
VMSES/E Primer:
Concepts and Experiences

Document Number GG24-3851-02

June 1994

International Technical Support Organization
Poughkeepsie Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xvii.

Third Edition (June 1994)

| This edition, GG24-3851-02, is a major revision of GG24-3851-01, and applies to the Virtual Machine Serviceability
| Enhancements Staged/Extended (VMSES/E) component of Virtual Machine/Enterprise Systems Architecture
| (VM/ESA) Release 2.2 and Release 1.5 370 Feature, program number 5684-112.

| For a list of changes, see “Summary of Changes for VM/ESA Release 2.2 and Release 1.5 370 Feature” on
| page xxi.

| Changes and additions to the text and illustrations are indicated by a vertical line to the left of the change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate, without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1993, 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

| This document provides an overview of the concepts, functions, and capabilities
| of VMSES/E (Virtual Machine Serviceability Enhancements Staged/Extended), a
| component of VM/ESA (Virtual Machine/Enterprise Systems Architecture), and
| the installation and service tool for the system and related program products.
| Usage experiences are included.

| This document was written for customers and IBM technical personnel involved
| in planning for, installing, and servicing a VM/ESA Release 2.2 or a VM/ESA
| Release 1.5 370 Feature system. Knowledge of VM/ESA concepts, in particular
| CMS commands and file system, is assumed.

| The information is based on an early version of VM/ESA Release 2.2 and may
| not reflect the release as delivered.

VM (237 pages)

 Copyright IBM Corp. 1992, 1993, 1994 iii

iv VMSES/E Primer

Contents

Abstract . i i i

Special Notices . xvii

Preface . xix
Who Should Read This Document . xix
How This Document Is Organized . xix

| Summary of Changes for VM/ESA Release 2.2 and Release 1.5 370 Feature xxi
Summary of Changes for VM/ESA Release 2.1 and Release 2 xxi
Abbreviations . xxi
Related Publications . xxii
Acknowledgements . xxiv

Part 1. VMSES/E Concepts . 1

Chapter 1. Introduction . 3
Installation and Service Tools Requirements . 3
Highlights . 4
Design Guidelines . 5
Software Inventory . 5

| VM/ESA Release 2.2 Highlights . 6
VM/ESA Release 2.1 Highlights . 6
VM/ESA Release 2 Highlights . 6

| VM/ESA Release 1.5 370 Feature Highlights . 7

Chapter 2. Functional Overview . 9
Tasks . 9
Installed Software . 10
Concepts and Sources of Information . 10

Definitions and Terms . 10
Information Sources . 12
Product Database Layout . 14
Installation and Service Processes Data Flow 15
Information Supporting Media and Tape Formats 16

Installing Products . 18
| Installing VM/ESA . 18

Installing a Product for the First Time . 19
Other Installation Options . 23

Maintaining Your System . 23
Bypassing VMSES/E - Don′ t Do It . 24

| VMSES/E Service Concepts and Methods . 25
Multiple System Levels . 26
Recommended Logical Strings and Service Levels 27
Applying Preventive Service . 28
Applying Corrective Service . 29

Chapter 3. Software Inventory . 37
Introduction . 37

System-level Software Inventory . 40
Service-level Software Inventory . 41

Basic Information Sources . 42

 Copyright IBM Corp. 1992, 1993, 1994 v

Product Parameter File . 43
Overview . 43
Header Area . 45
Component Area . 46
Override Area . 53

Build Lists . 54
PRODPART File . 56

Overview . 56
Header Section . 57
Loadable Units Section . 57
Parts Section . 57
Saved Segment Definitions Section . 58
Product Parameters Section . 59

PTFPART File . 61
Overview . 61
Header Section . 62
Requisite Section . 62
Parts Section . 63

Chapter 4. Saved Segments . 65
Overview . 65
System-Level View . 67

Saved Segment Planning . 68
VMFSGMAP Command . 69
Segment Map Screen . 70

Product-Level View . 76
VMFBDSBR Part Handler . 76
Segment Building . 77
VMFBDSEG Part Handler . 78

Part 2. VMSES/E Usage Experiences . 81

Chapter 5. Installation Experiences . 83
VMFINS Command . 83

| VMFINS DEFAULTS . 84
VMFINS INSTALL and VMFINS MIGRATE Commands 84
Planning Step . 86

SIDISK, SIMODE, and SYSTEM Options . 86
INFO and LIST Operands . 86
MEMO Option . 87
PPF and PROD Operands . 87
PLAN Option . 87
RESOURCE Option . 87

Product Loading Step . 88
PPF and PROD Operands . 89
PPF Overrides . 89

Product Building Step . 89
VMFINS DELETE Command . 90
Installing VM/ESA . 90

Installing VM/ESA Release 1.1 . 90
Installing VM/ESA Release 2 . 91
Installing VM/ESA Release 1.5 370 Feature, VM/ESA Release 2.1, and Later

Releases . 91
Product Identification for VM/ESA Components 91

vi VMSES/E Primer

Installing the CMS Utilities Feature . 92
Planning . 92
First-Time Installation . 95
Migrating . 95
Building . 96
Deleting . 96

Installing a Non-VMSES/E Product . 96
Planning . 96
First-Time Installation . 97
Migrating . 97
Building . 97
Deleting . 98

Chapter 6. Service Experiences . 99
Basic Steps . 99
VM/ESA Servicing Highlights . 100

Refresh . 100
Preparation . 101
Setup . 102
Merge . 103
Receive . 106
Check . 107
Apply . 107
Build . 107

| Test . 108
Production . 108
Service Back-Out . 110

How Build Works . 110
Overview . 110
Object Definition Change Detection . 110
Object Requisites . 111
VMFBLD Command . 112
STATUS Option . 113
SERVICED Option . 113
ALL Option . 113

| PRIVATE Option . 114
Build Part Handlers . 114
VMFBDNUC Options . 114
CP Configurability Support . 115

More on Build Lists . 116
Format 3 Build Lists . 116
Support of Global . 116
Other Build List Enhancements . 117

Update Control Files . 117
AUX Files and VVTs . 120
Version Support for Parts . 120

Local Service . 122
Creating a Local Update . 122
Comparing Local and Corrective Service 125
Receiving Manually . 126

Updating the CP Nucleus Build List . 127
Overview . 128

| Update Procedure for VM/ESA Release 2.2 129
| Update Procedure for VM/ESA Release 2.1 129

Changing GCS . 131

Contents vii

Changing the Load Address . 131
Changing the Load List Name . 132
Changing the Saved System Name . 133

Chapter 7. Exploring the Software Inventory 135
VMFSIM Subcommands . 135
VMFSIM Queries . 136

Displaying Table Fields (Tags) . 137
Displaying Field Values . 138
Displaying Component Information . 138
Displaying Selected Fields . 139
Combining Table Information . 139
Other Queries . 140
VMFSIM Output Processing Tool . 142

VMFQOBJ EXEC . 142
Overview . 142
Using VMFQOBJ . 143
1 - Finding the Status and Requirements of a Part 143
2 - Finding the Objects Impacted by a Part Change 144
3 - Finding All the Characteristics of an Object 144

VMFINFO Command . 145
VMFINFO PPF and Component Name Selection Panels 146
VMFINFO Main Panel . 147
VMFINFO PTF/APAR Queries Panel . 148

How to Answer Your Top Ten Questions . 150
1 - List Products Installed on the System . 150
2 - List Prerequisites for a Component . 151
3 - List the PTFs Applied to a Component 151
4 - List APARS for a PTF . 152
5 - List Status of an APAR . 152
6 - List the PTFs that Depend on a Given PTF 153
7 - List Parts Serviced by a PTF . 154
8 - List Service Applied to a Part . 154
9 - List Parts that Must be Rebuilt after Service 155
10 - List Service Impact of Backing Out a PTF 155

Further Examples . 156

Chapter 8. Saved Segment Experiences . 157
Software Inventory and Other Files . 157

Product Parts File . 158
System-Level PPF . 158
System-Level Build Lists . 160
Segment Data File . 162

| System-Level Select Data Files . 162
VMSESE PROFILE . 163

Building Saved Segments . 163
Segment Planning . 163
Segment Servicing . 164
Deleting a Segment . 168
Segment Requisites . 171
Skeleton Segments on the System . 172
Disk Requirements . 173

Changing the CMSINST Segment . 174
Maintaining Segments for Multiple Systems 175

PPF Considerations . 176

viii VMSES/E Primer

Select Data File Considerations . 176
Central-Site Build Considerations . 177

| A few Questions and Answers Working with Segments 177
| Copying CMSPIPES Segment Above 16MB 177
| Copying CMSQRYH Logical Segment Above 16MB 179
| Moving CMSQRYH Logical Segment Above 16MB 180
| HELP Disk is Too Large to Fit in HELPINST Segment C00-CFF 180
| Building Segments of Multiple Products from One User ID 180

Chapter 9. Multiple Systems and Product Versions 181
Managing Multiple Versions of Products . 181
Managing Multiple Systems . 181

Centrally Managed Independent Systems 182
Maintaining Systems by Physically Sharing Disks 182
Maintaining Systems by Sharing SFS Directories 184
Centrally Managed Disk Sharing Systems 185

Sharing Disks . 185
Sharing LOCAL Disks . 186
Sharing BASE Disks . 187
Sharing DELTA Disks . 187
Sharing APPLY Disks . 187
Sharing BUILD Disks . 188

Creating a PPF Override . 189
Case Study: Central Management . 191

Appendix A. Comparing VMSES/E to Previous Systems 197
Pre-VMSES VM . 197

VM System Installation . 198
Program Product Installation . 198
VM System Service . 198
Servicing SNA Products . 198
Software Inventory . 198

VMSES VM . 198
VM System Installation . 198
Program Product Installation . 198
VM System Servicing . 199
Servicing SNA Products . 199
Software Inventory . 199

VMSES/E VM . 199
VM System Installation . 199
Program Product Installation . 199
VM System Servicing . 199
Servicing SNA Products . 200
Software Inventory . 200

Differences Between VMSES and VMSES/E . 200
VMFREC . 200
VMFAPPLY . 200
VMFBLD . 201

Summary Tables . 201

Appendix B. Product Packaging and Distribution Media Formats 205
Distribution Media . 205

| Product Formats and Naming Conventions . 205
Product Formats and Product Packaging Formats 205

| VMSES/E Enabled Program Product Conventions 206

Contents ix

Installation Media Formats . 208
VMSES/E Installation Tape . 209
VM/ESA SDO Installation Tapes (PDI) . 212
INSTFPP Installation Tapes . 214

VMSES/E Service Tapes . 214
Program Level File . 214
VMSES/E Service Tape Format . 214

Appendix C. Removing Service . 217
Back-Out by Level . 217
Selective Back-Out . 219

| Removing a Local Modification . 222

Appendix D. VMFSIM Exploitation Code Examples 225
CMS Pipelines Introduction . 225

Example . 225
Pipeline Documentation . 226

Impact of Backing Out a PTF . 226
VMFSIM Output Processor . 227
Erasable Parts for Committed PTFs . 228
Finding the Status of an APAR or PTF . 230

Appendix E. Diskette Installation Instructions 233
Diskette Contents . 233
Installation Instructions . 234

Uploading the Files in a OS/2 Environment 234
Uploading the Files in a DOS Environment 235
Uploading the Files in Other Environments 236
Unpacking the Files (All Environments) . 237
Source Listings for the Sample Code . 237

Index . 239

x VMSES/E Primer

Figures

 1. Data Flow in the VMSES/E Database . 16
 2. Installation Example - Minidisk Configuration 19
 3. Files Loaded and Built by the Planning Step 21
 4. Files Loaded and Built after Installation Completion 22
 5. Receive Step - Files and Data Flow . 31
 6. Apply Step - Files and Data Flow . 33
 7. Build Step - Files and Data Flow . 35
 8. Location of the Software Inventory Tables 39
 9. System-Level Receive Status Table - VM SYSRECS 40
10. PPF Structure . 44
11. $PPF for CMS - Header Area . 45
12. $PPF for CMS - Component Area (Excerpt) 46
13. $PPF for CMS - Control Options Section 47
14. $PFF for CMS - DCL Section (Excerpt) . 48
15. $PPF for CMS - MDA Section . 49
16. $PPF for CMS - RECINS Section . 50
17. $PPF for CMS - RECSER Section . 50
18. Build Log for the REXX Component (Excerpt) 52
19. $PPF for CMS - BLD Section (Excerpt) . 53
20. Load List for CMS - CMSLOAD EXEC (Excerpt) 54
21. VMSES/E Format 2 Build List (Excerpt from VMFMLOAD EXEC) 55
22. VMSES/E Format 3 Build List (Excerpt from CMSSAA EXEC) 55
23. PRODPART File General Structure . 56
24. PRODPART File for CMS - Header Section 57
25. PRODPART File for CMS - Loadable Unit Section 57
26. PRODPART File for CMS - Part Section (VM/ESA Release 1.1) 58
27. PRODPART File for CMS - SEGDEF Section (Excerpt) 59
28. PRODPART File for CMS - Parms Section (Excerpt) 60
29. PPF for CMS - DCL Section (Excerpt) . 61
30. PTFPART File General Structure . 62
31. PTFPART File Header Section Example . 62
32. PTFPART File Requisite Section Example 63
33. PTFPART File Parts Section Example . 63
34. Logical Data Flow in VMFSGMAP . 69
35. Segment Map . 71

| 36. VMFSGMAP Segment Map Using VIEW ALL 72
| 37. VMFSGMAP Check Object Screen . 73

38. VMFSGMAP Add Segment Definition Panel 73
39. VMFSGMAP Change Segment Definition Panel 75
40. VMFINS Command General Syntax . 83
41. VMFINS INSTALL Command Syntax . 85
42. VMFINS PRODLIST File . 86
43. 6VMVME11 PLANINFO File . 93
44. VMFMRDSK Command Syntax . 104
45. Example of Merging the CMS APPLY String 105
46. VMFBLD Command Syntax . 112
47. Service Control File Structure . 118
48. Version Support for Parts . 121
49. AUXLCL File for HCPCOM Update . 123
50. HCPCOM ASSEMBLE Extract . 123

| 51. Update File HCPCOM VL0001HP . 124

 Copyright IBM Corp. 1992, 1993, 1994 xi

52. PTFPART File for PTF UM98765 . 126
53. HCPMDLAT MACRO File Structure . 128
54. PPF Override - TESTGCS $PPF . 132
55. AUX File Example - MYGCS AUXLGCT 133
56. Update File Example - MYGCS VmodidGT 134
57. VMFSIM QUERY Command Syntax . 137
58. TEMP SIMDATA File (Excerpt) . 139
59. Result of VMFSIM Query with One APAR for Given PTF 141
60. Result of VMFSIM Query with Two APARs for Given PTF 141
61. Part of EXEC Using CMS Pipelines to Process VMFSIM Output 141
62. Output of EXEC Using CMS Pipelines to Process VMFSIM Output . . . 142
63. VMFQOBJ Command Syntax . 143
64. VMFINFO Command Syntax . 145
65. VMFINFO PPF Fileid Help Panel . 146

| 66. VMFINFO Component Name Help Panel 147
| 67. VMFINFO Main Panel . 148
| 68. VMFINFO PTF/APAR Queries Panel . 149
| 69. VMFINFO PTF/APAR Query Output Panel 149

70. SEGBLD $PPF File . 158
71. SEGBLIST EXC00000 File (Excerpt) . 161
72. SEGBLIST SEGDATA File (Excerpt) . 162

| 73. SEGBLD $SELECT File (Excerpt) . 163
| 74. VMSBR $SELECT File (Excerpt) . 163

75. Sample VMSESE PROFILE . 163
76. Internal Data Flow in VMFSGMAP . 164
77. Product-Level Segment Service Process - Identifying Requirements . 165
78. Product-Level Segment Service Process - Building 166
79. System-Level Segment Building - Identifying the Requirements 167
80. System-Level Segment Building - Building 168
81. VMFSGMAP Display before Deleting SQL320A 169
82. VMFSGMAP Display after Deleting SQL320A 170

| 83. Change Segment Definition Panel for SQL320A 170
84. VMFSGMAP Change Segment Definition for QMF310A 171
85. VMFSGMAP Add Segment Definition Panel 173
86. Maintaining Multiple Systems with Physically Shared DASD Strings . 183
87. Using Control Files to Manage Multiple Systems 186
88. Partially Sharing the APPLY String . 188
89. Sample PPF Override - CMSB $PPF . 189

| 90. ESA Override File - ESA $PPF . 190
91. Central System Management . 192
92. Sample PPF Override - CPSYSA $PPF 192
93. Sample PPF Override - CPSYSB $PPF 193
94. CPSYSB PPF . 194
95. TDF and PCD Files from VM/ESA Release 1.1 Installation Tape 210
96. Format of VMSES/E Refreshed Product Tape and RSU Tape 211

| 97. SDO Logical Tape Formats . 212
| 98. SDO Merged Tape Format . 213

99. SDO Stacked Tape Format . 213
100. Layout of the VMSES/E Service Tape . 215
101. TDF and PCD Files from VM/ESA Release 1.1 Corrective Service Tape 216
102. Service Removal Steps . 217
103. PTFREMOV Command Syntax . 226
104. PTFREMOV EXEC Sample Output . 226
105. Sample File UM22636 $BACKOUT . 227
106. JOINLN Filter Syntax . 227

xii VMSES/E Primer

107. PSIMOUT Syntax . 228
108. PTFCOMIT Syntax . 229
109. PTFCOMIT Ouput Example . 229
110. PTFSTAT Syntax . 230
111. Console Log of PTFSTAT Execution . 231
112. Results File from PTFSTAT Execution . 232

Figures xiii

xiv VMSES/E Primer

Tables

 1. System-Level Tables Summary . 41
 2. Service-Level Tables Summary . 42
 3. Valid Areas and Sections for Each PPF Form 45
 4. VM/ESA Component PPF File Names and Aliases 91
 5. Build Part Handlers . 114
 6. Control File Extension Usage . 122
 7. Table Types and Files Used with VMFSIM 135
 8. VMFSIM Subcommands . 136
 9. Comparing VMSES/E and Previous Systems Tools 202
10. VMSES/E Function Availability per VM/ESA Release 203
11. File Type Conversion for Sample Files 237

 Copyright IBM Corp. 1992, 1993, 1994 xv

xvi VMSES/E Primer

Special Notices

This publication is intended to help IBM technical personnel and customer
systems engineers plan for, install, and service a VM/ESA Release 2.2 system
(or a VM/ESA Release 1.5 370 Feature system) and related program products.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by either VM/ESA (Virtual
Machine/Enterprise Systems Architecture) Release 2.2 or Release 1.5 370
Feature. See the Publications section of the IBM Programming Announcement
for VM/ESA Release 2.2 for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
208 Harbor Drive
Stamford, CT USA 06904

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

 Copyright IBM Corp. 1992, 1993, 1994 xvii

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

Common User Access CUA
ESA/370 ESA/390
IBM OS/2
PR/SM QMF
SQL/DS System/370
Virtual Machine/Enterprise Systems Architecture VM/ESA
Virtual Machine/Extended Architecture VM/XA

UNIX Unix System Laboratories, Inc., a wholly
owned subsidiary of Novell, Inc.

xviii VMSES/E Primer

Preface

| This document is intended as a first approach to VMSES/E (Virtual Machine
| Serviceability Enhancements Staged/Extended), the Installation and Service Tool
| and a component of VM/ESA* (Virtual Machine/Enterprise Systems
| Architecture*).

| Discussed are the tasks and information needed to install and service VM/ESA
| Release 2.2 and Release 1.5 370 Feature systems, and their related program
| products. How VMSES/E helps to do those tasks, and gathers and maintains
| information is also documented.

The document also includes actual experiences, suggestions, guidance
information, and some sample code. Some parts of the document are written for
people with little or no previous experience with VMSES/E.

| As the VMSES/E component of VM/ESA Release 1.5 370 Feature is functionally
| equivalent to VMSES/E on VM/ESA Release 2.1, some of the most recently
| introduced VMSES/E capabilities are not available. Whenever in doubt, the
| Release 1.5 370 Feature user should refer to Table 10 on page 203, showing
| functions available per release.

| Where the addition of new or enhanced functions or rewording for improved user
| understanding caused changes to the text and illustrations, modifications are
| flagged with a vertical bar on the left, as is this paragraph. Minor editorial
| corrections are not flagged.

Who Should Read This Document
| This document is intended primarily for IBM technical personnel and customer
| personnel who are involved in planning for, installing, and servicing VM/ESA
| Release 2.2 and Release 1.5 370 Feature and IBM program products in the
| VM/ESA environment.

Readers include IBM systems engineers, IBM customer engineers, and, in
general, VM systems specialists, systems programmers, and systems planners.

How This Document Is Organized
The document contains three parts, subdivided into chapters and appendixes, as
follows.

Part 1, “VMSES/E Concepts”

This part is an overview of VMSES/E concepts and functions. It includes the
following chapters:

• Chapter 1, “Introduction”

This chapter presents, at a very conceptual level, an overview of VMSES/E,
and highlights its most important features.

 Copyright IBM Corp. 1992, 1993, 1994 xix

• Chapter 2, “Functional Overview”

This chapter discusses in more detail the functions and data involved in
installing, servicing, and managing the software in a VM/ESA system, and
how VMSES/E relates to them.

• Chapter 3, “Software Inventory”

This chapter contains further details on the VMSES/E information database,
with a more in-depth description of the more important tables.

• Chapter 4, “Saved Segments”

This chapter introduces the support for defining and building saved
segments.

Part 2, “VMSES/E Usage Experiences”

This part expands the explanations given in Part 1, and presents actual usage
experiences as well as examples, suggestions, and some sample code. It
includes the following chapters:

• Chapter 5, “Installation Experiences”

This chapter contains information obtained during the installation of VM/ESA
and selected program products.

• Chapter 6, “Service Experiences”

This chapter contains information gained in performing several service tasks
on a VM/ESA system, including examples of local service application and
changes to CP and GCS.

• Chapter 7, “Exploring the Software Inventory”

This chapter provides many examples on the use of the VMSES/E
information database.

• Chapter 8, “Saved Segment Experiences”

This chapter provides examples of using the saved segment support
functions.

• Chapter 9, “Multiple Systems and Product Versions”

This chapter contains suggestions on how to maintain several systems or
product versions using a common database.

Appendixes

This part contains the following appendixes:

• Appendix A, “Comparing VMSES/E to Previous Systems”

This appendix discusses the most important differences between VMSES/E
and the installation and service tools available in previous VM systems.

• Appendix B, “Product Packaging and Distribution Media Formats”

This appendix describes the various product packaging and tape formats that
can be used by VMSES/E.

• Appendix C, “Removing Service”

This appendix provides guidance on how to remove service from the system.

xx VMSES/E Primer

• Appendix D, “VMFSIM Exploitation Code Examples”

This appendix includes several sample coding examples on using the
Software Inventory.

• Appendix E, “Diskette Installation Instructions”

This appendix contains detailed instructions for the installation of the
accompanying diskette′s materials.

| Summary of Changes for VM/ESA Release 2.2 and Release 1.5 370 Feature
| Following is a summary of the changes for these releases:

| • Information supporting VM/ESA Release 2.2 and VM/ESA Release 1.5 370
| Feature has been added in most chapters of the book.

| • A new table showing the major new features of VMSES/E per VM/ESA
| release has been added to Appendix A.

Summary of Changes for VM/ESA Release 2.1 and Release 2
New and enhanced functions introduced by VM/ESA Release 2.1 and Release 2
are dispersed throughout the document, however the following major changes
have been made:

• The syntax diagrams are in “railroad track” format.

• The following chapters and appendixes are new:

− Chapter 4, “Saved Segment Support”

− Chapter 8, “Saved Segment Experiences”

− Appendix E, “Installing the Sample Code Examples”

• The following chapters have been changed:

− Chapter 5, “Installation Experiences,” was completely restructured and a
great deal of information added.

− Chapter 6, “Service Experiences” was expanded to include new sections
on the build process, local service, and changing CP.

− Appendix D, “VMFSIM Exploitation Code Examples,” had the source
listings removed. On the previous edition of this publication this was
Appendix E.

• The following appendix was deleted:

− Appendix D, “Local Service,” was merged with Chapter 5. “Service
Experiences.”

• Finally, many small editorial corrections have been made to the text.

Abbreviations
In this document, the following abbreviations are used:

Abbreviation Refers to

DIRMAINT Virtual Machine/Directory Maintenance Version 1 Release
4 (program number 5748-XE4)

Preface xxi

PVM VM/Pass-Through Facility Version 2 Release 1.1 (program
number 5684-100) or VM/Pass-Through Facility Version 1
(program number 5748-RC1)

QMF* Query Management Facility Version 3 Release 1 (program
number 5706-255)

RACF Resource Access Control Facility Version 1 Release 9.2
(program number 5740-XXH)

RSCS RSCS Networking Version 3 Version 3 Release 1.1
(program number 5684-096)

SQL/DS* Structured Query Language/Data System Version 3
Release 4 (program number 5688-103)

VM/SP Virtual Machine/System Product (program number
5664-167)

VM/HPO VM/SP High Performance Option (program number
5664-173)

VM/XA* Virtual Machine/Extended Architecture* System Product
Release 2.1 (program number 5664-308)

VM/ESA* Virtual Machine/Enterprise Systems Architecture* (program
number 5684-112)

Related Publications
The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

• Prerequisite Publications:

VM/ESA: VMSES/E Introduction and Reference, SC24-5444

VM/ESA: Service Guide, SC24-5527

VM/ESA: Installation Guide, (UM98122)

VM/ESA: Installation Guide for 370 Release 1.5 370 Feature, (UM98115)

| VM/ESA: VMSES/E Introduction and Reference for 370, SC24-5680

| VM/ESA: Service Guide for 370, SC24-5429

• Additional Publications:

| VM/ESA Release 2.2 Overview and Usage Experiences, GG24-4219

VM/ESA Release 2.1 Usage and Experience, GG24-4032

VM/ESA Release 2.1 Presentation Guide, GG24-4024

VM/ESA Release 2 Usage and Experience, GG24-3932

VM/ESA Release 1.1 Overview and Usage Experiences, GG24-3744

VM/ESA: Planning and Administration, SC24-5521

VM/ESA: SFS and CRR Planning, Administration and Operation,
SC24-5649

VM/ESA: Conversion Guide and Notebook for VM/SP, VM/SP HPO and
VM/ESA 370 Feature, SC24-5654

xxii VMSES/E Primer

VM/ESA: Conversion Guide and Notebook for VM/XA SP and VM/ESA,
SC24-5525

VM/ESA: System Messages and Codes, SC24-5529

VM/ESA: CMS Utilities Feature, SC24-5535

VM/ESA: CMS Pipelines User′ s Guide, SC24-5609

VM/ESA: CMS Pipelines Reference, SC24-5592

CMS Pipelines Tutorial, GG66-3158

IBM Online Library Omnibus Edition: VM Collection, SK2T-2067

To get listings of redbooks online, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order Redbooks

IBM employees may order redbooks and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing
1-800-284-4721. Visa and Master Cards are accepted. Outside the USA,
customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

Preface xxiii

Acknowledgements
This publication is the result of a residency and internal efforts conducted at the
International Technical Support Organization, Poughkeepsie and IBM Glendale
Programming Laboratory, Endicott.

The author of this document is:

Fernando Nogal IBM Portugal

The following person has contributed to this document:

Scott Vetter IBM ITSO Poughkeepsie

Authors and contributors to previous editions of this document are:

Fernando Nogal IBM ITSO Poughkeepsie
Christopher Chambers IBM Australia
Jack Dacey Skill Dynamics, an IBM Company
Benny Dueholm IBM Denmark
Paul Evans IBM Canada
Alberto Evandro Favero IBM Brazil
Andreas Kalski IBM Germany
Artur Rodrigues IBM Portugal
Vera Prado Sabag IBM Brazil
Brian Troube IBM United Kingdom
Jens Olav Tveter IBM Norway

We would also like to acknowledge the professionals who took time to review the
current or previous editions of this document, and provided invaluable advice
and guidance during its development:

Larry Boulia IBM Washington Systems Center
Jay Brodfuehrer IBM GPL, Endicott
Kris Buelens IBM Belgium
David Chase Skill Dynamics, an IBM Company
Scott Deiter IBM Kingston
Richard Edwards IBM Kingston
Patrick Fadden IBM Kingston
Alex Feinberg IBM Kingston
Katie Glynn IBM GPL, Endicott
D.M. Marshall, Jr. IBM GPL, Endicott
Robert Michie IBM Kingston
Ken Morgan IBM GPL, Endicott
William Noonan IBM Kingston
Julie Novak IBM Kingston
Michael Rice IBM Kingston
Christine Stamm IBM GPL, Endicott

xxiv VMSES/E Primer

Part 1. VMSES/E Concepts

This part describes VMSES/E at a conceptual level. The tasks involved in
installing and servicing a VM/ESA system and its related program products are
discussed, as well as the control information needed to perform these tasks.

The organization and contents of the VMSES/E information base, the Software
Inventory, are covered in detail.

 Copyright IBM Corp. 1992, 1993, 1994 1

2 VMSES/E Primer

Chapter 1. Introduction

With the introduction of VMSES/E as the installation and service tool, and an
integral part of VM/ESA, IBM extended the migration work begun with VMSES.

| The new and enhanced functions introduced since VM/ESA Release 1.1, and the
| recent availability of VMSES/E on VM/ESA Release 1.5 370 Feature, place it

much closer to the strategic goal of a single tool for the installation of products,
service, and packages for the VM/ESA product set.

Today, VMSES/E is fully exploited by the components of the VM/ESA operating
system, and by other products as well. VMSES/E has a well-defined set of rules
for:

• Packaging installation and service materials.

• Specifying a product′s resources, requirements, constituent parts and
objects, and building rules.

Furthermore, VMSES/E provides a solid platform upon which specialized
functions can be built (actually, added to the ones already supplied with the
current release). Existing and future VM products could, thus, take advantage of
the VMSES/E capabilities.

Also, other vendors could, in the future, deliver their products in VMSES/E
format.

VMSES/E is not only an excellent set of tools that help the system programmer
control and manage VM installation and service, but it also provides a reliable
and consistent base for future enhancements.

Installation and Service Tools Requirements
Many VM systems programmers can readily write a list of functions that
VMSES/E should have. Obviously, there are also new functions one would like to
see, so that the entire task of software management becomes easier and less
consuming of resources.

Based on the combined capabilities of earlier tools, such as ITASK, INSTFPP,
program product (PP) installation EXECs, VMSERV, and PP service EXECs, the
list might look like this:

• Install new VM systems and PPs

• Help tailor products

• Service products

− Corrective service

− Preventive service

− Refresh service

• Keep a record of what has been done

VMSES/E was designed to eventually accomplish all of these tasks, and add
many new functions, some of which have been requirements for a long time.

 Copyright IBM Corp. 1992, 1993, 1994 3

Highlights
Throughout the remainder of this book the term “product,” unless explicitly
stated otherwise, may refer to an IBM program product or a System Control
Program (SCP). Also, unless explicitly stated otherwise, “MDISK” or “minidisk”
may refer to a CMS minidisk or a Shared File System (SFS) directory.
Sometimes the term “disk” is employed to emphasize that either a minidisk or
an SFS directory can be used.

The highlights of VMSES/E, listed below, are described in more detail, and
examples given, in subsequent chapters:

• A common tool for all VM products.

• Online Help files for all VMSES/E commands.

• A Software Inventory which implements:

− Automatic creation and maintenance of a database (sets of tables) that
contains control and status information, used during product installation
and service.

− Two levels of information: system-level and service-level.

− Query and Manipulation Facility (Software Inventory Management)
providing both user and system access to the software inventory tables.

• An installation function that can:

− Install new products (add a product to the system).

− Add a new copy of an already installed product.

− Migrate installed products, while keeping tailored files unchanged.

− Build a product (last step in add/migrate).

− Delete a product.

− Assist you in planning the addition, migration, and deletion of products.

− Optionally define (or delete) resources such as user IDs, minidisks, and
so on, when installing, migrating, or deleting a product.

• A service process that:

− Effectively controls back-leveling. No executable code will be loaded
from service tapes, unless requested for recommended service upgrade
(RSU) service.

− Allows the database (the Software Inventory) to be independent of any
service information included in the update files themselves.

− Enables selective PTF application.

− Allows PTF removal (not automated).

− Has improved performance.

− Automatically detects object changes.

− Is restartable.

− Has a planning, or dry-run, capability (What would happen if I apply PTF
UM12345...?).

• Support for managing saved segments, seamless with product servicing.

4 VMSES/E Primer

Appendix A, “Comparing VMSES/E to Previous Systems” on page 197 compares
the functions provided by VMSES/E with the ones provided by previous VM

| systems, as well as a cross-reference of VMSES/E functions per VM/ESA
| release.

Design Guidelines
The overall design philosophy of VMSES/E is to treat everything as much as
possible in the same way. So, generally speaking, VMSES/E performs the same
functions when installing (adding a new copy), adding an additional copy,
migrating, or servicing a product. These tasks are all done in three sequential
but independent steps, namely:

 1. Receive

 2. Apply

 3. Build

During these steps, a database is updated. This database contains all
information needed by VMSES/E on the installed products and the service that
has been applied to them.

Software Inventory
The database or, as referred to in VMSES/E terminology, the Software Inventory,
is kept at two levels:

• The system-level Software Inventory is a collection of tables describing the
installed products. It also has information on system objects, such as saved
segments.

• The service-level Software Inventory has information on the service applied
to each of these products.

This new database design, along with a complete separation of the receive,
apply, and build functions, is the real key to all the benefits of VMSES/E.

For example, tables reflecting receive, apply, and build status, along with a
powerful query tool, provide access to a highly detailed level of information
about your system.

In addition, tables detailing service requisite information and relationships
between products are created. Before VMSES/E, the service requisite
information (coreq, prereq, and so on) was in the service files themselves,
scattered in hundreds of small files on many minidisks.

Furthermore, the old technique made it difficult to manage the concurrent
existence of several software levels. Since service information was scattered,
there was no easy way to determine the status of the system. A presumably
simple task, such as removing a PTF, would involve a great number of manual
operations, including rebuilding all the objects affected, and you were never
quite sure that you had remembered everything.

Chapter 1. Introduction 5

| VM/ESA Release 2.2 Highlights
| The most significant functions introduced by VM/ESA Release 2.2 are:

| • Installation

| − VMFINS requisite support enhancements
| − File pool flexibility
| − New receive part handler for file uppercasing

| • Service

| − PSU/RSU planning tool
| − VMFBLD performance enhancements
| − Building a list of objects (VMFBLD LIST)
| − Test build capability
| − CP load list modification aid
| − Support of local modifications for source files using EXECUPDT
| − Local modifications support enhancements
| − VMFPPF multi-component compile capability

| • Saved Systems

| − Enhanced VMFSGMAP displays
| − More flexible segment build

VM/ESA Release 2.1 Highlights
The most significant functions introduced by VM/ESA Release 2.1 are:

• Installation

− VMFINS refinement

• Service

− High Level Assembler support
− Building of CMS DOS and callable services libraries
− Generated object build support
− Local modification support

VM/ESA Release 2 Highlights
The most significant support aspects introduced by VM/ESA Release 2 are:

• Installation

− Electronic envelopes
− User definable access mode for the Software Inventory
− Expanded PPF override creation opportunities

• Service

− Expanded role of the Version Vector tables
− Parts may have versions
− Object requisites
− Object definition change detection
− Building of CMS macro, text, and load libraries
− General enhancements to object building
− Building the CP nucleus as a CMS module file

6 VMSES/E Primer

• Software Inventory

− Panel-driven query
− Object properties query tool
− Saved segments information

• Saved Segments

− Planing, mapping, customizing, and building (includes non-VMSES/E
products)

− Automatic detection of service changes

| VM/ESA Release 1.5 370 Feature Highlights
| VMSES/E in VM/ESA Release 1.5 370 Feature is functionally similar to VM/ESA
| Release 2.1 VMSES/E component. The major difference is the lack of mapping
| and building capability for saved segments (the 370 feature does not have
| several commands required by VMSES/E′s segment management routines;
| however, VMSES/E will inform the user when a saved segment needs to be
| rebuilt). Segment mapping support is provided by the SNTMAP EXEC.

| For a summary of the major functions available on each VM/ESA release see
| Appendix A, “Comparing VMSES/E to Previous Systems” on page 197.

Chapter 1. Introduction 7

8 VMSES/E Primer

Chapter 2. Functional Overview

This chapter describes software management in the VM/ESA environment, and
VMSES/E in terms of the overall design philosophy and the functions it provides.

You may use this chapter as a road map to VMSES/E and its publications.
Although the level of detail is kept low, a few key concepts and control files have
to be defined and discussed in order to clarify the control structure. Part 2,
“VMSES/E Usage Experiences” on page 81 expands the information introduced
here.

The following publications are recommended if you want to gain a deeper insight
into the VMSES/E installation and service processes described in this chapter:

• VM/ESA: VMSES/E Introduction and Reference

• VM/ESA: Service Guide

• VM/ESA: Installation Guide

• VM/ESA: Planning and Administration

| • VM/ESA: VMSES/E Introduction and Reference for 370

| • VM/ESA: Service Guide for 370

Tasks
Some of the tasks systems programmers most often perform are:

• Installing new products (or new copies of existing ones).

• Applying service to products as required.

• Documenting the software installed on the system, and the service applied to
each of the products.

• Managing saved segments.

After a few general remarks on Software Management and VMSES/E
architecture, we describe how VMSES/E handles software installation and
service. How VMSES/E may assist you in documenting your system is covered
in detail in Chapter 3, “Software Inventory” on page 37. VMSES/E support for
saved segments is imbedded in several installation and service functions but, in
order to provide a coherent view of the whole process and a single place of
reference, this support is explained in Chapter 4, “Saved Segments” on
page 65, with further information and some examples given in Chapter 8,
“Saved Segment Experiences” on page 157.

Detailed information on the Software Inventory can be found in VM/ESA:
VMSES/E Introduction and Reference.

 Copyright IBM Corp. 1992, 1993, 1994 9

Installed Software
Before VM/ESA Release 1.1, there was virtually no means of checking the
software products and their service levels, except by use of manually created
records.

Since VM/ESA Release 1.1, the system installation process initializes the
Software Inventory, and servicing VM/ESA automatically updates it. Likewise,
VMSES/E automatically initializes (if needed) and updates the Software Inventory
whenever a program product is installed or serviced.

By maintaining all this product and service information, VMSES/E relieves the
systems programmer of a time consuming job. Also, features such as automatic
requisite checking and planning capability make software management less
error prone.

Query and reporting facilities may also assist the systems programmer in
preparing system documentation and planning for new products or service.

As the Software Inventory is separate from and independent of the code, all
software management functions can be executed without impacting the
production system.

Inevitably, when customers order service from the IBM Support Center, the
question arises: “Yes we have a PTF that will solve your problem. But have you
applied PTF UM12345 and not PTF UM54321?”

Who knows?

VMSES/E does.

Concepts and Sources of Information
Before we proceed with the functional description of VMSES/E it is necessary to
introduce a few concepts and definitions. In this section we also discuss data
input to the VMSES/E database, and explicitly name some of the key input files.

References to these definitions and files will be made throughout the rest of this
book.

Definitions and Terms
Of the many concepts and definitions employed by VMSES/E, we list below the
ones used throughout the remainder of this publication:

Term Definition

Product A software program that can be separately ordered.

Component A product′s functional unit, installed and serviced
separately from other functional units in the same
product.

A product may contain several components; for
example, CMS, CP, and VMSES/E are components of
the VM/ESA product.

10 VMSES/E Primer

Note: the term product is often used instead of
component, since most products have only one
component.

Object Each component consists of discrete objects. Types of
objects include nuclei, load libraries, help panels,
modules, and so on. An object, in turn, is built from
parts.

Part A CMS file provided as input to the build process.
Types of parts include macros, source files, text decks,
and so on. A part is the smallest serviceable unit of a
product (the smallest element to which service can be
applied).

APAR An Authorized Program Analysis Report is the formal
means of reporting and tracking the solution of a
problem. IBM develops a fix to the problem and gives
it the same number as the APAR, so the term APAR
may refer to both a problem report and its solution.
The fix may require changes to a number of parts and
may contain update service, replacement service, or
both. For a description of these types of service see
“Maintaining Your System” on page 23.

The APAR number is composed of a two-letter prefix
and five digits (for example, VM12345).

PTF A Program Temporary Fix contains the solutions for
one or more APARs. Each PTF is identified by a PTF
number similar in structure to the APAR number (for
example, UM87654).

Requisites Interrelations between products (system-level
requisites) or between program fixes (service-level
requisites).

System-level requisites Define relations between products (or components).
The most common ones are:

PREREQ Identifies a product that must be installed
before the given product can be installed.

REQ Identifies another product that must be
installed for the current one to operate
correctly.

DREQ Identifies a specific level of another product
that must be installed for the current one to
operate correctly, and if that other product
is deleted then the current one must also be
deleted. For example, in every VM/ESA
release, REXX lists the CMS component of
the same release as a DREQ.

NPRE Indicates a mutually exclusive condition.
For example, two External Security
Managers; installing one would prevent
installing the other.

Chapter 2. Functional Overview 11

Service-level requisites Define dependencies between program fixes for the
same or different products. The defined types of
dependencies include:

PREREQ PTFs that must be applied before a given
PTF is applied.

COREQ PTFs that must be applied at the same time
as the given PTF. No order is implied.

IFREQ PTFs in another component or product,
which must be applied at the same time as
the given PTF if the component or product is
installed. No order is implied.

SUP PTFs that have been completely replaced by
the given PTF.

HARDREQ A subset of PREREQ PTFs that have real
code intersections (PTFs that have updated
some of the same source lines as the given
PTF) or functional dependencies.

Usable form Synonym for “Object.” Examples are the VMFINS
EXEC, and PIPE MODULE, as opposed to the
serviceable parts VMFINS EXC12345 and PIPE
MOD12345.

Back-leveling A term used to describe the situation in which you
apply service to your system, and end with a service
level that is lower than your starting point. This
situation may occur when, for instance, usable forms
are loaded from a service tape.

prodid A unique 7- or 8-character identifier assigned to each
| product or component by IBM. For example,
| 6VMVMA22 is the prodid for CMS in VM/ESA Release
| 2.2.

compname A unique 1- to 16-character alphanumeric identifier
| assigned to each component by IBM. For example,
| CMS is the compname for CMS in VM/ESA Release 2.2.

Information Sources
As one might guess, most of the product and service information needed by
VMSES/E is delivered on the product and service tapes themselves. The rest is
supplied by the user, and includes modifications to standard installation
procedures and normal product tailoring.

Parameter Files on the Product Tape
The two most important files shipped with a product are:

prodid PRODPART The Product Parts file is the basic product description file.
Products and components in VMSES/E or Parameter Driven
Installation (PDI) format are shipped with this file, which
contains information on requisites, tailorable parts, and
resources, including:

• CP directory entries for any required user IDs; for
example, servers and sample user entries.

12 VMSES/E Primer

• Saved segment default information.

• Minidisk and SFS directory space requirements.

This information is used to update the system-level
Software Inventory.

prodid $PPF Products and components in VMSES/E or PDI format are
shipped with a Product Parameter File (PPF), which defines
how VMSES/E handles this product. The information in the
PPF includes:

• Control options.

• Logical files on the product installation and service
media.

• Indications for building the usable forms of the product.

• Variables that are used.

• Symbolic names for target disks.

• User-exit definitions. Examples of user-exit use are
installation related tailoring, and copying and renaming
sample files.

Parameter Files on the Service Tape
The number and types of parameter files shipped with a VMSES/E service tape
depend on the type of service, such as PSU, COR, or other (see “Maintaining
Your System” on page 23 for descriptions of service types). Besides the tape
descriptor files, the most important ones are:

ptfnum $PTFPART The PTF Parts file is shipped for each PTF and contains the
following important information:

• Description (PTF number, APAR number, and
description). A user memo may also be included.

• Requisite section defining PTF relationships.

• Parts section defining parts being serviced.

Most of the information in this file is used to update the
service-level Software Inventory.

Apply List List of the PTFs that are to be applied. The file name is
defined in the PPF. The file type as shipped is $APxxxxx,
where xxxxx depends on the type of service. After the file
is loaded on the disk, the file type is changed to $APPLIST.

Exclude List List of the PTFs that are not to be applied. The file name is
defined in the PPF. The file type as shipped is $EXxxxxx,
where xxxxx depends on the type of service. After the file
is loaded on the disk, the file type is changed to $EXCLIST.

Default Overriding
So far we have discussed only the product parameter file as it is supplied with
the product. This file contains default control information for product installation
and service; however, there are cases where you may need to modify these
defaults.

Suppose you want to install an additional copy of a program product. If
VMSES/E were to use the original PPF and install the product accordingly, the

Chapter 2. Functional Overview 13

result would actually be a replacement, since the disk definitions would not have
been changed.

Because IBM strongly recommends that the originally shipped $PPF files never
be altered, any changes are placed in override files. Overrides may also change
other overrides; in other words, overrides may be chained.

The original $PPF file is used as a base, and VMSES/E provides a tool to merge
the override files into the base and produce a “compiled,” or usable form,
Product Parameter File (of file type PPF). The procedure is logically similar to
the use of the CMS UPDATE function. The following files are related to PPFs:

prodid $PPF The original source PPF, as supplied with the product.

prodid PPF The usable form of the default PPF, also supplied with the
product.

ppfname $PPF User overrides to the original, or other override, PPF. You
define “ppfname,” which can be any valid CMS file name.

ppfname $PPFTEMP A temporary file created by the override utility.

ppfname PPF The usable form of the modified Product Parameter File.

Further information about these parameter files can be found in Chapter 3,
“Software Inventory” on page 37 and in VM/ESA: VMSES/E Introduction and
Reference.

Product Database Layout
The VMSES/E installation and service strategy is to separate the various types of
files for each component into logical strings having one or more disks each. All
components of VMSES/E-enabled products have the same logical disk structure,
which simplifies handling. Actual minidisk addresses or SFS directory names
are defined in each component′s PPF. The following strings, listed in the
VMSES/E access order sequence, have been defined:

Minidisk/String Contents

5E5 VMSES/E code. Commonly referred to as the SESDISK.

51D System-level Software Inventory, PRODPART, $PPF and
PPF files. Commonly referred to as the SIDISK.

TASK Any files that you want accessed before the service disks
defined for a component; for example, tools disks.

LOCAL Sample files, updates, replacement parts, and auxiliary
control files for local service. Files on the local string are
not changed by IBM during service.

APPLY Service control files and service-level Software Inventory
information that specify the service level and build status of
a component. The information includes PTF apply status,
service control information for parts (AUX files and Version
Vector tables), and object build status.

DELTA This strings holds all service materials received for the
component, and related service-level Software Inventory
information: PTF-numbered parts, update files, $PTFPART
files, Software Inventory PTF information, Apply and
Exclude lists, build lists.

14 VMSES/E Primer

BUILD Usable forms.

BASE This string contains component materials at the base level,
that is, before any service has been applied. These
materials include base source and object files, and build
lists. The contents of this string are never changed after
the initial installation.

SYSTEM Running system disks.

Each string may have many minidisks, or SFS directories, or both. In total, when
you consider all products and components, there can be a substantial number of
disks, but VMSES/E will keep track of them for you. VMSES/E provides a tool,
the VMFSETUP EXEC, to access the correct disks for the task you want to
perform.

The individual files are distributed among the different strings and individual
disks. We shall return to their exact locations later.

If you compare the installation process to building a house, you may think of the
Product and Service files as the building blocks, the Control files as the drawings
and documentation, and the Running System as the finished house. Taking this
analogy one step further, one could use the same building blocks with different
drawings to build a different house. This illustrates well VMSES/E capabilities
for managing multiple systems using a common base.

Installation and Service Processes Data Flow
Figure 1 on page 16 schematically shows the data flow within the VMSES/E
database during an installation or service process. Note that the boxes in this
figure represent groups of files with common features, and that the arrows
represent data flow to or from a group.

The numbers indicate the sequence in this 3-step process. The processes
shown are:

RECEIVE
 1. Call the RECEIVE utility
 2. Load the tape descriptor files
 3. Update the Software Inventory information
 4. Load control files and product or service files
APPLY
 5. Call the APPLY utility
 6. Read current maintenance level
 7. Write updated level
BUILD
 8. Call the BUILD utility
 9. Read status and control information
10. Read base and updated files
11. Build product and write new build status
12. Write usable forms to a test disk (saved segments are generated as real

system data files)

The following sections discuss these processes in more detail.

Chapter 2. Functional Overview 15

Figure 1. Data Flow in the VMSES/E Database

Information Supporting Media and Tape Formats
The preceding discussion implicitly assumed that data to be fed into the
VMSES/E database is supplied on a magnetic tape. From a logical perspective,
VMSES/E will treat all input as tape, but the physical medium could be almost
anything, such as:

• CD-ROM.

• Electronic envelopes.

• “Telephone” APARs. The IBM Support Center provides the APAR during a
telephone conversation.

• Paper. You receive a printout listing a patch or a source update.

In each case, the user can format the information for VMSES/E use.

Please refer to VM/ESA: VMSES/E Introduction and Reference for further
information.

VMSES/E relies on products and service being delivered in a well-defined format,
with appropriate parameter and control files. Do not confuse product format with
tape format. The latter is also known as product packaging format. VMSES/E
accepts the older installation formats and does certain installation tasks and

16 VMSES/E Primer

Software Inventory updates, but no service processing for these old format
products.

Distribution Tapes
A description of the different tape formats and the processing done by VMSES/E
is found in Appendix B, “Product Packaging and Distribution Media Formats” on
page 205, and in VM/ESA: VMSES/E Introduction and Reference. VMSES/E
supports the following tape formats:

• For installation:

− VMSES/E

− Parameter Driven Installation (PDI)

− INSTFPP

• For service:

− VMSES/E Refreshed Product Tape and RSU

− PUT

− COR

Note: VMSES/E-formatted products are not serviced by PUT tapes (only COR
and RSU). VMSES/E, however, can receive PUT tapes for other products.

CD-ROM
CD-ROM media is available since VM/ESA Release 2.1 and has the following
prerequisite:

• IBM System/370 and System/390 Optical Media Attach/2 Package (5621-264)

CD-ROM supports:

| • Initial installation of VM/ESA Release 2.1 and Release 2.2, including the RSU.

• RSU service, for the PSU processes.

• Manuals, in the IBM Online Library Omnibus Edition: VM Collection (also
| available for over 50 VM-related products, previous VM/ESA releases, and
| VM/ESA Release 1.5 370 Feature).

Electronic Envelopes
An electronic envelope is a single CMS file with a special internal structure.
Inside the envelope there are several CMS files and associated control
information, in a format that resembles the one created by the VMFPLC2
command on a tape. Electronic envelopes are beneficial, for example, to sites
with multiple or distributed systems: Because the envelope is a CMS file, the
SENDFILE command can be used to distribute the software, preserving the
sequence of the files.

VMSES/E Release 1.1 supported electronic envelopes for service only. Release
2 extended their use to the installation functions. A product distributed in more
than one envelope is supported in a way similar to a product distributed in
several magnetic tapes (or cartridges). Electronic envelopes are manipulated
with the VMFPLCD command. This command executes for a disk file the same
or equivalent functions that the VMFPLC2 command executes on tape files.

Chapter 2. Functional Overview 17

Installing Products
This section provides a closer look at the VMSES/E installation procedures. We
have moved down to the disk level and, to a certain extent, also to the file level,
but the detailed contents of the files is of no interest at this point. The key
concerns are how the contents of the installation media are loaded to the correct
disks, and how the product is built.

The installation tool is the VMFINS EXEC. With it, you can perform the following
tasks:

• Install a product for the first time

• Add additional copies of a product

• Delete products

• Migrate products to other releases or versions

• Use the planning capability

It was previously stated that VMSES/E handles all installation (and service) tasks
in essentially the same way. To understand how this is possible, please
consider the following points:

• Installing products and service is a matter of moving files from tape (or
another media) to disks, and then building the product according to a set of
predefined rules. These rules also define the disks from which to select the
parts for the build process, and where to place the built objects.

• The differences between the various “flavors” of installation, and the
application of service, are simply which set of disks are used for the load,
and which set of rules are selected for the build.

We now know that this information, selecting disks and rules for the build
process, is exactly what is found in the PPF. Furthermore, this file governs all
VMSES/E activity and that is why these processes are transparent to VMSES/E.

The “secret” is in the parameter files.

Product installation and several install scenarios are described in great detail in
VM/ESA: VMSES/E Introduction and Reference.

| Installing VM/ESA
| The next section contains a description of the VMSES/E installation process valid
| for any VMSES/E-enabled product, VM/ESA included. However, the installation
| of VM/ESA Release 2.1, Release 2.2, and Release 1.5 370 Feature do not follow
| the process described there.

| As the initial installation of VM/ESA does not require the full capabilities of
| VMSES/E, function is traded for speed and simplicity by using a process that, in
| essence, restores a system image created with the DDR utility. This process is
| called “flex-DDR.” Note that, however, the system from which the DDR is
| obtained was itself installed by using VMSES/E functions.

| Further information on the VM/ESA installation process is provided in the
| Installation Guide packaged directly with VM/ESA.

18 VMSES/E Primer

Installing a Product for the First Time
The following example illustrates the data flow during the installation of a
component, and only that. Products having several components have to
separately install each component. For a more detailed description of the
installation process, see Chapter 5, “Installation Experiences” on page 83. Also,
VM/ESA: VMSES/E Introduction and Reference is of particular interest.

For simplicity, we have chosen a first-time installation of a program product, and
there is only one minidisk in each of the strings defined in “Product Database
Layout” on page 14. This situation is illustrated in Figure 2. Note that VMSES/E
does not use data on the SESDISK, TASK, and SYSTEM disks. However, these
disks contain functions used by VMSES/E. Also, the 191 disk is used as a work
area.

Figure 2. Installation Example - Minidisk Configuration

Also, a VMSES/E format product is used; therefore, the installation tape is a
Refreshed Product tape (RPT). This type of tape contains the product with
service already applied and built up to a certain service level. As we will see,
the tape contents include the base files, service refreshed files, and the service
updates.

Because the RPT may not have the most recent level of service, another tape
containing the IBM recommended service since the last RPT may also be

Chapter 2. Functional Overview 19

shipped with the product. This tape is the Recommended Service Upgrade tape,
or RSU. It is issued periodically.

The process of installing or maintaining a product using the RPT and RSU tapes
is called Product Service Upgrade (PSU). See also “Maintaining Your System”
on page 23.

To follow the execution flow, please refer to Figure 1 on page 16.

RECEIVE

The first tape file contains installation related information such as the Memo to
Users, tape layout description, level identifier, and our two most important
sources of information (see “VMSES/E Installation Tape Format” on page 210):

• prodid $PPF

• prodid PRODPART

By calling VMFINS with the appropriate options, receive, the first installation
step, may result in the following:

 1. The information and parameter files are loaded from the tape.

 2. The product part file, prodid PRODPART, and the product parameter file
(both source, prodid $PPF, and usable form, prodid PPF) are loaded to the
SIDISK.

 3. The system-level Software Inventory Requisite and Description Tables are
updated.

 4. VMFINS prompts you to change the PPF defaults. If you decide to change
the defaults you must also supply a name for the override PPF (ppfname
$PPF). The Make Override panel is displayed and you can enter your
changes. The usable-form PPF, ppfname PPF, is generated on the A-disk,
then both this file and the override are moved to the SIDISK.

 5. Resource and requisite checking is performed for:

• Requisite program products

• Required user IDs

• Required minidisks and their sizes

The result of the resource check is stored in the file “prodid PLANINFO,” on
the A-disk.

You now have a usable form PPF. Next, review the PLANINFO file and decide
what changes have to be made. VMFINS can automatically create updates to
the CP Directory (add new user IDs, make changes to existing ones, and add or
change minidisks), or you can do it manually.

Figure 3 on page 21 shows the contents of the database after these first steps,
which are referred to as the “planning step.”

20 VMSES/E Primer

Figure 3. Files Loaded and Buil t by the Planning Step

The newly created PPF contains the minidisk addresses (or SFS directory
names) where the product files are to be loaded. So, you may now proceed with
the receive step:

 6. Files are loaded to the appropriate disks, as specified in the PPF.

 7. On each of the involved disks, a file, VMSES PARTCAT, is updated (or
created). This file contains a record for each file existing on the disk. This
record includes the file′s file ID, prodid, status, and the user ID installing the
product.

APPLY

The apply step, at the system level, is used to indicate whether the product has
all its requisites satisfied. If they are, the system-level Apply Status table, on the
SIDISK, is updated accordingly. If the apply step fails, then the product cannot
be built.

BUILD

All that remains to be done now is to build the product. Most of the product ′s
objects come already built on the installation tape, so only objects that were
tailored (nuclei, saved segments and saved systems) are normally required to be
built. If any parts require assembly, they have to be manually assembled, before
starting the build. Some products supply a Bponum EXEC to accomplish this.
The build process may require link-edit operations, but the build process will, at
least, update the System Build Status table. Other functions you perform on the
system will then know your product was built. The following steps are
performed:

 8. The product requisites are once again checked.

Chapter 2. Functional Overview 21

 9. The product is built on the disks specified in the PPF.

10. The system-level Software Inventory is updated.

11. If the product contains objects that VMSES/E cannot build, VMFINS calls
“ B ponum EXEC,” if it exists, to build those objects. The Bponum EXEC must
be supplied by the product.

12. VMFINS verifies that the product was installed and built correctly, by calling
a product supplied EXEC (Vponum EXEC) if it exists.

Note: ponum is the product order number, as listed in the :PONUM tag in the
product ′s PPF.

If the installation fails, some work files may remain on the A-disk. In that case,
you can examine the log files created, correct the problem, and restart the
installation.

Figure 4 shows the disks′ contents after installation completion. For
completeness, files are shown on both the DELTA and APPLY strings because
the Refreshed Product Tape, in addition to the base materials, may contain
service that is loaded to those strings, though you do not explicitly apply service
during the installation process. How this is done will be further detailed in
“Receive Install Tape Definitions (RECINS) Section” on page 49 and “Receive
Service Media Definition (RECSER) Section” on page 50. Besides the files we
have mentioned explicitly here, a number of log files and temporary work files
are also created. A detailed description of these files may be found in VM/ESA:
VMSES/E Introduction and Reference.

Figure 4. Files Loaded and Buil t after Installation Completion

22 VMSES/E Primer

Other Installation Options
For the purpose of this discussion, the VMFINS options that allow you to add
additional copies of a product, or delete a product, will not add anything new to
our understanding of the installation process. The use of VMFINS and its options
is discussed in Chapter 5, “Installation Experiences” on page 83, and in
VM/ESA: VMSES/E Introduction and Reference.

Maintaining Your System
The task of maintaining software products has three distinctly different purposes:

• The traditional interpretation: fixing software bugs

• Updating your software base and actually adding new function

• Modifying the distributed software to satisfy a local need

However from the systems programmer′s point of view, there is no difference,
since small program enhancements (SPEs) are usually shipped as program
fixes. A typical example of an SPE is a change that adds support for a new
hardware device.

To identify software problem reports, their fixes, and requests for program
enhancements, the concepts of APAR and PTF are used.

Service for VM/ESA and program products, as delivered by IBM, can be provided
in four ways:

Product Service Upgrade (PSU)
This procedure uses Refreshed Product Tapes (RPT), and
Recommended Service Upgrade (RSU) tapes, which have all the
service pre-installed and pre-built. You can service your system

| while leaving customized files untouched. Also, both reach-ahead
| and local service are identified and can be re-applied. This is the

recommended method of installing preventive maintenance.

Note: VM/ESA Release 1.5 370 Feature, VM/ESA Release 2 and later
releases do not use RPTs for preventive service; they only use RSU
tapes.

The RSU is cumulative from the beginning of the release (from July
1992, in the case of VM/ESA Release 1.1) but it contains only the fixes
to the most pervasive or HIPER types of error. In other words, it
contains only a subset of the total service.

Program Update Service
IBM will, on a regular basis, produce a Program Update Tape (PUT)
that contains service to VM program products. The PUT is cumulative
and contains all service up to the current level. However, service for
VMSES/E products does not use PUTs.

Corrective Service (COR)
Service IBM sends you to correct a specific problem that you or
another customer have encountered and reported. The service is
neither pre-applied nor pre-built, which is one of the major differences
with the RSU tape. The service is distributed either via a COR tape
or an electronic envelope.

Chapter 2. Functional Overview 23

Local Service
Any service that is not supplied in one of the above defined formats.
It can be service that you originated, or service that IBM sent you to
correct a specific problem that you have reported, but that IBM has
not yet incorporated into a formal PTF.

A VM/ESA system is maintained by changing its objects and parts. This sounds
very simple, but remember:

• A part may affect more than one object.

• A change in one part may require changes to others, since objects are
usually made up of many parts.

• Objects are related as well, and together form components.

• Components work together to make up a product.

• Finally, different products are used on the same system and may depend on
each other.

To illustrate these dependencies:

A “harmless” change to a tiny macro in a CP MACLIB may introduce errors in
CMS, so that a FORTRAN compiler will start to generate code at addresses right
on top of CMS itself. And where is the problem? Is it in FORTRAN, CMS, CP, or
somewhere else? Since we are not concerned here with problem determination,
we will not worry about that. But the example shows how all these
dependencies, in fact, make maintenance a very complicated task.

