z/VM
7.4

Reusable Server Kernel
Programmer's Guide and Reference

.||I

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
463.

This edition applies to version 7, release 4 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2024-09-18

© Copyright International Business Machines Corporation 1999, 2024.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

LT =T] =R 'd | ||

1= 1+ 1 (=3 -SRI 14

ADOUL ThisS DOCUMENT.....cueeieieieieieieiererererererereresereresesesesesesessssssssssssssssssasssnsesnsnses XIX
a1 A=] o [=Te BN Lo [=] o Tod= TR XiX
P =R (o M R a e ML Lo] (=T N ak o) g =N o] PN XiX

How to provide feedback to IBM........ccccccieuiiniiniiniieiiniieiieniececncneniecissiessasssscsscss XXI

Summary of Changes for z/VM: Reusable Server Kernel Programmer's Guide
E= Y [I8 2 =3 {=1 =1 3 o =T o { | |

SC24-6313-74, 2/VM 7.4 (SEPLEMDEI 2024)....cceiieeeeeeeeeeeeee ettt eeee et et eeereeeteesveeeteesaseesreesaseenaenns xxiii
SC24-6313-73, 2/VM 7.3 (SeptemMbEr 2023).....ccueicieecieeeeeeeieeeee et eeeeete et e ereeeteesve e teesaveesreesaneenneenns xxiii
SC24-6313-73, 2/VM 7.3 (SePtemMbDEr 2022)....ccuiicieeieeeieeie et cteeetee et esteesereeeteesveeebeesaseesseesaneesaenns xxiii
SC24-6313-01, z/VM 7.2 (September 2020)......c.ccceeieeeeeeeieeeeeecreeeeeeereesteeeereesseesseesseesaseenseesssesnseenns xxiii
(04 F=10 1 (=T bt I = 2= -3 1o 00 T 1o =Y o] =300 |
1o Y=Y oo OSSR 1
OVErall SEIrVEr OrGaNIZAtION. .. .ciicieeecieeccee e et et ectee e ree e e rtee e e e e e e tae e etaeeebaeesbaeesabaesessaeeensaeeanseesssseesnnsens 4
JODS OF thE MAINLINE. ..ciiuiiiieiieeeeeeeee ettt e e e e et e e et e e e bte e e bte e e stee s saee e saeeensaeesnsseeessaesnnseas 5
oYl Y oY T ST =] Y ol YRS 5
ANYENING ELSE.cntiieeiiieciiee ettt e e et e e e e te e e tte e e tte e e abee e s bae e ssae e sbaeaassaeenssaeeassaeasnsaeeanseesasseesasseeesnses 7
Calling The ENtrY POINTS...cc.iiiiciieicieecctieceieeectee ettt eeete e sette e st e e setteesesteesesteesesteesstessseeesnssesssssaessssessnsseennns 7
D111 C] o N N7 - U] o 1< J PP UOPPPPPPPR 7
DIMSRP MACIOS.ceiiiiiiiiiiiiiiiiiiiieete ettt e e e sssssitrre e et eeeeeseesssasraaaaateeeeesessssssssssseseaaaeeeeesessssssssssesaeaeeeeesesssnsnes 8
BUILAING @ SEIVEI MOTULE....cceiee ettt ettt et e e te e e te e e e te e e rte e s ateeeestee e steessaeesnsaeesseeesseeeennens 9
Y=Y oI AN - o o TSR 10
(0] 4 =T 00T Yo L=T =Y o T3 TS 10

Chapter 2. Connectivity and Line DriVers......ccccccceeiieiieiieiieiieiiencecececnensecsessessaneess 11

THE SEIVICE INSTANCE'S VIBW.ueiiiiiiieiiiiiiiiieceeiteeeeeeetiteee e eeiteeeeeeetbaeeeeeesseseeessssessesessseeseseessseseeesssssesessnsseees 12
The ClLient BLOCK, OF C-BLOCK.....uuiiiiiiieieeeciteeeeeeiieeeeceetteeeeeesiteeeeeetreeeeeesaaeeeessnseeeesensssasessessssnssesssrees 12
From LiNe DrivVEr 10 INSTANCE....ccivueiieiieiteee ettt e eeetteeeeeetreeeeeeebeeeeeeetaeeeeeessbeseessebeseessesssaneesnssssereesns 15
From INSTANCE 10 LINE DIIVEI...cciiiieiie ittt ettt cecttee e eeiteee e eeetaeeeeeetaeeeeeessbeseessesbeseessesbanesenssssnreeens 16

RO AN Ofe] 1Y e (=] =\ 4] o TR 16

010 AN Ofe]] e [=N A (o] TR 17

TUCY CONSIAEBIAIONS. ..ciieitrieeiieireeeeceiireeeeeetteeeeeestbeeeeeesbeereeessbereeeesssesseeessbeseesssssssessasssaseeessssreseessssreneesnn 18

F AN o a 07 AY A\ W 60T a1 [[=T = Y 1o 1T 18

Yo LeTe] M 0oT a 1] o [=T =N o] -SSR 19

MSG/SMSG CONSIARIATIONS. ...cceeeeieiiieiiiiieee et ieeeeccre e ee e et e e eesseebabar e e e e eeeeeesesssassssareeeeeeeesssssssssssrassereseeees 20

Virtual ConSOoLle CONSIUEIATIONS.....cciiiuiriiiierieee ettt ceeiree e e eeireeeeeestbeeeeeessaeeeeesssbeseessesreressessseneesenssresaesns 21

SUDCOM CONSIAEIATIONS. . uveiiiiiireiieeeitieeeeeitee e eeriee e e eeetteeeeeebreeeeeesstaeeeeessbeseeessssessesssssessesessesseesnsssseeesans 21

LiNe Driver COMMANGS.....ccvviiiieeiieeeeeeiteeeceeitteeeeeeertereeeessteeeeeessaeeeeesesbesseeeesssassseesssreseesessbaseesenssneessnnsneeeas 22

MOIE DETAIL ON LINE DIIVEIS..ciiiiiireeeieeiiteeeeeeiteeeceeireee e eeeteeeeeestaeeeeeessteeseeeassesseesssassessessssseeessssssseesnssnneens 22
LiNE DIIVEIS 8 SEIVICES..uuuiiiiiitreeeeiiitreeeeeiiiteeeeeesiteeeeeessreeeeeestareeessssseseessssressesssssessessssssssesssssssseessnnsses 22
SELf-SOUICEU LINE DIIVEIS...cciicuveeiiieeiieeeeeeiteee e eeetreeeeeeiteeeeeeestreeeesesbeeeeessssesseesssseeseesessssressensssseeesesrens 23
WIItING YOUT OWN LINE DIIVEI .c..uiiiieiieeciteeccte ettt ettt ette e e stte e s sve e e ae e e saaa e s aaesseabaeenntaeenasaesnnseesnnsaeennses 23

AUTNOTIZATION . ..ce ettt eeete e e e eeebae e e eesbbeeseessbaeseeesasaaseesessbaseeesasssseessesssseeseesssneeesssns 24

Chapter 3. DASD Management......cccccieiieiniieiieciesieiiestssiaecaecsessessessessassasssssssssssses 25

DASD SUDSYSTEM OVEIVIEW...eeiiiieiiieeiceitieeeeeiiteeeeesiiteeesestteeeeeessteeeesestaseesessseseesssasseesesessesseesssssenesnsnnnes 25
[T 0 1) £ TR PPNt 26
N[oTe (=TT o)l @] o =T =1 o o PSSRt 26
o T4 = Ta ol a1 T Y=) (=T o 1= Lol =T F PSP 27
Administrator and Operator CONSIAEIAtiONS........uiiiiiiciieeeeeciee e eecre e e eeree e e secree e e e e sbeeeesessreeeeessseeeessnnes 27
Creating @ STOraZe GrOUP....iiicieeiiieeriieereteeseieeseteesesteesasteesaseeesasseesasseesassaesssseesssseesssseesssseesssseesssseesns 27
Changing the Minidisks iN A STOrage GrOUP......cicciiirriieirriierriteeeieesssreeeseeesseeessseeesssseessseesssseesssseesnns 28
Deleting A STOra8E GIrOUP...cuiiieieerrrieraiteestteestteessteessseesssseeessseesssseeessseeessseesssseessssessssseesssseesssssessssens 29
Chapter 4. File Caching......cccccivuiiuiiniiniiniiniiniiniiniiiiieiinieciesieiiesissiscacscsessessessesses 31
Managing the Set Of CaChES......uii e e s saae e ssaae e s saeaesaeeas 31
T ECR O o T=T - YA o] 3 -SSRt 31

B L1 {0 1 F= 1 4 To T3 T OO SPUPSP 32
=11 0] 0] (= TSR SRR 32

1) =1L = - WO PPN 32
(08 Tol s T U {12 1T o PSR 33
(000] 0 =1 £ =110 1 £ TP PPRRTPUPRRPPPRIRE 33
Chapter 5. AUthOriZzation.......ccceuieieiiieiiiiiieiiiieiieieiietietestecetestecastassecessesssessecanses 35
OVBIVIBW . uetieiiiteeeite ettt e sttt s sttt e sttt e st teesabae e s beeesasaeesaseaeasbaeeaasee e s beaesaseaeeaseaessseaeessaesnssaesnseesnseaesnssaesnnsnas 35

TN (VA oo T £ R 35
Naming Conventions and Other LIMItS...... ittt siee e s saee e ssaae e ssaaeesaeeas 36
Group Authorization CONSIAEIATIONS.......uiiiiiciiiee et cere e e rrre e e e earee e e e e abee e e e s reeeeeeessaneesennssneas 36
Persistent Storage of AUthORZation Data.......coccieiiciiiiiieiie e s s 37
USING CMS MINIAISKS.cuuvieieiiiieiieiiiiessitesstee st e st e s st essreesstee s s bt e ssabeessssaeesssaeessseeessseeessseeesseesssseeens 37

Using the CMS Shared File SYSTEM....cii ittt ettt be e s s e e s s e e s s e e s sabeessans 38
Migrating AMONE REPOSITOIIES. c..uuuiiiiieeiciee ittt ettt ete e s steesste e seateesesteessteesseeesaseeesansaessseaesane 38

o L= 11 L= T o O RS ROTSPOTPRI 40
AdMINiStrative CoOMMANTS....ccviiiiiieriiee ittt s st e st e s s te e s sbe e s s beesssbeessabaesssseesssseessssaesssseessssens 40
Other Services' Use Of AUTNOIIZAtION. ..ottt ste e s see e s ste e s saeeessseeessseeesnns 40
OVEIVIBW .. eitiiiiieeciiee st e sttt e st eseate e seateeseste e s stee s atae s st e e s stee s sbee s ssee s st aesassaesassaesassaeenssaesnssaesanseesnnseenn 40
ACTIVATION ettt ettt ettt e e st e s st e e s bt e e s bt e e sabee e s st e e e e abee e et ae e et ae e et ae e et ae e e baeeebaeeetaeeetaeens 40
Chapter 6. ENrollment.......cccciiiieiieiiiieiieieiienieteniececestecascassecasssssesasssssssssssssssssseas 43
ProgrammMing INTEITACES. .. .iiiiiieiciieettee ettt e st e s st e e e s be e s s ba e e s abaeesbaeesnsaeesaseeesaseesan 44

(0] 01T =Y (o] g O] ya ¥ a1 F=1a Vo - SRR 44
Chapter 7. Indexing by PrefiXes.....cccccetuiieiiiiiniiiieiienienieiieiiaiiniiaincncsessesressessanes 47
OVBIVIBW . uutieiiiteieiteeette e sttt e sttt e sttt e st e e e sabaeesabeeesasaeesase e e e seeeaaseeeeabeaesaseaesaseaessseaessaaesnssaesnsseesnssaesnssaesnnsnns a7
=11 0] o (= T USSR 47
INAEX SRAIINE..eiiitiiietieiete ettt ettt ste e e st e e e sbe e e sabe e e s bae e s beeesabaeesabaeesssaeesssaeesnsaessseesnseeesssanennes a7
NO RECOIA DELETIONT...eiiieiieiciteeete ettt sttt e st e s st e e s e te e s sateessateessaeeessssaessssaessssaessssaesnsseesnssaeanns 48
(0070 0] 4= 13T =T OSSP 48
Chapter 8. ANChOKS.....ciuiieiiiieiiiieiieiiiieiiteitetitettetetessecastessecasssssssassessssassssassesasses 49
Chapter 9. Memory Management......cccceieiieiieinincneiiecresiestestsstastscascsecsessessessessans 51
Chapter 10. Worker Machines.......ccciuceieiieieiieniienietenieniecentecscessecassessecessesssessasas 53
FUNCHIONAL OVEIVIEW..ciiiiiiiieeite ettt ettt ettt et e st e s st e s s te e s sabeessabaeesabaessataessasaesnssaessnsaesnneeas 53
Server Configuration CONSIAEIatioNS......iuciiiriiiiiiieeieee ettt e s see e st e s ste e s srbeessabeesssaeessssaesnaseas 54
DistribUting WOrKEr MaChiNES....ciicuiiieiieieiteeeiteee ettt see s s ee e s ae e s saee e s bee e snteesneeesnnseesnneas 54
LY B LY -] TP SRR 55
THE WOTKEE CoBLOCK. ...ttt ettt e seee e st e e s ate e ssteessteessteesaneeesnteesseaesnseeesan 55

(O] 01T =Y (o] g O] ya¥a F=Ya Vo -SSR 56
Writing @ Worker Maching ProSrami.......cc i eieieiieniieeesieessiee st e st e s sieessieessbeessseesssbeesssseessneesssneessnsens 57

Chapter 11. Run-Time ENVironment........ccccccceieiiniiienieceiensecessessecessecsssessscassscsces 39

Chapter 12. Initialization and Profiles.......cccccciieieiiniiienieieiieniieciceniecicencececeneees. 63

FLOW OF CONTIOL. . ittiiiiiee ettt ettt e st e e st e e s bt e e s bee e saseeesanteesaseeesastaesaseessaseessasaeenan 63
Execution Conditions Within RSKMAIN.......c.cciiiiiiriieiiieiete ettt ste st e sre e st e s s e e s sbe e s saaeessseaesnaeeas 65
PROFILE RSK ..ttt ettt ettt ettt sttt sttt s e st e st e s st et e s at et e sat e bt et e sbe et e sateabesut e be et e sbeeabesaeesenas 65
Y = =3 Ta Lo IS (o] o] o 11 =2 OO URRPPPRRTPPO 65
(000 11T = (0 =N oY T =Y = L0 0= (T T O PSSP 65
Storage Group DefiNItioN Fill...uuii ittt ettt ee e s ae e s see e s are e ssaee e ssabeesnaseesnaeas 69
UsEr ID Mapping FACILITY .. .ueiicieieiiieeiiieeecie ettt stte s ette st e e st e s sbae s sbee s sbaessabaeesabaeesabaeessaeesnsaessnsnesnns 69

Chapter 13. Monitor Data.......ccccoieieieiinieiienieienieneetesiecactecscessacsssassecsssesssssssscassasses 14

MONITOr BUTfEE OrZanizZation....ccuuiieciiieiieeeiieeeiie ettt st s e e s stee e s bee e s s ate e ssateessbaessasaesnaseesnnseesnnses 71
KEBINMEBL ROW. ..ttt eee e e et eeeeeeeseseasssba b s e e e eeeeeesesasssssssaasaaseseeeseesaassssssaesneeeeesessannn 72
SEIVICE ROW.eeiiiiiiiiiiieiciiititieee e e et e et eeeeeiabaraeeeeeeeeeeeeesaasssbaaaeasaeeeeesesasasssssbeasasseseesssesasssssssasesseseseessennansssrsrnnes 72
LiNE DIIVEI ROW.uetiiiiiiiiiiieiiiiiittteeeeeeeeeeeeeeeesbataeeeeeseeeeeseeassssssssessseseeeessesasssssssssessseseseeesesassssrsssesseeeesseesanns 72
AUTNOTIZATION ROW.ueiiiiiiiiiiiiiiciiieteeeeee e et e e e e et e e ee e e b bbabeeeeeeeeeeeeeesssssssraeareeeeeeeesessssssrasanreeeeeseennnn 73
STOTAZE GrOUP ROW...eiiiiiiiiiieieiittee ettt ettt e e ettt e e st e e s e bt e e e e s s st e e e e enseeeesennteeeeeanseeeeesansaeeeeaannenaenas 73
MBIMOIY ROW . ittt e sse s s e s s e e s e e e e e e e e e ettt et e s et e e e s s s s e sssassaesaaeeeeeeseseeeeeseesssssssssnssssnnnns 74
ENFOLIMENT ROW..ciiiiiieiiittieeeeee ettt e e e ee et e e e e e e e eesesssasssbaabeeseeeeeeeesasssssssesesesaseeesensansnssrrnnes 74
(0F- To] a L1 2 {0 1V VUSROS OO PUTPTTRRRRN 74
THIE ROW utttiiiiiiiiiieeeectttte ettt e eeeeee bt e e e e e e eeeeee e s bbb b e aeesaeeeeesesasssbsesaaaaeseeeseseaasssssassaseaeaesssesnnsssssrnsnneeeens 75
WV OTKEE ROW. . ueiiiiiiiiiiieee e eeecccittt e e ee e e e ee e bbb eeeeeeeeeeeees s sabaaaeeseeeeeesessassssssssasseseeeeeesaasssssssssenseeeeessennnes 75

Chapter 14. Command DesCriptions.......cccccieieeieiieieieciecentecaceseecessessecessecascecsocasses 77

Syntax, Message, and RESPONSE CONVENTIONS.....ccccciiiiiieiiiiee it eeiteeesieeesrieeesieessbeeesreessreessseessseeesans 78
APP C LIST ciiititeieteeeiteesete e sttt e sttt e sette e sebteesbteesbteesstaesstaesaseeesasteesasteesaseeesaseeesaseaesaneessaseessastessassessaseeesnne 81
APPC QUERY ..ttt ettt sttt ettt e sttt s bt e s ta e e st e e e sabbe e s bbe e s b beesaseaesnseaesaaeaesssee s steesnseesnssaesnseaesnneaas 83
APPC REPORT ...ttiiiittietteesiteesit sttt e sttt e s tte s sttt e s bt e e s beeesabaeesabaeesssaeesaseeesbaeessseesnsseesseeesnssaesnnseesnssessnnens 84
LY L O 1Y = USSR 85
APPC STOP...ce ittt ettt ettt e sttt e sttt e s sttt e s et e e s bt e e sbaeesbaaessteesasaeesasteesaseeesabaaesseeesaseeessaeesstaesnseaesnraenn 87
AUTH CRECLASS. ...ttt ettt sttt sttt et e st e st e s ate e s s te e s ste e s stee s atae s sbaesssaesansaesssaesanseesansaesnssaesnsseenn 88
AUTH CREOBUIECT ...iiitttieittisiteeeite e sttt e sttt e ssiteessteesseeesstesssaeessseaesssaesssseessssesssssesssseesssssesssenessssnessssnens 89
AUTH DELCLASSttt ettt st et s vt e st e s s te e s st e e s saba e e s sbaeesabaeessbaeesaseessnsaesanseessnsaeesnsaessnseesssaeenns 90
AUTH DELOBIECT .. iutttietetieieeseieeseiteesetteeseieeesstteeseseessaseeessseesssseessseesssseessnseesssesssssessssseesssseesssseesssseessnnes 91
AUTH DELUSER ... ettt ettt ettt ettt st e st e s e ate e s sate e s ssteessataesssteesassaessssaessssaessnseessnsaessssassnseesns 92
AUTH LISTCLASS. ..ttt ettt ettt sttt s et e st e st te e s teesssbe e s abeesaataesassaessssaesassaessssaesanseesassaessssaesasseesnsees 93
AUTH LISTOBIECT ..t ictttietieeeiiteeeireee ettt setteessteessteeessseessstessssassssesssseessssaesssseesssseesssseessnsasssssesssssessssseessns 94
AUTH MODCLASS. ..ottt ettt ettt ettt e bt e e s bt e s sbte e s bt e e s bt e e sbaeesbeeesbaeesabaeesasaeessaeessaesssaessaseeesseessnseeenns 95
AUTH PERMIT ..ottt ettt e st e st e e st e st e s ta e s ab e e s s baessasae s sbaeeaasaesassaesnsseessaseessnseesssseessnsens 96
AUTH QOBUIECT ...ii ittt ittt erite et e sste e s ste e sste e ssseeesssaeesssteessseeessstaessssessassesssssessnssessnssesssseesssnseessssessnsees 97
AUTH RELOADce ittt ettt sitt e st ee sttt e s st e e s sate e s aseesseaessbaesssaesaaseesssaesnssaesassaesnsseesnsseesssseessnsees 98
BRKWENRCP....cc ittt sttt ettt s eite e s eate e s ate e sbte e sbte e sbeeesaseeesaseeesaseessasaeesaseessnseessnseesssseessnseessnsens 99
07V O o | O] = N I OSSP 100
CACHE DELETE. ..t ttee ittt ittt sttt sttt stte s sttt e stte s stte s sbee s sbee e sataeesabaessabaeesaseeesaseeesasaessseessnsaessseeenses 101
(074104 o | = T 1) O PSPPSR 102
(601 PR PR RRRPPPRRPPPPRIOE 103
CONFIG AUT_CACHE. ...ttt ittt ittt ettt et esette e seite e sate e sbte e sbee e s steesseessasaessaseesssseesssseessseessnseessseessnses 104
CONFIG AUT_DATA L. ittt et e ettt e sttt e st e e sttt e sbte e sbaeesbaeessaeesasaeesssaeessaaesnsseesnsseesssnesssnesnsenenn 105
CONFIG AUT_DATA 2.ttt ettt e ettt e sttt e sttt e st e e s tae e sbte e sbte e s baeessaeesasaaesasaeessaeessseesnsseessenesnssnesnsenenn 106
CONFIG AUT_FREE....iiictttietiteeiteesite ettt eite e st e s ette e s bt e e sbte s sabae s sbaeesasaesssbaeesssaessasaessnsaesssaessnsaeesnseeennns 107
CONFIG AUT_INDEX _L.oiiitieieiieieieeinieessiteeseteesseeessseeesssseessssaesssseessssasssssesssssesssssessssseesssesssssesssssessnnes 108
CONFIG AUT_INDEX _2..iiiectteieiteieieeisieessiteessteesseeessseeesssseesssseessssesssssassssssssssessssesssseesssesssssesssssessnne 109
CONFIG AUT_LOCATION. ..cititteiiteeseitessieeseteeseteesssteesssseesssseesssseesssseesssseesssseesssseesssseesssseesssseesssseesssseees 110

vi

CONFIG AUT_LOG... it eieiitienieente sttt sttt st st st e s e st e s b e e s e e e s e reessbee e s mee e s reeesaneeesanens 111

