

Index # 4421 Abstracts of new redbooks

Index # 4422 IBM redbooks

Index # 4420 Redbooks for last six months

Redbooks Web Site ht tp : / /www.redbooks. ibm.com/

IBM Direct Publ icat ions Catalog ht tp : / /www.e l ink . ibml ink . ibm.com/pbl /pb l

166 VM/ESA Network Computing with Java and NetRexx

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 167

168 VM/ESA Network Computing with Java and NetRexx

Glossary

A
abend . Abnormal end of task.

access mode . (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. (2) The manner in which files are referred to
by a computer. Access can be sequential (records are
referred to one after another in the order in which
they appear on the file), access can be random (the
individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request).

action bar . The area at the top of a window that
contains choices that give a user access to actions
available in that window.

addressing . (1) The assignment of addresses to the
instructions of a program. (2) A means of identifying
storage locations. (3) In data communication, the way
in which a station selects the station to which it is to
send data.

A-disk . In CMS, the primary user disk that is
allocated to a CMS user. This read/write disk is used
to store files created under CMS; such files are
retained until deleted by the user. See also B-disk,
CMS system disk, D-disk, virtual disk, Y-disk, Z-disk.
Synonymous with primary user disk.

alias . An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program.

allocate . (1) To assign a resource, such as a disk file,
to perform a task. (2) A logical unit (LU) 6.2
application program interface (API) verb used to
assign a session to a conversation for the
conversation ′s use. Contrast with deallocate.

application program . A program that is specific to
the solution of an application problem. Synonymous
with application software.

argument . (1) Any value of an independent variable;
for example, a search key; a number identifying the
location of an item in a table. (2) A parameter passed
between a calling program and a called program.

array . (1) An arrangement of data in one or more
dimensions: a list, a table, or a multidimensional
arrangement of items. (2) In programming languages,
an aggregate that consists of data objects, with
identical attributes, each of which may be uniquely
referenced by subscripting.

assembler . A computer program that converts
assembly language instructions into object code.

assignment . The process of giving values to
variables.

attach . In programming, to create a task that can be
executed asynchronously with the execution of the
mainline code.

audio clip . In multimedia applications, a section of
recorded audio material.

authorization . The process of granting a user either
complete or restricted access to an object, resource,
or function.

availability . (1) The ratio of the total time a functional
unit is capable of being used to the total time the
functional unit is required for use. (2) The degree to
which a system or resource is ready when needed.

B
background . In multiprogramming, the conditions
under which low-priority programs are executed.

backup copy . A copy of information or data that is
kept in case the original is changed or destroyed.

batch . A group of records or data processing jobs
brought together for processing or transmission.

binary file . A file that contains codes that are not
part of the ASCII character set. Binary files can utilize
all 256 possible values for each byte in the file.

block . (1) In programming languages, a compound
statement that coincides with the scope of at least
one of the declarations contained within it. A block
may also specify storage allocation or segment
programs for other purposes. (2) A string of data
elements recorded or transmitted as a unit. The
elements may be characters, words or physical
records.

boilerplate . (1) A frequently used segment of stored
text that may be combined with other text to create a
new document. (2) In word processing and desktop
publishing, text that is stored for repeated use in
various documents; for example the wording of an
edition notice.

boot . To prepare a computer system for operation by
loading an operating system.

bridge . A functional unit that interconnects multiple
LANs (locally or remotely) that use the same logical
link control protocol but that can use different medium

 Copyright IBM Corp. 1998 169

access control protocols. A bridge forwards a frame
to another bridge based on the medium access
control (MAC) address.

built-in . In programming languages, pertaining to a
language object that is declared by the definition of
the programming language; for example, the built-in
function SIN in PL/I, the predefined data type INTEGER
in FORTRAN.

button . A graphical mechanism in a window that,
when selected, results in an action; for example, a list
button produces a list of choices.

byte . (1) A string that consists of a number of bits,
treated as a unit, and representing a character. (2) A
group of 8 adjacent binary digits that represent one
EBCDIC character. (4) See n-bit byte.

C
cache . A special-purpose buffer storage that contains
frequently accessed instructions and data; it is used
to reduce access time.

calling program . A program that requests execution
of another program (a called program).

cancel . To end a task before it is completed.

cascade . Deprecated term for overlap, or stack.

case-sensitive . Pertaining to the ability to distinguish
between uppercase and lowercase letters.

catalog . A directory of files and libraries, with
reference to their locations. A catalog may contain
other information such as the types of devices in
which the files are stored, passwords, and blocking
factors.

character graphics . Graphics that are composed of
symbols printed in a monospace font. Some symbols
are stand-alone, others are intended for assembling
larger figures.

character set . A finite set of different characters that
is complete for a given purpose.

class method . In System Object Model, an action that
can be performed on a class object. Synonymous with
factory method.

clause . (1) In COBOL, an ordered set of consecutive
COBOL character-strings whose purpose is to specify
an attribute of an entry. See data clause, environment
clause, file clause, report clause. (2) In SQL, a distinct
part of a statement in the language structure, such as
a SELECT clause or a WHERE clause.

client . A user or a functional unit that receives
shared services from a server.

client-server . In TCP/IP, the model of interaction in
distributed data processing in which a program at one
site sends a request to a program at another site and
awaits a response. The requesting program is called a
client; the answering program is called a server.

close . The function that ends the connection between
a file and a program, and ends the processing.
Contrast with open.

code page . (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a
7-bit code. (2) In the Print Management Facility, a font
library member that associates code points and
character identifiers. A code page also identifies
invalid code points. (3) In AFP support, a font file that
associates code points and graphic character
identifiers.

command . (1) A statement used to request a function
of the system. A command consists of the command
name abbreviation, which identifies the requested
function, and its parameters. (2) In SDLC, a frame
transmitted by a primary station. Asynchronous
balanced mode stations send both commands and
responses. Contrast with response. (3) A request from
a terminal for the performance of an operation or the
execution of a particular program.

command line . On a display screen, a display line
usually at the bottom of the screen, in which only
commands can be entered.

compact . Synonym for compress.

compatible . Pertaining to computers on which the
same programs can be run without appreciable
alteration.

compilation . Translation of a source program into an
executable program (an object program).

compiler . A program that translates instructions
written in a high-level programming language into
machine language.

compiler options . Keywords that can be specified to
control certain aspects of compilation. Compiler
options can control the nature of the load module
generated by the compiler, the types of printed output
to be produced, the efficient use of the compiler, and
the destination of error messages.

concatenate . To join two strings.

configuration file . A file that specifies the
characteristics of a system or subsystem.

170 VM/ESA Network Computing with Java and NetRexx

console . A part of a computer used for
communication between the operator or maintenance
engineer and the computer.

continuation line . A line of a source statement into
which characters are entered when the source
statement cannot be contained on the preceding line
or lines.

control file . In CMS, the file that contains records
that identify the updates to be applied and the
macrolibraries, if any, needed to assemble that
source program.

control statement . In programming languages, a
statement that is used to alter the continuous
sequential execution of statements; a control
statement may be a conditional statement, such as IF,
or an imperative statement, such as STOP.

control variable . In PL/I, a variable that is used to
control the operation of a program, as in a DO
statement.

conversion . (1) In programming languages, the
transformation between values that represent the
same data item but belong to different data types.
Information may be lost due to conversion since
accuracy of data representation varies among
different data types. (2) The process of changing from
one method of data processing to another or from one
data processing system to another. (3) The process of
changing from one form of representation to another;
for example, to change from decimal representation
to binary representation.

cross-reference listing . The portion of the compiler
listing that contains information on where files, fields,
and indicators are defined, referenced, and modified
in a program.

cursor . A movable, visible mark used to indicate a
position of interest on a display surface.

customization . The process of designing a data
processing installation or network to meet the
requirements of particular users.

D
data component . The part of a VSAM data set,
alternate index, or catalog that contains the data
records of an object.

data type . An attribute used for defining data as
numeric or character.

database . (1) A collection of data with a given
structure for accepting, storing, and providing, on
demand, data for multiple users. (2) A collection of
interrelated data organized according to a database
schema to serve one or more applications.

debugging . Acting to detect and correct errors in
software or system configuration.

decimal notation . A notation that uses ten different
characters, usually the decimal digits; for example,
the character string 196912312359, construed to
represent the date and time one minute before the
start of the year 1970. Classification (UDC).

default value . A value assumed when no value has
been specified. Synonymous with assumed value.

delay . The amount of time by which an event is
retarded.

deprecated . Pertaining to terms that should not be
used.

desktop . A folder that fills the entire screen and
holds all the objects with which the user can interact
to perform operations on the system.

directory . (1) A table of identifiers and references to
the corresponding items of data. (2) A type of file
containing the names and controlling information for
other fi les or other directories.

directory tree . An outline of all the directories and
subdirectories on the current drive.

dispatcher . The program in an operating system that
places jobs or tasks into execution.

distributed application . An application for which the
component application programs are distributed
between two or more interconnected processors.

download . To transfer programs or data from a
computer to a connected device, typically a personal
computer. Contrast with upload.

dummy . Pertaining to the characteristic of having the
appearance of a specified thing but not having the
capacity to function as such; for example, a dummy
character, dummy plug, or dummy statement.

duplicate . To copy from a source to a destination
that has the same physical form as the source; for
example, to punch new punched cards with the same
pattern of holes as an original punched card.

E
echo . In data communication, a reflected signal on a
communications channel. On a communications
terminal, each signal is displayed twice, once when
entered at the local terminal and again when returned
over the communications link. This allows the signals
to be checked for accuracy.

encoding . The conversion of data to
machine-readable format; the final step in the process
of converting an analog signal into a digital signal.