Since a few changed parts may start an avalanche, it is quite evident that very
precise service records must be kept at all times. Only by meeting all requisites
can a service update be successful. Problems that may occur include the
possibility of the requisite list not being complete, or that the fix itself might be in
error.

The example and comments made here explain why VMSES/E:

• Has a service-level Software Inventory

• Has a planning (also called test, or dry run) capability

• Uses a multi-level system structure (alternate, intermediate, and production)

Bypassing VMSES/E - Don ′t Do It
If you have used other service methods in previous VM systems you may be
tempted to bypass VMSES/E procedures. Our recommendation is do not do it .

It may seem, at times, that VMSES/E adds complexity to tasks when compared to
previous (manual) procedures. However, consider that VMSES/E is constantly
generating, updating, and checking system and product status information.

With VMSES/E, tasks that were very difficult and extremely time consuming to do
manually, not to mention of dubious reliability, are now easily performed. Even
local modifications are easy to maintain, and Release 2.2 has improved this
support. We have found that VMSES/E does simplify the systems programmer ′s
tasks and saves a significant amount of time.

24 VMSES/E Primer

| VMSES/E Service Concepts and Methods
| The objects and parts of a VM/ESA system and its associated products can be
| maintained in four ways:

• Update the part (called update service)

• Replace the part (called replacement service)

• Local service (user made changes) or IBM relief service

• Directly modify the object code (emergency situations only, not generally
recommended)

The methods used to obtain the changed version of an object or part are
different in each case but, for all types of service, the ground rule is to keep the
original IBM supplied part, or object, untouched. To do this, you need a carefully
designed control structure that keeps track of changes, and the sequence in
which they should be applied.

Update Service
This type of service is used for parts for which IBM supplies the source code.
The original (base) source file is never changed. Instead, the changes are
contained in separate update files. Both the base and the update files contain
sequence numbers in the rightmost columns of each record. In addition, the
update files contain control statements that use the sequence numbers, causing
the records to be changed, deleted, or new ones to be added. Using the CMS
UPDATE (or the EXECUPDT) facility, the changes are merged with the base to
produce a new, updated source file, but the base code remains unchanged.

The procedure is similar to that used when you create the PPF from the base
$PPF and override files.

The order in which updates are applied is crucial. Consider one update that
adds a record to a base file, another update that changes its contents, and a
third update that deletes it. It is critical which one comes first.

Update files are related to parts or objects, and the sequence in which they are
applied is determined by a control file (AUX) structure. There is at least one
control file structure for each component of VM/ESA. Except for local service
and patches, AUX files are generated by VMSES/E, so you will not have to worry
about that.

A discussion of this topic can be found in “Update Control Files” on page 117.
Service types and control files are also discussed in VM/ESA: VMSES/E
Introduction and Reference.

For ASSEMBLE language parts, the updated source file is then assembled to
| produce the updated text deck. For $SOURCE parts, the updated source file is
| compiled to produce an executable.

XEDIT can be used to create the update files. When invoked with the CTL option,
XEDIT uses the update control structure, creates an updated source file, and
displays it for you to edit it. When you issue the FILE command, XEDIT will save
in an update file only the records you have added or changed, and associated
insert and delete information.

Chapter 2. Functional Overview 25

Replacement Service
Some parts are serviced by replacing the part with a new part that has the
changes already incorporated. Files are serviced in this way, for example, when
the source files are not available (Object Code Only) or have limited availability
(as might be the case for an optional feature). Replacement service also makes
it easier to apply and maintain service, and saves space both on tape and on
disk.

Local Service
The VMSES/E receive and apply functions cannot handle local service. These
tasks, as well as the corresponding Software Inventory updates, must be done
manually.

| Note: VMSES/E since VM/ESA Release 2.1 supports optional automatic updating
| of the Software Inventory for local service in Assembler language, and for
| message repository files. VM/ESA Release 2.2 has extended this support to
| $SOURCE parts serviced through EXECUPDT. Also, new options (LOGMOD,
| $SELECT) produce a result functionally similar to the apply step, further
| automating the local modifications process.

An example of local service application can be found in “Local Service” on
page 122. That section also shows how to manually receive an individual PTF
(not on a COR tape), so that VMFAPPLY and VMFBLD can take over and update
all relevant Software Inventory tables. You can also find other examples in
VM/ESA: Service Guide.

Patches
Patches, or ZAPs, are emergency fixes to object code, and are to be considered
as temporary solutions until replacement object code, or source code updates,
can be provided.

Patch files are similar to update files in the sense that patch files produce
changes in the link-edited nuclei, modules, or text decks without changing the
original text files.

The use of these facilities is not generally recommended. For more information
see VM/ESA: Service Guide.

Multiple System Levels
In a real production environment, life is not simple. Ideally, you never apply
service directly to the production-level system and applications, but rather to a
test version. After a successful test, the newly installed or serviced program
eventually goes into production. So, in effect, you should operate with at least
two levels of system software.

After the switch to production, the disks that held the definitions of the old
production version may now be used to install a new test version. However, if,
in spite of extensive testing, there is a severe problem with the new production
version, it would be nice to be able to switch back to the old one. This process
is referred to as “backing out” the changes.

To have that ability we need three service levels for the software. VMSES/E has
adapted this 3-level structure, and isolates each level on its own disk. The
following terms are used to refer to the levels:

26 VMSES/E Primer

• Production : this disk contains all service that has been accepted as stable.
Accepting service should be the result of a conscious decision, based on the
belief that there will be no future need to remove any part of it. This
decision is extremely important: the disk is the result of accumulating (also
called merging) several service levels, and once a level is merged it is very
difficult to undo the merging.

• Intermediate : this disk contains service that has been received, applied, and
built but is still under test. Once you are completely satisfied with the test
results, you can merge this level with the production level.

• Alternate : this is a work disk, or staging area, for the most recent (highest)
level of service. It is used to receive and apply new service and verify the
results. Building and testing this service-level, however, should wait until
testing of the intermediate level is complete. The reason is that, normally,
only two build levels, test and production, are defined.

The use of, and need for, an alternate disk is fairly obvious. Any process can go
wrong for reasons ranging from power failures to program or media errors. You
want your production system isolated until the new (or serviced) product has
been validated.

The intermediate disk is required if you want to preserve the definition of the
previously running level of service, while testing new service, which is usually a
very good idea. This protects you from problems arising from cross-product
dependencies (VMSES/E does not verify those), or one or more PTFs that may be
bad. In that case it is necessary to back-out the service, which then becomes a
very easy task (see Appendix C, “Removing Service” on page 217 for an
example).

When counting levels, three is by no means a magic number. You can define
more, if you need. The number of levels is limited only by the availability of
CMS disk access modes.

Recommended Logical Strings and Service Levels
As discussed in “Multiple System Levels” on page 26, you may need more than
one service level per logical string. IBM recommends the following:

DELTA For VM/ESA Release 1.1, two levels, alternate and production; starting
with VM/ESA Release 2 a single level, production, is defined, saving
one access mode. Though, strictly, only one disk is needed, having
two disks (the alternate is used as a staging area) allows you to more
easily recover from a disk-full situation. To simplify this recovery, we
do recommend that, for the DELTA string, you use a single SFS
directory instead of using minidisks. As the DELTA string does not
contain any executable parts, the number of disks (levels) in the
string does not affect in any way the running system, or the
possibilities and techniques of recovering from bad service.

APPLY Three levels are recommended. A newly serviced system should be
thoroughly tested before being put into production. This requires a
separate (intermediate) service level. However, there may still be
problems that testing could not detect. Therefore, another service
level is required to allow retaining, for a reasonable amount of time,
the service level that was in production before the newly serviced
product (or system). Meanwhile, more recent service might have
appeared, and you would like to get started on it without mixing it up

Chapter 2. Functional Overview 27

with the already existing service. To be able to do so, you need the
third (alternate) level.

VMSES/E receive and apply functions work with a single string with multiple
disks (levels), and always place their results on the alternate (highest) level disk.
The build function uses a different structure: multiple strings with one disk each.
The reason is that products often require that their usable forms be placed in
several independent disks. Examples include keeping all help files in a help
disk, and isolating administrator-specific functions from general user functions by
placing them in separate disks (for an example see “Minidisk/Directory
Assignment Section” on page 49).

Because build results can be placed on several strings, defining multiple build
levels differs from defining multiple delta and apply levels, as explained below:

BUILD One level per string is defined, but several strings are employed.
Each string is, in a way, specialized. For example, online help panels
may be held in a separate string. Since there is only one level per
string, multiple product (or system) levels are achieved by building to
a test string. Normally, two strings, production and test, are enough.
Disks considered less critical might have just the production level. As
an example, CMS has four strings defined:

• Test CMS system tools (normally the Maint 493 disk)

• Test CMS system disk (normally the Maint 490 disk)

• CMS system tools

• HELP disk

Note: There is no need to define the CMS system disk, as it is
always available.

Applying Preventive Service
| Preventive service aims at fixing problems before they happen. This is possible
| because installation configurations vary enormously, and therefore one site may
| experience a problem well in advance of others. Problems that potentially may
| affect a large number of installations are collected in RSU tapes (see
| “Maintaining Your System” on page 23). With the quality improvements in code,
| and testing procedures, the fixes are smaller in numbers and more reliable.
| RSU tapes are available periodically, are cumulative, and should be applied
| regularly.

| Note: Most products no longer supply RPTs as part of the PSU process, since
| the RSU tapes are cumulative.

| PSU Planning
| As reach-ahead and local modifications may need to be reapplied, you may
| decide, based on the amount of new PTFs, to use the RSU in one of two ways:

| • As a COR tape (also referred to as “PTFs only”).

| Follow this path if the number of new PTFs is small compared to the amount
| of reach-ahead service, or there are excluded PTFs.

| • As a product refresh.

| Remember that the RSU comes with pre-applied and pre-built service. If
| there are few reach-ahead PTFs, and no PTFs to exclude, following this path
| will save you time and effort.

28 VMSES/E Primer

| The VMFPSU EXEC, new in VM/ESA Release 2.2, can help you plan for the PSU
| process. VMFPSU uses information provided on the service tape (a special VVT
| file of file type VVTPSU is shipped for each component) and compares it to the
| VVTs on your system. The special VVTs are obtained by executing a VMFINS
| INSTALL INFO command before calling VMFPSU (the files are placed on the
| SDISK). For a description of VVTs, see section “Update Control Files” on
| page 117.

| VMFPSU generates a file listing the following:

| • New PTFs (supplied with the RSU and not on your system)

| • Reach-ahead PTFs (applied on your system but not on the RSU)

| • Excluded PTFs (supplied on the RSU but excluded)

| • A list of parts with local modifications that are also serviced by the RSU.

| Once you have decided which way you are going to use the RSU, you can start
| preparations to receive the service.

Preparation for Service
Before service can be applied, the system has to be prepared. In other words,
we have to clear some minidisks to get work space. This discussion is valid for
the DELTA string, if it has more than one level, and the APPLY string. Assuming
a three-disk structure, a one-level or two-level merge can be performed:

• One-level merge

The contents of the alternate are merged into the intermediate disk, leaving
the alternate disk empty. This approach does not affect the production
system, but affects the intermediate level. Unless this is exactly what you
require, this merge should be done if, and only if , the intermediate level is
empty.

• Two-level merge

This should be done only if testing of the intermediate level is completed.
First, the contents of the intermediate disk are merged into the production
disk, leaving the intermediate disk empty. Next, the alternate disk is merged
with the intermediate disk. This leaves us with an empty alternate disk, a
new level of intermediate disk, and a new, higher-level production system.

Applying new service may, therefore, have to be deferred until testing the
previously applied service is complete. The merge function and the tool
provided by VMSES/E are described in “Merge” on page 103. You can also find
more information in VM/ESA: VMSES/E Introduction and Reference.

Other PSU Steps
For a discussion of the remaining steps please refer to VM/ESA: Service Guide,
VM/ESA: Service Guide for 370 or the product′s service guide as appropriate.

Applying Corrective Service
This section describes the VMSES/E corrective service process. The focus will
be on the principles and data flows, using an approach similar to the one used in
“Installing Products” on page 18. The minidisk configuration is the same as the
one used for the installation example (see Figure 2 on page 19).

Chapter 2. Functional Overview 29

Preparation for Service
Just as when doing preventive service, before you can apply corrective service
you must prepare you system. Everything we discussed in “Preparation for
Service” on page 29 applies here.

Receive the Service
The VMFREC EXEC receives service from the service media and places it on the
alternate (or only) DELTA disk. In the preparation step we made sure that this
disk was empty, if the DELTA string contains more than one level, so all
previously received service files are on the production disk. The receive
process is as follows:

 1. The first tape files loaded contain the Tape Descriptor File (TDF) and memos.
The TDF can be seen as a high-level map of the tape. It is used to locate the
service files for a specific component.

 2. The header service files for the component are loaded. Among them is the
Product Contents Directory (PCD) file. This file is a map of the logical tape,
and is used to locate the other service files. See “VMSES/E Service Tapes”
on page 214.

 3. If there are updates to the $PPF, we have a special situation. The receive
and apply steps must use the existing PPF. The new PPF will have to be
recompiled before the build step can be done. This is a manual step, and

| the serviced and compiled PPF files must be copied to the SIDISK disk. This
| situation is detected during the build step by the VMFBLD EXEC, and
| warnings are issued to the user.

 4. The service-level Software Inventory (on the production DELTA disk) and the
PPF (on the SIDISK) are scanned for information on:

• The general layout of the logical tape, how to handle the various parts,
file processing sequence, and target disks.

• The status of service already received.

 5. The tape files are located using the PCD, and loaded to the alternate DELTA
disk, in the desired sequence.

The information from the Software Inventory is needed to avoid loading parts in
usable form, or service files that have been loaded previously. VMFREC uses a
set of routines (called “part handlers”) to conditionally load parts of specific file
types, thus avoiding the usable forms. This approach effectively eliminates the
possibility of back-leveling. The benefit of the check for already installed service
is that the alternate DELTA disk, if defined, can be kept relatively small.

 6. Finally, the Software Inventory tables are updated to reflect the new receive
status.

Figure 5 schematically shows the data flow, and where the files reside after the
receive step. Please note that, after Release 2, all VM/ESA components have
only one DELTA disk defined. This does not affect the logical data flow, as
described above.

30 VMSES/E Primer

Also, please note that VMFREC may be invoked repeatedly, before the service
process moves to the apply step. VMFREC appends the Apply and Exclude lists
received from the tape to any Apply and Exclude lists already on the DELTA disk.
In effect, this merges the several sets of service, which are then applied as a
single entity. You should be aware of this fact so you can use it to your own
advantage. For example, this can be useful to combine the processing of
several COR tapes.

Figure 5. Receive Step - Files and Data Flow

Apply the Service
The apply process produces an input to the subsequent build step. The
VMFAPPLY EXEC uses control and status information as input, and produces
updated control and status information as output. Therefore, no changes are
made to the parts, objects, or usable forms of the product.

As in the receive step, we again assume that the maintenance levels have been
consolidated. The alternate disk is empty, the highest maintenance level is on
the intermediate disk, and the previous level is on the production disk.

Chapter 2. Functional Overview 31

| VMFAPPLY combines the control information for the service we placed on the
| alternate DELTA disk, in the previous step, with the service level information on
| the intermediate APPLY disk. In sequence, what happens is:

 1. VMFAPPLY has to know which new PTFs we are dealing with. So the Apply
and Exclude lists, and the corresponding Requisite tables are read from the
alternate (or only) DELTA disk.

 2. We also have to know the starting point or, in other words, what service level
we are updating from. This information is found in the service level tables,
on the intermediate APPLY disk.

 3. Finally (as always) we get fundamental service information for the particular
product or component from the PPF.

All necessary input information is now in storage and the actual PTF processing
starts:

 4. Using the Apply and Exclude lists as a “shopping l ist,” each PTF is
individually processed. Descriptive information is obtained from the
respective $PTFPART files.

 5. The $PTFPART files are scanned, checks are made for requisites, and
missing service is identified.

 6. If no errors are found, VMFAPPLY updates the Version Vector tables, and
creates AUX files for the parts serviced by update service. Furthermore, a
file with a list of serviced parts (the Select Data File) is updated. This file is
later used by the build process to identify objects that have to be rebuilt.

 7. If requisites are missing, or VMFAPPLY fails for any reason, the service level
tables are not updated and VMFAPPLY stores two files on the A-disk:

• RETRY $APPLIST, which contains a list of PTFs that passed requisite
checking. If you run VMFAPPLY again, using this file as an apply list,
these PTFs are applied.

• appid $MISSING, which lists the parts identified as missing, where
“appid” is the name of the service Apply Status table.

Figure 6 schematically shows the data flow, and where the files reside after the
apply step.

The Apply process is described in VM/ESA: VMSES/E Introduction and
Reference.

32 VMSES/E Primer

Figure 6. Apply Step - Files and Data Flow

Build the Product
So far we have done nothing in terms of usable forms. The service and update
files are on disk, and the apply function has created a “recipe” of how to use
them. To build the product from the newly received and serviced parts, the
VMFBLD EXEC has to be invoked.

The build process can be divided into three basic steps:

 1. Identify the objects to be rebuilt due to the application of service. This
includes any saved segments defined by the product.

 2. Rebuild these objects, excluding saved segments. Saved segments are built
at a later stage.

 3. Manually build objects and perform other post-build tasks that cannot be
performed by VMFBLD.

The main events are as follows:

 1. Start by satisfying any assemble requirements. Though service ships
preassembled serviceable parts, any local modifications you may have made
require re-assembly of the affected parts. Also, now is the time to take care
of any patches and fixes.

Chapter 2. Functional Overview 33

 2. One of the first tasks VMFBLD performs is to identify whether the PPF has
been serviced. If so, VMFBLD prompts you to compile the PPF. If you reply
indicating you wish to compile, VMFBLD copies the serviced $PPFs to the
A-disk. Compiling has to be a manually initiated operation, for VMSES/E has
no way of knowing which user overrides exist and whether they are still
valid. The user should do this validity check, perform any required changes
to the override $PPF, and invoke VMFPPF to compile the serviced $PPF and
its overrides. The files should be copied to the SIDISK. Once the user
indicates that all $PPFs are compiled, the build can proceed.

 3. The Select Data File created in the apply step and the Build Status table for
the component to be updated are used as a first input to VMFBLD. The
Select Data File is read from the alternate APPLY disk, and the Build Status
table from the intermediate APPLY disk (since no builds have been
performed yet, in our scenario, on the alternate).

 4. Using the list of serviced parts from the Select Data File, and the build lists
(which describe which parts an object is built from), the objects that have to
be rebuilt are identified and flagged in the Build Status table as SERVICED.

| The name of the build list is also included. When the serviced part is itself a
| build list, VMFBLD compares the serviced build list with the previous version
| to determine whether any objects where deleted, added, or had their
| definition changed. These objects are flagged in the Build Status table as
| DELETE, SERVICED and SERVICED, respectively.

 5. Based on the updated Build Status table, VMFBLD now starts to build
objects. VMFBLD calls object-type-specific part handlers to do the job.
Using the build list name (taken from the Build Status table) as the key, the
appropriate part-handler is identified by searching the :BLD section of the
PPF. Part handlers may need the following files:

• Build list

• Version Vector table

• AUX files (for source updated objects, if a VVT is not available)

• PTF-numbered parts

The actions taken by a part handler vary from simply copying and renaming a
file, to the creation of a nucleus.

 6. The output from a part handler is:

• A usable form

• Status information on the built objects

 7. Based on the status information provided by the part-handlers, VMFBLD
updates the Build Status table.

Figure 7 on page 35 schematically shows the data flow, and where the files
reside after the Build step.

| There are some objects which VMFBLD cannot build. Servicing parts contained
| in these objects will cause the objects to be flagged in the Build Status table as
| requiring rebuilding. So, when VMFBLD processing completes, there may

remain (depending on the product) a few manual build steps. However, the
software inventory can be updated manually and thus, still reflect the true build
status of your system.

34 VMSES/E Primer

A description of the Build process can be found in “How Build Works” on
page 110.

Figure 7. Build Step - Files and Data Flow

Moving the Serviced Product to Production
After thoroughly testing the serviced product you will move it into production.
How you do it depends on several factors:

• Build disks shared with other products

• Use of SFS directories or minidisks

• Product defined NSSs or saved segments

The VM/ESA Release 1.1 service publications described a method of moving a
serviced component to production that had the following steps:

 1. Using DDR, copy the production disk to the test disk.

 2. Build the component and test.

 3. Swap the test and production build disks on the CP directory.

This method:

• Is restricted to minidisks.

Chapter 2. Functional Overview 35

• Requires that the build disks are not shared by independent products. If the
disks are shared, when you do the DDR copy you may back-level the
products you are not servicing.

Some VM/ESA components share disks, for example, CMS and REXX, CP
and DV. It is very important to service these components following the rules
and sequence defined in the VM/ESA: Service Guide, otherwise back-leveling
may occur.

• However, this method allows you to quickly fall back to the old production
level, if something goes wrong with the new level.

This method should not be followed. As a matter of fact, the VM/ESA Release
2.1 and Release 2.2 service publications recommend a very different method.
However, the new method does not eliminate the back-leveling problem
discussed above, and as such only works for VM/ESA or for products using
separate build disks.

If you are using SFS directories you will have to be careful or you may lose the
authorizations and aliases.

Saved segments cannot be tested: once generated, they immediately replace the
production version. Should they cause errors, the previous versions will have to
be made available, either by restoring the old system data files from tape or by
re-generating them.

On “Production” on page 108 we further discuss the disadvantages of the new
method and how to avoid them. We also address the problem of falling back to
the previous production level.

36 VMSES/E Primer

Chapter 3. Software Inventory

The Software Inventory concept was introduced in “Software Inventory” on
page 5. Its purpose is to keep track of the status of the products and service
that have been installed on the system, and to record and maintain information
about saved segments. The Software Inventory implements a “relational view”
of the components, parts, and objects of the system.

A VMSES/E utility command, VMFSIM, allows you to query and manipulate the
Software Inventory.

VM/ESA Release 2 introduced two tools that exploit the Software Inventory:
VMFQOBJ and VMFINFO. VMFQOBJ complements VMFSIM by providing
information about objects defined in build lists. VMFINFO is a full-screen,
panel-driven interface to VMFQOBJ and most VMFSIM query functions, which
helps you manage the software on your system(s).

In “Installed Software” on page 10, we briefly discussed the Software Inventory
and what it can be used for. This chapter expands on that subject.

Complete information on the Software Inventory design, and examples of the
tables that constitute it, can be found in VM/ESA: VMSES/E Introduction and
Reference.

Introduction
You, as a systems programmer, may from time to time have many questions
concerning the status of your systems. Some of those questions might be:

• Which products are installed on my system?

• What are the prerequisites for a component?

• Which PTFs were applied to a component?

• Which APARs are contained in a PTF?

• What is the status of a given APAR?

• Which PTFs depend on a given PTF?

• Which parts are serviced by a PTF?

• What service is applied to a part?

• Which parts must be rebuilt after applying service?

• What will be the impact of removing this PTF?

The questions above, and many more, may be answered using the Software
Inventory. The VMFSIM command is the interface to the Software Inventory. As
briefly explained above, VMFINFO is a new utility command that actively exploits
VMFSIM. Examples on the use of VMFINFO can be found in “VMFINFO
Command” on page 145. Now that we have seen what the Software Inventory
may be used for, let us take a closer look at how it is set up.

Note: Throughout the remainder of this chapter the term product may also be
used in the place of component.

 Copyright IBM Corp. 1992, 1993, 1994 37

The Software Inventory consists of two main parts:

• The system-level Software Inventory

• The service-level Software Inventory

Each of these two levels is a collection of tables. These tables can also be
grouped by type. Most of these types exist in both levels, but some are unique
to one level, as indicated below.

The system-level Software Inventory resides on a separate disk, by default
MAINT 51D, hereafter referred to as the SIDISK (or SID-DISK, as 51D visually
looks like SID, just as 5E5 looks like SES). The system-level tables are:

• Receive Status table (SYSRECS), describing when each product was
received.

• Description table (SYSDESCT), describing each product.

• Requisite table (SYSREQT), describing the requisites for each product.

• Apply Status table (SYSAPPS), describing the apply status for each product.

• Build Status table (SYSBLDS), describing the build status for each product.
There is a separate system-level table to track the service build status of
system objects (SRVBLDS), such as saved segments.

The following system-level file resides, by default, on the SIDISK, but can be
moved:

• Segment Data File (SEGDATA), contains customized parameters for building
saved segments.

The following system-level table resides on the SESDISK:

• Filetype Abbreviation table (SYSABRVT), contains the list of abbreviations of
CMS file types used by the IBM service process.

The service-level Software Inventory tables for each product reside on that
product ′s DELTA and APPLY strings. The tables are:

• Receive Status table (SRVRECS), describing when each PTF was received.

• Description table (SRVDESC), describing each PTF.

• Requisite table (SRVREQT), describing the requisites of each PTF.

• Apply Status table (SRVAPPS), describing the apply status of each PTF.

• Build Status table (SRVBLDS), describing the build status of each serviced
object.

• Version Vector table (VVTlvl), contains the history of all PTFs that have been
applied to the parts of a product.

Also residing on the SIDISK, though not formally part of the Software Inventory:

• Product Parameter File (PPF and $PPF), which is the key file for VMSES/E to
install and service a component.

• Product Parts file (PRODPART), which describes a product in terms of
tailorable parts, requisites, and so on.

Also residing on the DELTA string, though not formally part of the Software
Inventory:

38 VMSES/E Primer

• The PTF Parts file ($PTFPART), which describes a PTF in terms of parts,
requisites, and so on.

Notes:

• VMFSIM also manages the PPF, PRODPART, and $PTFPART files.

• The PRODPART and PTFPART files are described in VM/ESA: VMSES/E
Introduction and Reference as belonging to the Software Inventory. We
believe this to be wrong: These files provide input to the Software Inventory
but are part of a product.

The Software Inventory also contains a parts catalog, which consists of one file
(table) for every disk used by VMSES/E. The file is always named VMSES
PARTCAT, and we refer to it as the PARTCAT file. The PARTCAT file describes
the status and change history of all the VMSES/E managed files that reside on
that disk. In this way VMSES/E can keep track of all the files belonging to each
of the components of the products installed, as long as the products adhere to
the VMSES/E rules.

All the tables in the Software Inventory are implemented as CMS flat files. The
internal structure is made up of “tags,” just as in the CMS NAMES file. Each
table consists of one data structure. It has one key field, and one or more data
fields subordinated to the key field.

Figure 8 shows the layout of the Software Inventory and the location of the
tables.

Figure 8. Location of the Software Inventory Tables

Chapter 3. Software Inventory 39

System-level Software Inventory
The Software Inventory consists of several tables, containing the following types
of information:

• Product information

• Build status information

• Supporting information

All tables in the system-level Software Inventory are kept on the SIDISK, together
with the PRODPART files, $PPFs, PPFs, and the SEGDATA files. Because the
SEGDATA files contain shared-product information on system objects they are
not described here (see “System-Level View” on page 67 and “Segment Data
File” on page 162).

Before we proceed, let us have a look at one of the tables. Figure 9 shows the
system-level Receive Status Table.

| :PPF.ESA VMSES :PRODID.6VMVMK22%VMSES :STAT.RECEIVED.03/22/94.16:55:02.MAINT.201-0000
| :PPF.ESA CP :PRODID.6VMVMB22%CP :STAT.RECEIVED.03/22/94.17:28:06.MAINT.201-0000
| :PPF.ESA DV :PRODID.6VMVMI22%DV :STAT.RECEIVED.03/22/94.17:43:32.MAINT.201-0000
| :PPF.ESA CMS :PRODID.6VMVMA22%CMS :STAT.RECEIVED.03/22/94.18:38:59.MAINT.201-0000
| :PPF.ESA REXX :PRODID.6VMVMF22%REXX :STAT.RECEIVED.03/22/94.18:46:24.MAINT.201-0000
| :PPF.ESA GCSSFS :PRODID.6VMVML22%GCS :STAT.RECEIVED.03/22/94.06:38:15.MAINT.201-0000
| :PPF.ESA TSAFSFS :PRODID.6VMVMH22%TSAF :STAT.RECEIVED.03/22/94.07:20:26.MAINT.201-0000
| :PPF.ESA AVSSFS :PRODID.6VMVMD22%AVS :STAT.RECEIVED.03/22/94.07:38:08.MAINT.201-0000
| :PPF.CUF CUF :PRODID.6VMVME11%CUF :STAT.RECEIVED.06/29/92.13:17:44.MAINT
| :PPF.MYCUF CUF :PRODID.6VMVME11%CUF :STAT.DELETED.07/12/92.15:28:47.MAINT
| :PPF.5798DWDC NONE :PRODID.5798DWDC%RTM :STAT.RECEIVED.04/22/93.12:08:11.MAINT
| :PPF.ESA TSAF :PRODID.6VMVMH22%TSAF :STAT.DELETED.04/22/94.11:33:22.MAINT.201-0000

Figure 9. System-Level Receive Status Table - VM SYSRECS

Notice that there are three fields in this table:

:PPF The PPF name used to receive the component or product, followed by
the component name in the same PPF.

:PRODID The product identifier.

:STAT The receive status for the component or product. As you see, it can
have four or five sub-fields:

• Status (RECEIVED, DELETED)

• Date of last status change

• Time of last status change

• User ID performing the last operation

• Service level of the component, if supplied

This example of one of the tables gives you the general concept. Hence, we will
only summarize the rest of the tables below, indicating, for the most important
tags, which table they belong to and their meaning.

Table 1 on page 41 summarizes the system-level tables.

Please note the “file type” row. It contains some names (actually file types) that
we will use as a short name for the tables in the following text.

40 VMSES/E Primer

Table 1. System-Level Tables Summary

Field Description Tag
Name

Description
table

Requisite
table

Receive
Status
table

Apply
Status
table

Build
Status
table

Filetype
Abbreviation
table

Disk of residence n/a SIDISK SIDISK SIDISK SIDISK SIDISK SESDISK

File type for this table n/a SYSDESCT SYSREQT SYSRECS SYSAPPS SYSBLDS SYSABRVT

Product identif ier :PRODID √ √ K √ √ √

Name of PPF used :PPF √ K √ K √ K √ K

Component name in PPF :PPF √ K √ K √ K √ K

Product description :DESC √

Requisite information :PREREQ
:REQ
:SUP
:IFREQ
:NPRE
:DREQ

√
√
√
√
√
√

Product status :STAT √ √ √

Date/time of last change
in product status

:STAT √ √ √

User ID last changing
product

:STAT √ √ √

Service level :STAT √

3-character fi le type
abbreviat ion

:ABBRFT √ K

Corresponding real CMS
file type

:REALFT √

8-character identif ier for
associated base part

:BASEFT √

Legend:

√ A check indicates that the field so marked exists in the listed table.

K This character is used to identify key-fields.

Service-level Software Inventory
There are three types of information in the service-level Software Inventory:

• PTF information

• Maintenance-level information

• Build status information

As we have seen in “Introduction” on page 37, the service-level Software
Inventory tables are located on the DELTA and APPLY strings. The service-level
Software Inventory is maintained only for products in VMSES/E format. Table 2
on page 42 shows the most important tags in the service-level Software
Inventory tables.

Note that the tables are cumulative. For example, the APPLY string has three
levels and, over time, each level will contain an Apply Status table. The Apply
Status table on the alternate apply disk will, then, contain all the PTFs that were
ever applied to the system, while the Apply Status table on the intermediate
apply disk will contain its own PTFs, and the PTFs on the production level.

Also note there is a Version Vector table for each maintenance level defined in
the control file. For a description of the control file, see “Update Control Files”

Chapter 3. Software Inventory 41

on page 117. For example, if you have local fixes and are using the IBM defined
naming conventions, you will have two VVTs of file types VVTVM (for IBM
service) and VVTLCL (for the local service).

Table 2. Service-Level Tables Summary

Field Description Tag Name Description
Table

Requisite
Table

Receive
Status
Table

Apply
Status
Table

Build
Status
Table

Version
Vector
Table

String of residence n/a DELTA DELTA DELTA APPLY APPLY APPLY

File type for this table n/a SRVDESCT SRVREQT SRVRECS SRVAPPS SRVBLDS VVTlvl

PTF number :PTF √ K √ K √ K √ K

Status of PTF/object :STAT √ √ √

Date/time of change in
PTF/object status

:STAT √ √ √

User ID doing last change
of PTF/object status

:STAT √ √ √

APAR number :APARNUM √ K √

APAR description :ABSTRACT √

Requisite information for
PTF

:PREREQ
:COREQ
:IFREQ
:SUP
:HARDREQ

√
√
√
√
√

PTF/APAR number
applied to part

:PTF √

Part ID :PART √ K

8-character file type of
source update fi le

:PTF √

Build l ist name :BLDLIST √ K

Name of object generated
from build list

:OBJECT √

Name of parts serviced by
last apply

:PARTID √

Legend:

√ A check indicates that the field so marked exists in the listed table.

K This character is used to identify key-fields.

Basic Information Sources
As described in “Parameter Files on the Product Tape” on page 12, and
“Parameter Files on the Service Tape” on page 13, the input files for the
Software Inventory are:

• PPF for a product or component

• PRODPART file for a product or component

• $PTFPART file for a PTF

• Tape contents for a product or component

We also observed in “Introduction” on page 37 that the PRODPART and
$PTFPART files are not part of the Software Inventory.

42 VMSES/E Primer

These source data files for the system-level Software Inventory and the
service-level Software Inventory, are described in more detail in the following
sections. Although, formally, it is not part of the Software Inventory, the Product
Parameter File is so important that we will begin our descriptions with it.

Product Parameter File
The use of the Product Parameter File (PPF) was introduced in “Concepts and
Sources of Information” on page 10. In this section, we will describe this file ′s
contents in more detail.

The PPF is really the focal point of VMSES/E for a product or a component. It
contains all the information about how the product is defined and how it will be
handled by the different stages of the installation and service processes.

Overview
For VMSES/E-enabled products (VM/ESA included) both the source form and the
usable form of the PPF are shipped in the distribution media. This PPF contains
the IBM defined defaults for the product. Having the source form available
allows you to override those defaults (see “Default Overriding” on page 13).
The source form has a file type of $PPF and is not directly usable by the
VMSES/E commands. To make it usable, you have to “compile” the source file
using the VMFPPF command. This command produces a new file, with file type
PPF, which is the usable form. The key points to observe are:

• VMSES/E functions use only “compiled” PPFs.

• After any local changes or service to the source PPF, the systems
programmer is responsible for generating the usable form of the PPF.

Because compiling the PPF is a human decision, performance has improved
over the previous implementation in VMSES: the old functions would
automatically re-compile the PPF every time they were called, to make sure they
were using the most recent version.

VMSES/E-enabled products have one or more PPFs. The convention in VM/ESA
is one source PPF per component. The name of the file is normally the product
or component ID, which may be rather cryptic. For example, the component ID
(or product ID) for CMS in VM/ESA Release 2.2 is 6VMVMA22, which is not
obvious. To remedy this problem, provide flexibility, and because IBM strongly
recommends that you never alter the PPFs that IBM delivers, the concept of PPF
override has been introduced.

A PPF override is logically similar to a CMS UPDATE file because it introduces
changes to the base PPF. Just as a CMS file may have many levels of updates,
so may the PPF have a chain of overrides. This gives you flexibility in tailoring
the environment to your needs.

An example of a PPF override is found in “Creating a PPF Override” on
page 189.

Chapter 3. Software Inventory 43

VMFOVER and VMFPPF Commands
To extend the analogy to the CMS UPDATE command a little further, we
introduce the VMFOVER command. It has the same function as the CMS
UPDATE command: to apply the changes made in the PPF override to the base
PPF.

The result is a file with the same file name as the override file, but with a file
type of $PPFTEMP. This file must then be “compiled” using the VMFPPF
command to produce the executable form of the PPF.

Note that the VMFPPF command will automatically call the VMFOVER command;
therefore, in practice, you would only invoke VMFOVER if you wanted to

| separately validate your overrides before attempting to compile. VMFPPF can
| also compile, with a single invocation, all components of a source PPF.

Invoking VMFPPF is a manual operation. There is no provision in VMSES/E to
automatically call it. Therefore, you completely control when to bring a newly
serviced PPF into production status.

PPF General Structure
To begin our description of the PPF, let us take a look at its general structure,
shown in Figure 10.

:COMPNAME - PPF COMPONENT DEFINITIONS (KEY)
:PRODID - PRODUCT IDENTIFIER (FIELD)

:CNTRLOP - CONTROL OPTIONS (BLOCK)
...

:ECNTRLOP - END CONTROL OPTIONS (EBLOCK)
:DCL - DECLARE VARIABLE SECTION (FIELD)

...
:EDCL - END DECLARE VARIABLE SECTION (FIELD)
:MDA - MINIDISK/DIRECTORY ASSIGNMENTS (FIELD)

...
:EMDA - END MINIDISK/DIRECTORY ASSIGNMENTS (FIELD)
:RECINS - INSTALL TAPE DEFINITIONS (FIELD)

...
:ERECINS - END INSTALL TAPE DEFINITIONS (FIELD)
:RECSER - SERVICE TAPE DEFINITIONS (FIELD)

...
:ERECSER - END SERVICE TAPE DEFINITIONS (FIELD)
:BLD - BUILD DEFINITIONS (FIELD)

...
:EBLD - END BUILD DEFINITIONS (FIELD)
:DABBV - PTF/REAL FILETYPE DEFINITIONS (FIELD)

...
:EDABBV - END PTF/REAL FILETYPE DEFINITIONS (FIELD)

:END - END PRODUCT/COMPONENT DEFINITIONS (EBLOCK)

Figure 10. PPF Structure

Now let us look at the PPF in more detail. We will use the name PPF
interchangeably for both $PPF files and PPF files, because their general

44 VMSES/E Primer

structures and contents are the same. The differences are summarized in
Table 3 on page 45.

A PPF contains several areas. Each area can be further subdivided in sections.
Each area, or section, is made up of a number of tags, in uppercase, starting
with a colon (:) in column 1. The tag may accept parameters, which may either
be on the same line, or on the following lines. In the latter case, the parameters
are terminated by an end tag (for example :MDA and :EMDA).

The sections of each file are described below, but details for all tags are not
given.

Table 3. Valid Areas and Sections for Each PPF Form

Area/
Section

Source
$PPF

Override
$PPF

Temporary
$PPFTEMP

Usable Form
PPF

Header √ √

Component

Control options
Variable declarations
Minidisk/directory assignments
Receive install tape definition
Receive service media definition
Build product definition
Filetype abbreviations

√ (•)

√
√
√
√
√
√
√

√ (•)

√
√
√
√
√
√
√

√ (•)

√
√
√
√
√
√
√

Overr ide

Control options
Variable declarations
Minidisk/directory assignments
Receive install tape definition
Receive service media definition
Build product definition
Filetype abbreviations

√ (•)

√
√
√
√
√
√
√

√ (•)

√
√
√
√
√
√
√

Notes:

• Can have one or more component areas
• Only one component area is allowed
• Can have zero or more override areas
• Can have one or more override areas

Header Area
The header area is the first area in the PPF. Among other information, it
contains the list of the components described in the next area, the component
area. Figure 11 shows the header area for the CMS component.

:COMPLST. CMS
:OVERLST. CMSUCENG CMSPTFS

Figure 11. $PPF for CMS - Header Area

The :COMPLST tag lists those components that are described in this PPF, and is
important if you want to create an override file. The override must refer to the
PPF file name and the component name.

The :OVERLST tag indicates that this PPF contains several override areas.

Chapter 3. Software Inventory 45

Component Area
The next area of the PPF is the component area, which consists of a set of data
blocks, called “sections.”

The :CMS tag starts the definition of the CMS component, as shown in Figure 12.

| The :PRODID tag is also important. It contains the product ID (in this case
| 6VMVMA22) and the component name (in this case CMS). The composite term
| 6VMVMA22%CMS is called the REQID, and is used only during installation by

VMFINS. This tag is also found in the PRODPART file and in the Software
Inventory tables, which are discussed in “System-level Software Inventory” on
page 40.

| :CMS.
| :PRODID. 6VMVMA22%CMS

Figure 12. $PPF for CMS - Component Area (Excerpt)

Control Options Section
The first block is the Control Options section. It describes general attributes of
the component such as:

• File names for some of the service-level Software Inventory tables.

• Whether messages will be logged.

• Whether VMSES/E should automatically access the pertinent disks each time
a VMSES/E command is issued.

• The system national language.

• The names of the control file, default apply list, and exclude list.

• The type of consistency checking to be done during the apply and build
steps.

• The PTF and APAR file type prefixes for the component.

Figure 13 on page 47 shows the control options section for CMS.

Note: The :USEREXIT tag allows you to define a pre- and post-processing Exit
EXEC for several VMSES/E functions. If defined, this EXEC is called by the
VMFREC, VMFAPPLY, VMFBLD, VMFMRDSK, VMFASM, VMFHASM,
VMFHLASM, GENCPBLS, VMFEXUPD, and VMFNLS commands, upon
entry and exit.

Two or three parameters are passed to the user exit EXEC:

• The name of the command being executed.

• The word SET-UP or CLEAN-UP, for pre- and post-processing exits,
respectively.

• On the CLEAN-UP call, if an error has occurred, an optional third
parameter, the return code with which the calling function failed, is
passed.

The :VERSION tag was introduced in Release 2 for compatibility purposes. It
allows VMSES/E to recognize products formatted for earlier releases and act
accordingly. Also, the :CKAUX tag is no longer used.

46 VMSES/E Primer

As can be seen, this section contains many items of useful information, some of
which may be overridden by options on the commands that use the PPF.

| :CNTRLOP.

| * TAG VALUE(S)
| *--------- ---------
| :PRODDESC. CMS for VM/ESA 2.2 * Product description
| :BCOMPNAME. CMS * Base component name
| :VERSION. VM/ESA 1.2.2 * VMSES/E level required
| :RECID. 6VMVMA22 * File name of service
| * receive status table
| :APPID. 6VMVMA22 6VMVMF22 * File name of service
| * apply status table
| :BLDID. 6VMVMA22 * File name of service
| * build status table
| :LOG. YES * Log all messages
| :RECVALL. NO * Receive missing parts for
| * committed PTFs
| :SETUP. NO * Call VMFSETUP
| :SLVI. V/DS * System level and version
| * indicator
| :NLS. AMENG * System language
| :CNTRL. DMSVM * Control file name
| :AXLIST. DMSVM * File name of IBM supplied
| * APPLY list and EXCLUDE list
| :EXCLIST. * File name of user′ s own
| * EXCLUDE list
| :UPDTID. AUXVM * File type of AUX file
| :CKAUX. YES * VMFBLD compare AUX file to
| * Standard Self Documentation
| * Information in text decks
| :CKSDI. NO * VMFAPPLY check Standard Self
| * Documentation in text decks
| :CKVV. NO * Check AUX file against
| * corresponding version vector
| * during vmfbld
| :CKGEN. YES * Check AUX file against
| * corresponding version vector
| * during vmfasm, vmfhasm, vmfhlasm
| * vmfnls, and vmfexupd
| :RETAIN. * List of file modes that
| * VMFSETUP cannot use
| :USEREXIT. * User exit EXEC called for
| * setup and cleanup at the
| * beginning and end of each
| * service function
| :PTFPFX. UM * two character PTF prefix
| :APARPFX. VM * two character APAR prefix

| :ECNTRLOP.

Figure 13. $PPF for CMS - Control Options Section

Chapter 3. Software Inventory 47

Variable Declarations Section
The next section is the Variable Declarations section. This section was
introduced in VM/ESA Release 1.1. It defines three types of symbolic variables:

LINK Link statement to link to a minidisk

DIR The name of an SFS directory

USER The user ID of a virtual machine needed for component execution

The variable names start with an ampersand (&). The next word is the keyword,
as defined above, which declares the type of variable defined. These variables
are used in the PPF and in the PRODPART file.

The concept of variables has several advantages over previous VMSES
implementations. Variables allow you to:

• Define in one place all the minidisks or directories to be used for a product.
The symbols thus defined can be used in other files; for example, the
PRODPART file.

• Automatically link to minidisks or access directories not owned by you.

• Define user IDs to be used by VMFINS when performing installation tasks.

Using variables has several consequences:

• It allows users other than MAINT to perform maintenance and installation
tasks, given appropriate access to the disks involved. If you are performing
an installation task, or servicing with the PSU process, you will need write
access to the SIDISK (MAINT 51D, by default).

• It allows a full description of the disks used, not only the virtual address, but
also the owning user ID.

• When servicing program products, it allows the servicing user ID to
automatically link and access the product disks needed.

The VMFSETUP command accesses the disks for a component, and it reads the
DCL section to get the LINK information.

Figure 14 shows an excerpt from the variable declaration section from the $PPF
for CMS.

:DCL.
&LMODZ LINK MAINT 3C4 3C4 MR * Disk for local mods
&SAMPZ LINK MAINT 3C2 3C2 MR * Sample files
&DELTZ LINK MAINT 3D2 3D2 MR * CMS service
&APPLX LINK MAINT 3A6 3A6 MR * Aux & software inventory files
&APPLY LINK MAINT 3A4 3A4 MR * Aux & software inventory files
&APPLZ LINK MAINT 3A2 3A2 MR * Aux & software inventory files
&BAS2Z LINK MAINT 3B2 3B2 MR * CMS object code & macros

...
&SRVSU USER VMSERVS * VMSERVS userid
&SRVUU USER VMSERVU * VMSERVU userid
&SRVRU USER VMSERVR * VMSERVR userid
&CMSBU USER CMSBATCH * CMSBATCH userid

...
:EDCL.

Figure 14. $PFF for CMS - DCL Section (Excerpt)

48 VMSES/E Primer

Minidisk/Directory Assignment Section
This section defines the disk strings described in “Product Database Layout” on
page 14, using the symbolic variables defined in the previous section. Note that
a string may be empty. Starting with VM/ESA Release 2, components have one
disk in the DELTA string (VM/ESA Release 1.1 has two). The APPLY string has
three disks. This is reflected in the supplied PPFs. As discussed in
“Recommended Logical Strings and Service Levels” on page 27, you may wish
to create an override defining a small alternate DELTA area. Figure 15 shows
the minidisk/directory section of the $PPF for CMS.

Note that the symbolic variables from Figure 14 on page 48 are used here. The
variables are replaced by the actual (linked) minidisk address by the VMFPPF
command during PPF compilation.

:MDA.
TASK * Disks accessed before the

* product service database
LOCALMOD &LMODZ * Disk for local mods
LOCALSAM &SAMPZ * Sample files
APPLY &APPLX &APPLY &APPLZ * Aux & software inventory

* files
DELTA &DELTZ * CMS service
BUILD7 &BLD7Z * Test CMS system tools
BUILD6 &BLD6Z * Test CMS system disk
BUILD5 &BLD5Z * HELP disk
BUILD2 &BLD2Z * CMS system tools
BASE2 &BAS2Z * CMS object code
BASE3 &BAS3Z * CMS source definition
SYSTEM * Disks accessed after the

* product service database
:EMDA.

Figure 15. $PPF for CMS - MDA Section

Receive Install Tape Definitions (RECINS) Section
This section describes the layout of the product tape, and what to do with the
different files on the tape. Note that although we use the term tape for
simplicity, the following discussion equally applies to electronic envelopes
(remember that CD-ROMs emulate a tape). The section also introduces the
concept of tape part handlers. A tape part handler is a specialized EXEC that
handles a specific type of part on the input medium (we will talk about build part
handlers later). This concept allows VMSES/E to grow, because new part types
and part handlers may be added when needed.

Figure 16 on page 50 shows the receive install tape definitions section of the
$PPF for CMS.

Chapter 3. Software Inventory 49

:RECINS.
* TAPEFILE PARTHAND TARGET DESCRIPTION
* --------- -------- ------- ------------
LOCALMOD VMFRCALL LOCALMOD * Local fixes
AXLIST VMFRCAXL DELTA * Apply and Exclude lists
PARTLST VMFRCPTF DELTA * $PTFPART files
DELTA VMFRCCOM DELTA * Service
APPLY VMFRCALL APPLY * Service
TOOLS VMFRCALL BUILD7 * CMS tools
SYSTEM VMFRCALL BUILD6 * CMS system disk
NCHELP VMFRCALL BUILD5 * New/changed HELP files
MACRO VMFRCALL BASE2 * Macros
SOURCE VMFRCALL BASE3 * Source files

:ERECINS.

Figure 16. $PPF for CMS - RECINS Section

As you see, the first column lists the symbolic names of the tape files, the
second column the part handlers, and the third column the disk string that is to
receive the files.

Note: The files are always received at the highest level of the disk string, which
is the leftmost address in the definition of the string.

The installation tape contains two very important files (see Appendix B, “Product
Packaging and Distribution Media Formats” on page 205):

• The Tape Descriptor File (TDF), shows the position of each component′s
logical tape on the physical tape. A physical tape may contain one or more
logical tapes, but a logical tape contains only one component.

• The Product Contents Directory (PCD), defines the sequence of the files on
the logical tape, and can be thought of as a map of the logical tape. Its file
name is the component ID.

The tape file names in the RECINS section must match the corresponding names
in the PCD.

Receive Service Media Definition (RECSER) Section
This section deals with service tapes and electronic envelopes, instead of
installation tapes. Both media have a layout that differs from that of the
installation tape, but the layout of the section in the PPF file is identical.

Figure 17 shows the receive service media definitions section of the $PPF for
CMS.

:RECSER.
* TAPEFILE PARTHAND TARGET DESCRIPTION
* --------- -------- ------- ------------
AXLIST VMFRCAXL DELTA * Apply and Exclude lists
PARTLST VMFRCPTF DELTA * $PTFPART files
DELTA VMFRCCOM DELTA * Service

:ERECSER.

Figure 17. $PPF for CMS - RECSER Section

50 VMSES/E Primer

Although the figure does not show it, it is possible to skip files on the tape.
| When a tape-file is not listed in the PPF file, it is not loaded. Thus, those files

will not be received.

Hence, neither AUX files nor MACLIBs will be received from the tape anymore.
The AUX files are built from VVTs during the apply process, while the MACLIBs
are built, like any other object, during the build process. This effectively
eliminates the risk of accidentally back-leveling the product.

We will observe at this point one basic difference between installation and
service. During installation we receive usable forms; during corrective service
we do not.

Note: All the files received during service are placed on the DELTA string.

We also note that in during install (Figure 16 on page 50), the part handler
VMFRCALL, which unconditionally loads all the files on the tape file, is used
most often. The part handler VMFRCCOM, in the service case, does not load all
the files it finds. VMFRCCOM does not load files already on the target disk
string, and it does not load files belonging to a PTF that has a status of
“committed,” even if they do not exist on the target string.

The COMMITTED status was introduced by VMSES/E in VM/ESA Release 1.0. If
you want to give a PTF the status of committed, you must do so with the VMFSIM
command.

If a PTF is committed on the system, it will not be received at a later time.
Hence, for committed PTFs, you may be able to erase any replacement parts
shipped with them for which there are more recent replacement parts.
Committing PTFs allows some disk space to be saved.

For example:

PTF Services parts

UM11111 DMSAAA DMSBBB DMSCCC

UM22222 DMSAAA DMSDDD DMSEEE

UM33333 DMSAAA DMSCCC DMSDDD

If you commit PTFs UM11111 and UM22222, you can erase (using the VMFERASE
command):

DMSAAA TXT11111 DMSAAA TXT22222
DMSCCC TXT11111 DMSDDD TXT22222

but you cannot erase:

DMSBBB TXT11111 DMSEEE TXT22222 DMSAAA TXT33333
DMSCCC TXT33333
DMSDDD TXT33333

You must always keep the $PTFPART file and source updates. Committing PTF
UM33333, though valid, would be pointless, as you cannot delete any of the parts
shipped with it.

Chapter 3. Software Inventory 51

VMSES/E helps you to find which parts can be erased. You can query this
information from the $PTFPART files in the Software Inventory. Also,
Appendix D, “VMFSIM Exploitation Code Examples” on page 225 describes a
sample procedure, PTFCOMIT EXEC, that helps you identify which parts can be
safely erased (see “Erasable Parts for Committed PTFs” on page 228).

Note: For readers familiar with VMSES prior to VM/ESA Release 1.1, the APPLY
section has been removed. This is simply because the apply step no longer
uses individual part handlers. VMSES/E completely separates the receive, apply,
and build steps, so that receive only receives files, apply only applies service,
and build only builds usable forms.

Build Product Definition Section
This section contains information that allows VMSES/E to build the product ′s
objects. This is done by providing pointers to files, called build lists that actually
describe how to build each object, and linking those pointers to build part
handlers. Each build part handler is specialized in a particular type of object; for
example, there is a part handler to build nuclei, another to build modules,
another to build MACLIBs, and so on. The build process, and build part
handlers, are covered in more detail in “Build” on page 107.

The term “build,”as used by VMSES/E, does not necessarily mean that a new
executable part is really built. For example, in the case of help panels, it means
that the serviced panel files needed to actually generate the executable form are
copied from the DELTA to the BUILD disk, and renamed.

Another example is the REXX component. Since most of REXX is part of the
CMS nucleus, there is no REXX nucleus to build. So, VMFBLD just copies the
new TEXT files to the appropriate BUILD disk (which is the shared REXX and
CMS BUILD disk), and makes a note that the CMS nucleus must be rebuilt.
Figure 18 shows an excerpt from the build log, which illustrates this point.

ST:VMFBLD1851I Processing build list 1 of 1, IXXBLNUC EXEC, with part
ST: handler HCPBDUTL
BD:VMFBDU2180I Build Requirements:
BD: Bldlist Object Status
BD:VMFBDU2180I IXXBLNUC - REBUILD CMS & GCS NUCLEI
ST:VMFBDU2178I Processing of build list IXXBLNUC complete:
ST: 1 object(s) were selected to be built
ST: 1 object(s) were successfully built
ST: 0 object(s) failed
ST:VMFBLD2760I VMFBLD processing completed successfully

Figure 18. Build Log for the REXX Component (Excerpt)

Figure 19 on page 53 shows an excerpt from the build product/definition section
of the $PPF for CMS.

52 VMSES/E Primer

:BLD.
* BUILDLIST EXEC TARGET DESCRIPTION
* --------- -------- ------- ------------
DMSBL490 VMFBDCOM BUILD6 * Build files for system disk
DMSBLSRC VMFBDCOM BUILD7 * Build source files
ASDREUSP -VMFBDMLB BUILD7 * Build ASDREUSP MACLIB
DMSOM VMFBDMLB BUILD6 * Build DMSOM MACLIB
DMSGPI VMFBDMLB BUILD6 * Build DMSGPI MACLIB
DMSRP -VMFBDMLB BUILD7 * Build DMSRP MACLIB
OSMACRO VMFBDMLB BUILD6 * Build OSMACRO MACLIB

...
DMSBLPRP VMFBDLLB BUILD6 * Build PROPLIB LOADLIB
CMSSAA VMFBDTLB BUILD6 * Build CMSSAA TXTLIB
DMSBLBAS VMFBDTLB BUILD6 * Build DMSBASE TXTLIB
DMSBLAEN VMFBDTLB BUILD6 * Build DMSAENV TXTLIB

...
DMSBLVML VMFBDCLB BUILD6 * Build VMLIB CSLLIB and CSLSEG
DMSBLVMT VMFBDCLB BUILD6 (LIBTYPE SEG * Build VMMTLIB CSLSEG
DMSBLASM VMFBDCOM BUILD7 * Build text for F-assembler
DMSBLDOS VMFBDCOM BUILD7 * Build text for DOS segments

...
CMSMLOAD VMFBDMOD BUILD6 * Build modules that reside on

* system disk
IOCPLOAD VMFBDMOD BUILD6 * Build IOCP modules
CMSLOAD VMFBDNUC BUILD6 TXT TXC (BLDREQ DMSBLVMT

* Build CMS nucleus
...

DMSSBSFS VMFBDSBR BUILD7 * CMSFILES Segment
DMSSBVML VMFBDSBR BUILD7 * VMLIB Lseg in CMSVMLIB Seg
DMSSBVMT VMFBDSBR BUILD7 * VMMTLIB Lseg in CMSVMLIB Seg
DMSSBPIP VMFBDSBR BUILD7 * CMSPIPES Segment
DMSSBINS VMFBDSBR BUILD7 * CMSINST Segment

...
:EBLD.

Figure 19. $PPF for CMS - BLD Section (Excerpt)

Though VMSES/E has been continuously improved to automate object building,
there are still a few objects it cannot automatically build. VMSES/E will warn you
whenever you have to rebuild those objects. These are built by manually
entering the appropriate commands. For more information, refer to “Build” on
page 107.

Filetype Abbreviations Extensions Section
This section provides information similar to, and that may override or
supplement, the information found in the Filetype Abbreviation table (see Table 1
on page 41).

Override Area
The final area of the PPF is the override area. It has the same structure as the
component area. A source PPF supplied by IBM may have override areas, when
it is anticipated that many users want or need certain changes to the defaults for
the product. For example installing on SFS directories instead of on minidisks.
By “compiling” the base component or the override you may elect to use the
product ′s defaults or its IBM tailoring.

Chapter 3. Software Inventory 53

You can also change the supplied defaults and tailoring by supplying your own
overrides.

Build Lists
In “Build Product Definition Section” on page 52, we saw some examples of
build list names. Though build lists are not, formally, part of the Software
Inventory, they are so important we describe them here. The concept of build
lists is not new in VM. The build list is an extension of the load list, which has
been available since VM/370.

VM/ESA Release 1.0 introduced a new format for the build list, called Format 2
build list, as opposed to the old load list format, which is now called Format 1.
VM/ESA Release 2 introduced yet a new format, called Format 3.

The new formats provide more flexibility than the old, which was basically a list
of text decks to be loaded, interspersed with some loader control statements.
Figure 20 shows part of the CMSLOAD EXEC, the Load List (Format 1 build list)
for CMS.

&TRACE OFF
&1 &2 &3 HCPLDR LOADER
&1 &2 &3 DMSNUC
&1 &2 &3 DMSZNR
&1 &2 &3 SLC L00E000
&1 &2 &3 DMSZAT
&1 &2 &3 SLC L020000
&1 &2 &3 DMSZUS
&1 &2 &3 DMSINS
&1 &2 &3 DMSIND
******** DMSINN must be after DMSIND
&1 &2 &3 DMSINN
&1 &2 &3 DMSINV
&1 &2 &3 DMSINR
******** DMSZIN MUST BE THE LAST MODULE BEFORE DMSINI
&1 &2 &3 DMSZIN

...

Figure 20. Load List for CMS - CMSLOAD EXEC (Excerpt)

Format 2 build lists allow many different objects to be defined in a single place.
Those objects do not have to be related to each other except in two aspects:

• They must be processed by the same build part handler.

• They must reside on the same target disk.

The Format 2 build lists use a set of tags that allow you to specify the name of
the objects being built, and to supply appropriate options to be passed to the
CMS commands, such as LOAD, called during the build process. VM/ESA
Release 2 also introduced the capability to specify the object ′s file type, as well
as build requisites and libraries to be made global during the build. Figure 21
on page 55 is an example of a Format 2 build list.

54 VMSES/E Primer

:FORMAT. 2
*

...
:OBJNAME. VMFHASHM.MODULE NOMAP ALL
:OPTIONS. NOMAP CLEAR RLDSAVE NCHIST
:PARTID. VMFHASHM TXT
:EOBJNAME.

...
*
:OBJNAME. VMFRDTBL.MODULE NOMAP ALL SYSTEM
:OPTIONS. NOMAP CLEAR RLDSAVE NCHIST NOUNDEF RESET VMFRDTBL

AMODE 31 RMODE ANY
:PARTID. VMFRDTBL TXT
:OPTIONS. SAME UNDEF
:PARTID. VMFRDTBT TXT
:EOBJNAME.

...

Figure 21. VMSES/E Format 2 Bui ld List (Excerpt f rom VMFMLOAD EXEC)

We see that two modules (VMFHASHM and VMFRDTBL) will be built. Let us look
at the CMS commands that will be issued to build the VMFRDTBL.MODULE
object:

load VMFRDTBL (nomap clear rldsave nchist noundef reset vmfrdtbl amode 31 rmode any
include VMFRDTBT (same undef
genmod VMFRDTBL (nomap all system

The command options specified on a :OPTIONS statement remain in effect until
another :OPTIONS statement is found or the end of the object is reached.

Format 3 build lists were introduced in VM/ESA Release 2 and support the
building of libraries. Each library is defined in a separate build list, and each
member is described as an object in the build list. They also allow specifying
libraries to be made GLOBAL, and support object requisite specification.

With Format 3 build lists you can use the :LIBNAME tag to explicitly name the
built library (the default is the file name of the build list file). Figure 22 shows an
excerpt of the Format 3 build list for the CMSSAA TXTLIB library.

:FORMAT. 3
*
:LIBNAME. CMSSAA
*

...
:OBJNAME. DMSSAA
:PARTID. DMSSAA TXT
:EOBJNAME.
:OBJNAME. DMSSRR
:PARTID. DMSSRR TXT
:EOBJNAME.

...

Figure 22. VMSES/E Format 3 Bui ld List (Excerpt from CMSSAA EXEC)

Chapter 3. Software Inventory 55

PRODPART File
The PRODPART file is the basic descriptor of any product or component that is
loaded into the VM system. It contains the name of the PPF, and also lists
resource requirements for the product.