CONFIG AUTHCHECK AUTH. oot eeeeeeese e se e eeesesese s e seesesesseassesseeeesesesesasesssseseseseseseeesseneeans 112
CONFIG AUTHCHECK _CACHE et e et e e see e se e eeeesee e seeeesesssese e seeeeseesseseeseseseesesesnseae 113
CONFIG AUTHCHECK _CMS oo eeeee e e eesseeeeess e se s eseeesesesess e sseeseseesseesseessesseesessseessesssaneenees 114
CONFIG AUTHCHECK _CONFIG.euvereeeeeeeeeeeeseeeeeeeeesseeseeseesesessessesseesseesesesessssesesesesssesssesssessessesssesseene 115
CONFIG AUTHCHECK _CPureeeeeeeeeee ettt eeee e se e eeeeseseee e e eeeeeeesesesesssesesese e seeesseseeess e senessenenene 116
CONFIG AUTHCHECK _ENROLL . eoeeree et eeseeeeeeeseeeseeseeese s se e seesseesesesseessesssssseeseeessesesessenseessse 117
CONFIG AUTHCHECK LD oo eeeseee e e e s e seesesese e se e eseeeeeseeese s seesesesesess s sseesseseeesseseeessessnens 118
CONFIG AUTHCHECK_MONTITOR ..o eeeeeeeeeseeeeeeeeeeseeeseeessesseesseesesesseeeseseseseeessasesesseessessesssesssesssessesseesees 119
CONFIG AUTHCHECK _SERVER ... eeeveeeee e eeeseeeseeeeseseeess e seessesesesesesseessesssessesseessessesseeesssessasssesssseeseees 120
CONFIG AUTHCHECK _SGP.ooeeeeoeeee oo eeeeeeese e e s eee e seeseesesese s seaessesesese s sseesesesesseesseseenesseeeseenenens 121
CONFIG AUTHCHECK _TRIE . tveeeeeeeeeeeeeeeeeeeese e seeeeseseeeseeeseeseesesese s seesssessessseesseeesesssesseeseeessesessseseseseeens 122
CONFIG AUTHCHECK _USERID veveeeeeeeseeeeeeeeeeseeeseeeesesesesseeseeesseseseseeasseessessssesessssssesssassessesssesesesenseens 123
CONFIG AUTHCHECK _WORKER...e.vee et eeese e se e seee s e seeeseesesaseeassessessssseeaseeesesssasseseeessesesasensees 124
CONFIG MEM_IMAXFREE ... oo eee oo eeeeeeese s e e s seesseese e sesesessesss s eeesseesesesesesseeesesesessesseeseesssesesseesseene 125
CONFIG MON_KERNEL_ROWS......eeoeoeeeeeeeeseeeeeeseeeseeeseeessessseseeeseeseesesesesesssesesssesesesssessessesssesssaseneseen 126
CONFIG MON_PRODUCT _IDeoeeoeeeeeeeeseeesee e esesseese e seeessesesess e se s eeesseesesesesssesssess e sseessesesess e sensssesenens 127
CONFIG MON_USER_SIZE .ereeeeeeeeeeesee e eeeseeese s seesseeseese e seeessesssese s sseessesesese s sesessesssess s seeeeseessessnesenns 128
CONFIG MSG_NOHDR ..ot eeeeeeeee e eeeee e eeeeeee e e seeeeseseeese e seeessesesaseseeeseseseeeseseseeesesesaseesseseseseeeseene 129
CONFIG NOMAP_APPC... ..o eeeseee e s e esess e e e se e sesese s e eeeeeeesseese s sseeesesesese e seeeeseseeese e seeessenenene 130
CONFIG NOMAP_TUCV oo e e e eeese e e seeeeeesesese e eseeeeesssese e sseeesesseeseessesesesssaseeeeeeeseseseseesees 131
CONFIG NOMAP_MSG.oreeeeeeeeeeeeeeseeeeeeseeeseeese s seeesesseess e eeeseessseseseseeessesesessesseeessasssesssassessesesenseasseeeeens 132
CONFIG NOMAP_SPOOL... oo eeeseeese e seeeeeeee e s ss e seeseeeseeese e seeeseesesese s sseessesesesseeseeessesesesssesseseee 133
CONFIG NOMAP_TCP oottt eees e ee s e eeeee e s eeeeeee s se et e eeees e eeeeeeeeesase s st eeesasesaee e seeeeseseneeennees 134
CONFIG NOMAP_UDP. oottt eeeee e et eee e seeeeeeseease e seeeesesesaseseeeeesesseeseseseeeeesesassesseseseseeeseene 135
CONFIG RSCS_USERID .e.veeeeeeeeeeeeeeeeeeeseseeeseeesseeseesesese s sseeseesssess e seesssessseeseesesesasesesesessessesssesessensesesees 136
CONFIG SGP_FILE . eeeeeee et eeeeeese e eeeseeseseseees e e s e eseseeeseseeeeeesesesese e sseeesesesese e esaeesesesese e eseeesenseensnsenne 137
CONFIG SPL_CATCHER ..o eeeeeese e eeeeeeeseee e eeeeeseeseeseseeseeesesseseseeessesseseesseeassesesessseseesseseseeeseseeesseseees 138
CONFIG SPL_INPUT _FTereeeeeeeeeeeeeeeeseeeeeeeeeseeeseeesseeeseseesse s sseeesesesesseeseeseeseseseseseeeseeseseseseseesseseseseeasenees 139
CONFIG SPL_OUTPUT _FTeeeeeeeeeseeeseeeeeeeeeese s eeeeseeesese e se e eeeeseesesess e seeessessesse s eseesesseess s seessesesensessesesens 140
CONFIG SRV_THREADS. ..o eeoeeeeeeeeeeeeeese e seeeeeesesese s sseseseesseseseseessesesesseaseseeseseesse e seeessesssasesessesssesssaneenens 141
CONFIG UMAP_FILE ettt eeeee e e e e e eeessee e eseeeesesesees e eeeeseese s ee e esesesesesaseeeseeeesaseeesseeesanesasenne 142
CONFIG VIM_CONSOLE ..ot eeeeeeese s e eeese e se e seeeeseseeese e ee e seese e se e eeeeesesesaseeeseeeesaseeeseeeeeesesasenne 143
CONFIG VIM_MSGiereereeeeeeeeee e eeeeeeeseeese e seeeeseseseeesesseeseessesseeseesesesessse e ssesesese s seeesesesese e ssesseseseseneseeesene 144
CONFIG VIM_SPOOL .-t eeeeeeee e seeeseeeeeese e seeeseeseeeeeeeseeseeseeees e se e eeeseseseseseeeeseseesssseseeeeseseseseneeesese 145
CONFIG VIM_SUBCOM ..o ees e eeeeeseeeses e s s seeeseese e sesessesssesesssseesesesesesesesssesesesesessesseessenenasennn 146
CONSOLE LIST oereeeeeeeeeeeseeeeeeeeseseeeseeseeeeseseeeseeeseeseseseseseseesesesesesese s seeseseeeeseeeeesesesaseseseeeseseseseseseesseassnees 147
CONSOLE QUERY v oo e eeeee e seeeseeeeeeseeese e sseeesesseese e esesesess e eeeeseessaseseeeeeeeseesesesesesseasesesesessessasesanees 148
CONSOLE START oo oot eeeeeeseeeeeeeeeeseeeseeeeeeesesesesesaeeeeesesseseeseeseeeseseseseeaeeeeseeeeeseseseeeesesesasesessesesasesaneenens 149
CONSOLE STOP... et eeeeeeeee e ee e eeeeee e se e eaeeee e es e eeeeeeeeeeeeseeee e seseeeee e eeeseseeeeaes e sseseseseeseesesesesee 150
P et e e ee e e e e e e et e e et et e et et e et et e e et e e e et e e e e e et et e s ee e ee e ere 151
ENROLL COMMIT .ot eeee e se e eeeeeee e ee e s eeese s e es e seesesaseeaseeeesesseseeeaseeeesesesase s seeseseseseseneeens 152
ENROLL DROP....e oot seeeeeeeeee e seaeesesssessseseeeeseseseseseeeseesesesesesesseseseesseseeseeessessseseensesessesssasseseeseees 153
ENROLL GET oottt eese e eeeseeeee e se e eseeeea e s e eeeesseseseseeeeseessese e seeseseseseseseeeseeseesseseeseeeesesssseseseen 154
ENROLL INSERT coveeveteee e eeeseeeeeeeeseseeesseesseeseesssessessesssesesesesaeseessesssesesaseseesessseseesseeessesesesesasssesseseseseensenne 155
ENROLL LIS T et eee e eeeeeeese e se e eeeeeeeseeese s eeeeeeeseeeseeesseeeseseseseseeeeeeeeeeeese s eeseseseseseeaseeeeseeeseseseseeseesesasene 156
ENROLL LOAD ..ot ee et eeeeeeeseeeeeeeeeeeeeese e e e eseeseesesese e eseeeeseseese s ssseeseseseeeeeseaeesassseseesseesssessesenesseseeesees 157
ENROLL RECLIST oot ee e e e eeeeeeseeese e seeeesesesese s s esessseseseeeeeeseseseseseseeeseessseseseseeeesesesessseseeeesensseseesenns 158
ENROLL REMOVE. .. oot eeee e e seeeeeeeeeeseeeseeeseesssese s seseesesesess s sesessesesssesesseeesesesasssseeesasesesesseeseeasenne 159
TUCY LIS T oot eee oo e e e eeese e ee e es e ee e se e e e e eeesese s e eeeeeeeeesese s eeeeesesesaee e eeeeeseneeess e eseeeseseseseeseene 160
TUCY QUERY oot eee e ee st e s eee e e eeaeeee e et eeeeeeeeesees e esaeeseee e eeeeeseeesaee et aeeseeseeseeeesesenesenne 161
TUCY REPORT oottt eee e e e e e e ee e e e e ese e e s eeeeseese e s e ee s e e s e e se e eseseseseeaes e seeeeseseeeeseeesesene 162
TUCY START oottt eeee e e e e ee e e e e e e e eeeeeeeee e e e ee e eeese e ee s eseeeeesesaee s eeeeesesesess e eeeeeeen 163
TUCY STOP oot se e eeeee e e e eeee e se e ee e eeeeeeaeeseeeeeeeeseeeeeeeee e sseseseeseeeeeseseeesesesesseeesenesaseneseeeeees 164
MONITOR DISPLAY ..o eeseeeseeeeeeseeeseeeseeseseseeesesseeseeesseeseseseesesesssese e seessesseesseessseseesssseseeessesesessesseeseeens 165
MONITOR USER .. eeeeeeeeeeeeeeeeeeseseeese e seeessesseese e seeeesesesesesessesesesesese s seeseseseseseeeseeesasesesesesseseseseseseeesennenens 166
MGG LIS T oot eeeeeeseee e e eeeeeeeee e ee e eeeeese e s ee e e e eeeee e eeseeeeeeeeee e ee e eeeseeeee e eeeeesesesees e eeeeeseeeseeeeeeesene 167
MSG QUERY oot eeeeeeeee e ee s eeee s e e ee e s eeeeeseee e eeeeesese e ee e s eeeeeee e eseeeeeeeseseseee e eeeseseseseeeeessanesae 168

I R Y ISP PPRTPTTRTPIN 169

MS G STOP..c ettt ettt e et s et s et e st e e s et e e s me e e s eme e e s emeeeseneeesemeeeseneeeseneeesnee 170
SERVER SERVICES..... .ottt sttt st s st s e s e s e s e e s e mee s saneas 171
SERVER MONITOR....coiiiiitieiete ettt ettt ettt st e et e st e s se e s ma e e s e et e s emaeesemeeesemneesaneeesnee 172
SERVER STOP....eiiieeee ettt sttt ettt st st s st e s bt e s s e s s ree s s be e e sabee s sareessneessnneesannes 173
SGP CREATE . ..ttt ettt ettt et e s e s e s b et e s se e e s e e e s me e e s mene s menesmenesnenesanenes 174
SGP DELETE. .. ettt ettt sttt e s e e s e s s e s e s e e e s ne e e s re e e s e e e s ne e e s neeesnes 175
RS] € o I O OSSPSR PPUPR 176
SGP MDLIST ettt ettt ettt e st e s b e e s b e e s me e e s bt e e s e e e s e e s e re e e e re e e e ree e e reeeears 178
]G S /Y PO UPT PP PRRTRUPI: 179
SGP STOP... ettt sttt st e s s bt e e st e s s bt e s s e e s e e s e e e s e re e s e ree s e aree s enne 180
SPOOL LIST ittt ettt ettt e et e st e e st e e sme e e sbe e e sabe e e sbee e sne e e s reeesneeesreeenane 181
SPOOL QUERY ..ttt sttt s ettt s et e st s me e s ms e e s bt e s e mr e e s enn e e e nr e e e e r e e e nree e e reeas 182
SPOOL START -ttt ettt e s e st e s s bt e s b e s bt e s s st e s beesan s e e s e b e e s e ree s e reeeeareeesanees 183
SPOOL STOP.. ittt st s e e s e s r e s e e e s n e e e s ne e e s e e e s ne e e s e e e s nrne s neees 184
SUBGCOM LIST ..ttt ettt ettt st s e s e s et e s e st e s e e e s me e e s menesmene s menesemenesamenesanenes 185
SUBCOM QUERY ..ttt sttt sttt st st s e st e s e e s e e e s eme e e semeeesemeeesemenesanenesnens 186
SUBGCOM START ..ttt sttt sttt ettt e st e st e s me e st e e s me e e seme e e semeeesemeeesemeeeseneeesaneeesanee 187
SUBCOM STOP ..ttt sttt ettt st st s s e s s bt e s s bt e s sab e e s s bt e s e sbe e s embeesemneessnreessnneesennees 188
LIS o PP P PR ORI 189
TCP QUERY ettt ettt et e s e e b e s b e e e e bt e e e b e e e e b e e e e abe e e e bt e e s n e e e e ar e e e e re e e s nanenn 190
TCOP REPORT ettt ettt ettt s e s e s e s e s e e e s e e e s me e e s e e e smeeesameeesenenesnenesanenes 191
TP START ettt ettt st e st e s st e s st e s me e e s me e e s m et e same e e s ns e e s ans e e s nn e e sanr e e s nreesanneeas 192
TP STOP ettt ettt st e s e e s et e s b e e e s be e e s b et e s s e e e s R e e e s s et e s n e e e s ne e e s nenesanaeenn 194
I8 = S OSSPSR RPRP 195
L1 e N PP P T RUP TR PPRROPI 196
UDP QUERY .ttt sttt st st e st e s e s sb e e s b e e s e b e e e e bee s e nee e e reeeeneeesanees 197
UDP REPORT ..ttt ettt ettt sttt sttt s s et e s st e s s et e s e et e s eme e e s e me e e s emenesemeeesameeesenenesanenes 198
UDP START ettt ettt ettt st s e e s e s e s me e s st e e s mer e s me e e s meeesmane s meeesamene s nreesanreesanne 199
L1 I TP 200
USERID MAP... ettt ettt ettt ettt s et e s e et e s e b e e s e mee e s e b e e s emseeeenseesenreesenreesenneesanee 201
USERID RELOAD. ... ettt sttt sttt sttt et e st e s eme e s eme e e semee e smeeesmeeesmeeesanaeesaneeesaneeesane 202
WORKER ADD...coiiitieete ettt ettt sttt e s st e st e s e et e s e e e e s e meee s emeeesemeeesemenesemeeesanenesenenesanenes 203
WORKER CLASSES ... ettt sttt sttt et e s st e s s bt e s s sbe e s s mree s emneesemneesenneesnnee 204
WORKER DELCLASS..... ettt sttt ettt et e e sesee e st e s me e e semee e smee e sneeesneeesneeesaneeesane 205
WORKER DELETE. ... ettt sttt sttt st s s e s sne e s emn e e s emreesenneeeas 206
WORKER DISTRIBUTE ...ttt ettt sttt e st e st e s me e s me e e st e e semeeesemeeesemeeesanee 207
WORKER MACHINES. ... oottt ettt s s s e s e e s me e sne e e snenesannnens 208
WORKER RESET ..ottt ettt ettt ettt et e s e e s et e s et e s ama e e smanesmeeesaneeesaneeesneeens 210
WORKER STATUS. ..ttt sttt sttt s et e st e s et e s eme e e s e et e s e et e semeeesemaeeseneeeseneeesans 211

Chapter 15. Function DescCriptions.....cccccecieiiieiieieiieniecenteneceniecestecsecassecasessecessss 213

SSANChOIGEet — Gt ANCRON VAlUB....ccc ettt tre e et e e e s e e e s seareae e s e e sraeeeeennes 214
SSANCHOISEt — SEt ANCNOI VAlUE......eiiiei e eee e e e e ree e e e et e e e e s e nbeee e e enasaeeeas 216
ssAuthCreateClass — Create an ObjJECt ClasS.....uuiiicciiiii ittt e e e e e e sveee e e e e ssaee e e e e ennreeeeenns 217
ssAuthCreateObject — Create an ObJECT. ...ttt ee e rre e e e e e e s rtae e e s e eneaeeeeean 219
SSAULhDELeteClass — DELete @ CLasS.....ccccuuiiiiicciiieecceitee e cectete e e cere e e e earee e e e e eaee e e s s reeee s s ntaeesseenseneeaean 221
ssAuthDeleteObject — Delete an ODJECT.......uiiii ettt e e e e reee e e e e nraeas 223
SSAUThDELlEtEUSEr — DELETE @ USEI.uuiiiiiciiiie ettt rtree e e e e tee e e e e abte e e s e baae e e e entaneeseennreneeas 225
SSAUTNLISTCLAaSSES — LISt ClaSSES..eiiiiuiiiiiiiciiieeecccitieee ettt e e ctee e e e e cree e e e e earte e e e sennte e e e sentaeeessnsaeeesennssens 227
sSAUthListObjects — List ODJECTS IN ClasS....cccccuiiieieciiiie ettt e e e be e e s e ebee e e e e raaeeeenas 229
ssAuthModifyClass — Modify an ObjeCt Class......ccuiiiiicciiiee et e e e e e 231
SSAUTNPEIrMItUSEr — PEIMIt @ USEr.uiiiiiiiiiieiicciiiee ettt e eecte e e e eetee e e eeetee e e seeaae e e s e sanbaeeesenseaeesennsseneenns 233
ssAuthQueryObject — QUETNY an ODjJECT.......uii it e e e rreee e e e reae e e e e eneaeeeeean 236
SSAUThQUEINYRULE — QUEIY @ RULE...cie ittt ettt eeree e e e e ctte e e e e eare e e e e enba e e e sensaeeeeeennteaeesennes 238
ssAuthReload — Reload AUuthorization Data.......ccceeeeciieeeeeciieee e ceciiee e eecree et e e e e erre e e e ebre e e s e e naeeeaeeas 240
SSAUthTestOperations — TSt OPEIratiONS.ciicciieeeeeciiee e certee e eeceee e et e e e e e e e s e sbteeeeeesreeeeeeenseneenas 242