Glossary 171

The three steps are: sampling, quantizing, and
encoding.

end of file (EOF) . A coded character recorded on a
data medium to indicate the end of the medium.

end user . (1) A person, device, program, or
computer system that util izes a computer network for
the purpose of data processing and information
exchange. (2) The ultimate source or destination of
application data flowing through an SNA network. An
end user can be an application program or a
workstation operator.

entity . Any concrete or abstract thing of interest,
including associations among things; for example, a
person, object, event, or process that is of interest in
the context under consideration, and about which data
may be stored in a database.

environment variable . Any of a number of variables
that describe the way an operating system is going to
run and the devices it is going to recognize.

error message . An indication that an error has been
detected.

escape . To return to the original level of a user
interface.

event . An occurrence of significance to a task; for
example, the completion of an asynchronous
operation, such as an input/output operation.

executable program . A program that has been
link-edited and therefore can be run in a processor.

execution time . The amount of time needed for the
execution of a particular computer program.

exit . To execute an instruction within a portion of a
computer program in order to terminate the execution
of that portion. Such portions of computer programs
include loops, subroutines, modules, and so on.

expand . To return compressed data to their original
form.

expression . In programming languages, a language
construct for computing a value from one or more
operands; for example, literals, identifiers, array
references, and function calls.

external routine . In REXX, a program external to the
user ′s program, language processor, or both. These
routines can be written in any language, including
REXX that supports the system-dependent interfaces
used by REXX to start it.

extract . (1) To select and remove from a group of
items those items that meet a specific criteria. (2) To
obtain; for example, information from a file.

F
factorial . The product of the positive integers 1, 2, 3,
up to and including a given integer.

feature . A part of an IBM product that may be
ordered separately by the customer.

fetch . In virtual storage systems, to bring load
modules or program phases from auxil iary storage
into virtual storage.

file description . A part of a file where file and field
attributes are described.

file name . (1) A name assigned or declared for a file.
(2) The name used by a program to identify a file.

file server . A high-capacity disk storage device or a
computer that each computer on a network can use to
access and retrieve files that can be shared among
the attached computers.

file system . In the AIX operating system, the
collection of files and file management structures on a
physical or logical mass storage device, such as a
diskette or minidisk. See distributed file system,
virtual fi le system.

file tree . In the AIX operating system, the complete
directory and file structure of a particular node,
starting at the root directory. A file tree contains all
local and remote mounts performed on directories
and files.

fill . (1) In a token-ring network, a specified bit pattern
that a transmitting data station sends before or after
transmission frames, tokens, or abort sequences to
avoid what would otherwise be interpreted as an
inactive or indeterminate transmitter state. (2) In
computer graphics, a designated area of the screen
that is flooded with a particular color.

flag . A variable indicating that a certain condition
holds.

font . A family of characters of a given size and style;
for example, 9-point Helvetica.

frame . A data structure that consists of fields,
predetermined by a protocol, for the transmission of
user data and control data. The composition of a
frame, especially the number and types of fields, may
vary according to the type of protocol. Synonymous
with transmission frame.

function call . An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided
by the called function. A function call contains the
name of the function to which control moves and a
parenthesized list of values.

172 VM/ESA Network Computing with Java and NetRexx

G
generate . (1) To produce a computer program by
selecting subsets from skeletal code under the control
of parameters. (2) To produce assembler language
statements from the model statements of a
macrodefinition when the definition is called by a
macroinstruction.

global . In programming languages, pertaining to the
relationship between a language object and a block in
which the language object has a scope extending
beyond that block but contained within an
encompassing block.

graphical user interface (GUI) . A type of computer
interface consisting of a visual metaphor of a
real-world scene, often of a desktop. Within that scene
are icons, representing actual objects, that the user
can access and manipulate with a pointing device.

group ID (GID) . In RACF, a string of one to eight
characters that identifies a group. The first character
must be A through Z, #, $, or @. The rest can be A
through Z, #, $, @, or 0 through 9. (2) In the AIX
operating system, a number that corresponds to a
specific group name. The group ID can often be
substituted in commands that take a group name as a
value.

group name . (1) A generic name for a collection of
I/O devices; for example, DISK or TAPE. See also
device type, unit address. (2) In the AIX operating
system, a name that uniquely identifies a group of
users to the system and that contains one to eight
alphanumeric characters, beginning with an
alphabetic, #, $, or > character. (3) In RACF, one to
eight alphanumeric characters beginning with an
alphabetic, #, $, or > character that identify a group.

H
hardware . (1) All or part of the physical components
of an information processing system, such as
computers or peripheral devices. (2) The equipment,
as opposed to the programming, of a system.

hexadecimal . Pertaining to a system of numbers to
the base 16; hexadecimal digits range from 0 through
9 and A through F, where A represents 10 and F
represents 15.

home directory . In the AIX operating system: (a) A
directory associated with an individual user. (b) The
user ′s current directory after login or after issuing the
cd command with no argument. (c) A parameter that
supplies the full path name of the home directory for
the transaction program.

host . In TCP/IP, any system that has at least one
Internet address associated with it. A host with

multiple network interfaces may have multiple
Internet addresses associated with it.

I
icon . A graphic symbol, displayed on a screen, that a
user can point to with a device such as a mouse in
order to select a particular function or software
application. Synonymous with pictogram.

implementation . The system development phase at
the end of which the hardware, software and
procedures of the system considered become
operational.

incremental backup . In the Data Facility Hierarchical
Storage Manager, the process of copying data sets
that have been opened for reasons other than
read-only access since the last backup version was
created and that meet the backup frequency criteria.

informational message . A message that provides
information but does not require a response.

initial value . A value assumed until explicitly
changed.

insert . To introduce data between previously stored
items of data.

installation script . In the AIX operating system, a
shell procedure or executable file created by the
developer of an application program to install the
program. The script file must follow specific guidelines
in order to be compatible with the program
installation tools that are provided in the operating
system.

instruction set . The set of instructions of a computer,
of a programming language, or of the programming
languages in a programming system.

integer . A positive or negative whole number, that
is, an optional sign followed by a number that does
not contain a decimal place or zero.

interaction . A basic unit used to record system
activity, consisting of the acceptance of a line of
terminal input, processing of the line, and a response,
if any.

interface . A shared boundary between two functional
units, defined by functional characteristics, signal
characteristics, or other characteristics, as
appropriate. The concept includes the specification of
the connection of two devices having different
functions.

interleave . To arrange parts of one sequence of
things or events so that they alternate with parts of
one or more other sequences of the same nature and
so that each sequence retains its identity.

Glossary 173

internet . A collection of packet-switching networks
that are physically interconnected by Internet Protocol
(IP) gateways. These networks use protocols that
allow them to function as a large, composite network.

Internet . A wide area network connecting thousands
of disparate networks in industry, education,
government, and research. The Internet network uses
TCP/IP as the standard for transmitting information.

interpreter . A program that translates and executes
each instruction of a high-level programming
language before it translates and executes the next
instruction.

invoke . To start a command, procedure, or program.

K
kernel . The part of an operating system that
performs basic functions such as allocating hardware
resources.

keyword . In programming languages, a lexical unit
that, in certain contexts, characterizes some language
construct; for example, in some contexts, IF
characterizes an if-statement. A keyword normally
has the form of an identifier.

L
label . (1) In programming languages, a language
construction naming a statement and including an
identifier. (2) An identifier within or attached to a set
of data elements.

library . A named area on disk that can contain
programs and related information (not fi les). A library
consists of different sections, called library members.

limited interface . In the AIX operating system, a set
of system calls that provides a limited function
interface.

line . (1) The portion of a data circuit external to data
circuit-terminating equipment (DCE), that connects the
DCE to a data switching exchange (DSE), that
connects a DCE to one or more other DCEs, or that
connects a DSE to another DSE. (2) On a terminal,
one or more characters entered before a return to the
first printing or display position.

line mode . (1) In VM, when using the System Product
Editor or the CMS Editor, the mode of operation of a
display terminal that is equivalent to using a
typewriter terminal; that is, the terminal displays a
chronological log of the XEDIT or EDIT subcommands
entered, the lines affected by the editing (unless it is
suppressed), and the system responses. Contrast with
display mode. (2) A form of screen presentation in
which the information is presented a line at a time in

the message area of the terminal screen. Contrast
with full-screen mode.

list box . A control that contains scrollable choices
from which a user can select one choice.

literal string . A string that does not contain
pattern-matching characters and can therefore be
interpreted just as it is. Contrast with regular
expression.

load . To bring all or part of a computer program into
memory from auxil iary storage so that the computer
can run the program.

local variable . A variable that is defined and used
only in one specified portion of a computer program.

log . (1) To record; for example, to log all messages
on the system printer. (2) Synonym for journal.

logical . Pertaining to a view or description of data
that does not depend on the characteristics of the
computer system or of the physical storage. Contrast
with physical.

long string . In SQL, a string whose actual length, or
a varying-length string whose maximum length, is
greater than 254 bytes or 127 double-byte characters.

looping . Repetitive execution of the same statement
or statements, usually controlled by a DO statement.

M
macro . Synonym for macroinstruction.

mainline program . A program that performs primary
functions, passing control to routines and subroutines
for the performance of more specific functions.

mainframe . A computer, usually in a computer
center, with extensive capabilities and resources to
which other computers may be connected so that they
can share facilities.

maintenance . Any activity intended to retain a
functional unit in, or to restore it to, a state in which it
can perform its required function. Maintenance
includes keeping a functional unit in a specified state
by performing activities such as tests, measurements,
replacements, adjustments, and repairs.

map . To establish a set of values having a defined
correspondence with the quantities or values of
another set; for example, to evaluate a mathematical
function, that is, to establish the values of the
dependent variable for values of the independent
variable or variables of immediate concern.

matching . The technique of comparing the keys of
two or more records to select items for a particular
stage of processing or to reject invalid records.

174 VM/ESA Network Computing with Java and NetRexx

memory . All of the addressable storage space in a
processing unit and other internal storages that is
used to execute instructions. Synonymous with main
storage.

menu . A list of options displayed to the user by a
data processing system, from which the user can
select an action to be initiated.

menu bar . (1) In the AIX operating system, a
rectangular area at the top of the client area of a
window that contains the titles of the standard
pull-down menus for that application. See also scroll
bar. (2) The area near the top of a window, below the
title bar and above the rest of the window, that
contains choices that provide access to other menus.

minidisk . Synonym for virtual disk.

model . The conceptual and operational
understanding that a person has about something.

modification . (1) An addition or change to stored
data or a deletion of stored data. (2) The change or
customization of a system, subsystem, or application
to work more effectively at a given installation.

module . A program unit that is discrete and
identifiable with respect to compiling, combining with
other units, and loading; for example, the input to or
output from an assembler, compiler, l inkage editor, or
executive routine.

monitor . Software or hardware that observes,
supervises, controls, or verifies operations of a
system.

mount . (1) To place a data medium in a position to
operate. (2) To make recording media accessible.

multitasking . A mode of operation that provides for
concurrent performance, or interleaved execution of
two or more tasks.

multithreading . Pertaining to concurrent operation of
more than one path of execution within a computer.