During product installation, VMFINS extracts information from the PRODPART file
and updates the system-level Software Inventory. The segment management
tool, VMFSGMAP, also uses the PRODPART file to dynamically obtain default
segment definition information.

The PRODPART file resides on the SIDISK. However, the user can override this
file by placing a PRODPART file on the A-disk.

Overview
The PRODPART file contains the following sections:

• Header Section
• Loadable Units Section
• Parts Section
• Saved Segments Definition Section
• Product Parameters Section

Figure 23 shows the general structure of the PRODPART file.

:RECID - PRODUCT RECEIVE IDENTIFIER (KEY)

:PRODDESC - PRODUCT DESCRIPTION (FIELD)
...

:LU - LOADABLE UNIT(S) DEFINITIONS (BLOCK)

:PPF - PPF AND COMPONENT IDENTIFIER (SUBKEY)
...

:ELU - END LOADABLE UNIT(S) DEFINITIONS (EBLOCK)

:PARTS - PARTS DEFINITIONS (BLOCK)
:PARTID - PART IDENTIFIER (SUBKEY)

...
:EPARTS - END PARTS DEFINITIONS (EBLOCK)

 :SEGDEF - SEGMENT DEFAULT DEFINITIONS (SUBKEY)
...

:ESEGDEF - END SEGMENT DEFINITIONS (EBLOCK)

:PARMS - PRODUCT INSTALL PARAMETERS (SUBKEY)
...

:EPARMS - END PRODUCT INSTALL PARAMETERS (FIELD)

Figure 23. PRODPART File General Structure

56 VMSES/E Primer

Header Section
The header section of the PRODPART file defines the product in terms of
program name, program number, and service level, and provides other
information to VMSES/E. Figure 24 shows the header section of the PRODPART
file for CMS.

| :RECID.6VMVMA22
| :PONUM.5684112
| :PRODDESC.CMS component for VM/ESA 2.2
| :SERVLEV.200-0000
| :PROCTYPE.VMSES

Figure 24. PRODPART File for CMS - Header Section

Besides the component ID, the product number, and the service level, the
component is described in words, and the :PROCTYPE tag indicates that the
component is fully utilizing VMSES/E.

Loadable Units Section
From the Software Inventory perspective, the loadable unit section is the most
interesting. A component may have more than one loadable unit. This allows
subsets of the component to be defined. For example, the product might be
loaded with or without the source code, or support for different national
languages might come in separate loadable units.

The loadable unit section contains the PPF name for the component, the
component ′s description, and requisite information. The loadable unit section for
CMS is shown in Figure 25.

| :LU.
| :PPF.ESA CMS
| :PRODID.6VMVMA22%CMS
| :DESC.CMS component for VM/ESA 2.2
| :PREREQ.6VMVMK22
| :DREQ.6VMVMF22
| :SUP.6VMVMA11 6VMVMA20 6VMVMA21
| :ELU.

Figure 25. PRODPART File for CMS - Loadable Unit Section

The :PRODID information goes into all the system-level tables, the :DESC
information ends up in the SYSDESCT table, and the requisite information is
transferred to the SYSREQT table.

Much of the same information is found in the PPF, described in “Product
Parameter File” on page 43.

Parts Section
The parts section, if it exists, contains the list of tailorable parts for the product.
Any part listed here may be changed by the user, to meet the installation′s
specific requirements. Figure 26 on page 58 shows an entry on the parts
section of the PRODPART file for CMS in Release 1.1. In Release 2 and later,
and Release 1.5, the parts section is empty.

Chapter 3. Software Inventory 57

:PARTS.
...

:PARTID.DMSNGP SAMPLE
:PROCOPTS.RGROUP SYSSAMP TPART 09315793419640

...
:EPARTS.

Figure 26. PRODPART File for CMS - Part Section (VM/ESA Release 1.1)

The parameter on the TPART statement is a hash value (in this context, a
check-sum) of the file contents at the time of installation. By performing the
same hash procedure on the current copy, at a later time, VMSES/E is able to
determine whether the part was altered by the installation. If the part was
altered, it will not be replaced by refresh service. Also, the changed part is
preserved by the migration process (VMFINS MIGRATE command).

When parts are received, using the VMFINS INSTALL command, they are
identified and their names are entered in the VMSES PARTCAT file on the target
disk, together with their full product ID and status information.

Whenever the part is altered, the PARTCAT is updated to reflect the current
status of the part.

Saved Segment Definitions Section
The Saved Segments definition section was introduced in VM/ESA Release 2,
and contains default values for generating saved segments.

The VMFSGMAP EXEC, the mapping and planning tool for segment support, is
able to extract this information and allows the user to change it. The changed
(customized) information is used to update the SEGDATA file. Thus, the original
default information is preserved in the PRODPART file. See Chapter 4, “Saved
Segments” on page 65.

Figure 27 on page 59 shows an excerpt from the :SEGDEF section of PRODPART
file for CMS.

58 VMSES/E Primer

| :SEGDEF.6VMVMA22 CMS
| ***
| :OBJNAME. HELPINST
| :DEFPARMS. C00-CFF SR
| :TYPE. PSEG
| :OBJDESC. CMSINST,CMSQRYH, CMSQRYL, AND HELP LSEGS
| :OBJINFO. CMSQRYH CAN BE MOVED ABOVE 16M
| :GT_16MB. NO
| :BLDPARMS. PPF(ESA CMS DMSSBINS) PPF(ESA CMS DMSSBQYH)
| PPF(ESA CMS DMSSBQYL) PPF(ESA CMS DMSSBHLP)
| :OBJNAME. CMSPIPES
| :DEFPARMS. 700-77F SR
| :TYPE. PSEG
| :OBJDESC. CMS PIPES SEGMENT
| :GT_16MB. YES
| :BLDPARMS. PPF(ESA CMS DMSSBPIP)
| .| .| .
| :ESEGDEF.

Figure 27. PRODPART File for CMS - SEGDEF Section (Excerpt)

The HELPINST segment is a physical segment (PSEG) containing the CMSINST,
CMSQRYH, CMSQRYL, and HELP logical segments (LSEGs). The CMSPIPES
segment is another PSEG, containing only one logical segment.

The :BLDPARMS tag describes how the segments are built. The CMSINST
logical segment is defined in the DMSSBINS build list, and the HELP logical
segment is defined in the DMSSBHLP build list. The CMSPIPES segment is
defined in the DMSSBPIP build list. These build lists are listed in the :BLD
section of the CMS component area of the ESA PPF.

Product Parameters Section
The PARMS section contains information on resources, such as minidisks and
user IDs, that have to be present so that the product can be installed (or added,
or migrated) and run properly. The minidisk entries include size information.
Figure 28 on page 60 shows both a user entry and minidisk entry.

Chapter 3. Software Inventory 59

| :PARMS.6VMVMA22 CMS
| ***
| :RMT.
| .| .| .
| :USERDEF.
| USER &SRVSU NOLOG 32M 32M BG
| ACCOUNT 1 VMSERVS
| MACH XC
| OPTION MAXCONN 2000 NOMDCFS APPLMON ACCT QUICKDSP SVMSTAT
| SHARE REL 1500
| XCONFIG ADDRSPACE MAXNUMBER 100 TOTSIZE 8192G SHARE
| XCONFIG ACCESSLIST ALSIZE 1022
| IUCV ALLOW
| IUCV *IDENT RESANY GLOBAL
| IPL 190
| CONSOLE 009 3215 T MAINT
| SPOOL 00C 2540 READER *
| SPOOL 00D 2540 PUNCH A
| SPOOL 00E 1403 A
| LINK &BLD3Z 190 RR
| LINK &BLD2Z 193 RR
| LINK &BLD5Z 19D RR
| LINK &PRODZ 19E RR
| :EUSERDEF.
| .| .| .
| :TARGET.
| :TARGID.&DELTZ
| :SIZE.12000
| :BLKSIZE.4K
| :FORMAT.CMS
| :MODE.MR
| :ETARGET.
| .| .| .
| :ERMT.

| :EPARMS.

Figure 28. PRODPART File for CMS - Parms Section (Excerpt)

As can be seen in the disk entry, the space requirement is 12000 4-KB blocks on
a CMS formatted minidisk, which will be linked MR, if requested on the VMFINS
command.

The entry also shows the use of variables, introduced in VM/ESA Release 1.1.
The variables, such as &SRVSU and &DELTZ, are defined in the PPF in the
variable declaration (DCL) section (see Figure 14 on page 48). Figure 29 shows
an excerpt from the :DCL section of the usable form PPF file for CMS. For more
information on the PPF file, please refer to “Product Parameter File” on page 43.

60 VMSES/E Primer

:DCL.
...

&DELTZ LINK MAINT 3D2 3D2 MR * CMS service
&APPLX LINK MAINT 3A6 3A6 MR * Aux & software inventory files
&APPLY LINK MAINT 3A4 3A4 MR * Aux & software inventory files

...
&SRVSU USER VMSERVS * VMSERVS userid
&SRVUU USER VMSERVU * VMSERVU userid

...
:EDCL.

Figure 29. PPF for CMS - DCL Section (Excerpt)

For a more detailed discussion of variables, please refer to “Variable
Declarations Section” on page 48.

The installation tool, VMFINS, when the RESOURCE option is specified, uses the
PARMS section in the PRODPART file, and the corresponding information in the
PPF, to alter the source CP directory. Thus, it is able to define the resources
(user IDs and minidisks or SFS directories) necessary to install the product.

Note: Use the RESOURCE option with care. See “RESOURCE Option” on
page 87.

This information can also be used to allow installation of another copy of a
product. Again, using the NOPLAN option of VMFINS, you are prompted to
change the virtual addresses for the required minidisks and the virtual
addresses at which they are linked before use. Your input is saved in a PPF
override, which is compiled immediately. Its usable form is subsequently used
in the installation process.

During the installation, VMSES/E updates the Software Inventory with information
on the new copy of the product, using the new PPF file name as the main key.
This is the only way VMSES/E can distinguish between the products and their
copies.

PTFPART File
There is one PTFPART file for each PTF received on your system. The file name
is ptfnum, the PTF number. The file type is always $PTFPART.

The PTFPART file comes on the service media, and describes the PTF, its parts,
and its dependencies. It is placed on the first (or only) disk of the DELTA string
when the service is received. During the service process, VMFREC uses
information in this file to update the service-level Software Inventory.

Overview
The PTFPART file has three major sections:

• A header section, describing the received service

• A requisite section, describing the requisite relationships

• A parts section, defining the parts being serviced

Figure 30 on page 62 shows the general structure of the PTFPART file.

Chapter 3. Software Inventory 61

:PTF - PTF TOOL CONTROL STATEMENTS (KEY)
 :PRODID - PRODUCT IDENTIFIER (FIELD)

:APARDESC - APAR DESCRIPTION BLOCK (BLOCK)
...

:EAPARDESC - END APAR DESCRIPTION BLOCK (EBLOCK)
:UMEMO - USER MEMO (FIELD)

...
:EUMEMO - END USER MEMO (FIELD)

* Requisite information
 :PREREQ - PRE-REQUISITE PTF(S) (FIELD)

...
* Parts information

:PARTS - PARTS DEFINITIONS (BLOCK)
...

:EPARTS - END PARTS DEFINITIONS (EBLOCK)

Figure 30. PTFPART File General Structure

Header Section
The header section describes the PTF, both in words and by listing which APARs
constitute the PTF. Figure 31 shows an example of the header section in a
PTFPART file.

| ** PTF UM12345 Release = 1.2.2, ProdId = 6VMVMA22
| :PTF.UM12345
| :PRODID.6VMVMA22
| :APARDESC.This is a sample PTF for VM/ESA 2.2
| :APARNUM.VM54321
| :ABSTRACT.This APAR corrects ...
| :EAPARDESC.
| :UMEMO.
| Here comes a verbal description of the PTF
| :EUMEMO.

Figure 31. PTFPART File Header Section Example

The tags should be self-explanatory. Note that, as a PTF may provide fixes for
more than one APAR, you may see many :APARDESC :EAPARDESC pairs for
one PTF. Much of this information is inserted in the service-level Description
table. If a Memo to Users is present, the Receive Log file will contain a
message reminding you to read the memo.

Requisite Section
The requisite section of the PTFPART file describes the requisite relationships
for the PTF. Figure 32 on page 63 shows an example of a PTFPART file
requisite section.

62 VMSES/E Primer

| :PREREQ.UM23456 UM45678
| :COREQ.UM11111.6VMVMB22 UM22222
| :IFREQ.UM33333.6VMVMA22
| :SUP.UM99999
| :HARDREQ.VM80001 VM80000.6VMVMB22.UM70002

Figure 32. PTFPART File Requisite Section Example

As you see, there are five types of dependencies listed. They were defined in
“Definitions and Terms” on page 10.

Please note also that the requisite information may be presented in several
ways. Whenever you see a component name, for example 6VMVMB22, it means
that the requisite is in another component. This information is used to update
the service-level Requisite table.

A requisite may be either a PTF or an APAR. In the latter case, if it is an
out-of-component requisite, the PTF number may be listed as the third specifier
(as seen on the :HARDREQ tag).

The difference between hard requisites (HARDREQs) and soft requisites
(PREREQs) is important. If you have to apply a specific PTF in an emergency,
you may not want to apply all prerequisite PTFs at that time. You may then use
the VMFSIM command to list the hard-requisites and apply only these. However,
we strongly advise against doing it, because this is a manual procedure,
requires a significant effort and a very good knowledge of VMSES/E, and may
compromise the integrity of the Software Inventory.

Parts Section
The parts section lists all the parts shipped with the PTF and the form in which
they are delivered. It also indicates which part they replace or update.
Figure 33 shows an example of a parts section of a PTFPART file.

:PARTS.
:PARTDEF.DMSABC ASSEMBLE
:PROCOPTS.AUX SDI
:REPPART.DMSABC TXT12345
:PROCOPTS.NOAUX NOSDI
:REPPART.DMSABC MOD12345
:UPDATES.V23456DS
:NRSOURCE.DMSABC ASM12345
:APARS.VM23456 VM34567.M

...
:EPARTS.

Figure 33. PTFPART File Parts Section Example

This example is full of information. We are to service the CMS module DMSABC,
which is identified here by its source component in the :PARTDEF tag. We will
replace two parts, identified in the :REPPART tags. The replacement operation
uses the options defined in the :PROCOPTS tags. The information in a
:PROCOPTS tag remains valid until replaced by another :PROCOPTS tag.

Chapter 3. Software Inventory 63

The following processes take place:

• DMSABC TXT12345 - The Self-Documenting Information (SDI) in the TEXT
deck prologue is checked; the VVT is updated with this PTF′s information and
used to generate an AUX file that includes the new APARs. VMSES/E no
longer depends on the SDI, but will still check that the SDI is consistent with
the information in the Software Inventory.

• DMSABC MOD12345 - No additional processing is done.

The next tags identify the supplied update file, corresponding to APAR VM23456,
and an updated source file DMSABC ASM12345. The APAR VM34567 has been
merged into the source file, as indicated by the .M suffix on the :APARS tag.

64 VMSES/E Primer

Chapter 4. Saved Segments

Support for managing and building saved segments was introduced in VM/ESA
Release 2. This support does not include building Named Saved Systems.

This chapter describes, from a conceptual point of view, the VMSES/E functions
and structure that allow mapping, tailoring, servicing, and building saved
segments, including those of products not otherwise supported by VMSES/E.

| Note: VM/ESA Release 1.5 370 Feature supports only notification of service to
| saved segments. Mapping, tailoring, and building are not supported.

A more detailed discussion, based upon actual examples, can be found in
Chapter 8, “Saved Segment Experiences” on page 157.

The following publications contain further information regarding saved segments:

• VM/ESA: Planning and Administration
• VM/ESA: VMSES/E Introduction and Reference
• VM/ESA: Service Guide
• VM/ESA: Installation Guide
• VM/ESA: Service Guide for 370

Overview
Saved segments are the first objects supported by VMSES/E with cross-product,
system-wide characteristics. At the same time, saved segments are also
product objects, requiring handling just as other objects do. VMSES/E must
provide support for these seemingly separate, even conflicting, situations.
Indeed, saved segments must be seen from two perspectives:

• At the system level, where they interact with other segments belonging to
the same or different products. Also, it is possible that a segment is built
from objects belonging to different products.

• At the product level, because the objects a segment is built from are
themselves built from parts serviced through normal product service.

Saved segments support requirements include:

• Capability to study segment interactions and play “what if” games; that is,
plan segment characteristics without changing the live system.

• Detect any product changes to objects included in segments and
automatically flag the need to rebuild the affected segments.

The above functions must also be provided for:

• Segment spaces and their members, including members belonging to
several spaces.

• CMS logical segments and associated physical segments.

The next sections further detail these points, as well as the limited support
provided for Named Saved Systems (NSSs).

 Copyright IBM Corp. 1992, 1993, 1994 65

The objects we will be discussing are:

Segment In the System/390* architecture, it refers to a 1 MB area of
main storage that starts on a MB boundary. Also referred
to as an architected segment.

Saved Segment This is a general term for DCSSs, Member Saved
Segments, and Logical Saved Segments. Each saved
segment has a unique name.

DCSS A Discontiguous Saved Segment is a set of one or more
areas of main storage. The areas in the set do not have to
be adjacent. When in use, each area is adjusted, if
necessary, so that it begins on a megabyte boundary, is a
multiple of one megabyte, and is contiguous. In other
words, each area is adjusted to occupy one or more
segments.

A DCSS is defined by issuing a CP DEFSEG command,
created by loading data or programs in the defined areas
and issuing a CP SAVESEG command, and used by asking
CP to attach the segment to the machine. The attach
request is either a program-issued DIAGNOSE X ′64′ or the
CMS SEGMENT LOAD command.

Several virtual machines may attach the same DCSS and
concurrently share the storage areas. This is why DCSSs
are often referred to as shared segments.

NSS Named Saved Systems are similar to DCSSs, in the fact
that they can be shared by several virtual machines, but
they are also different:

• DCSSs contain application code and data, and can be
dynamically attached to, and released by, a virtual
machine without resetting the machine′s environment.

• NSSs are defined by issuing a CP DEFSYS command,
created by loading an operating system in the defined
areas and issuing a CP SAVESYS command. The
operating system is “frozen” in time until a CP IPL
restarts it.

Member Saved Segment
When in use, DCSSs areas are always one or more
megabytes long. If the object in a DCSS does not fully
occupy this area, storage addressing capability is wasted.
A Segment Space is a CP concept, which allows
subdividing a DCSS into areas that begin and end on a
page boundary. Each of these areas is a Member Saved
Segment, has its own name, and is defined using the CP
DEFSEG command, with the SPACE parameter. It is then
created and used like a DCSS. When you attach a member
of a space to a virtual machine the whole space becomes
available. A member may belong to several spaces.

Segment Spaces Segment Spaces are implicitly created and maintained by
CP whenever a Member Saved Segment is defined. A
segment space may contain up to 64 members.

66 VMSES/E Primer

PSEG Physical Saved Segments are a CMS concept. PSEGs can
be implemented either as a DCSS or as a member saved
segment. PSEGs are defined using the CP DEFSEG
command and created by the CMS SEGGEN command.
PSEGs may contain one or more LSEGs, and so have an
internal structure, defined by CMS, which also includes a
directory of the component LSEGs.

LSEG Logical Saved Segments are another CMS concept. LSEGs
are to a PSEG what member saved segments are to a
segment space. There are also some differences:

• CP is unaware of PSEGs and LSEGs. CMS manages
those.

• Member Saved Segments can be defined and created
one at a time. A PSEG and the associated LSEGs must
be defined and created together.

• Segment Spaces first appeared with VM/XA, and are
supported only by VM/XA and VM/ESA running in ESA
mode, thus on processors with the 370-XA or
System/390 architectures. PSEGs and LSEGs are
managed by CMS and have been available since
VM/SP Release 6. Thus they can be exploited in the
System/370*, 370-XA, ESA/370*, ESA/390*, or ESA/XC
architectures.

• Using LSEGs is easier than using DCSSs. The CMS
SEGMENT LOAD command automatically processes the
LSEG definitions, making the objects in the LSEG
available to the CMS environment.

System-Level View
For VMSES/E enabled products, default segment information is provided with the
product in the :SEGDEF :ESEGDEF block of the PRODPART file. For
non-VMSES/E products, equivalent information must be entered by the user.

It is quite common to alter the segments ′ characteristics, notably the load
addresses, but the default information must not be altered because it must be
available at all times. The solution is to provide a file to hold the customized
segment information, either extracted from the PRODPART file or entered by the
user. This file resides in the system-level Software Inventory and is called the
Segment Data file, or SEGDATA file. It describes a particular segment
arrangement, or storage layout. It is possible to create and maintain several of
these files (for example, to do segment planning without interfering with the
production system, or to maintain several systems from a single site).

Because saved segments are system objects, they are built at a system level,
which requires a system-level segment build list (VMSES/E requires that all
objects it can build be described in build lists). However, this build list does not
contain detailed build instructions, which exist in product-level build lists. The
system segment build list, then, only points to the product build lists. Each
SEGDATA file has a corresponding system segment build list.

Chapter 4. Saved Segments 67

Building objects, in VMSES/E, is exclusively a function of the VMFBLD command
and this command requires information from a PPF. Therefore, a system-level
PPF for system objects is introduced. This PPF has only one component, and its
main function is to list the build lists for system objects. This PPF also supplies
system appids and a system bldid.

There is also a system-level Service Build Status table. It contains the status of
any serviced saved segments.

Saved Segment Planning
Segment planning must be done at the system level. Indeed, segments from
different products interact, and all segments, as well as named saved systems,
must be considered as a whole in any meaningful planning. Planning is mostly
prompted by adding new segments or changing existing ones; for example,
changing the storage location of a segment.

VMFSGMAP is the VMSES/E tool that provides these system-level management
support functions. Figure 34 on page 69 shows a logical view of the data flow in
VMFSGMAP.

The VMFSGMAP command:

• Obtains saved segment information from:

− The PRODPART files

− The SEGDATA file

− User input

− Existing saved segments available on the system

• Builds a storage map of the segments defined on the system and on the
SEGDATA file, and shows this map through a full-screen interface (XEDIT
based).

• Allows you to change the information (you can discard any changes).

• Saves the information back in the Software Inventory files.

VMFSGMAP is most useful as a planning tool because any newly defined or
changed segments are immediately reflected on the segment map. Also, as
VMFSGMAP does not actually build any segments, your production system is
safe and you can study any segment arrangements (or layouts) and solve all
conflicts, such as overlaps, before committing the changes.

68 VMSES/E Primer

Figure 34. Logical Data Flow in VMFSGMAP

VMFSGMAP Command
VMFSGMAP′s main function is to allow segment planning based on a full-screen
map of the defined segments. This map shows:

• Discontiguous saved segments (DCSS)
• Segment spaces
• Member saved segments
• NSSs
• Segment location (address ranges and page descriptors)
• Overlapping members
• Gaps in segment spaces

This map can be saved in a file. Notice that information on NSSs is extracted
from the system and presented on the map, but that is the only support provided
by VMFSGMAP. You cannot add NSS definitions to the SEGDATA file or
customize them.

By comparing the system definitions with those in the SEGDATA file, VMFSGMAP
flags any segment that is defined only to the system, defined only in the
SEGDATA file, or defined on both but with definition mismatches. VMFSGMAP
also detects any invalid ranges in segment spaces.

Chapter 4. Saved Segments 69

| Any changes can be saved and reflected in the Software Inventory files.
| VMFSGMAP also automatically changes the system segment build list, and adds
| entries to the system Select Data file, to signal the need to rebuild the changed
| segments. The system Select Data file has the same role, for system objects, as
| a product-level Select Data file. In Release 2.2, the :APPID tag of the
| system-level segments PPF lists two names. The first, or primary, by default
| SEGBLD, is used by VMFSGMAP as the file name of the Select Data file. The
| second, or alternate must be VMSBR, as explained in “VMFBDSBR Part
| Handler” on page 76. Prior to Release 2.2, there was only VMSBR in the :APPID
| tag.

Note that VMFSGMAP does not build or delete the segments, nor does it call the
build function.

Segment Map Screen
Figure 35 on page 71 shows a part of the segment map built by VMFSGMAP.
Notice that VMFSGMAP divides the address space into 4-MB blocks. Each map
column corresponds to 64 KB (16 pages) and has a special code called a “page
descriptor”:

R Pages defined as exclusive (ER) or shared read (SR).
W Pages defined as exclusive (EW) or shared write (SW).
N Pages defined as shared, no data saved (SN).
X Overlapping range (for member saved segments).
C CP writable pages.
. Pages empty and free.
- Pages empty but not free, such as, in a DCSS, pages between the end of

the range and the next MB boundary. For example, see the CMSVMLIB
segment.

= Pages of a segment space that are occupied by its members. For
example, see the DOSBAM space.

> Continued in another 4 MB range. For example, see the CMS NSS.

The map displays the following segment types:

CPD CP system service saved segment
DCS Discontiguous saved segment (DCSS)
SYS Named saved system
SPA Segment space
MEM Member saved segment

Because VMFSGMAP extracts data from the reply to the CP QUERY NSS
command, it can also map any named saved systems or segments not defined in
the SEGDATA file. The first column of the map contains a status indicator
resulting from comparing the system data with the definitions in the SEGDATA
file.

The possible statuses are:

blank The definition in the system matches that in the SEGDATA file.
D The system and SEGDATA file definitions are different. When this

happens the SEGDATA definition is shown.
E Either the system definition or the SEGDATA file definition is in error.
M The segment is only mapped: It is defined to the system but is not in the

SEGDATA file.

70 VMSES/E Primer

P The segment is only planned: It is defined in the SEGDATA file but not to
the system.

When a segment is defined in both places, the SEGDATA definitions are shown.
Also, if both a skeleton and an active segment that is defined only to the system
exist, the definition of the active segment is shown. In Figure 35, the only
flagged lines with a non-blank status are the NSSs (flagged as “M”) because
they are defined only to the system.

| In Release 2.2, the first column of the map may show, instead of the status, the
| spool file class of the segments that exist on the system. Pressing PF12 will
| toggle the screen to spool class mode. Possible spool class codes, which mimic
| standard CP NSS class codes, are:

| A Active: the saved segment or saved system has been defined and
| code has been loaded into the saved segment or system.
| R Restricted: code has been loaded into this saved segment or system.
| However, this code is only available to users with the NAMESAVE
| option in their directory.
| S Skeleton: a skeleton has been defined, but no code has been loaded
| into the saved segment or system.

The segment displayed will either be a class A or R, or if neither exist, a class S
file (if there is one) will be shown. To work with one of the segments, point at it
with the cursor and press the appropriate PF key.

� �
VMFSGMAP - Segment Map More: +

Lines 1 to 26 of 36

| Meg 000-MB 001-MB 002-MB 003-MB
| St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

M CMS SYS W-W-------------1...............2...............3...............
M GCS SYS W---------------1...............2...............3...............

004-MB 005-MB 006-MB 007-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
CMSPIPES DCS 4...............5...............6...............RRRR------------

M GCS SYS RRRRRRNNNNNNNNNNNNNNNNNNNNNNNNNN6...............7...............

008-MB 009-MB 00A-MB 00B-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
DOSBAM SPA 8...............9...............A...............====------------
CMSBAM MEM 8...............9...............A...............RRRR............
CMSDOS MEM 8...............9...............A...............R...............
CMSFILES DCS 8...............-----RRRRRRRRRRRRRRRRRRRRRRRRRRRB...............
CMSVMLIB DCS RRRRRRRR--------9...............A...............B...............

 DOSINST DCS 8...............R---------------A...............B...............

00C-MB 00D-MB 00E-MB 00F-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............

M CMS SYS C...............D...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

 F1= Help F2= Chk Obj F3= Exit F4= Chg Obj F5= File F6= Save
 F7= Bkwd F8= Fwd F9= Retrieve F10= Add Obj F11= Del Obj F12= Class
====>� �

Figure 35. Segment Map

Chapter 4. Saved Segments 71

| VIEW Subcommand
| The VIEW subcommand has been introduced in this release of VMSES/E. This
| command can be specified with one of the following options:

| ALL Displays information for all the segments defined on the system.
| SEGDATA Displays information about the segments defined in the SEGDATA file.
| Segments that were defined and saved without using VMSES/E are
| not displayed.
| ERROR Displays information about all segments the have a class of E.

| A sample of the VMFSGMAP screen displaying information about all the
| segments is shown in Figure 36.

| �| �
| VMFSGMAP - Segment Map More: +
| Lines 1 to 18 of 93

| Meg 000-MB 001-MB 002-MB 003-MB
| St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
| M CMS SYS W-W-------------1...............2...............3...............
| M GCS SYS W---------------1...............2...............3...............
| M PSEG1 DCS 0...............1...............2...............WWWWWWWWWWWWWWWW
| M MONDCSS DCS 0...............1...............2...............CCCCCCCCCCCCCCC>

| Meg 004-MB 005-MB 006-MB 007-MB
| St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
| M SNASEG SPA 4...............================================7...............
| M VTAM MEM 4...............RRRRRRRRRRRRRRRRRRRRRRRRR.......7...............
| M NPM MEM 4...............5...............6........RRRR...7...............
| M NETVSG00 MEM 4...............5...............6............RRR7...............
| CMSPIPES DCS 4...............5...............6...............RRRRRRRR--------
| M GCS SYS 4...............5...............6...............RRRRRRNNNNNNNNN>
| M MONDCSS DCS >CCC

| Meg 008-MB 009-MB 00A-MB 00B-MB
| F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
| F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Class
| ====>
| �| �
| Figure 36. VMFSGMAP Segment Map Using VIEW ALL

| Check Object Enhancement
| Check Object (PF2 CHK OBJ on the VMFSGMAP screen) has been enhanced to
| provide a display of the CP QUERY NSS command. The highlighted areas in
| Figure 37 show the changes to this interface.

72 VMSES/E Primer

| �| �
| VMFSGMAP - Segment Map More: +
Lines 1 to 18 of 93
Query NSS Map For CMSPIPES
Lines 1 to 3 of 3
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
0129 CMSPIPES DCSS N/A 00700 0077F SR P 00025 N/A N/A
0167 CMSPIPES DCSS N/A 00700 0077F SR A 00002 N/A N/A

F1=Help F3=Exit F6=File Query F7=Bkwd F8=Fwd F9=Retrieve F12=Cancel

| Meg 000-MB 001-MB 002-MB 003-MB
| St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789
| M CMS SYS W-W-------------1...............2...............3.........
| M GCS SYS W---------------1...............2...............3.........
| M PSEG1 DCS 0...............1...............2...............WWWWWWWWWW
| M MONDCSS DCS 0...............1...............2...............CCCCCCCCCC
| Meg 004-MB 005-MB 006-MB 007-MB
| VMFSMD2032I System and SEGDATA definitions are the same for segment CMSPIPES
| F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
| F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Class
| ====>
| �| �
| Figure 37. VMFSGMAP Check Object Screen

Adding a Segment Definition
If, while on the Segment Map panel, you invoke the Add Obj function (PF10) you
are presented Add Segment Definition panel. If the cursor was placed on a map
record, that segment (or space) definition is used to pre-fill the Add Segment
Definition panel. If the cursor was not pointing to a map record, the panel will
be mostly blank, as shown in Figure 38.

� �
Add Segment Definition

Lines 1 to 12 of 12
 OBJNAME....: ????????
 DEFPARMS...:
 SPACE......:
 TYPE.......: SEG
 OBJDESC....:
 OBJINFO....:
 GT_16MB....: NO
 DISKS......:
 SEGREQ.....:
 PRODID.....:
 BLDPARMS...: UNKNOWN

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=File F6=Chk Mem
 F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj Mem F12=Cancel
====>� �

Figure 38. VMFSGMAP Add Segment Definit ion Panel

By entering the name of an object in the OBJNAME field you can:

• Obtain current segment information from the SEGDATA file and immediately
customize it (PF2). This speeds up segment definition when several
segments are similar.

Chapter 4. Saved Segments 73

• Obtain default segment information from the PRODPART file and immediately
customize it (fill the PRODID field then press PF10).

You can also enter information relative to segments of non-VMSES/E enabled
products.

Of the data fields on the panel, some are common to all products, and some are
more useful, or specific to, non-VMSES/E enabled products.

The fields in this panel are:

OBJNAME This is the segment name. It must be unique within the system.

DEFPARMS Defines the location of the segment ′s pages by describing each
page range and its type. On VM/ESA Release 2.2, if a segment is

| deleted, the word DELETED is inserted in front of the page range
| values. You can recover the segment by removing the word. On
| previous releases the word DELETED replaced the page range
| values, and there was no way to recover the tailored values.

SPACE Used only for segment space members. It is a list of the segment
spaces of which the segment is a member. For DCSSs the field
must be left blank.

OBJDESC Contains any text describing the segment.

OBJINFO Descriptive text providing special information concerning the
segment.

GT_16MB Specifies whether the segment can run above 16 MB. It may still
reside below 16 MB, even if it can run above, but must reside
below 16 MB if NO is specified.

DISKS Lists disk addresses VMFBLD should automatically access when
building the segment. If the disks are not linked, the segment will
not be built.

SEGREQ Identifies prerequisite segments. Any prerequisite segment which
does not have a status of BUILT, in the Segment Build Status
table, will be built prior to building the initial segment.

PRODID This field identifies the PRODPART file that contains the default
definition for the saved segment.

BLDPARMS This field contains the build directions for the segment. Products
in VMSES/E format use the keyword PPF followed (within
parentheses) by the PPF, component, and build list names.
Non-VMSES/E products use the keyword PROD followed (within
parentheses) by the name of an EXEC and, optionally, one or
more parameters. This EXEC is either provided by the program
product, or written by the installation.

When this field has the value UNKNOWN, VMFBLD issues only the
DEFSEG command. The actual build will be done later by a user
called procedure.

If you are defining a member saved segment, the Chk Mem (PF6) function is very
useful. It checks for member overlaps in all the spaces the member you are
defining will belong to. You can then adjust the storage ranges by using the Adj
Mem (PF11) function.

74 VMSES/E Primer

When you return to the Map panel (PF5) any changes you made are preserved.
However, you can still discard them if you leave the Map panel by any other
means than File (PF5).

Viewing and Changing a Saved Segment Definition
On the Segment Map panel, you can move the cursor to the map record for a
particular saved segment and press the PF4 key to display the definition record
for the saved segment. For example, on the segment panel shown in Figure 35
on page 71, if you move the cursor to the map record for CMSBAM and press
PF4, the Change Segment Definition panel shown in Figure 39 is displayed.

� �
Change Segment Definition

Lines 1 to 12 of 12

 OBJNAME....: CMSBAM
 DEFPARMS...: B0D-B37 SR
 SPACE......: DOSBAM
 TYPE.......: SEG
 OBJDESC....: CMSBAM MEMBER OF THE DOSBAM SEGMENT SPACE
 OBJINFO....:
 GT_16MB....: NO
 DISKS......:
 SEGREQ.....: DOSINST
 PRODID.....: 6VMVMA22 CMS
 BLDPARMS...: PPF(ESA CMS DMSSBBAM)

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=File F6=Chk Mem
 F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj Mem F12=Cancel
====>� �

Figure 39. VMFSGMAP Change Segment Definit ion Panel

You can change any of the fields in this panel except the OBJNAME field. In
other words, you cannot rename a segment. To rename a segment, create a
new one with the add function, then delete the old segment.

For example, you can alter the storage defined for the segment by entering the
new range in the DEFPARMS field. You should use the “Chk Mem” (PF6)
function to check for any overlaps. Next, press PF5 to return to the Segment
Map panel, which is refreshed to show the changes. If the updated map is
correct in relation to the other saved segments, you can press PF5 to record the
changes and exit VMFSGMAP.

Notes:

• The changed information is stored in both the SEGDATA file and in the
segment build list.

• To activate the new definitions, the segment must be redefined, reloaded,
and re-saved. This is done with the VMFBLD command, or through a
product-defined procedure.

• See “Building Saved Segments” on page 163 for a detailed description of
the segment build process.

Chapter 4. Saved Segments 75

Product-Level View
Rebuilding segments is prompted by two situations: because the segment′s
definitions were changed by the user, or because normal product service has
changed one or more of the objects used to build the segment.

The first case was explained in “System-Level View” on page 67; we will now
concentrate on the second one. This discussion applies only to
VMSES/E-enabled products. Service for non-VMSES/E products includes specific
instructions on how to rebuild the respective segments.

The requirements are to:

• Detect that service has been applied to objects a segment is built from.

• Detect changes to segment-requisite objects.

• Signal the need to rebuild the affected segments.

Each segment, because it is a system-level object, is built not from product parts
but from product objects. For example, the CMSPIPES segment is built from the
DMSPIPE.MODULE object, which, in turn, is built from several parts (TEXT files).
A change in one of the parts forces the building of the DMSPIPE module and of
the CMSPIPES segment, in this order.

Regardless of being implemented as LSEGs, DCSSs, or member saved
segments, CMS saved segments are defined at the product level in Format 2
build lists. LSEGs are later (at the system level) created as members of a PSEG;
the PSEG itself is defined only at the system level, in the SEGDATA file, and can
be created either as a DCSS or as a member saved segment. CMS saved
segments to be implemented as DCSSs or member saved segments are defined
as such in the SEGDATA file, and are created (at the system level) as DCSSs or
member saved segments, respectively. No PSEGs are involved.

Each segment is defined by an :OBJNAME :EOBJNAME block in the build list.
The :BLDREQ tag is used to identify the objects the segment is built from. The
:OPTIONS tag defines the function used to create the segment. The values in
this tag vary widely with the type of segment.

VMFBDSBR is a build part handler called during the build step of product
service. Its function is to pass to the system-level information on which
segments have to be rebuilt. Building segments requires control files with
system-level information.

| Note: On a VM/ESA Release 1.5 370 Feature system, there is no system-level
| information for segments. VMFBDSBR only logs messages in the build message
| log.

VMFBDSBR Part Handler
The product-level service process that triggers the building of any object is as
follows:

 1. VMFAPPLY creates, as part of the apply process, a list of parts affected by
service - the Select Data File (appid $SELECT). This file resides on the
product ′s Alternate Apply disk.

76 VMSES/E Primer

 2. The STATUS function of VMFBLD uses the $SELECT file to scan the product ′s
build lists for objects containing those parts, and changes the status of those
objects in the product′s Build Status table (bldid SRVBLDS) to SERVICED.

 3. The SERVICED or ALL options of VMFBLD scan the SRVBLDS file and call
the appropriate part handlers to build the objects.

| However, saved segments must not be built at this point. Indeed, you may need
| to coordinate service for several products before you can build a segment; you
| may have a physical segment grouping logical segments from several products,
| which requires that they are all built at the same time. In addition, you may
| have to change segments′ definitions, and this must be done from the system
| level, by using VMFSGMAP. This ensures the changes are correct; for example,
| that the changed segment does not overlap existing segments or that it is large
| enough for new service.

| So, the STATUS option of VMFBLD only identifies the need to build the segments.
| During the SERVICED (or ALL) processing, a build part handler, VMFBDSBR,
| issues messages (and also logs the messages) informing which segments have
| to be rebuilt.

| On VM/ESA Release 2 and later systems (but not on VM/ESA Release 1.5 370
| Feature systems) VMFBDSBR is also used to communicate to the system level
| any segment build requirements. This is done by adding to a predefined
| system-level Select Data file, VMSBR $SELECT, the build list names of the
| segments that have to be rebuilt. In Release 2.2, because the VMFSGMAP uses
| a different Select Data file, user changes to the segment ′s definition and service
| changes to a segment′s contents can be kept distinct.

But VMFBDSBR has to know on which disk the VMSBR $SELECT file resides.
When VMFBDSBR is executing, the product′s disks are accessed. Later, when
the segments are built using VMFBDSEG, there is a good chance the disks will
not be accessed anymore. So there is a need for a common disk, the SIDISK. In
order to allow flexibility in the actual location of the VMSBR $SELECT file,
another file pointing to it was placed in the SIDISK. This latter file is named
“VMSESE PROFILE.”

Segment Building
To actually build segments requires system-level information. Here we will give
only an outline of the process. A detailed description, requiring information
given in Part 2, “VMSES/E Usage Experiences,” can be found in “Building Saved
Segments” on page 163.

Segments, like any other objects, are built using the VMFBLD command. As
noted above, the first step in any VMFBLD invocation is known as STATUS.

| Before VM/ESA Release 2.2, this step was always executed, even when
| specifying the SERVICED or ALL options. Starting with VM/ESA Release 2.2, the
| STATUS step will be skipped for the SERVICED and ALL options when the time
| stamps in the $SELECT files and in the :LASTAPP tag of the SRVBLDS table
| match, indicating STATUS has been performed and no new service has been
| applied. This step can also be executed by itself, by invoking VMFBLD with the

STATUS option.

The STATUS step essentially identifies any build requirements. The System
Segment PPF has control information for the overall process, such as the name

| of the system-level Service Build Status table. The SEGBLD $SELECT and

Chapter 4. Saved Segments 77

| VMSBR $SELECT files are used to search the system segment build list and
| identify the changed segments. In this way, changes made by both the user and
| product service are brought together. Any segments that have to be built have
| their status in the system-level Service Build Status table changed to SERVICED.
| Dependent segments are also flagged as SERVICED. Any segments that the
| user marked for deletion are also identified at this point in time, and flagged as
| DELETE in the system SRVBLDS table.

| Next, during the SERVICED or ALL steps of VMFBLD, the changed segments are
| actually built (or deleted).

VMFBDSEG Part Handler
VMFBDSEG, another part handler introduced in VM/ESA Release 2, is
responsible for the actual building.

| LINK Option
| VMFBLD can be invoked to build a specific segment, all serviced segments, or
| all segments. When you are building segments for several products, VMFBDSEG
| has to access the disks for a product, build the segment, then access the disks
| for the next product, and so on. As products may use the same virtual
| addresses for some of the disks you could run into minidisk address conflicts,
| and VMFBDSEG could not continue to build all segments.

| You should build the segments from a special purpose user ID (MAINT is not a
| good choice because of minidisk address conflicts). This user ID has no disks of
| its own (apart from the 191) but can link to the other product′s disks. With
| VM/ESA Release 2.2, specifying the LINK option allows VMFBDSEG to link and
| access the required disks, build the segment, and detach the disks, freeing the
| address for the next segment.

| Execution Flow
| VMFBDSEG is called by VMFBLD for the specified build list, and it will:

| • Release all saved segments and drop all nucleus extensions before the
| build.

| • Determine which segments have to be built or deleted.

| • Copy the SYSTEM SEGID file from the S disk to the target build disk, if
| needed.

| Note: When a logical segment is added to or deleted from a physical
| segment the SYSTEM SEGID file has to manually copied back to the S disk at
| the end of the build. This, in turn, implies re-saving the CMS saved system.

• Validate the definitions in the SEGDATA file and in the product build list, for
each segment that has to be built. The products disks are accessed through
VMFSETUP if needed. If errors are found, no segment is built.

• Delete any segments that have to be deleted.

• Define the segments that have to be built. If errors are found, no segment is
built. Defining the segments involves:

− Purging existing segment skeletons.

− Defining the skeleton file, using the information in the SEGDATA file.

− Copying unchanged members of Active or Restricted segment spaces.

78 VMSES/E Primer

• Build requested segments:

| − Link the product disks, when the LINK option is used.

− Access the products disks:

- The disks in the DISKS field are accessed (must be already linked).

- If the BLDPARMS field specifies a PPF, the VMFSETUP command is
invoked.

− Activate any needed GLOBAL libraries defined in the product level
segment build list.

− For CMS logical saved segments:

- Create the PSEG and LSEG files.

- Create any logical segment profile and epifiles, if needed, and erase
them if SEGGEN is successful.

- Call the SEGGEN command.

− For segments that do not contain CMS logical segments, call the
appropriate routine.

• Return the results to VMFBLD. VMFBLD then updates the system-level
Service Build Status table.

• If the message VMFBDS2003W is issued, serviced parts may need to be
moved to a selected disk. For example, the SYSTEM SEGID may require
copying to the S-disk.

• If message VMFBDS2006E is issued, VMFBDSEG has determined that a
segment it is trying to build might contain a part that has been serviced but
not rebuilt (for example, a text deck in the DMSPIPE MODULE has been
serviced but the DMSPIPE MODULE has not been rebuilt). In this case,
VMFBDSEG will not build the segment. To correct this condition, invoke
VMFBLD for the PPF, component, and build list names specified in the
message, with the All and SETUP options. The build requisites in the build
list will cause VMFBLD to build any serviced objects contained in the
segment. Then invoke VMFBLD again to build the segment, specifying the
SETUP option to re-access the required disks.

Chapter 4. Saved Segments 79

80 VMSES/E Primer

Part 2. VMSES/E Usage Experiences

This part discusses experiences gained when servicing a VM/ESA system, and
installing and servicing selected program products. Several examples of
Software Inventory exploitation are presented and discussed.

 Copyright IBM Corp. 1992, 1993, 1994 81

82 VMSES/E Primer

Chapter 5. Installation Experiences

In “Installing Products” on page 18, we presented an overview of the installation
process. This chapter expands on that information by taking a closer look at the
VMFINS EXEC, the VMSES/E installation tool, and giving actual installation
experiences.

Any VMSES/E commands (of the format VMFxxxxx) mentioned in this chapter are
fully described in VM/ESA: VMSES/E Introduction and Reference or VM/ESA:
VMSES/E Introduction and Reference for 370.

VMFINS Command
The VMFINS command was introduced by VMSES/E and is the primary command

| used to install licensed program products. Installing VM/ESA follows a different
| procedure (see “Installing VM/ESA” on page 90). VMFINS is a high-level, though

flexible, interface and provides in a single command the ability to:

• Install products or additional copies of products.

• Migrate products while keeping tailored files and data.

• Build products, as the last step in the installation or migration.

• Delete products from your system.

The general syntax of the VMFINS command is shown in Figure 40.

��──VMFINS─ ──┬ ┬──┬ ┬─INStall─ ──┬ ┬─INFO─ ───��
│ │└ ┘─MIGrate─ ├ ┤─LIST─
│ │├ ┤─PPF──
│ │└ ┘─PROD─
└ ┘──┬ ┬─BUIld── ──┬ ┬─PPF── ─
└ ┘─DELete─ └ ┘─PROD─

Figure 40. VMFINS Command General Syntax

You can use VMFINS to install products in the following formats:

• VMSES/E

• INSTFPP

The products may be distributed on the following tape formats:

• VMSES/E

| • Parameter Driven Installation (PDI)

VMFINS is also capable of handling the old VM/SP System Offering format
(INSTFPP).

Refer to Appendix B, “Product Packaging and Distribution Media Formats” on
page 205 for a description of these tape formats.

The remainder of the chapter further details the functions of the VMFINS
command.

 Copyright IBM Corp. 1992, 1993, 1994 83

| VMFINS DEFAULTS
| As this file is enhanced in VM/ESA Release 2.2, you should become familiar with
| its purpose. The file resides on the SESDISK, and supplies defaults for the
| VMFINS command, for example:

| • Whether product installation should add a copy or replace an existing
| product

| • The file id of the source directory

| • File pool used during installation or migration

| • System name

| • Minidisk address or SFS directory, and access mode for the SIDISK

| You may edit this file, and change these values to suit your installation′s
| defaults.

VMFINS INSTALL and VMFINS MIGRATE Commands
The complete syntax of the VMFINS INSTALL command is shown in Figure 41 on
page 85. The syntax of the VMFINS MIGRATE command is identical (with the
MIGRATE keyword, instead of INSTALL). We will discuss only a few of the
numerous operands and options. For a full description of all the operands and
options, please see VM/ESA: VMSES/E Introduction and Reference.

Installation and migration are very similar. Both can:

• Place another copy of an existing product on the system (ADD option)

• Replace an existing product (REPLACE option)

The main differences between migration and installation are:

• The product to be migrated must have been previously installed by
VMSES/E.

• Migration preserves all your tailored files (the files must be listed in the
Parts section of the PRODPART file). Note that if you alter a file not listed in
the PRODPART file, your changes will be lost.

| • Since migration always uses a SFS directory for its save area, an active
| CMS Shared File System is required. Until VM/ESA Release 2.2, only the
| VMSYS: file pool could be used. Though this is the default, any file pool can
| now be used.

Note: Migration cannot be used to replace a VM/ESA system. A supported
installation method must be used.

VMFINS supports all three main steps in any product installation or migration:

 1. Planning

vmfins install info ... (memo

and

vmfins install ppf ... (plan nomemo

or

vmfins install prod ... (plan nomemo

84 VMSES/E Primer

 2. Loading the materials

vmfins install ppf ... (noplan nomemo

or

vmfins install prod ... (noplan nomemo

 3. Generating any required usable forms (product build)

vmfins build ...

Note: Though the LIST operand can be used for the planning and load steps, we
recommend its use be restricted to the planning step, if used at all.

We will now take a closer look at these steps.

┌ ┐─VMFINS──PRODLIST──A─ ┌ ┐─(───(1) ────────────────────
��──VMFINS──INStall─ ──┬ ┬──┬ ┬─INFO─ ──┼ ┼───────────────────── ──┼ ┼───────────────────────── ───��

│ │└ ┘─LIST─ │ │┌ ┐─PRODLIST──A─ └ ┘─(───(2) ─┤ Options ├─ ──┬ ┬───
│ │└ ┘─fn─ ──┼ ┼───────────── └ ┘─)─
│ ││ │┌ ┐─A──
│ │└ ┘─ft─ ──┼ ┼──── ─
│ │└ ┘─fm─
└ ┘──┬ ┬─PPF──ppfname─ ──┬ ┬────────── ───
└ ┘─PROD──prodid─ └ ┘─compname─

Options:
┌ ┐─ADD───── ┌ ┐─DFName──USER─ ┌ ┐─DFType──DIRECT─ ┌ ┐─DFMode──*──

├─ ──┼ ┼───────── ──┬ ┬───────── ──┼ ┼────────────── ──┼ ┼──────────────── ──┼ ┼──────────── ──────────�
└ ┘─REPlace─ └ ┘─ENV──fn─ └ ┘─DFName──fn─── └ ┘─DFType──ft───── └ ┘─DFMode──fm─

┌ ┐─FILEPool──VMSYS:──────────────── ┌ ┐─LINk─── ┌ ┐─MEMo─── ┌ ┐─NOPlan─
�─ ──┼ ┼───────────────────────────────── ──┼ ┼──────── ──┼ ┼──────── ──┼ ┼──────── ─────────────────�

| └ ┘| ─FILEPool─ ──┬ ┬| ─filepoolid─ ──┬ ┬─── └ ┘─NOLink─ └ ┘─NOMemo─ └ ┘─PLAn───
| │ │└ ┘─:─
| └ ┘─*─────────────────

| ┌ ┐─NOResource─ ┌ ┐| ─OVErride──PROMPT─────── ┌ ┐| ─SIDisk──51D─── ┌ ┐| ─SIMode──D──
�─ ──┼ ┼──────────── ──┼ ┼──────────────────────── ──┼ ┼─────────────── ──┼ ┼──────────── ───────────�

| └ ┘─RESource───(3) └ ┘| ─OVErride─ ──┬ ┬─YES────── ├ ┤| ─SIDisk──vdev── └ ┘| ─SIMode──fm─
| ├ ┤─NO─────── └ ┘| ─SIDisk──dirid─
| ├ ┤─DEFAULTS─
| └ ┘─PANEL────

┌ ┐─SYStem──VM────
�─ ──┼ ┼─────────────── ───┤

└ ┘─SYStem──sysid─

Notes:
1 The defaults you receive appear above the line in the Options fragment.

2 You can enter options in any order within the parentheses.

3 If you use the RESOURCE option, you must also use the LINK option.

Figure 41. VMFINS INSTALL Command Syntax

Chapter 5. Installation Experiences 85

Planning Step
Planning for a product installation, or migration, mainly consists of:

• Verifying that all product requisites are satisfied

• Making the required resources available

Note: Planning for saved segments should be done later, during the build step.

Useful information is contained in each product′s installation guide and in the
| printed Program Directory that accompanies the distributed materials. In past
| VM/ESA releases, information used to be distributed in the Memo to Users,
| included as a file on the product′s tape. Products in VMSES/E format no longer
| include installation information in the Memo to Users. The Memo to Users files
| will be empty, and are retained on the product tape for compatibility. All
| relevant information is included in the other documents.

SIDISK, SIMODE, and SYSTEM Options
These options provide greater flexibility for managing installations with multiple
systems:

• The SIDISK options lets you select any minidisk address (or SFS directory
name) for the Software Inventory disk (the default is 51D).

• The SIMODE options allows the SIDISK to be accessed using any valid disk
mode (default is “D”). Take care when the SIMODE is not D, because
VMFSETUP will automatically release the disk, unless you add it to the
:RETAIN tag of the PPF, or use the RETAIN option of the VMFSETUP
command.

• The SYSTEM option lets you name the system you want to work with (default
is “VM”).

INFO and LIST Operands
With the INFO operand, you can create lists of the products that were shipped on
the product tapes and may be added to the system, or that may replace existing
products. A file listing those products is created on your A-disk. It is named
VMFINS PRODLIST and can be subsequently used as input to the LIST
parameter. However, we recommend that you limit the use of the LIST operand
to the planning step. Do not use the LIST operand for the product loading step
because you have better control of the installation process when you install
products one by one.

Figure 42 shows an example of the VMFINS PRODLIST file.

� �
VMFINS PRODLIST A1 V 94 Trunc=94 Size=5 Col=1 Alt=1
|...+....1....+....2....+....3....+....4....+....5..

*** Top of File ***
PPF 5684096 RSCS Remote Spooling Communications Subsystem
PPF 5684096 RSCSSMALL RSCS without opt source and text
PROD 5748XX9 NONE DCF Version 1
PPF 5668962 ASSEMH PRODID 5668962%ASSEMH ASSEMBLER-H
PPF 5798DWD RTM PRODID 5798DWH%RTM Real Time Monitor VM/ESA

� �
Figure 42. VMFINS PRODLIST File

86 VMSES/E Primer

MEMO Option
This option prompts you for which Memo to Users you want to print on the

| system printer. Products in VMSES/E format no longer include installation
| information in the Memo to Users. The Memo to Users files are empty, and are
| retained on the product tape for compatibility purposes only. For previous
| releases, please note that you do not have to print the memos, as they are
| loaded to the SIDISK whenever VMFINS INSTALL is invoked, so you can consult
| them anytime. However, we do recommend you read the memos.

PPF and PROD Operands
Products in non-VMSES/E format must use the PROD operand.
VMSES/E-formatted products may use either operand, although PPF is the
preferred operand. The VMFINS PRODLIST file contains the PPF and component
names.

During the planning step these operands are used in conjunction with the PLAN
option.

PLAN Option
The PLAN option helps you check product requisites and resource requirements
before actually performing any actions. It does not generate, allocate, or commit
any system resources.

The PLAN option creates an output file with a file name equal to the product id,
and a file type of PLANINFO. Within this file, you can find the information to:

• Check for any requisite products

• Identify the minidisks that will be required

• Determine the amount of space required on each minidisk

• Define any user IDs that might be required

The information provided by the PLAN option helps you to install multiple copies,
or new releases, of a product, without disturbing the existing products. As an
example, the PLANINFO file created when planning the installation of the CMS
Utilities feature is shown in Figure 43 on page 93.

This file is especially useful if you have a CP directory management product,
such as DIRMAINT, as discussed in “RESOURCE Option.”

RESOURCE Option
The RESOURCE option of the VMFINS command uses the resource definition
information from the Product Parameters section of the PRODPART file to add
user IDs and minidisks to your system (or remove them if you are doing a
delete). For a further description of the PRODPART file, please see “PRODPART
File” on page 56.

The RESOURCE option generates, allocates, and commits system resources . It
requires access to the source CP Directory in single file format, and a special
data file, called VMFRMT EXTENTS, as explained below.

The VMFRMT EXTENTS file is supplied with VM/ESA, as a sample file of the CP
| component, and allows the RESOURCE option to locate free space in which new
| minidisks can be allocated. The default entries provided are samples only, so

Chapter 5. Installation Experiences 87

you need to tailor this file (use XEDIT) to define the DASD devices you want the
RESOURCE option to examine for free space.

The DASD devices whose labels you specify in this file are checked to ensure
that they are available to the system. If a device you specified is not available, it
will be ignored. You also have to specify the type of DASD device, a starting
cylinder value, and the number of cylinders that are to be checked for free
space.

If you wish to use the RESOURCE option, you must ensure that both the CP
directory and the VMFRMT EXTENTS files are on minidisks that will still be
accessed after all the minidisks of the component have been accessed by the
VMFSETUP EXEC; for example, by using the RETAIN option to reserve file modes.
VMFSETUP is the VMSES/E tool that accesses the disks of a component, listed
on the :MDA section of the PPF, and you can use the RETAIN option to reserve
file modes.

The RESOURCE option requires the source CP Directory file to be in single-file
format, in order to be able to modify it. Therefore, if you have the DIRMAINT
program product, or a similar product, on your system, we recommend you do
not use the RESOURCE option. However, if you decide to use it, remember that,
beginning with Release 4, DIRMAINT maintains the source directory as a group
of files. Therefore, you will have to perform some manual steps in order to have
DIRMAINT re-create the directory into a single file. You should also stop
DIRMAINT operations during this period. Use the commands:

dirm disable
dirm user backup
dirm send user backup b
dirm shutdown

You can then receive the directory file, and give it the VMFINS default name:
USER DIRECT. After VMFINS alters it, you will then have to re-initialize
DIRMAINT, following the directions for DIRMAINT initial installation.

Even if you do have DIRMAINT, you can still use VMFINS planning capability:
you can extract the relevant information from the PLANINFO file, created by
using the PLAN option, and manually create or update the necessary user IDs.

Also, if you have RACF or a similar product, you will have to define the
resources to the system and permit access to any resources as required. The
RESOURCE option does not provide any interface to these functions, which must
be manually performed.

Product Loading Step
VMFINS inspects the product on the tape and, if it is a VMSES/E-formatted
product, uses the VMFREC command to actually load the product materials. For
non-VMSES/E products, INSTFPP is called.

88 VMSES/E Primer

PPF and PROD Operands
VMSES/E-enabled products should be installed using the PPF operand. All other
products must use the PROD operand, instead of PPF. The VMFINS PRODLIST
file contains the PPF and component names.

To install or migrate a VMSES/E-enabled product you issue one of the following
commands:

vmfins install ppf ... (add noplan nomemo
vmfins install ppf ... (replace noplan nomemo
vmfins migrate ppf ... (add noplan nomemo
vmfins migrate ppf ... (replace noplan nomemo

These commands allow you to:

• Install a product and keep it separate from the current production version of
the product.

• Install a product and replace the current version of the product.

• Install another copy of a product without loosing any user tailored files.

• Install a new version of a product, which replaces a current version, without
loosing any user tailored files.

Notes:

• You must select the NOPLAN option to load the product′s materials.

• The NOMEMO option prevents printing the Memo to Users.

PPF Overrides
The VMFINS command allows you to create a PPF override if you do not want to
use the supplied default minidisk addresses for a product. You will have to
create one if you are installing an additional copy of the product. In VM/ESA
Release 1.1, override creation occurred only when using the PROD operand.
Starting with VM/ESA Release 2, you can create a PPF override when using
either the PPF or PROD operands (if the product is in VMSES/E format).

During product loading, VMFINS prompts you to override the default PPF values.
| In VM/ESA Release 2.2, prompts can be pre-answered using the OVERRIDE
| option. If you reply yes, you are placed on a panel that allows you to change the

default names for user IDs required by the product, and the default minidisk
addresses or shared file system directories. You then save this overriding
information under a name of your choice. VMFINS will cause your override to be
compiled into the usable form PPF that is used in the subsequent processing.

| Note: The Make Override utility now allows you to define SFS directories in any
| file pool. On VM/ESA Release 2.1 and previous releases you were forced to use
| the VMSYS: file pool.

Product Building Step
Since the installation process loads executable parts to the base minidisks, the
build process is usually a short one. Objects require building because of local
tailoring or service.

The VMFINS BUILD command calls VMFBLD to actually build the objects, and
then updates the system-level Build Status table.

Chapter 5. Installation Experiences 89

If the product has saved segments VMFINS BUILD will not build them. You
should use the VMFSGMAP command to add the definitions to the Segment Data
file, and resolve any conflicts. Next, manually invoke the VMFBLD command to
build the segments. See Chapter 8, “Saved Segment Experiences” on
page 157.

VMFINS DELETE Command
The VMFINS DELETE command can be used to remove a product from your
system, for example, to remove an older version of a program product after a
newer version has been successfully placed into production. It can also be used
to remove a product that has just been installed but has caused some sort of
problem.

Please note that if you use the PLAN option with the DELETE operand, you can
find out:

• Whether any other products depend on this product

• What user IDs can be deleted from the system

• How much DASD space will be released

• Which files will be erased and the minidisks they are on

The same considerations discussed in “RESOURCE Option” on page 87 apply
here.

Installing VM/ESA
It is not the purpose of this book to explain the installation process for VM/ESA.
However, it is important to mention here a few key concepts, because the
installation of VM/ESA has undergone a quick evolution.

Installing VM/ESA Release 1.1
After an initial “boot-strapping” step to load the basics of the system, the
installation process makes use of the same tools that are used to service and
build the system. VM/ESA Release 1.1 is distributed in Refreshed Product
Tapes.