vii

viii

SSCAChECIEate — Create CaChe. ...ttt s e s s e e s s eeeaeaasaeseeneenes 244

SSCAChEDELEtE — DELETE CACE. ... ettt e e e e e e ee s asbsbaeaeeeeeeeeeseesssssssenens 246
SSCAChEFIleCloSe — ClOSE CAChEA FilBu.uuuuuiiiiiiiiiiieeiciiteiieeee et e e e eeeeeearrr e e e e e e e e e eeenennnnnnes 247
ssCacheFileOpen — Open CaChed File.....uui ittt e e e e te e e e e e e e e e s e beee e e eennnes 248
ssCacheFileRead — Read CaChed File......coouuiiiiieiiiieie ettt e e e e e e e e 252
SSCAChEQUETY — QUETY CACNE..uiiiii ittt eeee e et e e e et ee e e s et e e e s e baae e s eesaaeeesessaneesennneenenan 254
ssCacheXlTabSet — Set Translation TADLE.. ... e e e e e e e e enas 256
SSClientDataGet — Get CLIENT Data.......cooieeicuiiiiiiiieeec ettt eeeeeerrrar e e e e e e e e seeaasbaraeaeeeeeeeeesens 258
ssClientDatalnit — Initialize Client Data BUTfers......ccouvueeeieeiiiiiiieeccttee e 260
SSClLientDataPut — PUt CLENT DAta......uuuiieiiiiiiiiiieieiiiiiieee e eeeeccirrreree e e e e e e e e e e esssaraeeeeeeeeeesseessnnnssssnens 261
ssClientDataTerm — Terminate Client Data BUTfers.......ccuveeeeeiiiii et 263
sSEnrollCommit — Commit ENFOLIMENT SEt...eeiiiiiiiieiiieieeee ettt e e e e e e s e e e nnanes 264
SSENrollDrop — Drop ENFOIIMENT SET......uiiiie ettt tee e e crree e e e e aee e e s e reae e s e e nsane e e ennes 266
SSENIOLILIST — LiST ENFOLIMENT SIS cciiiiiiiiiieteeeeeee et e e e e e e e e nssrrreeeeeeeeeees 268
SSENrollLoad — Load ENFOIMENT SEL.....uuuiiiiiiiiiiiiieecccttteeeee ettt e e e e e e e eeasararareereeeeeseeenannnnnes 270
ssEnrollRecordGet — Get ENrollment RECOI........cooiiiiriiiiiiieee et e e e e e e e eanas 272
ssEnrollRecordInsert — Insert ENrollment RECOId........uvvveiiiiiiiiiiiiciiieeeeeee et 274
ssEnrollRecordList — List Records In ENrollment Set......eeiieeeiieiiiiiiceeeeeee e 276
ssEnrollRecordRemove — Remove Enrollment RECOI.. ..ot 278
SSMemOoryAllocate — ALLOCATE MEMOIYuuiiiee ittt e e ttre e e e e ree e e s s stee e e s nreaeeeeennreeas 280
ssSMemoryCreateDS — Create Data SPaACE.....u ittt e e e eecrerrer e e e e e e e s s s e saraaareeeeeeeeaeenann 282
ssMemoryDelete — Delete SUDPOOL. et e e e e e e e e e are e e e e e nreees 284
SSMemOoryRelease — RelEaSE MEMOIY ...ttt et e e e e e tr e e e s e abe e e e e e baeeeseeseneeeenns 285
SSSEIVEIRUN — RUN ThE SBIVEI ...cii ittt ettt e et e e e e e e arbe e e e e e eeeeeesessssssssaseeeeeeeeeessasssssses 287
SSSEIVEISTOP — STOP ThE SEIVE ... e et e e e e srr e e e e e bt e e e s e nbaeeeeeeasseeeeeenseneaean 288
SSSEIVICEBING — BN A SBIVICE e ettt e e e e e e e s bbb ae e e e e eeeesessessssaraeeeeeeeaseenan 289
SSSEIVICEFING — FINGU A SEIVICE.uuuiiiiiiii ittt e e e e e e e e s bebr e e e e eeeeeeeeesasssraeseeeeeeeessennnns 291
SSSEPCreate — Create @ STOrage GrOUP ittt ettt ettt e e st e e e e ne e e e e e sareeeeesneeeeeeeanneeeas 293
ssSgpDelete — Delete @ STOrage GrOUP....cucuiiiriieriieeriitersieessreesseeessreesseeessseesssseesssseesssseesssseessssaesas 295
SSSEPFINA — FINA @ STOragE GrOUP.ciccuviieiiieriirieeiiteeiteessite e sttt essieeessieeessseeessaeeessseeessssaesssseessssnesnsseessnees 297
SSSEPLIST — LiSt STOTQZE GrOUPS..ciicuveiiiiieriieeriiteseitessteessteessteesssaeesssseessssaesssseesssseesssseesssseesssseesssaesas 299
SSSEPQUErYy — QUETY @ STOFAZE GrOUP..ceiiieueteeeeeeiteeeeeeittee e st teeseetete e s e srteeeeenreeeeseanneeeeeeaaneeeeeennseeens 301
S5SSgPRead — Read a StOrage GrOUP......cicciiirciieiritieiritessteesite s steeeseeessteesssbeessseeesseeesssaessssaessseeesnnens 304
SSSEPStart — Start @ STOrage GrOUP....cei ittt ettt et e e e et e e s s e et e e s e snreeeeesenneeeeeas 306
SSSEPSTOP — STOP @ STOrAZE GrOUP . .uueiieeieiiteeeeeiitee e ettt e ettt e e sttt e e s e sset e e s e eneeeeseenreeessesareeeesesnneeens 309
SSSEPWrite — Write @ STOrage GrOUP...cuiiicieeieiieieieesiieeseieeseteesstteessseeeseseeeseseeesaseeessseesssseesssseesssseessans 311
SSTTIECIEATE — CrEATE @ TIiuuuuuiiiiiiiiiiiiiiiecciirrteee e e eeeeeeebarr e e eeeeeesesessssssaeareeseeeeeesessasssrassesseeseeeensnnnns 313
SSTTIEDELETE — DELETE @ THIB.iiiiii ittt e et e e ee et b e e e e eeeeeeeessssssseaseeeeeeeseessassssssssrees 315
ssTrieRecordInsert — INSert RECOIA INtO TriB..uuuuuiuiiiieiiiiiieeiiiitieee e eeeecccerrere e e e e e e e e e e srrraeeeeeeeeeens 316
ssTrieRecordList — List MatChing RECOIAS.....c.ccuiiiiiiiiiiiieieiiecete ettt ettt eee s s sbe e s seaeeens 318
ssUseridMap — Produce Mapped USEr ID.....cuuiiiiicciieeeeeciiee e e ecttee e eettee e seeate e e e e snvee e e s esnvaaeeseesnaeeeeeas 320
ssWorkerAllocate — Allocate Connection to Worker Maching..........eeeveeeeiiieecciinvieeeeeeeeceeeeeecvvveeeeeeee 322

Chapter 16. RSK SOCKEetS.....cccceuiiuinieiinieiieniienietiniectecastececessecsssessscessecsssessscascss 327

PrerequISite KNOWLEAZE.c.uiiiiiirieeeiee ettt sttt e st e e st e s be e s s be e s s abeesssbeesssbaessssaesnnseeens 327
AVAILADLIE FUNCEIONS. .. ittt eeeeecsa bt e e e e e e e e eeeessssssbaaraeseeeesssessassssssaeaseeseeeessennnnsnsrnnns 327
Programming With RSK SOCKETS......civiiiiiiiiiiiiirite ettt ettt sae e s te e s sbe e s saae e ssaeeessaeeessaeeas 328
RESTIICTIONS AN LIMITAtIONS...ciiiiiiiiitiieeeeee et ee e eeeeerbrrr e e e e e e e eeeeessssbsraeeeeeeeeseesenssnsssssenens 329
(DY = I A0 (o1 (U1 =TSSR UUU N 330
JaNe [o LT R S) 4 AU To3 (U] =T U O O T RRRRU RO 330
TIMIBOUL STIUCTUI. ..ttt e e e e eeee bbb eeeeeeeeseees s bsbaeaeeeseeeeesesassssssassseseeaeeeessennnes 330
NOTES ON PLXSOCK COPY ... ettt reeeeeee e e e e eeeeeeeeeeeeeesesssss e s s ss s s s s na naeaseeeasaesasesessssssssessnssnns 330
[000] 4153 = 1| £ 7SRRI 330
S UCTUIES . eeeeeeeeeettt i rcceeeeeee e e e e e e et eeeeeeeeeeeee et s ae s s s s s a s s aa aaeaeesaeaseeessessessssssssssssssnsnnsnnnnnnnnnseeeeeeeeaeaens 330
L aoa (o] ATl o) (o] 1Y/ 01T TSR 330
Return Codes and ERRINO ValUEBS.......uuiiiiiiiiiiiiiiiieeee ettt e e e e e e e e eassbaeaeeeeeeeseseeessssrseseeeeeeeeas 330
RSK SOCKET CallS...uuuurrririiiieiiiiiieeiciititeeee e et eeeeeesecbrtereeeeeeeeeeeesessssraeareseeeseesessasssrassaeseeeeeseesesasssssseanersens 331

T Uolo1 =T o) S UPRUPRPR 331

S TIE=] o 11 T oSSR 332

L STIE=Y 0] o] L L= o 1 PSR ERN 333
= 51/ Ao Y- o P USRS 334

T 153 (o =T ox V2SR 336

= 1Y/ A o1 =] [1 (o J ST 337
= 1Y A [o Y/ 1 (TS 339
ST o 11 o SRS 340
I oF- T (o1 =] F OO U RUUTTURRRRRURRRRt 341

ST ol (01 TSP SPRSPRRI 342
Y oo] 31 =T o1 F TR 343

ST ==Y d a0 =) £ o TR PSPPSR 344

I = (1 o 1= T=T g - Uy L= T O O OO PP PPTOR PP PP 345

T =2 (o o T U [TSP 345

ST ==Y (Yo Tod (] o 1 ST 346
ST (o Te3 { F TP 347
ST L1 o TR 349
ST o] £ =T 1 o PP R U OS O URPPURRRRRURORRRRY 350
ST L (< 3 VOO RROR PP 351
T L= Lo P TS UTURRRRRSPR 352

e T £=T0AVi o] 1 VOO URRRRURO O 352
T Y =1 (=Tox SO URRRURRUPR 354
ST Y =11 o | (o TSSO UUTTURRRRRRRRRPIRt 355
=] #Te Tod 1o o) SR 357
ST a1V o (011173 VUSRS RRP R 358
T Yo o] (=] FO RSP 358

P S W Tt teiiiieei ettt e e et et e e e e e bbb a b e e e e e et e e e e e b bbb aaraaaaeaeeeaeaaaaabbaarraraeeeeeeeaaannnrararns 359
Appendix A. Sample PROFILE RSK.....cccccccituiiieiincenteniecentenscessecatessecassocsssassasans 361
Appendix B. Sample User ID Mapping File.....ccccceiviieiiiniiciecieniennenieniacincacnecnes 365
Appendix C. Authorization Data File Formats.......ccccceeieiieieienieceniecncencececeneecenns 367
OVBIVIBW . eiieiiiee ittt et e st e s e te e s te e s sate e seate e s ateesateesaeaesseeesaseeesaseeesaseeesseeesaseeesaseessnseeesnseesssenesnseeessens 367
THE DAL FilBuriiiiiiiiiiieieiee ettt st e st e e st e e s bte e s bee e sataesbtaesseaesseaesstaesaseeesaseaesnseaesnns 367

Bl L= 1o [t T C= OSSPSR 369

I A= = 1L T USRS 370
Appendix D. Enrollment Data File Format........ccccccieiieiiienieienieciceniececieneecessecannes 371
Appendix E. Storage Group File......ccciiireiieiiniiniiniiiiiiiniiiesieiiesiaiaiacsecsessessesne 373
Appendix F. Reserved Names......cccccieieiieriienieceiestecestessecastocssessecssssssscasssssssassans 375
SEIVICE NAMIES . tiieiiee ittt s et e st e st e st e s s st e e s e a bt e s e abeesassee s abee e sbeesasseeeaaseesasseesasseeessseeensseesnsseens 375
D1 = IS o 1= (1< = SRR 376
TCP/IP SUDLASK NAMES...u it e e e s e e e e e e e e e e e e e e eeee s e e e es e s s e b s s s assssssesesasssssseennnnes 376
UDP/IP SUDTASK NAMES.. . ittt e e s e e e e e e e e et e e e e e e e e eeeeeseasasbab s aesssessesasasssseseensenns 376
Appendix G. More Detail On Reason Codes.......ccccceeiiurreieiieieieniecentecsececsecascassacans 377
ApPPENdiX H. MESSAZES...cciuiiuiieiiniiniiniinirecrenresiestestasiastsessessessessessessassassassassssssess 393
Generally APPLICAbLE MESSAZES.ciuiuiiriiiiiiieriite sttt et e s e s e e s st e e s be e e s beessabeessbeeesssaeesaseeesases 393
CONFIG SEIVICE MESSAZES. cccuviiiruriererieisirteesiteessitessstesssstesssseesssstesssseeessseeessseeessseessssessssesssssssssssenssnsens 394
LiNE DIIVET MESSAEES. . uviiecurieriurterititesiteesittesiteesstee s sttt e ssaaeesssaeessstaesassaesasseesssseesssseesssseessnseessseesnsseessnses 395
SERVER SEIVICE MESSAZES..ciiicutiiiitieeriiietiiieesiteeseeesssstessseeessseesssstesssseesssseesssseesssseesssseesssseesssseesssseessnnes 396
USERID SEIVICE MESSAZES..uuiiicuieiiiiieeriieeiitieesiteesitteessteesasteesasteesastessastesssseesssseesssssessaseessaseesssssessseessns 396

TCP and UDP LiNE DIiVEr MESSAZES. ..cccuueireiiererieeiiieeriteesateesarteesaseesssseesssseesssseessaseessaseesssseesssssesssseessns 397

SGP SEIVICE MESSAZES. .ueiiuiieririeriiieeriieeriteesiteesatessastessasteessstessssteesastesssseesssseeessseesssseesssseesssseesssseesnssees 402
RSK SUBCOM MESSAZES. .. uueiieeieitteeeeeitteeeeeitttesesastteeaesssteeeasausteeeesanseaeesaanseteesassseeesaeanseeessesasneeesaan 402
AUTH SEIVICE MESSAZES. .. uviiieuieeiiieeiiieeisieessiteessteessteesseeesssteesssteessseeessseesssseessssessssseesssseesssseesssseessssens 403
CP SEIVICE MESSAZES. . utiieurieiiiieriiiersitessitteesttesssttessbeessbeesssbeessbeeesbeesasseeeasseeeasbaeessseessseessseessnseeesnsens 406
CMS SEIVICE MESSAZES. .. veiieurieieiieisiteiiiteesittessteessttessteessseesaseeesstessseeesssaeessaeesseesssaeessseessseessssaeens 406
MSG LINE DIIVEE MESSAEES. .. uviticurieriuieeriiteriieesaieessteesasteesssteesaseesssseesasseesasseesssseesssseesssseessseesssseessssaes 406
SPOOL LiNE DIiVEr MESSAEES. . ueiiicuieiriiieieitieeeiteesiitetsiteessirteesseesssstesssstesssseesssseesssseesssseesssseesssseesssseesssses 407
ENFOLIMENT APL MESSAZES. .. .uiiiiiieieiitieitteeeiteesirteesrtteeetteesbteessseeessaeessaeessteessaeessaeesseeesseesssssnessseeenn 408
MONITOR SEIVICE MESSAEES. . .utierriirtitieiiiieeiittesiteesiteessae e sttt essbeeessseeessseeesssseessseaesssesesssseesnssaessseeesnnees 408
CACHE SEIVICE MESSAEES. . uiiiiiiiiriieiiiteisitteesite s st e s ssttessteesseeessteesssteessteessstaessseaesssseessnseesnssaesnseeesnees 409
TUCY LiNE DIIVET MESSAZES...eiicuteiriietiiieeiiieeseiteessreessastesssseeessseesssseesssseesssseesssseesssseesssseesssseesssseesssseessnes 409
APPC LiNG DIIVEN MESSAZES..ueiieureireuiiereieeiiieerateesasteesateesaseeesaseessaseessaseessaseessassessaseesssssessasessasessseessns 412
WWOTKEE APT MESSAZES. . utiitiieiieiieriieeeiieesiteesstttessiteesssetesasteessseeesssteessssaesssbeesssseessssaesnsseessseesssseesssseessses 413
TTIE MBS SAEES. ceeuvieieuiieieiieieitte e sttt e sttt e sttt e s bt e e s bae e s bt e essaeessaeeaasaeesasaeeeasaeesasaeessteessseessseessseesnsenesnseeenn 414

Appendix I. Language Bindings......c.ccccucireiieiieiinnienieniniiniinincncssnesnessessascscacses 415

Assembler Language BiNAINGS.......oucuiiiiieiiiieiiieessieessieessteessieeesseeessseesssseesssseesssseesssseesssseesssseesssees 415
Anchor Bindings (SSASMANC MACRO)......uticieerieirteeieeseeetessteeseesteesseesseesseessseesseessssssesssesssesssens 415
Authorization Bindings (SSASMAUT MACRO).......cuciieierrieeieeceeetessteeseesaeesseesseessesssesssessssssssesnes 416
Cache Bindings (SSASMCAC MACRO).....ccuiecieeieeeieecieesieesieeseessteesseessessseesseessessssessseesssssssesssessnees 421
Client Bindings (SSASMCLI MACRO)....ccutiiieeieeceeeieeteesteesteeseesteesseessseesseessaessseessassnsessssessesssesans 423
Enrollment Bindings (SSASMENR MACRO)......cccitirieeierrtesieeseeeteeieeseestesseeesae e seeseeesseesneeeseennns 425
Memory Bindings (SSASMMEM MACRO).....c.cutiiieeieectieeieeseeetescteesseessteesseessseesseessseesseesssesnsessssesnees 428
Storage Group Bindings (SSASMSGP MACRO)........cccieiiieiienieeieeseessteesreesaeesseesaessseesseesnseesssesnses 430
Services Bindings (SSASMSRY MACRO).......uiiiieciierieerieeseeesieesteesteesseesaessseesseessesssesssesssessssesssensns 433
Trie Bindings (SSASMTRI MACRO)...c..utiiiieieeceesieesteesteecteeseessteesseessseesseesssessseesssssssesssessnsesssessnsenns 436
User ID Bindings (SSASMUID MACRO)......uieciieieeeieecteeseeesteeseeseessseessesssessssesssessssssssesssessssssssesssees 438
Worker Bindings (SSASMWRK MACRO)......cuiiciiiieetieceesteeseeseeeseesseesseesseessseessessssesssessssesssesssenans 439

PL/X LanNZUAEE BIiNAINGS....iiiciiiiiiiiiiieeiiieeseiee st ssie e st e sste e st esste e s beesssbeessabeessasaesssseesanseesnsseesnnseens 440
ANnchor Bindings (SSPLXANC COPY)...cccuiieiieceeeieecreestessteeseesseesseesseesseesnsesssesssssssessssssnsesssesssesnses 440
Authorization Bindings (SSPLXAUT COPY)...cccutieieeceirieerieesreesieesreestessseessessseesssesssessssesssesssessnsesnns 441
Cache Bindings (SSPLXCAC COPY)...uiiiieieeeieecieereeecteeseesseessseesseessseesseesseessessnseessessssssssessssssssesssens 444
Client BiNdiNgs (SSPLXCLI COPY)...icuiicieeieeceeeiescieestessteesseesseesseesseesseesnseessessssesnsessssssnsesssessnsesnses 447
Enrollment Bindings (SSPLXENR COPY).....vtiiiiiieeieenieeieesieesieesreesaeesseessseesseessaesssessseesnsesssessnsesnnes 448
Memory Bindings (SSPLXMEM COPY)...uuiccieiieeieesreeeiessieeseessteesreesseessessssessseesssesssessssssssesssessnsesnees 450
Storage Group Bindings (SSPLXSGP COPY)...ccuiiiiieiieieeeieesieeseesteeseesstessseesseesseesssesssessssssssesssenns 451
Services BiNdings (SSPLXSRY COPY)...ccuiiiieieerieeieestee st esteestessteesseesseesseessseessessnsesssessssesssessseenns 454
Trie BiNdiNgs (SSPLXTRI COPY)..ciiiiicieeieesreeeiesceestessteeseesteesseesseasseessseesseesnsessessssesssessssesssesssesans 456
User ID Bindings (SSPLXUID COPY)..ccciieieicieeeieeiteestessteesseestessseessseesseesssssssesssessnsesssessnsesssessssssnsens 457
Worker Bindings (SSPLXWRK COPY)....oiciiicieeieeieeseeeieesreestessseestessseesseessessssssssesssesssesssesssesssenss 458

Appendix J. What's Changed Since the Beta........ccccccviuiininincicnecncneciecnecnenne. 461

[\ 0] =Y - TR ! .Y 1

Programming Interface INformation......couciii ittt e s e s saee e s 464
N =Te (=10 g B U 4TRSS UUTURRRRRRRURRRRt 464
Terms and Conditions for Product DOCUMENTATION.......uuuuiiiiiiiiiiiiieciiieeree et e e e e e e e eeeennnnes 465
IBM ONliNg Privacy Stat@mMENt....cc i iieeecciieee ettt eerttte e e ctte e e e e tee e e e e ette e e s s enee e e e s ntaaeeseensaneesennnsenensan 465

=11 FT0 Y= - ¥] 1)V 1Y |

Where 10 Get Z/VM INTOrmMation.....ocoii oo e aaa b sesseeseeeaanes 467
Z/VM BASE LIDIAIY . ueiiiieiiciiiee ettt ettt e s st e e e s et e e e e e e aaeeeeesnteeeeeenbaeeesanseeaeeeanssaeeeeanseaeesennsenes 467
Z/VM FaCIlitieS A0 FEATUIES....cciiiiiieeeeeeeeeeee ettt e et e e ettt ssssseseeseaaessesseeeserssnsssnes 468
PrErEQUISITE PrOQUCTS. . uiiiiiciiiee e ettt e ctte e e e e cte e e s et te e e e eesteeeeeesasseeeseensseeeesanssasesaannsaneessanssensesannes 470