N
native . Deprecated term for IBM-supplied, basic,
required, or stand-alone.

network administrator . A person who manages the
use and maintenance of a network.

networking . (1) In a multiple-domain network,
communication between domains. Synonymous with
cross-domain communication. See extended
networking. (2) Loosely, making use of the services of
a network.

notation . (1) A set of symbols and the rules for their
use for the representation of data. (2) A system of
characters, symbols, or abbreviated expressions used
to express technical facts or qualities.

nucleus . That part of a control program resident in
main storage. Synonymous with resident control
program.

null string . A string containing no element.

numeric data . (1) Data represented by numerals. (2)
Data in the form of numerals and some special
characters; for example, a date represented as
81/01/01.

O
object . (1) In computer security, anything to which
access is controlled; for example, a file, a program, an
area of main storage. (2) A passive entity that
contains or receives data; for example, bytes, blocks,
clocks, fields, files, directories, displays, keyboards,
network nodes, pages, printers, processors, programs,
records, segments, words. Access to an object implies
access to the information it contains. (3) Something
that a user works with to perform a task. Text and
graphics are examples of objects.

offset . (1) The number of measuring units from an
arbitrary starting point in a record, area, or control
block, to some other point. (2) The distance from the
beginning of an object to the beginning of a particular
field.

online . (1) Pertaining to the operation of a functional
unit when under the direct control of the computer. (2)
Pertaining to a user′s ability to interact with a
computer.

open . The function that connects a file to a program
for processing.

operand . An entity on which an operation is
performed.

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible.

operator . A symbol that represents an operation to
be done.

option . A specification in a statement that may be
used to influence the execution of the statement.

output file . (1) A file that contains the results of
processing. (2) A file that has been opened in order to
allow records to be written.

Glossary 175

overhead . In a computer system, the time,
operations, and resources used for operating system
functions, rather than for application programs.

override . (1) A parameter or value that replaces a
previous parameter or value. (2) The attributes
specified at run time that change the attributes
specified in the file description or in the program.

P
padding . Concatenating a string with one or more
characters, called fillers, usually in order to achieve a
specific length of the string.

panel . (1) A set of logically related information
displayed on the screen for the purpose of
communicating information to or from a computer
user. (2) A formatted display of information that
appears on a display screen.

parameter . (1) A variable used in conjunction with a
command to affect its result. (2) An item in a menu
for which the user specifies a value or for which the
system provides a value when the menu is
interpreted. (3) Data passed between programs or
procedures.

parent directory . (1) In VM, the directory for a CMS
disk that has a disk extension defined for it via the
ACCESS command. (2) The directory one level above
the current directory.

parse . (1) In systems with time sharing, to analyze
the operands entered with a command and create a
parameter l ist for the command processor from the
information. (2) In REXX, to split a string into parts,
using function calls or by using a parsing template on
the ARG, PARSE, or PULL instructions.

password . (1) A value used in authentication or a
value used to establish membership in a set of people
having specific privileges. (2) A unique string of
characters known to a computer system and to a
user, who must specify the character string to gain
access to a system and to the information stored
within it. (3) In computer security, a string of
characters known to the computer system and a user,
who must specify it to gain full or limited access to a
system and to the data stored within it.

paste . To copy a page, object, or picture into an
existing folder or picture.

path . (1) The route used to locate files; the storage
location of a file. A fully qualified path lists the drive
identifier, directory name, subdirectory name (if any),
and file name with the associated extension. (2) In a
network, any route between any two nodes. A path
may include more than one branch. (3) The series of
transport network components (path control and data

link control) that are traversed by the information
exchanged between two network accessible units.

pattern matching . The identifying of one of a
predetermined set of items which has the closest
resemblance to a given object, by comparing its
coded representation against the representations of
all the items.

peer . In network architecture, any functional unit that
is in the same layer as another entity.

pipe . (1) To direct data so that the output from one
process becomes the input to another process. The
standard output of one command can be connected to
the standard input of another with the pipe operator (
]). Two commands connected in this way constitute a
pipeline. (2) A one- way communication path between
a sending process and a receiving process.

pipeline . (1) A serial arrangement of processors or a
serial arrangement of registers within a processor.
Each processor or register performs part of a task
and passes results to the next processor; several
parts of different tasks can be performed at the same
time. (2) A direct, one- way connection between two
or more processes.

platform . The operating system environment in
which a program runs.

pointer . (1) A data element that indicates the
location of another data element.

port . (1) An access point for data entry or exit. (2) A
connector on a device to which cables for other
devices such as display stations and printers are
attached. Synonymous with socket.

portability . (1) The capability of a program to be
executed on various types of data processing systems
without converting it to a different language and with
little or no modification. (2) The ability to run a
program on more than one computer without
modifying it.

precision . A measure of the ability to distinguish
between nearly equal values; for example, four-place
numerals are less precise than six-place numerals;
nevertheless, a properly computed four-place numeral
may be more accurate than an improperly computed
six-place numeral.

predefined . Synonym for built-in.

procedure . (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process . (1) A course of the events defined by its
purpose or by its effect, achieved under given

176 VM/ESA Network Computing with Java and NetRexx

conditions. (2) In data processing, the course of
events that occurs during the execution of all or part
of a program.

processor . In a computer, a functional unit that
interprets and executes instructions. A processor
consists of at least an instruction control unit and an
arithmetic and logic unit.

profile . (1) Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources. (2) In computer security, a
description of the characteristics of an entity to which
access is controlled.

programmer . A person who designs, writes, and
tests computer programs.

programming environment . An integrated collection
of software and hardware to support the development
of computer programs.

programming language . An artificial language for
expressing computer programs.

prompt . (1) A visual or audible message sent by a
program to request the user ′s response. (2) A
displayed symbol or message that requests input
from the user or gives operational information; for
example, on the display screen of an IBM personal
computer, the DOS A> prompt. The user must
respond to the prompt in order to proceed.

property . A unique characteristic of an object that
can be changed or modified. The properties of an
object describe the object. Type style is an example
of a property.

protocol . (1) A set of semantic and syntactic rules
that determines the behavior of functional units in
achieving communication. (2) In Open Systems
Interconnection architecture, a set of semantic and
syntactic rules that determine the behavior of entities
in the same layer in performing communication
functions. (3) In SNA, the meanings of and the
sequencing rules for requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.

prototype . A model or preliminary implementation
suitable for evaluation of system design, performance,
and production potential, or for better understanding
or determination of the requirements.

push button . A rectangle with text inside. Push
buttons are used in windows for actions that occur
immediately when the push button is selected.

Q
query . (1) A request for data from a database, based
on specified conditions; for example, a request for
availability of a seat on a flight reservation system.
(2) In interactive systems, an operation at a terminal
that elicits a response from the system. (3) A request
for information from a file based on specific
conditions; for example, a request for a list of all
customers whose balance is greater than $1000.

quick start . Synonym for system restart.

quit . A key, command, or action that tells a system
to return to a previous state or stop a process.

R
range . The set of values that a quantity or function
may take.

reader . (1) A part of an operating system scheduler
that reads an input stream into the system. (2) A
program that reads jobs from an input device or
database file and places them on a job queue. (3) In
RJE, a program that reads jobs from a database file
or interactive display station and sends them to the
host system.

real name . The name by which a resource is
identified in its native network.

receive . To obtain and store data.

record . A set of one or more related data items
grouped for processing.

record format . The definition of how data are
structured in the records contained in a file. The
definition includes record name, field names, and field
descriptions, such as length and data type. The record
formats used in a file are contained in the file
description.

recover . After an execution failure, to establish a
previous or new status from which execution can be
resumed.

regenerate . To restore information to its original
state.

relative path name . In the AIX operating system, the
name of a directory or file expressed as a sequence
of directories followed by a file name, beginning from
the current directory.

remainder . In a division operation, the number or
quantity that is the undivided part of the dividend,
having an absolute value less than the absolute value
of the divisor, and that is one of the results of a
division operation.

Glossary 177

remote host . Any host on a network except the one
at which a particular operator is working.
Synonymous with foreign host.

remove . (1) In journaling, to remove the after-images
of records from a physical file member. The file then
contains the before-images of the records in the
journal. Contrast with apply. (2) In the IBM Token-Ring
Network, to take an attaching device off the ring.

reproduce . Synonym for duplicate.

residue . In computer security, data remaining in a
data medium but not associated with a data object.

resource . Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices,
processing unit, data sets, and control or processing
programs.

restore . To return to an original value or image; for
example, to restore data in main storage from
auxiliary storage.

retrieve . To locate data in storage and read it so that
it can be processed, printed, or displayed. Contrast
with store.

return code . (1) A code used to influence the
execution of succeeding instructions. (2) A value
returned to a program to indicate the results of an
operation requested by that program.

reusable . The attribute of a routine that allows the
same copy of the routine to be used by two or more
tasks.

root directory . The directory that contains all other
directories in the system. See effective root directory.

routine . A program, or part of a program, that may
have some general or frequent use.

run time . Synonym for execution time.

S
scan . To examine sequentially, part by part.

schedule . To select jobs or tasks that are to be
dispatched. In some operating systems, other units of
work such as input/output operations may also be
scheduled.

scope . (1) The portion of an expression to which the
operator is applied. (2) The portion of a computer
program within which the definition of the variable
remains unchanged.

scroll . To move a display image vertically or
horizontally to view data that otherwise cannot be
observed within the boundaries of the display screen.

scroll bar . A part of a window, associated with a
scrollable area, that a user interacts with to see
information that is not currently visible.

search time . The time interval required for the
read/write head of a direct access storage device to
locate a particular record on a track corresponding to
a given address or key. Synonymous with rotational
delay.

seek . To selectively position the access mechanism
of a direct access device.

semantics . The relationships of characters or groups
of characters to their meanings, independent of the
manner of their interpretation and use.

send . In systems with VTAM, to place a message on
a line for transmission from the computer to a
terminal. Contrast with receive.

server . (1) A functional unit that provides shared
services to workstations over a network; for example,
a file server, a print server, a mail server. (2) In a
network, a data station that provides facilities to other
stations; for example, a file server, a print server, a
mail server.

service access point (SAP) . In Open Systems
Interconnection architecture, the point at which the
services of a layer are provided by an entity of that
layer to an entity of the next higher layer.

service virtual machine . In VM, a virtual machine
that provides system services. These services include
accounting, error recording, and services provided by
licensed programs.

session . (1) In network architecture, for the purpose
of data communication between functional units, all
the activities which take place during the
establishment, maintenance, and release of the
connection. (2) The period of time during which a user
of a terminal can communicate with an interactive
system, usually, elapsed time between logon and
logoff.

shared . Pertaining to the availability of a resource
for more than one use at the same time.

shell . A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and
touch-sensitive screens and communicate them to the
operating system. Shells simplify user interactions by
eliminating the user ′s concern with operating system
requirements. A computer may have several layers of
shells for various levels of user interaction.