The VM/ESA: Installation Guide describes two basic ways to perform a VM/ESA
Release 1.1 installation:

• By using a starter system, either:

− Stand-alone
− Under VM/XA or VM/ESA

• By installing the new system under a currently running 370-mode VM system.

Additional information is available in VM/ESA Release 1.1 Overview and Usage
Experiences.

90 VMSES/E Primer

Installing VM/ESA Release 2
Like VM/ESA Release 1.1, VM/ESA Release 2 can be installed by using a starter
system and Refreshed Product Tapes. However, the preferred method is a new
process, called flex-DDR (see “Installing VM/ESA” on page 18).

Additional information is available in VM/ESA Release 2 Usage and Experience.

Installing VM/ESA Release 1.5 370 Feature, VM/ESA Release 2.1, and Later
Releases

Installing VM/ESA Release 1.5 370 Feature, VM/ESA Release 2.1 or later
releases, exclusively uses the flex-DDR process; Refreshed Product tapes are
not available.

Additional information is available in VM/ESA Release 2.1 Usage and Experience
and VM/ESA Release 2.2 Overview and Usage Experiences.

Product Identification for VM/ESA Components
For VM/ESA, the relation of the component name to the prodid (used as the file
name in the base PPF) is shown in Table 4.

Table 4. VM/ESA Component PPF File Names and Aliases

VM/ESA
Component

Base $PPF File
Name

Description

CMS 6VMVMAnn Conversational Monitor System (•)

CP 6VMVMBnn Control Program (• •)

CP370 6VMVMCnn Control Program for 370 Feature (• •)

AVS 6VMVMDnn APPC/VM VM/VTAM Support (•)

CUF 6VMVMEnn CMS Utility Feature (optional •)

REXX 6VMVMFnn Procedures Language VM/REXX (•)

TSAF 6VMVMHnn Transparent Services Access Facility (•)

DV 6VMVMInn Dump Viewing Facility (• •)

IPCS 6VMVMJnn Interactive Problem Control System for 370 Feature (• •)

VMSES 6VMVMKnn VMSES/E (•)

GCS 6VMVMLnn Group Control System (• •)

GCS370 6VMVMMnn Group Control System for 370 Feature (• •)

Notes:

• The value of “nn” indicates the VM/ESA Release:
11 Release 1.1
20 Release 2
21 Release 2.1
22 Release 2.2
15 Release 1.5 370 Feature

• For ESA mode systems only
• For 370 mode systems only

Chapter 5. Installation Experiences 91

Installing the CMS Utilities Feature
This section describes some observations we made while installing the CMS
Utilities Feature. Note that a product tape as available for VM/ESA Release 1.1
was used.

Planning
Since the CMS Utilities Feature is an optional feature, the CP directory shipped
with the starter system does not include either the minidisks for the MAINT user
ID, or the user IDs that the CMS Utilities Feature requires. You will find the
minidisk and user ID requirements in VM/ESA: CMS Utilities Feature. The
installation steps in the manual do not use the PLAN or RESOURCE options of
VMFINS, but if you wish to do so, all the required information is contained in the
product part file for the CMS Utilities Feature, 6VMVME11 PRODPART.

As described in “PLAN Option” on page 87, the prodid PLANINFO file (see
Figure 43 on page 93) contains detailed information that you can use to plan the
installation. Each disk is defined by the following data fields:

OWNER The virtual machine to which directory entry the MDISK
statement is added.

TARGID The virtual address, or directory name. The combination of
SIZE, BLKSIZE, and the device type is necessary for computing
the total required space.

SIZE Number of CMS blocks; this number must be converted to
cylinders or FBA blocks. VMSES/E supplies the VMFCNVT
command to do this conversion.

BLKSIZE The CMS block size; the total space required, in bytes, is the
product of the SIZE and BLKSIZE values.

FORMAT Is the disk format; CMS is the default.

RECOMPED This is used for disks, such as the CMS test and production
system disks, to reserve an area for the system.

PREFERRED Used by RESOURCE option of VMFINS to allocate the minidisk
on the higher-performance area, as close to the central
cylinders of the physical disk as possible.

SEPARATED Lists minidisks that must be placed on a different physical disk.
For example, two log areas, or a disk and its backup, should be
on physically separated disks.

92 VMSES/E Primer

**
**** VMFINS INSTALL USERID: MAINT ****
**
**** Date: 12/09/93 Time: 10:01:28 ****
**
VMFINS2195I VMFINS INSTALL PPF CUFINS CUF (SYSTEM VM SIDISK51D SIMODE

D PLAN NORESOURCE LINK DFNAME USER DFTYPEDIRECT DFMODE *
NOMEMO ADD

**
* Requisite Planning Information *
**
* PPF: CUFINS CUF PRODID: 6VMVME11%CUF *
* DATE: 12/09/93 TIME: 10:01:28 USERID: MAINT *
**
VMFREQ2805I Product :PPF CUFINS CUF :PRODID 6VMVME11%CUF has passed

requisite checking
**
* Resource Allocation Planning Information *
**
* PPF: CUFINS CUF PRODID: 6VMVME11%CUF *
* DATE: 12/09/93 TIME: 10:01:28 USERID: MAINT *
**
**
 Resource requirements for product 6VMVME11 component CUF
**
OWNER: AUDITOR1
TARGID: 191
SIZE: 750

 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: Y
 SEPARATED: NONE

OWNER: SYSMON1
TARGID: 191

 SIZE: 750
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: Y
 SEPARATED: NONE

OWNER: MAINT
TARGID: FD6

 SIZE: 2250
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

Figure 43 (Part 1 of 2). 6VMVME11 PLANINFO File

Chapter 5. Installation Experiences 93

TARGID: FD2
SIZE: 2250

 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

TARGID: FB2
 SIZE: 1500
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

TARGID: F9E
 SIZE: 1500
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

TARGID: F9D
 SIZE: 750
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

REPLACE USER: AUDITOR1
USER AUDITOR1 NOLOG 2M 4M ABEG
ACCOUNT 0000 DISTXYZ
IPL CMS
CONSOLE 0009 3215 T
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 190 019D RR
LINK MAINT 19D 019D RR
LINK MAINT 19E 019E RR

REPLACE USER: SYSMON1
USER SYSMON1 NOLOG 2M 4M DG
ACCOUNT 0000 DISTXYZ
IPL CMS
CONSOLE 0009 3215 T
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 190 019D RR
LINK MAINT 19D 019D RR
LINK MAINT 19E 019E RR

Figure 43 (Part 2 of 2). 6VMVME11 PLANINFO File

94 VMSES/E Primer

First-Time Installation
The installation of the CMS Utilities Feature is described in VM/ESA: CMS
Utilities Feature.

You start by loading the PPFs and other control files from tape with the
command:

vmfins install info (nomemo

If you wish to use different disks from the default addresses, you can create an
override file to change those addresses. CUF already supplies its own overrides
to the base PPF, 6VMVME11 $PPF:

CUFINS For installation. The override has two components:

CUF For full product installation

CUFNSRC For installation without the source

CUFSRV For service. The override has two components:

CUF For normal service

UCENG For servicing uppercase English HELP files

You should not use the VMFINS INSTALL PROD command. Instead, create an
override, for instance “MYCUF $PPF,” which points to the IBM override, CUFINS
$PPF.

Using the VMFPPF command you must then compile the overrides to create the
usable form PPF that VMFINS will use in the rest of the installation:

vmfppf mycuf cuf

or, if you are installing without the source

vmfppf mycuf cufnsrc

You should also create the equivalent override for the CUFSRV $PPF.

The code is then loaded using the VMFINS command with the INSTALL operand.

After all the code is loaded, you have to run the build EXEC supplied by the CMS
Utilities Feature. The CUFINS EXEC moves files to system disks and also, if you
so choose, saves any old versions of the tailorable files.

Saving is accomplished by renaming any old files so they have a file type with a
prefix of FMT. You then should check all files with this prefix, in order to tailor
the new versions of these files with any local changes.

Note: Since CMS Utilities Feature loads files to the 19D and 19E minidisks, you
will have to re-save the HELP saved segment and the CMS named saved
system.

Migrating
The CMS Utilities Feature uses a separately supplied EXEC to manage tailored
files, as they are not identified in the PRODPART file. As a result, the
MIGRATION option of VMFINS does not work with the CMS Utilities Feature.
However, the CUFINS EXEC allows you the choice of saving any tailored files that
you may have. These files are saved by simply renaming them by adding a
prefix of “FMT” to the file type. A table listing these files can be found in

Chapter 5. Installation Experiences 95

VM/ESA: CMS Utilities Feature and you must manually compare the old and new
files. If you have made any changes, you must redo these changes in the newer
versions of these files.

Building
The CMS Utilities Feature uses VMFINS to load all the parts onto the system, but
then uses the CUFINS EXEC, which is supplied on the tape, to complete the
installation. This EXEC will copy files to several minidisks.

If you have existing IPF or CMS Utilities Feature 1.0 files, this EXEC will rename
any existing tailorable files by adding a prefix of “FMT” to the file type.

You may also have to alter the PROFILE EXEC of the AUTOLOG1 user ID, if you
wish to autolog the service machines AUDITOR and SYSMON.

Deleting
As an exercise, we installed a second copy of the CMS Utilities Feature using an
override (MYCUF PPF) to use separate minidisks. We then used the command:

vmfins delete ppf mycuf (resource

to delete the second copy.

This worked as expected by erasing all the files that belonged to the CMS
Utilities Feature component. We encountered only one minor problem. We did
not have a copy of the default directory (USER DIRECT) accessed after the
VMFSETUP command completed for CMS Utilities Feature. This occurred
because we did not use the RETAIN option on the VMFSETUP command. As a
result, the empty minidisks for CMS Utilities Feature were not deleted from the
directory.

When we executed the VMFVIEW command, we found warning messages in the
log advising us which user IDs were no longer needed.

Note: The DELETE operand of VMFINS uses the log file $VMFINS $MSGLOG so
that you have to enter:

vmfview install

to examine the log file, even though you have just deleted a product.

Installing a Non-VMSES/E Product
We describe here the installation of PVM from a VM/ESA 1.0 SDO tape. Since
PVM Version 2 Release 1 Modification Level 1 is now supplied in VMSES/E
format, you should consider the following sections only as a description of what
happens to a product in the old INSTFPP format.

Planning
The PVM product we used was supplied on an SDO tape. To attempt the
planning step for this product we issued:

vmfins install info

to map the SDO tape, produce a list of memos to be printed, and place a file
called VMFINS PRODLIST on the A-disk. Then, to actually do the planning, we
issued:

96 VMSES/E Primer

vmfins install prod 5748rc1 (plan

But since PVM was in the old INSTFPP product format, there was no planning
information available. The only option available was to print the Memo to Users.
The memo contained all the information required to build the minidisks and the
PVM virtual machine. As in the past, these steps had to be performed manually.

After adding the minidisks to the MAINT user ID, formatting the minidisks, and
adding the PVM user ID to the system, we could proceed with the installation.
See “First-Time Installation.”

First-Time Installation
We attempted to install PVM from a VM/ESA 1.0 SDO tape with the command:

vmfins install prod 5748rc1

We received response messages warning that the tape was INSTFPP format, and
that an override file could not be created. VMFINS called INSTFPP to process
the tape. If you have a multiple-volume SDO tape, INSTFPP then scans the tape
looking for the product and, if additional tapes are required, you are advised to
mount the next tape.

When the PVM product is found, the processing is:

 1. The installation EXEC for the product (I5748RC1 EXEC) is loaded by INSTFPP
to a temporary disk (accessed as “C”).

 2. INSTFPP calls the installation EXEC.

 3. The installation EXEC then loads all the parts of PVM into the minidisk
addresses which are hard coded in the installation EXEC itself.

Note: If the product updates the 19E and 19D minidisks, you will have to
re-save CMS and the HELP saved segment.

Migrating
The PVM program product was in the old INSTFPP format on the SDO tapes that
were available to us. We did not attempt to migrate this product. If you enter
the command:

vmfins migrate prod 5748rc1

you will receive the message:

VMFINS2604W

indicating that the product could not be migrated.

Building
Since the PVM product was in the old INSTFPP format, executable forms were
loaded directly to disk. There are no build steps required unless you wish to
apply service or local modifications to PVM. Those build steps are defined by
the product, and have to be manually performed.

Any tailoring of PVM files, such as PVM CONFIG, remains a manual process.

At this time, you should use the VMFSIM command to update the Software
Inventory. This can easily be done with the command:

vmfsim modify vm sysblds * tdata :ppf 5748rc1 none :prodid 5748rc1 :stat built

Chapter 5. Installation Experiences 97

This will add an entry in the VM SYSBLDS table to indicate that PVM has been
built on your system. See Chapter 7, “Exploring the Software Inventory” on
page 135 for more information on the VMFSIM command.

Deleting
Unfortunately, since PVM is an INSTFPP formatted product, there is no
information for VMFINS to use to delete PVM. If you attempt to run:

vmfins delete prod 5748rc1

you will receive error messages indicating that no deleting will be done.

If you added information on PVM during the build process and now wish to
remove it, issue:

vmfsim modify vm sysblds * tdata :ppf 5748rc1 none (delete

However, leaving the information in place will provide a history record.
VMSES/E does not delete information for deleted products. Instead, it records
that products have been deleted. You may do the same by issuing:

vmfsim modify vm sysrecs * tdata :ppf 5748rc1 none :prodid 5748rc1 :stat deleted
vmfsim modify vm sysapps * tdata :ppf 5748rc1 none :prodid 5748rc1 :stat deleted
vmfsim modify vm sysblds * tdata :ppf 5748rc1 none :prodid 5748rc1 :stat deleted

Please see Chapter 7, “Exploring the Software Inventory” on page 135 for more
information about the VMFSIM command.

98 VMSES/E Primer

Chapter 6. Service Experiences

This chapter briefly describes the service process for VM/ESA Release 2.2. An
introduction to the service process was provided in “Maintaining Your System”
on page 23.

The intent of this chapter is not to replace the VM/ESA: Service Guide or the
VM/ESA: VMSES/E Introduction and Reference, but rather to be an overview that
you might be able to use as a checklist.

A brief description of the basic steps of the entire process is followed by a
discussion of each of the steps, presentation of some of the errors that might
occur, and possible recovery steps.

While the discussions are based on the service of VM/ESA Release 1.1 or 1.5
and up, you should bear in mind that this discussion also applies to program
products and user applications distributed in VMSES/E format.

Basic Steps
The service process has some fundamental steps that apply to all the
components of VM/ESA Release 2.2.

In order to familiarize you with the service processes and the commands
associated with each of them, we start with a brief list of the basic steps. Each
of the commands will be discussed in the following sections. The steps are:

 1. Refresh the test build disks.

See “Refresh” on page 100 for the procedure to be followed.

 2. Receive the service documents:

vmfrec info

 3. Set up the minidisks:

vmfsetup...

 4. Merge the levels of disks as desired:

vmfmrdsk...

 5. Load the files from the service tape:

vmfrec...

 6. Check that the receive process worked:

vmfview...

 7. Actually perform the servicing:

vmfapply...

 8. Check that the apply process worked:

vmfview...

 Copyright IBM Corp. 1992, 1993, 1994 99

 9. Rebuild the serviced components:

vmfbld...

10. Check that the build process worked:

vmfview...

| 11. Test the serviced components.

12. Move the serviced components into production. See “Production” on
page 108 for the procedure to be followed. The basic steps are:

• Re-saving NSSs and saved segments (if necessary).

Note: Before building any segments, use VMFSGMAP to make sure all
segment definitions are correct.

• Moving the test build disk materials to the production build disk.

• IPL (if necessary).

Some of the components may require additional steps. These steps are
described in each product ′s publications, and care must be taken to ensure that
none of the steps are skipped. For VM/ESA, see VM/ESA: Service Guide.

VM/ESA Servicing Highlights
During the application of service, we attempted to watch for possible error
situations that could arise. You may encounter some of the problems described
for each step. The good news is that VMSES/E has been designed to permit
easy recovery from most errors.

Refresh
This step ensures that the test build disks have the correct contents.

The build step places the newly built objects on the test build disks, and the last
step in the service process, moving to production, copies the test build disk
contents to the production disk. Therefore, it is very important that the test build
disks have the same contents as the production disks before you begin the
service process.

Simply copying all files from the production to the test build disks may not be
advisable. When the disks are shared by several components or products, you
should copy only the files that are related to the product or component being
serviced: If you copy all the files on the disk, you may accidentally back-level
the products you are not servicing. For example, suppose CP service updated
HCPOM1 MACLIB. This file resides on MAINT′s 193 disk, so the new file is
placed on MAINT′s 493 for testing. If, during the testing, you receive some
urgent service for CMS, you cannot copy all files from the 193 disk to the 493
disk: doing so would back-level HCPOM1 MACLIB. Only the CMS-related files
should be copied.

Before copying the files, though, you should erase all the product-related files
from the target disk. This is the simplest way to guarantee that both disks are
identical, regarding that product.

| For VMSES/E products, this is a simple operation, using the CMS Pipelines and
| VMFERASE. Suppose you want to copy the CMS tools disk (MAINT 193) to the

100 VMSES/E Primer

| test disk (MAINT 493). Create an EXEC (COPYLIST EXEC) containing the
| following statements:

| /* product files copy */

| Arg source target .

| ′ PIPE < copylist simdata a |′ , /* Read VMFSIM output */
| ′ strip |′ , /* remove extra blanks */
| ′ find :PARTID |′ , /* only keep files records */
| , /* construct a command: */
| ′ spec /COPYFILE/ 1′ , /* COPYFILE */
| ′ w 2-3 nextword′ , /* fn ft */
| ′ /′ source ′= =′ target , /* fmi = = fmo */
| ′ (OLDD REPL/ nextword |′ , /* (opts */
| ′ command′ /* pass the command to CMS */

| Now issue:

| access 193 b
| access 493 c
| vmferase prod 6vmvma22%cms from c
| vmfsim query vmses partcat b tdata :prodid 6vmvma22%cms (file copylist
| exec copylist b c
| vmfsim modify vmses partcat c file copylist (add

| In sequence, what happens is:

| • The disks are accessed.

| • VMFERASE erases from the C-disk all files the parts catalog lists as related
| to the CMS product.

| • VMFSIM QUERY creates a list of files residing on the B-disk and belonging to
| CMS.

| • The pipe copies all selected files from the B to the C-disk.

| • VMFSIM updates the parts catalog on the C-disk to include the copied files.

If the product is not VMSES/E-formatted, and it shares a disk, then the only safe
way is to manually keep lists of the product-owned files.

Preparation
The INFO operand of the VMFREC command allows you to obtain the Memo to
Users that is shipped with each service tape. Please take the few moments
needed to review this document. For the complete list and format of the
documents loaded, see Appendix B, “Product Packaging and Distribution Media
Formats” on page 205.

If you have not already done so, you should also contact your IBM Support
Center and request any “install error buckets” that may be available for the
products being installed.

It is very important that you do a backup of your production build disks. As will
be discussed in “Production” on page 108, the backup is the fastest and safest
way you have to fall-back to the previous production level, should a problem
arise after you have moved the tested component or product into production.

Chapter 6. Service Experiences 101

Setup
Before you can start your service process for a product you must access all of
that product′s disks. VMSES/E supplies a utility, the VMFSETUP command, to do
this, so you do not have to remember minidisk addresses or directory names.

VMFSETUP Command
You may wonder what might go wrong with the accessing of some disks but the
VMFSETUP EXEC has had major changes, as compared to versions previous to
VM/ESA Release 1.1. The most important changes are that:

• You decide whether and when other VMSES/E commands should call
VMFSETUP

• VMFSETUP no longer invokes VMFOVER

• Can link and detach minidisks

There is a tag in the PPF to control the use of VMFSETUP. The tag is :SETUP,
and in the default PPFs shipped with VM/ESA it has a “NO” value. This means
that the other VMSES/E commands will not call VMFSETUP unless you specify
SETUP as an option on these commands.

Dropping the call to VMFOVER has a subtle implication. If you create an
override file, you must now use the commands VMFOVER to test your changes,
and VMFPPF to compile the PPF and generate its usable form. For example, if
you wish to create an override (named YOURPPF) to the CMS component, you
would use the command:

vmfppf yourppf cms

to create the compiled PPF file.

VMFSETUP will use only compiled PPFs. If you forget to compile the PPF, your
override will not be invoked and the results may not be what you wanted.

You will find that the ESA PPF file is an override file itself and is a good example
of the functions available in an override. Also, see the example in “Creating a
PPF Override” on page 189.

Another new PPF capability allows you to specify that the LINK command is to
be issued for minidisks. If you are trying to use VMSES/E from a user ID other
than MAINT, you will need read/write authority for the minidisks in order for the
LINK command to be successful.

Please see “Variable Declarations Section” on page 48 for a detailed discussion
of this feature.

| Note: If a disk is already linked at the correct address, with the correct link
| mode, VMFSETUP will not link it again.

VMFQMDA Command
A related VMSES/E command, VMFQMDA, searches the :MDA area of a PPF and
displays a list of all disks defined there, noting which ones are accessed. The
format of the output is similar to that of the CMS QUERY ACCESSED command.

The great advantage of this command is that it allows you to check whether you
have accessed the correct disks without destroying the current access order. It
can also tell you which disks two products have in common. If you use

102 VMSES/E Primer

VMFSETUP to access the disks for one product, then invoke VMFQMDA for the
other product, any disks listed with an access mode are common.

For example, after having accessed the disks for CP we issued:

vmfqmda esa cms

which produced the reply

VMFUTL2205I Minidisk|Directory Assignments:
String Mode Stat Vdev Label/Directory

VMFUTL2205I LOCALMOD --- --- 3C4 ------
VMFUTL2205I LOCALSAM --- --- 3C2 ------
VMFUTL2205I APPLY --- --- 3A6 ------
VMFUTL2205I --- --- 3A4 ------
VMFUTL2205I --- --- 3A2 ------
VMFUTL2205I DELTA --- --- 3D2 ------
VMFUTL2205I BUILD7 K R/W 493 MNT493
VMFUTL2205I BUILD6 L R/W 490 MNT490
VMFUTL2205I BUILD5 M R/W 19D MNT19D
VMFUTL2205I BUILD2 N R/W 193 MNT193
VMFUTL2205I BASE2 --- --- 3B2 ------
VMFUTL2205I -------- A R/W 191 MNT191
VMFUTL2205I -------- B R/W 5E5 MNT5E5
VMFUTL2205I -------- D R/W 51D MNT51D
VMFUTL2205I -------- E R/W 2C4 MNT2C4
VMFUTL2205I -------- F R/W 2C2 MNT2C2
VMFUTL2205I -------- G R/W 2A6 MNT2A6
VMFUTL2205I -------- H R/W 2A4 MNT2A4
VMFUTL2205I -------- I R/W 2A2 MNT2A2
VMFUTL2205I -------- J R/W 2D2 MNT2D2
VMFUTL2205I -------- O R/W 194 MNT194
VMFUTL2205I -------- S R/O 190 MNT190
VMFUTL2205I -------- Y/S R/O 19E MNT19E

The reply includes:

• Disks common to CP and CMS: the ones accessed as modes K, L, M, and N.

• CMS-only disks: all unaccessed disks having a string name (all appearing
before the A-disk).

• CP-only disks: all appearing after the D-disk.

Merge
Merging the levels of disks provides a method for separating the previous
version of the system from the new parts that are about to be loaded. This
separation is accomplished by having different logical levels of disks for each
version of the system. This level structure has been discussed in “Multiple
System Levels” on page 26. VMSES/E supplies a tool, VMFMRDSK, to merge a
disk level with a lower level.

VMFMRDSK Command
The concept of logical disk strings has been introduced in “Product Database
Layout” on page 14 (see also “Recommended Logical Strings and Service
Levels” on page 27). In a string, each minidisk or directory holds a product′s
service level. The basic idea is to let you keep several levels of your products.
Depending on the string, up to three levels are recommended by IBM:

 1. Alternate (work-disk level)
 2. Intermediate (test-level of the product)
 3. Production (“f loor- level” of the product)

Chapter 6. Service Experiences 103

Though you may add new service to the service already existing on the alternate
level, if you do so, later on you will not be able to separate the new service from
the existing service. New service should be received into an empty level, except
when:

• Adding missing prerequisites

• Receiving several COR tapes you want to apply together

The following discussion assumes the recommended three-level structure. To
isolate the new service from the previous level, you may want to move the
existing alternate level down one level. This can be done in either of the
following ways:

• Merge the intermediate level with the production level, clear the
intermediate level, and then move the contents of the current alternate level
to the empty intermediate level.

Note: You should not merge the production and intermediate levels until
you have thoroughly tested the service in the intermediate level. To be
really cautious, you may even want to keep the intermediate level isolated
for some time after putting it into production.

• Merge the current alternate service with the service on the intermediate
level.

To help you in this process, VMSES/E provides the VMFMRDSK command. This
command merges disks, so if the disks are shared by several products or
components, all those products or components are merged in the same
operation. You must be careful and synchronize the service process for those
products or components, which is the case for VM/ESA. Otherwise you may
easily create a situation from where the only way out is product re-install.

Figure 44 shows the syntax of the VMFMRDSK command.

��──VMFMRDSK──ppfname──compname──string───�

┌ ┐─(─ ──LEVels 1 ──────────────────────────────────────
�─ ──┼ ┼─── ──────────────────────────────────��

│ │┌ ┐─LEVels──1─
└ ┘─(───(1) ──┼ ┼─────────── ──┬ ┬─────── ──┬ ┬───────── ──┬ ┬───

├ ┤─LEVels──n─ ├ ┤─LOG─── ├ ┤─SETup─── └ ┘─)─
└ ┘─LEVels──*─ └ ┘─NOLog─ └ ┘─NOSetup─

Note:
1 You can enter options in any order between the parentheses.

Figure 44. VMFMRDSK Command Syntax

If you wish, for example, to move the alternate level of the CMS APPLY string to
the intermediate level, the command is:

vmfmrdsk esa cms apply (level 1

You must specify the PPF name, the component name, and the string name. You
may also specify the number of levels to merge. The default is one level, from
the alternate to the intermediate.

If you want to merge all levels, the command is:

104 VMSES/E Primer

vmfmrdsk esa cms apply (level *

VMFMRDSK is an enhanced copy function that checks for disk space, and
updates the VMSES PARTCAT file. Figure 45 shows the two possible examples
of merging a three-level APPLY string, as follows:

• Two-level merge
• One-level merge

Note: The merge operation always involves the first two disks for the string. It
is impossible to merge only levels other than the first level; for example, you
cannot merge only the intermediate and production disks; you must also merge
the alternate and intermediate disks.

Figure 45. Example of Merging the CMS APPLY String

For the two-level merge, the following steps take place:

Step 1. Lower-level merge:

• Check that the production disk has enough free space to contain
the files on the intermediate disk.

• Copy files from the intermediate disk to the production disk.

• Update VMSES PARTCAT on the production disk.

Step 2. Cleanup:

• Erase all files on the intermediate disk.

Chapter 6. Service Experiences 105

Step 3. Higher-level merge:

• Check that the intermediate disk has enough free space to contain
the files on the alternate disk.

• Copy files from the alternate disk to the intermediate disk.

• Update VMSES PARTCAT on the intermediate disk.

Step 4. Cleanup:

• Erase all files on the alternate disk.

For the one-level merge, the last two steps of the two-level process take place:

Step 1. Higher-level merge (Step 3 of two-level):

• Check that the intermediate disk has enough free space to contain
the files on the alternate disk.

• Copy files from the alternate disk to the intermediate disk.

• Update VMSES PARTCAT on the intermediate disk.

Step 2. Cleanup (Step 4 of two-level):

• Erase all files on the alternate disk.

Even though VMSES/E does not use the file mode number to indicate when a
specific service fix has been applied to the system, you should not use the
COPYFILE command to manually merge the disks. VMSES/E maintains a file
(VMSES PARTCAT) on each disk that keeps track of all the files residing on the
disk. If you wish to merge a disk manually, you should use the VMFCOPY
command instead of COPYFILE.

Before beginning the copy, VMFMRDSK also checks to see whether there is
enough space on the target disk. This check is very thorough. It accounts for
existing files, the size of the largest file, differences in block sizes for the source
and target disks, and even attempts to leave some empty space on the target
disk. If the target disk does not have enough space, the copy is not initiated,
and VMFMRDSK terminates. If this should happen, the recovery is very simple.
You just have to make the target disk larger and re-run the VMFMRDSK function.

Receive
The receive function has been streamlined since the previous version of VMSES.
Part of its previous functions, such as loading parts in executable form into the
system disks, were either changed or deleted.

Note: The VMFREC command only loads parts in a non-executable format, and
always to the alternate DELTA disk. only to the alternate DELTA disk in a
non-executable format.

This effectively eliminates the problem of accidentally “back-leveling” a part of
your system. Since the receive process has been greatly simplified, if an error
occurs (for example, a disk fills up), the receive process can easily be restarted
without having to restore any disks. In the disk-full case, you only have to:

• Make the alternate DELTA minidisk larger or, if you are using an SFS
directory, issue a MODIFY USER command or add more space to the SFS
server.

• Re-run the VMFREC EXEC.

106 VMSES/E Primer

Also, if a PTF has been received it will not be re-received. The same is true for
missing parts of committed PTFs, though this may be controlled by the value of
the PPF :RECVALL tag and the RECVALL option of the VMFREC command.

Check
The VMFVIEW tool allows you to check the results of all of the major steps of the
service process. VMFVIEW should always be used after each step, and any
errors that are reported by VMFVIEW must be corrected before continuing.

If you encounter an error message in the log file, you can use the online HELP
facility to obtain further information about the message.

Apply
The apply process has also been greatly simplified, and the performance of this
function has been improved, compared to the previous version of VMSES.

The use of the service-level Software Inventory is the main cause for the
improved performance of the VMFAPPLY command, and it has also greatly
reduced the number of files on the minidisks. VMFAPPLY creates or updates
Version Vector tables, using a new algorithm, at the same time it verifies PTF
requisites. Since a single VVT holds all the information on the applied PTFs
(each part that was ever serviced has a record in a VVT that lists all the PTFs
applied to that part) the process is very fast. If any requisites are missing,
VMFAPPLY does not update the VVT. Instead it creates two files: one lists all
PTFs that passed requisite checking; the other all PTFs that have missing
requisites.

The only remaining problem might be with the packaging of a PTF (for example,
some of its parts not being properly included on the COR tape). Use the
VMFVIEW command to check the apply log for missing parts. A file listing the
missing parts (file type of $MISSING) is written during the apply process. In
order to resolve this problem, another new feature of VMSES/E makes it possible
for a PTF to completely supersede another PTF. This enables you to install a
PTF that completely replaces an incorrectly packaged PTF.

Any parts for which you have created local service, and that are being serviced,
are identified in the apply log. This is one more reason for you to check the log.

Note: Before proceeding with the service process, you should make sure that
all local service affecting the parts now serviced is still valid.

Note that the apply process also generates, or appends to, a file the list of all
serviced parts. This file is called the “Select Data File” and is used by the build
process.

Build
The build process has been greatly enhanced. In order to provide a coherent
view of the process, without disrupting the present discussion, we only give here
some basic information. For the full discussion, see “How Build Works” on
page 110.

As mentioned, the VMFBLD command can now handle almost all types of
objects. The following list indicates the only objects that still have to be built by
hand:

Chapter 6. Service Experiences 107

• PPFs.

• Named saved systems.

| • Saved segments, in VM/ESA Release 1.5 370 Feature systems.

• Stand-alone dump. You have to run the HCPSADMP EXEC if the SA object
was serviced.

• ASSEMBLE command. You have to run the ASMGEND EXEC if any of the
objects in the DMSBLASM build list were serviced.

| • DOSLIBs, in VM/ESA Release 1.5 370 Feature systems.

Notes:

• If you do not specify a build list on the VMFBLD command, the VMFBLD
process will re-build either all serviced objects or all objects, depending on
the option specified on the VMFBLD command. While this will not do any
damage, since you are working with the alternate build disks, it might take a
considerable amount of time.

| • If the PRIVATE option is not specified, VMFBLD deletes all objects that
| require deleting.

| • You can build a private copy of an object, for test purposes, without
| disturbing the product.

• VMFBLD detects any serviced source PPFs and prompts you to stop the build
step. This allows you to re-compile the PPFs and then return to the build
process.

• You can detect the need to rebuild objects by using VMFVIEW to see the
build message log.

• In addition, at the end of the service process, you must manually intervene
after building a nucleus in order to place it on the correct disk.

| Test
| You should perform a thorough test of the product before moving it into
| production. If such test is not possible, you should at least follow the
| recommendations in “Production” to establish a fall back capability.

| Never merge the intermediate and production levels of the APPLY string before
| you are sure the new test system is stable. Once they are merged, it is very
| difficult to separate them.

Production
Placing the tested components or products into production requires:

 1. Re-generating any affected shared segments, and named saved systems.

 2. Copying the newly built usable forms from the test to the production build
disks.

 3. Erasing from the production build disks any usable forms deleted service.

 4. Re-IPLing the entire system to activate a new CP nucleus (if required).

The VM/ESA: Service Guide recommends, with the exception of the CMS system
disk (MAINT 190), the following method to move a VM/ESA component to
production:

 1. Back up the production disk (optional, but highly recommended).

108 VMSES/E Primer

 2. Erase the production build disk.

 3. Copy all files from the test disk to the production disk.

For the CMS system disk the steps are:

 1. Back up the production disk (optional, but highly recommended).

 2. Do a DDR copy from the test to the production disk.

 3. Use the CMS FORMAT command with the LABEL option to recover the
original disk label.

This method should not be generalized to other products, because it implicitly
assumes that:

• Before service, the test build disks are identical to the production build disks.
You should make sure this is true; otherwise recovering from an error may
require a re-install of the product.

It is critical that you backup the production disks. Again, if you do not have a
backup, recovering from an error may require a re-install of the product.

• The serviced product does not share the build disks with other products.
Sharing the disks by several components of the same product should not
cause any problems, if service for the components is coordinated.

If the build disks are shared, the only safe way of doing the copy is:

 1. Back up the production build disks.

 2. For each test build disk determine which files have been added, changed, or
deleted.

 3. Using the VMFERASE utility, erase from the production disk all files that
service has deleted.

 4. Using the VMFCOPY utility with the COPYFILE REPLACE options, copy from
the test to the production disk all new and changed files, or simply copy all
the product′s files.

To determine which files have been added, changed, or deleted, follow this
procedure:

 1. Find the value of the :BLDID tag in the product ′s PPF.

 2. Look for objects with a build status of ERROR or MANUAL. Enter the
command (with the appropriate value for status):

vmfsim query bldid srvblds * tdata :status status :object

If you find any such objects, correct the errors before proceeding.

 3. Now issue the commands:

vmfsim query bldid srvblds * tdata :status built :object (file changed
vmfsim query bldid srvblds * tdata :status deleted :object (file deleted

The value of the :STATUS tag includes a date that enables you to select the
correct objects.

Though we do not recommend it, we describe below an alternate procedure.
This procedure is more subject to error, and this is why we prefer the other:

 1. For each build disk, obtain the entries in the parts catalog of the test and
production disks. Use the command:

Chapter 6. Service Experiences 109

vmfsim query vm partcat fm tdata :prodid prodid (file fm-disk

to create a file, fm-DISK SIMDATA, that lists all the files for the product
“prodid” that reside on the disk accessed as “fm.”

 2. Compare each pair of files, for example by using XEDIT, to view them side by
side.

Service Back-Out
Backing out the service to recover from bad PTFs uses one of two techniques:

• Restoring the production disk backup.

• Regenerating all serviced objects, but at the previous service level; in other
words, removing the most recent level of service. This is explained in detail
in Appendix C, “Removing Service” on page 217.

How Build Works
The build process was briefly outlined in “Build the Product” on page 33. In this
section we will describe it in further detail.

Overview
Each product is a collection of many objects. One can group these objects by
types, such as libraries, modules, nuclei, and so on. Each object type is built
using specific tools and rules, so the VMSES/E strategy to build objects is based
on a two-step process and object-specific part handlers.

The two-step process makes sure that tasks common to all object types are
performed in the first step, leaving the actual building, with its object-specific
operations, for the second step. To execute only the first step, invoke VMFBLD
using the STATUS option; to execute both steps in sequence, invoke VMFBLD
with the SERVICED or ALL options.

| During the STATUS step VMFBLD scans the $SELECT files listed on the :APPID
| tag of the product′s PPF. Using the parts listed there, VMFBLD scans the
| product ′s build lists, identifying all objects that include those parts and,
| consequently, have to be re-built. VMFBLD flags those objects as SERVICED in
| the service-level Build Status table for the product.

Object Definition Change Detection
Suppose an object is added to a build list (for example, a module is split) or is
removed from the build list, or is in some way changed in the build list. Since
Release 2, these occurrences are detected by VMSES/E and build requirements
are automatically generated.

When service is applied to a build list, VMFAPPLY saves the file type of the
previous version by inserting it in the Select Data File. VMFBLD, when executing
the STATUS option, is then able to compare the old and new versions of the
build list and detect any changes. Changed objects are then flagged as

| SERVICED in the Build Status table. Objects no longer present in the new
| version of the build list are flagged as DELETE. Later the flagged objects are
| rebuilt (or deleted) by the appropriate part handlers.

110 VMSES/E Primer

Object Requisites
With the automation of library build, it became necessary to introduce object
build requisites. For instance, an object built from members of a TXTLIB must
be rebuilt when one of those members is serviced; but not only do the TXTLIB
members have to be built, they have to be built before the object.

Support for object build requisites allows defining these kinds of relations
between objects. Relations can be established at the build list level (when all
objects in a build list are required) and also at the object level.

An object that requires another object or objects in order to be correctly built is
a dependent object. The required objects are called requisites of the dependent
object. As stated, the requisite objects are built before the dependents.

As an example, suppose object A requires object B. If you are building A, and B
has been serviced, B is automatically built, then A is built. The reverse is not
necessarily true, because A may have several requisites other than B.
Therefore, if you are building B, A may not be built, because all A requisites
have to be satisfied before A can be built. So, the status of A is changed (to
SERVICED or BUILDALL).

Object A is also built if it belongs to the same product, or component, as B and
one of the following conditions is true:

• VMFBLD was invoked with the ALL option, and no build list name was given.

• VMFBLD was invoked with a build list name, no object name, both A and B
belong to the same build list, and A has no requisites in other build lists.

In all other cases object A is not built. VMFBLD will issue a message indicating
the number of objects remaining to be built. For another example, see
“Segment Servicing” on page 164.

This support consists of:

• Enhancements to VMFBLD and the build part handlers.

• New tags in Format 2 and Format 3 build lists.

Because Format 1 build lists do not support tags, the VMFBDNUC part handler
was enhanced (in Release 2) to support a new option, BLDREQ, that allows
specifying any object or build list required by the nucleus.

Note: The other part handler using Format 1 build lists, VMFBDCPY, was
similarly enhanced. However, VMFBDCPY is supported only for downward
compatibility. A product supported only on VM/ESA Release 2 and above should
use VMFBDCOM instead of VMFBDCPY.

As described above, requisites drive the build sequence, which means the build
list sequence in the :BLD section of the PPF may no longer be followed.

Build requirements for objects defined in Format 2 and Format 3 build lists are
described by new tags in those lists. The :GBLDREQ tag allows specification of
requirements globally. Any objects having individual requirements must specify
them using the :BLDREQ tag in the object definition block. This specification
overrides the global one.

Chapter 6. Service Experiences 111

VMFBLD Command
Figure 46 shows the syntax of the VMFBLD command, the VMSES/E object build
tool.

┌ ┐─(───(1) ────────────────────
��──VMFBLD─ ──┬ ┬─┤ PPF ├── ──┼ ┼───────────────────────── ─────────────────────────────────────��

| ├ ┤─┤ LIST ├─ └ ┘| ─(───(2) ─┤ Options ├─ ──┬ ┬───
└ ┘─┤ PROD ├─ └ ┘─)─

PPF:
├──PPF──ppfname──compname─ ──┬ ┬── ──────────────────────┤

│ │┌ ┐─*─────────────────────────
└ ┘─bldlist─ ──┼ ┼───────────────────────────

└ ┘──┬ ┬─*────── ──┬ ┬───────────
└ ┘─object─ │ │┌ ┐─────────

└ ┘───� ┴─blopt─

LIST:
| ┌ ┐| ─VMFBLD──BLDDATA──A────────────────
| ├─| ─LIST──ppfname──compname─ ──┼ ┼─────────────────────────────────── ──────────────────────────┤
| │ │┌ ┐| ─BLDDATA──A───────────
| └ ┘| ─fnbdata─ ──┼ ┼──────────────────────
| │ │┌ ┐─A───────
| └ ┘| ─ftbdata─ ──┼ ┼─────────
| └ ┘─fmbdata─

PROD:
┌ ┐─(──LOG───────────────

├──PROD──prodid─ ──┬ ┬────────── ──┼ ┼────────────────────── ────────────────────────────────────┤
│ │┌ ┐──────── │ │┌ ┐─LOG────
└ ┘───� ┴─parm─ └ ┘─(─ ──┼ ┼──────── ──┬ ┬───

├ ┤─NOLog── └ ┘─)─
└ ┘─INSLOG─

Options:
├─ ──┬ ┬─────────────── ──┬ ┬──────── ──┬ ┬──────── ───�
 └ ┘─CNTRL──cntlfn─ ├ ┤─CKVV─── ├ ┤─LOG────

└ ┘─NOCKVv─ ├ ┤─NOLog──
└ ┘─INSLOG─

┌ ┐─STATus───
�─ ──┬ ┬─────────────────────────── ──┬ ┬───────── ──┼ ┼────────── ────────────────────────────────┤

| └ ┘| ─PRIvate───(3) ──┬ ┬─disk─────── ├ ┤| ─SETup─── ├ ┤| ─SERViced─
| └ ┘─mda_string─ └ ┘| ─NOSetup─ └ ┘| ─ALL──────

Notes:
1 The defaults you receive appear above the line in the Options fragment.

2 You can enter options in any order between the parentheses.

| 3 STATUS and PRIVATE are conflicting options.

Figure 46. VMFBLD Command Syntax

112 VMSES/E Primer

STATUS Option
The STATUS option causes VMFBLD to identify all objects that have to be rebuilt,

| without actually building any objects. If there is no new service for the
| component, this step is bypassed.

Using the Select Data File created during the apply process, VMFBLD scans the
build lists and identifies all objects that have had their parts serviced. These
objects are flagged in the product ′s service-level Build Status table as
SERVICED. In addition, any objects that require the serviced objects are also
flagged as SERVICED. If the build list itself has changed, any objects added to
the build list, or whose definition has changed are identified as SERVICED; any
deleted objects are also identified, as DELETE.

SERVICED Option
| The SERVICED option first executes the functions of the STATUS option, if
| required. It then calls the appropriate part handlers to build and delete objects

| • whose status in the Build Status table is SERVICED, BUILDALL, or DELETE

| • and which are specified in the VMFBLD command, are in the specified build
| list (if no object is specified), or are in the specified component (if no build
| list is specified).

| Build requisites of these objects are also built if their status is SERVICED,
| BUILDALL, or DELETE.

| Note: In VM/ESA Release 2.2, if the STATUS option was already run, that part of
| this option is not run again.

The part handlers are responsible for actually building or deleting the objects.

ALL Option
| The ALL option first executes the functions of the STATUS option, if required. It
| then calls the appropriate part handlers to build and delete all objects which are
| specified in the VMFBLD command, are in the specified build list (if no object is
| specified), or are in the specified component (if no build list is specified), even if
| there has not been any service for these objects. Build requisites of these
| objects are also built if their status is SERVICED, BUILDALL, or DELETE. The

ALL option is required if you wish to re-build an object (for example, the CP
nucleus) but you have not applied any service to any of its parts.

| Note: In VM/ESA Release 2.2, if the STATUS option was already run, that part of
| this option is not run again.

For example, if you added a new device to the HCPRIO ASSEMBLE file, and
followed the common practice of directly editing this file, you must use the ALL
option, since no service has been applied. In this case, you can also take

| advantage of the FASTPATH option of VMFBLD. In VM/ESA Release 2.2, if the
| STATUS option was already run, that part of this option is not run again.

Note: If you explicitly indicate an object on the VMFBLD command line, that
object and its dependents, if any, are flagged as BUILDALL.

Chapter 6. Service Experiences 113

| PRIVATE Option
| You should use this option when you want to quickly create a test copy of an
| object. You specify where VMFBLD should place the copy. VMFBLD does not
| update the Software Inventory. Note that if the object has requisites that were
| serviced, those requisites are built as well. Deleting objects, however, is not
| done.

| This option should not be used to build saved segments: Saved segments are
| always built on the real system.

Build Part Handlers
Build part handlers act as “snap-on” pieces to the VMFBLD base, allowing
extension of the build function to any type of object. VMSES/E has defined
several part handlers, as shown in Table 5. Unless indicated otherwise, these
part handlers are also supported on VM/ESA Release 1.5 370 Feature.

Table 5. Build Part Handlers

Name Build List Type Object Type Comments

VMFBDNUC Format 1 Nuclei Several user options

VMFBDCPY Format 1 Text replacement only Supported for compatibil ity

VMFBDCOM Format 2 Replacement objects Example: EXEC, XEDIT, HELP panels

VMFBDMOD Format 2 MODULE

VMFBDGEN Format 2 Varies Release 2.1 - generated objects

VMFBDMLB Format 3 MACLIB Release 2

VMFBDTLB Format 3 TXTLIB Release 2

VMFBDLLB Format 3 LOADLIB Release 2

VMFBDCLB Format 3 CSLLIB Release 2.1

| VMFBDDLB| Format 3| DOSLIB| Release 2.1 (•)

| VMFBDSBR| Format 2| Saved segments| Release 2 - identifies requirements

| VMFBDSEG| Format 2| Saved segments| Release 2 - builds segments (•)

| Note:

| • Not available on VM/ESA Release 1.5 370 Feature

VMFBDNUC Options
You should become familiar with the following options of the VMFBDNUC part
handler: These options are:

• FASTPATH

• NUCTARG

• RLDSAVE

• MODNAME

| Note: For VM/ESA Release 1.5 370 Feature, RLDSAVE and MODNAME are not
| supported options.

114 VMSES/E Primer

FASTPATH Option
The FASTPATH option reuses the temporary load list that was created by the last
invocation of VMFBLD.

If you serviced the component then you cannot use the FASTPATH option. The
reason is that the load list contains the list of text files at the service level they
were before applying the service. Not only the file types of the serviced text files
have changed, text files may also have been added or deleted from the load list.

Combining the ALL and FASTPATH options greatly reduces the time required to
build a new nucleus. As an example of the use of this option, the command to
rebuild the CP nucleus is:

vmfbld ppf esa cp cpload * fastpath (all

VMFBLD will reuse the temporary load list in file CPLOAD $NUCEXEC A, in the
case of CP.

NUCTARG Option
The NUCTARG option of VMFBDNUC lets you specify where the nucleus loader
should leave the nucleus:

PUNCH In the virtual punch (possibly spooled to your reader)

TAPE Copy to a tape

DISK In the CP NUC area (valid only for CP)

MODULE As a CMS MODULE (valid only for CP)

NUCTARG PUNCH is the default value. However, see the :BLD section of the
PPF for product defined defaults. This means that you now have to manually
load the new nucleus to disk when you are ready.

| Note: For VM/ESA Release 1.5 370 Feature, DISK and MODULE are not
| supported options.

CP Configurability Support
Since VM/ESA Release 2 VMSES/E supports the CP configurability functions.

| Note that CP configurability is not available on VM/ESA Release 1.5 370 Feature.
This support is specified through new options of the VMFBDNUC part handler:

• NUCTARG MODULE

Allows saving the nucleus as a CMS MODULE file. The target disk is not , by
default, a CP PARM disk. You will have to manually copy the MODULE file to
a PARM disk. This is to prevent you from overwriting your existing CPLOAD
MODULE during an automatic process. Follow the guidelines in VM/ESA:
Service Guide.

• MODNAME fn

Allows naming the nucleus file (the file type is MODULE).

• RLDSAVE

Saves relocation information for the nucleus. In this way, the nucleus can be
relocated at IPL time. This capability permits changing the size of the V=R
area without re-generating the nucleus, and also allows system recovery in
the case of a storage failure inside the nucleus area.

Chapter 6. Service Experiences 115

The following command is an example of a CP nucleus build, using the
configurability support:

vmfbld ppf esa cp cpload * fastpath rldsave nuctarg module modname mynuc (all

More on Build Lists
As discussed in “Build Lists” on page 54, there are three types of build lists:

• Format 1 - called load lists in previous releases

• Format 2 - new with VM/ESA Release 1.0

• Format 3 - new with VM/ESA Release 2

You should be aware that the build lists are now serviced by replacement. The
new part is shipped as file of file type EXCnnnnn, where “nnnnn” is the PTF
number. VMFBLD locates the highest service level for the build list and uses it.

For example, if the CPLOAD EXEC is serviced by a replacement file called
CPLOAD EXC12345, VMFBLD will use this file as the load list, instead of the
CPLOAD EXEC. If for any reason (for instance, a product requirement) you have
modified the build list, you will have to handle the change using the local
modifications procedure. For detailed information, see VM/ESA: Service Guide.

This means you should carefully scan the apply log and if you detect any
message concerning build lists (in reality any message related to local service)
you should investigate whether your changes are still valid, and perform the
necessary modifications.

Remember: for the apply process to detect and log these occurrences, you must
have logged your local modifications in the Software Inventory.

Format 3 Build Lists
Format 3 build lists were introduced in Release 2 and support the building of
libraries. Each library is defined in a separate build list, and each member is
described as an object in the build list. As we have seen, libraries to be
declared as GLOBAL can be specified, and object-requisite support is also
provided.

A new tag, specific for Format 3 build lists, was introduced. The :LIBNAME tag
allows specifying a name for the library (the default is the file name of the build
list file).

Support of Global
Format 2 and Format 3 build lists were further enhanced to allow specification of
libraries needed during the build process. This support is used, for example, by
the VMFBDMOD part handler to issue a GLOBAL TXTLIB command for the
required libraries. The VMFBDSEG part handler supports all types of libraries.

GLOBAL commands are issued for these libraries. Existing GLOBAL definitions
are saved before issuing new GLOBAL commands, in preparation for building an
object, and restored after building the object.

Using the :GGLOBAL tag you can define libraries required by all objects in a
build list. The libraries are added to the end of the existing globals. Any objects

116 VMSES/E Primer

having individual requirements must specify them using the :GLOBAL tag in the
object definition block. This specification overrides the one made in with the
:GGLOBAL tag.

You can specify the following library types: CSLLIB, DOSLIB, LOADLIB, MACLIB,
and TXTLIB.

Other Build List Enhancements
For Format 2 build lists, the :OBJNAME tag requires both the file name and file
type of an object to be specified. Objects with the same file name but with
different file types can now be specified in the same build list. This is also
required by object deletion support.

The :GOBJPARM tag allows the definition of parameters applying to all objects
in the build list. Any object parameters specified on the :OBJNAME tag override
the global parameters for that object.

Many new values for the :OPTIONS tag, mainly to support library build, have
been introduced.

Update Control Files
Several parts, such as ASSEMBLER files, EXECs, and XEDIT macros are source
maintained. This means that, whenever the part is changed, only a small update
file with the changed lines has to be included in the service sent, along with
control information. It is then necessary to update the original (or base) source
file with the changed file, according to the directives in the control information.
This control information is organized in a structure with several types of files.
This section describes this structure and the associated files, and though we use
VM/ESA as example, it applies equally to program products. For more detailed
information see VM/ESA: VMSES/E Introduction and Reference.

Note: IBM supplied service includes already assembled text files, so you do not
have to update and assemble the source, unless you have local modifications to
insert.

The control structure is based on a series of files “pointing” to other files. There
is a primary file, which has a file type of CNTRL. This main control file contains:

• Assorted control information.

• Pointers to auxiliary control files (AUX files) and VVTs. These files, in turn,
point to the actual updates.

The use of a major control file provides a place to define information that is
common to all parts of a component, or product, such as the different
service-levels (IBM, local, relief, patches, and so on), and to leave the
part-specific information to individual AUX files (and VVTs). The main control file
is used:

• By the XEDIT command, when creating a source update.

• By the UPDATE command, to locate and apply the source updates.

| Note: The UPDATE command is implicitly called by the VMFASM,
| VMFHASM, VMFHLASM, GENCPBLS, VMFNLS, and VMFEXUPD commands.

• By the VMFBLD command, to select the most recent level of a part.

Chapter 6. Service Experiences 117

| The updates are changes to the source files that are shipped as part of VM/ESA
| Release 2.2. The updates are applied by creating a temporary copy of the

source file with the changes included. This temporary source file is then
compiled into a usable form that will become part of the system.

This structure anticipates, and avoids, some of the inherent problems that were
described in “Maintaining Your System” on page 23. These problems are
avoided simply by applying the updates in the right order. As briefly described
above, the control file allows you to have multiple AUX files per part, so you can
handle different types of service, and you can apply this service in a specific
order, for example:

 1. IBM service (RSU, or PUT, and COR)

 2. Local service

 3. Patches

The control and AUX files provide input to the CMS UPDATE command and the
XEDIT update facility, and are read from bottom to top. The bottom entry in the
file is read first.

With the exception of local service and patches, these AUX files are
automatically generated for you by VMSES/E.

An example of how to make and apply local service, using this type of structure,
can be found in “Local Service” on page 122.

Figure 47 shows the relationships between control files, AUX files, and updates.

Figure 47. Service Control File Structure

118 VMSES/E Primer

In this example, the CP part HCPXYZ ASSEMBLE is to be updated. The
sequence of events might be (points A and B are described later):

 1. The main control file for CP, HCPVM CNTRL, is located. The control file
points to both AUX files and VVTs, and is used by all parts of a product. The
AUX files are individualized by part. Their file names, as well as the file
names of the source updates, coincide with the part ′s file name. This file is
processed from the bottom up, so entry AUXVM is processed first.

 2. The file HCPXYZ AUXVM is located, and as there are no preferred AUX files,
this file is used.

 3. The individual updates in the AUX file are applied, from the bottom up, to a
| temporary copy of the source file. So, HCPXYZ V11111HP is applied first.

 4. If other AUX files listed in the CNTRL file exist, steps 2 and 3 are repeated
for each one. Notice that the second AUX file (AUXDEP) has a preferred file
(AUXDEP1). If AUXDEP1 exists then this update level (AUXDEP) is ignored.
In the example, none exists for the part HCPXYZ.

 5. The temporary source file with the updates applied, $HCPXYZ ASSEMBLE, is
now ready to be assembled.

 6. VMFHASM generates the part from the temporary file.

VMSES/E includes three commands, VMFASM, VMFHASM, and VMFHLASM, that
apply the updates (by invoking the CMS UPDATE command) and assemble the
resulting updated source file, by invoking the ASSEMBLE, HASM, or HLASM
commands. If necessary, they also unpack the original source file. The
temporary updated file is always discarded after the assembly completes.

Which file type should be given to the newly generated TEXT file? Before
VMSES/E, the VMFASM and VMFHASM commands named it by using the level
identifiers in the control file. The first token (levelid) from the line of the highest
applied AUX file is used:

• If the token is TEXT, the resulting file type is TEXT.

• If, as in the example, it is not TEXT, it is appended to the keyword TXT.

So, our example would result in a file type of TXTLCL.

But in VMSES/E all parts must be PTF-versioned. This allows immediate
recognition of the service level for the part. VMSES/E defines a modified file
type for the part. It is composed of a level identifier and a PTF (or local
modification) number. On Figure 47 on page 118 you can see that:

• A. characters 3-7 (the local tracking number) from the file type of the last
source update applied are appended to

• B. the default level identifier (TXT)

In the example, the resulting file type is TXTL1001. These modified rules are
| used by VMFASM, VMFHASM, VMFHLASM, VMFNLS, and VMFEXUPD.

Note: This is a subset of the rules. See VM/ESA: VMSES/E Introduction and
Reference for the complete rules.

When VMFBLD selects parts to build objects, it calls VMFSIM GETLVL to obtain
the file type of the highest version for the part. VMFSIM GETLVL uses the main
control file and searches the VVTs for each defined level. There is, at most, one
VVT per level. Each VVT can have many lines, each line corresponding to a

Chapter 6. Service Experiences 119

part. Each line is the equivalent of an entire AUX file. It contains the numbers of
all PTFs applied to the part.

AUX Files and VVTs
AUX files can support only source updated parts. This contrasts with Version
Vector tables, which provide service control information for all types of parts.
However, several CMS commands, such as UPDATE, EXECUPDT, and XEDIT,

| cannot use VVTs, so AUX files must still be provided. The VMSES/E functions
| VMFASM, VMFHASM, VMFHLASM, GENCPBLS, VMFNLS, and VMFEXUPD use

the update facility to generate serviceable parts that are subsequently used for
object building.

When building an object, selecting the correct level of parts can be based
exclusively on VVTs. This is a uniform method for all types of parts. Doing it,
however, implies that the VVTs are kept current, which is done automatically by
VMSES/E for any service it applies, but remains a manual task for any local
service.

For TEXT deck selection only, in the event VVTs are not available, VMFBLD uses
AUX files.

Version Support for Parts
Version support for parts is required when several versions of a product can be
generated, and the same file name for a part with different contents is used on
all the versions. Examples of this situation are:

| • Uniprocessor and multiprocessor CP modules in VM/ESA Release 1.5 370
| Feature.

• A product (called dependent) modifies code of another product (called base).
This is the case of modifying CP with an External Security Manager (ESM).

• National Language Support (NLS) requires concurrent existence of several
parts with the same file name.

• Several systems (or copies of a product) are maintained using the same
base code, but some parts are customized for each system (or product ′s
copy).

Version support for parts allows distinguishing between the different
environments by assigning representative file types to each version of a part
(and keeping a common file name).

This support must be provided for all types of parts. As we have seen in the
preceding discussion, the existing control file structure, even with preferred AUX
files support, only works for TEXT files.

A mechanism that allows the build function to correctly select the desired part
for all types of parts is required. This mechanism is shown in Figure 48 on
page 121.

Without version support, the file type for the part is based on the 3-character
identifier for the part and the highest update identifier, as determined through
the main control file and VVTs.

120 VMSES/E Primer

Version support allows modification of the file type by defining a conversion
table, known as the control file extension. The table′s file name is the same as
the main control file, and the file type must be CNTRLEXT.

The conversion mechanism is as follows:

If a VVT for the highest applied level exists, and the VVT has an entry for the
part, then:

 1. The control file extension is searched for a line beginning with two
tokens: the level identifier and the part′s file type abbreviation.

 2. If such a line exists, the new file type abbreviation is the third token on
the line. It is used along with the update identifier (PTF number or local
modification number) to create the part′s file type.

Figure 48. Version Support for Parts

Using Figure 48 as example, issuing the following command generates the
return values in Table 6 on page 122:

vmfsim getlvl ppfname compname tdata :part fn ftabrev

Chapter 6. Service Experiences 121

Table 6. Control File Extension Usage

fn/ftabrev ppfname Returned Value Comments

XYZLDR TXT BASE XYZLDR TXT01001

XYZLDR TXT DEP XYZLDR TXD01001 used DEP CNTRLEXT

XYZTAP HLP BASE XYZTAP HLP02001

XYZTAP HLP DEP XYZTAP HLP02001 no entry in VVTDEP

XYZXMS TXD BASE XYZXMS TEXT BASE-FILETYPE no entry in VVTBASE

XYZXMS TXD DEP XYZXMS TXD10105 no entry in DEP CNTRLEXT

XYZRTN MLB BASE XYZRTN MLB12080

XYZRTN MLB DEP XYZRTN MLB12140 no entry in DEP CNTRLEXT

Local Service
Local service was briefly discussed in “Local Service” on page 26. The example
in this section shows you how to create a local modification (localmod) to a
source maintained part, and how you can update the Software Inventory to
reflect your modification.

We also discuss converting the localmod into a “real” PTF, and we point out
some of the differences between local and COR service.

Additional examples, covering local modifications to the CP nucleus build list
and the CMSINST segment, can be found in VM/ESA: Service Guide.

Creating a Local Update
As an exercise, let us presume it has been decided by the installation that the
CP LINK command should not be generally available to the users. It is most
likely that you would chose the CP OVERRIDE command to perform this task, but
for this demonstration we will do this within the CP nucleus as a local
modification.

This kind of change would typically be implemented as a local update.

Creating the AUX and Update Files
In this example, the part to be modified is HCPCOM ASSEMBLE, the CP
command list.

To set up the correct disk access order for CP issue the following commands
(accessing the SESDISK and SIDISK should be in the PROFILE EXEC):

access 5e5 b/b
access 51d d/d
vmfsetup esa cp

This ensures that we have access to all the files needed (including the VMSES/E
code). We are using the ESA PPF. You should use your own override, if you
have one.

You will have to assign a local tracking number to this modification. Let us
assume the number is L0001.

122 VMSES/E Primer

First, create the AUX file for the local modification, or add an entry to the local
AUX file, HCPCOM AUXLCL, if it already exists. The AUX file name is the same
as the file we will modify, HCPCOM. The AUX file type is defined by the LCL
entry in the main control file. The file name of the main control file for the CP
component, HCPVM CNTRL, is defined in the PPF for CP.