({1 E= 1 (=To I o T 1U [t £ 470

xi

Figures

1. Reusable Server KErNEl OVEIVIEW.coui ittt sttt e sttt se et sbe et sre e s e bt et esbeeeesre e 5
2. Ling Driver OrZanizZation...iicueiicieeecieeicieeecieeeeieessteesseeessseeesssseesssseesasseesssseesssseesssseesssseesssseesssseessseesssees 12
3. Reusable Server KErNEL DASD ..o ittt sttt sb sttt s et st e be et ess e e e sbeebesmeenseeneen 26
4. Run-Time Environment CONtrol BLOCKS.......coiutiiiiriieteeieecteete ettt sttt sttt s e 60
ST I D Q[0 - V=LY 61
6. ASSEMDLET LINKAZE M ei i utieieeiitieiee ittt ettt ettt e s ette e s eaee e s ree e s sateeseseeesstee s steesseaesantassseessaseeesassesssssesssssessnne 62
7. FLOW OF CONTIOL. ittt ettt bt ettt st e bt et e s bt e e e sat e bt e st e s b e et e sbeeabesme e beeneen 64

xiii

xiv

Tables

N [o [o a o I o T=T o3 AN Y- TS 2
2. SErViCe BLOCK, OF S=BLOCK. ... tiittitieeteeiteete ettt ettt ettt ettt st e s ee s bt e s me e sabeesneesas e e st e saeeeneesanesaneenns 6
3. Initialization Entry Point Parameter LiSt.......ccciiiciie ittt te e e eee e e vae s e eree e e aae e e rae e eanes 6
4. Service ENtry POiNt ParameEter LiSt.. .. cciiiie et eecree e s eerree e s tree e e estree e e e s nraeeesensaaeesernssasessenssenens 7
5. Termination Entry Point Parameter LiSt.......ccciiiciieiciie ettt erte et eeete e s eaee e s vee e s eree s e aae e s raeeennes 7
6. Files Needed t0 RUN YOUE SEIVETccc.uiiitiiierieeeteeteeettesee et site st et st e sbeesate e bt e saeessbeesneesaseesneesnseesneenns 10
7. AAItiONAL SETUP TASKS...iiiiiiieiieieieeeetieeetee et cete e eetee e e tee e etee e e teeeeateeeestaeeentesesnsasasssaeaassaeesssaesssseessnsaeanns 10
8. CLIENT BLOCK, OF C-BLOCK. ... tteitiiitestieeie ettt ettt ettt s bt e st e s bt esaeesabe e beesaee e bt e saeeeaseesaeesabeesneens 12
9. LINE DIIVET NAIMES.c. ittt ettt ettt ettt s et e bt et e s bt et e s ae e bt et e s bt et e s bt e b e emeesbesatesbeenneemeensesaes 13
10. USEr ID MapPiNg SCREMIES...ccccuiiieiiieeiiteeiiteesite e st e s sieee st e ssaeeessseeesssseeessseessseeesssseesssseesssseesssseessseesnssnes 14
11. Line-Driver-Specific POrtion 0f C-BLOCK.......ccuiiiiiiiciieccee ettt ettt tee et e s vte e e eaaee s staesenaaeenns 14
12. Message from Line Driver t0 INSTANCE......ccuiiiciiiiieeictee ettt sttt te e s s e e s sae e s see e s saee e s ssseeenneeas 15
13. Message from INStANCE 10 LINE DIIVET.....cccciiiicieeicteeeetee ettt et e eete e s te e s rteesestee s stee s nteeeestaeenstaesnes 16
14, BUilding @ STOrage GrOUD SEEP.ciiuiiiicieiritieeeiieesitteesstteeerteeesstteessteeessseeessseeessseeessseeesseesssseeessseeessseeesssenenns 27
15. Changing the Minidisk CONfiGUIAtION.......ciiciiiiciie ettt e e ee e seate e et e e st e e s ntaeeeneaeeanes 28
16. Deleting @ StOragE GIOUP...cuuiiicieercreeriieeeiueeerteessseesssetessseesssseessseesssseesssseesssseesssseesssseessssesssssessssseessses 29
R S (o) (- U gL aa LT = N (=Y o - Vo -SSR 35
18. Authorization API Naming CONVENTIONS.ccitirciieieiieieiereeiteeesteeesteeesteeesteessseesssssessssesssssesssssesssssessns 36
19. Authorization Data File FOMMAT......co ettt ettt beseesne e 37
20. Migrating Authorization Data from MinidiSks t0 SFS........ciiiviiiiiiiiiecrecrer e esre e see e saee e 39
21. Migrating Authorization Data from SFS t0 MinidiSKS......cueicciieieiiieciieeeee et ree e 39
22. Line Driver and Service Calls to sSSAUThTEStOPEIratioNS........uveiiieiiiiieeeecciiee e e eecree e e ree e e e e sare e e e eens 40
23. Activating Authorization Checking for Services and Ling DFVEIS........covievvieenieniieineenieeneenieesieesnesiees 41

XV

xvi

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

Authorization Configuration Parameters........cuiiiiiiriiieiiiieerieessite st e st e st e s sre e s e e s sbeessbeessabaessaneas 42
ENFOLMENT APIS ...ttt sttt st et sb e s s bt e bt st e b e st e s be e b e sme e b e s e e neennennes 44
ENrollment ComMMandS.....co ettt et sttt e b e st e e bt e s st e sbe e sme e sase e beesmeeebeesnnens 44
WORKER COMMANGS.....citiiiiriieienieniteteettete sttt ettt st e et saee bt st sheeeesse e b s e e sbesatesseessesmeensesanenseensennes 56
Register Contents at ProCeAUIE ENTY... i ittt sttt ste e s ste e s sae e s sbe e s sba e s sanaeennne 60
Parameter List Array fOr RSKIMAIN.....cccuiiiiiie ittt st eee e eee e eee e svee e s tee s e bae e sbae e sbeeesbaessnbaeesnsaeennses 62
RUNSERV and WAITSERV COMMANAS.....utiiiiiiiriieitenieeetenteesiee st esieeesreesseessreesneesbeesseesreesneesmnesnnes 65
CoNfIGUrAtioN Variables.ui ittt e e e e e e e e et a e e e aaeeeabae e e saeeesaeeensaeeensneean 66
MONITOE DATA ROWS...cuiiiiieiieeteeste ettt ettt et s e st e st e s st e st e e bt e saeeebeesmeeeabeesneesaneesneesaneenne 71
KERNEL MONITOT ROW....utiiiiiiieeieeiteitesieete ettt sttt st et s e st st ss et e s st e s st ese s e e st e aesreeseesme e b e emeennenane 72
SERVICE MONITOT ROW..cuutiiiiiiiieieeite et et ettt see st e st st e s seeste e beesaeeeabeesaeesaseesaeesaseesneesaseesneesaseeneenns 72
LINEDRY MONITOT ROW...citiiteiieienitetietesieete st ettt see sttt et et e st e st e se e e e st e e e st e st et e sreeneesmeesesmeenne 73
AUTH MONITOT ROW.citiiiiiiieeieeete ettt ettt sttt st et e st e st e s e e s b e e s seesase e seesaeeeabeesaeeeaseesneeenseeseesnsennnes 73
SGP MONITON ROW.c.uiiiiiiiiiteitete sttt ettt st et s et s e bt et e s bt e e e she e st s st e b e s e e sresanesneennennis 73
MEM MONITOT ROW...ciitiiiieiie ettt ettt sttt st e st st e s s e st e e s beesaee e st e saeeebeesmeeeaneesneesaneesneesaseenne 74
ENROLL MONITOr ROW.c.utiiitiiieieeiteientesie ettt sttt et sae st st s st s st e e e st e st s e sheeeesaeesbe et e sbesmeesreeane 74
(00X 08 o 1 = o] a1 (o il (o 1Y F OO PR PSPPSR 75
TRIE MONITON ROW..iuutiiiiieieeieeitetestest ettt sttt ettt s e bt et s bt e e she e bt et e b e s aaesre et e smee b e smeesrenane 75
WORKER MONITON ROW...ciitiiiiiiiieeeeniteste sttt sttt ste e ee st e sb e st e e s e e sbe e sseesaseesneesase e seesareeaneesnnesans 75
COMMANT SUDSETS ...ttt st st b et s bt ee st e b e e e s b e e e e sreeaneemeens 77
Examples of Syntax Diagram CONVENTIONS.cciiiiieeiiiieeirieeesieeesieesseeesseeessieeessieesssaeesssneesssseesssseessnsens 78
Programming INtEITACES. .. .uii ettt e e te e et e e e s abe e e sabeeesabeeessbaeasssaeannseeennses 213
FLlags fOr SSCAChEFILEOPEN.ttt st e s s e s s e e e s e e e s beeesbeeessbaeesasens 249
Socket Functions Available in RSK LIDrary.. ... ee ettt esteeesvee e ste e s eeesssaessasaeennes 327
Additional RSK-Specific FUNCIONS IN LIDIary.......cviii ittt tee e e erre e e e enae e e s e e e 328

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

FIEE ROW. .ttt ettt et e e s e e st e s st e s s bt e s sbe e s s abee s e bt e s emree s e areeseareesanrees 367
ClaSS ROW...ueiiiiiiiiiteiecitet ettt sttt sttt et s et e st e bt e e s bt et e s ae e b e s st e bt et e s bt e e e sseesbeemeenresanesneens 368
(@] o) =Tox Al 2 1o 1Y /USRS 368
USEI ROW..etiiiiiiiiiiiiiiiiiiiiiii s a e bbb s b s b e e s b e s s b e s s na s 368
RULE ROW ..ttt ettt ettt et s e st e s st e st e e st e st e e beesae e e bt e sae e e beesmeesabeesneesareeneesnreennis 369
ANCROT ROW ..ttt sttt ettt et e e st et s e b st e bt e e s bt et e sse e bt emeesbesmeesbesanenneen 369
LOZ STAMIP ROW. ..ttt ettt ettt ettt e e sttt e e s et e e e e saae e e e e e s nreee e e e nneeeeseanreeeeesanseeeeesnneaeenss 370
oY=l U oo FoX LN (o 1Y SRR 370
Reason Codes and Recommended ACLIONS......couiriieiiiriieie ettt 377
Differences Between Beta and GA LEVELS.......ccco ittt ettt 461

Xvii

About This Document

This document describes how you can use the IBM z/VM reusable server kernel to develop and execute
server programs on the z/VM Conversational Monitor System (CMS).

Intended Audience

This document is for programmers who want to develop server programs and run them in the CMS
environment.

This document covers advanced material in server construction and is not for beginning programmers. To
use the material in this document, readers should:

« Know one of the supported programming languages, and

« Understand concurrent programming concepts, including both general techniques and specific concepts
relevant to CMS Application Multitasking, and

« Have experience with CMS application development and the tools and facilities used by CMS application
developers (for example, the GENMOD command and the Callable Services Library), and

- Have a working knowledge of CMS and z/VM as they appear to the CMS application developer, and

« Have application development experience with at least one z/VM connectivity technology, such as
TCP/IP.

Where to Find More Information

For more information, see “Bibliography” on page 467 at the back of this document.

© Copyright IBM Corp. 1999, 2024 xix

xx z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1999, 2024 XXi

https://www.ibm.com/docs/zvm/7.4?topic=how-send-feedback

xxii z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Summary of Changes for z/VM: Reusable Server Kernel
Programmer's Guide and Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (]) to the
left of the change.

SC24-6313-74, z/VM 7.4 (September 2024)

This edition supports the general availability of z/VM 7.4. Note that the publication number suffix (-74)
indicates the z/VM release to which this edition applies.

SC24-6313-73, z/VM 7.3 (September 2023)

This edition includes terminology, maintenance, and editorial changes.

SC24-6313-73, z/VM 7.3 (September 2022)

This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6313-01, z/VM 7.2 (September 2020)

This edition supports the general availability of z/VM 7.2.

© Copyright IBM Corp. 1999, 2024 xxiii

xxiv z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 1. Basic Concepts

Motivation

Most operating systems suitable as server platforms offer a variety of technologies to the server

author. For example, such operating systems might offer one or more sets of communication interfaces,
a threading interface, a file system interface, an enrollment and authorization interface, storage
management primitives, and so on. In some cases, the technologies offered the server author are
complex, advanced technologies for which the deployment strategies, programming interfaces, and even
the problems solved are apparent only after much study.

The problem created by such systems is that they foist the technology assimilation, assessment,
deployment, and integration responsibilities onto the server author. To use the system's technologies

in a smart way, the server developer must learn all the system's technology elements, understand their
APIs, understand the problems each element is designed to solve, and understand how these apparently-
discrete technology elements relate to one another. This creates a large burden for the server developer,
and it creates a situation in which each server author (at different companies, for example) must endure
the same learning curve in order to construct a server that exploits the technology of the operating
system underneath it. Alternatively, such systems create the problem that server authors do not exploit
the systems' technologies because they do not understand the technologies or how to apply them; this
creates a problem for the server applications being developed -- they do not use the system optimally.

To overcome these problems on z/VM, IBM studied the problem of z/VM server construction and
identified problems common to many servers. Further, it identified the technologies relevant to solving
those problems in an optimal way and is delivering server enablers employing these technologies. IBM's
first efforts in this area produced Server Tasking Environment/VM and its follow-on, CMS Application
Multitasking; these very significant CMS enhancements moved CMS from a single-processor, single-
threaded programming environment to a parallel, multithreaded system. Continued work in this area

has produced not more operating system code but rather has produced an "empty" server program that
server writers can use as a starting point for server construction. This "empty" server, called the reusable
server kernel, consists of a text library of routines and a macro library of function prototypes and constant
definitions. To construct an actual server program, the server author attaches application-specific code to
a set of interfaces in the reusable server kernel. The result of such attachment is a server program heavily
exploitive of the z/VM system's best technologies.

A specific example of the reusable server kernel's ability to relieve the server author of technology
exploitation will be helpful. It is well known that building a z/VM server in a multithreaded fashion helps
boost the server's performance and makes the server easier to design and understand. A server author
desiring to write such a program on his own would need to understand how to use CMS Application
Multitasking to construct a multithreaded program, and he would also need to decide upon a strategy for
dividing the server into multiple threads of execution. The reusable server kernel, though, lets the server
author ignore how to use CMS's tasking primitives to implement such a structure; instead, the reusable
server kernel itself organizes the server into this form, maintaining its own structures and strategies

for doing so. The only work left for the server author is to identify (through a server kernel-provided
programming interface) one or more "get request, do request, answer client" loops, or "services". The
server kernel replicates these services on multiple threads, doing so in response to the workload moving
through the server. In other words, it is the server kernel that makes the author's code multithreaded, not
the author.

The reusable server kernel provides help in more than just multithreading. Additional help is provided in
these areas:

© Copyright IBM Corp. 1999, 2024 1

Table 1. Additional Help Areas

Topic

Description

Page

Connectivity

A big part of server design and development is the
selection and deployment of connectivity strategies
for the server program. The reusable server kernel
includes line drivers for both bulk-data and operator-
oriented protocols and unifies all of these line drivers
under a single interface. The server writer develops
no communication code when he uses the reusable
server kernel.

Chapter 2,
“Connectivity and
Line Drivers,” on

page 11

DASD I/O0

The reusable server kernel organizes the server's
DASD volumes into one or more storage groups. This
set of storage groups can be brought online, brought
offline, changed in size, and so on through a set of
APIs or a set of commands. I/O to these storage
groups is thread-synchronous, thread-blocking, and
does not serialize on the base virtual processor.

When the server runs in an XC-mode virtual machine,
the reusable server kernel can be configured to use
CP's MAPMDISK facility to perform I/O to its storage
groups. Using MAPMDISK lets the server program feel
the benefits of caching and the I/O efficiencies of the
paging subsystem. In other virtual machine types, or
if using MAPMDISK is inappropriate for some other
reason, the reusable server kernel can use DIAGNOSE
X'0250' or DIAGNOSE X'00A4' for storage group 1/0.

Chapter 3, “DASD
Management,” on

page 25

File Caching

Many servers, such as HTTP daemons, are read-
intensive with respect to CMS's file systems (minidisk,
Shared File System, and Byte File System). The
reusable server kernel offers a file caching API that
lets the server cache such files in a VM Data Space.
The caching support offers an open-read-close model
for file reading; when the server opens a file through
this API, the reusable server kernel loads the file into
a VM Data Space and keeps it there for reuse until

it becomes stale or is forced out because of storage
contention. The server can instruct the server kernel
to perform code page translation or record delineation
scheme transformations on the file as part of loading it
into the cache. This lets the cached file be kept in the
data space in the form most useful to clients.

Chapter 4, “File
Caching,” on page
31

Authorization

The reusable server kernel provides callable entry
points for managing the authorization of users

to objects. These entry points implement a class-
oriented paradigm wherein the objects, classes, and
access types for each class are completely defined by
the server writer. The authorization data can reside
on CMS minidisks or in either accessed or unaccessed
Shared File System directories.

Chapter 5,
“Authorization,” on

page 35

2 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 1. Additional Help Areas (continued)

Topic Description Page
Enrollment Most servers maintain some kind of user database. Chapter 6,

In the abstract, these databases are usually nothing “Enrollment,” on
more than indexed access methods. The reusable page 43
server kernel offers an API containing insert, delete,
and lookup operations for records having fixed-length,
64-byte keys and up to 65,450 bytes of data. The
reusable server kernel holds the records in a VM Data
Space, hashing them for quick lookup, and backs the
VM Data Space with a file in the Shared File System.
The hashing scheme makes it possible to hold many
hundreds of thousands of records with very good
performance.

Indexing by Prefixes The reusable server kernel provides APIs that allow Chapter 7,
the server application to build and interrogate indices “Indexing by

by prefix. The reusable server kernel keeps each index
in its own VM Data Space while allowing multiple RSK-
based service machines concurrent access.

Prefixes,” on page
47

Anchors

Callable entry points let the server program set and
query the value of a server-wide anchor word.

Chapter 8,
“Anchors,” on page
49

Memory Management

The reusable server kernel provides callable
storage allocation and release primitives designed
for multithreaded servers and suitable for most
situations. In addition, these APIs can allocate and
release storage in a VM Data Space.

Chapter 9,
“Memory
Management,” on
page 51

Run-time Environment

The reusable server kernel provides an automatic
storage management convention that improves the
performance of the server by minimizing the number
of storage management calls needed to manage
automatic storage (that is, execution stack storage).
This convention prevents storage management calls in
most cases.

Chapter 11, “Run-
Time Environment,”
on page 59

Worker Machines

The reusable server kernel provides a facility that lets
the server author run server work in a pool of virtual
machines, instead of all in a single machine. The
server kernel takes care of autologging these worker
machines and moving data between the central server
and the workers. This is useful for offloading complex
functions or for isolating risky or time-consuming
operations.

Chapter 10,
“Worker Machines,”

on page 53

Configuration and
Operation

The reusable server kernel's operation is configurable
and controllable through a set of commands. These
commands let the operator start and stop services,
manipulate storage groups, and perform other tasks
related to server management. This set of commands
can be used by an exec through ADDRESS RSK as
part of an initialization strategy or can be submitted
through several of the reusable server kernel's line
drivers.

Chapter 12,
“Initialization and
Profiles,” on page
63

Chapter 1. Basic Concepts 3

Table 1. Additional Help Areas (continued)

Topic Description Page
Socket Library The RSK socket library is a PL/X application Chapter 16, “RSK
programming interface for socket programming. Sockets,” on page

Although the library does not provide a one-for-one 327
correspondent for every IUCV socket function, it does
provide many of the basic operations needed to
communicate with other socket programs.

Overall Server Organization

Fundamentally, a server program is a program that accepts requests from clients and generates responses
for those clients. Some servers are very transaction-oriented; they accept a single, entire request from

a client, produce an entire response for the client, and then wait for another request from the client.

Other servers are much more stream-oriented; in these situations, the server and client carry on a running
dialogue over which they exchange information freely with one another, perhaps not according to any
strict request/response paradigm. The server author's choice of interaction paradigm is based usually

on the kind of work being performed and the kind of communication technology being used. Personal
preference no doubt also plays a role in this choice.

Whether the relationship is transaction-oriented or stream-oriented, the primary job of the server is

to handle requests from clients. Though handling of such system facilities as communications, virtual
storage, disk, and I/O devices is part of the overall picture in the server, the essential job of the server is to
interact with the client. All of the logic in the server supports this fundamental operation. Even interaction
with the server operator is a form of interacting with a client, though at first glance it might seem that
interacting with the operator is fundamentally different from interacting with "regular" clients.

The reusable server kernel strongly emphasizes this fundamental property by organizing the server
writer's work precisely along these lines. The server writer's primary responsibility is to provide one or
more routines, called services, whose job is to interact with a client over an abstract channel. The server
writer also provides a server mainline, the responsibility of which is to bring up the server, wait for it to
finish, and then take it down. Figure 1 on page 5 illustrates this organization.