178 VM/ESA Network Computing with Java and NetRexx

shutdown . The process of ending operation of a
system or a subsystem, following a defined
procedure.

simulate . To represent certain features of the
behavior of a physical or abstract system by the
behavior of another system; for example, to represent
a physical phenomenon by means of operations
performed by a computer or to represent the
operations of a computer by those of another
computer.

socket . The abstraction provided by the University of
California ′s Berkeley Software Distribution (commonly
called Berkeley UNIX or BSD UNIX) that serves as an
endpoint for communication between processes or
applications.

software . (1) All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. Software is an intellectual
creation that is independent of the medium on which
it is recorded. (2) Contrast with hardware.

source code . The input to a compiler or assembler,
written in a source language. Contrast with object
code.

source file . A file that contains source statements for
such items as high-level language programs and data
description specifications.

special file . In the AIX operating system, a file that
provides an interface to input/output devices. There is
at least one special file for each device connected to
the computer. Contrast with directory.

stand-alone . Pertaining to operation that is
independent of any other device, program, or system.

statement . In programming languages, a language
construct that represents a step in a sequence of
actions or a set of declarations.

static . In programming languages, pertaining to
properties that can be established before execution of
a program; for example, the length of a fixed length
variable is static.

storage allocation . The assignment of storage areas
to specified data.

storage group (SG) . A named collection of physical
devices to be managed as a single object storage
area. It consists of an object directory (DB2 table
space), and object storage on DASD (DB2 table
spaces) with optional l ibrary-resident optical volumes.

store . To place data into a storage device.

string . A sequence of elements of the same nature,
such as characters considered as a whole.

structure . A variable that contains an ordered group
of data objects. Unlike an array, the data objects
within a structure can have varied data types.

subclass . A class that is derived from another class.
The subclass inherits the data and methods of the
parent class and can define new methods or override
existing methods to define new behavior not inherited
from the parent class.

subroutine . (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points
in a computer program. (3) A group of instructions
that can be part of another routine or can be called
by another program or routine.

subset . A set each element of which is an element of
a specified other set.

substring . A part of a character string.

superclass . In the AIXwindows program and
Enhanced X-Windows, a class of widgets that passes
inheritable resources down the hierarchy to a lower
subclass.

superuser authority . In the AIX operating system, the
unrestricted authority to access and modify any part
of the operating system, usually associated with the
user who manages the system.

symbolic name . In a programming language, a
unique name used to represent an entity such as a
field, file, data structure, or label.

syntax . The rules governing the structure of a
language.

syntax error . A compile-time error caused by
incorrect syntax. See also semantic error.

system . In data processing, a collection of people,
machines, and methods organized to accomplish a set
of specific functions.

system profile . A file containing the default values
used in system operations.

system resources . Those resources controlled by the
system, such as programs, devices, and storage
areas that are assigned for use in jobs.

T
target . (1) Pertaining to a storage device to which
information is written. (2) The program or system to
which a request is sent. (3) The location to which the
information is destined.

template . A pattern to help the user identify the
location of keys on a keyboard, functions assigned to

Glossary 179

keys on a keyboard, or switches and lights on a
control panel.

terminate . (1) In SNA products, a request unit that is
sent by a logical unit (LU) to its system services
control point (SSCP) to cause the SSCP to start a
procedure for ending one or more designated LU-LU
sessions. (2) To stop the operation of a system or
device. (3) To stop execution of a program.

token . In a local area network, the symbol of
authority passed successively from one data station
to another to indicate the station temporarily in
control of the transmission medium. Each data station
has an opportunity to acquire and use the token to
control the medium. A token is a particular message
or bit pattern that signifies permission to transmit.

tool . Software that permits the development of an
application program without using a traditional
programming language.

trace . A record of the execution of a computer
program. It exhibits the sequences in which the
instructions were executed.

transfer . To send data from one place and receive
the data at another place.

tutorial . Information presented in a teaching format.

U
update . (1) To add, change, or delete items. (2) To
modify a master fi le with current information
according to a specified procedure.

uppercase . Pertaining to the capital letters, as
distinguished from the small letters; for example, A,
B, G, rather than a, b, g.

user ID . User identification.

user interface . Hardware, software, or both that
allows a user to interact with and perform operations
on a system, program, or device.

user name . In RACF, one to twenty alphanumeric
characters that represent a RACF-defined user.

user program . A user-written program.

user-friendly . Pertaining to the ease and
convenience of use by humans.

utility program . A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.
Synonymous with service program.

V
validation . The checking of data for correctness or
for compliance with applicable standards, rules, and
conventions.

value set . A group of choices, usually graphical, from
which a user can select one.

variable . In programming languages, a language
object that may take different values, one at a time.
The values of a variable are usually restricted to a
certain data type.

verify . (1) To determine whether a transcription of
data or other operation has been accomplished
accurately. (2) To confirm correctness of something.

version . A separate IBM-licensed program, based on
an existing IBM-licensed program, that usually has
significant new code or new function. Each version
has its own license, terms, conditions, product type
number, monthly charge, documentation, test
allowance (if applicable), and programming support
category.

virtual console . In VM, a console simulated by CP on
a terminal such as a 3270. The virtual device type and
I/O address are defined in the VM directory entry for
that virtual machine.

virtual machine (VM) . A virtual data processing
system that appears to be at the exclusive disposal of
a particular user, but whose functions are
accomplished by sharing the resources of a real data
processing system.

virtual storage . The storage space that may be
regarded as addressable main storage by the user of
a computer system in which virtual addresses are
mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations.

W
window . (1) A portion of a display surface in which
display images pertaining to a particular application
can be presented. Different applications can be
displayed simultaneously in different windows. (2) An
area of the screen with visible boundaries within
which information is displayed. A window can be
smaller than or the same size as the screen. Windows
can appear to overlap on the screen. (3) A division of
a screen in which one of several programs being
executed concurrently can display information.

working directory . Synonym for current directory.

180 VM/ESA Network Computing with Java and NetRexx

workstation . A terminal or microcomputer, usually
one that is connected to a mainframe or to a network,
at which a user can perform applications.

write access . In computer security, permission to
write to an object.

Y
Y-disk . An extension of the CMS system disk.

Z
zero . In data processing, the number that, when
added to or subtracted from any other number, does
not alter the value of the other number. Zero may
have different representations in computers, such as
positively or negatively signed zero (which may result
from subtracting a signed number from itself) and
floating-point zero (in which the fixed point part is
zero while the exponent in the floating-point
representation may vary).

Glossary 181

182 VM/ESA Network Computing with Java and NetRexx

List of Abbreviations

ACCT ACCounT

AD Application Development

ADM Application Development
Manager

ANSI American National Standards
Institute

API Application Program Interface

ASCII American national Standard
Code for Information
Interchange

BASIC Beginners All-purpose
Symbolic Instruction Code

BFS Byte File System

BG BackGround

BOOTP BOOT Protocol

CET Central European Time

CMS Conversational Monitor
System

CP Control Program

CPU Central Processing Unit

CRR Coordinated Resource
Recovery

CSL Callable Services Library

DASD Direct Access Storage Device

DCE Distributed Computing
Environment

DCSS DisContiguous Shared
Segment

DDR Dasd Dump Restore

DLL Dynamic Link Library

EBCDIC Extended Binary Coded
Decimal Interchange Code

EOF End Of File

FTP File Transfer Program

GDDM Graphical Data Display
Manager

GID Group IDentifier

GMT Greenwich Mean Time

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

I/O Input/Output

IBM International Business
Machines

ID IDentif ication/IDentif ier

IP Internet Protocol

IPL Initial Program Load

ITSO International Technical
Support Organization

IUCV Inter-User Communication
Vehicle

LE/370 Linkage Environmet/370

NFS Network File System

NLS National Language Support

OS/2 Operating System/2

PC Personal Computer

PL/I Programming Language/1

POSIX Portable Operating System
Interface for Computer
Environments

PTF Program Temporary Fix

R/O Read/Only

R/W Read/Write

REL RELease

REXX REstructured eXtended
eXecutor language

RS/6000 IBM RISC System/6000

RSCS Remote Spooling
Communications Subsystem

S/390 IBM System/390

SFS Shared File System

SPOOL Simultaneous Peripheral
Operation On-Line

TAR Tape ARchive

TCP/IP Transmission Control
Protocol/Internet Protocol

TFTP Trivial File Transfer Protocol

UID User IDentification

URL Uniform Resource Locator

VM Virtual Machine

VM/ESA Virtual Machine/Enterprise
Systems Architecture

VMLIB VM LIBrary

VMNFS Virtual Machine Network File
System

VTAM Virtual Telecommunications
Access Method

XA Extended Architecture

XEDIT eXtended EDITor

 Copyright IBM Corp. 1998 183

184 VM/ESA Network Computing with Java and NetRexx

Index

Special Characters
′/ . ./VMBFS:VMSYS:ROOT/′ 23
-classpath, Java option 33
-ms, Java option 143
-mx, Java option 143
_JAVA, file space 15
_NETREXX, file space 15
.profile 23, 32
$BFSEXEC XEDIT 26, 27, 29
$BFSLIST XEDIT 27

Numerics
8859_1, InputStreamReader 87
8859_1, OutputStreamReader 87

A
abbrev method, usage example 44
abbrev, usage example 47
abbreviations 183
AboutFrame

class definition 60
class definition and properties 63
constructor method 64
event classes 67, 68
how to use 71
main method 71
other methods 66
picture 55
program interface 56
program overview 61
propert ies 63
reusable class 55

absolute path 8, 9
acronyms 183
actionPerformed, usage example 68
addActionListener, usage example 68
addItemListener, usage example 68
ADDRESS, instruction 45
addressing the host 45
addWindowListener, usage example 67
adjustmentValueChanged(), usage example 112
aliases, BFS 14
aliases, SFS 14
ARG, parse 44
arg, REXX variable 52
arguments method 59, 60
arguments, method 158
array

adding an element 66
creation example 65
declare example 63
declaring 51

array (continued)
fixed size 51
getting all elements 51
NetRexx 153
string, using 53
using 53
variables 50