You have to edit the HCPCOM AUXLCL file and insert the single data line, as
shown in Figure 49. There is just one record, because we have only one
localmod.

| VL0001HP LCL LCL0001 *CHANGE CP LINK FROM CLASS=G TO CLASS=X

Figure 49. AUXLCL File for HCPCOM Update

The record contains several one-word fields, followed by a comment. The fields,
from left to right, are:

Updft File type of the update file. With standard service, this is a composite
of the local tracking number and the service level indicators (defined
by the :SLVI. tag of the PPF). This allows you to quickly associate
the modification with a component and its service level, and its the
method we recommend. However, some installations prefer to use
more of an English file type to better distinguish local modifications.

Lvl Service level indicator, LCL for our case.

Lclmodid Local modification identifier; the assembled text deck is assigned a
file type of TXTL0001

Note: Naming conventions for the generated file type of the resulting
text file are different from the previous VMSES. See VM/ESA:
VMSES/E Introduction and Reference for the complete description of
these conventions.

Comment Verbal description of the update.

Next, the actual update must be created. Use XEDIT, with the control option, on
the original source file. Figure 50 shows the line in the HCPCOM ASSEMBLE file
that has to be modified and a few lines around it.

**
* *
* LINK COMMAND *
* *
**

SPACE ,
COMMD COMMAND=(LINK,4),CLASS=G,EP=HCPLNKIN,

IBMCLASS=G,FL=CMDONLY,FL1=CMDVPROT+CMDPROC+CMDVMAC, *
SECFLAG=CMDPROT

SPACE ,
**

Figure 50. HCPCOM ASSEMBLE Extract

The source files are on the BASE string (BASE3, MAINT 394 accessed as Q) in
packed format. The XEDIT command unpacks the source file as it loads it into
storage. The command to use is:

xedit hcpcom assemble (ctl hcpvm

Chapter 6. Service Experiences 123

| You will get a warning message saying that PTF file HCPCOM VL0001HP is
| missing. Ignore that message, as you are in the process of creating this file.

Locate the LINK section in HCPCOM ASSEMBLE (see Figure 50), change
CLASS=G to CLASS=X, and issue the FILE command (without any parameters).

| The result will be a file named HCPCOM VL0001HP, on your A-disk, as shown in
Figure 51.

./ R 00687160 $ 687950 790 09/26/91 04:24:14
COMMD COMMAND=(LINK,4),CLASS=X,EP=HCPLNKIN, *00687160

| Figure 51. Update File HCPCOM VL0001HP

We now have to move the files we created to the correct minidisks, in this case
the LOCALMOD disk (MAINT 2C4, accessed as E):

| copyfile hcpcom auxlcl a = = e (oldd rep
| copyfile hcpcom vl0001hp a = = e (oldd rep

Erase these files from your A-disk after they have been copied.

Assembling the Updated Source File
| The VMFASM, VMFHASM, and VMFNLS commands (in Release 1), VMFHLASM
| command (in Release 2) and the VMFEXUPD command (in Release 2.2) were
| enhanced with two options:

| CKGen Validates the AUX files against the VVTs

| NOCKGen Does not perform the validation

| The following options were added in Release 2.1:

| LOGMOD Validates the AUX files against the VVTs, and, if a mismatch is
| detected, automatically updates the local VVTs.

| FILETYPE Provides a file type different from the default one for the output file
| that is created.

| And the options below were added in Release 2.2:

| OUTMODE Indicates where the generated output file should be placed.

| $SELECT Indicates whether to update the $SELECT file.

| Note that the combined result of the OUTMODE, LOGMOD, and $SELECT options
| is equivalent to the Apply step. VMFBLD will have the information that is
| required to detect that an object was changed by a local modification.

| On VM/ESA Release 2.2, issue:

| vmfhasm hcpcom esa cp (logmod $select outmode localmod

| On previous releases you would follow the method discussed below. It is still
| instructive to read it, because it shows what happens “under the covers.”

On VM/ESA Release 2 and previous systems, to produce an updated text deck
issue:

124 VMSES/E Primer

vmfhasm hcpcom esa cp
copyfile hcpcom txtl0001 a = = e (oldd rep
erase hcpcom txtl0001 a

The VMFHASM command automatically unpacks the source file, if necessary.

So far we have produced an update, an AUX file, and an updated text deck.
Furthermore, these files have been moved to the correct minidisks, as
defined in the PPF.

But the Software Inventory has no record of the localmod. Until VMSES/E
Release 2.1 you had to manually update the Software Inventory, starting with
the Version Vector table. The command was:

| vmfsim logmod 6vmvmb22 vvtlcl e tdata :part hcpcom txt :mod lcl0001.vl0001hp

Note that the local service level VVT (VVTLCL) is used, not the system level
(VVTVM).

On a VM/ESA Release 2.1 system, issue:

vmfhasm hcpcom esa cp (logmod
copyfile hcpcom txtl0001 a = = e (oldd rep
erase hcpcom txtl0001 a

When the CP nucleus is re-built, the HCPCOM TXTL0001 text deck will be used
and, after an IPL, the LINK CP command will be class X.

Do not forget to include the Class X in the directory entry of authorized users.

Comparing Local and Corrective Service
As you noticed in the example, before VM/ESA Release 2.1 everything had to be
done manually. We had no help from VMSES/E whatsoever. By now we know
why. The $PTFPART parameter file was missing, and without it VMSES/E cannot
do any work.

So let us try to create a $PTFPART file. For a moment, imagine that you are
working in the VM/ESA Release 2.2 change team. You have been assigned the
task of correcting an error: the CP LINK command is class G and it should have
been class X, by default.

The incident has been reported, and assigned APAR number VM12345. We now
create the fix to this problem, which is what we actually did in the previous
section. Let us give the fix the PTF number UM98765.

Shown below is a list of the files that must be on the COR tape:

File name Description

HCPCOM TXT98765 Updated text deck - identical to HCPCOM TXTL0001

| HCPCOM V12345HP Update file - identical to HCPCOM VL0001HP

Apply/Exclude lists List of PTFs to be applied or excluded

UM98765 $PTFPART Definition and control information for VMSES/E

We have to create the PTFPART file manually. The resulting file, UM98765
$PTFPART, is shown in Figure 52 on page 126.

Chapter 6. Service Experiences 125

| ** COMPID FOR PTF UM98765 = 568411202, RELEASE = 122, PRODID = 6VMVMB22
| :PTF.UM98765
| ***************************PRODUCT IDENTIFIER***************************
| :PRODID.6VMVMB22
| ***************************APAR DESCRIPTIONS****************************
| :APARDESC.
| :APARNUM.VM12345
| :ABSTRACT.WRONG CLASS FOR CP LINK COMMAND
| :EAPARDESC.
| * THIS PTF HAS NO REQUISITES
| *******************************PARTS LIST*******************************
| :PARTS.
| ** **
| :PARTDEF.HCPCOM ASSEMBLE
| :PROCOPTS.AUX
| :REPPART.HCPCOM TXT98765
| :UPDATES.V12345HP
| :APARS.VM12345
| ** **
| :EPARTS.

Figure 52. PTFPART File for PTF UM98765

We now have to package the PTF in COR tape format, and ship it to the
customers.

In our example, we did not bother to produce the tape. So, to “receive” the PTF,
we just copied the files to the alternate DELTA disk (remember to use the
VMFCOPY command, to get the VMSES PARTCAT updated).

Receiving Manually
“Manually” means that the service-level Software Inventory for the receive step
is not updated automatically. We must enter the following command to update
the Software Inventory:

| vmfsim init 6vmvmb22 * fm tdata :ptf um98765

| where fm is the access mode of the Alternate (or only) DELTA disk. The
| command above is equivalent to the following command sequence:

 1. Record that UM98765 has been received:

| vmfsim modify 6vmvmb22 srvrecs tdata :ptf um98765 :stat received (add

 2. Update both the Description and Requisite tables. We use a query to map
the PTF to a file, TEMP SIMDATA, that serves as input for the tables update:

vmfsim query um98765 $ptfpart tdata :ptf um98765 (file temp

 3. Update the Description table:

| vmfsim modify 6vmvmb22 srvdesct file temp

 4. Update the Requisite table:

| vmfsim modify 6vmvmb22 srvreqt file temp

The receive step for a COR tape has now been simulated, and we are ready to
apply the service, by using the VMFAPPLY command. VMSES/E will generate
AUX files, and update all the service-level tables.

126 VMSES/E Primer

Note that the UPDTID option of VMFAPPLY allows you to specify the file type of
the AUX file that VMFAPPLY will create. This option overrides the value
specified in the PPF, which has the default of AUXVM.

If you wish to use VMFAPPLY for your local changes, you may consider using
this option to keep your changes in separate AUX files.

Note: If you do not update the Receive Status table, you will not be able to
perform the Apply step. VMFAPPLY will tell you that UM98765 cannot be applied
because it has never been received, and terminate.

| Build IBM Service before Reworking your Local Service
| Sometimes you might need to invoke VMFBLD to build IBM service before
| reworking your own local service affected by the IBM service. Several examples
| are:

| 1. If IBM services a macro, HCPXXX in HCPOM1 MACLIB, which is used in an
| ASSEMBLE file for which you have a local modification, you will need to
| rebuild the MACLIB before you reassemble your files.

| vmfbld ppf esa cp hcpom1 hcpxxx (serviced

| 2. If IBM ships new source code for a part, for example HCPABC ASSEMBLE,
| for which you have a local modification, you will need to rebuild the source
| part before you rework you local modification.

| vmfbld ppf esa cp hcpblsrc (serviced

| 3. If you have local modifications to HCPOM1 MACLIB and IBM ships service to
| the MACLIB which includes a new macro (for example, HCPVUBLK) for the
| MACLIB, you are instructed to re-build the MACLIB as part of re-working
| your local service. This might fail since VMFBLD tries to add the new macro
| to the MACLIB and cannot find the source file for the macro. In this case,
| you need to first invoke VMFBLD just to create the source macro.

| vmfbld ppf esa cp hcpblsrc (serviced

Updating the CP Nucleus Build List
| The procedure described here cannot be followed to change the CP nucleus on a
| VM/ESA Release 1.5 370 Feature system since the CPLOAD is serviced by
| replacement only.

The CP nucleus build list for VM/ESA, CPLOAD EXEC, is an ordered listing of the
text decks in the CP nucleus. If an optional program product requires that you
add a text deck to the CP nucleus you will have to manually update the CP build
list.

The VM/ESA: Service Guide contains an appendix describing the update
procedure. Therefore, here we will only comment on the process and add any
information we feel is necessary to clarify the process. As the CP load list is
often changed by service, it is very important that you follow the documented
procedure, in order to make VMSES/E aware of your changes.

Note: In this section, the term “CP module” is used to refer to a text deck that
is included in the CP nucleus. It should not be confused with the CMS module
file that holds the complete generated CP nucleus.

Chapter 6. Service Experiences 127

Overview
The CP module order is determined by the HCPMDLAT MACRO (MoDuLe
ATtribute), which is invoked by the HCPLDL ASSEMBLE part. When the part
HCPLDL ASSEMBLE is assembled, a text deck with a PTF-numbered file type is
created. This text deck is then converted into the CP nucleus build list (also
called CP load list).

The HCPMDLAT macro lists the CP modules in the order in which they will be
loaded by the build process. The CP modules are also grouped according to
their attributes (categories). If you are adding a new module to the CP nucleus
build list, be sure to add it to the HCPMDLAT macro in the appropriate category,
and in the appropriate order within that category.

Figure 53 illustrates the categories within HCPMDLAT MACRO file. The
HCPMMx markers identify the different sections within the macro.

HCPLDR (* loader *)
Resident Non-executable modules

HCPMM0
Resident Non-executable modules
Resident Executable MP modules

HCPMM1
Resident MP modules

HCPMM5
Resident Non-MP modules

HCPCPE
HCPMM4

Pseudo-pageable Initialization Modules
Fully-pageable Initialization Modules

HCPMM7
Fully-pageable Initialization MP Modules

HCPMM2
Pageable MP modules

HCPMM6
Pageable Non-MP modules

SYS CPFORMAT
CPFORMAT Modules

LDT Card
HCPGEN
HCPMM3 (* End of CP Modules *)
LDT HCPGENUC Card

Figure 53. HCPMDLAT MACRO File Structure

The module attributes are:

• Resident. These modules are non-pageable.

• Pseudo-pageable, loaded at initialization. These modules may not be paged
out until system initialization has finished.

• Fully-pageable. These modules can be paged in and out of real storage.

• Multiprocessor. These modules are capable of executing simultaneously on
two or more processors.

128 VMSES/E Primer

• Non-multiprocessor. These modules are only capable of executing on a
single processor, the master processor, which is usually the IPL processor.

• Save area is either STATIC or DYNAMIC.

• Data only, as opposed to executable.

In addition to being used to produce the CP nucleus build list, the HCPMDLAT
macro supplies necessary attribute information when one CP module calls
another.

Notes:

• After changing the attributes of a module, reassemble all the modules that
call the changed module so they can pick up the new attributes. According
to the developers, the relationship between caller and called is not obvious
and not documented anywhere in the VM/ESA publications.

• When changing a module from pageable to resident, keep it within the same
category, MP or non-MP, and add it to the end of the respective list.

• If you are installing a product that modifies the CP nucleus build list, it is the
responsibility of that product′s installation instructions to describe what the
attributes of the new modules are.

| Update Procedure for VM/ESA Release 2.2
| To update the CP nucleus for VM/ESA Release 2.1 and previous releases refer to
| “Update Procedure for VM/ESA Release 2.1.” To update the CP nucleus build list
| for VM/ESA Release 2.2, follow the procedure in VM/ESA: Service Guide and
| VM/ESA: Service Guide, Appendix F, then you can rebuild the CP nucleus.

| Update Procedure for VM/ESA Release 2.1
| To update the CP nucleus build list for VM/ESA Release 2.1 and previous
| releases, follow the procedure in VM/ESA: Service Guide, using the steps below
| as a guideline:

1 Modify the HCPMDLAT MACRO using the local modification procedure:

a Access the CP disks. Enter:

vmfsetup esa cp

b Apply local service to HCPMDLAT MACRO:

• Define a local tracking number for this modification. It has the
form Lnnnn, where “nnnn” is a number, and we will refer to it as
“modid . ”

• Create or update, on the LOCALMOD disk, an auxiliary control
file, HCPMDLAT AUXLCL, that points to the local source update
file. The single data line to insert is shown below:

SmodidHP LCL LCmodid * Change CPLOAD list for ...

• Create the local source update file. Enter:

xedit hcpmdlat macro (ctl hcpvm

Be sure to place the new module in the appropriate order and
category. File the changes.

• Copy the source update file just created to the LOCALMOD disk.
Enter the commands:

Chapter 6. Service Experiences 129

copyfile hcpmdlat macmodid a = = fm-local
erase hcpmdlat macmodid a

where:

fm-local is the file mode of the LOCALMOD disk

• Record the change in the Software Inventory by entering:

vmfsim logmod 6vmvmb21 vvtlcl fm-local tdata :part hcpmdlat macro
:mod lcmodid.smodidhp

• Create or update, on the LOCALMOD disk, an auxiliary control
file, HCPLDL AUXLCL, that points to the local source update file.
The single data line to insert is shown below:

SmodidHP LCL LCmodid * Change CPLOAD list for ...

• Create the local dummy source update file. Edit the HCPLDL
SmodidHP file and enter the single data line shown below:

./ * Force re-assemble for CPLOAD change ...

c Add the following records to 6VMVMB21 $SELECT:

 :APPLYID. mm/dd/yy hh:mm:ss
 HCPMDLAT MACRO

Note: HCPLDL TXT is not added.

d As documented. Use the commands (you may use VMFHLASM
instead of VMFHASM):

vmfbld ppf esa cp hcpgpi (serviced

vmfhasm hcpldl esa cp (logmod

copyfile hcpldl txtmodid a = = fm-local
erase hcpldl txtmodid a

2 Create the modified version of the CP nucleus build list, as documented.

3 Modify CPLOAD EXEC. Read the whole step before doing.

a To record the change in the Software Inventory enter:

vmfsim logmod 6vmvmb21 vvtlcl fm-local tdata :part cpload exc :mod lcmodid

b Add the following records to 6VMVMB21 $SELECT:

 :APPLYID. mm/dd/yy hh:mm:ss
 CPLOAD EXC

c As documented in VM/ESA: Service Guide.

| You can now rebuild the CP nucleus.

As all local modifications are logged in the Software Inventory, every time
service is applied to the CP load list you will receive a warning from VMSES/E.
You should then verify whether your changes are still valid and repeat the above
procedure.

130 VMSES/E Primer

Changing GCS
There are three common changes that you may wish to make to your GCS
system:

• Alter the load address of the GCS system

• Have several GCS systems

• Change the name of the GCS Saved System

You will find that VM/ESA: Installation Guide has an appendix that describes
| these changes. The following section may help clarify the process. VM/ESA
| Release 1.5 370 Feature users may be able to adapt the process to their
| environment.

Changing the Load Address
As in the past, you have to copy the IBM supplied load list for GCS and edit it, in
order to change the values for the Set Loader Counter (SLC) entries.

We recommend that you copy the most recent IBM supplied version of the file to
your LOCALMOD minidisk and make all changes to your own copy of the file.

| You can find the file id of the most recent version by looking in the Version
| Vector table (6VMVML22 VVTVM).

The SLC entries determine the virtual address range that GCS resides in. If you
change the entries in the load list, you have to create SLC files containing the
addresses that you wish.

The problem with this method of copying and editing is that if the GCTLOAD
EXEC is updated by service, you have to be aware of the change and repeat the
copying and editing process.

Previously, there was no mechanism to advise you that the load list had been
serviced. This made it difficult to know when to reapply the local changes.

With VMSES/E, you can log your modifications to the load list in the Software
Inventory. The advantage to this is that if there are any service changes to the
load list, VMSES/E detects them during the apply process, and reminds you to
check for any impact the service may have had on your local modifications. Use
VMFVIEW APPLY to look for messages VMFxxx2120W and VMFxxx2121I in the
message log.

The steps you will have to perform to change the GCS load list, and log the
changes in the Software Inventory are:

1 Access the GCS disks. Enter:

vmfsetup esa gcs

2 Find the most recent IBM supplied version of the load list. Enter the
following command (use gcs or gcssfs for compname):

vmfsim getlvl esa compname tdata :part gctload (history

Any existing local modifications are listed first, after the tag :MOD, and IBM
service is listed after the tags :VVTVM and :PTF. The most recent service
will be in the replacement part “GCTLOAD EXCnnnnn,” where “nnnnn” is
the PTF number of the first PTF listed after these tags. If there is no entry,

Chapter 6. Service Experiences 131

then you have no service applied and the file is the original “GCTLOAD
EXEC.”

3 Assign a local tracking number to this modification. This number must be
of the form Lnnnn. We refer to it below as “modid.”

4 Copy this file to the GCS LOCALMOD disk and perform any modifications.
This file should be named GCTLOAD EXCmodid.

5 Create the SLC files, also on your local disk. Do not forget the X′02′
characters in column one.

6 Add the local modification to the Software Inventory. Issue the command:

| vmfsim logmod 6vmvml22 vvtlgct fm-local tdata :part gctload exc :mod lcmodid

where:

fm-local is the file mode of the LOCALMOD disk

Note: The file type of VVTLGCT is determined by the GCTVM CNTRL file.

You can now rebuild the GCS nucleus.

Changing the Load List Name
You may want to have several load lists, or you may want to avoid using the IBM
name of GCTLOAD EXEC. For every load list you create, you should also have
an override file using that load list name, instead of modifying the ESA PPF. An
example of such an override is shown in Figure 54.

| *==
| :OVERLST. GCS
| :OVERLST. GCSSFS
| *==
| * End of Product Header
| *==
| :GCS. GCS 6VMVML22
| :BLD. UPDATE
| ./INSERT GCTLOAD AFTER
| TESTLOAD VMFBDNUC BUILD7 TXT TXS * BUILD TEST GCS NUCLEUS
| ./END
| :END.
| *==
| :GCSSFS. GCSSFS 6VMVML22
| :BLD. UPDATE
| ./INSERT GCTLOAD AFTER
| TESTLOAD VMFBDNUC BUILD7 TXT TXS * BUILD TEST GCS NUCLEUS
| ./END
| :END.

Figure 54. PPF Override - TESTGCS $PPF

This override file changes the load list name, used when the GCS nucleus is
built, from GCTLOAD to TESTLOAD. There are two override areas because GCS
can be installed either on minidisks (GCS) or in Shared File System directories

| (GCSSFS). Previously you would call VMFPPF twice, once for each override
| area, but starting with VM/ESA Release 2.2, you need to call VMFPPF only once:

132 VMSES/E Primer

vmfppf testgcs gcs gcssfs

to obtain the single, executable form, TESTCGS PPF file for both GCS variants.

You may want to log a dummy local modification, in effect just log a modification
against the IBM-supplied load list in the Software Inventory. In this way,
VMSES/E will warn you every time the load list is changed, so you do not forget
to change your load list accordingly. Enter:

| vmfsim logmod 6vmvml22 vvtlgct fm-local tdata :part gctload exc :mod lcmodid

Once you log this modification, this dummy local modification ID will become the
highest level of GCTLOAD instead of the IBM-serviced level. To make the levels
the same, copy the highest IBM-serviced level of GCTLOAD to the LOCALMOD
disk with a filetype of EXCmodid. This must also be done each time GCTLOAD is
serviced.

Changing the Saved System Name
To generate GCS you use the GROUP EXEC. Among other things, the GROUP
EXEC allows you to define the name of the GCS saved system; the output of the
EXEC is a GCS system configuration file in source format. You must than
ASSEMBLE this file so that the resulting text deck can be included in the GCS
nucleus. The GCS load list has an entry with the default name of this file.

If you wish to change the name of the GCS saved system, use the GROUP EXEC
to define the requirements specific of your system, as well as a different name
for the saved system. The GROUP EXEC creates a file with the file type GROUP
and the file name equal to the name of the saved system (MYGCS, for example).

To include this file in the GCS nucleus you must first change its file type and
then assemble it, to generate the TEXT deck. But the list of TEXT decks, which is
the load list, has also to be changed, to point to your version. There are a
number of manual steps to be performed, namely:

1 Access the GCS disks. Enter:

vmfsetup esa gcs

2 Assign a “local tracking number” to this modification. This number must
be of the form Lnnnn. We refer to it below as “modid.”

3 Copy the MYGCS GROUP file to the LOCALMOD disk, renaming it to
MYGCS ASSEMBLE.

4 Create the corresponding AUX structure, the AUX file, shown in Figure 55,
and the dummy source update file shown in Figure 56. Both files should
reside on the LOCALMOD disk.

Note: The file type AUXLGCT is determined by the GCTVM CNTRL file.

| VmodidGT LCL LCmodid - Local MOD to Force Text deck name to TXTLOCAL

Figure 55. AUX File Example - MYGCS AUXLGCT

Chapter 6. Service Experiences 133

./ * - Local MOD to get a new text deck name

Figure 56. Update File Example - MYGCS VmodidGT

5 Assemble the file using the correct PPF and component names, and log the
modification on the Software Inventory. Enter:

vmfhasm mygcs ppfname compname (logmod

| Note: If you are using Release 2.2, you could use the OUTMODE
| LOCALMOD option to VMFHASM, then skip the next step.

6 Copy the resulting text deck to your local disk, using the local tracking
number to rename it:

copyfile mygcs txtmodid a = = fm-local
erase mygcs txtmodid a

7 Create your version, named TESTLOAD EXCmodid, of the GCS load list, as
explained in “Changing the Load List Name” on page 132. Use the
procedure explained in “Changing the Load Address” on page 131 to
change the line containing:

&1 &2 &3 GCS

to:

&1 &2 &3 MYGCS

8 Also, record in the Software Inventory that you have a local version of the
load list, called TESTLOAD. The command format would be:

| vmfsim logmod 6vmvml22 vvtlgct fm-local tdata :part testload exc :mod lcmodid

At this point, you can use the override file shown in Figure 54 on page 132 to
build a second copy of GCS called MYGCS. The command format is (if you
installed GCS in the Shared File System):

vmfbld ppf testgcs gcssfs testload (all

Even though the files for your test version of GCS are not part of VM/ESA
Release 2.2, you should log the changes in the Software Inventory, in order to
maintain complete records of the status of your system.

134 VMSES/E Primer

Chapter 7. Exploring the Software Inventory

The Software Inventory was introduced in Chapter 3, “Software Inventory” on
page 37. It is heavily used by VMSES/E during the install and service processes.
IBM provides you with a general and very powerful command to interrogate and
manipulate the Software Inventory: VMFSIM.

Though not formally a part of the Software Inventory, build lists are very
important, and Release 2 introduced the VMFQOBJ command to enhance their
exploitation. VMFINFO, a full-screen, panel-driven interface that provides a more
friendly interface to both VMFSIM and VMFQOBJ, was also introduced in Release
2. This chapter describes the use of these commands.

Many examples use PTFs and service-level tables from VM/ESA Release 1.1 and
VM/ESA Release 2 because at the time of writing there were no PTFs for
VM/ESA Release 2.2. However, since the PTFs are used solely to illustrate the
use of VMSES/E functions and capabilities, and not as actual service information,
we felt this should pose no problem.

The diskette that accompanies this document contains sample source code for
some of the examples referred to in this chapter and described in Appendix D,
“VMFSIM Exploitation Code Examples” on page 225. Refer to Appendix E,
“Diskette Installation Instructions” on page 233 for information on installing the
files contained on this diskette.

VMFSIM Subcommands
Through its many subcommands, VMFSIM allows exploitation of all the table
types and files shown in Table 7. The VMFSIM command is used internally by
VMSES/E, but some subcommands, QUERY in particular, are also very useful to
you, the systems programmer, in your daily work. VMFSIM subcommands are
listed in Table 8 on page 136, with a short description of their function. For the
complete command syntax, please refer to VM/ESA: VMSES/E Introduction and
Reference.

Table 7. Table Types and Files Used with VMFSIM

System-level Tables Service-level Tables Miscellaneous Files

SYSREQT SRVREQT $PPFTEMP
SYSDESCT SRVDESCT PPF
SYSRECS SRVRECS $PTFPART
SYSAPPS SRVAPPS PRODPART
SYSBLDS SRVBLDS PARTCAT
SYSABRVT VVTxxx SEGDATA

 Copyright IBM Corp. 1992, 1993, 1994 135

Table 8. VMFSIM Subcommands

Subcommand Description

INIT Updates a table with initial information for a product or PTF

COMPTBL Compares two tables of the same type and lists differences

CHKLVL Checks control/AUX structure for a module versus the Version
Vector table

GETLVL Returns the highest PTF level of a part

LOGMOD Adds, deletes, or updates local modification data in a table

MODIFY Adds, deletes, or updates specific data from the Software Inventory

QUERY Searches a table for specific tags and corresponding data

SYSDEP Searches a requisite table for all dependencies of a given product

SRVDEP Searches a requisite table for all dependencies of a given PTF

SYSREQ Searches a requisite table for all requisites for a given product

SRVREQ Searches a requisite table for all requisites for a given PTF

VMFSIM Queries
Before we show you some examples, let us look at the syntax of the VMFSIM
QUERY command, shown in Figure 57 on page 137, which we will explore here.
First you have to specify the file ID of the table you wish to query. Then you
specify “querydata,” that is, your question. This may be in several forms:

• The TDATA operand followed by a sequence of tags, with or without values.
You may specify many sets of TDATA and tags, each comprising a query.

• The keyword FILE and a file name (or file ID). This file contains the TDATA
tags with the same syntax as described above. You may also combine the
FILE parameter with TDATA tags information supplied in the command line.

• The keyword STEM and a stem name. Again, the stem variables contain
TDATA tag syntax.

• The keyword ASTEM and an associative stem name.

The output can be presented in the same four forms as the input:

• On the terminal

• In a file

• In a stem

• In an associative stem (ASTEM)

When using the FILE and STEM output options, if the output exceeds a screen
line it is split into several lines, as it would be when displayed on the terminal.

With the ASTEM output option, this does not happen. The ASTEM option
presents the output in a type of tree structure. In this case, you will have to
code some additional statements to get to the data you need, but then all the
data for one tag is contained in one single variable. The ASTEM structure is
described in VM/ESA: VMSES/E Introduction and Reference.

You may explore any of the tables listed in Table 7 on page 135, using VMFSIM.
Let us start out with SYSREQT, the system-level requisite table.

136 VMSES/E Primer

┌ ┐─*───────
��──VMFSIM──QUERY──tablefn──tableft─ ──┼ ┼───────── ─┤ Querydata ├─────────────────────────────�

└ ┘─tablefm─

┌ ┐─(───(2) ────────────────────
�─ ──┼ ┼───────────────────────── ──��

└ ┘─(───(3) ─┤ Options ├─ ──┬ ┬───
└ ┘─)─

Querydata:
├─ ──┬ ┬─── ───────────────────────┤

│ │┌ ┐─────────────────────────────
│ ││ │┌ ┐──────────────────
├ ┤───� ┴─TDATA─ ───� ┴──:tag ──┬ ┬────── ────────────────────────────────
│ │└ ┘─data─
│ │┌ ┐─SIMDATA──*─
└ ┘──(1)──┬ ┬─FILE──fn─ ──┼ ┼──────────── ──┬ ┬───────────────────────────
│ ││ │┌ ┐─*── │ │┌ ┐──────────────────
│ │└ ┘─ft─ ──┼ ┼──── └ ┘─TDATA─ ───� ┴──:tag ──┬ ┬──────
│ │└ ┘─fm─ └ ┘─data─
├ ┤─STEM──stemid─────────────
└ ┘─ASTEM──astemid───────────

Options:
┌ ┐─LOG──NONE── ┌ ┐─LOGLVL───(4) ─I── ┌ ┐─TYPE───────────

├─ ──┼ ┼──────────── ──┼ ┼────────────── ──┬ ┬───────────── ──┼ ┼──────────────── ───────────────────┤
└ ┘─LOG──logid─ └ ┘─LOGLVL──mlvl─ └ ┘─TBLTYPE──ft─ ├ ┤─FILE──fn───────

├ ┤─STEM──stemid───
└ ┘─ASTEM──astemid─

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.

2 The defaults you receive appear above the line in the Options fragment.

3 You can enter options in any order between the parentheses.

4 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Figure 57. VMFSIM QUERY Command Syntax

Displaying Table Fields (Tags)
To see the valid (defined) tags for a table, specify only the file ID for the table:

vmfsim query vm sysreqt

The reply will look like:

:PRODID - PRODUCT REQUISITE TABLE (KEY)
:PREREQ - PRE-REQUISITE PRODUCT(S) (FIELD)
:REQ - CO-REQUISITE PRODUCT(S) (FIELD)
:DREQ - CO-REQUISITE PRODUCT(S) (FIELD)
:IFREQ - IF-REQUISITE PRODUCT(S) (FIELD)
:SUP - SUPERSEDED PRODUCT(S) (FIELD)
:NPRE - NON-COMPATIBLE PRODUCT(S) (FIELD)

and describes the meaning of each tag field in the table.

Chapter 7. Exploring the Software Inventory 137

As you may remember from Chapter 3, “Software Inventory” on page 37, each
table has one type of data structure, with one key field, and several data fields.
The above example illustrates this. Look at the field classifications at the end of
each line.

But this structure also has another implication. When you query the Software
Inventory tables with the VMFSIM command, you will always get the key field
and at least one sub-field. In fact, if you specify only the key tag, you will get the
entire structure. If you specify one or more field tags, you will get the key data
and the data for the listed fields.

There is no way you can get only one type of tag field as a reply.

Displaying Field Values
Now we can go one step further, and look at all existing values of one tag. This
is done by just listing the tag without a value, as shown below:

vmfsim query vm sysreqt tdata :prodid :req

The reply lists all occurrences of the :PRODID tag, and the underlaying tag :REQ.
This is done here to limit the amount of output, as described above.

| VMFSIP2480I Results for
| TDATA :PRODID :REQ
| :PRODID 6VMVMK22%VMSES
| :REQ
| :PRODID 6VMVMB22%CP
| :REQ
| :PRODID 6VMVMI22%DV
| :REQ
| :PRODID 6VMVMA22%CMS
| :REQ
| :PRODID 6VMVMF22%REXX
| :REQ
| :PRODID 6VMVML22%GCS
| :REQ
| :PRODID 6VMVMH22%TSAF
| :REQ
| :PRODID 6VMVMD22%AVS
| :REQ

Displaying Component Information
To look up all the information for one component (CMS, in the example) enter:

vmfsim query vm sysreqt tdata :prodid cms

The results are as follows:

| :PRODID 6VMVMA22%CMS
| :PREREQ 6VMVMK22
| :REQ
| :DREQ 6VMVMF22
| :IFREQ
| :SUP 6VMVMA11 6VMVMA20 6VMVMA21
| :NPRE

The meaning of the tags is described in “Definitions and Terms” on page 10.

138 VMSES/E Primer

Displaying Selected Fields
The next example shows usage of the service-level Software Inventory. We want
to know which PTFs have been applied to the CP component. We issue the
command:

vmfsim query 6vmvmb11 srvapps * tdata :ptf :stat applied

The output from the query is as follows:

VMFSIP2480I Results for
TDATA :PTF :STAT APPLIED

:PTF UM18657
:STAT APPLIED.12/18/92.13:36:11.MAINT

:PTF UM18667
:STAT APPLIED.12/18/92.13:36:11.MAINT

:PTF UM18681
:STAT APPLIED.12/18/92.13:36:11.MAINT

:PTF UM18690
:STAT APPLIED.12/18/92.13:36:11.MAINT

This example, as well as the previous one, illustrates how flexible the search for
matching tag values is. Note that the value of :STATUS is composed of tokens
separated by the “.” character, and compare the value of the :PRODID tag, in the
previous example, to the search value given. The tokens can also be separated
by blanks, so if you issue the command:

| vmfsim query 6vmvma22 srvdesct tdata :abstract program exception

you will get a list all CMS APARs in whose description both the words
“program” and “exception” appear. This is quite powerful.

Combining Table Information
Assume we want to know the apply status of the received APARs. This is a
more complex query, which shows an advanced function of the VMFSIM
command, namely the ability to process a query in two steps.

The information is not directly available. The service-level Apply Status table
(SRVAPPS table) contains status information about PTFs, not APARs. First, we
have to find the connection between the APAR number and the PTF number.
This information is found in the service-level requisite table (SRVREQT table).
We start by asking for the APAR numbers, with accompanying PTF numbers:

vmfsim query 6vmvmb11 srvreqt tdata :aparnum (file temp

This creates a file called TEMP SIMDATA. This file is in a format that can be
used directly for input to the VMFSIM QUERY command. Figure 58 shows an
excerpt from the TEMP SIMDATA file.

TDATA
:PTF UM18650

:APARNUM VM48164
TDATA
:PTF UM18651

:APARNUM VM48165

Figure 58. TEMP SIMDATA File (Excerpt)

Chapter 7. Exploring the Software Inventory 139

Here, all lines starting with TDATA, up to the next TDATA (or end-of-file) are
concatenated and used as TDATA input for VMFSIM. So, next we issue the
command:

vmfsim query 6vmvmb11 srvapps file temp

This command provides the following (abbreviated) output:

VMFSIP2480I Results for
TDATA :PTF UM18650 :APARNUM VM48164

:PTF UM18650
:STAT SUPED.12/18/92.13:36:11.MAINT

VMFSIP2480I Results for
TDATA :PTF UM18651 :APARNUM VM48165

:PTF UM18651
:STAT SUPED.12/18/92.13:36:11.MAINT

The real information is in message VMFSIP2480I, which lists the APAR number,
followed by the corresponding PTF number and its status.

The last example shows that you should take some care when combining tables.
The VMFSIP2446I message tells you that not all tags on the TDATA statement
are defined in the SRVAPPS table. To combine tables, they must have at least
one field in common. Table 1 on page 41 and Table 2 on page 42 show the
field contents in the system-level Software Inventory and service-level Software
Inventory tables respectively, and can be used as guidance when you want to
combine tables.

If you do not want to see the VMF messages, you may issue the command:

cp set emsg off

Other Queries
Not all the queries you may want to make can be made using the basic VMFSIM
command syntax. The main reason is that, even if you ask for output to a file, or
a REXX variable stem, the output will not always be in a format that can serve as
input to VMFSIM. This occurs, for instance, when a field has a composite value
(contains more than one token). Then VMFSIM would not, in most cases, find
any match. Let us look at an example.

We want to find the description of all the APARs in a given PTF. The APAR
descriptions are in the SRVDESCT table, and the information linking the PTF and
APAR numbers is found in the SRVREQT table.

So, first we have to look in the SRVREQT table to get the APAR numbers. We
can issue the command:

vmfsim query 6vmvmb11 srvreqt * tdata :ptf ptfnum :aparnum (file temp

This produces the output file TEMP SIMDATA, which we will feed into the next
query against the SRVDESCT table, to get the APAR descriptions. We can issue
the command:

vmfsim query 6vmvmb11 srvdesct * file temp

Figure 59 on page 141 shows the results of the query when there is only one
APAR in the PTF. After some messages about unknown fields, VMFSIM
produces the description we asked for.

140 VMSES/E Primer

VMFSIP2480I Results for
TDATA :PTF UM18652 :APARNUM VM48166

:APARNUM VM48166
:ABSTRACT USER WITH CLASS D AND G AUTHORITY CANNOT PURGE

ANOTHER USER′ S TRF FILES

Figure 59. Result of VMFSIM Query with One APAR for Given PTF

Figure 60 shows the results of repeating the two queries for a PTF containing
two APARs.

VMFSIP2481W NO entries match search arguments
TDATA :PTF UM18777 :APARNUM VM48192 VM48191
in table 6VMVMB11 SRVDESCT J1

Figure 60. Result of VMFSIM Query with Two APARs for Given PTF

Here, there are the same messages about unknown fields, but no match at the
end, because there is no entry that contains two APAR numbers.

In order to solve this kind of query, we have to write some code of our own to
manipulate the input and output to VMFSIM.

CMS Pipelines is a very attractive facility of CMS, hence we will use it in the
example below. For more information see “CMS Pipelines Introduction” on
page 225.

Let us look at the example in Figure 61.

/* */

Parse Arg ptfno
cp_prodid = ′ 6VMVMB22′

...
′ VMFSIM QUERY′ cp_prodid ′ SRVREQT * TDATA :PTF′ ptfno ′ : APARNUM (STEM TEMP.′

′ PIPE Stem temp.′ , /* pick up output from VMFSIM */
′ | Strip′ , /* remove leading and trailing blanks */
′ | Find :APARNUM′ , /* find all lines starting with :APARNUM */
′ | Spec Word 2-* 1′ , /* remove first word (:APARNUM) */
′ | Split′ , /* split so that one APAR number per line */
′ | Spec ,TDATA :APARNUM ,′ , / * insert ′ TDATA :APARNUM ′ at */

′1 1-* Next′ , /* at the beginning of each line */
′ | Stem ntemp.′ /* save in stem ntemp. */

′ VMFSIM QUERY′ cp_prodid ′ SRVDESCT * STEM NTEMP.′
...

Figure 61. Part of EXEC Using CMS Pipelines to Process VMFSIM Output

This example basically splits the APAR numbers on the :APARNUM tag into
separate lines containing: TDATA :APARNUM ptfno, which can be fed into
VMFSIM QUERY.

Now let us look at the output, shown in Figure 62 on page 142.

Chapter 7. Exploring the Software Inventory 141

VMFSIP2480I Results for
TDATA :APARNUM VM48192

:APARNUM VM48192
:ABSTRACT MSHCPXLF2880E ERROR CODE 5 H/W I/O ERROR HARDWARE HCPXLF

VMFSIP2480I Results for
TDATA :APARNUM VM48191

:APARNUM VM48191
:ABSTRACT HCPERM_BM, REG 9 ABOVE SYSTEM STORAGE. ABENDPRG005

Figure 62. Output of EXEC Using CMS Pipelines to Process VMFSIM Output

This example is simplified. If there are many APARs, the output lines from
VMFSIM may spill, and there must be some special logic to handle those cases.

It may, in this case, be just as easy to do the processing using only the REXX
language. But we want to introduce you to the power of CMS Pipelines.

VMFSIM Output Processing Tool
Appendix D, “VMFSIM Exploitation Code Examples” on page 225 contains a
REXX EXEC that can be used to solve the spill problem discussed above (see
“VMFSIM Output Processor” on page 227). The command is called PSIMOUT
and its syntax is listed in the Appendix.

The PSIMOUT EXEC allows you to reformat the output from VMFSIM (with
multiple values), in a way that is understandable input to the next VMFSIM
command. It also allows you to extract only the lines that you want to see from
the VMFSIM output.

VMFQOBJ EXEC
As we have seen, VMFSIM does not support build lists because build lists do not
belong to the Software Inventory. However, information on objects is often
required. To solve this problem VMSES/E introduced a new function in VM/ESA
Release 2: VMFQOBJ.

Overview
This command returns a wealth of information on build list defined objects. It
can be used, for instance, to identify the parts that are included in an object, or
what objects must be rebuilt if a certain part is changed.

VMFQOBJ also extracts information from the service-level build status table and
the product′s PPF, in order to present a complete set of information on the
object. The following information can be obtained:

• Status

• Build requisites and dependencies

• Serviceable parts included in an object

• Part options

• Object parameters

142 VMSES/E Primer

• Build list options

• Part handler and target disk

• Required GLOBALs

Figure 63 shows the syntax of the VMFQOBJ command.

┌ ┐─────────────────────────────
│ │┌ ┐──────────────────

��──VMFQOBJ──ppfname──compname─ ──┬ ┬───� ┴─TDATA─ ───� ┴─:tag─ ──┬ ┬────── ──────────────────────────�
│ │└ ┘─data─
├ ┤─STEM──stemid──────────────────
│ │┌ ┐─OBJDATA──*─
└ ┘─FILE──fn─ ──┼ ┼──────────── ─────

│ │┌ ┐─*──
└ ┘─ft─ ──┼ ┼────

└ ┘─fm─

┌ ┐─(──TYPE─────────────────────────────────
�─ ──┼ ┼─── ──��

│ │┌ ┐─TYPE─────────
└ ┘─(─ ──┬ ┬───────── ──┼ ┼────────────── ──┬ ┬───

├ ┤─SETup─── ├ ┤─STEM──stemid─ └ ┘─)─
└ ┘─NOSetup─ └ ┘─FILE──fn─────

Figure 63. VMFQOBJ Command Syntax

Using VMFQOBJ
When using VMFQOBJ you must know whether you are searching for a part or
an object, and the part (or object) file type. Otherwise, the answer might not be
what you expect.

We give below several examples of using VMFQOBJ.

1 - Finding the Status and Requirements of a Part
The command:

vmfqobj esa cms tdata :part sendfile exc :stat :bldreq :blddep

may result in:

VMFQOB1851I Reading build lists
VMFUTL2480I Results for

TDATA :PART SENDFILE EXC :STAT :BLDREQ :BLDDEP
:OBJECT DMSBL490.SENDFILE.EXEC

:STAT BUILT
:PARTID

:BLDREQ
:BLDDEP
:PART SENDFILE EXC

:PARTOPT

Chapter 7. Exploring the Software Inventory 143

2 - Finding the Objects Impacted by a Part Change
Let us suppose that we will alter the part HCPDDR with a local update. To
properly plan this action, we should find out which objects have to be rebuilt
after HCPDDR is altered. Entering the command:

vmfqobj esa cp tdata :part hcpddr txt

results in:

VMFQOB1851I Reading build lists
VMFUTL2480I Results for

TDATA :PART HCPDDR TXT
:OBJECT HCPBLUTL.IPL.DDRXA

:PART HCPDDR TXT
:PARTOPT

:PART HCPDNC TXT
:PARTOPT

:PART HCPDDC TXT
:PARTOPT

:PART HCPDNT TXT
:PARTOPT

:PART HCPDDT TXT
:PARTOPT

:OBJECT HCPMLOAD.DDR.MODULE
:PART HCPDDR TXT

:PARTOPT ORIGIN 20000 NOMAP NOUNDEF CLEAR
:PART HCPDNC TXT

:PARTOPT SAME
:PART HCPDDC TXT

:PARTOPT SAME
:PART HCPDNT TXT

:PARTOPT SAME
:PART HCPDDT TXT

:PARTOPT UNDEF SAME

Notice that we gave the part name and type. Omitting the type would have
resulted in a lengthy list of unrelated objects.

Two objects, the stand-alone IPL DDRXA and the CMS command DDR, include
the HCPDDR part. In addition to the object name, the build list name is also
given. This is required if you want the VMFBLD command to build just those two
objects.

3 - Finding All the Characteristics of an Object
To find everything necessary to build object DMSSAA we issued the following
command:

vmfqobj esa cms tdata :object dmssaa

And the response was:

VMFQOB1851I Reading build lists
VMFUTL2480I Results for

TDATA :OBJECT DMSSAA
:OBJECT CMSSAA.DMSSAA

:STAT BUILT
:PARTID

:LIBNAME CMSSAA
:BLDREQ
:BLDDEP

144 VMSES/E Primer

:GLOBAL
:PARTHAND VMFBDTLB
:TARGET BUILD7
:BLOPT
:OBJPARM
:PART DMSSAA TXT

:PARTOPT
:OBJECT DMSBLVML.DMSSAA.TEXT

:STAT BUILT
:PARTID

:LIBNAME
:BLDREQ
:BLDDEP DMSSBVML.CMSVMLIB.SEGMENT
:GLOBAL
:PARTHAND VMFBDCOM
:TARGET BUILD7
:BLOPT
:OBJPARM
:PART DMSSAA TXT

:PARTOPT

The answer shows that there are two objects (of different types) named
DMSSAA. The first object, CMSSAA TXTLIB, includes the DMSSAA TXT part.
The second object, DMSSAA TEXT, is the usable form of the DMSSAA TXT part.

VMFINFO Command
The new VMFINFO command is a panel-driven front-end to the VMFQOBJ
command and to the QUERY, GETLVL, COMPTBL, SYSDEP, SRVDEP, SYSREQ,
and SRVREQ subcommands of VMFSIM.

Using VMFINFO, you do not have to remember the complex command syntax
and the names of the files.

VMFINFO is task oriented, has a predefined set of queries, and allows you to
save the responses. The VMFINFO panels conform to the Common User Access*
(CUA*) architecture. It also provides a context-sensitive help. The syntax of the
VMFINFO command is shown in Figure 64.

┌ ┐─(──NOSetup────────────
��──VMFINFO─ ──┬ ┬─────────────────────── ──┼ ┼─────────────────────── ─────────────────────────��

└ ┘─ppfname─ ──┬ ┬────────── │ │┌ ┐─NOSetup─
└ ┘─compname─ └ ┘─(─ ──┼ ┼───────── ──┬ ┬───

└ ┘─SETup─── └ ┘─)─

Figure 64. VMFINFO Command Syntax

The best way to explain this command is with an example.

Chapter 7. Exploring the Software Inventory 145

VMFINFO PPF and Component Name Selection Panels
Entering:

vmfinfo

on the command line will invoke the PPF Fileid Help panel shown in Figure 65.
In VM/ESA: VMSES/E Introduction and Reference the panels are referred to as
help panels, because they can be invoked by pressing the Help (PF1) key.
However, they truly are selection panels, because not only do they provide
explanations, they also allow you to select products or components to work with.

� �
PPF Fileid - Help

 Product parameter files (PPFs) define the environment and key variables
 required to process the queries. The following is a list of all PPFs
 found on all accessed disks. Select one to continue. The View function
 can be used to examine one or more PPFs.

 Type a ″V″ next to one or more PPFs to view their contents, or type an
″S″ next to one PPF to select.

Options: S - select V - view

 Option PPF Fileid
CUFINS PPF D1

S ESA PPF D2
SEGBLD PPF D1
UCENG PPF D1

Command ===>
 PF1 = Help PF3 = Exit PF12 = Cancel� �

Figure 65. VMFINFO PPF Fileid Help Panel

Because VMFINFO is product oriented, you must select a product to work with.
Therefore, VMFINFO displays a list of the PPFs found on all accessed disks and
waits for your selection.

Next, it accesses the PPF and displays a list of components, as shown in
Figure 66 on page 147.

146 VMSES/E Primer

| �| �
| Component Name - Help

| Product parameter files (PPFs) can contain one or more component names,
| each specifying different environments and key variables. The following
| is a list of component names within the PPF selected. Select one to
| continue.

| Type an ″S″ next to one component name; then press enter.

| Option Component Name/Description
| VMSES - 6VMVMK22
| DV - 6VMVMI22
| S CMS - 6VMVMA22
| REXX - 6VMVMF22
| GCS - 6VMVML22
| TSAF - 6VMVMH22
| AVS - 6VMVMD22
| GCSSFS - 6VMVML22
| TSAFSFS - 6VMVMH22
| AVSSFS - 6VMVMD22
| CP - 6VMVMB22

| Command ===>
| PF1 = Help PF3 = Exit PF12 = Cancel
| �| �
| Figure 66. VMFINFO Component Name Help Panel

Again, you must make a selection.

Next, VMFINFO displays its main panel, discussed below.

Notes:

• While PF12 cancels the current function, returning to the previous one, PF3
ends the VMFINFO command. This behavior, consistent with the CUA rules,
differs from other CMS commands.

| • If only one PPF file is found, or the PPF contains only a single component,
| then that PPF file is automatically selected and the help panel is not

displayed.

• If the number of PPFs in the list exceeds the number of lines on the screen,
the screen′s will include the following:

− A “More + -” indicator.

− On the last line, the definitions “PF7=Bkwd PF8=Fwd” indicate that
the list can be scrolled.

VMFINFO Main Panel
If you know the PPF and component names you can bypass the two preceding
panels by entering (in the example CMS is used):

vmfinfo esa cms

VMFINFO directly displays the Main panel, shown in Figure 67 on page 148.

If you only know the PPF name you can enter it, and VMFINFO presents the
Component Name - Help panel.

Chapter 7. Exploring the Software Inventory 147

| �| �
| VMFINFO Main Panel

| Select one of the following. Then press enter.
| PPF fileid ESA PPF D
| Component name .. CMS Setup ... NO
| Product ID: 6VMVMA22 System .. VM

| Options: S - select
| Option Query
| Product description
| Product status
| Product requisites
| Product dependencies
| S PTFs/APARs
| Serviceable parts/usable forms
| Miscellaneous

| Command ===>
| PF1 = Help PF3 = Exit PF12 = Cancel
| �| �
| Figure 67. VMFINFO Main Panel

You can ask VMFINFO to automatically access the product′s disks when it is
invoked, or from the panel: just type YES in the “Setup” field.

You can also change the product you are working with by over-typing the
information on the “Component name” or “PPF fileid” fields, as appropriate.

Notice the first four options allow you to work with the system-level Software
Inventory.

VMFINFO PTF/APAR Queries Panel
In this example, we are seeking service information, so PTFs/APARs is selected.

The PTF/APAR Queries panel lists several types of information you can obtain
about a specific PTF or APAR. You have to specify either the PTF or the APAR
number. You can obtain a list of valid PTF or APAR numbers by placing the
cursor on the appropriate field and pressing the PF1 key. The example shown in
Figure 68 on page 149 selects the serviceable parts of a PTF.

148 VMSES/E Primer

| �| �
| PTF/APAR Queries

| Enter a PTF or APAR number and type an option code. Then press Enter.
| PPF fileid ESA PPF D
| Component name .. CMS Setup ... YES
| Product ID: 6VMVMA22 System .. VM
| PTF number UM98765
| APAR number

| Options: S - select
| Option Query
| Status of PTF
| Requisites/supersedes of PTF
| Dependencies/superseding of PTF
| User memo of PTF
| S Serviceable parts included by PTF

| Abstract of APAR(s)

| Command ===>
| PF1 = Help PF3 = Exit PF12 = Cancel
| �| �
| Figure 68. VMFINFO PTF/APAR Queries Panel

Figure 69 shows the Query Output - PTF Serviceable Parts panel. Notice the
PF5 = File option. It allows you to save the results of your query.

| �| �
| Query Output - PTF Serviceable Parts

| PPF fileid: ESA PPF D
| Component name .: CMS Setup ..: NO
Product ID: 6VMVMA22 System .: VM
PTF: UM98765

DMSABC ASSEMBLE
DMSXYZ ASSEMBLE
DMSABCDE MACRO

| Command ===>
| PF1 = Help PF3 = Exit PF5 = File PF12 = Cancel
| �| �
| Figure 69. VMFINFO PTF/APAR Query Output Panel

Chapter 7. Exploring the Software Inventory 149

How to Answer Your Top Ten Questions
In “Introduction” on page 37, there is a list of some important questions you
might like to have the answer to. This section illustrates using the VMFSIM
command to provide an answer to those questions. Whenever possible, an
alternate method using the VMFINFO command is also presented.

First, a general remark: some VMFSIM information messages sometimes distort
the output picture. Therefore, in the examples below, we disabled these
messages by issuing the command:

cp set emsg off

If we did not, we would have received the normal information message:

VMFSIP2480I Results for
TDATA :STAT :PRODID

When you have more complicated queries, you may wish to run with EMSG ON,
and selectively disable the messages; or you can use the FILE option, which
directs the output to disk, while the messages appear on the screen. This
approach, however, produces a TDATA line in front of every data line.

1 - List Products Installed on the System
The Receive Status table of the system-level Software Inventory contains a list of
all the products you have ever installed on your system, even those that were
later deleted. To list all products that have been installed on your system, enter:

vmfsim query vm sysrecs * tdata :stat :prodid

Part of the reply looks like this:

| :PPF ESAINS VMSES
| :PRODID 6VMVMK22
| :STAT RECEIVED.12/22/93.16:55:02.MAINT.200-0000
| :PPF ESAINS CP
| :PRODID 6VMVMB22
| :STAT RECEIVED.12/22/93.17:28:06.MAINT.200-0000
| :PPF CUFINS CUF
| :PRODID 6VMVME11
| :STAT RECEIVED.12/05/93.13:17:44.MAINT.910-9101
| :PPF MYCUF CUF
| :PRODID 6VMVME11
| :STAT DELETED.09/16/91.15:28:47.MAINT
| :PPF 5748RC1 NONE
| :PRODID 5748RC1
| :STAT RECEIVED.03/22/91.12:08:11.MAINT
| :PPF ESAINS TSAF
| :PRODID 6VMVMH22
| :STAT DELETED.12/27/93.11:33:22.MAINT

We see some components have been deleted. To see only the active
components, specify :STAT RECEIVED on the query.

Using VMFINFO, you can get a list of PPFs on the system, (PPF Help panel),
hence you can find the installed products. To see the status of a component,
first select a PPF, then select a component, and on the VMFINFO Main Panel
(see Figure 67 on page 148) select the “Product Status” option.

150 VMSES/E Primer

2 - List Prerequisites for a Component
We are still using the system-level Software Inventory, this time the Requisites
table. The following command will list the prerequisites for CP:

vmfsim query vm sysreqt tdata :prodid cp

The response is as follows:

| :PRODID 6VMVMB22%CP
| :PREREQ 6VMVMK22
| :REQ
| :DREQ
| :IFREQ
| :SUP 6VMVMB11 6VMVMB20 6VMVMB21
| :NPRE

This command lists all requisite information for CP. If you want to see only the
real prerequisite information, add :PREREQ to the query above.

You can also use VMFINFO, and on the Main Panel select the Product Requisites
option.

3 - List the PTFs Applied to a Component
The apply information is found in the service-level Software Inventory, in the
Apply Status table (SRVAPPS). The following command lists all PTFs applied to
CP (the value of :STAT is APPLIED):

vmfsim query 6vmvmb11 srvapps tdata :ptf :stat applied

The answer may appear as follows:

:PTF UM18657
:STAT APPLIED.09/18/91.13:36:11.MAINT

:PTF UM18667
:STAT APPLIED.09/18/91.13:36:11.MAINT

:PTF UM18681
:STAT APPLIED.09/18/91.13:36:11.MAINT

:PTF UM18690
:STAT APPLIED.09/18/91.13:36:11.MAINT

:PTF UM18695
:STAT APPLIED.09/18/91.13:36:11.MAINT

:PTF UM18696
:STAT APPLIED.09/18/91.13:36:11.MAINT

:PTF UM18699
:STAT APPLIED.09/18/91.13:36:11.MAINT

With VMFINFO you can also find about PTFs and APARs:

 1. On the Main Panel select PTFs/APARs.

 2. On the PTF/APARs Queries panel enter a PTF or APAR number and select
Status of PTF.

You can also obtain a list of APARs (or PTFs) by placing the cursor on the APAR
(or PTF) field and invoking the Help function.

Chapter 7. Exploring the Software Inventory 151

4 - List APARS for a PTF
This type of information is found in the service-level Requisite table (SRVREQT).
It contains requisite information for the PTFs and the APAR numbers that
constitute that PTF. The following command will do the job:

vmfsim query 6vmvmb11 srvreqt tdata :ptf um18699 :aparnum

The response will look like this:

:PTF UM18699
:APARNUM VM48180 VM48178 VM48175 VM48174 VM48173 VM48171 VM48170 VM48169

VM48030 VM48028 VM48024 VM48023 VM48022

As we see, this is a huge PTF. Therefore, let us take a closer look at all the
information about this PTF. We issue the command:

vmfsim query 6vmvmb11 srvreqt tdata :ptf um18699

The answer will look like this:

:PTF UM18699
:APARNUM VM48180 VM48178 VM48175 VM48174 VM48173 VM48171 VM48170 VM48169

VM48030 VM48028 VM48024 VM48023 VM48022
:PREREQ UM18657 UM18681 UM18690 UM18696
:COREQ
:IFREQ
:SUP UM18698 UM18693 UM18691 UM18686 UM18682 UM18680 UM18679 UM18674

UM18673 UM18671 UM18669 UM18666
:HARDREQ VM48020 VM48178 VM48176 VM48029 VM48028 VM48023

This PTF is a very central one. It supersedes many previous PTFs, and also lists
:HARDREQ APARs. Our PTF is physically dependent on the PTFs containing
those APARs, because they update the same area of the code.

Notice that APARs VM48178, VM48028, and VM48023 are listed both as included
in the PTF and as a HARDREQ. This can happen because a superseding PTF
has to include in its requisites all the requisites of the superseded PTFs.

Using VMFINFO follow these steps:

 1. On the Main Panel select PTFs/APARs.

 2. On the PTF/APAR Queries panel enter the PTF number and select Abstracts
of APAR(s).

Note that using the same Queries panel you can also obtain information on
requisite and superseding PTFs.

5 - List Status of an APAR
This is a composite query. The status information is in the Apply Status
(SRVAPPS) table, which uses PTF numbers as a key. The link between PTF
number and APAR number is found in the SRVREQT table, as we have seen.

Hence, we first look up the corresponding PTF number in the Requisite
(SRVREQT) table, save the results in a file, and use that as input to the query to
the SRVAPPS table, to get the status. The command sequence is:

vmfsim query 6vmvmb11 srvreqt tdata :ptf :aparnum vm48180 (file temp
vmfsim query 6vmvmb11 srvapps file temp

The output from the last command may look like this:

152 VMSES/E Primer

:PTF UM18698
:STAT SUPED.09/18/91.13:36:11.MAINT

:PTF UM18699
:STAT APPLIED.09/18/91.13:36:11.MAINT

This is an interesting example. The given APAR, VM48180, is part of two PTFs.
The reason is, as we see, that the last PTF has superseded the first. So, there is
only one “active” PTF with the given APAR in it.

As EMSG was turned off, the reply does not show the tag values for the second
query. This is one of the cases where you would have seen several information
messages telling you that :APARNUM is not a field of the SRVREQT table.

VMFINFO helps you to find the status of a given APAR and the PTF it is part of:

 1. On the Main Panel select PTFs/APARs.

 2. On the PTF/APAR Queries panel enter the PTF number and select Status of
PTF.

Please note that VMFINFO does not have generic search capabilities; for
example, using VMFSIM you can ask “Which APARs are related to this device
type?,” but the same is not true for VMFINFO.

These queries tell you that the PTF exists and has been applied but is it in
production, that is, have the objects affected by this PTF been rebuilt? See
“Finding the Status of an APAR or PTF” on page 230 for an example of an EXEC
that gives a detailed answer to that question.

6 - List the PTFs that Depend on a Given PTF
Here we use the VMFSIM SRVDEP subcommand. In our example, it will use the
information in the SRVREQT and the SRVAPPS tables to locate all the dependent
PTFs. This may be an iterative task, because dependent PTFs may themselves
have dependent PTFs, and so on. The command is:

vmfsim srvdep 6vmvmb11 srvreqt * = srvapps * tdata :ptf um18699

The result looks like this:

:PTF UM18699
:DEPS UM18719 UM18730 UM18755 UM18756 UM18774 UM18775 UM18777 UM18778

UM18779 UM18780 UM18701 UM18702 UM18703 UM18717 UM18718
:OUTREQS * NONE *

These PTFs are, in fact, the ones you would have to remove if you wanted to
remove the original PTF.

Only PTFs with status APPLIED are considered. PTFs with status REMOVED or
SUPED are ignored.