4 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Mainline ("cal” "mail" "dir"

1. Initialization J
2. Bind Services
3.Call ssServerRun ﬁ

4. Cleanup K

A Typical Service

Initialization Execution Termination
(multiple instances)

Specific [] Specific
startup Interacts with a cleanup
functions single client over functions

an abstract channel

Exploits callable ||
services as needed —

Figure 1. Reusable Server Kernel Overview

Jobs of the Mainline

The server mainline gets control shortly after the server module is invoked. It has a few essential
responsibilities:

1. It may perform server-wide initialization, such as reading and processing a configuration file, checking
and adjusting the virtual machine configuration, or starting a console log.

2. It must identify, or bind, one or more services. Binding a service makes it known to the reusable server
kernel and thereby makes it eligible to be "started" through operator command.

3. It must call entry point ssServerRun to run the server program. Control returns to the mainline when
the server has ended.

4. 1t may perform server-wide termination processing, such as closing a console log.
5. It must return to its caller.

More About Services

Service identification takes place during server initialization, in the mainline provided by the server author.
The reusable server kernel provides a callable interface, ssServiceBind, which lets the server writer
identify the set of services available. The server writer should arrange the mainline so that it calls
ssServiceBind once for each service being offered. Once a service is bound, it is available for use for
the life of the server.

ssServiceBind accepts as parameters a case-insensitive, eight-byte name for the service and certain
descriptive information about the service. In response to the call, it builds a data structure called the
service block or S-block, which is illustrated in Table 2 on page 6.

Chapter 1. Basic Concepts 5

Table 2. Service Block, or S-Block
Offset Length Usage
0 8 Used by IBM
8 8 Service name
16 4 Service name length
20 4 Address of initialization routine
24 4 Address of service routine
28 4 Address of termination routine
32 4 Service type
36 4 Service lockword
40 4 Current start count
44 4 Monitor data row pointer

Perhaps the most important parameters to ssServiceBind are the addresses of these key entry points:

- Initialization entry point: a reusable server kernel line driver calls a service's initialization entry point
when it starts the service but before it lets the service do any work for clients, but only if the service
is completely idle -- that is, only if the service is not currently handling clients through any other line

driver.

The initialization entry point should be prepared to accept a parameter list organized according to Table
3 on page 6. The return code and reason code in this parameter list are output parameters to be filled
in by the initialization entry point. If the initialization entry point produces a nonzero return code, the

start attempt will fail.

Table 3. Initialization Entry Point Parameter List. R1 points to this data structure on entry.
Offset Length Usage
0 4 A(return code)
4 4 A(reason code)
8 4 A(S-block)

« Service entry point: a reusable server kernel line driver activates a service's service entry point in
response to work accruing from clients. When a new client arrives, the line driver dedicates a thread --
an instance of the service -- to the new client and causes that thread to call the service entry point. 1 A
given client is always served by the same instance, and a given instance serves exactly one client.

The line drivers provided by the reusable server kernel are parallelizing, that is, they attempt to

run a service's service entry point on more than one thread concurrently if necessary. Configuration
parameter SRV_THREADS controls the maximum number of threads on which a given line driver will
attempt to run a given service's service entry point. For more information, see Table 31 on page 66.

The service entry point should be prepared to accept a parameter list organized according to Table 4 on
page 7. By way of this parameter list, the reusable server kernel passes the service entry point the
address of a crucial data structure called the client block or C-block. The C-block, which represents the
partnership among the client, the line driver, and the instance, contains information the instance uses to

1 Do not confuse starting an instance with a call to CMS's ThreadCreate function. The reusable server
kernel keeps a pool of threads on which it runs service instances. Each such thread resides in its own
dispatch class. Depending upon workload, there may be more than once instance of a given service
executing at any given moment. In other words, the reusable server kernel parallelizes the server according
to the workload moving through the server.

6 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

interact with the reusable server kernel and also contains fields identifying and characterizing the client.
For more information on the C-block, see “From Line Driver to Instance” on page 15.

Table 4. Service Entry Point Parameter List. R1 points to this data structure on entry.
Offset Length Usage
0 4 A(S-block)
4 4 A(C-block)

The relationship between the line driver and the instance is carried out through the CSL's queuing
primitives, using a queue owned by the line driver, called the line driver queue. Information necessary
to use this queue is contained in the C-block. To send messages to one another, the line driver and the
instance use QueueSend to place messages on the queue. To receive messages from each other, the
line driver and the instance use one of the "receive" primitives, such as QueueReceiveBlock, once
again operating on the line driver queue. The selective-receipt facility of the CSL's queue routines is
used so that the line driver and the set of instances using the line driver queue can all use the queue
without interfering with one another. 2 Specific information about the exchange of messages between
line drivers and services is available in Chapter 2, “Connectivity and Line Drivers,” on page 11.

When handling of the client is complete, the service entry point should return to its caller.

Termination entry point: a line driver drives a service's termination entry point as part of "stop"
processing, if the service is not currently started through any other line drivers.

The parameter list for the termination entry point is described in Table 5 on page 7.

Table 5. Termination Entry Point Parameter List. R1 points to this data structure on entry.

Offset Length Usage
0 4 A(S-block)

Note: For information on the rest of the S-block fields, see “Writing Your Own Line Driver” on page 23.

Anything Else?

Beyond this, the organization of the server program is up to the server author. The usual approach will
be to implement a mainline and one or more services, along perhaps with some service threads that
perform encapsulated operations on shared data or some other repetitive work. The server author is
strongly encouraged to use CMS Application Multitasking functions for communication among threads,
implementation of critical sections, and performing other server-related operations.

Calling The Entry Points

Calls to the reusable server kernel's entry points are coded as ordinary assembler or PL/X function calls.
Language bindings for each of these languages are provided in macro libraries — DMSGPI for assembler
and DMSRP for PL/X.

DMSGPI Macros

The names of the macros are:

2 Each IPC key generated by the reusable server kernel, whether for external or internal use, has BKW
(X'C2D2E®6") as its first three characters. This permits author-supplied code to exploit line driver queues for
other purposes when it seems helpful.

Chapter 1. Basic Concepts 7

Macro Description Page

SSASMANC Anchor bindings “Anchor Bindings (SSASMANC
MACRO)” on page 415

SSASMAUT Authorization bindings “Authorization Bindings
(SSASMAUT MACRO)” on page
416

SSASMCAC File cache bindings “Cache Bindings (SSASMCAC
MACRO)” on page 421

SSASMCLI Client bindings “Client Bindings (SSASMCLI
MACRO)” on page 423

SSASMENR Enrollment bindings “Enrollment Bindings
(SSASMENR MACRO)” on page
425

SSASMMEM Memory bindings “Memory Bindings (SSASMMEM
MACRO)” on page 428

SSASMSGP Storage group bindings “Storage Group Bindings
(SSASMSGP MACRO)” on page
430

SSASMSRV Service and server bindings “Services Bindings (SSASMSRV
MACRO)” on page 433

SSASMTRI Trie API bindings “Trie Bindings (SSASMTRI
MACRO)” on page 436

SSASMUID User ID bindings “User ID Bindings (SSASMUID
MACRO)” on page 438

SSASMWRK Worker machine bindings “Worker Bindings (SSASMWRK

MACRO)” on page 439

DMSRP Macros

The names of the macros are:

Macro Description Page

SSPLXANC Anchor bindings “Anchor Bindings (SSPLXANC
COPY)” on page 440

SSPLXAUT Authorization bindings “Authorization Bindings
(SSPLXAUT COPY)” on page 441

SSPLXCAC File cache bindings “Cache Bindings (SSPLXCAC
COPY)” on page 444

SSPLXCLI Client bindings “Client Bindings (SSPLXCLI
COPY)” on page 447

SSPLXENR Enrollment bindings “Enrollment Bindings (SSPLXENR
COPY)” on page 448

SSPLXMEM Memory bindings “Memory Bindings (SSPLXMEM
COPY)” on page 450

SSPLXSGP Storage group bindings “Storage Group Bindings

(SSPLXSGP COPY)” on page 451

8 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Macro Description Page

SSPLXSRV Service and server bindings “Services Bindings (SSPLXSRV
COPY)” on page 454

SSPLXTRI Trie API bindings “Trie Bindings (SSPLXTRI COPY)”
on page 456

SSPLXUID User ID bindings “User ID Bindings (SSPLXUID
COPY)” on page 457

SSPLXWRK Worker machine bindings “Worker Bindings (SSPLXWRK
COPY)” on page 458

These macros are invoked with the same conventions as the CMS Application Multitasking macros,
namely:

- for Assembler, just invoke the macro through its name.
« for PL/X, use %$include syslib(macro);.

Of course, you must make these macro libraries available to your compiler or assembler by using the
GLOBAL MACLIBcommand.

A single standard for procedure linkage is used throughout the server. This standard affords each
procedure, whether customer-written or IBM-supplied, an extremely fast method for obtaining and
releasing automatic storage (that is, storage for local variables and save areas). All of the reusable server
kernel entry points expect the server author to use this linkage to call them, and the reusable server
kernel drives all customer-written routines (thread entry points, server entry point, and so on) using this
linkage. Macros are provided to implement the procedure linkage. For more information, see Chapter 11,
“Run-Time Environment,” on page 59.

Building a Server Module

To create a server using the reusable server kernel, the server author writes a set of application-specific
code, calling the reusable server kernel entry points as desired. Using an appropriate language processor,
the server author prepares one or more object modules (files of file type TEXT) containing his application.
Exactly one of these object modules defines entry point RSKMAIN, which is the server's entry point. 3

To build his module, the server writer link-edits his object code with the reusable server kernel object
library and any other object libraries needed. The result of the link-edit is a module containing both the
author's application and the appropriate reusable server kernel code. For example, if the server were
implemented in a single object deck called SAMPLE, this sequence of CMS commands would accomplish
the link-edit:

GLOBAL TXTLIB BKWLIB DMSPSLK DMSAMT VMMTLIB VMLIB CMSSAA

LOAD SAMPLE (CLEAR DUP AUTO LIBE NOINV FULLMAP RLDSAVE

INCLUDE VMSTART (NOCLEAR DUP AUTO LIBE NOINV FULLMAP RLDSAVE RESET VMSTART
GENMOD SAMPLE (MAP STR

The effect of these commands is to produce SAMPLE MODULE, the resultant server, and SAMPLE
LOADMAP, the load map associated with the module.

Note:

1. If there were multiple customer-supplied object modules, they would be accounted for in this
procedure by inserting the appropriate INCLUDE commands after the LOAD of the server mainline.

3 This is very much like the APPLMAIN required by a CMS Application Multitasking program. In fact,
the reusable server kernel is a CMS Application Multitasking program and provides its own APPLMAIN.
RSKMAIN is the label of the first instruction of the actual server code written by the server author.

Chapter 1. Basic Concepts 9

2. It is important to note that BKWLIB appears ahead of DMSAMT in the text library search order.
BKWLIB contains a DMSLESB (language environment selector text deck) that overrides the one found in
DMSAMT.

Setup At A Glance

In addition to the module you build, you will need these additional files to run your server:

Table 6. Files Needed to Run Your Server

File Description

BKWRTE MODULE This is the run-time environment manager program for the server. Place this
file somewhere in the server's file mode search order.

BKWUME TEXT This is the reusable server kernel's message repository. Make sure your
server's virtual machine issues SET LANGUAGE (ADD BKW USER as part of
its PROFILE EXEC.

PROFILE RSK The reusable server kernel runs this exec just after your server module
begins execution; the PROFILE RSK you write contains the configuration and
startup commands you need for your specific environment.

User ID Mapping File Controls the reusable server kernel's translation from connectivity-specific
client identifiers to a normalized, flat client name space.

If you plan to use certain other features of the reusable server kernel, you will need to perform additional
setup operations, according to:

Table 7. Additional Setup Tasks
Feature Task Page
Storage groups You will need to provide a storage group |Chapter 3, “DASD
configuration file. Management,” on page 25
Authorization API You will need to set up authorization Chapter 5, “Authorization,” on
data. page 35
Enrollment API You will need to set up enroliment files. | Chapter 6, “Enrollment,” on
page 43
Worker API You will need to set up worker machines. | Chapter 10, “Worker
Machines,” on page 53

Other Considerations

The reusable server kernel manages the server as a CMS Application Multitasking program. All the
information contained in the publication z/VM: CMS Application Multitasking applies to programs written
using the reusable server kernel. For more information, see z/VM: CMS Application Multitasking.

10 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 2. Connectivity and Line Drivers

Server authors usually desire that their servers support many connectivity methods, for this increases the
variety and number of clients that can be served. For example, a database server might desire to use
TCP/IP and spool files as connectivity methods for clients; this would let clients reside on a variety of
networks and platforms. Similarly, a server author might desire that the server program accept operator
commands and deliver operator responses over a number of channels (CP MSG, CP SMSG, virtual console
I/0); this would let the server program be operable remotely or locally, with no extra work being done by
the server author.

A major problem in supporting heterogeneous connectivity is that the server author must learn a set of
communication interfaces for each connectivity technology to be supported, and he must write exploiting
code for each connectivity APL. Further, the higher levels of such exploiting code are usually similar,
regardless of the transport technology being exploited; for example, most connection-oriented transports
support initialize, send, receive, and terminate primitives, and the server's treatment of those primitives

is remarkably similar from one transport to the next. Thus an additional problem, duplication of effort, is
also apparent.

The reusable server kernel relieves the server author of the burden of supporting multiple connectivity
technologies. It furnishes the server writer with a set of line drivers and does so in a way that hides most
communication differences from the server writer. Each line driver performs these basic functions for the
server core:

« It creates and deletes service instances in response to the arrival and departure of clients.

« It collects bytes from clients and delivers them to service instances according to the mapping between
service instances and clients and in the order in which said bytes arrive.

- It acts as the transmission agent for the set of service instances, sending bytes to clients in the order in
which the respective clients' service instances emit them.

« It ascertains the identities of clients, mapping them into a single user id space, and informs service
instances of said identities.

Each of these functions is performed in a way consistent with the APIs and capabilities of the respective
connectivity technologies.

The reusable server kernel provides a set of line drivers, one driver for each transport protocol it supports:
« APPC/VM (global, local, and private resource managers)

- IUCV

« TCP/IP

. UDP/IP

« Spool files

« MSG/SMSG

« Virtual console

« Subcom

Each driver is organized according to Figure 2 on page 12.

© Copyright IBM Corp. 1999, 2024 11

Line Driver

Line Driver Queue Instance
F_rom | ..Data_ are Mn_assages for Notes:
Client A received instances 0R8 QRB = QueueReceiveBlock
QueueSend———+|Tka | bits|—»
- Get data IKa = Instance key for
Ikb | bits Client A’s instance
Messages for Put data IKbh = Instance key for
- . Client B*s instance
line driver Then
QRB LK | 1ka [b QSend | o - Line driver key
lTO A Datane‘lre LDK |Ikb |b b or bits = status bits
Client se exchanged

Figure 2. Line Driver Organization

The Service Instance's View

As introduced earlier, a service instance interacts with a line driver through two mechanisms:

« When a line driver starts an instance, it passes the instance a control block that describes the
partnership among the client, the line driver, and the instance. This control block is called the client
block or C-block.

 To interact with one another, the line driver and the instance exchange messages using a CMS queue
maintained by the line driver. This queue is called the line driver queue. They also enqueue and dequeue
data on a set of reusable server kernel-maintained client buffers. These buffers are accessed with the
ssClientDataGet and ssClientDataPut primitives.

This section describes the C-block and the messages exchanged through the line driver queue. 4

The Client Block, or C-Block

As mentioned in “More About Services” on page 5, the relationship between a line driver and an instance
of a service is carried out through a control block -- the C-block -- and a CMS queue. Some of the most
important information in the C-block, then, is information describing the queue to be used and how it is to
be used. This information appears in the C-block in the form of queue handles and message keys. Table 8
on page 12 summarizes the fields of the C-block.

Table 8. Client Block, or C-Block

Offset Length | Usage Description
0 4 S-block pointer The address of the S-block for the service with which this instance is
affiliated.
4 8 Line driver name The name of the line driver with which the service is interacting. The
names are given in Table 9 on page 13.

4 For the server writer's convenience, macros SSPLXSRV COPY and SSASMSRV MACRO contain mappings of
the C-block and the messages exchanged by way of the line driver queue.

12 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 8. Client Block, or C-Block (continued)

Offset

Length

Usage

Description

12

4

Line driver status word

Specific information about the line driver. The bits of the status word have
these meanings:
Bit

Meaning

X'80000000'
The line driver is record-oriented:

« When supplying the instance with client input, the line driver
organizes the client's input as a sequence of records. Each record
is prefixed with a four-byte length field. The value stored in the
four-byte length field does not include the length of the length field
itself.

« When producing output for the client, the instance must organize
the output as a sequence of records, as described previously.

The MSG/SMSG, CONSOLE, SUBCOM, and SPOOL drivers are record-
oriented.

16

Line driver queue handle

The queue handle the instance should use to receive messages from and
send messages to its associated line driver.

20

Line driver service ID

The service ID of the line driver queue. This might be useful to the instance
in some situations.

24

Instance identifier

An integer identifier assigned to this instance by the line driver. This
numeric identifier will never be reused by this line driver.

28

Instance thread ID

The CMS thread ID of the thread on which the instance is running.

32

32

Instance key

The key the line driver will use when it transmits messages needing the
instance's attention. Such messages will be placed on the line driver
queue, are indicative of client activity, and are organized according to Table
12 on page 15. The instance key is the key the instance should use in its
receive (for example, QueueReceiveBlock) call.

64

32

Line driver key

The key the instance should use when it transmits messages needing
the line driver's attention. Such messages should be placed on the line
driver queue, are usually indicative of the instance's having queued data
for transmission to the client, and are organized according to Table 13 on
page 16.

96

64

Mapped user ID of client

The reusable server kernel's best attempt at assessing the user ID of
the client. Depending on the communication transport being used, this
assessment is made in several different ways, as shown in Table 10 on
page 14.

160

Total bytes into instance

The total number of bytes the instance's client has sent the instance so far.

164

Total bytes from instance

The total number of bytes the instance has sent to the client so far.

168

Bytes waiting for instance

The number of bytes waiting to be consumed by the instance.

172

Bytes waiting for line driver

The number of bytes waiting to be consumed by the line driver.

176

[T IEES IS N B

Start STCK

The time at which the client began communicating with the server, stored
according to the format of the Store Clock (STCK) instruction.

184

Reserved for IBM

192

128

Reserved for IBM

320

Varies

Line-driver-specific data

The data is organized differently for each line driver, as shown in Table 11
on page 14.

Table 9. Line Driver Names. All names are padded on the right with spaces (X'40").

Line Driver

Name in C-Block

APPC/VM

APPC

Chapter 2. Connectivity and Line Drivers 13

Table 9. Line Driver Names. All names are padded on the right with spaces (X'40"). (continued)

Line Driver Name in C-Block
ucv Iucv

TCP/IP TCP

UDP/IP uDP

SPOOL SPOOL
MSG/SMSG MSG

Console CONSOLE
Subcom SUBCOM

Table 10. User ID Mapping Schemes

Transport Method

APPC/VM Security user ID of conversation, mapped through user ID mapping file

Iucv Field IPVMID of connection pending EIB, mapped through user ID mapping file
MSG User ID and node of origin of message, mapped through user ID mapping file
TCP/IP IP address of client, mapped through user ID mapping file

UDP/IP IP address of client, mapped through user ID mapping file

Spool User ID and node of origin of spool file, mapped through user ID mapping file
Console Literal x

Subcom Literal x

Table 11. Line-Driver-Specific Portion of C-Block

Line Driver Data
TCP/IP 0.4
IP address of client
4.4
Port number of client
8.4
Port where TCP line driver is listening
UDP/IP 0.4
IP address of client
4.4
Port number of client
APPC/VM 0.8
Security user ID of client
8.17
Locally known LU of client
Iucv 0.8

Field IPVMID from connection pending EIB

14 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 11. Line-Driver-Specific Portion of C-Block (continued)

Line Driver

Data

Spool

0.8
Reserved for IBM

8.8
User ID of client

16.8
Node of client

24.4
Spool ID of reader file (character form)

MSG/SMSG

0.4
Reserved for IBM

4.8
User ID of client

12.8
Node of client

Console

None present

Subcom

None present

From Line Driver to Instance

A reusable server kernel line driver transmits a message to the instance each time something
"interesting" happens with respect to the client. This message serves to notify the instance that
something has happened and to advise the instance that it might wish to take a corresponding action. The
message contains status bits that indicate exactly how the relationship with the client has changed. This
message is organized according to Table 12 on page 15. The instance can pick up these notifications
using QueueReceiveBlock, ° using the line driver queue handle and instance key from the C-block.

Each message to an instance will have its message type field set to ss_srv_msgtype_instance.®
Usually the instance's reaction to such a notification will be to attempt to retrieve data from the client and
process it. To do so, the instance should use ssClientDataGet.

When the instance sees a message in which the line driver STOP bit is set, it should:

« Emit any remaining transmissions intended for its current client

- Transmit a STOP acknowledgement message to the line driver

« Return to its caller.

For more information, see “From Instance to Line Driver” on page 16.

Table 12. Message from Line Driver to Instance. The reusable server kernel always transmits this
message using key offset 0 and key length 32.

Offset Length Usage
0 32 Instance's key
32 4 Message type
5 QueueReceiveImmed is also acceptable.
6 Defined in SSPLXSRV COPY and SSASMSRV MACRO.