ASCII 142
editing 26
issues 81, 87, 94
printLine 87
readLine 87
socket 87
XEDIT 26

ASCXED EXEC 26
ask instruction, usage example 44
ASK, get keyboard input 44
attribute, object 57
authors, displaying 56
avoiding, empty frames 73
AWT 39

B
BFS

directory structures 13
file space 14
links 14
listing contents 22, 23, 24
objects, commands 26
objects, sorting 26
reading 79
writ ing 79

BFS directory
current 31
deleting 26
renaming 26
tree listing 27
tree view 26

BFS file
copying 26
copying to CMS 26
deleting 26
editing 26
executing commands 24
renaming 26
XEDIT 26

BFSLIST 22, 24
calling from POSIX Shell 32
EXEC 27
install ing 27
shortcomings 27
tailoring 27

BFSSTATE, PIPE 26

 Copyright IBM Corp. 1998 185

BFSTREE 26, 27
BFSTREE EXEC 29
bibliography 163
binary

data types 159
option 150, 159
reading 79
types 158
writ ing 79

brackets, entering from keyboard 50
byte stream 83

C
C environment variables, setting 33
calls, function 40, 45
canceling running programs 77
case

environment variable 34
insensit ive 39, 42
mixed 34
sensit ive 22, 38, 42

catch instruction 42
cent sign, entering 77
CENV 34
character stream 83
checking, method parameters 49
class

AboutFrame 60
defined 57
extend 91
extending 156
extends option 63
files, introduction 38, 39
instance 57
instruction 62
introduced 40
Java class 42
NetRexx 155
private 58
public 58
REXX 41
super 66
system 72
variables 60
Vector 52

classfile 31
classpath 29, 31, 34, 142
CLASSPATH, environment variable 33
closing frame 67
closing window 67
CMS

commands 93, 94
pipeline, executing 45
pipelines 37
pipelines, obtaining variables 56
running pipelines 96
running REXX execs 95
system profi le 35

CMS (continued)
util package 94
writ ing 78

CMSPipe
class 97
fitt ing 96
usage example 115
Usage Notes 98

co-pipelines 96
codepage 81

1047 84
8859_1 84
getting 85
introduced 82

color, usage example 69
commands

dir 32
export 33
for BFS files 24
for BFS objects 26

comments, NetRexx 40
comments, REXX 40
comparing

REXX with NetRexx 37
REXX with NetRexx, instructions 42
strings 42

compile
Java 38
Java program 26, 31
Just In Time 39
NetRexx 29, 30, 38, 39
NetRexx program 26
options, NetRexx 30
REXX 38
virtual storage 29

compound strings 50
NetRexx 50

compound variable 50, 152
nullpointerexception 141
usage example 118

console
control keys 77
control sequences 77
CTRL keys 77
CTRL sequences 77
reading 77

constant property 60
constructor

defined 157
method 58, 62
method, usage example 64

continuation line 40
control keys 77
control sequences 77
converting, data type 41
copying a BFS file to CMS 26
copying BFS file 26

186 VM/ESA Network Computing with Java and NetRexx

CP directory 23
CPU loop 145
creating

a directory 11
a link 11, 26
an alias 11
BFS aliases 14
external links 14
SFS aliases 14
symbolic links 14

CTRL keys 77
CTRL sequences 77
current directory 31

D
data type 39, 40

binary 159
conversions 158
convert ing 41
mismatches 142
native 41
NetRexx 41
REXX 41

declaring an array 51
declaring variables, NetRexx 41
defining working directory 22
deleting BFS directory 26
deleting BFS file 26
dir, POSIX Shell command 32
directory

cp 23
current 31
listing contents 22, 23, 24
parent 26
structures, BFS 13
tree 26

DIRLIST 13, 24
displaying authors 56
do instruction 42, 43
do label option 43

E
EBCDIC 142

issues 81, 87, 94
printLine 87
readLine 87

editing ASCII file 26
editing BFS file 26
elements, getting all of an array 51
empty frames, avoiding 73
empty variable 41
enroll ing

a BFS user 11, 14
an SFS user 11, 13

entering square brackets 50
environment variables

CLASSPATH 33

environment variables (continued)
PATH 33
setting 33
setting from CMS 34

erasing a directory 11
Error Messages 142
exception and error handling, NetRexx 154
exec() 93
EXECLOAD 47
executing

CMS pipeline 45
host commands 45
NetRexx program 26

exit instruction 49
exit method 49
export, classpath 35
export, POSIX Shell command 33
expose instruction 56
exposing variables 56, 60
extend, class 91
extending classes 156
extends, usage example 63
external

links 14, 25
MOUNT 26
subroutines 47

F
file not found 142, 143
file space

_JAVA 15
_NETREXX 15
BFS 14
SFS 13

FILELIST 22
fi lename 25
fi letype 25
finally instruction 42
fitt ing

* < j a v a 97, 98
* > j a v a 96, 97, 98
CMSPipe 96
stage 96

fixed size arrays 51
frame

avoiding empty 73
closing 67
handling events 67
layout 65
positioning on the screen 65
sizing 65

frequently asked questions 141
FSROOT 23
FTP with BFS 110
FTP with SFS 109
function calls 40, 45

nested 46
NetRexx 46

Index 187

function calls (continued)
REXX 45

functions, user defined 47

G
GETDATA REXX 104, 111
GetEncoding, getting codepage 85
getProperties(), usage example 84
getProperty, method 72
getProperty(), usage example 84
getSelectedIndex, usage example 68
getSelectedItem, usage example 68
getting keyboard input, ASK 44
global variables 60
GLOBALV 47
GLOBALV, CENV 34
glossary 169
GNAME 23
GUIMON

client overview 112
client-server communication 113
functional overview 110
GETDATA Request 115
INDICATE 103
installation instructions 103
installing client 105
install ing monitor 103
install ing server 106
LISTFILE request 114
LOADBFS 108
monitor overview 110
PERFLOG File Format 117
provided fi les 108
record format requirements 117
sample program 101
server overview 111

H
handle 59
handle, object 58
handling events, frame 67
Hello World

in Java 38
in NetRexx 38
in REXX 38

host commands, executing 45

I
implement, usage example 69
implementing, methods 69
import, cms.util 94
indexed strings 50
indexed variables 152
inheritable method 58
inheritable properties, usage example 63

inheritable property 60
inheritance 63
input parameters 52, 53
inputStream class 83
InputStreamReader 83
InputStreamReader, 8859_1 87
insensit ive case 39, 42
install ing

BFSLIST 27
GUIMON client 105
GUIMON server 106
instructions, GUIMON 103
problems 145
the GUIMON monitor 103

instance 59
instance, class 57
instance, object 58
instruction

ADDRESS 45
catch 42
class 62
do 42, 43
exit or return 49
expose 56
finally 42
loop 43
loop over 51
parse 44
procedure expose 56
REXX compared with NetRexx 42
select 43

internationalization, Java 83
interpreter, Java 39
interpreter, REXX 37
introduction, NetRexx syntax 39
isolated, variables 48
ItemListener, usage example 68
itemStateChanged, usage example 69
iterate 43
IWDIR 23

J
Java

-classpath option 33
class case 42
codepage, VM default 84
Compile 31
compiler 38
Hello World sample 38
internationalization 83
interpreter 39
program compil ing 26
running a program 31
toolkit 39
vectors 52

Java virtual machine, stopping 49
JC EXEC 31

188 VM/ESA Network Computing with Java and NetRexx

JIT 39
JNI 94
JNRCMS PACKAGE 100
JNRCMS, installation instructions 100
Just In Time compiler 39

K
keyboard input, translating 50
kill, sequences 77
kil l ing Java virtual machine 144

L
label option 43
layout of the frame 65
LE/370, runtime library 29, 31
line, continuation 40
LINEDEL setting 77
LINK, creating 26
LINK, querying 26
links 25

BFS 14
external 14, 25
symbolic 14, 25

list box
adding an element 66
double click event 68
select event 69
selected line 68

listen to events 69
listing

BFS directory tree 27
directory contents 22, 23, 24
SFS directories 13

LOADBFS 100
LOADLIB, SCEERUN 29, 31
local variable 60
loop

instruction 43
label option 43
over an array 51
over instruction 51

looping 43
ls, POSIX Shell command 22, 23, 24

M
main

input parameters 52, 53
method 52, 53
method example 71
signature 72

method
arguments 59, 60, 158
constructor 58, 62
defined 58
exit 49
getProperty 72

method (continued)
implementing 69
inheritable 58
introduced 40, 57
main 52, 53
nested call 46
nested calls 47
NetRexx 155
parameter checking 49
private 58
public 58
return 49
signatures 59
signatures example 66
static 58
using to access variables 48

mixed, case environment variable 34
MONREAD

EXEC 104
PACKAGE 103
PROFILE 104
sample directory entry 104

MOUNT, external 26
mounting BFS file space 14
ms, Java option 143
multi dimension variable 50
mx, Java option 143

N
native data type 41
nested

function call 46
method call 46
NetRexx methods 47

NetRexx
ari thmetic 150
arrays 153
class 155
comments 40
compared with REXX 37
compile 29
compile under XEDIT 30
compiler 38
compiler options 30
compilers 39
compil ing 148
control statements 149
data type 41
declaring variables 41
exception and error handling 154
expressions and variables 148
function calls 46
GUI 39
Hello World sample 38
IF THEN ELSE 149
language quick start 147
line continuation 149
LOOP 150

Index 189

NetRexx (continued)
method calls 151
methods 155
multi tasking 39
operators 148
parsing strings 151
positioned 38
program compil ing 26
program execute 26
program general structure 61
propert ies 155
reading console input 149
running a program 31
running under XEDIT 32
runtime l ibrary 38, 39
stems 50
strings 151
syntax, basic differences from REXX 40
syntax, compared with REXX 39
syntax, introduction 39
the language 39
things that aren ′ t strings 155
tracing 154
URL for information 160
using objects 155

NetRexxC 148
networking, TCPIP 87
not initialized variable 141
not initialized variables 41
NRC EXEC 26, 29
NRC XEDIT 30
NRC XEDIT, compile time options 62
NRR EXEC 26, 31
NRR XEDIT 32
null variable 42
NullPointerException 141