Using VMFINFO, you can find the answer by following these steps:

 1. On the Main Panel select PTFs/APARs.

 2. On the PTF/APAR Queries panel enter the PTF number and select
Dependencies/superseding of PTF.

Chapter 7. Exploring the Software Inventory 153

7 - List Parts Serviced by a PTF
Now we want to know which parts are affected by a PTF. This information is in
the Version Vector table. The Version Vector table contains information about all
parts that have been serviced, and which PTFs were involved. So, to complete
this task, we will issue the following command:

vmfsim query 6vmvmb11 vvtvm * tdata :ptf um18699

The result may look like the following:

:PART HCPUDV TXT
:PTF UM18755.VM48189.R48189HP UM18699.VM48030.R48030HP

:PART HCPMDLAT MACRO
:PTF UM18699.VM48030.R48030HP

:PART HCPXLF TXT
:PTF UM18777.VM48192.R48192HP UM18776.VM48191.R48191HP

UM18699.VM48030.R48030HP UM18657.VM48020.R48020HP

As you see, there are three types of information for each PTF:

• The PTF number

• The APAR number

• The file type of the Update file

The file type is present only if the part is source maintained.

VMFINFO displays information about the parts serviced by a PTF:

 1. On the Main Panel select PTFs/APARs.

 2. On the PTF/APAR Queries panel enter the APAR or PTF number and select
PTF Serviceable Parts included by PTF.

Note that VMFINFO will not generate a list of all the PTFs for a part. You have to
enter each PTF by hand.

8 - List Service Applied to a Part
This example illustrates another usage of the Version Vector table. This time we
will use it the other way around: We will search for a specific part. The
command is:

vmfsim query 6vmvmb11 vvtvm * tdata :part hcpxtc

The output is of the same type as for the previous query:

:PART HCPXTC TXT
:MOD
:PTF UM18779.VM48194.R48194HP UM18699.VM48030.R48030HP

UM18657.VM48020.R48020HP

We conclude that the part HCPXTC ASSEMBLE has been serviced three times,
and the most recent PTF is listed first.

VMFINFO can show you the same information:

 1. On the Main Panel select Serviceable parts/usable forms.

 2. On the Serviceable Parts/Usable Forms Queries panel enter the part ′s name
and select Service history of part(s).

154 VMSES/E Primer

9 - List Parts that Must be Rebuilt after Service
As explained in “How Build Works” on page 110, VMFBLD will, during the
STATUS part processing, flag on the service-level Build Status table all objects
that have to be built, based on the entries found in the Select Data file.

To see the information, issue the command:

vmfsim query 6vmvmb11 srvblds * tdata :stat serviced

The result may look like the following:

:BLDLIST CPLOAD
:OBJECT BLDLIST
:STAT SERVICED.02/21/93.15:33:11.MAINT

:BLDLIST HCPBLUTL
:OBJECT 3CARD
:STAT SERVICED.02/11/93.12:10:14.MAINT

:BLDLIST HCPOM1
:OBJECT BLDLIST
:STAT SERVICED.02/18/93.14:54:46.MAINT

Note that the :OBJECT tag lists the name of the object to be built. In some
entries, the tag value is the keyword BLDLIST. Those entries result from two
situations:

• The corresponding build list is a Format 1 build list, which defines a single
object, and does not contain any tags.

• This is a global entry for the build list that signals the overall status of all the
objects in the build list.

For further information about build lists, please refer to “Build Lists” on page 54.

Using VMFINFO:

 1. On the Main Panel select Miscellaneous.

 2. On the Miscellaneous Queries panel select Build requirements.

10 - List Service Impact of Backing Out a PTF
We touched on this in a previous example, see “6 - List the PTFs that Depend on
a Given PTF” on page 153. There we got the PTF numbers. Now let us go one
step further. We will also list the corresponding APARs and their description, so
you can better evaluate the consequences of removing the PTF.

To obtain this information, we use the sample PTFREMOV EXEC listed in “Impact
of Backing Out a PTF” on page 226.

We issue the command:

ptfremov esa cp um18699

And the output appears as:

Getting dependent PTFs...
Looking for corresponding APAR numbers
Looking for APAR descriptions
To back out PTF UM18699 : 16 PTFs (29 APARs) must be backed out:
For details, see file UM18699 $BACKOUT A

The listed file, UM18699 $BACKOUT, contains the PTF and APAR numbers, and
the APAR description for each APAR.

Chapter 7. Exploring the Software Inventory 155

Further Examples
Other examples, also using CMS Pipelines, of Software Inventory exploitation are
given in Appendix D, “VMFSIM Exploitation Code Examples” on page 225.

Creating a list of what replacement parts can be safely erased is covered in
“Erasable Parts for Committed PTFs” on page 228, and “Finding the Status of an
APAR or PTF” on page 230 contains an example of how to use the Software
Inventory to find out if a given APAR has been applied and is currently in
production.

In the examples above, we have touched most of the tables in the service-level
Software Inventory and some of the tables in the system-level Software
Inventory.

For further information refer to VM/ESA: Service Guide.

156 VMSES/E Primer

Chapter 8. Saved Segment Experiences

This chapter describes our experiences when applying service to saved
segments, and the results of several experiments we conducted to test some of
the capabilities of saved segments management.

For an overview of this VMSES/E capability, introduced in Release 2, see
“Overview” on page 65.

Before we can describe our experiences we have to expand the description
given in “Product-Level View” on page 76. First we will examine more closely
the Software Inventory tables and files, as well as other auxiliary control files
that are part of saved segments support. Next, we will better detail the build
process.

| Note: The information on this chapter does not apply to a VM/ESA Release 1.5
| 370 Feature system.

Software Inventory and Other Files
As explained before, segment planning cannot be done from the product level.
Actually, all segment manipulations should be done from a system perspective,
therefore requiring for these objects the following system-level (and other) files:

• prodid PRODPART

Provides default segment information.

• System-level Product Parameter File

Allows management of system-level objects.

• System-level Segment Build List (EXC00000)

Used in conjunction with the SEGDATA file. Points to product-level segment
build lists.

| • System-level Segment Delete List (DEL00000)

| Used in conjunction with the SEGDATA file and the EXC0000 file. Contains
| information on segments to be deleted.

• Segment Data file (SEGDATA)

Holds customized segment information.

• System-level Service Build Status table (SRVBLDS)

Holds build status information on system objects.

• System-level Select Data files (SEGBLD $SELECT and VMSBR $SELECT)

Links together segment planing, product servicing, and system-level segment
building. Prior to Release 2.2, this was only the VMSBR $SELECT.

• VMSESE PROFILE

Holds a pointer to the VMSBR $SELECT file.

 Copyright IBM Corp. 1992, 1993, 1994 157

Product Parts File
The PRODPART file has a section that contains the default saved segments
information for the product. This was described in “Saved Segment Definitions
Section” on page 58.

System-Level PPF
This PPF, by default, resides on the SIDISK and is named SEGBLD. It is supplied
with the CP component, and has only one component.

| Figure 70 shows the SEGBLD $PPF file. Starting with VM/ESA Release 2.2 the
| file is no longer implemented as an override to the CMS component of
| 6VMVMAnn $PPF.

| Also please notice the use of two :APPLY. IDs. This allows separating segment
| modifications done through VMFSGMAP from modifications done through normal
| product service. It also makes it easier to manage multiple versions of the
| SEGDATA file.

| ***
| * COPYRIGHT - 5684-112 - (c) COPYRIGHT IBM CORP.- 1992 1994
| * LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
| * SEE COPYRIGHT INSTRUCTIONS, G120-2083
| ***
| *==
| * Product Parameter File for VM/ESA Release 2.2 Segment Builds
| * This PPF file used only for mapping and building segments
| *==
| *
| * The following APAR′ s have been applied to this file:
| *
| * APAR Date Description
| * ======= ======== =======================================
| *
| *
| *==
| * NOTE: All tags must be in upper case.
| *==

| *==
| * Start of Product Header - List of Segment Build Components
| *==
| :COMPLST. ESASEGS
| :OVERLST.
| *==
| * End Product Header
| *==
| *
| :ESASEGS.
| :PRODID. SEGBLD%ESASEGS
| *

| Figure 70 (Part 1 of 3). SEGBLD $PPF File

158 VMSES/E Primer

| *==
| * Control Parameters
| *==
| :CNTRLOP.

| * TAG VALUE(S)
| *--------- ---------
| :PRODDESC. SEGMENT BUILD PPF * Product description
| :BCOMPNAME. ESASEGS * Base component name
| :VERSION. VM/ESA 1.2.2
| :RECID. VMESASYS * File name of service
| * receive status table
| :APPID. SEGBLD VMSBR * File name of service
| * apply status table
| :BLDID. VM * File name of service
| * build status table
| :LOG. YES * Log all messages
| :RECVALL. NO * Receive missing parts for
| * committed PTFs
| :SETUP. NO * Call VMFSETUP
| :SLVI. V/VF * System level and version
| * indicator
| :NLS. AMENG * System language
| :CNTRL. VMFVM * Control file name
| :AXLIST. VMFVM * File name of IBM supplied
| * APPLY list and EXCLUDE list
| :EXCLIST. * File name of user′ s own
| * EXCLUDE list
| :UPDTID. AUXVM * File type of AUX file
| :CKAUX. YES * VMFBLD compare AUX file to
| * Standard Self Documentation
| * Information in text decks
| :CKSDI. NO * VMFAPPLY check Standard Self
| * Documentaion in text decks
| :CKVV. NO * Check AUX file against
| * corresponding version vector
| * during vmfbld
| :CKGEN. YES * Check AUX file against
| * corresponding version vector
| * during vmfasm, vmfhasm,vmfnls
| :RETAIN. * List of file modes that
| * VMFSETUP cannot use
| :USEREXIT. * User exit EXEC called for
| * setup and cleanup at the
| * beginning and end of each
| * service function
| :PTFPFX. UM * Two character PTF prefix
| :APARPFX. VM * Two character APAR prefix
| :ECNTRLOP.

| Figure 70 (Part 2 of 3). SEGBLD $PPF File

Chapter 8. Saved Segment Experiences 159

| *==
| * Variable definitions
| *==
| :DCL.
| &SID LINK MAINT 51D 51D MR * Disk for Segment Build files
| :EDCL.

| *==
| * Mdisk/Directory Access -define symbolic disk names
| *==
| :MDA.
| *STRINGNAME MINIDISKS
| *---------- ---------
| APPLY &SID * Contains VMSBR $SELECT file
| DELTA &SID * Required by VMFBLD processing
| BUILD &SID * Contains build list and SEGDATA file
| BASE &SID * Required by VMFBLD processing
| :EMDA.
| *==
| * RECINS section
| *==
| :RECINS.
| :ERECINS.

| *==
| * RECSERV section -
| *==
| :RECSER.
| :ERECSER.

| *==
| * BUILD section
| *==
| :BLD.
| * BUILDLIST EXEC TARGET DESCRIPTION
| * --------- -------- ------- ------------
| SEGBLIST VMFBDSEG BUILD * Segment build
| :EBLD.

| :DABBV.
| :EDABBV.

| :END.
| *

Figure 70 (Part 3 of 3). SEGBLD $PPF File

System-Level Build Lists
| The system-level segment build list is listed in the build section of the SEGBLD
| PPF, and it really is a list of pointers to the product-level build lists. It will have

a file type of EXC0000. As stated above, it corresponds to a particular
arrangement, or storage layout, of the segments. The suggested file name is
SEGBLIST, but you can change it. If you do change it, you also have to add the
new name to the SEGBLD PPF (removing a build list from the PPF is not

160 VMSES/E Primer

| supported). This chapter assumes you are using the default name. This build
| list is shipped with the system. You should never change it directly.

| The bldid DEL00000 build list is created dynamically by VMFSGMAP, when
| segments are deleted by the user (see “Deleting a Segment” on page 168).

Figure 71 shows an excerpt of the SEGBLIST EXC00000 file. As you can see:

• It is a Format 2 build list

• Each object corresponds to a segment

• Each object block includes one or more :PARTID tags. These tags do not
refer to parts (as pertaining to the definition for part in “Definitions and
Terms” on page 10). Instead:

− Tags listing “parts” with a file type of EXC really specify the name of the
product-level build list for the segment. This build list lists the segment
build requirements, which enables the product service process to flag
the segment as having to be rebuilt, whenever one of those objects is
serviced.

− One tag listing a “part” with a file type of DMY. This tag acts as a place
holder entry that defines the real name of the segment on the system.
You may, using the same product-level build list, create several copies of
the segment, for example, with different storage ranges. This part, then
provides the means to reference a particular copy; for example, when
you change the segment ′s storage addresses VMFSGMAP inserts the
name of this part in the SEGBLD $SELECT file.

The usage of multiple partid tags enables VMSES/E to determine if a
segment requires a rebuild, whether an object within a segment has
changed, or if the segment definition, such as storage, has changed.

Notes:

• Saved segments of non-VMSES/E products have only one part per object: the
one with the DMY file type. This is because no product-level build list is
available for those segments.

• Named saved systems are not included in this file, because building NSSs is
not supported.

:FORMAT. 2
:OBJNAME. CMSBAM.SEGMENT
:BLDREQ. SEGBLIST.DOSINST.SEGMENT
:PARTID. DMSSBBAM EXC
:PARTID. CMSBAM DMY
:EOBJNAME.

...
:OBJNAME. CMSPIPES.SEGMENT
:PARTID. DMSSBPIP EXC
:PARTID. CMSPIPES DMY
:EOBJNAME.

...

Figure 71. SEGBLIST EXC00000 File (Excerpt)

Chapter 8. Saved Segment Experiences 161

Segment Data File
The Segment Data file has a file type of SEGDATA. This file contains the
customized information for each segment. Note that:

• Data in this file is entered using the VMFSGMAP command. It may be:

− Extracted from the PRODPART file

− Entered by you

− Extracted from the live system

• The file name is the same as the system-level build list. The file type must
be SEGDATA.

Figure 72 shows an excerpt of the SEGBLIST SEGDATA file.

:OBJNAME.CMSBAM :DEFPARMS.B0D-B37 SR :SPACE.DOSBAM :TYPE.SEG
:OBJDESC.CMSBAM MEMBER OF THE DOSBAM SEGMENT SPACE :GT_16MB.NO

| :SEGREQ.DOSINST :PRODID.6VMVMA22 CMS :BLDPARMS.PPF(ESA CMS DMSSBBAM)
...

| :OBJNAME.CMSVMLIB :DEFPARMS.800-8FF SR :TYPE.PSEG :OBJDESC.VMLIB CSL
SEGMENT AND VMMTLIB CSL SEGMENT :GT_16MB.YES :PRODID.6VMVMA22 CMS
:BLDPARMS.PPF(ESA CMS DMSSBVML) PPF(ESA CMS DMSSBVMT)
:OBJNAME.CMSPIPES :DEFPARMS.700-77F SR :TYPE.PSEG :OBJDESC.CMS PIPES SEGMENT
:GT_16MB.YES :PRODID.6VMVMA22 CMS :BLDPARMS.PPF(ESA CMS DMSSBPIP)

...

Figure 72. SEGBLIST SEGDATA File (Excerpt)

| System-Level Select Data Files
| Starting with VM/ESA Release 2.2, two system-level Select Data files are used.
| The SEGBLD $SELECT file is updated by VMFSGMAP and contains a list of
| segments that were added or changed by the user and so have to be built (or
| rebuilt). VMFSGMAP updates this file as follows:

| • When segments are added or changed, VMFSGMAP inserts the name of the
| part of type DMY, from the object′s entry in the SEGBLIST EXC0000 build list.
| In this way, if you have several copies of a segment only the one you have
| changed will be flagged as having to be built.

| • When segments are deleted VMFSGMAP inserts a line containing:

| SEGBLIST EXC DEL00000

| The deleted segments are removed from the SEGBLIST EXC00000 build list,
| but are retained in the SEGBLIST DEL00000 build list. During the
| subsequent build step VMFBLD compares the EXC00000 and DEL00000 build
| lists to determine which segments to delete.

| Figure 73 on page 163 shows an example of the SEGBLD $SELECT file.

| Note: The file name of this Select Data file is taken from the primary (first)
| name in the :APPID tag of the PPF. SEGBLD is the default.

| The secondary Select Data file, VMSBR $SELECT, contains a list of segments
| that were serviced and have to be re-built. It is updated during the build step of
| the product service build process, through the VMFBDSBR build part handler.

This part handler only knows the product-level build list, so this is the name it
inserts in the Select Data file. In this way, even if you have several copies of a

162 VMSES/E Primer

segment, they will all be flagged as having to be built, which is correct since all
of them are affected by the service.

Figure 74 shows an example of the VMSBR $SELECT file.

| :APPLYID. 09/04/92 15:45:36
| CMSPIPES DMY
| .| .| .

| Figure 73. SEGBLD $SELECT File (Excerpt)

| :APPLYID. 09/11/92 10:29:19
| DMSSBBAM EXC
| .| .| .

| Figure 74. VMSBR $SELECT File (Excerpt)

VMSESE PROFILE
This file was introduced in “VMFBDSBR Part Handler” on page 76. Figure 75
shows a sample VMSESE PROFILE file.

* Default disk used for updating the VMSBR $SELECT file for saved
* segment builds.
:SHRDISK. LINK MAINT 51D MR

Figure 75. Sample VMSESE PROFILE

Building Saved Segments
Building saved segments is necessary:

• After you alter the segment′s parameters, such as the storage ranges.

• At the end of normal product installation (if the product uses segments).

• When you have serviced a product, and the service process has flagged the
need to build the segments.

Of course, you still can build any segment at any time, even if none of the above
conditions apply. You should, before building any segments, re-plan the
segment layout. As a minimum, you should make sure that there are no
conflicts, such as storage overlaps, by using VMFSGMAP.

Segment Planning
Using the VMFSGMAP command was discussed in “Saved Segment Planning”
on page 68. We will use adding the CMSBAM segment as an example to show
how the contents of the involved files change. Figure 76 on page 164 shows the
interior structure of the files used by VMFSGMAP.

Chapter 8. Saved Segment Experiences 163

To invoke the command we entered:

vmfsgmap segbld esasegs segblist

We followed the directions in “Adding a Segment Definition” on page 73. On the
OBJNAME field we entered CMSBAM. We then exited VMFSGMAP using the File
function. VMFSGMAP placed the data that was extracted from the PRODPART

| file in the SEGBLIST SEGDATA and SEGBLIST EXC00000 files. Also, VMFSGMAP
| made an entry in SEGBLD $SELECT.

Figure 76. Internal Data Flow in VMFSGMAP

Segment Servicing
To further detail the process described in “Product-Level View” on page 76, let
us use an example.

Product-Level
| The first step in any VMFBLD invocation is known as STATUS. Before VM/ESA
| Release 2.2 this step was always executed, even when the given option was
| SERVICED or ALL. Now, VMFBLD compares the time stamps in the $SELECT
| files to the ones in the :LASTAPP tag of the Build Status table. If they match, the
| STATUS step is skipped. This step can also be executed by itself, and this is

what we have done, so its effects can be analyzed. Please refer to Figure 77 on
page 165 during the following discussion.

164 VMSES/E Primer

 1. CMS part DMSIOS is changed by normal service. VMFAPPLY adds an entry
| in the Select Data file for CMS (6VMVMA22 $SELECT).

 2. In the CMSMLOAD build list, the DMSPIPE.MODULE object includes DMSIOS
as one of its parts. So, when the CMS component is built after service

| application, the STATUS option of the VMFBLD command alters the CMS
| Build Status table (6VMVMA22 SRVBLDS) to show as SERVICED the status of

the DMSPIPE.MODULE object.

 3. But, in the DMSSBPIP build list, the CMSPIPES.SEGMENT object has a build
requisite for DMSPIPE.MODULE (:BLDREQ tag). So, the CMSPIPES object is
also flagged as SERVICED in the CMS Build Status table.

Figure 77. Product-Level Segment Service Process - Identifying Requirements

Please refer to Figure 78 on page 166 for the remainder of the steps.

 4. When the SERVICED, or ALL, options of VMFBLD are executed, those
SERVICED statuses cause the respective part handlers to be invoked. As
defined in the :BLD section of the PPF, the VMFBDMOD part handler is
invoked to build the DMSPIPE MODULE, and the VMFBDSBR part handler is
invoked to “build” the CMSPIPES segment. Because of the build requisite,
VMFBDMOD is invoked first.

 5. VMFBDSBR does not build segments, in the sense the other part handlers
build the other objects; instead, VMFBDSBR uses the information in the
VMSESE PROFILE file to access the system level Select Data file (VMSBR

Chapter 8. Saved Segment Experiences 165

$SELECT), and, for each serviced segment, inserts a line containing the file
name and abbreviated file type of the product level build list for the segment.

The service process is now complete at the product level. To build the
segments we have to go to the system-level.

Figure 78. Product-Level Segment Service Process - Bui lding

System-Level
After doing the necessary verifications with the help of VMFSGMAP, we are
ready to build the segments. As before, we will individually show the two build
steps.

We invoked the VMFBLD command using:

vmfbld ppf segbld esasegs segblist (status

| The results are shown in Figure 79 on page 167. VMFBLD searches for new
| entries in the SEGBLD $SELECT file. In our example it finds nothing, because
| there was no VMFSGMAP processing. Had the user also deleted segments, the
| SEGBLD $SELECT file would have contained an entry which would make
| VMFBLD compare the EXC00000 and DEL00000 build lists. Next, VMFBLD uses

the entries in VMSBR $SELECT to search the SEGBLIST EXC00000 build list, and
finds the part DMSSBPIP EXC in the CMSPIPES object. It then flags this object
as SERVICED in the Build Status table, VM SRVBLDS.

166 VMSES/E Primer

Figure 79. System-Level Segment Building - Identifying the Requirements

The final step is to actually do the build. We entered

vmfbld ppf segbld esasegs segblist (serviced

The results are shown in Figure 80 on page 168. VMFBLD scans the VM
SRVBLDS Build Status table, for SERVICED objects and, using the build list name
(from the :BLDLIST tag) as a key, finds in the :BLD section of the PPF which part
handler to call. VMFBDSEG does the building (see “VMFBDSEG Part Handler”
on page 78).

In this example segments are built because of service or other changes. You
might be interested in building a segment because of other reasons; for
example, if the segment was accidentally purged. To force the building of a
segment, even when it has not be changed, use the ALL option of VMFBLD. A
sample command is:

vmfbld ppf segbld esasegs blname segname (all

where:

blname is the build list name, such as DMSSBPIP

segname is the name of the segment, such as CMSPIPES

Chapter 8. Saved Segment Experiences 167

Figure 80. System-Level Segment Bui lding - Bui lding

| PRIVATE Option
| Do not use the PRIVATE option of VMFBLD when building a segment, because
| the segment is always built on the real system.

| SEGGEN Enhancements Exploitation
| On VM/ESA Release 2.2 an enhancement was made to segment processing in
| CMS: The logical segments′ addresses are no longer obtained from the
| SYSTEM SEGID file. So, only if logical segments have been added to or deleted
| from a physical segment, is there a need to copy this file to the S-disk and
| re-save CMS. Message VMFBDS2003W is issued when this needs to be done.

Deleting a Segment
From time to time it will be necessary to delete segments from your system.
The segment support provides the following method for doing this:

 1. Invoke VMFSGMAP

 2. Select the segment you wish to delete

168 VMSES/E Primer

 3. Invoke the delete function

 4. File the changes

We will now detail this process:

 1. Invoke VMFSGMAP. Enter:

vmfsgmap segbld esasegs segblist

The segment map, as shown in Figure 81, is displayed.

 2. To select a segment, place the cursor on that line. We used the > > mark
to indicate the cursor position.

 3. Segment SQL320A was selected and we deleted it by pressing the PF11 Del
Obj key.

� �
VMFSGMAP - Segment Map More: -

Lines 15 to 37 of 37
CMSBAM MEM 8...............9...............A...............RRRR............
CMSDOS MEM 8...............9...............A...............R...............
CMSFILES DCS 8...............-----RRRRRRRRRRRRRRRRRRRRRRRRRRRB...............
CMSVMLIB DCS RRRRRRRRRRRRRRRR9...............A...............B...............
DOSINST DCS 8...............R---------------A...............B...............

M TESTPROD DCS 8...............9...............RRRRRRRRRRRRRRRRB...............

Meg 00C-MB 00D-MB 00E-MB 00F-MB
 St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

SQLSPACE SPA ========--------D...............E...............F...............
 >> SQL320A MEM RRRRRRRR........D...............E...............F...............

HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............
P TEST1 DCS C...............D...............E...............RRRRRRRRRRRRRRRR
M CMS SYS C...............D...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

Meg 010-MB 011-MB 012-MB 013-MB
 St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

SVM DCS 0...............1...............2...............RRRRRRRRRRRRRRRR
 M CMS SYS >RRRRRRRRRRRRRRR1...............2...............3...............
 ============================== End Segment Map ===============================

 F1= Help F2= Chk Obj F3= Exit F4= Chg Obj F5= File F6= Save
 F7= Bkwd F8= Fwd F9= Retrieve F10= Add Obj F11= Del Obj F12= Class
====>� �

Figure 81. VMFSGMAP Display before Deleting SQL320A

As you can see in Figure 82 on page 170, the segment SQL320A has been
moved to the bottom of the display, and is only “planned for deletion.” The
deletion has not yet taken place.

Chapter 8. Saved Segment Experiences 169

� �
VMFSGMAP - Segment Map More: -

Lines 22 to 36 of 36
Meg 00C-MB 00D-MB 00E-MB 00F-MB

 St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............

P TEST1 DCS C...............D...............E...............RRRRRRRRRRRRRRRR
M CMS SYS C...............D...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

Meg 010-MB 011-MB 012-MB 013-MB
 St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

SVM DCS 0...............1...............2...............RRRRRRRRRRRRRRRR
 M CMS SYS >RRRRRRRRRRRRRRR1...............2...............3...............
>>P SQL320A DCS DELETED
 ============================== End Segment Map ==============================

VMFSMD2046I Segment SQL320A has been deleted
 F1= Help F2= Chk Obj F3= Exit F4= Chg Obj F5= File F6= Save
 F7= Bkwd F8= Fwd F9= Retrieve F10= Add Obj F11= Del Obj F12= Class
====>� �

Figure 82. VMFSGMAP Display after Deleting SQL320A

If the cursor is placed on the SQL320A line and PF4 Chg Obj is pressed, the
screen shown in Figure 83 is displayed.

| �| �
| Change Segment Definition
| Lines 1 to 12 of 12

| OBJNAME....: SQL320A
| DEFPARMS...: DELETED C00-C7F SR
| SPACE......:
| TYPE.......: SEG
| OBJDESC....: SQL PRODUCT
| OBJINFO....: Test version
| GT_16MB....: YES
| DISKS......:
| SEGREQ.....:
| PRODID.....:
| BLDPARMS...: PROD(SQLGEN)

| F1=Help F2=Get Obj F3=Exit F4=Add Line F5=File F6=Chk Mem
| F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj Mem F12=Cancel
| ====>
| �| �
| Figure 83. Change Segment Definit ion Panel for SQL320A

This displays the entry in SEGBLIST SEGDATA. Notice that the storage
| ranges in the :DEFPARMS field have been prefixed with the keyword
| DELETED. Until VM/ESA Release 2.2 the keyword DELETED replaced the
| storage ranges, so you would lose those.

 4. If you want to keep these changes you must exit VMFSGMAP using the PF5
| File function. VMFSGMAP then updates the SEGBLD $SELECT,
| SEGBLIST SEGDATA, SEGBLIST EXC00000, and SEGBLIST DEL00000 files. If

you exit VMFSGMAP using PF3 - Exit, all changes are discarded.

170 VMSES/E Primer

VMFSGMAP has not deleted the segment from the system. Building and
deleting objects are exclusively the function of VMFBLD. To delete the segment
issue the command:

vmfbld ppf segbld esasegs segblist sql320a (serviced

The segment build status table, VM SRVBLDS, is also updated by this process.
| On VM/ESA Release 2.2 the new status for the segment is, correctly, DELETED.
| On previous releases, even though VMFBLD was called to delete an object, the
| status of SQL320A would have been BUILT because the object was not removed
| from the build list Consequently, issuing the command:

| vmfsim query vm srvblds * tdata :object sql320a :stat

| would show a status of BUILT, which is misleading.

This process which, in essence, replaces the CP command
PURGE NSS NAME SQL320A, may seem too complicated. But this process can,
as easily, execute a much more complicated set of functions: If the segment is a
member of one or more segment spaces, the VMFBLD process will correctly
build all the segment spaces without the systems programmer having to spend
time defining and redefining segment spaces.

Segment Requisites
On the Segment Definition panel there is a field named SEGREQ. This field
allows listing segments that are prerequisites of the segment you are defining.
For example, Figure 84 shows how SQL320A could be specified as a requisite of
QMF310A - since SQL/DS is a PREREQ of QMF.

� �
Change Segment Definition

Lines 1 to 12 of 12

 OBJNAME....: QMF310A
 DEFPARMS...: D00-D7F SR
 SPACE......:
 TYPE.......: SEG
 OBJDESC....: QMF PRODUCT
 OBJINFO....: Test version
 GT_16MB....: YES
 DISKS......:
 SEGREQ.....: SQL320A
 PRODID.....:
 BLDPARMS...: PROD(SQLGEN)

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=File F6=Chk Mem
 F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj Mem F12=Cancel
====>� �

Figure 84. VMFSGMAP Change Segment Definit ion for QMF310A

When you build QMF310A, VMFBLD will find that the SQL320A segment is a
| prerequisite. It checks the status of SQL320A in VM SRVBLDS. If it doesn′ t find
| the segment or the status is BUILT, then VMFBLD assumes that no further
| processing needs to be done on SQL320A and continues to build QMF310A. If

SQL320A has a status other than BUILT, then VMFBLD will first build SQL320A,
then QMF310A.

Chapter 8. Saved Segment Experiences 171

Note: Since VMFBLD only looks in VM SRVBLDS, and not on the system, for
this process to work all segments defined as requisites must also be defined in
the SEGDATA file.

When you invoke VMFBLD to build the prerequisite segment SQL320A, VMFBLD
notes that QMF310A may be affected by this change, and alters the status of
QMF310A, in VM SRVBLDS, to either SERVICED or BUILDALL, depending on how
VMFBLD was invoked for SQL320A. VMFBLD does not automatically build
QMF310A, since further steps may be required before the build can take place.

| Before VM/ESA Release 2.2, this process had a major exposure. As explained
| above, when a segment was deleted it would appear in VM SRVBLDS with a
| status of BUILT. Thus, if SQL320A had previously been deleted, the requisite
| checking for QMF310A would still be satisfied, and indeed no message would be
| issued to inform the user of a potential problem. This will not happen on
| VM/ESA Release 2.2.

Skeleton Segments on the System
VMFSGMAP compares information from the SEGBLIST SEGDATA file with the
output of the QUERY NSS command. As discussed in “Overview” on page 65
there are five possible results of this comparison:

• Identical segment definitions
• Different segment definitions
• One or both definitions in error
• Segment defined only to the system
• Segment defined only in the SEGDATA file

There is only one column on the VMFSGMAP display screen to indicate this.
VMFSGMAP checks the system for active segments. If it does not find an active
segment, it then looks for a skeleton segment (it ignores pending purge

| segments). Before VM/ESA Release 2.2 there was no way of knowing whether it
| was an active or skeleton segment that was being compared to the SEGBLIST
| SEGDATA file. Therefore, in order for the systems programmer to know which
| segments are active on the system, it would still be necessary to issue the
| command:

| query nss map all

| On VM/ESA Release 2.2 the PF12 acts as a toggle alternatively showing on the
| first map column the segment status or the spool file class. In addition, the “PF2
| Chk Obj” function displays the results of the QUERY NSS MAP command.

When a segment is built, VMFBLD checks for a skeleton segment, purges it when
it exists, and then issues a DEFSEG command to define a new skeleton with the
correct parameters. This occurs regardless of whether the segment is to be
defined at a different address, different segment space, and so on.

In this way, the skeleton segment being used corresponds to the definition in the
SEGDATA file.

172 VMSES/E Primer

Disk Requirements
| Disks required to build a segment can be accessed by two processes, or a
| combination of the two:

| • If you specify a PPF value in BLDPARMS, VMFBDSEG invokes VMFSETUP to
| access the disks specified in the :MDA section of the PPF. Previous to
| Release 2.2, these disks must already be linked. In VM/ESA Release 2.2, by
| using the LINK option of the part handler VMFBDSEG, VMFSETUP is called
| with the LINK option to both link and access the specified disks.

| After building the segment, VMFBDSEG releases the disks and calls
| VMFSETUP to detach any disks it linked. This is very useful when building
| several segments for different products, since most products tend to use the
| same minidisk addresses. On previous releases, the disks had to be linked
| before invoking VMFBLD, because VMFSETUP would only access the disks.

| • Using the DISKS field, on the Segment Definition panel, you can specify
| additional minidisks or SFS directories that are required for building a
| segment. This is shown in Figure 85.

� �
Add Segment Definition

Lines 1 to 12 of 12

 OBJNAME....: DAS1V220
 DEFPARMS...: C00-C7F SR
 SPACE......: VMAS
 TYPE.......: SEG
 OBJDESC....: THIS IS ONE OF THE VMAS SEGMENTS
 OBJINFO....: THIS SHOULD BE BUILT WITH DAS2V220 SEGMENT
 GT_16MB....: NO
 DISKS......: 391
 SEGREQ.....:
 PRODID.....:
 BLDPARMS...: PROD (DASGEN)

F1=Help F2=Get Obj F3=Exit F4=Add Line F5=File F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
====>� �

Figure 85. VMFSGMAP Add Segment Definit ion Panel

When VMFBLD is invoked, the minidisks listed on the DISKS field must be
already linked, and VMFBLD attempts to access them at the next available disk
modes. If there is no disk linked at the address specified, VMFBLD will fail.

This capability provides a safeguard against building the segments without all
the correct disks, as VMFBLD will not proceed unless it is able to access each
one. If you require the disk addresses to be at specific modes (for instance,
SQL/DS, which requires its 195 disk to be at file mode Q and the 193 disk to be
at file mode V) then either access them manually each time you build the
segment, or access them in the EXEC specified in the BLDPARMS field.

The DISKS field is primarily intended to be used for non-VMSES/E products,
since VMSES/E products should specify the PPF name in the BLDPARMS field.
Another possible use is to access disks from a different product; for example, to
include EXECs or XEDIT macros from products other than CMS in the CMSINST
segment.

Chapter 8. Saved Segment Experiences 173

When the DISKS field is not empty and the PPF is used, the specified disks are
accessed and then VMFSETUP is invoked to also access the disks in the PPF.

Changing the CMSINST Segment
| For VM/ESA Release 2.2, please follow the directions in the VM/ESA: Service
| Guide. For Release 2.1, use the steps detailed in the sections below as a
| guideline and the VM/ESA: Service Guide as a detailed reference. The process
| described in this section cannot be used to change CMSINST on a VM/ESA
| Release 1.5 370 Feature system.

The CMSINST segment is defined in a CMS build list. If you want to change it by
adding or deleting EXECs and XEDIT macros, you will have to change the build
list. As was explained in “Local Service” on page 122, this is considered local
service and you should define a local tracking number for this modification and
create an entry for the build list in the 6VMVMA21 VVTLCL table (where “nn”
varies with the release, see the note to Table 4 on page 91).

To change the build list follow the procedure in the VM/ESA: Service Guide and
modify it as directed by the steps below. The following conventions are used:

6VMVMA21 Is the value from the :APPID tag in the CMS component of the
ESA PPF.

modid Is the local tracking number you assigned to this change, in the
form “Lnnnn.”

1 As documented.

2 As documented.

3 Apply local service to CMSINST LSEG. CMSINST LSEG contains the list of
EXECs in CMSINST.

a Determine the highest level of CMSINST LSEG.

1 The command given in the VM/ESA: Service Guide only works if
you have never applied local service to this part. It is preferable
to use the following command:

vmfsim getlvl esa cms tdata :part cmsinst seg (history

Any existing local modifications are listed first, after the tag
:MOD, and IBM service is listed after the tags :VVTVM and :PTF.
Use the file CMSINST SEGnnnnn, where nnnnn is the number of
the first (most recent) IBM PTF.

2 As documented.

b As documented.

c As documented.

4 If the objects you are adding to CMSINST belong to the CMS component,
then you must create a local modification to the CMSINST build list,
DMSSBINS EXEC. VMSES/E will then automatically flag CMSINST as
having to be re-built whenever the objects are serviced. Otherwise skip
this step. Since this involves updating a source file, DMSSBINS $EXEC,

| you need to create an update file and use VMFEXUPD.

174 VMSES/E Primer

a XEDIT the DMSSBINS AUXLCL file. This file must reside on the
LOCALMOD disk. Add an entry for the update file:

| VLnnnnDS LCL LCLnnnn comment

where:

comment Is any comment you want to add

| b Create the associated update file as documented. Your changes are
| placed in the DMSSBINS VLnnnnDS update file.

| c Create a replacement part for DMSSBINS EXEC, as documented.

| 5 Update the 6VMVMAnn $SELECT file on the alternate APPLY disk. Add the
| following three lines to the top of the file:

| :APPLYID.mm/dd/yy hh:mm:ss
| DMSSBINS EXC EXCnnnnn
| CMSINST SEG

| where:

| mm/dd/yy Is the current date

| hh:mm:ss Is the current time

| nnnnn Is the PTF number determined in 4c

6 Rebuild the CMSINST segment.

a If you executed the previous step, access the CMS component disks.
Enter:

vmfsetup esa cms

b First re-build DMSSBINS EXEC (if changed) and CMSINST LSEG.
Enter:

vmfbld ppf esa cms dmssbins (serviced

c Re-IPL to clear storage. Enter:

ipl 190 clear

d Ensure any minidisks containing the added objects are linked. Issue
the appropriate CP LINK commands, if required.

e Rebuild the HELPINST segment, which contains CMSINST. Enter:

vmfbld ppf segbld esasegs segblist helpinst (serviced

f Move the updated SYSTEM SEGID file to the S-disk and re-save CMS.
| If you are running VM/ESA Release 2.2, the SYSTEM SEGID will not
| require an update if you are only changing the address of a logical
| segment.

Maintaining Segments for Multiple Systems
If you are maintaining several systems from a single site, there are a few special
steps you have to do, and several important points to consider.

Chapter 8. Saved Segment Experiences 175

PPF Considerations
You should create, for each system, one override to the system-level PPF, and
keep just one component in the PPF. We think this is preferable to having one
PPF with many components, where each component would correspond to a
different system. The override must:

• Have the same name as the system

| • Change the preferred entry in the :APPID tag to reflect the system name (and
| use a separate $SELECT file). You must keep VMSBR as the secondary
| name.

• Change the name in the :BLDID tag to reflect the system name.

• Change the value of the &SID variable, if you are keeping separate SIDISKS.
Also update the VMSESE PROFILE file accordingly.

Also, you could:

• Define several segment layouts per system. As each layout corresponds to
a build list (and a SEGDATA file), simply add one or more build lists to the
:BLD section of the PPF override. You should have a minimum of two
layouts: production level and test level. In this way, if something goes wrong
with the test layout, you can rebuild all segments using the production
layout.

| • Add an entry in the :APPID tag. This allows keeping separate system-level
Select Data files, as discussed in “Select Data File Considerations.”

Select Data File Considerations
| VM/ESA Release 2.2 added support for multiple Select Data files and Apply
| Status tables, which changes the way to manage multiple systems.

| Considerations for VM/ESA Release 2.2 systems
| The VMFSGMAP obtains the Select Data file name from the :APPID tag of the
| system-level PPF. If you are maintaining several systems from a single site we
| strongly suggest you override this tag.

| The override should change the primary (first) name on the :APPID tag, retaining
| VMBSR as the secondary name. In this way, each system has its separate file
| for dealing with changes done through VMFSGMAP, and product service
| changes will be reflected in the single VMSBR $SELECT, affecting all the different
| systems, as expected and required.

| Considerations for VM/ESA Release 2 and VM/ESA Release 2.1
| systems
| Before VM/ESA Release 2.2, if you were doing some planning work with the
| VMFSGMAP command, and did not intend to build the resulting layout, you
| should save the $SELECT file under a different name before invoking
| VMFSGMAP. In this way, if you forgot to use the Quit function to terminate
| VMFSGMAP you could always restore the original file.

| Overriding the PPF would allow you to have separate Select files, but as only
| one entry was supported in the :APPID tag, the following resulted:

| • The considerations above would still apply.

176 VMSES/E Primer

| • All the files would have to reside on the same disk, because the VMSESE
| PROFILE points to a single disk.

| • The file name VMSBR is hard-coded in the VMFBDSBR part handler. As a
| net result, you had to manually keep a copy of this file for each system .
| Before building the product service for one system, you would copy that
| system ′s Select Data file to VMSBR $SELECT and save it at the end of the
| build step.

Central-Site Build Considerations
If you are careful, you can even build the segments from a central site. If the
same segment has different characteristics in the several systems, such as
storage locations, you must name each segment differently. If the segments are
exactly the same, you should have two segment definitions: one for the central
system, another to build a new version of the segment. This will keep the
central system safe.

Whatever technique you use, after building the segment you need to ship it to
the remote system and install it there. There are two CMS Utilities Feature
utilities to help you: DCSSBKUP will save a copy of the saved segments in a
CMS file (of file type DCSSBKUP). Just send this file to the target systems.
Then, in each target system, use the DCSSRSAV utility to install the segment on
the system. As this utility also allows you to rename the segment, you can keep
the names identical in all systems.

Note that, if you build a PSEG, the SYSTEM SEGID file may be changed, so you
may also need to:

• Send it to each system.

• Copy it to the S-disk; you may need to tailor it at the remote system, if that
system and the central-site are not identical.

• Re-save CMS on the remote system.

| There are a couple of common mistakes which can be made using DCSSBKUP
| or DCSSRSAV to backup or restore segment spaces and physical segments.

| • Never back up a segment space. Back up each member, one at a time.

| A segment space is a logical grouping of members. After it is restored, it
| will be considered a DCSS and not a segment space.

| • Never back up a logical segment. Always back up the physical segment.

| CP is not aware of logical segments. DCSSBKUP and DCSSRSAV use CP
| services to access the segments.

| A few Questions and Answers Working with Segments

| Copying CMSPIPES Segment Above 16MB
| Can I move the CMSPIPES segment above the 16MB line, even though I have
| some users who must run in 370-mode virtual machines?

| Yes. You can “copy” the PIPES logical segment above the 16MB line by creating
| a second segment, for example, CMSPIPEH (for PIPES high), containing the
| same logical segment, PIPES. Then, modify your SYSPROF EXEC to check the

Chapter 8. Saved Segment Experiences 177

| machine mode of the user and load the correct logical segment. Finally,
| SYSPROF is usually one of the EXECs in CMSINST (the installation logical
| segment), so you need to rebuild CMSINST to contain the new version of the
| SYSPROF EXEC. Follow this procedure to move the segment.

| 1 Define the new segment to VMSES/E.

| a. Prepare your system for building segments by accessing only the
| VMSES/E disks, 5E5 and 51D (see ′Rebuild the Saved Segments′ in
| VM/ESA: Service Guide for a complete description of this step).

| b. To get the map of your segments issue the command:

| vmfsgmap segbld esasegs segblist

| (Note, ESASEGS was ESA20 in VM/ESA Release 2.0.)

| • Place the cursor on CMSPIPES and press PF10 (Add Obj).

| • On the Add Segment Definition panel, fill in the name for your new
| segment (in this example, CMSPIPEH) and change the segment
| range to above 16M.

| • Press PF5 to keep the changes and return to the map.

| • Make sure the map looks correct (for example, there are no
| overlaps with other required segments).

| • Press PF5 to file the changes and exit the map.

| 2 Build the new segment by issuing the command:

| vmfbld ppf segbld esasegs segblist cmspipeh (serviced

| Again, replace ESASEGS with ESA20 for VM/ESA Release 2.0.

| If you received message VMFBDS2003W, update the SYSTEM SEGID file on
| both the 490 disk and the 190 S-disk. If you are also going to rebuild the
| CMSINST logical segment (Step 5), then you can wait until then to update
| the SYSTEM SEGID file.

| 3 Create a local modification for the SYSPROF EXEC to load the correct
| logical segment.

| a. Access the CMS disks.

| vmfsetup esa cms

| b. Since the SYSPROF $EXEC is maintained by source updates, follow the
| procedure for creating a local modification with source updates in the
| VM/ESA Service Guide.

| • Create or update the SYSPROF AUXLCL file on the local disk.

| • Create the SYSPROF update. This update should check the virtual
| machine mode and load the correct segment. An example of this
| code is:

| ′ EXECIO * CP (LOCATE /MACHINE/ STEM OUTP. STRING QUERY SET′
| Parse Var outp.1 . ′ MACHINE′ mode ′ , ′
| If mode <> ′370′
| Then ′ SEGMENT ASSIGN PIPES CMSPIPEH′
| Else ′ SEGMENT ASSIGN PIPES CMSPIPES′
| ′ SEGMENT LOAD PIPES (SYSTEM′

178 VMSES/E Primer

| • In VM/ESA Release 2.2, issue VMFEXUPD to create the updated
| SYSPROF on the local modification disk and update the $SELECT
| and local VVT files (example command contains outmode, a
| Release 2.2 option).

| vmfexupd sysprof exec esa cms (outmode localmod $select logmod

| For prior VM/ESA releases, follow the local service procedures in
| VM/ESA: Service Guide for creating a replacement part from $
| source files. Make sure to update the local VVT and the $select
| file.

| 4 Build the new executable SYSPROF.

| a. If you use CMSINST (the installation segment) and SYSPROF is in your
| version of CMSINST, then you will have to rebuild this segment in the
| next step (5). To inform VMSES/E of this and to build the new
| executable SYSPROF, issue:

| vmfbld ppf esa cms dmssbins (serviced

| b. If you are not using CMSINST or have removed SYSPROF from it, then
| you need to build the SYSPROF executable and copy it to the 190 disk.
| To perform the build, issue:

| vmfbld ppf esa cms dmsbl490 sysprof (serviced

| 5 Rebuild the CMSINST logical segment, if you are using CMSINST and it
| contains SYSPROF.

| a. Prepare your system for building segments by accessing only the
| VMSES/E disks, 5E5 and 51D (see ′Rebuild the Saved Segments′ in
| VM/ESA: Service Guide for a complete description of this step).

| b. Then issue:

| vmfbld ppf segbld esasegs segblist helpinst (serviced

| Again, replace ESASEGS with ESA20 for VM/ESA Release 2.0.

| c. If you receive message VMFBDS2003W, update the SYSTEM SEGID file
| on both the 490 disk and the 190 disk.

| d. Copy the new SYSPROF EXEC to the 190 disk.

| 6 If you updated the S-disk, rebuild the CMS Saved System.

| Copying CMSQRYH Logical Segment Above 16MB
| How do I move the CMSQRYH logical segment in HELPINST above 16MB?

| You can do this in one of two ways.

| 1. You can combine CMSQRYH logical segment with another logical segment
| above the 16M line. For instance, CHSQRYH could be put in CMSPIPEH
| when that segment is created as described in “Copying CMSPIPES Segment
| Above 16MB” on page 177. In this case, when using VMFSGMAP (during
| step 1b on page 178) the definition for the :BLDPARMS field for CMSPIPEH
| would need to contain entries for both PIPES and CMSQRYH and the
| SYSPROF EXEC should be updated to ASSIGN and load each of these logical
| segments.

| 2. Or you can create a separate segment for the CMSQRYH logical segment.
| In this case, just follow the same instructions for moving the logical segment

Chapter 8. Saved Segment Experiences 179

| PIPES (“Copying CMSPIPES Segment Above 16MB” on page 177), using
| CMSQRYH as the logical segment and, say, CMSQSETH as the physical
| segment.

| Moving CMSQRYH Logical Segment Above 16MB
| How do I move the CMSQRYH logical segment in HELPINST above 16MB, without
| keeping a version below 16M?

| Using VMFSGMAP, you can combine the CMSQRYH logical segment with
| another logical segment above the 16MB line (for instance, the CMSPIPEH
| segment created in section “Copying CMSPIPES Segment Above 16MB” on
| page 177) or you can define a new segment, for example CMSQSETH, above
| 16MB for CMSQRYH. In either case, add PPF(ESA CMS DMSSBQYH) to the
| :BLDPARMS field of this segment and remove it from the :BLDPARMS field for
| the HELPINST segment. Since there is only one copy of CMSQRYH, you do not
| have to modify the SYSPROF EXEC to choose the correct copy. You only have to
| build both the HELPINST and the new/updated segment.

| HELP Disk is Too Large to Fit in HELPINST Segment C00-CFF
| How do I fit my HELPINST segment within C00-CFF when I have such a large
| HELP disk?

| One approach is to use VMFSGMAP to enlarge the HELPINST segment to, say,
| C00-D7F. Then re-build HELPINST. This might fail if CMS is using the X′D00′ MB
| (segment) for its own storage.

| Another approach is to use VMFSGMAP to enlarge and move the segment (still
| under 16MB) to some available location. If no location of the correct size is
| available, you might consider moving the HELP logical segment into a new
| segment. To do this, create a new segment for HELP, for example HELPSEG,
| putting PPF(ESA CMS DMSSBHLP) in its :BLDPARMS field and removing it from
| the :BLDPARMS field for the HELPINST segment. Then build the HELPSEG and
| the HELPINST segments.

| Building Segments of Multiple Products from One User ID
| How can I build segments for many products from one user ID?

| In VM/ESA Release 2.2, the segment build process was enhanced to allow you to
| build segments for multiple products in VMSES/E format from one user ID.

| • Create a user ID with the necessary privilege classes, storage, and an
| A-disk.

| • Give the user ID links to the disks in the PPF of each of the products
| (including VM) whose segments are to be built.

| • Build the segments by logging onto this user ID and issuing VMFBLD for the
| segments, using the LINK build list option. For example,

| vmfbld ppf segbld esasegs segblist link * (serviced

| will build all the serviced segments from any product by linking and
| detaching each product′s disks as its segments are built.

180 VMSES/E Primer

Chapter 9. Multiple Systems and Product Versions

This chapter suggests methods for managing several systems using VMSES/E,
while partially or totally sharing the software base. The focus is on how
VMSES/E can help accomplish that task. Other aspects, such as backup and
recovery, are not covered.

VMSES/E can also be used to manage several versions of the same program
product. This allows you, for instance, to test a new version of a product before
placing that version into production, or have several copies of a product, each
copy tailored to the needs of a particular user group.

As lack of disk space is not unusual, you might want to consider sharing disks.
Also, sharing could save you time when servicing products. There are several
possibilities for disk sharing, and after a general discussion of these, the
possibilities of sharing each of the disk strings in the software database are
individually analyzed. The basic tool for disk sharing, the building of PPF
overrides, is covered next, and finally a sharing scenario is studied in more
detail.

Managing Multiple Versions of Products
VMSES/E allows you to easily install and service several copies of the same
product. For every copy, you have to create a PPF override during product
installation. Product copies are distinguished by the names of the overrides.

Several copies of the same product can partially or totally share some of the
logical disk strings, as detailed in “Sharing Disks” on page 185. Sharing can
only be done as long as the base product code remains the same.

Managing Multiple Systems
There are many possibilities regarding the maintenance of several VM systems
by a single or multiple VM systems. They can be reduced to four basic
schemes:

• All systems are independently maintained from the same VM system. No
disks are shared.

• The systems are maintained from different VM systems, on different
processors or LPARs, with physical DASD sharing.

• The systems are maintained from different VM systems, on different
processors or LPARs, sharing only SFS directories.

• All the systems are maintained from the same VM system, and can share
both minidisks and SFS directories.

The first case is simple, and is covered in “Centrally Managed Independent
Systems” on page 182. Although all the disk sharing methods work, they have
different degrees of complexity and problems. Physically sharing disks has
several risks, as explained in “Maintaining Systems by Physically Sharing Disks”
on page 182. These risks can be avoided by using CMS Shared File System
directories. This scheme is described in “Maintaining Systems by Sharing SFS

 Copyright IBM Corp. 1992, 1993, 1994 181

Directories” on page 184. The last scheme in the list above is discussed in
“Centrally Managed Disk Sharing Systems” on page 185.

These discussions assume that in each of the systems where maintenance is
actually performed, only a single person at a time is involved. If this is not the
case, then you have several more or less independent working groups. For the
purpose of identifying the best sharing scenario, each working group can be
thought of as “another system”: In any real VM system these working groups
will, at least, share the SESDISK and SIDISK disks.

Saved segments require special consideration. They are discussed in
“Maintaining Segments for Multiple Systems” on page 175.

Centrally Managed Independent Systems
This scheme requires little effort on your part. All maintenance and service
operations are performed in one VM system, and copies of the production disks
are shipped to the other systems. Even if the systems can physically share the
disks, they are configured in a way that, as a minimum, prevents sharing the
disks we are discussing here.

Each of the systems has its own system-level Software Inventory on a separate
disk. If you also want to keep the SESDISK separate, you have to explicitly
access it, in addition to the SIDISK, before doing any installation or maintenance
service:

access ses-disk b
access sid-disk d

You must give a different name to each system, and use that name when
invoking the VMSES/E commands. For example, to install the CMS Utilities
Feature on the HQSYSVM system, whose SIDISK has the virtual address 50D,
you could issue:

vmfins install ppf cuf cufins (nomemo noplan sidisk 50d system hqsysvm

Some VMSES/E commands do not have the SIDISK and SYSTEM options. These
commands use the information in the currently accessed SIDISK. Do not forget
that the system name is used as the file name for the tables in the system-level
Software Inventory.

The advantages of this scheme are on the operational side: systems
programming skills are concentrated. The major drawbacks are that the
production disks are always duplicated, and no savings in maintenance work can
be realized, because all steps have to be executed for every system.

Maintaining Systems by Physically Sharing Disks
Physically sharing minidisks between several VM images imposes some
operational restrictions in order to ensure data integrity:

• While performing product installation or maintenance, all systems should
turn off minidisk caching for the shared minidisks.

• At any given moment only one user, from a single VM system, can access a
minidisk in R/W mode. All other users must access the minidisk in R/O
mode.

• At all other times, all minidisks should be accessed in R/O mode by all
systems.

182 VMSES/E Primer

Warning: In order to maintain data integrity, the CMS file system has the
following limitation: minidisks to be shared must not be concurrently
accessed as R/W by more than one user. If the physical disk is accessed by
two or more VM systems, using the CP CSE function will provide minidisk
protection across all CSE systems, similar to the protection available on a
single system.

As you see, write access cannot be concurrent. This limitation requires an extra
degree of coordination between the systems programmers and operations
personnel of the involved systems.

See “Sharing Disks” on page 185 for detailed sharing considerations on each
string. Generally, each system would have to maintain independent LOCAL and
BUILD disks, as shown in Figure 86. As noted, this method has potentially
severe integrity exposures, and should not be used. The only advantage is in
the disk space saved. However, is it worth the risk, especially when you
consider that you avoid the risk and still save space?

Figure 86. Maintaining Mult iple Systems with Physically Shared DASD Strings

Chapter 9. Multiple Systems and Product Versions 183

Maintaining Systems by Sharing SFS Directories
To avoid the minidisk integrity exposure you can use the CMS Shared File
System. Almost every minidisk involved, the SESDISK and SIDISK disks
included, can be exchanged for a SFS directory. The exceptions are:

| • For CMS, the system disk, system extension disk, and their alternates, by
| convention MAINT′s 190, 193, 19E, 490, 493, and 49E minidisks.

| • For GCS, the system disk, the system extension disk, by convention MAINT′s
| 595 and 59E minidisks, as well as any disk required by a GCS application at
| run time.

The systems do not have to be physically close. Using TSAF, or ISFC, you can
establish a VM collection in which several VM systems can share a common
software base. Several VM collections can be joined through an AVS bridge.
However, performance, or other reasons, may dictate that in some cases
minidisks be used. Using the SFS is very attractive, in terms of space savings
and the operational freedom it allows. It also requires different administrative
and recovery techniques.

Notes:

• In VM/ESA, only the GCS, TSAF, and AVS components are supplied with
| alternate definitions for installation in SFS directories. The VM/ESA:
| Installation Guide contains an appendix giving detailed instructions for
| moving these components to SFS directories. You would have to modify the

supplied materials for the other components.

• During VM/ESA installation, the CP, CMS, REXX, VMSES, and DV
| components are installed in minidisks before the CMS SFS is available. In
| order to move these components to the SFS, you would have, in essence, to
| re-install them. In addition, only flex-DDR tapes are available. Product tapes
| no longer exist. So, you would need to manually define the directories and
| copy the minidisks to them, as well as creating a suitable PPF override.

• Not all disks should, or can, be moved to SFS directories. If SFS has an
unrecoverable error CP, CMS, VMSES, and REXX build disks should be
readily available. However, some errors, such as physical damage to the
CMS 190 disk, can only be quickly recovered by restoring a DDR backup.

• The VM/ESA: VMSES/E Introduction and Reference has a chapter that
| discusses how to move the system-level Software Inventory (SIDISK) to an
| SFS directory. This is very important if you plan to install and service
| products from several user IDs other than MAINT.

Two maintenance alternatives exist when using the SFS:

• Maintenance is performed from several VM systems concurrently.

• All maintenance is done from a single VM system.

Here we will discuss the first alternative, and the second is covered in “Centrally
Managed Disk Sharing Systems” on page 185. As in the physically shared case,

| each system requires independent BUILD disks. Also, if the tailoring options or
| local modifications are different per system, it is more complex to share local
| disks than to keep them separate. However, sharing remains possible as we will
| see in the next sections.

In addition to the disk space saving benefits, using SFS directories allows
concurrent maintenance of the several systems.

184 VMSES/E Primer

Centrally Managed Disk Sharing Systems
A final possibility is to maintain all the systems from one central system, but
share some disks. Sharing would be done from a logical point of view only.

You could use a mix of SFS directories and minidisks, or only use minidisks. All
considerations about SFS made in “Maintaining Systems by Sharing SFS
Directories” on page 184 also apply here. In this case, the use of SFS would be
beneficial only in terms of saving disk space, because directories have no
pre-allocated space, as is the case of minidisks.

As in the preceding cases, the LOCAL and BUILD strings would be separately
maintained for each system. This scheme is further explained in “Case Study:
Central Management” on page 191.

When compared to the previous scheme, SFS directory sharing, this scheme
allows the concentration of systems programming skills.

Sharing Disks
As the perils of physical disk sharing have been covered in “Maintaining
Systems by Physically Sharing Disks” on page 182, here we discuss sharing
from a logical perspective. The focus is on the individual string, not on the
product or on the system as a whole.

The following discussion on disk sharing assumes that:

• The several sharing copies of a product all have the same base code.

• These copies differ operationally only in the tailoring employed, level of
service applied, or both.

Both conditions are required, even if not all strings are shared, or a string is
only partially shared.

VMSES/E defines the following logical disk string types:

• TASK

• LOCAL

• DELTA

• APPLY

• BUILD

• BASE

• SYSTEM

Not every minidisk or directory can or should be shared:

• Some of the disks have to reside in minidisks and physical distance between
the systems might prevent sharing them.

• Even if physically possible, heavily used disks, such as the production BUILD
disks, should probably not be shared for performance reasons.

• You will need different sets of tailoring information, because no two systems
are exactly the same. Hence, you would probably want to keep separate
LOCAL disks.

Chapter 9. Multiple Systems and Product Versions 185

• The SYSTEM string includes any disks you want accessed, when maintaining
a product, with a search order higher than the service database for the
product. Similarly, the TASK string defines disks to be accessed with a
search order lower than the service database for the product. Therefore, the
following discussion does not apply to these strings.

Thus, if there is a real need to share disks between VM systems, the BASE,
DELTA, and APPLY strings should be considered as the first candidates.

Sharing LOCAL Disks
If several copies of a product have exactly the same tailoring, sharing the local
disks would not present any problems. If tailoring differs, however, some
additional work must be done, in order to share them.

Let us clarify this matter using CP as an example. CP tailorable files include
HCPRIO, HCPSYS, and HCPBOX. The only way to keep several sets of
modifications to these files in the same disk, is to use the source update
structure. To distinguish between the several sets, you may use different control
files, as shown in Figure 87. To share other part types the mechanism
described under “Version Support for Parts” on page 120 must be used.

 HCPVMA CNTRL

 TEXT MACS HCPGPI
PAT AUXPAT TX$ * LOCAL PATCHES

 LCL AUXLCLA * SYS A Local Modifications
 TEXT AUXVM * CP AUX FILE and VVT

 HCPVMB CNTRL

 TEXT MACS HCPGPI
PAT AUXPAT TX$ * LOCAL PATCHES

 LCL AUXLCLB * SYS B Local Modifications
 TEXT AUXVM * CP AUX FILE and VVT

Figure 87. Using Control Files to Manage Mult iple Systems

In addition, you have to:

• Assign different local tracking numbers to each modification.

• Create the AUX files for each local modification.

• Record in the Software Inventory all local modifications you have made. Use
the local tracking number in the :MOD tag.

• Also record in the Software Inventory that you have created a change to the
control file.

• Create PPF overrides that include, as a change, the new control file name.

“Local Service” on page 122 contains a detailed example of local service for
source maintained parts. See also “Changing GCS” on page 131 for an

186 VMSES/E Primer

example of how to create and manage local service for a replacement
maintained part.

Sharing BASE Disks
As BASE disks contain the product raw materials before any service, they are
never changed by service. As a result, they are a prime candidate for sharing,
and the complete string can be shared by all copies of the product. Space
savings can be quite large.

Sharing DELTA Disks
Because VMSES/E uses the DELTA string only as a staging area for
non-executable parts, the DELTA string may be shared by multiple systems.

If possible, the sharing of DELTA disks should be considered, because these
disks may get very large as service piles up on them. The space savings will,
hence, be considerable. Also, work savings will occur, because the Receive
step is done once for all sharing products.