Chapter 2. Connectivity and Line Drivers 15

Table 12. Message from Line Driver to Instance. The reusable server kernel always transmits this
message using key offset 0 and key length 32. (continued)

Offset Length Usage
36 2 Client status bits

X'8000'

Client has closed connection
X'4000'

Connection closed abnormally
X'2000'

Client has finished sending
X'1000'

Line driver requests STOP
X'0800'

New data from client

From Instance to Line Driver

To send data to the client, the instance should use routine ssClientDataPut and then notify its line
driver of the new data by using QueueSend. The precise form of the message the instance should
transmit is given in Table 13 on page 16.

The instance should set the message type field to ss_srv_msgtype_linedriver in each message it
transmits to the line driver.

To inform the line driver that it has queued additional information for the client, the instance should set
the instance has queued output bit in the message it transmits to the line driver.

To acknowledge a stop request from the line driver, or to indicate that it is spontaneously stopping for its
own reasons, the instance should set the stop acknowledgement bit in the message it transmits to the line
driver.

Table 13. Message from Instance to Line Driver. The instance always transmits this message using key
offset 0 and key length 32.

Offset Length Usage
0 32 Line driver's key
32 4 Message type
36 32 Instance's key
68 2 Instance status bits

X'8000'

Stop acknowledgement
X'4000'

Instance has queued output

TCP/IP Considerations

To use TCP/IP, the server machine must be configured for TCP/IP operation. Typically this means that the
server must be enabled to use IUCV to communicate with the TCP/IP service machine. These CP directory
considerations apply:

« The server machine must be permitted to connect to the TCP/IP service machine. Typically the TCP/IP
service machine has TUCV ALLOW in its own CP directory entry; when this is the case, no special work is
required in the server machine's directory entry.

16 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

The server machine's MAXCONN must be set high enough to let TCP/IP activity proceed. The reusable
server kernel's TCP/IP line driver consumes one IUCV path ID per started service.

These other considerations apply:

When the TCP/IP line driver starts a service, it binds the service's port number onto the adapter address
specified in the START command and issues 1isten () with a backlog queue size of 10.

Clients should connect to the reusable server kernel using stream sockets.
The reusable server kernel creates all its sockets in addressing family AF_INET.

The TCP/IP line driver uses the reusable server kernel's user ID mapping facility with connectivity
identifier TCP to map the client's IP address into a single-token user ID. 7 Because IP addresses can be
spoofed, this feature should be exploited only if the IP network is trusted.

If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_TCP:
OFF

Connection is closed

ON
User ID $UNKNOWN is passed to instance

UDP/IP Considerations

Like using TCP/IP, using UDP/IP requires that the server machine be configured for TCP/IP operation.
Again, this means that the server must be enabled to use IUCV to communicate with the TCP/IP service
machine. To achieve this, follow the same procedures as you would use to set up for TCP/IP operation.
Be aware that the UDP/IP line driver consumes one IUCV path per started service, just as the TCP/IP line
driver does; plan your MAXCONN accordingly.

The following other considerations apply:

When the UDP/IP line driver starts a service, it binds the service's port number onto the adapter address
specified in the START command.

Clients should send to the server using datagram sockets and should expect the server's response to
come as one or more datagrams.

The reusable server kernel considers each received datagram to be representative of a distinct
transaction. When a datagram arrives, the reusable server kernel creates a service instance and passes
the datagram's contents to the service instance through ssClientDataPut. In other words, a service
instance will only ever "see" one inbound datagram from a client. Each inbound datagram is considered
to be its own transaction and accordingly is delivered to a separate instance.

For a given service instance, the reusable server kernel will emit as many response datagrams to the
client as are necessary, until the service indicates completion of the transaction through usual means
(stop acknowledgement bit set in IPC message to line driver).

The UDP/IP line driver uses the reusable server kernel's user ID mapping facility with connectivity
identifier UDP to map the client's IP address into a single-token user ID. & Because IP addresses can be
spoofed, this feature should be exploited only if the IP network is trusted.

If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_UDP:
OFF

Datagram is ignored

ON
User ID $UNKNOWN is passed to instance

7 Inthe call to ssUseridMap, parameter nodename is filled with the IP address and parameter userid is
filled with *.

8 Inthe call to ssUseridMap, parameter nodename is filled with the IP address and parameter userid is
filled with *.

Chapter 2. Connectivity and Line Drivers 17

IUCV Considerations

To use IUCV, the server virtual machine must be configured for IUCV operation. Typically this means the
following for the server's CP directory entry:

« TUCV ALLOW should be specified so that clients can connect to the server virtual machine.

« OPTION MAXCONN must be set large enough to handle the number of clients you anticipate will be
connected to the server concurrently. Allow one connection for each client.

For more information, see z/VM: Connectivity.

The following specific considerations apply to the use of IUCV. These considerations will be particularly
helpful in writing clients.

« The server kernel uses CMS's CMSIUCV and HNDIUCV macros for IUCV path management, so as not to
interfere with other IUCV or APPC/VM usage in the server virtual machine.

- The reusable server kernel opens an HNDIUCV exit for each service it starts. Usually, the name of the
exit matches the name of the service. The server operator can override this with the TUCV START
command if some other exit name must be used.

« Aclient wishing to connect to an reusable server kernel-managed service must specify the name of the
service's exit routine in the IPUSER field of its IUCV CONNECT parameter list.

« The server kernel issues TUCV ACCEPT with MSGLIM set to 65535. The server administrator can force a
lower value by installing an appropriate IUCV control statement in the server's CP directory entry.

« The reusable server kernel produces the client's mapped user ID by calling ssUsexridMap with
connectivity identifier IUCV, specifying the local nodename and the VM user ID of the client (field
IPVMID of the connection pending EIB) as the remaining inputs.

- Ifthe reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_IUCV:

OFF
Path is severed

ON
The IPVMID field of the connection pending EIB is passed to the instance

- The reusable server kernel lets the client use TUCV SEND with either DATA=PRMMSG or DATA=BUFFER.
However, the reusable server kernel always transmits using DATA=BUFFER.

« The reusable server kernel does not permit the client to use TUCV SEND, TYPE=2WAY. All sends to the
server must be one-way sends. If the client attempts a two-way send, the reusable server kernel will
sever the path.

« The server kernel will tolerate IUCV priority messages but never sends them.

 Data arriving from the client is queued to the affiliated service instance in the order that the message
pending interrupts arrive, without regard to any other factors.

« The server kernel is optimized for 64 KB transfers between the client and the server. In fact, the
reusable server kernel never transmits more than 64 KB in a single IUCV message. Best results will be
achieved when the client takes this optimization into account.

« The reusable server kernel does not permit the client to use TUCV QUIESCE or IUCV RESUME. It will
sever the path if the client tries these. Similarly, the reusable server kernel never uses these macros
itself.

APPC/VM Considerations

To use APPC/VM, the server virtual machine must be configured for APPC/VM operation. Typically this
involves one or more of these:

« Adding proper IUCV-related statements to the virtual machine's directory entry. These statements
control the names of the resources the machine is allowed to identify and the number of concurrent

18 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

conversations the machine is allowed to use. Sometimes permitting clients to connect is also
accomplished here.

If the virtual machine is managing an APPC/VM private resource,
The virtual machine must IPL CMS with parameter AUTOCR.
The virtual machine should run with Fullscreen CMS off.

File PROFILE EXEC should contain SET SERVER ON.

File $SERVER$ NAMES must be set up to map the resource name to the name of the server program
and to identify the clients permitted to connect.

For more information, see z/VM: Connectivity.

The following specific considerations apply to the use of APPC/VM. These considerations will be
particularly helpful in writing clients.

To allocate a conversation to the server, the client should use the LU name appropriate for the server
virtual machine's location and resource type and a TPN equal to the one used in the server's APPC
START command. For more information, see Chapter 14, “Command Descriptions,” on page 77.

The APPC/VM line driver accepts either mapped or basic conversations. Be aware, though, that inbound
APPC record boundaries are not visible to the instance and that the instance has no control over record
boundaries in outbound APPC records.

The APPC/VM line driver uses the connectivity identifier APPC, the LU of the client, and the user ID

of the client as input to its user ID mapping function. For more information on user ID mapping, see
Chapter 12, “Initialization and Profiles,” on page 63. The client's node is taken to be his LU (field
CPEVPLKL of the connection pending extended data) and his user ID is taken to be field IPVMID of

the connection pending EIB. If the conversation was allocated with SECURITY(NONE), the server kernel
substitutes $UNKNOWN for the X'0000000000000000" user ID CP supplies in the EIB.

If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_APPC, as follows:

OFF
Conversation is severed

ON
The IPVMID field of the connection pending EIB (or $UNKNOWN, if SECURITY(NONE)) is passed to
the instance.

The reusable server kernel does not support SYNCLVL(CONFIRM) or SYNCLVL(SYNCPT) conversations.
Attempts to use these will result in a sever.

Spool Considerations

These considerations apply when using spool files as a connectivity mechanism:

Requests from clients arrive at the server virtual machine's reader from either the same node as the
server or from remote nodes through RSCS or functional equivalent.

Spool files containing requests must be encoded using one of the following techniques:
— NETDATA encoding (NEW option of SENDFILE)
— DISK DUMP encoding (OLD option of SENDFILE)

If a file encoded with some other technique arrives, the reusable server kernel will CP TRANSFER it to
the user ID specified by the SPL_CATCHER configuration parameter, or if no such user ID is specified,
the file will remain in the server's reader in USER HOLD status.

No matter which encoding is used, each data record of the sent file is extracted and given to the service
as a record of input. (The spool driver is record-oriented.)

The reusable server kernel considers only those reader files having filetype matching the value of
configuration parameter SPL_INPUT_FT. All other reader files are ignored.

Chapter 2. Connectivity and Line Drivers 19

When a spool file arrives, the reusable server kernel scans the reader for new work. When it finds a
file whose filetype matches configuration parameter SPL_INPUT_FT, and whose filename matches a
started service, and which is not in a hold of some kind, the driver reads the file's data from the spool
and attempts to deliver the data to the started service.

When SPOOL START is issued, the reusable server kernel scans the reader for new work, just as it
would scan as a result of spool file arrival, but with the following addition: if a file would have been
delivered to the newly-started service except for the fact that the file has been found to be in USER HOLD
state, the file is changed to NOHOLD and its data is delivered to the newly-started service.

If the file name of the spool file does not match the name of any started service, and if implicit VM
routing is enabled for the spool driver, then the reusable server kernel delivers the file's data records
to the CMS service, provided the CMS service has been started. For more information about implicit
routing, see Chapter 12, “Initialization and Profiles,” on page 63.

While processing of a file is underway, the file remains in the reader in USER HOLD state.

If delivery of the file's data to its service fails, or if the service fails to consume all of the data of the
spool file, the file is left in the reader in USER HOLD state. Otherwise the file is purged.

The spool driver uses the reusable server kernel's user ID mapping facility with connectivity identifier
SPOOL to map the origin user ID and origin node of the spool file into a single-token user ID. For more
information on the user ID mapping facility, see Chapter 12, “Initialization and Profiles,” on page 63.
This user ID is passed to the service instance as the client's user ID. However, if the spool driver's call to
the user ID mapping facility reveals that no mapping exists, action is taken, if NOMAP_SPOOL is:

— OFF, the file is placed in USER HOLD status and a message is issued to the server console.

— ON, the file is passed to the service instance, with the origin user ID passed directly as the "mapped"
user ID.

The SPOOL line driver parallelizes requests. If a client sends multiple requests to the same service, the
two requests might finish in an order other than the one in which they were sent. This applies also to the
situation where the multiple requests are sent to different services.

MSG/SMSG Considerations

The CP MSG and CP SMSG commands can be used to send work to service instances being managed by
the reusable server kernel. The following considerations apply:

Each MSG or SMSG should bear as its first token the prefix supplied on the MSG START command that
started the service. For example, to send a request called SHUTDOWN to the service started with prefix
CAL_OPER running in virtual machine SERVER, an operator might issue this command:

TELL SERVER CAL_OPER SHUTDOWN

If the first token of the message (in the above example, CAL_OPER) does not match the name of any
request processor registered in the server, and if implicit VM routing is enabled for the MSG/SMSG line
driver, then the reusable server kernel delivers the command to the CMS service, provided the CMS
service has been started.

For more information about implicit routing, see Chapter 12, “Initialization and Profiles,” on page 63.

Each message the MSG/SMSG line driver places in a line driver queue contains a single MSG or SMSG
sent to the server virtual machine.

The MSG/SMSG line driver uses the user ID mapping facility with connectivity identifiers MSG and SMSG
to map the user ID and node of the message sender to a single-token user ID. This user ID is the

one passed to the request processor in the C-block header. However, if the driver's call to the user ID
mapping facility reveals that no mapping exists, action is taken as follows:

— If NOMAP_MSG is OFF, the message is ignored and an error message is written to the server console.

— If NOMAP_MSG is ON, the message is sent to the service instance, with the origin user ID passed
directly as the "mapped" user ID.

The MSG/SMSG line driver is record-oriented.

20 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

The MSG/SMSG line driver parallelizes requests. If a client sends multiple requests to the same service,
the two requests might finish in an order other than the one in which they were sent. This applies also to
the situation where the multiple requests are sent to different services.

When the MSG/SMSG driver builds output, it prefixes each line of service output with the prefix assigned
to the service, padded to 8 characters. For example, for service CAL_OPER above, each line of output
produced by the CAL_OPER service would be prefixed with CAL_OPER.

Virtual Console Considerations

The reusable server kernel runs the server virtual machine's console in line mode. These considerations
apply:

When entering a command for a service, the operator should use the prefix supplied on the CONSOLE
START command as the first token of the command line. For example, to send a request called
SHUTDOWN to the service called CAL_OPER, the operator should enter the following on the virtual
machine's console:

CAL_OPER SHUTDOWN

If the first token of the command (in the above example, CAL_OPER) does not match the name of any
request processor registered in the server, and if implicit VM routing is enabled for the console line
driver, then the reusable server kernel delivers the command to the CMS service, provided the CMS
service has been started. For more information about implicit routing, see Chapter 12, “Initialization
and Profiles,” on page 63. The console driver:

— Always supplies * as the mapped client user ID.
— Is record-oriented.

— Parallelizes the services it starts. Requests sent to a given service are begun in the order in which
they are typed, but they might complete in a different order.

When the console driver routes output to the console, it prefixes each line of service output with the
prefix assigned to the service, padded to 8 characters. For example, for service CAL_OPER above, each
line of output produced by the CAL_OPER service would be prefixed with CAL_OPER. For this reason, if it
is possible in your environment, the server virtual machine's console should be wider than 80 columns.
IBM recommends that you use at least 90 columns for the console.

Subcom Considerations

The reusable server kernel supplies a subcom, RSK, to which execs may direct commands; the output of
such commands is written to the virtual console. These considerations apply:

When issuing a command to a service, the exec writer should use the prefix supplied on the SUBCOM
START command as the first token of the command. For example, to issue a command called
SHUTDOWN to the service called CAL_OPER, the exec writer might code:

address 'RSK' 'CAL_OPER SHUTDOWN'

If the first token of the command (in the above example, CAL_OPER) does not match the name of any
request processor registered in the server, and if implicit VM routing is enabled for the SUBCOM line
driver, then the reusable server kernel delivers the command to the CMS service, provided the CMS
service has been started. For more information about implicit routing, see Chapter 12, “Initialization
and Profiles,” on page 63.

The SUBCOM driver always supplies * as the mapped client user ID.

The SUBCOM line driver is record-oriented.

The SUBCOM driver does not return to the calling EXEC until the command is complete.

The SUBCOM driver routes service output to the virtual console, in the manner of the console line driver.

Because services do not generate return codes, the server author should not use Rexx variable rc as an
indication of the completion status of commands issued through the SUBCOM driver.

Chapter 2. Connectivity and Line Drivers 21

Line Driver Commands

As mentioned earlier, services are started and stopped by line drivers. This is done through line driver
commands. Largely speaking, line driver commands are present to perform these important functions:

- Starting a service is nothing more than connecting it to a reusable server kernel line driver -- the start
operation is an instruction to a line driver to prepare for communication and connect its communication
device or channel to a named service. In other words, an operator starts a service by issuing a command
that's interpreted by a specific line driver; in response to the command, the line driver begins driving
work through the service.

» Stopping a service is nothing more than informing a line driver that its communication method should
be shut down; as a consequence of this, no more client activity will be reflected to the corresponding
service through that line driver. The stop can be graceful or immediate.

Though the reusable server kernel contains a number of line drivers, the command sets understood by
all of the line drivers are roughly the same. Each line driver supports START and STOP commands and a
few queries. The syntax of these commands differs slightly from line driver to line driver to accommodate
differences in transport attributes; for example, the TCP/IP line driver expects a port number to appear in
its START command, while the spool line driver expects a file name.

For more information on the line driver commands, see Chapter 14, “Command Descriptions,” on page
77.

More Detail on Line Drivers

A line driver is nothing more than a service that supplies other services with a method to interact with
clients. Here is an overview and some information about how you can write your own line drivers.

Line Drivers as Services

Recall that in the reusable server kernel, a service is just a routine that takes input from a line driver and
which delivers output to a line driver. The line driver takes care of routing data between the client and the
service.

Consider also that a reusable server kernel line driver is itself a program that takes input from a client;
this input is just operator commands (START, for example). Similarly, a reusable server kernel line driver
is itself a program that produces output for its "client" (the operator). This output is command response
text, such as the result of a LIST command.

Because of this nature of a line driver, we can see that a line driver can be implemented as a reusable
server kernel service. To send commands to and receive responses from this service, we just have to
START it through some other line driver; we would then have a means to send it commands and gather its
responses.

For example, consider the TCP/IP line driver. It accepts commands -- such as START -- from its operator
and produces command responses for its operator. How does it do this? Well, it does so by way of the
line driver over which it is interacting with the operator. In other words, the TCP/IP line driver is a service
sourced by some other line driver, such as the console line driver.

Continuing this, we see that if we want to issue commands to the TCP/IP line driver by using the virtual
console, we must start the TCP/IP line driver by using the command CONSOLE START TCP. ? If we also
wanted to control the TCP/IP line driver by way of MSG and SMSG, we could issue MSG START TCP. After
having done both of these commands, we could control the TCP/IP line driver by all of these methods:

- Typing a command on the virtual console, the first token of said command being TCP.
« Sending a CP MSG to the server virtual machine, the first token of said message being TCP.
« Sending a CP SMSG to the server virtual machine, the first token of said message being TCP.

9 Note that TCP is the service name of the TCP/IP line driver.

22 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Self-Sourced Line Drivers

Now, consider the console line driver. Like the TCP/IP line driver, the console line driver is implemented
as a service. This means that the commands supported by the console line driver, such as CONSOLE
START, are issued to the console line driver by way of some other line driver, and the responses to said
commands are delivered to the operator through said other line driver.

For example, if we were to issue MSG START CONSOLE, we would be able to use the CP MSG command
to issue commands like CONSOLE START. When we did so, the response from the console line driver
would appear at the virtual machine from which we issued CP MSG, because that's how the MSG/SMSG
line driver disposes of responses from the services it controls.

But look again at that console line driver. When the reusable server kernel starts, the console line driver's
command set (CONSOLE START and so on) is already usable by typing those commands on the virtual
console. This is possible because the console line driver is built to be self-sourcing. In other words, it is
capable of starting itself, and it does so when the reusable server kernel initializes.

The CONSOLE, SUBCOM, MSG/SMSG, and SPOOL line drivers are all self-sourcing. This means that when
the reusable server kernel initializes, all of the following methods are available for issuing commands to
these drivers:

» You can type CONSOLE START (for example) on the virtual console and the console line driver will
handle the command and write the response to the virtual console.

« You canissue a CP MSG or CP SMSG command to send a command to the MSG/SMSG line driver from
elsewhere (making sure the first token of that message or special message is MSG), and the MSG/SMSG
line driver will handle the command and respond to you through CP's MSG command.

« From a REXX EXEC, you can use ADDRESS RSK to issue a command to the SUBCOM line driver (making
sure the first token of that command is SUBCOM), and the SUBCOM line driver will handle the command
and respond by writing its output to the virtual console.

» You can send a file to the SPOOL driver; it will process the lines therein as commands and return a file to
you containing the results.

Writing Your Own Line Driver

The notion that the reusable server kernel implements line drivers as services permits the server author
to add his own line drivers. To add a line driver, the server author just uses ssServiceBind in his
RSKMAIN to bind the service, just as he would do for any other service he writes, except:

« He must at least specify service type ss_srv_srvtype_1din his call to ssServiceBind. This informs
the reusable server kernel that the service being bound is in fact a line driver.

« If he is writing a self-sourced line driver, he must specify ss_srv_srvtype_ldss in his call to
ssServiceBind. This informs the reusable server kernel that the service being bound is a self-sourced
line driver.

After calling ssServiceBind, RSKMAIN should proceed as usual, eventually calling ssServerRun.
These considerations apply:

« The reusable server kernel does not take any special action for regular line drivers; the server author
must use PROFILE RSK to start his line driver (for example, CONSOLE START MYDRIVER to enable his
line driver to interact with the server operator through the virtual console).

- For a self-sourced line driver, the reusable server kernel does the following shortly after ssServerRun
begins:
— It drives the line driver's initialization entry point (known because of the ssServiceBind call the
author placed in RSKMAIN).