O
object

attr ibute 57
handle 58
instance 58
listening to events 69
propert ies 60

Object Oriented REXX 53
obtaining

host 72
operating system 72
variables, CMS pipelines 56

OO-REXX 53
OPENVM

GETBFS 26
LISTFILE 22, 23
MOUNT 22
PATHNAME 25
SET DIR 22

operating system, obtaining 72

option
binary 150, 159
label 43
strictassign 158

outputStream class 83
OutputStreamReader, 8859_1 87
OutputStreamWriter 83
OVMJAVA package, obtaining 19

P
parent directory 26
parse

ARG 44
arg, REXX statement 52
instruction 44
into words 152
literal patterns 152
positional patterns 152
pull, REXX instruction 44
strings 151

path 25
absolute 8, 9
defined 8
environment variable 33
relat ive 8, 9

pathname 8, 25
PATHNAME, OPENVM 25
PERFLOG DESCRIBE 104, 118
PIPE BFSSTATE 26
PIPE, BFSSTATE 26
pipelines

calling from Java 96
CMS 37, 56
usage example 115

positioning NetRexx 38
positioning REXX 37
POSIX

.profile 23, 32
shell and utilities 23

POSIX Shell, calling BFSLIST 32
POSIX Shell, calling XEDIT 32
POSIX Shell, system profile 35
POSIXGLIST, CP directory 11
POSIXINFO 23
POSIXINFO, CP directory 10
POSIXOPT, CP directory 10
printLine, ASCII 87
printLine, EBCDIC 87
private

class 58
method 58
variables 48

procedure expose 56
PROFILE EXEC 23
PROFILE XEDIT 21
program interface, AboutFrame 56
programs, canceling 77

190 VM/ESA Network Computing with Java and NetRexx

propert ies 62
definit ion 60
examples 57
explained 63
inheritable 60
introduced 57
NetRexx 155
static 60, 63
usage example 63
when to use 63

public
class 58
method 58
variables 48

push button, select event 69

Q
querying, a LINK 26
questions frequently asked 141

R
reader class 83
reading 75

BFS 75
CMS 75
console 77

readLine, ASCII 87
readLine, EBCDIC 87
readUTF, ASCII 87
relative path 8, 9
renaming BFS directory 26
renaming BFS file 26
return, from method 49
return, instruction 49
reusable class, AboutFrame 55
REXX

comments 40
compared with NetRexx 37
compilers 38
data type 41
function calls 45
Hello World sample 38
parse arg 52
positioned 37
signal on novalue 41
stems 50
string type class 41
the language 37

running, Java program 31
running, NetRexx program 31
runt ime

exec 93
LE/370 library 29, 31
NetRexx library 38
problems 145

S
sample

directory entry MONREAD 104
obtaining programs 19
program GUIMON 101

SCEERUN LOADLIB 29, 31
scope of variables 60
scope, variables 48
scripting language 37, 45
scroll bar, usage example 112
select instruction 43
select label option 43
sensitive, case 22, 42
sequences, kill 77
SET INPUT 50
SET OUTPUT 50
SETCENV EXEC 34
setForeground, usage example 69
setting

C environment variables 33
classpath 34
environment variables 33
environment variables from CMS 34

SFS directories, listing 13
SFS, file space 13
SG245148 package, obtaining 19
Shell and Utilities, POSIX 23
signal on novalue, REXX 41
signature

example 66
for main 72
method 59

socket, ASCII 87
sorting BFS objects 26
square brackets, entering 50
square brackets, entering from keyboard 50
startup parameters 52, 53
static

method 58
property 60, 63

stems 50
REXX 50
variable, nullpointerexception 141

stopping Java virtual machine 49
storage required to compile 29
storage requirements 143
stream

byte 83
character 83
definit ion 83

strictassign, option 158
strings 40

comparing 42
compound 50
functions 46
indexed 50
manipulation 46
parsing 151

Index 191

subclass, defined 157
subroutines 40, 47
subroutines, external 47
super

calling class 66
class 66
usage example 64, 65
when to use 65

superclass, defined 157
Symbol, REXX function 42
symbolic links 14, 25
SYSPROF EXEC 35
system

class 72
getProperty 72
profile, CMS 35
profile, POSIX Shell 35

T
tai l 50
TCPIP, networking 87
TERMINAL, LINEDEL setting 77
this variable 59
this, usage example 64, 65
Threads Class not found 142
timezone 33
toolkit, Java 39
tools 21
tracing NetRexx 154
translating

EBCDIC 94
keyboard input 50
strings to lowercase 44
strings to uppercase 44

tree, directory 26
types, binary 158

U
UID 23
unicode 83
upper method, usage example 44
uppercasing, strings 44
URL, for NetRexx information 160
user defined functions 47
using objects, NetRexx 155
using variables from another EXEC 48
using, array 53

V
variable

compound 50
empty variables 41
global 60
local 60
multi dimension 50
not initialized 141

variable (continued)
null 42
propert ies 60
scope 60
this 59

variables
access through methods 48
array 50
class 60
compound 152
declaring in NetRexx 41
exposing 56, 60
indexed 152
isolated 48
not initialized variables 41
obtaining with CMS pipelines 56
private 48
public 48
scope 48
using from another EXEC 48

Vector, Class 52
vectors, Java 52
virtual storage requirements 29, 143

W
window, closing 67
WindowAdapter, usage example 67
windowClosing, usage example 67
working directory, defining 22
working directory, l isting 22
writer class 83
writeUTF, ASCII 87
writ ing 78
writing, CMS 78

X
XEDIT

a BFS file 26
an ASCII BFS file 26
calling from POSIX Shell 32
compile NetRexx program 30
PROFILE 21
running NetRexx program 32

192 VM/ESA Network Computing with Java and NetRexx

ITSO Redbook Evaluation

VM/ESA Network Computing with Java and NetRexx
SG24-5148-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 193

S
G

24
-5

14
8-

00
P

rin
te

d
in

 t
he

 U
.S

.A
.

VM/ESA Network Computing with Java and NetRexx SG24-5148-00

IB
M

L

/XRL/1

Artwork Definitions

id File Page References

WOLOGO 5148SU
i

WOLOGOS 5148SU
i

TILOGO 5148SU
i

TILOGOS 5148SU
i

Table Definitions

id File Page References

R2 REDB$EVA
193 193

R1 REDB$EVA
193 193, 193

Figures

id File Page References

SFSFIG 5148CH02
4 2

3
OVIEPSX 5148CH02

10 7
14

FIG6 5148CH02
12 8

12
ABFR1 5148CH05

55 9
55, 57, 138

ABFRFG2 5148CH05
61 10

60, 61
ABFRFG3 5148CH05

63 11
63

ABFRFG4 5148CH05
64 12

64, 67, 68, 73
ABFRFG5 5148CH05

66 13
65, 66

ABFRFG6 5148CH05
67 14

65, 67
ABFRFG7 5148CH05

68 15
68

ABFRXCL 5148CH05
70 16

70
ABFRMAI 5148CH05

72 17
71

ABFRWIN 5148CH05
73 18

73
READ 5148CH06

75 19
75

WRITE 5148CH06
78 20

78
FACT 5148CH06

79 21
79

ASCIFG1 5148CH07
81 22

81
ASCIFG2 5148CH07

82 23

/XRL/2

81
TCPCL 5148CH08

88 24
88

TCPSERV 5148CH08
89 25

88
SRVHAND 5148CH08

91 26
91

GUIMFG1 5148CH10
101 27

101
GUIMFG2 5148CH10

102 28
102

GUIMFG3 5148CH10
102 29

102
GUIMLST 5148CH10

115 30
114

GUIMGTD 5148CH10
116 31

115
GUIMIND 5148CH10

117 32
116

GUIMXYZ 5148CH10
119 33

118
NETW1 5148CH11

125 34
125

NETW11 5148CH11
129 35

128, 129, 129
NETW12 5148CH11

129 36
129, 129

NETW13 5148CH11
130 37

129
NETW2 5148CH11

131 38
131

NETW3 5148CH11
134 39

133
NETW4 5148CH11

134 40
134

NETW5 5148CH11
135 41

134
NETW6 5148CH11

136 42
135

NETW7 5148CH11
137 43

137
NETW8 5148CH11

138 44
137

NETW9 5148CH11
138 45

138

/XRL/3

Headings

id File Page References

REDBCOM REDB$COM
xiv Comments Welcome

INTR 5148CH01
1 Chapter 1, Introduction

OVIE 5148CH02
3 Chapter 2, Overview of NetRexx and Java on VM/ESA

OVERSFS 5148CH02
3 2.2, Overview of the SFS

16
OVIEINS 5148CH02

16 2.7, Installing Java and NetRexx without the Shell and
Util i t ies

33, 145
OVMJAVA 5148CH02

19 2.7.1.4, Download and Install the OVMJAVA Package
SAMPGMS 5148CH02

19 2.7.1.5, Download and Install the SG245148 Package
2, 19, 21, 94, 100, 103, 107

TOOL 5148CH03
21 Chapter 3, Tools Used During the Project

BFSLIST 5148CH03
22 3.2, BFSLIST - Listing the Contents of a BFS Directory

TOOLMNT 5148CH03
23 Automatic Mount

106
BFSTREE 5148CH03

27 3.3, BFSTREE - Listing a BFS Directory Tree
TOOLNRC 5148CH03

29 3.4, NetRexx Compile
19

TOOLNRX 5148CH03
30 3.4.2, NRC XEDIT - NetRexx Compile

62
TOOLJC 5148CH03

31 3.5, JC EXEC - Java Compile
19

TOOLNRR 5148CH03
31 3.6, NetRexx Run

19
TOOLENV 5148CH03

33 3.8, SETCENV - Setting C Environment Variables
19, 107

TOOLCLP 5148CH03
33 3.8.1, Important Environment Variables

29, 31, 142
TOOLMCP 5148CH03

34 3.8.3, More About Classpath
33

REXX1 5148CH04
37 Chapter 4, Comparing REXX to NetRexx

REXXADR 5148CH04
45 The ADDRESS instruction

45
REXXSUB 5148CH04

47 4.3.6, Subroutines and User Defined Functions
56

REXXSTM 5148CH04
50 4.3.8, Stems - Array Variables - Indexed Strings

141
ABFR1 5148CH05

55 Chapter 5, AboutFrame, a Reusable Class
40, 48, 113

ABFRABF 5148CH05
60 5.6, AboutFrame: the Class Definition

57
ABFROVR 5148CH05

61 5.6.1, AboutFrame: Overview of the Program
ABFR2WN 5148CH05

73 5.6.6, Avoiding Empty Frames
65

FRWRCMS 5148CH06
75 6.1.1, Reading CMS Character Data Files

99
FRWCTLS 5148CH06

77 6.2.1, Useful Control Sequences
145

FRWWCMS 5148CH06
78 6.3.1, Writing CMS Character Data Files

99
ASCI1 5148CH07

81 Chapter 7, Code Pages - ASCII < > EBCDIC Issues

/XRL/4

129
JAVACP 5148CH07

84 7.4, VM Java Codepage
87

FRWSRVR 5148CH08
88 8.3, Simple TCP/IP Server

111
JCMS 5148CH09

93 Chapter 9, Java and CMS
45

JCMSRUN 5148CH09
93 9.1.1, Using Runtime.exec()