Sharing APPLY Disks
If several systems are maintained at the same software level, even the APPLY
string, or at least parts of it, could be shared between these systems.

The space gain here will not be as large as with the DELTA string. However, as
the product gains stability, fewer parts should be affected by service on the next
service level, thus lowering space requirements on the alternate disks. The
major savings here will probably be in terms of work.

Let us consider three scenarios:

 1. A common situation is to share the production-level APPLY disk, and let
each system have separate intermediate and alternate disks. This would
allow for independent testing of service in the individual environments. The
production disk would contain only “safe” service. This case is illustrated in
Figure 88 on page 188.

 2. If you keep one or more production systems and a separate, but identical,
test system where all service is tested before placing it in production, then
the production systems would have no alternate disk and would share the
two lowest levels of APPLY disks with the test system. The alternate level
would exist in the test system only.

 3. In the case of identical (“c loned”) systems all levels could be shared.

Chapter 9. Multiple Systems and Product Versions 187

Figure 88. Partially Sharing the APPLY String

Sharing BUILD Disks
Sharing BUILD disks might not be recommended for performance reasons.

If the BUILD disk you wish to share resides in a minidisk, and you are
maintaining several systems from a central site, you have to choose from:

• Keeping two copies of each BUILD disk per VM system

• Having a reusable disk area as a BUILD target, then shipping the changed
contents to the target system

If you decide to have a reusable area, which can save you disk space, you will
have to maintain the test build disks updated. This, of course, means that either
you have to get a copy of the BUILD disk from the target system, or you keep an
up-to-date tape copy at the central site, restore it before starting the build, and
re-save it after the build (see “Refresh” on page 100). Remember that the build
process updates the Software Inventory tables, which reside on the APPLY
string. Sharing BUILD disks has, then, to take into consideration the sharing of
APPLY disks.

If the BUILD disk to be shared resides in an SFS directory, or maintenance for a
system is performed at that same system, then the build task would be directly
performed on the target disk, with due care for R/W access problems in the case
of physical sharing.

188 VMSES/E Primer

Creating a PPF Override
To implement any of the disk sharing schemes, you have to modify the supplied
PPFs by using override PFFs, so that the sharing products have the same
definitions for the shared disks. Thus, we will look at the task of creating a PPF
override file for SYSTEM B (this system is maintained from SYSTEM A). In
“Overview” on page 43, we have seen that the PPF has different areas.

| As an example, let us take the PPF for CMS, called 6VMVMA22. Let us introduce
a user exit into that PPF. Let us further, as suggested in Scenario 2 of “Sharing
APPLY Disks” on page 187, define a new disk address for the Alternate APPLY
level.

We will do this in an orderly manner, using the symbolic variable definitions for
minidisks. This means replacing the variable &APPLX in the :DCL section with a
new symbol, which we will call &APPLXB (for system B).

Finally, we have to update the APPLY string definition in the :MDA section to
reflect the changes.

The resulting override file is shown in Figure 89.

:OVERLST. CMS
| :CMS. CMS 6VMVMA22

:CNTRLOP. UPDATE
:USEREXIT. TESTU
:DCL. UPDATE
./DELETE &APPLX
./INSERT &APPLY BEFORE
&APPLXB LINK MAINT 9A6 9A6 MR * Aux & software inventory files system A
./END
:MDA. UPDATE
APPLY &APPLXB &APPLY &APPLZ * Aux & software inventory
:END.

Figure 89. Sample PPF Override - CMSB $PPF

The :OVERLST tag must be present. It tells the VMFOVER command which
component areas exist in this file.

The next tag (:CMS) starts the override area for the CMS component. The first
parameter, CMS, refers to the corresponding tag (component area) in the base

| (or lower level) PPF file. This PPF has the name 6VMVMA22, as indicated by the
second parameter.

Then we identify the sections we want to change. We can replace an existing
line by including a new line with the same identification (the first word on the
line). The old line will then be commented out and the new line inserted after it.
We used this technique to change the :USEREXIT tag.

In the next section we cannot repeat this technique, because we are going to
replace the line starting with &APPLX with a line starting with &APPLXB. In this
case we use an update control record, similar to the one used in CMS UPDATE
files. The ./DELETE command deletes the line staring with &APPLX and the
./INSERT command inserts all the following lines, up to the ./END line, before the
line starting with &APPLY.

Chapter 9. Multiple Systems and Product Versions 189

Finally, we replace the APPLY line in the :MDA section with our updated line.

The :END tag signals the end of the component override area.

Now, to test this new file and generate the usable form of the new PPF, it has to
be compiled with the command:

vmfppf cmsb cms

This command implicitly invokes VMFOVER to generate the temporary source file
that VMFPPF than checks for syntax errors, and compiles into CMSB PPF. Any
errors found can be directed to a message log, so you can examine and correct
them.

Note that the ESA $PPF actually is an override file. It is a special override file
whose sole purpose is to produce a common PPF for all VM/ESA Release 2.2
components. It provides an excellent aliases file, so you do not have to
remember, for example, that the component names for CMS and GCS are,

| respectively, 6VMVMA22 and 6VMVML22. The ESA $PPF is shown in Figure 90.

| *==
| * Start of Product Header - List of Components in ESA
| *==
| :OVERLST. CMS CP AVS REXX TSAF DV VMSES GCS
| :OVERLST. AVSSFS TSAFSFS GCSSFS AVS370 AVS370SFS
| *==
| * End of Product Header
| *==
| :CMS. CMS 6VMVMA22
| :END.
| :CP. CP 6VMVMB22
| :END.
| :AVS. AVS 6VMVMD22
| :END.
| :REXX. REXX 6VMVMF22
| :END.
| :TSAF. TSAF 6VMVMH22
| :END.
| :DV. DV 6VMVMI22
| :END.
| :VMSES. VMSES 6VMVMK22
| :END.
| :GCS. GCS 6VMVML22
| :END.
| :AVSSFS. AVSSFS 6VMVMD22
| :END.
| :TSAFSFS. TSAFSFS 6VMVMH22
| :END.
| :GCSSFS. GCSSFS 6VMVML22
| :END.
| :AVS370. AVS370 6VMVMD22
| :END.
| :AVS370SFS. AVS370SFS 6VMVMD22
| :END.

| Figure 90. ESA Override File - ESA $PPF

190 VMSES/E Primer

Case Study: Central Management
Figure 91 on page 192 shows a Central Management disk layout in a situation
where the systems are remote from each other, so disks cannot be physically
shared. All disks are managed by system A. However, this same setup could
be implemented, with due cautions, for physically close, disk-sharing systems.

In this setup, only the BUILD disks would have to be copied across the network
to the remote system. This could be automated using the VMSES/E exit. Once a
build has been done for a remote system, the CLEAN-UP user exit could check
the Build Status table for new and changed files on the BUILD disks and send
them to the remote system.

With the support for CP configurability, even shipping the CP nucleus becomes
an easy task. Generating the nucleus as a CMS module file allows it to be sent
anywhere by using the SENDFILE command.

Finishing the build process could then be done directly on the remote system, or
through PROP, or a similar facility, for example VM/DSNX. The type of functions
to be performed would include:

• Placing the CP nucleus on the appropriate PARM disk.

• Generating and saving Saved Systems (for saved segments see “Maintaining
Segments for Multiple Systems” on page 175).

• Manually updating the Software Inventory, to reflect the Build Status of the
system.

For more information about the VMSES/E user exit, please refer to “Control
Options Section” on page 46.

Chapter 9. Multiple Systems and Product Versions 191

Figure 91. Central System Management

Note: The RESOURCE option of VMFINS should be used only on the “base”
system. The disk and user ID definitions for which there is a need for duplication
should be handled manually, as you may want to share some of the disks.

To implement the scheme depicted in Figure 91, new $PPF overrides reflecting
that configuration should be defined. In our example we will concentrate only on

| the CP component (6VMVMB22).

We define CPSYSA $PPF for System A, and CPSYSB $PPF for System B. As a
matter of fact, System A is the “base” system, so the ESA $PPF could be used.
A sample PPF override for System A, CPSYSA $PPF, is shown in Figure 92.

:OVERLST. CP
| :CP. CP 6VMVMB22

:END.

Figure 92. Sample PPF Override - CPSYSA $PPF

As you can see in Figure 92, the CPSYSA $PPF is nothing more than an “alias”
$PPF similar to the ESA $PPF itself (Figure 90 on page 190).

Now, in order to get a usable form PPF, enter:

vmfppf cpsysa cp

This command produces the usable form, CPSYSA PPF.

Figure 93 on page 193 shows the PPF override file for System B.

192 VMSES/E Primer

:OVERLST. CP
| :CP. CP 6VMVMB22

*==
* Control Parameters
*==
:CNTRLOP. UPDATE
:USEREXIT. SEND_B * SYS B User exit EXEC called for

* setup and cleanup at the
* beginning and end of each
* service function

:ECNTRLOP.

*==
* Variable definitions
*==
:DCL. UPDATE
&LMODZ LINK MAINT B2C4 B2C4 MR * SYS B Disk for local mods
&APPLX LINK MAINT B2A6 B2A6 MR * SYS B Aux & software inventory files
&APPLY LINK MAINT B2A4 B2A4 MR * SYS B Aux & software inventory files
&APPLZ LINK MAINT B2A2 B2A2 MR * SYS B Aux & software inventory files
&BLD2Z LINK MAINT B193 B193 MR * SYS B CMS system tools
&BLD5Z LINK MAINT B19D B19D MR * SYS B Help disk
&BLD6Z LINK MAINT B490 B490 MR * SYS B Test CMS system disk
&BLD7Z LINK MAINT B493 B493 MR * SYS B Test CMS system tools
:EDCL.
:END. * End of the definitions for CP component

Figure 93. Sample PPF Override - CPSYSB $PPF

Notice that some changes have been made. A user exit EXEC named SEND_B
has been included. It allows you, for example, to send to System B any newly
built objects. Also, new sets of LOCAL, APPLY, and BUILD minidisks (addresses
Bxxx) have been defined. In this way, the systems programmer can service
System B in a completely isolated environment.

The :CNTRLOP and :ECNTRLOP tags are not really needed. If you specify them,
the only effect is that the original tags are commented out in the usable form
PPF. This is the only section where you do not have to specify the starting and
ending tags, because all lines in this section either are a comment or start with
a tag. This is not the case for other sections.

Remember to create a usable form PPF for CP, in System B. Enter:

vmfppf cpsysb cp

This command produces the usable form file CPSYSB PPF. An excerpt of the
final PPF for system B is shown in Figure 94 on page 194.

Now all you have to do is to invoke the VMSES/E commands giving the right PPF
for each system.

Chapter 9. Multiple Systems and Product Versions 193

:COMPNAME. CP
*===
*====> * Temporary override of CP component

| *====> * in PPF of product 6VMVMB22.
*===
*====> * The following overrides have been applied:
*===
*====> * Override CP from the CPSYSB $PPF.
*===

...
:CP.

| :PRODID. 6VMVMB22%CP
...

| *==
* Control Parameters
*==
:CNTRLOP. UPDATE
*:CNTRLOP.

* TAG VALUE(S)
*--------- ---------

...
:USEREXIT. SEND_B * SYS B User exit EXEC called for
*:USEREXIT. * User exit EXEC called for

...

Figure 94 (Part 1 of 2). CPSYSB PPF

194 VMSES/E Primer

...
*==
* Variable definitions
*==
:DCL.
*&LMODZ LINK MAINT 2C4 2C4 MR * Disk for local mods
&LMODZ LINK MAINT B2C4 B2C4 MR * SYS B Disk for local mods
&SAMPZ LINK MAINT 2C2 2C2 MR * Sample files
&DELTY LINK MAINT 2D6 2D6 MR * CP service
&DELTZ LINK MAINT 2D2 2D2 MR * CP service
*&APPLX LINK MAINT 2A6 2A6 MR * Aux & software inventory files
&APPLX LINK MAINT B2A6 B2A6 MR * SYS B Aux & software inventory files
*&APPLY LINK MAINT 2A4 2A4 MR * Aux & software inventory files
&APPLY LINK MAINT B2A4 B2A4 MR * SYS B Aux & software inventory files
*&APPLZ LINK MAINT 2A2 2A2 MR * Aux & software inventory files
&APPLZ LINK MAINT B2A2 B2A2 MR * SYS B Aux & software inventory files
&BAS2Z LINK MAINT 194 194 MR * Install disk for object files
&BAS3Z LINK MAINT 394 394 MR * CP source and macro definition
*&BLD2Z LINK MAINT 193 193 MR * CMS system tools
&BLD2Z LINK MAINT B193 B193 MR * SYS B CMS system tools
*&BLD5Z LINK MAINT 19D 19D MR * Help disk
&BLD5Z LINK MAINT B19D B19D MR * SYS B Help disk
*&BLD6Z LINK MAINT 490 490 MR * Test CMS system disk
&BLD6Z LINK MAINT B490 B490 MR * SYS B Test CMS system disk
*&BLD7Z LINK MAINT 493 493 MR * Test CMS system tools
&BLD7Z LINK MAINT B493 B493 MR * SYS B Test CMS system tools

...
*==
* Mdisk/Directory Access -define symbolic disk names
*==
:MDA.
*STRINGNAME MINIDISKS
*---------- ---------
LOCALMOD 2C4 * Disk for local mods
LOCALSAM 2C2 * Sample files
APPLY B2A6 B2A4 B2A2 * AUX & SOFTWARE INVENTORY

* files
DELTA 2D2 * CP SERVICE
BUILD7 B493 * Test CMS system tools
BUILD6 B490 * Test CMS system disk
BUILD5 B19D * Help disk
BUILD2 B193 * CMS system tools

...
:END. * End of the definitions for CP component

Figure 94 (Part 2 of 2). CPSYSB PPF

Chapter 9. Multiple Systems and Product Versions 195

196 VMSES/E Primer

Appendix A. Comparing VMSES/E to Previous Systems

This appendix is intended as an update for systems programmers familiar with
previous VM systems.

The VM systems considered here are:

• VM/SP (and HPO) Release 5

• VM/SP (and HPO) Release 6

• VM/XA SP Releases 2.0 and 2.1

| • VM/ESA Release 1.0 370 Feature and VM/ESA Release 1.5 370 Feature

| • VM/ESA Release 1.0 ESA Feature, VM/ESA Releases 1.1, 2, 2.1, and 2.2

These can be grouped into three “generations” of VM operating systems:

• Pre-VMSES VM: VM/SP Release 5 and VM/HPO Release 5

• VMSES VM: VM/SP Release 6, VM/HPO Release 6, VM/XA SP Release 2 and
2.1, and VM/ESA Release 1.0 (both 370 and ESA features)

| • VMSES/E VM: VM/ESA Releases 1.1, 2, 2.1, 2.2, and VM/ESA Release 1.5 370
| Feature

As we know, VMSES/E has three primary functions:

• Product installation

• Service application

• Software Inventory management

In a task-oriented approach, we briefly inventory the primary tools available in
the several VM “generations” to perform these functions. Then we highlight the

| differences between VMSES and VMSES/E. This appendix also includes two
| reference tables:

| • Table 9 on page 202 compares installation and service tools, by function,
| and allows you to quickly select the correct VMSES/E tool.

| • Table 10 on page 203 shows in which VM/ESA Release VMSES/E functions
| become available.

| The following manuals contain additional information:

| • VM/ESA: Conversion Guide and Notebook for VM/SP, VM/SP HPO and
| VM/ESA 370 Feature

| • VM/ESA: Conversion Guide and Notebook for VM/XA SP and VM/ESA

Pre-VMSES VM
These systems did not have any consistent form of product installation and
service. Also, product and service information was scarce and diluted.

 Copyright IBM Corp. 1992, 1993, 1994 197

VM System Installation
ITASK was the main installation tool. It invoked other EXECs such as SPLOAD
and SPGEN, and commands such as FORMAT.

VM/IS constitutes an exception because the DDR command and other tools, such
as INSTPKG and MIGAID, were used instead.

Program Product Installation
INSTFPP was the high-level manager for product installation under VM. At
installation time it could be used after the (optional) execution of the DIRECGEN
EXEC. The DIRECGEN EXEC performed many useful modifications in the
VMUSERS DIRECT file, based on the PROGPROD PARMLIST file.

VM System Service
The tools used depended on the type of service you had, corrective, preventive,
ZAPs, or local updates. However, the most common tool was VMSERV EXEC,
which was used with the Preventive Service to control the individual service
EXECs on the system PUT. In addition, a great deal of manual work had to be
done. Each product had its own disks and service methods, which lead to
confusion.

Servicing SNA Products
The service programs used were VMFMERGE, VMFREMOV and VMFZAP. A disk
structure similar to that of VMSES was implemented, which resulted in an easier
service process.

Software Inventory
These systems did not have any tools or structure in this area. However, some
EXECs generated some useful, yet incomplete, files. For example, DIRECGEN
produced a DIRECGEN HISTORY file, INSTFPP produced a PROD LEVEL file, and
VMSERV originated a SERVICE DISKMAP file.

VMSES VM
These systems saw the introduction of a service tool, mainly for use by the VM
SCP itself.

VM System Installation
ITASK was the main installation tool. It used other EXECs such as SPLOAD and
VMFBLD, and commands such as FORMAT.

Once again, VM/IS constitutes an exception. It mainly used the DDR command
and other tools, such as INSTPKG and MIGAID.

Program Product Installation
INSTFPP was the high level manager for product installation under VM. At
installation time it could be used after the (optional) execution of DIRECGEN,
which performed many useful modifications in the VMUSERS DIRECT file, based
on the PROGPROD PARMLIST file.

198 VMSES/E Primer

VM System Servicing
This was the first appearance of VMSES. The service process was defined as
executing three major tasks:

• Receiving the service

• Applying the service

• Building the serviced objects

VMFREC, VMFAPPLY, and VMFBLD were the main EXECs in this new process.

Servicing SNA Products
The service programs used were VMFMERGE, VMFREMOV, and VMFZAP. A disk
structure similar to the one of VMSES was implemented. This structure was
separate from the VMSES one.

Software Inventory
When compared to previous systems, VMSES provided a substantial quantity of
new information. However, there was not a truly reliable software inventory. By
using the FILELIST command, one could easily list the PTFs and APARs installed.
Also, some EXECs generated some useful, yet incomplete, files. For example,
DIRECGEN produced a DIRECGEN HISTORY file and INSTFPP produced a PROD
LEVEL file.

VMSES/E VM
This release marks the appearance of a true Installation and Service tool, both
for the VM SCP and program products.

VM System Installation
VMFINS EXEC is used. Refer to “VMFINS Command” on page 83 for a
discussion of its many and powerful options. However, current offerings rely on
a process named flex-DDR. “Installing VM/ESA” on page 18 discusses the
flex-DDR process.

Program Product Installation
Once again, VMFINS is used. Some of its operands, such as MIGRATE and
DELETE, give this tool a scope and flexibility that INSTFPP EXEC never had.
Please note that program products that are not supplied in PDI or VMSES
formats still use INSTFPP.

VM System Servicing
VMFREC, VMFAPPLY, and VMFBLD are the main EXECs in this process.
However, their roles have been revised and redefined, resulting in easier
processing and a net performance improvement.

Appendix A. Comparing VMSES/E to Previous Systems 199

Servicing SNA Products
The service programs still used are VMFMERGE, VMFREMOV, and VMFZAP, with
a disk structure similar to, but independent of, the VMSES/E structure.

Software Inventory
Now a real Software Inventory is provided. Its contents are updated during the
installation and service tasks, and there is an invaluable tool to help manage the
Software Inventory: the VMFSIM EXEC. It is described in Chapter 3, “Software
Inventory” on page 37.

Differences Between VMSES and VMSES/E
A detailed discussion of the differences between VMSES/E and VMSES is beyond
the scope of this publication. Here we will highlight only the major differences:

• Many new features and enhancements were added to VMSES/E, when
compared with the old VMSES.

• Tools and structures such as VMFINS, VMFSIM, and the Software Inventory,
were introduced with VMSES/E.

• The most important differences can be pointed out in the three major service
application tools.

VMFREC
VMFREC has been assigned one simple task: read materials from the installation
and service media and place them on a designated disk. During product
installation, VMFINS calls VMFREC. During product service, it is directly called
by the user, and its job is only to read PTFs from the tape (or electronic
envelope) and load them into the DELTA disks.

The heavy I/O involved to obtain PTF/APAR history, and other requisite
information, has been reduced with the PTFPART files and Version Vector tables
introduced by VMSES/E.

The part handlers called by VMFREC are very selective in what they load from
the VMSES/E formatted tapes. To attain that selectivity, the part handlers get
their information from the Software Inventory. For example, neither usable forms
nor any PTF flagged as “committed” in the Receive Status table is loaded.

Also, the merge function that the old VMFREC performed has been deleted.
Judgement of when to perform that operation, and its control, now lies with the
user, and a new tool, VMFMRDSK EXEC, is supplied. The VMSES/E commands
do not call VMFMRDSK.

VMFAPPLY
A new algorithm has been introduced in the apply process. Performance is the
keyword that characterizes the major enhancements VMFAPPLY received with
its new version.

File mode numbers are no longer used as indicators of apply status. That
information is kept in the Software Inventory, and VMFAPPLY fetches it from
there.

200 VMSES/E Primer

Now there is a true Exclude list. PTFs listed there will not be applied even if
they are requisites of PTFs on the Apply List.

Another important capability of VMFAPPLY is the TEST option, which enables a
very accurate planning of the apply process.

VMFBLD
VMSES/E implements a very useful file: the product Select Data file, which
contains information about which parts have been serviced. This file is built, or
updated, during the apply process.

Note: A similar concept applies to saved segments support.

VMFBLD gets information from that file, so it can rebuild only the objects with
serviced parts. This saves a great deal of time.

Yet another new performance capability is the FASTPATH option, which permits
reusing the nucleus load list when only HCPRIO or HCPSYS have been changed.

Also new, build lists specify how to build objects. The old load lists are now
called Format 1, but remain unchanged. Format 2 build lists are new and allow
the definition of many different objects, and their build options, on the same list.
Format 3 build lists, introduced in VM/ESA Release 2, support building of
libraries.

VM/ESA Release 2 introduced many other enhancements, such as, support for
saved segments, object requisites, global libraries specification, object definition
change detection, and building the CP nucleus as a CMS module file.

Summary Tables
If you are familiar with servicing one of the previous VM systems, you can use
Table 9 on page 202 as a quick guide to locate the correct VMSES/E tool for a
given action.

| Table 10 on page 203 shows major VMSES/E functions per VM/ESA release, so
| you can easily find whether a function is available on your system.

Appendix A. Comparing VMSES/E to Previous Systems 201

Table 9. Comparing VMSES/E and Previous Systems Tools

Task Pre-VMSES VMSES VMSES/E

Installation
VM System

Install ITASK ITASK VMFINS (•) Flex-DDR (•)

Migrate

Delete VMFINS

 Program Products

Plan VMFINS

Install
DIRECGEN+INSTFPP+ DIRECGEN+INSTFPP+

VMFINS

Migrate
+INSTFPP +INSTFPP

VMFINS

Delete VMFINS

New Copy
+ I N S T F P P + + I N S T F P P +

VMFINS

Service
 VM System

Merge VMFREC VMFMRDSK

Receive
or VMSERV (•) VMFREC VMFREC

Apply VMFREC/VMFAPPLY VMFAPPLY

Build
VMFBLD + VMFBLD ()

 Program Products

Merge VMFREC VMFMRDSK (•)

Receive
or VMSERV (•) or VMSERV (•) VMFREC (•)

Apply
service EXEC + service EXEC +

VMAPPLY (•)

Build
service EXEC + service EXEC +

VMBLD (•)

 Software Information

Tools FILELIST + XEDIT FILELIST + XEDIT VMFSIM +
VMFQOBJ + VMFINFO (•)

Notes:

Manual effort

() Manual effort only on specific parts
• VM/ESA Release 1.1 and VM/ESA Release 2
• VM/ESA Release 2 and above
• If PUT tape
• If VMSES/E product

202 VMSES/E Primer

Table 10. VMSES/E Function Availabil i ty per VM/ESA Release

Function Description Rel.
1.5 370
Feat.

Rel.
2.2

Rel.
2.1

Rel. 2 Rel.
1.1

Installation

File pool flexibil ity √

Service
 Local service

LOGMOD option √ √ √

OUTMODE and $SELECT options (VMFASM, VMFHASM,
VMFHLASM, VMFNLS, and VMFEXUPD)

√

VMFEXUPD √

CP load list modification (GENCPBLS) √

 Standard service

High Level ASSEMBLER support √ √ √ √ √ (•)

PSU/RSU planning, local service identification √

VMFPPF multi-compile √

Building

MACLIB, TXTLIB, and LOADLIB √ √ √ √ √ (•)

DOSLIB √ √

CSLLIB √ √ √

Support of all TXTLIB options √ (•) √ √ (•) √ (•) √ (•)

Enhanced version support for parts √ √ √ √

Object build requirements √ √ √

Object definition change detection √ √ √ √

Generated object support √ √ √

CP configurabil i ty √ √ √

Test build and VMFBLD LIST operand √

 Software Inventory

VMFQOBJ and VMFINFO √ √ √ √

 Saved segments support

Segment build support √ √ √

VMFSGMAP √ √ √

Notes:

• Requires APAR VM54803
• Requires APAR VM54804
• Requires APAR VM57453
• Requires APAR VM57429

Appendix A. Comparing VMSES/E to Previous Systems 203

204 VMSES/E Primer

Appendix B. Product Packaging and Distribution Media Formats

In today′s market, there is a great diversity of vendors and products. The way
they are packaged for installation and service has evolved over the years, so
that there are many product-unique formats available today.

This appendix summarizes the different product packaging and distribution
media formats supported by VMSES/E.

Note: The flex-DDR tape format is not covered here. See VM/ESA: Installation
Guide for such information.

Distribution Media
VMSES/E supports three media types: tape (either reel or cartridge), CD-ROM
(see “CD-ROM” on page 17), and electronic envelopes (see “Electronic
Envelopes” on page 17).

Using CD-ROM requires special software that makes the CD-ROM appear to the
system as a tape. Therefore, for simplicity, in the following sections we employ
the term “tape” to refer to tapes, CD-ROMs, and electronic envelopes.

| Product Formats and Naming Conventions
| There are several different installation and service conventions existing amongst
| VM program products. The following sections detail the formats, and review the
| conventions required to allow a flat VMSES/E name space. Without a single
| format, and adherence to VMSES/E control files naming standards, VMSES/E will
| never be able to distinguish the hundreds of program products at the time when
| they will be all serviced by VMSES/E.

Product Formats and Product Packaging Formats
| A product format defines the control information required to automate the
| installation and servicing of products.

| VMSES/E handles the following types of product formats:

| • VMSES/E

| • Non-VMSES/E (INSTFPP)

| The VMSES/E format enables VMSES/E to perform a more extensive set of
| functions. Products using this format include two files containing product
| definition and control information: the Product Parameter File (prodid $PPF) and
| the PRODPART file (prodid PRODPART). This information enables the VMFINS
| command to execute the plan, install, migrate, build, and delete functions.

| Installation of non-VMSES/E-formatted products is supported via INSTFPP. Thus,
| VMFINS calls INSTFPP to do all processing, and records some information on the
| system-level Software Inventory.

| A product packaging installation format defines the structure and control
| information of the distribution media used to install the product. VMSES/E
| handles the following product packaging installation formats:

 Copyright IBM Corp. 1992, 1993, 1994 205

| • VMSES/E

| • Parameter Driven Installation (PDI)

| • INSTFPP

| • Other (for non-VMSES/E-formatted products shipped in separate tapes).

| A product packaging service format defines the structure and control information
| of the distribution media used to service the product. VMSES/E handles the
| following product packaging service formats:

| • RSU, for VMSES/E-formatted products only. VMFINS does the processing.

| • PUT, for non-VMSES/E-formatted products. VMSES/E calls VMSERV to do the
| actual processing.

| • COR, for VMSES/E-formatted products. VMFREC does the processing.

| • COR, for non-VMSES/E-formatted products only. Processing is defined by
| the product.

| VMSES/E Enabled Program Product Conventions
| Each product has a user ID from which installation and service are done. Each
| product will also have its own set of service disks. Segments can be built from
| the product user ID or from a central user ID that you can set up. See “Building
| Segments of Multiple Products from One User ID” on page 180 for these
| instructions.

| There is a set of general rules that program products are encouraged (but not
| forced) to follow. Here is a brief synopsis for a product:

| 1. Each product is assigned a 3-character product prefix.

| 2. The prodid for a product is its product number followed by a letter. The
| letter changes for each release of the product. The prodid is the file name of
| the PPF and the PRODPART files.

| 3. Each product has its own user ID that it uses for installation and service.
| The user ID name is a “P” followed by the prodid with the first character of
| the prodid removed. The user ID will need to be class E if it will be used to
| build segments; otherwise, it usually is class G. The user ID also owns the
| product ′s disks. If you have set up a separate user ID from which to build
| segments, that user ID will be given links to the product disks or access to
| its directories.

| 4. Each product has 2 components, one for using minidisks for the product
| disks and one for using SFS directories. The minidisk component name is
| the product acronym. The SFS component name is formed by concatenating
| SFS to the product acronym.

| 5. Each product has the following service disks with the specified default
| addresses for the minidisks and the default directory names for SFS.

| Note: The comp variable is the minidisk component name (not the SFS
| component name).

206 VMSES/E Primer

| In addition,

| • Each product shares the 51D and the 19E disks.
| • PPF and PRODPART files are placed on the 51D.
| • The 19E disk can be used for the product′s general user code.

| 6. PPF values also have an established relationship.

| • Apply, build, receive and product IDs are equal (appid = bldid = recid
| = prodid).
| • Apply and exclude list names equal the product ID.
| • Control file name (cntrl) equals the 3-character product prefix followed by
| VM.
| • Each product chooses their own PTF and APAR prefixes.

| 7. File names for product parts begin with the 3-character product prefix.

| Build list file names begin with the 3-character product prefix followed by BL
| for regular build lists or SB for segment build lists.

| An example for the program product LE/370 Version 3 Release 2 is as follows:

| Disk Name| Address| Directory

| LOCALSAM| 2C2| VMSYS:userid.comp.LOCAL

| BASE1| 2B2| VMSYS:userid.comp.OBJECT

| DELTA| 2D2| VMSYS:userid.comp.DELTA

| Alternate APPLY| 2A6| VMSYS:userid.comp.ALTAPPLY

| Production APPLY| 2A2| VMSYS:userid.comp.PRODAPPLY

| Test Build| N/A| N/A (no assigned default)

| Production Build| N/A| N/A (no assigned default)

Appendix B. Product Packaging and Distribution Media Formats 207

| Item| Value for product LE/370 Version 3
| Release 2

| 3-character product prefix| CEE
| Product number| 5688198
| prodid| 5688198C
| PPF file| 5688198C PPF
| PRODPART file| 5688198C PRODPART
| appid, bldid, recid| 5688198C
| userid| P688198C
| cntrl| CEEVM
| PTF prefix| UN
| APAR prefix| PN
| Disk component| LE370
| SFS component| LE370SFS
| LOCALSAM disk| 2C2
| LOCALSAM directory| VMSYS:P688198C.LE370.LOCAL
| BASE1 disk| 2B2
| BASE1 directory| VMSYS:P688198C.LE370.OBJECT
| DELTA disk| 2D2
| DELTA directory| VMSYS:P688198C.LE370.DELTA
| Alternate APPLY disk| 2A6
| Alternate APPLY directory| VMSYS:P688198C.LE370.ALTAPPLY
| Production APPLY disk| 2A2
| Production APPLY directory| VMSYS:P688198C.LE370.PRODAPPLY

Installation Media Formats
| There are four ways in which the different formats are packaged within the
| distribution tapes. They have the following characteristics:

| • VMSES/E Installation Tape

| − Logical tape description file

| − Multi-volume logical tape (products can span more than one volume)

| − Only VMSES/E products

| • Parameter Driven Installation (PDI) Tape

| There are two types of PDI tapes: Merged, and Stacked Product Tapes. Both
| offer:

| − System Offering style table of contents

| − A consistent tape format for all products included

| − Support for both VMSES/E and non-VMSES/E products

| − Single volume logical tape (a product must be wholly contained in a
| single physical tape)

| • INSTFPP Installation Tape

| There are two types of INSTFPP tapes: Merged, and Stacked Product Tapes.
| Both offer:

| − Table of contents

| − A consistent tape format for all products included

| − INSTFPP install format only (no support for VMSES/E products)

208 VMSES/E Primer

| This tape format can no longer be ordered. The current offering is SDO.

| • Other formats.

| The format and installation method are defined by the product.

VMSES/E Installation Tape
| This tape format is used both for the Refreshed Product Tapes (RPT) and
| Recommended Service Upgrade (RSU) tapes. The logical tape can have one or
| more physical tape volumes, and includes special files detailing the logical tape
| structure:

| • Tape Descriptor File

| Is a high-level mapping of the products per tape volume. As an example,
| Figure 95 on page 210 shows the actual contents of the Tape Descriptor File
| (TDF) for the VM/ESA Release 1.1 product tape. Although VM/ESA Release
| 1.1 is used, this structure is valid for all VMSES/E-formatted products.

| • Product Contents Directory

| Lists, for a product, the logical files included in each volume. Figure 95 on
| page 210 also shows the actual Product Contents Directory (PCD) file for the
| CMS Component in the VM/ESA Release 1.1 product tape.

| • Product Identifier File

| Lists, for a product, the logical files included in each volume.

VMSES/E Product Identifier File
| The RPT and RSU contain a file with a file ID of prodid cvrmnns. It is called the
| Product Identifier File, and the file type is used as a set of indicators:

| Indicators Description
| c 0 for an independent product; 1 for a co-requisite product
| v Version number
| r Release number
| m Modification level
| nn Number of tape files in the product
| s 1 for a product supported by VMSES/E; blank for a product not
| supported by VMSES/E

| This file′s contents are not important. The VMSES/E functions use only the file′s
| file ID:

| • The file name is used to identify the product.

| • The file type further characterizes the product and the “nn” value is used to
| help position the tape. In previous releases, this was not always enforced.
| Figure 95 on page 210 shows this file for CMS in VM/ESA Release 1.1.

Appendix B. Product Packaging and Distribution Media Formats 209

Tape Descriptor File for VM/ESA Release 1.1 Product Contents Directory for CMS

 INS yynn 6VMVMA11 $INSyynn

 * VM ESA 1.1 Installation Tape *
 VOL01 OF 04 * Product Contents Directory
 :VOL01. *
 INS FILES 02 :VOL03.
 6VMVMK11 HDR 02 :CMS.
 6VMVMK11 VMSES 10 SYSSAMP
 6VMVMB11 HDR 02 AXLIST
 6VMVMB11 CP 12 PARTLST
 :VOL02. DELTA
 INS FILES 02 APPLY
 6VMVMB11 HDR 02 TOOLS
 6VMVMB11 CP 02 BASE
 6VMVMI11 HDR 02 SYSTEM
 6VMVMI11 DV 10 :VOL04.
 :VOL03. HELP
 INS FILES 02 NCHELP
 6VMVMA11 HDR 02 MACRO
 6VMVMA11 CMS 08 SOURCE
 :VOL04.
 INS FILES 02
 6VMVMA11 HDR 02
 6VMVMA11 CMS 04
 6VMVMF11 HDR 02
 6VMVMF11 REXX 09 Product Identifier File for CMS
 6VMVML11 HDR 02
 6VMVML11 GCS 10 6VMVMA11 0101101
 6VMVMH11 HDR 02
 6VMVMH11 TSAF 08 6VMVMA11 VM/ESA CMS COMPONENT
 6VMVMD11 HDR 02 * CONTAINS IBM COPYRIGHTED MATERIALS *
 6VMVMD11 AVS 09

Figure 95. TDF and PCD Files from VM/ESA Release 1.1 Installation Tape

In the example, the TDF indicates that CMS has eight product files on Volume 3,
and four product files on Volume 4. The PCD details the contents of these files.
The tape file names in the PCD must match the names defined in the TAPEFILE
(first) column of the RECINS section of the PPF.

VMSES/E Installation Tape Format
Figure 96 on page 211 shows the layout of a VMSES/E-formatted product tape.

| Please note that, although VM/ESA Release 1.1 is used as an example, the tape
| structure applies to any VMSES/E-formatted product.

210 VMSES/E Primer

First Volume

 INS yynn (TDF)
 Installation Tools

 prodid1 $PPF
 prodid1 MEMO (3)
 prodid1 PRODPART

.
(1) (2) . Continuation Volumes

.
 prodidN $PPF
 prodidN MEMO (3)
 prodidN PRODPART INS yynn (TDF)

TM TM
 prodid1 cvrmnns prodidI+1 cvrmnns
 prodid1 $PPF prodidI+1 $PPF
 prodid1 MEMO (3) prodidI+1 MEMO (3)
 prodid1 PRODPART prodidI+1 PRODPART

. .

. .

. .
 prodidI cvrmnns prodidN cvrmnns
 prodidI $PPF prodidN $PPF
 prodidI MEMO (3) prodidN MEMO (3)
 prodidI PRODPART prodidN PRODPART

TM TM
 prodid1 cvrmnns prodidI+1 cvrmnns
 prodid1 $INSyynn (PCD) prodidI+1 $INSyynn (PCD)

TM TM
 prodid1 MEMO (3) prodidI+1 MEMO (3)

TM TM
Product 1 Code Product I+1 Code

TM TM
. .
. .
. .

TM TM
 prodidI cvrmnns prodidN cvrmnns
 prodidI $INSyynn (PCD) prodidN $INSyynn (PCD)

TM TM
 prodidI MEMO (3) prodidN MEMO (3)

TM TM
Product I Code Product N Code

TM TM

Notes:

• On RSU tapes, the first physical tape file contains a
bcompname SRVAPPS file per product.

• On RSU tapes for VM/ESA Release 2.2, the first physical tape file
contains a appid VVTPSU file per product

• Starting with VM/ESA Release 2.2, the Memo to User files are empty.
They are retained for compatibility only. The information they used to contain
can now be found in the Program Directory and Product Bucket that accompany
the product distribution media.

Figure 96. Format of VMSES/E Refreshed Product Tape and RSU Tape

Appendix B. Product Packaging and Distribution Media Formats 211

VM/ESA SDO Installation Tapes (PDI)
SDO tapes can contain both VMSES/E and non-VMSES/E products. Each product
is comprised of a set of tape files, here called a logical tape. The SDO format
allows grouping of several logical tapes in one set of real tapes.

SDO Product Identifier File
These tapes contain a file with a file ID of “Iprodid 0vrmnnff.” It is called the
Product Identifier File, and the file type is used as a set of indicators:

Indicators Description
0 Constant (zero)
v Version number
r Release number
m Modification level
nn Number of tape files in the product
ff Feature ID code.

Note: If a product cannot fit in a single tape volume, it is split into a number of
features.

SDO Tape Formats
SDO tapes may contain one or more products. The set of tape files for a product

| is known as a “logical tape.” Logical tape formats for VMSES/E and INSTFPP
| products are shown in Figure 97.

| Note: For VM/ESA Release 2.2 the prodid MEMO files are empty.

| INSTFPP Product VMSES/E Product

|
| Iprodid 0vrmnnff Iprodid 0vrmnnff
| Product Post processing EXECs Product Post processing EXECs
| Iprodid EXEC (Instal EXEC) Product Pre Install Files
| Product Pre Install Files prodid 0vrmnns
| TM prodid PRODPART
| Iprodid MEMO prodid PPF
| TM prodid $PPF
| Product Code Start prodid $INS0000
| TM prodid MEMO
| . TM
| . Iprodid MEMO
| . prodid 0vrmnns
| TM prodid MEMO
| Product Code End TM
| TM Product Code Start
| TM TM
| .
| .
| .
| TM
| Product Code End
| TM
| TM
|

| Figure 97. SDO Logical Tape Formats

212 VMSES/E Primer

| Two SDO sub-formats are supported:

| • Merged tape, shown in Figure 98 and

| • Stacked tape, shown in Figure 99.

| SDO merged tapes look like the second volume of a SDO stacked tape.

|
| TM
| Product 1 Logical Tape
| TM
| .
| .
| .
| TM
| Product N Logical Tape
| TM
| TM
|

| Figure 98. SDO Merged Tape Format

First Volume Continuation Volumes

 Iprodid1 0vrmnnff TM
Product 1 Post processing EXECs Product I+1 Logical Tape
prodid1 PRODPART TM
prodid1 $PPF .

. .

. .

. TM
 IprodidI 0vrmnnff Product N Logical Tape

Product I Post processing EXECs TM
 IprodidI EXEC TM

.

.

.
 IprodidN 0vrmnnff

Product N Post processing EXECs
prodidN PRODPART
prodidN $PPF

TM
 Iprodid1 MEMO

.

.

.
 IprodidN MEMO

TM
Product 1 Logical Tape

TM
Product I Logical Tape

TM
TM

Figure 99. SDO Stacked Tape Format

Appendix B. Product Packaging and Distribution Media Formats 213

INSTFPP Installation Tapes
INSTFPP tapes have the same format as VM/ESA SDO tapes. Both stacked and
merged product tapes exist. The difference is that INSTFPP tapes do not have
$PPF or PRODPART files. Therefore, they do not support VMSES/E products.

VMSES/E Service Tapes
VMSES/E can only service products in VMSES/E format. Therefore, only this

| format will be discussed here. The VMSES/E recommended service application
| process is the product service upgrade (PSU), which employs recommended
| service upgrade (RSU) tapes. This tape has the same format as the installation
| tape. Some products may in addition use refreshed product tapes (RPTs).

However, VMSES/E supported products can also be serviced from Corrective
Service (COR) tapes.

Note: COR service is not available on CD-ROM.

All other product formats are serviced from COR tapes, and employ their own
service procedures. The format of these tapes may differ significantly from the
VMSES/E COR format.

Program Level File
The Program Level File, present in service tapes, resembles the Product
Identifier File of the installation tapes. It has a file ID of prodid 0vrmnns, and the
file type also serves as a set of indicators:

Indicators Description
0 Constant (zero)
v Version number
r Release number
m Modification level
nn Number of tape files in the product
s 1 for a product supported by VMSES/E with a PPF; blank for a

product not supported by VMSES/E with a PPF

VMSES/E Service Tape Format
COR tapes format closely resembles the RPT/RSU format. The differences are:

• Instead of a Tape Descriptor File there is a COR Descriptor File. These files
have file IDs of:

COR COR ymdd

“ymdd” is:

y last digit from the year
m month (in hexadecimal, “1” is January, “C” is December)
dd day

So, “3C01” means December 1, 1993.

• There is a Tape Document (named COR DOCUMENT) file describing the
service procedure.

• There is also one PCD per product. The file ID is prodid $PUTnnnn (or
prodid $CORymdd), and the structure is close to that of the installation PCD.

Figure 100 shows the layout of a VMSES/E service tape.

214 VMSES/E Primer

| COR ymdd (TDF)
COR DOCUMENT

TM
 prodid1 0vrmnns
 prodid1 MEMO

.

.

.
 prodidN 0vrmnns
 prodidN MEMO

TM
 prodid1 0vrmnns
 prodid1 $CORymdd (PCD)

TM
Product 1 Service Start

TM
.
.
.

TM
Product 1 Service End

TM
.
.
.

TM
 prodidN 0vrmnns
 prodidN $CORymdd (PCD)

TM
Product N Service Start

TM
.
.
.

TM
Product N Service End

TM

Figure 100. Layout of the VMSES/E Service Tape

Examples of the Tape Descriptor file and Product Contents Directory file are
shown in Figure 101 on page 216. Though the examples are for VM/ESA
Release 1.1, they remain valid. The tape file names in the PCD must match the
names defined in the TAPEFILE (first) column of the RECSER section of the PPF.

Appendix B. Product Packaging and Distribution Media Formats 215

Tape Descriptor File for VM/ESA Release 1.1 Product Contents Directory for CMS

 COR ymdd 6VMVMA11 $CORymdd

 VM Corrective Service Tape ymdd ... :VOL01.
 VOL01 of 01 :CMS.
 :VOL01. AXLIST
 COR FILES 02 PARTLST
 6VMVMB11 HDR 01 UPDT
 6VMVMB11 CP 05 TEXT
 6VMVMA11 HDR 01 MISCREPL
 6VMVMA11 CMS 05

Figure 101. TDF and PCD Files from VM/ESA Release 1.1 Corrective Service Tape

216 VMSES/E Primer

Appendix C. Removing Service

This appendix describes two possible ways of removing an applied PTF from the
system:

• By level

• Selectively

Normally, the need to remove a PTF arises because it is in error, and no
corrective or superseding service is available. Further, the PTF may have been
applied as part of a functional upgrade, and you may be interested in keeping
some of the newly introduced function. The choice of which method to use will
thus depend on how urgently you need the service being applied.

The appendix concludes with a discussion on removing local service.

Back-Out by Level
You will find a discussion of this method, as well as the details of each of the
steps required, in VM/ESA: Service Guide.

If the product was stable before the service, the easiest method is to simply
“back-out” (or remove) the entire new level of service. This approach depends
on whether the service applied is:

• In testing mode

• In production mode

In order to better understand the method please refer to Figure 102 as we
proceed in the discussion. To improve clarity, a generic product and fictitious
“service levels,” numbered 101, 102, and 103, are used. Each level is really a
set of PTFs. Also, each higher level includes the PTFs in the preceding one. For
example, level 102 includes all PTFs in level 101.

Figure 102. Service Removal Steps

Step Description
DELTA APPLY BUILD

Alt Prod Alt Int Prod Alt Prod

1 Installation 101 101 101

2 Receive 102 102 101 101 101

3 Apply 102 102 101 102 101 101

4 Build 102 102 101 102 101 102 101

5 Rec/Apply/Build COR 1 0 2 + C 101 1 0 2 + C 101 1 0 2 + C 101

6 Merge, move to production 1 0 2 + C 1 0 2 + C 101 1 0 2 + C 1 0 2 + C

7 Restore build disk 1 0 2 + C 1 0 2 + C 101 1 0 2 + C 101

8 More COR service COR 2 1 0 2 + C 102+C2 1 0 2 + C 101 102+C2 102+C2

9 Rec/Apply/Bld 103 103 102+C2 103 102+C2 101 103 102+C2

10 Restore production 101 103 102+C2 101 103 101

 Copyright IBM Corp. 1992, 1993, 1994 217

1 Let us suppose the product is installed (from a Refreshed Product Tape) at
service level 101, corresponding to the original code plus some service.

2 IBM has sent you some service (at level 102) and you RECEIVE it into your
alternate DELTA disk.

3 You APPLY the service (into the alternate APPLY disk).

4 You refresh the alternate build disk (see “Refresh” on page 100) then you
BUILD the service (on the alternate build disk).

Now you can test the product. Suppose testing reveals an error. You will
correct it in the following steps:

5 Obtain corrective service for the error, and receive, apply, and build it.
Note that you do not refresh the alternate build disk. Also, do not do a
merge: you do not need to isolate the COR from level 102. You now
resume the normal test.

6 Your test has gone well, so you move the serviced level into production.
You use VMFMRDSK to move down one level the disks in the DELTA and
APPLY strings, and place the alternate build disks into production (see
“Production” on page 108).

Now suppose an error shows up in the production system. It is still easy to
correct:

7 Using the backup done in step 4, restore the production build disk.

8 You repeat step 5 and, having done the testing, step 6.

9 Meanwhile a new service level, 103, arrives, so you:

a Merge down one level, both the DELTA and APPLY strings, to
incorporate the latest COR.

Note: This is important. Be sure to merge only one level, as the
intermediate APPLY level is still under test.

b Receive, apply, build, and start testing level 103.

Unexpectedly, a new error pops up in the production system! Now you cannot
repeat steps 5 and 6: your Alternate APPLY disk has level 103. To complicate
the issue, your backup of the production level 101 has been replaced by the
backup of level 102+C2. Also, you cannot move the new level 103 into
production (either because it has not been tested or because it does not contain
the correction to the error), so you will have to recreate level 101. But how?

The levels 101 and 102+C2 differ only by some objects. You will have to rebuild
those objects at the 101 level. The intermediate APPLY disk has the key to find
those objects: it is the Select Data file (appid $SELECT).

So, you have to run VMFBLD using that Select Data file, but without accessing
the changed parts introduced by the 102 and subsequent levels.

10 The recovery has the following operations:

218 VMSES/E Primer

a To “hide” the levels you will need to code a PPF override that does
not contain them, that is, with those disks removed from the APPLY
string definition.

b Compile the override (let us name it BACKOUT):

vmfppf backout compname

c As you still need the Select Data File, copy it from the intermediate to
the production APPLY disk:

copyfile * $select fm-applyint = = fm-applyprod (olddate replace

d Now you can rebuild the affected objects. Remember to use the ALL
option of VMFBLD, because the objects statuses in the Build Status
table are not SERVICED. You should refer to VM/ESA: Service Guide
for the detailed operations, and possible errors and their solutions.

Note that you were able to restore the 101 production level only because:

• You could identify the objects to rebuild - this is always possible as their
parts are listed in the Select Data File.

• You still had the VVT and AUX files for level 101 - you will not keep these
forever. Look at Figure 102 on page 217: if you merge down one level the
APPLY string, the level 101 in the production disk will be replaced by the
level 102+C in the intermediate disk. And you will have to do it, so you can
apply newer service.

Therefore we recommend that:

• You do a thorough test before committing a level to production.

• You keep the intermediate apply level for some time, instead of merging it
with production at the time you move the alternate build disks to production.

• You keep the backup of the production build disks for one or two extra
levels.

Selective Back-Out
If the problem can be determined to originate with a particular PTF, and no
correction is available, you may wish to remove only that PTF. It is not
impossible to do it, but you will have to be very careful in following all the
required steps.

Once applied, a PTF cannot be re-applied or removed. So, adding it to the
exclude list of its service level and re-applying the service does not work. The
only way is to go back to the service level, preceding the one the PTF belongs to.
Then you can reapply the level the bad PTF belongs too, but this time with the
PTF added to that level′s exclude list.

Before excluding the PTF you should know what you may be risking. Remember
that when a PTF is excluded, all PTFs that have a dependency on it are also
excluded, even if they are in the apply list. You can list those service
dependencies by using the VMFSIM SRVDEP command.

The section “Impact of Backing Out a PTF” on page 226 includes some sample
code that will give you additional information about the dependent PTFs and
respective APARs.

Appendix C. Removing Service 219

Based on the results of the queries, you can then decide whether you want to
exclude just the bad PTF, or if it is better to back out the whole service level.

If you do exclude PTFs, you must check very carefully to ensure that none of the
PTFs are critical to the stability of your system. If you are in doubt contact the
IBM Support Center.

If you wish to exclude the PTF you can perform the following steps:

1 Use the APPLIST option of VMFSIM SRVDEP to create a file (let us name it
MYEXCLST) containing the PTF and its dependencies. This file will be used
as an exclude list. Here is a sample command:

vmfsim srvdep prodid srvreqt * = srvapps * tdata :ptf ptfnum (applist myexclst

2 Change this file′s file type to $EXCLIST.

3 Find the levels of service that do not include the PTF. Use the Software
Inventory query facility to search the Apply Status tables:

vmfsim query prodid srvapps fm-apply tdata :ptf ptfnum

where:

fm-apply is the access mode for a disk in the APPLY string. Check
all disks in the string. Note all disks where the PTF is not
applied.

4 Create a PPF override to change the APPLY string. The changed APPLY
string should have:

a A new, empty, disk as the first disk.

b All disks, from the original string, that do not have the PTF applied
(see 3).

5 Compile the override.

6 Define the new, empty, alternate APPLY disk. This disk replaces all the
disks that have been deleted from the original APPLY string. We will refer
to those disks as the “replaced” disks.

Note: You should keep those disks for now. Later on you may be able to
delete them.

Please note that the “empty” disk may, as a matter of fact, have files in it:
because the disk may be shared by more than one component, it only has
to be empty in terms of files belonging to the product you are dealing with.
As an example, CP and the Dump View Facility share the same APPLY
disks.

It is because of this sharing possibly that we recommend you replace
several disks by one. Another option would be to break that sharing
situation, that is, this product would be isolated in the new disk, and the
other products would remain undisturbed.

If the disk is shared, and is to remain shared, we recommend you do the
following:

a Define a new (target) disk with enough space to contain all of the files
on the source disks.

220 VMSES/E Primer

b Identify all the products that have files on the replaced disks: edit the
VMSES PARTCAT file and make a note of all the different values for
the :PRODID. tag.

c Because this is essentially a disk merge, you should do your copy
starting with the oldest service levels, up to the newest (from RIGHT
to LEFT in the APPLY string definition). For each of the replaced
disks, and for each product (except the one you are backing out)
issue:

vmfcopy * * fm-source = = fm-target (prodid prodid olddate

to copy all the product′s files from one replaced disk to the target
disk.

If the disk is shared but you are creating a private disk for the product, we
recommend you do the following:

a Determine the space occupied by the product′s files in each of the
source disks.

b Define a new (target) disk with space equal to the greatest of the
values above, plus some extra space for future growth.

7 Manually incorporate in the file created in Step 1 above the exclude list of
the current DELTA disk.

8 Simulate the apply step: run VMFAPPLY specifying your exclude list and
the TEST option. An example of the command is:

vmfapply ppf backout compid (test exclist myexclst

9 Check the apply results. Use:

vmfview apply

10 Decide whether you wish to proceed.

This is a critical point in this procedure .

11 Run VMFAPPLY specifying your Exclude list. An example of the command
is:

vmfapply ppf backout compid (exclist myexclst

12 Run VMFBLD to rebuild the product.

13 Test the new version created on the alternate build disks.

14 If test reveals no problems you can place the new product into production.

15 When you feel confident that the new product is error-free you can delete
all the replaced APPLY disks.

Note: If the product was sharing the disks and is now isolated, deleting
here means only to erase the product′s files from the replaced disks.
Remember to use VMFERASE, so the parts catalog stays updated.

Appendix C. Removing Service 221

16 As a final step you might consider changing the minidisk virtual address
(or directory names) so that you will be able to use the original PPF, and
discard the override (if possible).

| Removing a Local Modification
| Occasionally, you might want to remove a local modification. If you receive a
| PTF which fixes a problem for which you had a local modification or if you have
| a local modification that you no longer want applied you could remove the local
| modification.

| The process for removing a local modification depends on whether its parts are
| update or replacement serviced and whether the modification is the latest (top)
| modification.

| In this example, we will remove the local modification L0013 previously applied
| to CMS. We will also assume that the LOCALMOD disk has a file mode of E.

| 1 Access the CMS disks.

| vmfsetup esa cms

| 2 Invoke VMFSIM to determine the parts affected by the local modification
| and what other modifications have been applied to these parts.

| vmfsim query 6vmvma22 vvtlcl e tdata :mod lcl0013 :part
| VMFSIP2480I Results for
| TDATA :MOD LCL0013 :PART
| :PART DMSNGP TXT
| :MOD LCL0015.VL0015DS LCL0013.VL0013DS
| :PART FSOPEN MACRO
| :MOD LCL0013.VL0013DS
| :PART DMSUPD TXT
| :MOD LCL0013.VL0013DS LCL0010.VL0010DS
| :PART GETMAIN CPY
| :MOD LCL0013
| :PART DMSARN TXT
| :MOD LCL0013.VL0013DS

| 3 Then, for each of these parts do the following:

| a If the part is update-serviced (for example, DMSNGP TXT, FSOPEN
| MACRO, DMSUPD TXT, DMSARN TXT):

| • Comment out the entry for the modification in the part′s AUXLCL
| file on the LOCALMOD disk. If there are only comment entries
| left, erase the AUXLCL file. For example, in DMSNGP AUXLCL:

| VL0015DS LCL LCL0015
| * VL0013DS LCL LCL0013

| • If the part has more recent modifications than the modification
| being removed (for example, DMSNGP TXT), XEDIT the source
| part using the CTL option to determine if the updates can still be
| applied. If XEDIT fails, you need to rework the update that no
| longer works. Repeat this process until the XEDIT succeeds and
| the code is correct.

| xedit dmsngp assemble (ctl dmsvm

222 VMSES/E Primer

| • If the part is a macro (for example, FSOPEN MACRO) or if the
| AUXLCL file has only comment records (for example, DMSARN
| TXT), then invoke VMFSIM to remove the modification from the
| part in the local VVT.

| vmfsim logmod 6vmvma22 vvtlcl e tdata :part fsopen macro :mod lcl0013.vl0013ds (delete

| vmfsim logmod 6vmvma22 vvtlcl e tdata :part dmsarn txt :mod lcl0013.vl0013ds (delete

| • If the part is a macro (for example, FSOPEN MACRO), invoke
| VMFQOBJ to determine the names of the build lists of the
| MACLIBs which need to be rebuilt.

| vmfqobj esa cms tdata :object fsopen :libname
| VMFUTL2480I Results for
| TDATA :OBJECT FSOPEN :LIBNAME
| :OBJECT DMSGPI.FSOPEN
| :LIBNAME DMSGPI

| The build list name is DMSGPI, which is shown on the output line
| :OBJECT DMSGPI.FSOPEN.

| b If the part is replacement-serviced (for example, GETMAIN CPY):

| • Invoke VMFSIM to remove the modification from the part in the
| local VVT.

| vmfsim logmod 6vmvma22 vvtlcl e tdata :part getmain cpy :MOD LCL0013 (DELETE

| • If the local modification is not the latest modification, then you
| need to rework all the more recent modifications to remove the
| changes put in by the deleted local modification.

| • If the local modification is for a macro, (for example, GETMAIN
| CPY) invoke VMFQOBJ to determine the names of the build lists
| of the MACLIBs which need to be rebuilt

| vmfqobj esa cms tdata :object getmain :libname
| VMFUTL2480I Results for
| TDATA :OBJECT GETMAIN :LIBNAME
| :OBJECT OSMACRO.GETMAIN
| :LIBNAME OSMACRO
| :OBJECT MVSXA.GETMAIN
| :LIBNAME MVSXA

| The build list names are OSMACRO and MVSXA. This is shown
| on the output lines :OBJECT OSMACRO.GETMAIN and :OBJECT
| MVSXA.GETMAIN.

| 4 Next, recreate the replacement parts without the modification and rebuild
| any maclibs.

| • Add a record for each part to the $SELECT file on the alternate APPLY
| disk. For our example, in 6VMVMA22 $SELECT add:

| :APPLYID. mm/dd/yy hh:mm:ss
| DMSNGP TXT
| FSOPEN MACRO
| DMSUPD TXT
| GETMAIN CPY
| DMSARN TXT

| • Rebuild the affected MACLIBs, if any.

Appendix C. Removing Service 223

| vmfbld ppf esa cms dmsgpi (serviced
| vmfbld ppf esa cms osmacro (serviced
| vmfbld ppf esa cms mvsxa (serviced

| • Re-assemble any ASSEMBLE files if they have a non-comment record
| in the AUXLCL file (otherwise, the IBM text deck will be used). Use the
| appropriate VMFxASM command and specify the LOGMOD and
| OUTMODE LOCALMOD options when running VM/ESA Release 2.2.
| The LOGMOD option removes the modification from the local VVT
| entries for these parts and the OUTMODE option places the results of
| the assembly (DSMNGP TXTL0015 and DMSUPD TXT0010) on the
| LOCALMOD disk. In prior releases, since the OUTMODE option does
| not exist, you must manually copy the assembled parts to the
| LOCALMOD disk.

| vmfhlasm dmsngp esa cms (logmod outmode localmod
| vmfhlasm dmsupd esa cms (logmod outmode localmod

| • Re-create the replacement parts for the remaining update-serviced
| parts (excluding ASSEMBLE file and macros). Use the appropriate
| command (VMFEXUPD, VMFNLS, GENCPBLS) and specify the LOGMOD
| and OUTMODE LOCAL options when running VM/ESA Release 2.2.
| This will also remove the modification from these parts in the local
| VVT. See VM/ESA: Service Guide for an introduction on creating
| replacement parts for local modifications.

| 5 Finally, when all modification parts have been updated, rebuild any other
| affected objects.

| • Invoke VMFBLD to rebuild the objects.

| vmfbld ppf esa cms (serviced

| • If you are confident they will not be needed, erase the local
| modification updates and replacement parts that were generated and
| placed on the LOCALMOD disk.

| erase dmsngp vl0013ds e
| erase dmsngp txtl0013 e
| erase fsopen vl0013ds e
| erase dmsupd vl0013ds e
| erase dmsupd txtl0013 e
| erase getmain cpyl0013 e
| erase dmsarn vl0013ds e
| erase dmsarn txtl0013 e

| Note: This example was for CMS. If you are removing a local
| modification for CP and HCPMDLAT MACRO was affected you could
| also erase HCPLDL VL0013DS.

| 6 You have now completed the removal of a local modification. You will still
| need to put this into production and rebuild any affected segments. See
| the VM/ESA: Service Guide for these instructions.

224 VMSES/E Primer

Appendix D. VMFSIM Exploitation Code Examples

This appendix contains several examples of Software Inventory exploitation. You
can use REXX and CMS Pipelines to write many useful functions.

Before we go on, we will give you a brief introduction to CMS Pipelines, and also
tell you where you can get more information on this function.

CMS Pipelines Introduction
CMS Pipelines is a CMS command introduced in VM/ESA Release 1.1, and it
considerably extends the CMS functional capabilities. For readers familiar with
UNIX** systems, the concept of pipes is well known.

The idea of a pipeline is simple. One has a set of small, simple programs, each
of which does a specific job. All the programs have a standard input device and
a standard output device defined.