— Ifinitialization worked, the reusable server kernel creates a thread and runs the line driver's service
routine (again, known because of the recently-performed ssServiceBind) on that thread, passing
the service routine a C-block address of X'00000000'.

Chapter 2. Connectivity and Line Drivers 23

The C-block address being zero is the self-sourced line driver's cue that it should initialize its device
and prepare to accept its command set over its device.

Finally, the reusable server kernel provides entry point ssServiceFind so that an author-supplied line
driver can retrieve descriptive information saved by ssServiceBind. This permits author-supplied line
drivers to respond to their equivalent of the IBM-supplied drivers' START command. ssServiceFind
takes a service name as input and returns the address of the service's S-block. For more information, see
Table 2 on page 6.

Some of the fields of the S-block are relevant to the server author only in the context of author-supplied
line drivers. These are:

« The current start count is a counter used to indicate the number of START commands that are current
against the service. The counter is used in this manner:

— If the counter is zero when a line driver performs a START of this service, the line driver should drive
the service's initialization routine prior to letting the service's service routine get control.

In any case, the line driver should increment the counter just prior to driving the service's service
routine.

— When the line driver performs a STOP operation, it should first stop all its instances of the service's
service routine and then decrement the counter. If the counter becomes zero as a result of this
decrement, the line driver should drive the service's termination routine.

« The lockword is intended for use with the Compare and Swap instruction (CS). It is a line driver's
means for ensuring mutual exclusion in examination and setting of the start count and in the driving of
a service's initialization and termination routines. If the lock word is zero then it is considered not to
be held. Any nonzero value marks the lock as held. If an attempt to get the lock through CS fails, call
ThreadYield before trying again.

Authorization

Permission to start and stop services can be controlled through configuration parameter AUTHCHECK_LD
and the AUTH command set. This capability lets the server administrator set up subordinate operators
who can control some services but not others. For more information, see “Other Services' Use of
Authorization” on page 40.

24 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 3. DASD Management

Authors of certain kinds of servers will require a DASD subsystem capable of high volume, high speed,
parallelized I/O with a block-oriented model. The reusable server kernel DASD subsystem meets these
requirements, is integrated with CMS Application Multitasking, and recognizes the CMS thread, not the
VCPU or the virtual machine, as the entity that performs DASD I/O. Specific programming information is

found in the ssSgp API descriptions, and operator-oriented information is found in the descriptions of the
SGP command set.

DASD Subsystem Overview

The reusable server kernel accomplishes its DASD objectives through the following scheme:

Defined to the reusable server kernel are one or more sets of CMS minidisks, each such minidisk
formatted at 4 KB (kilobyte) blocksize and reserved (CMS FORMAT and RESERVE commands). Such
minidisks provide the raw storage for the DASD model implemented by the server kernel. Each set of
such minidisks is called a storage group. 19

For each storage group, the server kernel creates one or more VM data spaces. The total number of
pages in the data spaces is equal to the total number of data blocks on the constituent minidisks.

Through MAPMDISK, each storage group's minidisk set is mapped into the pages of its data space
set. 11

To read DASD blocks, the reusable server kernel performs MVCL from the appropriate pages in the
appropriate data space. In response to this, CP pages in the mapped DASD blocks as required. Paging
is a virtual machine's fastest route through CP to the DASD; further, significant amounts of real and
expanded storage are used by CP on the virtual machine's behalf to "cache the DASD blocks" (that is,
keep the data space pages resident).

To write DASD blocks, the reusable server kernel performs MVCL to the appropriate pages in the
appropriate data space and follows the MVCL with MAPMDISK SAVE. After MAPMDISK SAVE, the
reusable server kernel waits in a thread-blocking fashion for the save-complete external interrupt to
arrive. Control returns to the calling thread only when the write is entirely complete.

The techniques described above are used by the server kernel on the server application's behalf; see
Figure 3 on page 26. 12 In addition, all code and data structures involved in this scheme exhibit the

execution traits desired in a multithreaded CMS model: they are all thread-blocking, thread-synchronous,
31-bit-capable facilities.

10 The reusable server kernel contains no support for linking storage group minidisks at server startup or
performing the CMS FORMAT and RESERVE commands against minidisks prior to attempting to add them
to a storage group for the first time. These initialization processes need to be taken care of by the server
operator using traditional methods. Further, the reusable server kernel DASD engine requires that its
storage group minidisks be formatted at 4 KB and reserved. It will not operate upon minidisks that do not
meet these criteria.

11 For FBA DASD, each minidisk must start at a multiple-of-eight block number on the real DASD volume for
data space mapping to work correctly.

12 when VM Data Spaces are not available, the reusable server kernel uses DIAGNOSE X'250' in
asynchronous, MDC-enabled fashion instead; if for some reason DIAGNOSE X'250' doesn't work, then
DIAGNOSE X'A4' is used.

© Copyright IBM Corp. 1999, 2024 25

Storage Group 0 SG 1 SG 2

0 3F0 ~ Data Space
!) Pgs 0
Data to 48
b
49 -~ (
0 2E4 Pgs 49
] to 1486
2 A
\
Data /
Pgs 147
to 215
99 ~ L
Maore than
0 1A32 1DSif
needed
P -, Disk Blocks
IF0 49
Data ZE4 98
1A32 69
] 216
70 -
I/O engine:
* Read via MVCL: write via MV CL, then MAPMDISK SAVE
* APIs for I/O and admin/maint operations
* Commands for admin/maint operations

A A A AR O

Server threads

Figure 3. Reusable Server Kernel DASD

Limits

The reusable server kernel DASD subsystem exhibits these limits:

« The maximum number of storage groups is 1024.

« The maximum number of data blocks per storage group is X'FFFFFFFF' (16 TB).

« The maximum number of minidisks per storage group is 13,000.

« The total number of dataspace-mapped DASD blocks cannot exceed X'FFFFFFFF' (16 TB). 13

Modes of Operation

A given storage group can be started in one of two I/O modes:

13 The server kernel automatically switches to DIAGNOSE X'250' when this limit would be exceeded.

26 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

 Block R/O: the server program can read the DASD blocks but cannot write them. It is permissible for one
or more of the minidisks in the storage group to be linked read-only.

« Block R/W: the server program can read or write the DASD blocks individually. All minidisks in the
storage group must be linked read/write.

Each storage group's I/O mode is selected individually.

Programming Interfaces

Management and control of storage groups can be done through a set of storage group APIs. Callable
APIs are provided to:

« Create and delete storage groups

- Vary storage groups online and offline

« List and query the defined storage groups

« Perform storage group I/0

« Find the number of a started storage group, given its name

These entry points all begin with name ssSgp and are described later in this book.

Administrator and Operator Considerations

A set of operator commands implements a subset of the storage group APIs. Commands are available to
perform these functions:

« Create and delete storage groups
- Start and stop storage groups
« List and query the defined storage groups

For more information, see Chapter 14, “Command Descriptions,” on page 77.

Creating a Storage Group

To build up a storage group from scratch, the server administrator performs these steps:

Table 14. Building a Storage Group Step

Step Task Command Description Page
1 Select some CP LINKCMS Formateach minidisk N/A
minidisks to make up FORMAT at 4 KB blocksize
the storage group. and reserve it. Make

sure the server's
virtual machine links
the minidisks at
startup time, for
example, through
PROFILE EXEC or
PROFILE RSK.If
FBA DASD is used,
make sure each
minidisk starts on

a multiple-of-eight
block boundary on
the real FBA device.

Chapter 3. DASD Management 27

Table 14. Building a Storage Group Step (continued)

Step Task Command

Description Page

2 Create the storage SGP CREATE

group.

This informs the
reusable server
kernel of the
minidisks' existence
and instructs it

to treat them
together as a
storage group. The
server kernel records
this information in
the storage group
configuration file.

“SGP CREATE” on page 174

3 Start the storage SGP START

group.

This makes the
storage group
available for I/O and
the ssSgpRead and
ssSgpWrite APIs
can be used against
it. You will probably
want to put the SGP
START command in
PROFILE RSKso
that the storage
group starts each
time the server
starts.

“SGP START” on page 179

Changing the Minidisks in A Storage Group

To change the minidisk configuration of a storage group use these steps:

Table 15. Changing the Minidisk Configuration

group

Step Task Command Description Page
1 Stopthe storage SGP STOP This brings the “SGP STOP” on page 180
group storage group offline.
2 Delete the storage SGP DELETE This removes the “SGP DELETE” on page 175
group storage group's
definition from
the storage group
configuration file.
3 Create the storage SGP CREATE This records the “SGP CREATE” on page 174
group anew new storage group
definition in the
storage group
configuration file.
4 Start the storage SGP START This makes the “SGP START” on page 179

storage group
available for I/0O.

28 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Deleting A Storage Group

To delete a storage group use these steps:

Table 16. Deleting a Storage Group
Step Task Command Description Page
1 Stop the storage group SGP STOP This brings the storage group “SGP
offline. STOP” on
page 180
2 Delete the storage group SGP DELETE This removes the storage “SGP
group's definition from the DELETE”
storage group configuration file. on page
175

Chapter 3. DASD Management 29

30 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 4. File Caching

Servers having file-read-intensive workloads will find it beneficial to cache frequently-read files. Usually
the application relies upon CMS's FSREAD cache and minidisk caching to achieve good performance, but
these facilities have their limits.

To overcome these limits and extend the caching facilities available to the server writer, the reusable
server kernel offers a file caching scheme based on VM Data Spaces. 14 A file cache is simply a data space
whose contents -- files -- are controlled for the server by the server kernel. The server author decides the
number and sizes of file caches he creates; he has both APIs and operator commands at his disposal for
both creating and deleting file caches. Using APIs alone, the server program requests that files be cached
in these data spaces; in response to the server's requests, the server kernel reads files using conventional
CMS file APIs and holds them in data spaces, removing them either when they become stale or when data
space storage becomes constrained. When storage constraints are an issue, the server kernel removes
files in LRU (least recently used) fashion. Such removal is not visible to the server program.

Managing the Set of Caches

To create a file cache, the server operator can issue the CACHE CREATE command, or the server itself

can call entry point ssCacheCreate. The cache is given an eight-byte name which the server kernel uses
unchanged in a call to ssMemoryCreateDS to create the corresponding data space. Thus, cache names
must be unique among all subpools the server kernel manages. The size of the cache is specified in pages.

To delete a cache, use either the CACHE DELETE command or entry point ssCacheDelete. The
command or API call will not complete until all cached files are closed. Further, once the deletion has
started, the caching of new files will not be permitted.

To obtain statistical information about a particular file cache, the server can call ssCacheQuery.
Similarly, the server operator can issue the CACHE LIST command to see tabular output reflecting
statistical information about all of the caches known to the server kernel.

For more information on how the server kernel maintains monitor data for each file cache, see Chapter 13,
“Monitor Data,” on page 71.

File Operations

To cache a file, the server calls entry point ssCacheFileOpen, supplying the name of the file to be
cached. Any name acceptable to CSL routine DMSOPEN can be used. The server kernel keeps track of
cached files using these DMSOPEN-acceptable names. In response to the call, the server kernel loads
the file into the cache, making it ready for reading through another entry point, ssCacheFileRead; in
addition, if the server kernel was able to load the file contiguously into data space storage, it informs the
caller of this, returning to it the ALET and address the server can use to access the cached file directly.
In any case, ssCacheFileOpen returns the size in bytes of the cached file. Finally, note that the file can
be opened multiple times simultaneously; this permits open-read-close logic to be applied freely on a
per-client basis.

Once the server has opened the file, it can read the file's data through one of two methods:

- If the file was loaded contiguously, the server can enter AR mode and read the data directly from the
data space, using the ALET, address, and length returned by ssCacheFileOpen.

- If the file was not loaded contiguously, or if the server author chooses not to use AR mode, the server
can call entry point ssCacheFileRead to read the data. This entry point's inputs are simply a file
token, a zero-origin byte offset, and a length. It simply reads the cached data into the buffer passed by
the caller. The server kernel permits multiple ssCacheFileRead calls to be in progress simultaneously
against a given file.

14 1f VM Data Spaces are not available, the file caching facilities of the reusable server kernel do not work.

© Copyright IBM Corp. 1999, 2024 31

When the server is done reading the file, it issues call ssCacheFileClose. The file remains in the cache
for subsequent use, unless it becomes stale or is pushed out because of storage contention.

Transformations

Recognizing that the server is likely to need to perform code page transformations on the files it
manipulates, the server kernel includes a translation function with its caching support. When the server
opens a file, it specifies a translation table to be applied to the file's data as it is loaded into the cache.
The translation table can come from these places:

« The server kernel offers an entry point, ssCacheX1TabSet, which the server can call to identify a
translation table that should be eligible for use as part of file loading. The table is known by an integer
identifier and is nothing more than a 256-byte table to be applied to the file's data using the Translate
(TR) instruction. The integer identifier supplied to ssCacheX1TabSet is also one of the inputs to
ssCacheFileOpen.

« For the server author's convenience, the server kernel predefines certain tables:

Table ID Table Function
0 No translation at all
1 1047 to 819 (EBCDIC to ASCII)
2 819 to 1047 (ASCII to EBCDIC)

The server kernel recognizes these tables' identifiers without the server having to invoke
ssCacheX1TabSet first.

Just as it might have to perform code page translation on files it serves to clients, the server might also
have to perform record boundary delimiter transformations. For example, a UNIX® client might want the
records to be delimited by a line feed (X'0OA"), while a DOS client might want a carriage return and line feed
(X'0ODOA") at the end of each record. Depending on the file's contents, it might even be appropriate not to
insert any delimiters at all - a .JPG file, for example, falls into this category. Recognizing this, the server
kernel lets the caller tell ssCacheFileOpen what should be done about record delimiting. Both line-end
marker and prefixed record-length schemes are supported.

Example

Suppose that an HTTP server needs to serve file INDEX HTML VMHOME: EWEBADM.VMPAGE to a browser.
As part of serving this file to the browser, the HTTP server will need to translate the file's data from
EBCDIC to ASCII and will need to insert a CR-LF pair (X'ODOA") after each record. To serve the file, the
server would call ssCacheFileOpen, requesting that appropriate data translation and record massaging
be done as part of the load into the cache. The server kernel would return a file token as an output of
ssCacheFileOpen, and if the file had been loaded contiguously into the data space, it would also return
the ALET and address of the data space buffer in which the file resides. Finally, if the load is successful,
ssCacheFileOpen also returns the size in bytes of the loaded, transformed file.

The server can read the file's contents using either ssCacheFileRead or AR mode. However, if all that is
needed is to send the file's contents to the browser, the server can just call ssClientDataPut, passing it
the ALET, address, and length returned by ssCacheFileOpen.

After the file has been sent, the server issues ssCacheFileClose. The file remains in the cache for the
next client.

Stale Data

The server kernel's file caching scheme accommodates the notion that file contents change over time
and that cached information can become stale as a result. When the server calls ssCacheFileOpen, the
server kernel checks the file's update time and compares it against the update time of the cached copy.
If there is a discrepancy, the file is reloaded. The currently cached copy -- now stale -- is disposed of

32 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

according to whether it is still in use (that is, is still open); if it is not in use it is dropped immediately, but
if it is still open it is marked as stale and dropped when the server finally closes it. This scheme preserves
consistency for open files while providing a means for new opens to see the latest version of a file.

Cache Utilization

Itis important to recognize that the server kernel can have more than one copy of a file in a cache at one
time. This can happen in these situations:

- Ifafileis loaded into a cache using several different code page translations or several different record
delimiting schemes, a cached copy will be kept for each such representation requested. For example, if
INDEX HTML were opened using EBCDIC-to-ASCII and CR-LF delimiting, and then it were opened again
using no code page translation and CMS two-byte-length record prefixing, the server kernel would keep
both copies in memory.

« If a cached file is still open, it will not be dropped from the cache, even if the server kernel detects that
it has become stale. The stale file will not be dropped until it is closed.

Constraints

The server author and administrator should keep these file caching constraints in mind:

« File cache names are used directly as input to ssMemoryCreateDS. The server writer and
administrator must work to avoid name conflicts.

« The number of files that can be held in a cache is not strictly limited, but the overall size of a file cache is
limited to 2 GB (the size of a data space). This means that a transformed file cannot exceed 2 GB. Note
that multiple file caches are supported.

- The number and aggregate size of data spaces creatable by the server is controlled by XCONFIG
ADDRSPACE in the server virtual machine's CP directory entry.

« Files whose transformed size would be greater than 16 MB (megabytes) are never cached contiguously.

Chapter 4. File Caching 33

34 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 5. Authorization

Overview

Many servers appear to their clients as access methods for server-held objects. File system servers are a
common example of these. For example, the CMS Shared File System implements an object class called
file supporting a certain set of operations and an object class called directory supporting another set of
operations. The users of the Shared File System transmit requests to an SFS server, asking the server

to perform operations on these objects. The SFS server performs the operations and returns appropriate
responses to the clients. No operations are possible against SFS-held objects other than those defined on
objects of class file or directory.

Servers implementing such access methods usually require that the operations requested by clients be
performed on the objects if and only if certain authorization guidelines are met. Consider again the Shared
File System: to write to a file, a user must have write authority to it. 1> To support this checking of
operations, the Shared File System contains its own authorization engine for managing the authorization
rules. The authorization model used by the CMS Shared File System is built around objects, users, and
actions; all of the interfaces to the authorization engine serve to manipulate and interrogate a rule base
which records "who can do what to whom". Some of these interfaces, such as the GRANT AUTHORITY
and REVOKE AUTHORITY commands, are externalized. Others are internal-only interfaces for the server's
exclusive use.

The general model for authorization exemplified by the Shared File System applies to many different kinds
of servers. To ease the development burden of the server writer, the reusable server kernel provides a set
of APIs implementing a general-purpose authorization engine. The authorization model implemented by
the reusable server kernel is an object-user-action model, just like the one implemented by the Shared
File System. To use the reusable server kernel's authorization facility, the server author calls the API,
performing such actions as defining an object class, defining a particular object, permitting a user to
perform an operation, and testing whether an operation is permissible. A set of commands, intended for
operator use, parallels the APIs provided.

The reusable server kernel authorization engine treats object classes, object names, user names, and
permissions as abstract entities. It does not associate any particular meaning with these items. It merely
facilitates the implementation of an authorization strategy by providing a rule engine capable of building,
maintaining, and interrogating a rule base describing a relationship of objects, users, and actions. The
object classes and operations defined, the objects defined, the users defined, and the permissions
granted are left for the server writer to decide.

Entry Points

The reusable server kernel authorization API offers entry points that perform a number of different
operations on the rule base. In particular, these are some of the programming interfaces available:

Table 17. Programming Interfaces

Programming Interfaces Description Page

ssAuthCreateClass Creates an object class and “ssAuthCreateClass — Create an
associates a set of operations with Object Class” on page 217
it.

ssAuthCreateObject Creates a named object as an “ssAuthCreateObject — Create an
instance of a particular object class. | Object” on page 219

15 In truth, to open a file for write, the user must have write authority to it, even if he never actually writes to
the file.

© Copyright IBM Corp. 1999, 2024 35

Table 17. Programming Interfaces (continued)

Programming Interfaces

Description

Page

rule in the rule base.

ssAuthDeleteClass Removes all objects of a given class | “ssAuthDeleteClass — Delete a
from the rule base and optionally Class” on page 221
removes the class from the rule
base.
ssAuthDeleteObject Removes all rules for a given object | “ssAuthDeleteObject — Delete an
from the rule base and optionally Object” on page 223
removes the object from the rule
base.
ssAuthDeleteUser Removes all rules for a given user “ssAuthDeleteUser — Delete a
from the rule base. User” on page 225
ssAuthPermitUser Adds, modifies, or deletes a specific | “ssAuthPermitUser — Permit a

User” on page 233

ssAuthTestOperations

For a given user, object, and set of
operations, determines which of the
specified operations are permissible.

“ssAuthTestOperations — Test

Operations” on page 242

A set of queries and some maintenance APIs are also provided.

Naming Conventions and Other Limits

To name objects, users, classes, and permissions, the authorization API uses character strings composed
from an unrestricted alphabet. 16

Table 18 on page 36 describes other conventions related to the naming of these items:

Table 18. Authorization API Naming Conventions

Item Format Length
Object Y 1-256
User \Y 1-64
Class F 8

Action F 4

Note:

» The authorization API supports a maximum of 32 operations per object class.

Group Authorization Considerations

The reusable server kernel's authorization model and API extend easily to group authorization

situations. 17 To implement a group scheme, the programmer can perform the mapping of user ID to
group name outside the scope of the reusable server kernel's authorization API and use the group names
as "user IDs" in the reusable server kernel authorization API calls. In cases where group authorization
provides acceptable security, using the authorization API in this way reduces the size of the authorization
data and thereby decreases the time needed to search it.

16 "Unrestricted alphabet" means that any of the 256 8-bit code points can appear in these names.

17 In group authorization, access rights are extended to users not based on their individual identities but
rather on their membership in a group of some kind. Unix and VMS are two systems where file authorization
is based partially on users' organization into groups.

36 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Persistent Storage of Authorization Data

The reusable server kernel keeps the authorization database in several disk files. These disk files let the
authorization data persist from one invocation of the server program to the next.