96
JCMSPIP 5148CH09

96 9.4, Running CMS Pipelines with NetRexx
106, 107, 111

JCMSINS 5148CH09
100 9.5, Installation Instructions

106, 107
GUIM1 5148CH10

101 Chapter 10, The GUIMON Sample Program
65, 130

GUIMCMS 5148CH10
107 10.2.4, Installing Client and Server Files

106
GUIMCS 5148CH10

113 10.4, GUIMON - the Client-Server Communication
99, 111, 111, 112, 113

GUIMREC 5148CH10
117 10.5, GUIMON Record Format Requirements

110
GUIMPFL 5148CH10

117 10.5.1.1, The PERFLOG File Format
GUIMPFD 5148CH10

118 10.5.1.2, The PERFLOG DESCRIBE File
114

CHP3 5148CH11
121 Chapter 11, Running NetRexx and Java Applications on a

Network Station
NETWS 5148CH11

122 11.3, Support Delivery Mechanism
NETWJNR 5148CH11

128 11.8, Setting up to Run Java and NetRexx Programs
105

NETWCPS 5148CH11
128 11.8.1.1, Copying the NetRexx Classes with the Shell

NETWAE 5148CH11
129 11.8.1.2, Codepages - ASCII <> EBCDIC for Network

Stations
85

NETWCOP 5148CH11
129 11.8.1.3, Copying the NetRexx and Cp1047 Classes without

the Shell
NETWLFS 5148CH11

131 11.10, How to Tailor the Local File System
130, 135, 136

NETWPRF 5148CH11
133 11.10.1, Performance Considerations

128, 136
NETWBAR 5148CH11

133 11.11, Using NSM to Add a Java Application to the Menu Bar
130, 136

FAQ 5148AX01
141 Appendix A, Frequently Asked Questions

FAQEM 5148AX01
142 A.4, Error Messages Not Always Very Accurate

142
FAQSTG 5148AX01

143 A.9, Virtual Storage Requirements
29

FAQRUN 5148AX01
145 A.11, Runtime Problems

FAQINS 5148AX01
145 A.12, Installation Problems

NROV1 5148AX02
147 Appendix B, NetRexx Language Quick Start

NOTICES SG245148 SCRIPT
161 Appendix C, Special Notices

ii
BIBL 5148BIBL

163 Appendix D, Related Publications
REDBCDR REDB$BIB

163 D.2, Redbooks on CD-ROMs
ORDER REDB$ORD

165 How to Get ITSO Redbooks

/XRL/5

163
REDBIBM REDB$ORD

165 How IBM Employees Can Get ITSO Redbooks
REDBCUS REDB$ORD

166 How Customers Can Get ITSO Redbooks
REDBFOR REDB$ORD

167 IBM Redbook Order Form
REDBEVA REDB$EVA

187 ITSO Redbook Evaluation
xiv

Index Entries

id File Page References

ABFIND 5148VARS
i (1) AboutFrame

55, 55, 56, 60, 61, 63, 63, 64, 66, 67, 68, 71, 71
ARRIND 5148VARS

i (1) ar ray
50, 51, 51, 51, 53, 53, 63, 63, 65, 66, 153

ASCIND 5148VARS
i (1) ASCII

26, 26, 81, 87, 87, 87, 87, 94
BFSDIND 5148VARS

i (1) BFS directory
26, 26, 26, 27, 31

BFSFIND 5148VARS
i (1) BFS file

24, 26, 26, 26, 26, 26, 26
BFSIND 5148VARS

i (1) BFS
13, 14, 14, 22, 23, 24, 26, 26, 79, 79

BFSLIND 5148VARS
i (1) BFSLIST

27, 27, 27, 27, 32
BININD 5148VARS

i (1) binary
79, 79, 150, 158, 159, 159

CASIND 5148VARS
i (1) case

22, 34, 34, 38, 39, 42, 42
CLIND 5148VARS

i (1) class
38, 39, 40, 41, 42, 52, 57, 57, 58, 58, 60, 60, 62, 63, 66,
72, 91, 155, 156

CMSIND 5148VARS
i (1) CMS

35, 37, 45, 56, 78, 93, 94, 94, 95, 96
CMSPIND 5148VARS

i (1) CMSPipe
96, 97, 98, 115

CODIND 5148VARS
i (1) codepage

82, 84, 84, 85
COMIND 5148VARS

i (1) commands
24, 26, 32, 33

COMPIND 5148VARS
i (1) compile

26, 26, 29, 29, 30, 30, 31, 38, 38, 38, 39, 39
COMVIND 5148VARS

i (1) compound variable
118, 141

CONSIND 5148VARS
i (1) console

77, 77, 77, 77, 77
CONTIND 5148VARS

i (1) constructor
58, 62, 64, 157

COPRIND 5148VARS
i (1) comparing

37, 42, 42
CREAIND 5148VARS

i (1) creating
11, 11, 11, 14, 14, 14, 14, 26

DATIND 5148VARS
i (1) data type

41, 41, 41, 41, 142, 158, 159
DIRIND 5148VARS

i (1) directory
13, 22, 23, 23, 24, 26, 26, 31

EBCDIND 5148VARS

/XRL/6

i (1) EBCDIC
81, 87, 87, 87, 94

ENRIND 5148VARS
i (1) enrol l ing

11, 11, 13, 14
ENVIND 5148VARS

i (1) environment variables
33, 33, 33, 34

EXECIND 5148VARS
i (1) executing

26, 45, 45
EXTIND 5148VARS

i (1) external
14, 25, 26, 47

FILIND 5148VARS
i (1) file space

13, 14, 15, 15
FITIND 5148VARS

i (1) fitting
96, 96, 96, 97, 97, 97, 98, 98

FRAMIND 5148VARS
i (1) frame

65, 65, 65, 67, 67, 73
FUNCIND 5148VARS

i (1) function calls
45, 46, 46

GUIMIND 5148VARS
i (1) GUIMON

101, 103, 103, 103, 105, 106, 108, 108, 110, 110, 111,
112, 113, 114, 115, 117, 117

HELLIND 5148VARS
i (1) Hello World

38, 38, 38
INSTIND 5148VARS

i (1) install ing
27, 103, 103, 105, 106, 145

INSIND 5148VARS
i (1) instruction

42, 42, 42, 42, 43, 43, 43, 44, 45, 49, 51, 56, 56, 62
JAVAIND 5148VARS

i (1) Java
26, 31, 31, 33, 38, 38, 39, 39, 42, 52, 83, 84

LINKIND 5148VARS
i (1) l inks

14, 14, 14, 25, 25
LISTIND 5148VARS

i (1) list box
66, 68, 68, 69

LSTIND 5148VARS
i (1) l isting

13, 22, 23, 24, 27
LOOPIND 5148VARS

i (1) loop
43, 43, 51, 51

MAININD 5148VARS
i (1) main

52, 52, 53, 53, 71, 72
METHIND 5148VARS

i (1) method
40, 46, 47, 48, 49, 49, 49, 52, 53, 57, 58, 58, 58, 58, 58,
58, 59, 59, 60, 62, 66, 69, 72, 155, 158

MONIND 5148VARS
i (1) MONREAD

103, 104, 104, 104
NESTIND 5148VARS

i (1) nested
46, 46, 47

NETIND 5148VARS
i (1) NetRexx

26, 26, 29, 30, 30, 31, 32, 37, 38, 38, 38, 38, 39, 39, 39,
39, 39, 39, 39, 40, 40, 41, 41, 46, 50, 61, 147, 148, 148,
148, 149, 149, 149, 149, 150, 150, 151, 151, 151, 153,
154, 154, 155, 155, 155, 155, 155, 160

OBJIND 5148VARS
i (1) object

57, 58, 58, 60, 69
OBTIND 5148VARS

i (1) obtaining
56, 72, 72

OPENIND 5148VARS
i (1) OPENVM

22, 22, 22, 23, 25, 26
OPTIND 5148VARS

i (1) option
43, 150, 158, 159

/XRL/7

PARSIND 5148VARS
i (1) parse

44, 44, 44, 52, 151, 152, 152, 152
PATHIND 5148VARS

i (1) path
8, 8, 8, 9, 9, 33

PIPIND 5148VARS
i (1) pipelines

37, 56, 96, 115
POSIND 5148VARS

i (1) POSIX
23, 23, 23, 32

PROPIND 5148VARS
i (1) propert ies

57, 57, 60, 60, 60, 63, 63, 63, 63, 155
PRIVIND 5148VARS

i (1) private
48, 58, 58

PUBIND 5148VARS
i (1) public

48, 58, 58
READIND 5148VARS

i (1) reading
75, 75, 77

REXXIND 5148VARS
i (1) REXX

37, 37, 37, 38, 38, 40, 41, 41, 41, 45, 50, 52
RUNIND 5148VARS

i (1) runt ime
29, 31, 38, 93, 145

SAMPIND 5148VARS
i (1) sample

19, 101, 104
SETIND 5148VARS

i (1) setting
33, 33, 34, 34

SIGIND 5148VARS
i (1) signature

59, 66, 72
STATIND 5148VARS

i (1) static
58, 60, 63

STEMIND 5148VARS
i (1) stems

50, 141
STRIND 5148VARS

i (1) str ings
42, 46, 46, 50, 50, 151

STRMIND 5148VARS
i (1) stream

83, 83, 83
SUPIND 5148VARS

i (1) super
64, 65, 65, 66, 66

SYSIND 5148VARS
i (1) system

35, 35, 72, 72
TRANIND 5148VARS

i (1) translating
44, 44, 50, 94

VARIND 5148VARS
i (1) variable

41, 42, 50, 50, 59, 60, 60, 60, 60, 141
VARSIND 5148VARS

i (1) variables
41, 41, 48, 48, 48, 48, 48, 48, 48, 50, 56, 56, 60, 60, 152,
152

XEDIND 5148VARS
i (1) XEDIT

21, 26, 26, 30, 32, 32

/XRL/8

Footnotes

id File Page References

BFSCNV 5148CH02
14 1

14
ABFRPRO 5148CH05

63 2
63

Tables

id File Page References

CMDTAB 5148CH02
11 1

11

Processing Options

Runtime values:
Document fileid ... SG245148 SCRIPT
Document type .. USERDOC
Document style ... REDBOOK
Profile ... EDFPRF40
Service Level .. 0022
SCRIPT/VS Release ... 4.0.0
Date .. 98.11.19
Time .. 04:55:40
Device .. 3820A
Number of Passes .. 4
Index ... YES
SYSVAR D .. YES
SYSVAR G ... INLINE
SYSVAR X .. YES