To solve a problem, these small programs, called “filters,” are linked together in
a pipeline, where data flows from one “stage” to another.

It is possible to have more than one connection (stream) between stages. This
can lead to quite sophisticated models.

CMS Pipelines comes with over 140 built-in filters that allow you to access disk
files, spool devices and files, and tapes. There are also filters to select,
translate, and combine records.

In CMS Pipelines, you also can write your own filters by using REXX. The files
for these filters have a file type of REXX.

Example
Let us look at a simple example. We want to find out which file mode the virtual
address “111” is accessed as. The following program will find it:

/* ----- QMODE EXEC --- */

Address ′ COMMAND′ /* Bypass EXEC search */

′ PIPE′ ,
′ COMMAND QUERY SEARCH′ , /* Issue CMS command QUERY SEARCH */

, /* and trap output */
′ | locate / 111 /′ , /* locate all lines with ′ 111 ′ */
′ | specs ,′ , /* edit the line: */

′ The 111 disk is accessed as,′ , / * insert some text at the start,*/
′1 word 3 nextword′ , /* and pick word 3 from the */

, /* result line from query search.*/
, /* Put this as next word */

′ | cons′ /* display result on console */

Exit

 Copyright IBM Corp. 1992, 1993, 1994 225

Pipeline Documentation
The PIPE command is standard since VM/ESA Release 1.1. The CMS Pipelines
manuals are:

• VM/ESA: CMS Pipelines User′ s Guide

• VM/ESA: CMS Pipelines Reference

The following manual is highly recommended as an introduction to CMS
Pipelines.

• CMS Pipelines Tutorial

Impact of Backing Out a PTF
This example consists of two parts:

PTFREMOV EXEC Main routine that handles and processes queries to VMFSIM

JOINLN REXX Pipeline filter to select certain types of lines from the VMFSIM
output, and join lines that have spilled.

The PTFREMOV command also calls the PSIMOUT EXEC, but as this EXEC can
be independently used, it is described in “VMFSIM Output Processor” on
page 227.

The PTFREMOV command creates a list of all APARs, with their descriptions, for
the given PTF and its dependents. In this way, you can better evaluate the
impact of removing that PTF from the system.

The syntax of the PTFREMOV command is shown in Figure 103.

.

��──PTFREMOV──ppfname──compname──ptfnum──��

Figure 103. PTFREMOV Command Syntax

Operands

ppfname The filename of the PPF file for this product.

compname The name for the component, as defined in the PPF file.

ptfnum The PTF number.

Figure 104 shows a sample dialog from executing the PTFREMOV exec. The
resulting disk file, ptfnum $BACKOUT, is shown in Figure 105 on page 227.

ptfremov esa cp um22636
Getting dependent PTFs...
Looking for corresponding APAR numbers
Looking for APAR descriptions
To back out PTF UM22636: 3 PTFs (3 APARs) must be backed out.
For details, see file UM22636 $BACKOUT A

Figure 104. PTFREMOV EXEC Sample Output

226 VMSES/E Primer

To back out PTF UM22636: 3 PTFs (3 APARs) must be backed out.

UM22637 VM53461 MP DEFER SERIALIZATION DOES NOT WORK W/DEDICATED CPUS.
UM22639 VM53456 ABENDIOL007 DUE TO VMDCTCRT BEING NEGATIVE.
UM22636 VM53455 MAKE HCPLGN AND HCPUSP SCM.

Figure 105. Sample File UM22636 $BACKOUT

The JOINLN (join line) filter is useful when the value of one or more tag fields is
returned by VMFSIM in several lines. The filter is able to identify all lines
associated with the tag, or tags, and returns them joined in a single line.

The syntax of the JOINLN filter is shown in Figure 106.

.

┌ ┐────────
��──JOINLN─ ───� ┴─:tag─ ──┬ ┬─────────────────────── ───��

└ ┘─(──┤ Options ├─ ──┬ ┬───
└ ┘─)─

Options:
├──KEEP───┤

Figure 106. JOINLN Filter Syntax

Operands

tags One or more tags. Only lines with these tags will be selected.

Options

KEEP The default is to join all spilled lines for the specified tags. The
KEEP option forces the filtered lines to be kept as they are, that
is, not joined.

VMFSIM Output Processor
The PSIMOUT EXEC acts as a post-processor for the output of VMFSIM queries.
It allows you to reformat the output into an acceptable input format when there is
more than one value listed for a tag field.

You may also use this EXEC to filter out only the types of lines that you want; for
example, lines containing one particular tag. PSIMOUT also requires the JOINLN
REXX CMS Pipelines filter.

The syntax of the PSIMOUT command is shown in Figure 107 on page 228.

Appendix D. VMFSIM Exploitation Code Examples 227

.

┌ ┐────────
��──PSIMOUT─ ───� ┴─:tag─ ─┤ Indata ├─ ──┬ ┬─────────────────────── ──────────────────────────────��

└ ┘─(──┤ Options ├─ ──┬ ┬───
└ ┘─)─

Indata:
┌ ┐─SIMDATA──*─

├─ ──┬ ┬─FILE──fn─ ──┼ ┼──────────── ──┤
│ ││ │┌ ┐─*──
│ │└ ┘─ft─ ──┼ ┼────
│ │└ ┘─fm─
└ ┘─STEM──stemid─────────────

Options:
┌ ┐─TYPE─────────

├─ ──┼ ┼────────────── ─TDATA──SORT──TAGOUT──tag───┤
├ ┤─FILE──fn─────
└ ┘─STEM──stemid─

Figure 107. PSIMOUT Syntax

Note that the syntax is similar to that of the VMFSIM QUERY command.

The following options are of particular interest:

TDATA Means that PSIMOUT is to produce output in TDATA format, which
may then be used as input to the next VMFSIM command.

SORT Causes the tag values to be sorted in ascending order.

TAGOUT Allows you to specify the tag name to be used in place of the
original tag, in the generated output.

For example, if the original query listed the DEP tag for a PTF, we
could specify TAGOUT :PTF to get the PTF numbers prefixed by :PTF
on the output.

Erasable Parts for Committed PTFs
Committing PTFs was described in “Receive Service Media Definition (RECSER)
Section” on page 50. Here we present a sample procedure that, given a PTF
number, searches the list of its replacement parts and verifies, for each part,
whether it can be safely erased or not. Two lists of replacement parts are
created: the ones that cannot be erased, and the ones that you might be able to
erase.

The PTF does not have to be committed: this enables you to see what you could
erase before actually doing the commit, so you can evaluate if it is really worth
doing it. The syntax of the PTFCOMIT command is shown in Figure 108 on
page 229.

228 VMSES/E Primer

.

��──PTFCOMIT──ppfname──compname──ptfnum─ ──┬ ┬─────────────────────── ────────────────────────��
└ ┘─(──┤ Options ├─ ──┬ ┬───

└ ┘─)─

Options:
┌ ┐─TERM─────────────

├─ ──┼ ┼────────────────── ──┤
│ │┌ ┐─ptfnum─
└ ┘─FILE─ ──┼ ┼────────

└ ┘─fn─────

Figure 108. PTFCOMIT Syntax

Operands

ppfname The file name of the PPF for this product.

compname The name for the component, as defined in the PPF.

ptfnum The PTF number.

Options

TERM This is the default. The command results are shown on the
virtual console.

FILE This option directs the command output to a file of file type
PTFCOMIT on your A-disk. If a file name is not specified it
defaults to “ptfnum.”

This command also exemplifies the use of the ASTEM operand of the VMFSIM
command. The command uses an internal routine, called TAGVALUE, that
extracts the value for a given tag from an ASTEM reply. You might be able to
incorporate this routine in your own programs. Also, the SIM routine, though
quite simple, might save you some code. An example of the output obtained
when running the PTFCOMIT EXEC is shown in Figure 109.

ptfcomit esa cp um22636

PTFCOMIT Verification started.
PTFCOMIT results for PTF UM22636 on 25 May 1993 at 17:13:10.

Found 3 parts that might be erased.
Found 4 parts that must be kept.

List of parts that you might be able to erase (3 items):
HCPMPD TXT22636
HCPVIR TXT22636
HCPVOU TXT22636

List of parts that MUST BE KEPT (4 items):
HCPKFL TXT22636
CPLOAD EXC22636
HCPLGN TXT22636
HCPUSP TXT22636

PTFCOMIT Process completed.

Figure 109. PTFCOMIT Ouput Example

Appendix D. VMFSIM Exploitation Code Examples 229

Finding the Status of an APAR or PTF
In “5 - List Status of an APAR” on page 152, we showed how to quickly find the
service status for a given APAR. The example was, however, incomplete. The
sample procedure presented here does a thorough verification and produces a
detailed report.

Because the Software Inventory contains status information for PTFs, not for
APARs, the PTF containing the given APAR is used. However, if the PTF has
been superseded, the superseding PTF may be automatically used in its place.
If, instead of the APAR number, you directly specify the PTF number you may
inhibit the automatic search for a superseding PTF. Also note that SFS
directories are explicitly supported.

The syntax of the PTFSTAT command is shown in Figure 110.

.

��──PTFSTAT──ppfname──compname─ ──┬ ┬─ptfnum── ──┬ ┬─────────────────────── ────────────────────��
└ ┘─aparnum─ └ ┘─(──┤ Options ├─ ──┬ ┬───

└ ┘─)─

Options:
┌ ┐─TERm────────────── ┌ ┐─SUP───

├─ ──┼ ┼─────────────────── ──┬ ┬───────── ──┼ ┼─────── ───┤
│ │┌ ┐─servnum─ ├ ┤─SETup─── └ ┘─NOSUP─
└ ┘─FILe─ ──┴ ┴─fn────── └ ┘─NOSETup─

Figure 110. PTFSTAT Syntax

Operands

ppfname The file name of the PPF for this product.

compname The name for the component, as defined in the PPF.

ptfnum The PTF number; if this PTF has been superseded the
superseding PTF will be used instead.

aparnum An APAR number; the procedure will find the corresponding
PTF number and use it in the search.

Options

TERm This is the default. The command results are shown on the
virtual console.

FILe This option directs the command output to a file of file type
PTFSTAT on your A-disk. If a file name is not specified it
defaults to “servnum,” which stands for the given aparnum or
ptfnum.

SETup If specified, invokes the VMFSETUP command.

NOSETup If specified, the VMFSETUP command is not called. If neither
SETUP nor NOSETUP are specified the action depends on the
value of the :SETUP tag of the PPF.

230 VMSES/E Primer

SUP This is the default. An automatic look for superseding PTFs will
be done. If you specify an APAR number this option is
automatically invoked, and overrides any NOSUP option.

NOSUP If specified, and a PTF number was given, it suppresses the
look for superseding PTFs. This allows you to find the status of
a PTF in a system level for which the superseding PTFs might
not even exist.

Figure 111 shows the console log resulting from running PTFSTAT for APAR
VM48166. The associated file generated by PTFSTAT, VM48166 PTFSTAT A, is
shown in Figure 112 on page 232.

ptfstat esa cp vm48166 (file

PTFSTAT Verification for VM48166 started.
PTFSTAT Results will be in file ″VM48166 PTFSTAT A″ .
PTFSTAT Finding PTFs that contain APAR VM48166
PTFSTAT Verification will be based on PTF UM18657
PTFSTAT Finding all APPLY system levels.
PTFSTAT Finding all BUILD lists.
PTFSTAT Finding all objects impacted by this PTF.
PTFSTAT Verifying objects status.
PTFSTAT Process completed.

Figure 111. Console Log of PTFSTAT Execution

Appendix D. VMFSIM Exploitation Code Examples 231

PTFSTAT --
PTFSTAT Results for APAR VM48166 on 1 Mar 1992 at 01:23:31.
PTFSTAT
PTFSTAT Finding PTFs that contain APAR VM48166
PTFSTAT PTF UM18652 was superseded by UM18657
PTFSTAT Verification will be based on PTF UM18657
PTFSTAT The system levels in the following disks will be searched:
PTFSTAT G - 2A6
PTFSTAT H - 2A4
PTFSTAT I - 2A2
PTFSTAT
PTFSTAT RECEIVE status is:
PTFSTAT
PTFSTAT Status Date Time Userid
PTFSTAT ---------- -------- -------- --------
PTFSTAT RECEIVED 09/18/91 12:23:58 MAINT
PTFSTAT
PTFSTAT APPLY status by level:
PTFSTAT
PTFSTAT Level Status Date Time Userid
PTFSTAT ------- ---------- -------- -------- --------
PTFSTAT G(02A6) APPLIED 09/26/91 07:40:35 MAINT
PTFSTAT H(02A4) This level is empty
PTFSTAT I(02A2) This level is empty
PTFSTAT
PTFSTAT BUILD status by level:
PTFSTAT
PTFSTAT Level Build list Object Status Date Time Userid
PTFSTAT ------- ---------- -------- ----------- -------- -------- --------
PTFSTAT G(02A6) HCPBLSRC ASSEMBLE NEVER BUILT
PTFSTAT G(02A6) HCPBLSRC COPY NEVER BUILT
PTFSTAT G(02A6) CPLOAD - NEVER BUILT
PTFSTAT G(02A6) HCPOM1 - SERVICED 01/22/92 19:00:17 MAINT
PTFSTAT H(02A4) This level is empty
PTFSTAT I(02A2) This level is empty

Figure 112. Results File from PTFSTAT Execution

232 VMSES/E Primer

Appendix E. Diskette Installation Instructions

The diskette that accompanies this document contains the sample source code
for the Software Inventory exploitation examples discussed in Appendix D,
“VMFSIM Exploitation Code Examples” on page 225.

This appendix provides guidance on the installation of the files contained on the
diskette. Please read it in its entirety before attempting to use the diskette.

Diskette Contents
The diskette contains the files listed below. Some files, like the README.DOC
file, are in ASCII format; others have been transformed to CMS packed format
before being placed on the diskette. These files require special handling.

You should have the following files on the diskette:

• ASCII files:

README.DOC A copy of these installation instructions.

OS2UPLD.CMD An OS/2 procedure to help transfer (upload) the files to
the VM host.

DOSUPLD.BAT An DOS batch file to help transfer (upload) the files to
the VM host.

• BINARY files:

This file is in fixed record format, with a logical record length of 80 bytes.

COPYUNPK.EXC A VM EXEC to help copy and unpack the other EXEC,
REXX, and HELP files

These files are in fixed record format, with a logical record length of 1024
bytes.

PTFREMOV.EXC PTFREMOV command

PSIMOUT.EXC PSIMOUT command

JOINLN.RXX JOINLN filter

PTFCOMIT.EXC PTFCOMIT command

PTFSTAT.EXC PTFSTAT command

PTFREMOV.HCM Help for the PTFREMOV command

PSIMOUT.HCM Help for the PSIMOUT command

JOINLN.HCM Help for the JOINLN filter

PTFCOMIT.HCM Help for the PTFCOMIT command

PTFSTAT.HCM Help for the PTFSTAT command

 Copyright IBM Corp. 1992, 1993, 1994 233

Installation Instructions
Regardless of the workstation you are using, its operating system, and 3270
terminal emulator, in order to install the procedures and help files on the VM
system, you have to:

 1. Transfer the files to the VM system

 2. Unpack the transferred files

If your workstation is running OS/2* with the Communications Manager, or DOS
3.30 (or above) with one of the following 3270 emulators, you can take advantage
of the sample upload procedures supplied with this diskette. Simply follow the
instructions for your situation, below.

The supplied DOS upload procedure should work with any of the following 3270
emulator programs for DOS:

• IBM 3270 Workstation Program

• IBM PC 3270 Emulation Program

• IBM PC 3270 Emulation Program Entry Level

• 3278/79 Emulation Control Program

Uploading the Files in a OS/2 Environment
Execute the following steps:

1 Start the Communications Manager, if needed.

2 Log on to a VM user ID (we suggest you use the MAINT user ID). If you
have multiple sessions, use the first defined one.

3 Insert the diskette in a diskette drive. We will assume it is the A-drive.
However, you can use any drive (please adapt the commands below
accordingly).

4 Start, or jump to an OS/2 command window.

The next two steps, though optional, are recommended:

5 Make the A-drive the current drive. Type:

a:

6 Establish the root directory of the current drive as the current directory.
Type:

cd a:\

7 Invoke the sample upload procedure. If you executed the previous two
steps, simply type:

os2upld

Otherwise, type:

drive os2upld inpath session

234 VMSES/E Primer

where:

drive Is the drive where the OS2UPLD procedure resides (in our
example A:)

inpath Defaults to A:\; is the path where the files to be uploaded reside

session Defaults to blank (first defined session); is the identifier of the
emulator session to be used for uploading the files. If you need
to specify this operand then you have also to specify the
“inpath” operand

8 Jump to the host session to continue the installation process. See
“Unpacking the Files (All Environments)” on page 237.

Note: During the upload, the file ID of the “README.DOC” file is changed to
“GG243851 README.”

Uploading the Files in a DOS Environment
Execute the following steps:

1 Start the appropriate 3270 emulator program, if needed.

2 Log on to a VM user ID (we suggest you use the MAINT user ID). If you
have multiple sessions, use the first defined one.

3 Insert the diskette in a diskette drive. We will assume it is the A-drive.
However, you can use any drive (please adapt the commands below
accordingly).

The next two steps, though optional, are recommended.

4 Make the A-drive the current drive. Type:

a:

5 Establish the root directory of the current drive as the current directory.
Type:

cd a:\

6 Invoke the sample upload procedure. If you executed the previous two
steps, simply type:

dosupld

Otherwise, type:

path dosupld inpath session

where:

path Is the path where the DOSUPLD procedure resides

inpath Defaults to A:\; is the path where the files to be uploaded reside

session Defaults to blank (first defined session); is the identifier of the
emulator session to be used for uploading the files. If you need
to specify this operand then you have also to specify the
“inpath” operand.

Note: If you are using one of the following emulators you must
not use the session operand:

Appendix E. Diskette Installation Instructions 235

• IBM PC 3270 Emulation Program Entry Level

• 3278/79 Emulation Control Program

7 Jump to the host session to continue the installation process. See
“Unpacking the Files (All Environments)” on page 237.

Note: During the upload, the file ID of the “README.DOC” file is changed to
“GG243851 README.”

Uploading the Files in Other Environments
Execute the following steps:

1 Start your 3270 emulator program, if needed.

2 Log on to a VM user ID (we suggest you use the MAINT user ID).

3 Insert the diskette in a diskette drive.

4 Make that drive the current drive, and the root directory the current
directory (optional, but recommended).

5 Use the file transfer procedures of your 3270 emulator, to transfer (upload)
the files in the list below to the VM System. Transferring the README.DOC
file is optional. We suggest you place all files on the 191 disk of the MAINT
user ID.

Files to upload:

README.DOC

COPYUNPK.EXC

PTFREMOV.EXC
PSIMOUT.EXC
JOINLN.RXX
PTFCOMIT.EXC
PTFSTAT.EXC

PTFREMOV.HCM
PSIMOUT.HCM
JOINLN.HCM
PTFCOMIT.HCM
PTFSTAT.HCM

Except for the README.DOC file, all files should be transferred in BINARY
format; that is, without converting them from ASCII to EBCDIC, and
preserving the characteristics of fixed record format and logical record
length of 1024 bytes (the COPYUNPK.EXC file has a fixed record length of
80 bytes). These might be specified as options of the transfer command,
similar to: “RECFM F LRECL 1024.”

If you also wish to transfer the README.DOC file, you must specify ASCII to
EBCDIC translation, and new line at CR. These might be specified as
options of the transfer command, similar to “ASCII CRLF.” At the same
time, you may also want to change the file ′s file name and file type, since

236 VMSES/E Primer

“README DOC” is a very common name, and might already exist. We
suggest you use the file ID “GG243851 README.”

6 Jump to the host session to continue the installation process. See
“Unpacking the Files (All Environments).”

Unpacking the Files (All Environments)
You will have to unpack the uploaded files, and at the same time change their
file types, according to Table 11.

We suggest you use the supplied COPYUNPK procedure and place the unpacked
files on MAINT′s 5E5 disk (normally accessed as file mode B).

The COPYUNPK is ready to be used. To invoke it, enter:

copyunpk mode

where:

mode Is the access mode of the target minidisk. B is the default.

If you do not wish to use the COPYUNPK procedure, you will have to issue a
command similar to the one below, for every packed file:

copyfile fn ft fm = newft newfm (olddate unpack

where:

fn ft fm is the file ID of an uploaded file

newft is the new file type, in accordance with Table 11

newfm is the file mode of the target minidisk

Table 11. File Type Conversion for Sample Files

Original File Type New File Type

EXC
RXX
HCM

EXEC
REXX

HELPCMS

Source Listings for the Sample Code
The source listings for the sample code were removed from this document. You
should not use the source listings included in the first edition of this document,
as some of the EXECs were enhanced, and errors corrected, so those listings do
not reflect the current source code.

Appendix E. Diskette Installation Instructions 237

238 VMSES/E Primer

Index

Special Characters
:BLDREQ tag 111
:COREQ tag (definition of) 12
:DREQ tag (definition of) 11
:GBLDREQ tag 111
:GGLOBAL tag 116
:GLOBAL tag 116
:HARDREQ tag 63

definition of 12
:IFREQ tag (definition of) 12
:LIBNAME tag 55, 116
:NPRE tag (definition of) 11
:PARTDEF tag 63
:PREREQ tag 63

service-level (definition of) 12
system-level (definition of) 11

:PROCOPTS tag 63
:REPPART tag 63
:REQ tag (definition of) 11
:SETUP tag 102
:SUP tag (definition of) 12
:USEREXIT tag 46
:VERSION tag 46
$APPLIST

See Apply l ist
$EXCLIST

See Exclude List
$MISSING 32, 107
$PPF

See PPF
$PTFPART

See PTFPART file

A
ALL option (of VMFBLD) 77, 113
Alternate disk 27, 29
Alternate level 26
APAR 11, 139, 148

definition of 11
in PTF, listing 152
prefix 46
status, listing 152, 230

Applied
PTFs, listing 151
service, back-out 27
status of PTF 151

Apply
corrective service 29
in installation 21
in service 107
in service process 31
preventive service 28
step overview 15

APPLY disks 14, 41, 107
levels 27, 49
sharing 187

Apply l ist 13, 32, 201, 219
filename, specifying 46

Apply Status table 38
service-level contents 42
system-level contents 41

ASSEMBLE command 108, 119
ASTEM operand (of VMFSIM) 136, 229
Authorized Program Analysis Report

See APAR
AUX file 25, 32, 34, 51, 117, 122, 133

control file and 119
preferred 119, 120
update and 120

Auxiliary Control File
See AUX file

AVS 184

B
Back-leveling 30, 106

definition of 12
Back-out 217

applied service 27
by level 217
listing service impact 155
PTF 217

impact of 226
removing local modification 222
selectively 219
service level 110

BASE disks
sharing 187

BASE3 disk 123
Buckets (error) 101
Build 83

detailed explanation 110
during installation 89
installation (step of) 21
installed products 83
local service 127
part handlers 34, 76, 78
part selection 121
post-build tasks 33
process 52
requirements, generating 110
requisites 111
saved segments 163
saved segments, any time 167
segments 76, 77, 78
service (step of) 107, 110
serviced product 33
step overview 15

 Copyright IBM Corp. 1992, 1993, 1994 239

Build (continued)
unsupported objects 34

BUILD disks 15
levels 28
refreshing 100
sharing 188, 191

Build list 34, 54, 110, 115, 116, 155
:BLDREQ tag 111
:GBLDREQ tag 111
:GGLOBAL tag 116
:GLOBAL tag 116
:LIBNAME tag 55, 116
format 1 54, 111, 116
format 2 54, 76, 111, 116
format 3 55, 111, 116
grouping objects 54
object names 117
saved segments 161
saved segments, system-level 67
system objects 78, 160

Build Status table 34, 38
service-level 76, 110
service-level contents 42
system-level contents 41

C
CD-ROM 16, 205

description (of available support) 17
installation use of 17

CMS Pipelines 141
introduction 225

CMSINST segment 174
CMSPIPES 59
CMSQRYH 59

copying above the 16MB line 179
moving above the 16MB line 180

CMSQRYL 59
Combining tables (for search) 139
Commands

ASSEMBLE 108, 119
COPYFILE 106
DDR 198
DEFSEG 66, 74
DEFSYS 66
DIAGNOSE X′64′ 66
DIRECGEN 198, 199
EXECUPDT 25, 120
FILELIST 199
FORMAT 198
GLOBAL 116
GROUP 133
HASM 119
HLASM 119
INSTFPP 198, 199
INSTPKG 198
IPL 66
ITASK 198
LINK 102

Commands (continued)
MIGAID 198
RESOURCE option 61
SAVESEG 66
SAVESYS 66
SEGGEN 67, 79
SEGMENT LOAD 66, 67
SENDFILE 17
SPGEN 198
SPLOAD 198
UPDATE 25, 44, 117, 118, 120
VMFAPPLY 31, 76, 107, 110, 199, 200, 201, 221
VMFASM 117, 120
VMFBLD 30, 33, 52, 74, 108, 110, 111, 115, 116,

120, 155, 198, 199, 201
VMFCNVT 92
VMFCOPY 100, 106
VMFERASE 100
VMFEXUPD 117, 120
VMFHASM 117, 120, 125, 134
VMFHLASM 117, 120
VMFINFO 145, 37, 135, 146, 147, 148
VMFINS 18, 48, 60, 61, 83, 89, 199, 200, 205

INSTALL syntax 85
VMFINS defaults 84
VMFINS INSTALL 84
VMFINS MIGRATE 84
VMFMERGE 198, 199, 200
VMFMRDSK 103, 200

syntax 104
VMFNLS 117, 120
VMFOVER 44, 102, 190
VMFPLC2 17
VMFPLCD 17
VMFPPF 43, 95, 102, 190
VMFQMDA 102
VMFQOBJ 142, 37, 135, 145
VMFREC 30, 101, 106, 199, 200
VMFREMOV 198, 199, 200
VMFSETUP 48, 79, 88, 96, 102, 148
VMFSGMAP 58, 68, 69, 70, 73, 161
VMFSIM 37, 97, 119, 134, 135, 145, 200

subcommands 135
VMFSIM LOGMOD 125, 132
VMFSIM QUERY syntax 136
VMFSIM SRVDEP 219, 220
VMFVIEW 107, 221
VMFZAP 198, 199, 200
VMSERV 198
XEDIT 25, 117, 120

Committed PTF 51, 228
Common User Access

See CUA
Comparing

local and corrective service 125
VMSES and VMSES/E 200
VMSES/E function summary 201
VMSES/E to previous tools 197

240 VMSES/E Primer

compname
definit ion of 12

Component 138
area in PPF 46
definition of 10
id 46
information, displaying 138
listing requisites of 151
name 46

definition of 12
Concepts

service 25
VMSES/E 10

Control file 119
extension of 121

Control files 46, 117
main 123

filename of 46
service update 25
structure 25, 118

Control Options section (of PPF) 46
Control structure (for service) 25
COPYFILE command 106
COR 214

COR DOCUMENT file 214
definition of 23
Descriptor file (in service tape) 214
differences between local service and 122
service, compared to local 125

COR DOCUMENT file 214
Corrective Service 23

applying 29
CP configurability 115
CP Directory 20, 87
CP nucleus 115

build list, updating 127
CPLOAD EXEC 116

updating 127
CSLLIB 117
CUA 145
CUFINS EXEC 95
Customized files 23, 58

D
Database Layout 14
DCSS

definition of 66
DDR command 198
Definitions 11

:COREQ tag 12
:DREQ tag 11
:HARDREQ tag 12
:IFREQ tag 12
:NPRE tag 11
:PREREQ tag 11, 12
:REQ tag 11
:SUP tag 12
back-leveling 12

Definitions (continued)
compname 12
component 10
local service 24
object 11
part 11
prodid 12
product 10
PTF 11
requisites 11
usable form 12

DEFSEG command 66, 74
DEFSYS command 66
Delete 83

experiences 90
installed products 83
parts of committed PTFs 51, 228
resources 87, 90
saved segments 168

DELTA disks 14, 41, 61, 106, 200
levels 27, 49
receiving service into 30
sharing 187

Description table 20, 38, 57
contents 41
service-level contents 42

DIAGNOSE X′64′ 66
DIR variable type 48
DIRECGEN command 198, 199
DIRECGEN HISTORY file 198, 199
Directory

See also CP Directory
Product Contents (in VMSES/E tape) 209
VMFINS defaults, defining 84

DIRMAINT 88
Discontiguous Saved Segment

See DCSS
Diskette

contents 233
installing under DOS 235
installing under OS/2 234
install ing, other environments 236
installing, unpacking files 237

Disks
accessing 79
accessing with VMFINFO 148
alternate 27, 103
APPLY 14, 27, 41, 107

sharing 187
BASE, sharing 187
BASE3 123
BUILD 15, 28, 100

moving to production 108
refreshing 100
sharing 188

DELTA 14, 27, 30, 41, 61, 106
sharing 187

for installation 19

Index 241

Disks (continued)
intermediate 27, 103
LOCAL 14
LOCAL, sharing 186
LOCALMOD 124
logical strings 27, 49
merging 29, 103
physically sharing 182
production 27, 103
SESDISK 14

sharing 182
setup 102
sharing 181, 185
SIDISK 14, 34, 38, 77

sharing 182
size, checking 106
staging area 27
strings 14
SYSTEM 15

Displaying
component information 138
fields in a table 137
selected fields 139
values of a field 138

DOSLIB 108, 117

E
Electronic envelopes

definition of 17
formats 205
installation use of 17

Electronic service transfer 16
Emergency fixes 26
EMSG OFF 140
EMSG ON 150
Error buckets 101
Examples

CMS Pipelines 141
using the Software Inventory 135

Exclude List 13, 32, 201, 219
filename, specifying 46

EXECUPDT command 25, 120

F
FASTPATH option (of VMFBDNUC)
Fields

composite value 140
key 39, 138

FILE parameter (of VMFSIM) 136
FILELIST command 199
Filetype Abbreviation table 38

contents 41
Fixes (service) 26
Flex-DDR 199
Flex-DDR installation 18
Format 1 build list 54, 111, 116

Format 2 build list 54, 116
build requirements 111
GLOBAL support 116
saved segments 76

Format 3 build list 116
:LIBNAME tag 55, 116
build requirements 111
GLOBAL support 116
library build and 55, 116

FORMAT command 198
Formats 205

installation tapes 208
INSTFPP products 205
INSTFPP tape 205
packed source files 123
PDI (SDO) products 205
PPF 45
product packaging 205
SDO installation tape 212
SO installation tape 214
VMSES/E installation tape 210
VMSES/E products 205
VMSES/E service tape 214

G
GCS 131

load address, changing 131
load list name, changing 132
saved system name, changing 133

GCTLOAD EXEC 132
Generalit ies 3
GLOBAL command 116
GROUP command 133

H
HASM command 119
HCPSADMP utility 108
HCPVM CNTRL file 123
Header

PPF 45
PRODPART file 57
PTFPART file 62

HELPINST
increasing size 180

Highlights
service 100
VM/ESA Release 2 6
VM/ESA Release 2.1 6
VM/ESA Release 2.2 6, 7
VMSES/E 4

HLASM command 119

I
INFO operand (of VMFINS) 86
INFO option (of VMFREC) 101

242 VMSES/E Primer

Information sources 10, 12
PPF 12
PRODPART file 12
PTFPART file 13

Installation
apply step 21
build step 21
building unsupported objects 22
CD-ROM, support of 17
data flow 15
envelopes

definition of 17
support of 17

failure 22
first t ime 19
flex-DDR 18
functions 4
listing products 150
non-VMSES/E product 96
overview 83
PLANINFO file 20
planning step 21
product 83, 197
program products 198, 199
receive step 20
restart 22
steps 15
tape contents 20
tape formats 208
verifying 22
VM/ESA 199
VM/ESA Release 2.2 18
VM/SP 198, 199
VM/XA 199

Install ing
example 19
minidisk configuration 19
products 18

INSTFPP command 97, 198, 199, 205
INSTPKG command 198
Intermediate disk 27, 29
Intermediate level 26
Introduction to VMSES/E 3
IPL command 66
ITASK command 198

J
JOINLN REXX

syntax 227

K
Key tag (of Software Inventory table) 39

L
Levels 26

alternate 27

Levels (continued)
back-out 217
intermediate 27
production 27

Library
CSLLIB 117
DOSLIB 117
Format 3 build list 55, 116
GLOBAL support 116
LOADLIB 117
MACLIB 117
members, in build list 55, 116
TXTLIB 117
use during building 116

LINK command 102
LINK variable type 48
LIST operand (of VMFINS) 86
Listing 152, 153, 155

APAR status 230
APARs in a PTF 152
dependent PTFs 153
installed products 150
parts serviced by a PTF 154
parts to rebuild after service 155
prerequisites for a component 151
PTF status 230
PTFs applied 151
service applied to a part 154
service impact of PTF back out 155
status of an APAR 152

Load lists 54
SLC entries for GCS 131

Loadable units
definition in PRODPART 57

Loading parts 30
LOADLIB 117
Local

modifications
logging 134
removal 222

service 26, 122
compared to corrective 125
definition of 24
level indicator 123

tracking number 122, 132, 133, 134, 174
updates, creating 122

LOCAL disks 14
sharing 186

LOCALMOD disk 124
Logical Segment

See LSEG
Logical strings 27, 49
LOGMOD option (of VMFSIM) 134
LSEG 69, 79

definition of 67

Index 243

M
MACLIB 51, 117
Main control fi le 123
Managing

central-point 182
centralized 185

example 191
disk space planning 92
distributed systems 182, 184
local service 122
multiple product versions 181
multiple systems 181
saved segments 175
system documentation 10
system software 9

Map, saved segments 70
Mapping tool

See VMFSGMAP command
Media 16
Media types 205
Member Saved Segment

definition of 66
MEMO option (of VMFINS) 87
Memo to Users 101
Merging

disks 103
process 104
service levels 103

Messages
VMFxxx2120W 131
VMFxxx2121W 131

MIGAID EXEC 198
Migrat ion 83

product 83
Missing service 32
MODNAME option (of VMFBDNUC) 115

N
Named Saved System

See NSS
National Language Support

See NLS
NLS 120
NSS 69, 70

definition of 66
NUCTARG option (of VMFBDNUC) 115

O
Object Code Only

See OCO
Objects 34

build requisites 111
building unsupported 22
change detection 76, 110
characteristics, l isting 144
definition of 11

Objects (continued)
delete support 117
grouping by build list 54
information on, getting 142
naming, in build list 117

OCO 26
Output filtering (of VMFSIM) 142, 227
Overr ide 43, 102

area in PPF 45, 53
checking validity of 34
creating using VMFINS 61, 89
example 192
for service back-out 220
how to create 189
PPF for GCS 132
PPF form 43
reason for 13

P
Packed format (source files) 123
Page descriptor 70
Part handlers 110

building objects 34
for build, definition of 52
for receive, definition of 49
receiving service 30
VMFBDCPY 111
VMFBDMOD 116
VMFBDNUC 111, 115
VMFBDSBR 76, 162, 165
VMFBDSEG 78, 167
VMFRCALL 50
VMFRCCOM 51

PARTCAT file 105
description of 39

Parts 21, 39
base file 117
catalog 21, 39, 105
conditional load 30
definition in PRODPART 57
definition of 11
erasing 51, 156, 228
local changes to replacement serviced 131
naming 119
OCO 26
requirements, l isting 143
section of PTFPART 13
selecting 121
selecting and VVTs 120
source 25
source maintained 117
status, listing 143
update structure 117
user tailorable 58
version support 120

Patches 25, 26
PDI 13, 205

244 VMSES/E Primer

Physical Segment
See PSEG

PLAN option (of VMFINS) 87
PLANINFO file 20, 87
Planning 87

disk space 92
saved segments 68, 163

PPF 13, 20, 32, 38, 42, 60, 104, 108, 111, 142, 192,
205, 215

:OVERLST tag 189
:USEREXIT tag 46
:VERSION tag 46
areas 45
Build definition section 52
compil ing 44, 190
Component area 46
contents 43
Control Options section 46
default overriding 20
executable form 43
Filetype Abbreviations section 53
forms differences 45
general structure 44
Header area of 45
logical strings 49
minidisk declaration 49
newly serviced 30, 34
overr ide 13, 14, 43, 61, 102
Override area 45, 53
override creation 189
override for service back-out 220
override validity checking 34
override, during installation 89
override, example of 192
overriding for GCS 132
overview 43
Receive Install section 49
Receive Service section 50
saved segments, special characteristics 176
sections 45
SFS directory declaration 49
source form 43
specifying, with VMFINFO 146
system objects 68, 77, 158
usable form 14
user-exit 191
Variable Declarations section 48

PPF operand (of VMFINS) 87
Preventive Service

applying 28
PRIVATE option (of VMFBLD) 114, 168
PROD LEVEL file 198, 199
PROD operand (of VMFINS) 87, 89
prodid 43, 46

definition of 12
PRODPART file 12, 20, 38, 42, 48, 56, 67, 68, 73, 87,

158, 205
general format 56

PRODPART file (continued)
Header section of 57
Loadable Units section of 57
overview 56
Parts section of 57
Product Parameters section of 59
product resources definition 59
saved segments definition section 58

Product
build 33, 83
definition of 10
deletion 83
formats 83
installation 18, 83, 197
migrat ion 83
naming conventions 206
packaging formats 83, 205
planning for 87
requisites 21
resources, defining 59
subsets 57
tape 12

Product Contents Directory 50, 209, 215
Product identifier 12
Product Identifier file 209, 212
Product Parameter File

See PPF
Product Parts File

See PRODPART file
Product Service Upgrade

See PSU
Production

moving serviced product to 35
Production disk 27, 29
Production level 26
PROGPROD PARMLIST file 198
Program Level fi le 214
Program products

installation 198, 199
segment building 74

Program Temporary Fix
See PTF

Program Update Service 23
Program Update Tape

See PUT
PSEG 69, 79

definition of 67
PSIMOUT EXEC 142

syntax 227
PSU 23, 214
PTF 122, 139

APAR listing 152
back-out 217, 219
back-out, impact of 155, 226
committed status 51
committed, erasing parts 228
definition of 11
dependent, l isting 153

Index 245

PTF (continued)
finding with VMFINFO 148
listing applied 151
numbered parts 34
parts serviced, listing 154
prefix 46
removing 217
removing local modification 222
requisites 13
status, listing 230
superseding 152

PTF Parts File
See PTFPART file

PTFCOMIT EXEC 52
syntax 228

PTFPART file 13, 32, 39, 42, 61, 125
general structure 62
Header section of 62
overview 61
Parts section of 13, 63
Requisite section of 62

PTFREMOV EXEC 155
syntax 226

PTFSTAT EXEC
syntax 230

PUNCH option (of VMFBDNUC) 115
PUT

definition of 23

Q
Queries 136

complex 139
not directly solvable by VMFSIM 140

R
RACF 88
Re-save

CMS 95, 108
shared segments 95, 108

Reach-ahead service 23
Receive

files, suppressing 51
installation step 20
service 30
service step 106
simulating 126
step overview 15

Receive Status table 38, 40
service-level contents 42
system-level contents 41

Recommended Service Upgrade tape
See RSU

Refreshed Product Tape
See RPT

Remove PTF 217
Removing local modification example

Replacement service 26
Requirements

VMSES/E 3
Requisites 13

checking 10, 20, 21, 32
defining in PTFPART 63
definition of 11
HARDREQ 63
listing, for a component 151
mutually exclusive 11
PREREQ 63
saved segments, build 171
section of PTFPART 13
service-level 12
source information 57
system-level 11

Requisites table 20, 38, 57
service-level contents 42
system-level contents 41

RESOURCE option (of VMFINS) 87, 192
Resources

automatic allocation 61, 87
automatic de-allocation 87, 90
checking 20
defining in PRODPART 59

RETRY $APPLIST 32
RLDSAVE option (of VMFBDNUC) 115
RPT 23, 214

using for installation 19
RSU 23, 28, 214

using for installation 20

S
Saved segments

build list 161
build requirements 73
Build Status table 68
building 77, 163
building, any time 167
centrally built 177
change detection 76
CMSINST, modifying 174
CMSQRYH 179, 180
CP spool classes 71
customizing 67
DCSS, definition of 66
defaults in PRODPART file 58
defining with VMFSGMAP 73
definition of 66
deleting 78, 168
disks, special requirements 173
HELPINST, enlarging 180
invalid ranges 69
LSEG 69, 79
LSEG, definition of 67
map 70
mapping tool 69
member saved segment, definition of 66

246 VMSES/E Primer

Saved segments (continued)
mult i-product management 180
mult i-system management 175
multiple layouts 176
NSS, definition of 66
overlap 69
overview 65
page descriptor 70
planning 163
planning requirements 65
planning tool 68
PPF, special characteristics 176
product-level view 76
PSEG 69, 79
PSEG, definition of 67
rebuilding 76
requisites, build 171
SEGBLD $SELECT file 162
SEGDATA file 162
segment space, definition of 66
servicing 164
skeletons 172
spaces 69, 73
SYSTEM SEGID file 78
system-level view 67
VMFSGMAP command 72
VMSBR $SELECT file 162
VMSESE PROFILE file 163

Saved systems 108
SAVESEG command 66
SAVESYS command 66
SDO 83, 205

installation tape 212
SEGBLD $SELECT file 162
SEGDATA file 38, 58, 67, 68, 73, 78, 162
SEGGEN command 67
SEGMENT LOAD command 66, 67
Segment Space

definition of 66
Segment spaces 69
Select Data File 32, 34, 76, 107, 110, 113

system-level 77
SENDFILE command 17
Service 197

apply process 31
applying 107
AUX file 25, 133
back-leveling 30
back-out 27, 110
back-out a level 217
back-out selectively 219
base file 117
basic steps 99
buckets (error) 101
build lists 116
build requirements 110
building 107, 110
bypassing VMSES/E 24

Service (continued)
checking results 107
concepts 25
control fi le 118
control fi le extension 121
control structure 25
correct ive 29

definition of 23
data flow 15
disk setup 102
electronic transfer of 16
emergency fixes 26
experiences 99
file type abbreviation 121
functions 4
highlights 100
history 10
information, getting with VMFINFO 148
level identif ier 119, 121
local 24, 25, 26
local changes to replacement parts 131
local tracking number 132, 133, 134, 174
main control fi le 117
memo to users 101
merging levels 103
missing 32
packaging 23
part handlers 30
part selection 121
patches 25, 26
pre-built 23
pre-installed 23
prepare for 29, 30
prepare for PSU 28
preparing to 101
prevent ive 28
PTF back-out 217, 226
putting into production 35, 108
reach-ahead 23
receiving 30, 106
refresh build disks 100
removing 217
replacement 25, 26
requisite checking 32
requisites, types of 12
saved segments 164
saved segments and 76
SNA Products 198, 199, 200
source code 25
source updates 117
steps 15
superseding 152
tapes 13

format of 214
testing 108
update 23, 25
update facility 25
version support 120

Index 247

Service (continued)
VM/ESA 199
VM/SP 198, 199
VM/XA 199
ZAPs 26

SERVICE DISKMAP file 198
Service levels 27

merging 29, 103
Service-Level tables

contents 42
SERVICED option (of VMFBLD) 77, 113, 155
SESDISK 14, 182

sharing 182
Shared segments 95, 108
Sharing

APPLY disks 187
BASE disks 187
BUILD disks 188
DELTA disks 187
disks 185
LOCAL disks 186

SIDISK 14, 34, 38, 182
sharing 182

SIDISK disk 77
SIDISK option (of VMFINS) 86
SIMODE option (of VMFINS) 86
SNA Products 198

service 199, 200
SO 83

installation tape 214
Software

installed 10
levels 5, 26
management 9

Software Inventory 4, 37, 182, 197, 198, 199, 200, 205
Apply Status table 38
benefits 5
Build Status table 34, 38, 98
combining tables for search 139
data input 10
database layout 14
Description table 20, 38
disk strings 14
examples 135
Filetype Abbreviation table 38
generalit ies 5
information sources 10, 42
initializing 10
introduction 37
other examples 156
parts catalog 39
PRODPART file 56
queries 136
queries, combined 140
Receive Status table 38
requisite checking 10
Requisite table 38
Requisites table 20

Software Inventory (continued)
searching 139
Segment Data File 38
Select Data File 32, 34
service history 10
service-level 38, 41
SIDISK 38
system-level 38, 40
tables 38

location 39
structure 40

using 135
Version Vector table 34, 38, 125, 132

Source code 25
Source files 123
Source updates 119
SPGEN command 198
SPLOAD command 198
SRVAPPS table 42, 139, 140, 151, 152
SRVBLDS table 42
SRVDESCT table 42
SRVRECS table 42
SRVREQT table 42, 139, 152
Staging area 27
Stand-alone 90
Starter system 90
STATUS option (of VMFBLD) 76, 77, 110
STEM operand (of VMFSIM) 136
Strings (logical) 27, 49
Symbolic names 13
SYSABRVT table 41
SYSAPPS table 41
SYSBLDS table 41, 98
SYSDESCT table 41
SYSRECS table 41, 150
SYSREQT table 41
System

alternate 26
documentation 10
intermediate 26
levels 26
maintenance 23
planning 10
production 26
requisites, types of 11
test level 26

System Delivery Offering
See SDO

SYSTEM disks 15
System management 181

centralized 182, 185
example 191

deleting products 90
disk space planning 92
distributed 182
product planning 87
saved segments 175
using SFS 184

248 VMSES/E Primer

System Offering 199
See also SO

SYSTEM option (of VMFINS) 86
SYSTEM SEGID file 78
System-Level tables

contents 41

T
Tables 38, 139

Apply Status 38, 41, 42
Build Status 34, 38, 41, 42, 98
combining for search 139
Description 20, 38, 41, 42, 57
fields

composite value 140
displaying 137
key 39, 138
selected 139
values, displaying 138

Filetype Abbreviation 38, 41
location 39
parts catalog 39
Receive Status 38, 40, 41, 42
Requisites 20, 38, 41, 42, 57
searching values 139
structure of 40
Version Vector 32, 34, 38, 41, 42, 125, 132

Tags 12
COREQ 12
DREQ 11
HARDREQ 12, 63
IFREQ 12
key (of Software Inventory table) 39
NPRE 11
OVERLST 189
PARTDEF 63
PREREQ 11, 12, 63
PROCOPTS 63
REPPART 63
REQ 11
SETUP 102
SUP 12
table search 139
USEREXIT 46
VERSION 46

Tape Descriptor file 30, 50, 209, 215
Tapes 28, 209, 212, 214

COR 23
description files 30, 50, 209
formats 16, 205
installation 83
installation (format of) 208
product 12
Product Contents Directory 209
Product Identifier file 209, 212
Program Level fi le 214
PUT 23
RPT 23

Tapes (continued)
RSU 23, 28
service 13
service (format of) 214
service (VMSES/E format) 214
SO installation (format of) 214
VM/ESA SDO installation (format of) 212
VMSES/E installation (format of) 209

TDATA operand (of VMFSIM) 136, 140
Terms 10
Testing mode 217
Tracking number (local) 132, 133, 134, 174
TSAF 184
TXTLIB 117

U
Unsupported objects

building 22, 34
Update 25

Version Vector table 125
UPDATE command 25, 44, 117, 118, 120
Update Control Files 25, 117
Update control record 189
Update facil ity 25
Update files 122
Updated Source file 124
Updates

identif ier 123
local, creating 122

Usable form 34
definition of 12

USER variable type 48
User-exit 13, 46, 191

parameters passed 46

V
Variables 60

advantages 48
declaring (in PPF) 48

Verifying VMSES/E commands results 107
Version support for parts 120
Version Vector table 32, 34, 38, 154

contents 42
for local service 41, 125, 132

VIEW, VMFSGMAP subcommand
ALL, SEGDATA, ERROR options 72

VM/ESA 197, 199
flex-DDR installation 18
installation overview 90
service tapes 23

VM/HPO 197
VM/IS 198
VM/SP 197, 199

installation 198
PROGPROD PARMLIST 198
service 198, 199

Index 249

VM/XA 197, 199
VMFAPPLY command 31, 76, 107, 110, 199, 200, 221

PLAN option 201
Test option 221

VMFASM command 117, 119, 120
part naming 119

VMFBDCPY part handler 111
VMFBDMOD part handler 116
VMFBDNUC part handler 111, 115

MODNAME option 115
NUCTARG option 115
PUNCH option 115
RLDSAVE option 115

VMFBDSBR part handler 76, 162, 165
VMFBDSEG part handler 78, 167
VMFBLD command 30, 33, 52, 108, 120, 198, 199, 201

ALL option 77, 113
deleting saved segments 171
FASTPATH option 114
local service 127
MODENAME option 114
NUCTARG option 114
part handlers 76, 78, 111
part selection 121
PRIVATE option 114, 168
RLDSAVE option 114
saved segments 74
saved segments, building 166
segments build 76, 78
SERVICED option 77, 113, 155
STATUS option 76, 77, 110, 111, 113
VMFBDNUC 115

VMFCNVT command 92
VMFCOPY command 100, 106
VMFERASE command 100
VMFEXUPD command 117, 120
VMFHASM command 117, 119, 120, 125, 134

part naming 119
VMFHLASM command 117, 119, 120
VMFINFO command 145, 37, 135, 146, 148

disks, accessing 148
main panel 147
syntax. 145

VMFINS BUILD command 89
VMFINS command 48, 60, 87, 89, 192, 199, 200, 205

concepts 18
controll ing information 18
defaults 84
functions 18
general syntax 83
INFO operand 86
LIST operand 86
MEMO option 87
PLAN option 87
PLANINFO file 20, 87
PPF operand 87
PROD operand 87, 89
RESOURCE option 87, 192

VMFINS command (continued)
SIDISK option 86
SIMODE option 86
SYSTEM option 86

VMFINS DEFAULTS File 84
VMFINS DELETE command 90
VMFINS INSTALL command 84

syntax 85
VMFINS MIGRATE command 84
VMFMERGE command 198, 199, 200
VMFMRDSK command 103, 200

syntax 104
VMFNLS command 117, 120

part naming 119
VMFOVER command 44, 102, 190
VMFPLC2 command 17
VMFPLCD command 17
VMFPPF command 43, 95, 102, 190
VMFQMDA command 102
VMFQOBJ command 142, 135

syntax 143
VMFRCALL part handler 50
VMFRCCOM part handler 51
VMFREC command 30, 106, 199, 200

INFO option 101
VMFREMOV command 198, 199, 200
VMFRMT EXTENTS file 87
VMFSETUP command 15, 48, 79, 88, 96, 102, 148
VMFSGMAP command 69, 58, 68, 161

check object panel 72
defining segments 73
segment map panel 70
VIEW subcommand 72

VMFSIM CHKLVL command 136
VMFSIM command 37, 97, 135, 200

ASTEM operand 136, 229
complex queries 139
FILE operand 136
information messages 150
output f i l tering 227
output, fi ltering 142
part selection 119
STEM operand 136
subcommands 135
tables and files used 135
TDATA operand 136

VMFSIM COMPTBL command 136
VMFSIM GETLVL command 132, 136

part selection 119, 121
VMFSIM INIT command 136
VMFSIM LOGMOD command 125, 136
VMFSIM MODIFY command 98, 136
VMFSIM QUERY command 136

complex queries 139
field values 138
selected fields 139
syntax 136
what fields a table has 137

250 VMSES/E Primer

VMFSIM SRVDEP command 136, 153, 219, 220
VMFSIM SRVREQ command 136
VMFSIM SYSDEP command 136
VMFSIM SYSREQ command 136
VMFVIEW command 96, 107, 221
VMFxxx2120W message 131
VMFxxx2121W message 131
VMFZAP command 198, 199, 200
VMSBR $SELECT file 77, 161, 162
VMSERV command 198
VMSES PARTCAT file 21
VMSES/E

bypassing 24
compared to previous tools 197
concepts 10
database layout 14
definitions 10
design guidelines 5
highlights 4
highlights, VM/ESA Release 2 6
highlights, VM/ESA Release 2.1 6
highlights, VM/ESA Release 2.2 6, 7
information sources 10
installation tape 209
introduction to 3
part naming 119
product naming conventions 206
requirements 3
service tape format 214
tape formats 17
terms 10

VMSESE PROFILE file 77, 163
VMUSERS DIRECT file 198
VVT 119, 120, 121

control file and 119
local service 120
local service, automatic update 26
part selection 120
updating 120

VVTLCL table 42
VVTVM table 42

X
XEDIT Command 25, 117, 120

Z
ZAPs 26

Index 251

ITSO Technical Bulletin Evaluation RED000

VMSES/E Primer:
Concepts and Experiences

Publication No. GG24-3851-02

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Name Address

Company or Organizat ion

Phone No.

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-3851-02 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Mail Station P099
522 SOUTH ROAD
POUGHKEEPSIE NY
USA 12601-5400

Fold and Tape Please do not staple Fold and Tape

GG24-3851-02

IBML 

Printed in U.S.A.

GG24-3851-02

	VMSES/E Primer: Concepts and Experiences
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	Who Should Read This Document
	How This Document Is Organized
	Summary of Changes for VM/ ESA Release 2.2 and Release 1.5 370 Feature
	Summary of Changes for VM/ ESA Release 2.1 and Release 2
	Abbreviations
	Related Publications
	Acknowledgements

	Part 1. VMSES/E Concepts
	Chapter 1. Introduction
	Installation and Service Tools Requirements
	Highlights
	Design Guidelines
	Software Inventory
	VM/ ESA Release 2.2 Highlights
	VM/ ESA Release 2.1 Highlights
	VM/ ESA Release 2 Highlights
	VM/ ESA Release 1.5 370 Feature Highlights

	Chapter 2. Functional Overview
	Tasks
	Installed Software
	Concepts and Sources of Information
	Definitions and Terms
	Information Sources
	Product Database Layout
	Installation and Service Processes Data Flow
	Information Supporting Media and Tape Formats
	Installing Products
	Installing VM/ ESA
	Installing a Product for the First Time
	Other Installation Options
	Maintaining Your System
	Bypassing VMSES/ E - Don¢ t Do It
	VMSES/ E Service Concepts and Methods
	Multiple System Levels
	Recommended Logical Strings and Service Levels
	Applying Preventive Service
	Applying Corrective Service

	Chapter 3. Software Inventory
	Introduction
	System- level Software Inventory
	Service- level Software Inventory
	Basic Information Sources
	Product Parameter File
	Overview
	Header Area
	Component Area
	Override Area
	Build Lists
	PRODPART File
	Overview
	Header Section
	Loadable Units Section
	Parts Section
	Saved Segment Definitions Section
	Product Parameters Section
	PTFPART File
	Overview
	Header Section
	Requisite Section
	Parts Section

	Chapter 4. Saved Segments
	Overview
	System- Level View
	Saved Segment Planning
	VMFSGMAP Command
	Segment Map Screen
	Product- Level View
	VMFBDSBR Part Handler
	Segment Building
	VMFBDSEG Part Handler

	Part 2. VMSES/E Usage Experiences
	Chapter 5. Installation Experiences
	VMFINS Command
	VMFINS DEFAULTS
	VMFINS INSTALL and VMFINS MIGRATE Commands
	Planning Step
	SIDISK, SIMODE, and SYSTEM Options
	INFO and LIST Operands
	MEMO Option
	PPF and PROD Operands
	PLAN Option
	RESOURCE Option
	Product Loading Step
	PPF and PROD Operands
	PPF Overrides
	Product Building Step
	VMFINS DELETE Command
	Installing VM/ ESA
	Installing VM/ ESA Release 1.1
	Installing VM/ ESA Release 2
	Installing VM/ ESA Release 1.5 370 Feature, VM/ ESA Release 2.1, and Later
	Releases
	Product Identification for VM/ ESA Components
	Installing the CMS Utilities Feature
	Planning
	First- Time Installation
	Migrating
	Building
	Deleting
	Installing a Non- VMSES/ E Product
	Planning
	First- Time Installation
	Migrating
	Building
	Deleting

	Chapter 6. Service Experiences
	Basic Steps
	VM/ ESA Servicing Highlights
	Refresh
	Preparation
	Setup
	Merge
	Receive
	Check
	Apply
	Build
	Test
	Production
	Service Back- Out
	How Build Works
	Overview
	Object Definition Change Detection
	Object Requisites
	VMFBLD Command
	STATUS Option
	SERVICED Option
	ALL Option
	PRIVATE Option
	Build Part Handlers
	VMFBDNUC Options
	CP Configurability Support
	More on Build Lists
	Format 3 Build Lists
	Support of Global
	Other Build List Enhancements
	Update Control Files
	AUX Files and VVTs
	Version Support for Parts
	Local Service
	Creating a Local Update
	Comparing Local and Corrective Service
	Receiving Manually
	Updating the CP Nucleus Build List
	Overview
	Update Procedure for VM/ ESA Release 2.2
	Update Procedure for VM/ ESA Release 2.1
	Changing GCS
	Changing the Load Address
	Changing the Load List Name
	Changing the Saved System Name

	Chapter 7. Exploring the Software Inventory
	VMFSIM Subcommands
	VMFSIM Queries
	Displaying Table Fields (Tags)
	Displaying Field Values
	Displaying Component Information
	Displaying Selected Fields
	Combining Table Information
	Other Queries
	VMFSIM Output Processing Tool
	VMFQOBJ EXEC
	Overview
	Using VMFQOBJ
	- Finding the Status and Requirements of a Part
	- Finding the Objects Impacted by a Part Change
	- Finding All the Characteristics of an Object
	VMFINFO Command
	VMFINFO PPF and Component Name Selection Panels
	VMFINFO Main Panel
	VMFINFO PTF/ APAR Queries Panel
	How to Answer Your Top Ten Questions
	- List Products Installed on the System
	- List Prerequisites for a Component
	- List the PTFs Applied to a Component
	- List APARS for a PTF
	- List Status of an APAR
	- List the PTFs that Depend on a Given PTF
	- List Parts Serviced by a PTF
	- List Service Applied to a Part
	- List Parts that Must be Rebuilt after Service
	- List Service Impact of Backing Out a PTF
	Further Examples

	Chapter 8. Saved Segment Experiences
	Software Inventory and Other Files
	Product Parts File
	System- Level PPF
	System-Level Build Lists
	Segment Data File
	System- Level Select Data Files
	VMSESE PROFILE
	Building Saved Segments
	Segment Planning
	Segment Servicing
	Deleting a Segment
	Segment Requisites
	Skeleton Segments on the System
	Disk Requirements
	Changing the CMSINST Segment
	Maintaining Segments for Multiple Systems
	PPF Considerations
	Select Data File Considerations
	Central- Site Build Considerations
	A few Questions and Answers Working with Segments
	Copying CMSPIPES Segment Above 16MB
	Copying CMSQRYH Logical Segment Above 16MB
	Moving CMSQRYH Logical Segment Above 16MB
	HELP Disk is Too Large to Fit in HELPINST Segment C00- CFF
	Building Segments of Multiple Products from One User ID

	Chapter 9. Multiple Systems and Product Versions
	Managing Multiple Versions of Products
	Managing Multiple Systems
	Centrally Managed Independent Systems
	Maintaining Systems by Physically Sharing Disks
	Maintaining Systems by Sharing SFS Directories
	Centrally Managed Disk Sharing Systems
	Sharing Disks
	Sharing LOCAL Disks
	Sharing BASE Disks
	Sharing DELTA Disks
	Sharing APPLY Disks
	Sharing BUILD Disks
	Creating a PPF Override
	Case Study: Central Management

	Appendix A. Comparing VMSES/E to Previous Systems
	Pre- VMSES VM
	VM System Installation
	Program Product Installation
	VM System Service
	Servicing SNA Products
	Software Inventory
	VMSES VM
	VM System Installation
	Program Product Installation
	VM System Servicing
	Servicing SNA Products
	Software Inventory
	VMSES/ E VM
	VM System Installation
	Program Product Installation
	VM System Servicing
	Servicing SNA Products
	Software Inventory
	Differences Between VMSES and VMSES/ E
	VMFREC
	VMFAPPLY
	VMFBLD
	Summary Tables

	Appendix B. Product Packaging and Distribution Media Formats
	Distribution Media
	Product Formats and Naming Conventions
	Product Formats and Product Packaging Formats
	VMSES/ E Enabled Program Product Conventions
	Installation Media Formats
	VMSES/ E Installation Tape
	VM/ ESA SDO Installation Tapes (PDI)
	INSTFPP Installation Tapes
	VMSES/ E Service Tapes
	Program Level File
	VMSES/ E Service Tape Format

	Appendix C. Removing Service
	Back- Out by Level
	Selective Back- Out
	Removing a Local Modification

	Appendix D. VMFSIM Exploitation Code Examples
	CMS Pipelines Introduction
	Example
	Pipeline Documentation
	Impact of Backing Out a PTF
	VMFSIM Output Processor
	Erasable Parts for Committed PTFs
	Finding the Status of an APAR or PTF

	Appendix E. Diskette Installation Instructions
	Diskette Contents
	Installation Instructions
	Uploading the Files in a OS/ 2 Environment
	Uploading the Files in a DOS Environment
	Uploading the Files in Other Environments
	Unpacking the Files (All Environments)
	Source Listings for the Sample Code

	Index
	Special Characters
	B
	A
	C
	D
	G
	E
	H
	F
	I
	J
	K
	L
	M
	P
	N
	O
	Q
	S
	R
	T
	U
	V
	X
	Z
	ITSO Technical Bulletin Evaluation RED000