Formatting values used:
Annotation .. NO
Cross reference listing .. YES
Cross reference head prefix only .. NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 .. (none)
DVCF value 2 .. (none)
DVCF value 3 .. (none)
DVCF value 4 .. (none)
DVCF value 5 .. (none)
DVCF value 6 .. (none)
DVCF value 7 .. (none)
DVCF value 8 .. (none)
DVCF value 9 .. (none)
Explode .. NO
Figure list on new page ... YES
Figure/table number separation ... YES
Folio-by-chapter .. NO
Head 0 body text .. Part
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation .. NO
Justification ... NO
Language ... ENGL
Keyboard ... 395
Layout .. OFF
Leader dots ... YES
Master index ... (none)
Partial TOC (maximum level) .. 4
Partial TOC (new page after) .. INLINE
Print example id′s .. NO
Print cross reference page numbers ... YES
Process value ... (none)
Punctuation move characters,
Read cross-reference fi le .. (none)
Running heading/footing rule .. NONE
Show index entries ... NO
Table of Contents (maximum level) ... 3

/XRL/9

Table list on new page .. YES
Title page (draft) alignment ... RIGHT
Write cross-reference fi le .. (none)

Imbed Trace

Page 0 5148SU
Page 0 5148VARS
Page 0 REDB$POK
Page i REDB$ED1
Page i 5148EDNO
Page i REDB$ED2
Page xiii 5148ABST
Page xiii 5148ACKS
Page xiv REDB$COM
Page xiv 5148IMBD
Page xiv 5148CH01
Page 2 5148CH02
Page 20 5148CH03
Page 35 5148CH04
Page 53 5148CH05
Page 73 5148CH06
Page 79 5148CH07
Page 85 5148CH08
Page 92 5148CH09
Page 100 5148CH10
Page 120 5148CH11
Page 140 5148AX01
Page 146 5148AX02
Page 161 5148SPEC
Page 161 REDB$SPE
Page 162 5148TMKS
Page 162 5148BIBL
Page 163 REDB$BIB
Page 164 REDB$ORD
Page 167 5148GLOS
Page 181 5148ABRV
Page 192 REDB$EVA

	VM/ESA
	Network Computing with Java and NetRexx
	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	Chapter 2. Overview of NetRexx and Java on VM/ESA
	Java, NetRexx, OpenEdition, and the BFS
	Overview of the SFS
	SFS Servers and File Pools
	Overview of the BFS
	POSIX Terminology
	Directory Entries for POSIX BFS Usage
	Some Common SFS and BFS Commands
	The Java Environment Under VM
	SFS and BFS Directory Structures
	An SFS File Space
	A BFS File Space
	Combining File Spaces : SFS Aliases - BFS Links
	Installing Java and NetRexx without the Shell and Utilities
	Major Steps to Install ÚShell- less Java and NetRexx
	Adding a NetRexx Developer User ID

	Chapter 3. Tools Used During the Project
	XEDIT
	PROFILE XEDIT
	BFSLIST - Listing the Contents of a BFS Directory
	OPENVM LISTFILE
	POSIX Shell and Utilities
	BFSLIST
	BFSTREE - Listing a BFS Directory Tree
	NetRexx Compile
	NRC EXEC - NetRexx Compile
	NRC XEDIT - NetRexx Compile
	JC EXEC - Java Compile
	NetRexx Run
	NRR EXEC - NetRexx Run
	NRR XEDIT - NetRexx Run
	Tools for the POSIX Shell Users
	SETCENV - Setting C Environment Variables
	Important Environment Variables
	Setting Environment Variables from CMS
	More About Classpath

	Chapter 4. Comparing REXX to NetRexx
	REXX¢ s Position
	The REXX Language
	REXX Compilers
	Hello World in REXX
	NetRexx¢ s Position
	Hello World in NetRexx
	Hello World in Java
	The NetRexx Language
	NetRexx and Compilers
	NetRexx Syntax Introduction
	Basic Syntax Differences
	Data Types
	Case
	REXX Instructions
	Function Calls
	Subroutines and User Defined Functions
	Exit or Return
	Stems - Array Variables - Indexed Strings
	The main() Method - Input Parameters
	Comparing NetRexx to Object Oriented REXX

	Chapter 5. AboutFrame, a Reusable Class
	The AboutFrame Picture
	What is AboutFrame?
	AboutFrame: User Interface
	AboutFrame: Program Interface
	Approach with Classic Languages
	An OO Solution
	Classes and Methods
	Class - What is it?
	Methods - What are they?
	Variables in the Class
	AboutFrame: the Class Definition
	AboutFrame: Overview of the Program
	AboutFrame Section One: The Class Itself
	AboutFrame Section Two: The Constructor Method
	AboutFrame Section Three: Other Methods
	AboutFrame Section Four: Event Classes
	Avoiding Empty Frames

	Chapter 6. Reading and Writing Files from NetRexx
	Reading BFS Character Data Files
	Reading CMS Character Data Files
	Reading from the console
	Useful Control Sequences
	Writing BFS Character Data Files
	Writing CMS Character Data Files
	Working With Binary Files

	Chapter 7. Code Pages - ASCII <> EBCDIC Issues
	History, Experience
	Background Information - Codepages
	Internationalization
	Streams?
	Java IO Support
	VM Java Codepage
	Solution for Client Server Programs
	IBM Network Station and Codepages

	Chapter 8. TCP/ IP Networking
	Translating between EBCDIC and ASCII
	readLine() and printLn()
	Simple TCP/ IP Client
	Simple TCP/ IP Server
	Extending the Server
	Starting the Server

	Chapter 9. Java and CMS
	Executing non- Java Programs
	Using Runtime. exec()
	Using JNI
	The cms. util Package
	Running CMS Execs
	The CMSRexx Class
	Running CMS Pipelines with NetRexx
	fitting *> java
	fitting *< java
	The CMSPipe Class
	Installation Instructions

	Chapter 10. The GUIMON Sample Program
	GUIMON - Pictures
	GUIMON - Installation Instructions
	Installing the GUIMON Monitor
	Installing the GUIMON Client
	Installing the GUIMON Server
	Installing Client and Server Files
	GUIMON - Functional Overview
	GUIMON - the Monitor
	GUIMON - the Server
	GUIMON - the Client
	GUIMON - the Client- Server Communication
	Request Formats
	GUIMON Record Format Requirements

	Chapter 11. Running NetRexx and Java Applications on a Network Station
	Network Computing - Extending VM/ ESA Resources into the Network
	VM/ ESA as a Network Station Server
	Support Delivery Mechanism
	Hardware Requirements for VM/ ESA
	Software Requirements for VM/ ESA
	Major Steps to Install VM/ ESA Network Station Code
	Download the Network Station Code
	Prepare for the Installation of the Network Station Client Code
	Plan the Byte File System File Space Structure
	IBM Network Station Browser for VM/ ESA
	IBM Network Station Customization
	Java Programs on the IBM Network Station
	Setting up to Run Java and NetRexx Programs
	How to Copy the NetRexx Runtime Environment
	Starting a Java or NetRexx Program on your IBM Network Station
	How to Tailor the Local File System
	Performance Considerations
	Using NSM to Add a Java Application to the Menu Bar
	Starting the GuiMon Application on the Network Station
	Login to the Network Station
	Start GuiMon from the Menu Bar
	Summary

	Appendix A. Frequently Asked Questions
	A.1 NullPointerException - General Problem
	A.2 NullPointerException - With Compound Variables
	A. 3 NetRexx: No Data Type Problems Anymore?
	A.4 Error Messages Not Always Very Accurate
	A. 5 File Not Found
	A. 6 Threads Class Not Found
	A. 7 External Link Files Not Found
	A.8 Reading Java Abend Messages
	A.9 Virtual Storage Requirements
	A.10 Killing the Java Virtual Machine in VM
	A.11 Runtime Problems
	A.12 Installation Problems

	Appendix B. NetRexx Language Quick Start
	B. 1 Introduction
	B. 2 NetRexx Programs
	B. 3 Expressions and Variables
	B. 4 Control Statements
	B. 5 NetRexx Arithmetic
	B. 6 Doing Things with Strings
	B. 7 Parsing Strings
	B. 7.1 Parsing into Words
	B. 7.2 Literal Patterns
	B. 7.3 Positional Patterns
	B. 8 Indexed Variables
	B. 9 Arrays
	B. 10 Tracing
	B. 11 Exception and Error Handling
	B. 12 Things that aren¢ t Strings
	B. 12.1 Programs are Classes
	B.13 Extending Classes
	B. 13.1 Optional Arguments
	B. 14 Binary Types and Conversions
	B. 14.1 Binary Types in Practice
	B. 15 Summary and Information Sources

	Appendix C. Special Notices
	Appendix D. Related Publications
	D. 1 International Technical Support Organization Publications
	D. 2 Redbooks on CD- ROMs
	D. 3 Other IBM Publications
	D. 4 At Your Local Bookstore
	D. 5 On the Web

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	H
	K
	L
	M
	O
	N
	P
	Q
	R
	S
	T
	V
	U
	W
	Z
	Y
	List of Abbreviations
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	F
	E
	G
	H
	J
	I
	K
	L
	N
	M
	P
	O
	S
	Q
	R
	T
	W
	X
	U
	V
	ITSO Redbook Evaluation