The general idea is that the authorization database is divided into several files:

Table 19. Authorization Data File Format

File Format Description Page

Data Contains class, object, user and rule “The Data File” on page 367
definitions. The records in this file are
chained to one another to build up
logical groupings, such as the set of
rules associated with a given object or
the set of objects belonging to a given
class.

Index Contains hash tables that partition “The Index File” on page 369
the data file records into equivalence
classes (that is, hash buckets) to
improve the performance of searches.

Log Contains all tracking of the writes to “The Log File” on page 370
the index and data files for recovery
purposes.

The reusable server kernel is able to keep its authorization data in any of these disk repositories: 18

« On CMS minidisks
« In the CMS Shared File System

All of the authorization files must be kept in the same kind of repository. Mixing repositories is not
permitted.

Recognizing the critical nature of authorization data, the reusable server kernel manages its authorization
files such that the authorization database can be recovered (that is, its internal consistency can be
restored) if some kind of failure occurs. The management and recovery scheme used is a function of the
repository in which the data files reside. When CMS minidisks are used, the reusable server kernel keeps
twin copies of the authorization database and also keeps a log file to enable recovery after a failure. When
the CMS Shared File System is used, just one copy of the authorization database is kept and the Shared
File System's commit/backout facilities are exploited to maintain consistency.

When the reusable server kernel starts, it initializes the authorization data base (makes it completely
empty) if it appears that the database has never been initialized. This assessment is made using the
following criteria:

« Shared File System: if the index file appears not to be initialized, then an empty index is written.

 Minidisks: if the log file appears not to be valid, or if the log file appears valid but the index file appears
not to be initialized, then an empty index is written.

You should back up your authorization index and data files frequently enough so that you can restore
them without loss of data in case they are initialized accidentally.

The following sections give more specifics on the details of the various repositories.

Using CMS Minidisks

To keep the authorization files on minidisks, set configuration parameter AUT_LOCATION appropriately
and supply names for:

18 Configuration parameter AUT_LOCATION file tells the reusable server kernel where the data is being kept.

Chapter 5. Authorization 37

Copy 1 of the data file (configuration parameter AUT_DATA_1),
Copy 2 of the data file (configuration parameter AUT_DATA_2),
Copy 1 of the index file (configuration parameter AUT_INDEX_1),
Copy 2 of the index file (configuration parameter AUT_INDEX_2),
The authorization log file (configuration parameter AUT_LOG).

These files do not all have to be on the same minidisk; you can spread them across minidisks if you

want. 1% The only constraint is that for each minidisk on which authorization files reside, there must be

no open-for-output files on the minidisk other than the authorization files themselves. In other words, do
not put any of your server's other output files on the same minidisk with authorization data files. If this
constraint is not observed then the reusable server kernel's commit and recovery logic will not work and
if a failure occurs you might end up with unrecoverable authorization data.

When minidisks are used, the reusable server kernel guarantees consistency by using the log file to record
changes that will be made and then applying the changes to the two copies sequentially. If an entire
update does not complete successfully, the reusable server kernel uses the log file to decide how to
recover the consistency of the authorization data and make the two copies identical again. If the update
was completely applied to the first copy and then the update of the second copy failed, realigning the two
copies does not lose the update. If the update was never completely applied to the first copy, the update
will be backed out.

Using the CMS Shared File System

To use the CMS Shared File System, set configuration parameter AUT_LOCATION appropriately and
supply names for:

« Copy 1 of the data file (configuration parameter AUT_DATA_1),
« Copy 1 of the index file (configuration parameter AUT_INDEX_1),

The data and index files need not reside in the same directory or even the same file pool server. 20 The
directories in which the files reside can be accessed directories or unaccessed directories.

When the Shared File System is used, the reusable server kernel does not maintain a second copy of the
data and index files and it does not keep a log file; it ignores the configuration parameters associated with
these extra files (configuration parameters AUT_DATA_2, AUT_INDEX_2, and AUT_LOG). This is made
possible because the Shared File System supports commit and backout semantics; the reusable server
kernel does not have to manage recovery on its own.

When the Shared File System is used, the reusable server kernel uses this technique to maintain
consistency of the authorization data:

1. At startup, the reusable server kernel gets a work unit ID and opens the two files on that work unit.

2. Each time an API call changes the database, the reusable server kernel writes the changes to the index
and data files and then commits the work unit.

3. If one of the writes fails or the commit fails, the reusable server kernel backs out the work unit.

This method guarantees that the index and data files are always committed together and that the
committed copies are always consistent with one another.
Migrating Among Repositories

To migrate your authorization data to the Shared File System from minidisks, follow the instructions in
Table 20 on page 39.

19 In fact, it would be a good idea to put the files for copy 1 on one physical DASD pack and the files for copy 2
on a different physical DASD pack.
20 1f you put the two files in two different servers, each server must be at least VM/ESA 1.1 or later.

38 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 20. Migrating Authorization Data from Minidisks to SFS

Step

Description

Command

Page

1

Make sure the server shuts down
normally so that the two copies
of authorization data are each
internally consistent and identical
to one another.

SERVER STOP

“SERVER STOP” on page 173

Move one copy to the desired
Shared File System server(s) and
directory(ies).

CMS's COPYFILE

n/a

Change the reusable server
kernel's AUT_ configuration
parameters to reflect the new
names and locations of the
authorization data.

Use XEDIT to change
PROFILE RSK.

“Configuration Parameters” on page
65

Migrating from the Shared File System to minidisks is a little more complicated; follow the instructions in
Table 21 on page 39.

Table 21. Migrating Authorization Data from SFS to Minidisks

Step

Description

Command

Page

1

Duplicate your index and data
files so that you have two
identical copies of each (four files
in all).

CMS's COPYFILE

n/a

Install the copies on the target
minidisks.

CMS's COPYFILE

n/a

Using CMS Pipelines, an EXEC,
XEDIT, or some other tool, make
a file of the following format and
content (this will be the initial log
file):

+ RECFMF
« LRECL 256

« Put one record in the file. The
first twelve bytes of the record
should be
X'0000000200000002000000
00'. The content of the
remainder of the record is
unimportant.

Install this file on the target
minidisk.

n/a

Update your reusable server
kernel configuration parameters
to point to the new target
repository and update the names
of the index, data, and log files.

Use XEDIT to change
PROFILE RSK.

“Configuration Parameters” on page
65

Chapter 5. Authorization 39

Parallelism

The reusable server kernel lets multiple threads read the authorization data simultaneously but requires
updating threads to serialize and perform their work exclusively of all other threads (in other words, either
multiple readers are allowed or one writer is allowed).

Administrative Commands

The reusable server kernel provides a service, called AUTH, which provides a command interface to many
of the authorization APIs. This command set is useful in thses circumstances:

« Commands to manipulate the authorization database can appear in PROFILE RSK and be issued each
time the server starts.

- An operator can manipulate the authorization database by sending authorization commands to the
AUTH service through the CP MSG command or by typing them on the server console.

For more information on the authorization command set, see Chapter 14, “Command Descriptions,” on
page 77

Other Services' Use of Authorization

The presupplied services and line drivers are capable of using the authorization database as a way

to protect their command sets. For example, the AUTH service -- that is, the implementer of the

AUTH command set -- offers a means by which the server administrator can instruct it to examine the
authorization database to determine whether a certain user is permitted to issue AUTH commands. The
starting and stopping of author-supplied services can be similarly protected.

As shipped, all such controls are inactive, that is, no permission checking is in effect. The following
sections describe how such authorization checking can be activated.

Overview

The basic idea is that certain services and line drivers interrogate a corresponding configuration
parameter to decide whether to check authorizations for the command sets they implement. When

a service or line driver's authorization configuration parameter is set ON, the service or line driver

calls ssAuthTestOperations each time it handles a command. The purpose of this call is to
determine whether the requesting user has permission to issue the prospective command. If the call
to ssAuthTestOperations succeeds, the line driver or service will attempt the requested operation.
Table 22 on page 40 generally illustrates how a line driver or calls ssAuthTestOperations.

Table 22. Line Driver and Service Calls to ssAuthTestOperations

Coordinate Value

Object Name of the service being manipulated.

User The user ID attempting to manipulate the service.

Action For a start, STRT. For a stop, STOP. For connection
reporting, RPRT. For actual use thereof, EXEC.

Activation

To activate authorization checking for line drivers and services, perform the these initialization steps with
respect to the authorization database:

40 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 23. Activating Authorization Checking for Services and Line Drivers

Step Task Command Description Page
1 Create an AUTH CRECLASS The name of the object “AUTH CRECLASS” on
object class to class is not important, page 88
which objects but operations STRT,
representing STOP, RPRT, and EXEC
services will belong. must be defined on
objects of the class.
2 Create an AUTH CREOBJECT You should create the “AUTH CREOBJECT” on
authorization object new object as a member page 89
corresponding to of the class you just
the service that will created with AUTH
be protected. CRECLASS. The name of
the new object should
match the name of the
service as it was given
in the ssServiceBind
API call.
3 Grant privileges for AUTH PERMIT Arrange for the user “AUTH PERMIT” on page
each user who will ID to have permission 96
be permitted to to perform the STRT
START the service. operation on the object
that represents the
service.
4 Grant privileges for AUTH PERMIT Arrange for the user “AUTH PERMIT” on page
each user who will ID to have permission 96
be permitted to to perform the STOP
STOP the service. operation on the object
that represents the
service.
5 Grant privileges for AUTH PERMIT Arrange for the user “AUTH PERMIT” on page
each user who ID to have permission 96
will be permitted to perform the RPRT
to enable a line operation on the object
driver's connection that represents the
reporting feature. service.
6 Grant privileges for AUTH PERMIT Arrange for the user “AUTH PERMIT” on page

each user who will
be permitted to use
a given service.

ID to have permission
to perform the EXEC
operation on the object
that represents the
service.

9%

Once the authorization database has been set up, it remains to inform line drivers and services that they

should actually check the authorization data you've configured. This is accomplished by using the CONFIG

commands:

- To enable line drivers' checking of your newly-created authorization records, issue CONFIG
AUTHCHECK_LD ON. When you do this, each line driver will handle a given user's START or STOP
commands only if the authorization data permits it.

« To inform a given service that it should check your newly-created authorization records, set the service's

appropriate configuration parameter (see Table 24 on page 42 and Table 31 on page 66).

Chapter 5. Authorization 41

Table 24. Authorization Configuration Parameters

Service Parameter Page

AUTH AUTHCHECK_AUTH “CONFIG AUTHCHECK_AUTH” on page
112

CACHE AUTHCHECK_CACHE “CONFIG AUTHCHECK_CACHE” on page
113

CMS AUTHCHECK_CMS “CONFIG AUTHCHECK_CMS” on page
114

CONFIG AUTHCHECK_CONFIG “CONFIG AUTHCHECK_CONFIG” on
page 115

CP AUTHCHECK_CP “CONFIG AUTHCHECK_CP” on page 116

ENROLL AUTHCHECK_ENROLL “CONFIG AUTHCHECK_ENROLL” on
page 117

MONITOR AUTHCHECK_MONITOR “CONFIG AUTHCHECK_MONITOR” on
page 119

SERVER AUTHCHECK_SERVER “CONFIG AUTHCHECK_SERVER” on
page 120

SGP AUTHCHECK_SGP “CONFIG AUTHCHECK_SGP” on page
121

TRIE AUTHCHECK_TRIE “CONFIG AUTHCHECK_TRIE” on page
122

USERID AUTHCHECK_USERID “CONFIG AUTHCHECK_USERID” on
page 123

WORKER AUTHCHECK_WORKER “CONFIG AUTHCHECK_WORKER” on
page 124

All of the aforementioned configuration parameters can be set in PROFILE RSK each time the server

starts. For more information, see “PROFILE RSK” on page 65.

42 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 6. Enrollment

One problem common to many servers is the notion of enrolling users. In the abstract, this problem is
nothing more than implementing or exploiting some kind of indexed access method. Users' records are
kept in a repository of some kind and inserted, removed, and retrieved using the chosen access method,
the user identifiers serving as indices.

Recognizing this commonality, the reusable server kernel implements an indexed access method suitable
for use in storing enrollment data. The server kernel offers an API for programmed manipulation of
enrollment sets -- record insertion, deletion, and retrieval, to name a few operations -- and it offers a
corresponding command set that lets the server operator perform these operations easily. The command
set is implemented as a service, so it is available through any of the server kernel's line drivers -
CONSOLE, MSG, and so on.

The reusable server kernel stores related enrollment records together in an enrollment set. Each
enrollment set bears an eight-byte name; the server operator refers to an enrollment set by that name
when he uses the ENROLL command set, and the server author refers to an enrollment set by that
same name when he uses the enrollment API. The server kernel can manage multiple enrollment sets
concurrently.

To ensure good performance, the reusable server kernel exploits VM Data Spaces to hold enrollment sets.
When the server kernel is instructed to make an enrollment set ready for use, it reads the enrollment
records from a Shared File System file into a VM Data Space, organizing them in the data space for quick
access. Each enrollment set resides in its own data space, and a data space being used for enrollment
contains nothing but records of that enrollment set. Note that the reusable server kernel's enrollment
facility requires the underlying processor to support VM Data Spaces. Processors not offering VM Data
Spaces cannot support the enrollment facility.

Because a data space can be up to 2 GB in size, and because z/VM lets a single virtual machine manage
many such data spaces concurrently, the number of enrollment records the reusable server kernel can
manage has no limit, practically speaking. The data structures used ensure that the server kernel can
hold several hundred thousand enrollment records in a single data space without appreciable lookup,
insertion, or replacement delays.

As the enrollment records change, the reusable server kernel appends information to the corresponding
SFS file, said appended records being indicative of the changes that are occuring against the enrollment
set. At an appropriate time, the operator or the server program itself indicates that it is time to commit the
changes; in response to this, the server kernel uses CSL routine DMSCOMM to commit the changes to the
SFS file. Each enrollment set's corresponding SFS file is open on its own work unit, each such work unit
being used for no other purpose than I/0 to a single enrollment file.

Eventually the server operator or server program determines that activity to an enrollment set is complete
and instructs the reusable server kernel to unload the enrollment data. Theserver kernel closes the
corresponding SFS file, deletes the data space, and the enrollment set is thereby closed. If the server
program terminates and the enrollment set is still open, the server kernel closes it automatically before
terminating, committing any uncommitted changes. If the Shared File System should ever indicate that it
cannot commit changes, the reusable server kernel backs out the changes, using SFS's rollback support.

Because of the cumulative nature of the SFS file that holds an enrollment set, it is occasionally helpful to
remove redundant information from such a file. An EXEC to perform such cleanup is provided. When an
enrollment set is being cleaned, it cannot be in use for any other purpose; it must be unloaded prior to
being cleaned and reloaded afterward.

Each enrollment record consists of a 64-byte key and a corresponding piece of enrollment data. The
reusable server kernel imposes no structure on the enrollment data itself; the structure of the enrollment
data is left to the server author. However, the server kernel does impose the restriction that an enrollment
record cannot contain more than 65,450 bytes of data (this limit comes from the record-length limit of
CMS file systems). Zero-length data is permitted on enrollment records.

© Copyright IBM Corp. 1999, 2024 43

Last, recognizing the utility of a general-purpose indexed access method capable of holding data on this
scale, the reusable server kernel implements transient enrollment sets. A transient enrollment set is
empty when opened, is never written to disk, and all memory of it is lost when it is closed. While it is
open, though, all of the server kernel's indexing and retrieval facilities are available, and VM Data Spaces
are exploited just as they are for permanent enrollment sets. This gives the server author a way to keep
track of large numbers of tagged, transient data items concurrently. Said data items can be stored in an
enrollment set, where the reusable server kernel keeps them in a VM Data Space until they are again
requested by the server program. Note also that because transient enrollment data is never written to

a CMS file, it is not necessary for the reusable server kernel to limit the data length quite so much. For
transient enrollment sets, the amount of data that can be stored in a given record is limited to 16 MB - the
maximum amount movable through the Move Long (MVCL) instruction.

Programming Interfaces

The server program can use the following programming interfaces to manipulate enrollment sets:

Table 25. Enrollment APIs

Programming Interface

Description

Page

enrollment set.

ssEnrollCommit Commit changes to an “ssEnrollCommit — Commit
enrollment set. Enrollment Set” on page 264
ssEnrollDrop Close a permanent enrollment | “ssEnrollDrop — Drop Enrollment
set, either committing or Set” on page 266
rolling back the uncommitted
changes, or destroy a transient
enrollment set.
ssEnrolllList Generate a list of the enrollment | “ssEnrollList — List Enrollment
sets currently loaded. Sets” on page 268
ssEnrolllLoad Load an enrollment set from an | “ssEnrollLoad — Load Enrollment
SFS file into a VM Data Space, or | Set” on page 270
initialize a transient enrollment
set.
ssEnrollRecordGet Retrieve a record from an “ssEnrollRecordGet — Get

Enrollment Record” on page 272

ssEnrollRecordInsert

Insert a record into an
enrollment set.

“ssEnrollRecordInsert — Insert
Enrollment Record” on page 274

ssEnrollRecordList

Generate a list of the indicies of
all the records in the enrollment
set.

“ssEnrollRecordList — List
Records In Enrollment Set” on

page 276

ssEnrollRecordRemove

Remove a record from an
enrollment set.

“ssEnrollRecordRemove —
Remove Enrollment Record” on
page 278

Operator Commands

The ENROLL service implements a set of operator commands:

Table 26. Enrollment Commands

Command

Description

Page

COMMIT

Commits changes to an enrollment
set.

“ENROLL COMMIT” on page 152

44 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 26. Enrollment Commands (continued)

Command Description Page

DROP Unloads an enrollment set from a “ENROLL DROP” on page 153
data space.

GET Retrieves a record from an “ENROLL GET” on page 154
enrollment set.

INSERT Inserts a record into an enrollment | “ENROLL INSERT” on page 155
set.

LIST Generates a summary of the loaded [“ENROLL LIST” on page 156
enrollment sets.

LOAD Loads an enrollment set into adata | “ENROLL LOAD” on page 157
space.

RECLIST Generates a list of the keys of the “ENROLL RECLIST” on page 158
records in an enrollment set.

REMOVE Removes a record from an “ENROLL REMOVE” on page 159

enrollment set.

Chapter 6. Enrollment 45

46 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 7. Indexing by Prefixes

Overview

The reusable server kernel's enrollment API provides a simple indexed access method that lets the server
author use a fully-formed index to return exactly one record whose key matches the supplied fully-formed
index. This solves the enrollment problem well but ignores a large class of indexing problems relevant

in server development. In particular, it ignores the problem of returning a set of records whose keys are
matched by a prefix the caller supplies. This problem appears in many situations, such as telephone
directory lookup or web page indexing.

The reusable server kernel contains APIs that let the server application build and interrogate indices
that permit the retrieval of record sets according to lookup by prefix. For each such index, the reusable
server kernel APIs provide insertion and lookup operations, identifying the inserted or retrieved records
by record number (the indexing API holds onto record numbers, not records themselves). The reusable
server kernel keeps each such index in its own VM Data Space and lets multiple RSK-based service
machines access the indices concurrently. An index does not persist across invocations of the server
program; the server must rebuild the index each time it starts.

More specifically, the provided APIs are:21

- ssTrieCreate: creates anindex. The caller specifies a name for the index and the size (in pages) for
the index. The reusable server kernel creates a data space to hold the index and returns the ASIT and
ALET to the caller.

- ssTrieDelete: destroys an index. The reusable server kernel destroys the corresponding data space.

« ssTrieRecordInsert: the caller supplies the index name, a record number, and the key to be
associated with the record number. The reusable server kernel inserts the record number into the index.

- ssTrieRecordList: the caller supplies an index name and a key prefix. The reusable server kernel
searches the index and returns a list of all the record numbers whose corresponding keys match the
prefix specified by the caller.

Example

Suppose a company phone book is contained in a CMS F-format file, with the 40-column employee name
appearing in columns 36 to 75. An RSK-based phone directory lookup engine might read the phone file
into memory and then form an index on the employee names. To index each record, the engine would call
ssTrieRecordInsert, identifying the record by number and supplying the 40-column employee name
field as the record's key. Once all records have been indexed, the server is ready to begin servicing lookup
requests; given a prefix, the engine can call ssTrieRecordList, thereby retrieving the record numbers
of all the records whose key matches the prefix of interest.

Index Sharing

An application using the trie APIs will probably work alone most of the time, that is, its indices will be
private. In this manner of operation, the application creates the index by name and then refers to it by
name when performing insertion and lookup operations.

However, the reusable server kernel does provide the basic structure necessary for the application to
share an index among multiple virtual machines (for example, worker machines). When ssTrieCreate
creates an index, it supplies the caller with the ASIT and ALET of the data space containing the index. If
the application desires to share the index with (for example) a worker machine, it should call CSL routine

21 The APIs take their name from the data structure used to implement the index. This data structure is called
a trie (rhymes with sky) and is described, for example, in Aho, Hopcroft, and Ullman, Data Structures and
Algorithms, Addison-Wesley, 1985, ISBN 0-201-00023-7.

© Copyright IBM Corp. 1999, 2024 47

DMSSPCP to permit the worker to access the index data space read/write and then it should send the ASIT
to the worker. The worker should use DMSSPLA to generate its own ALET for the space and then call the
trie APIs as appropriate, identifying the index by ALET. Note that the worker must have read/write access
to the data space, even if it is performing only lookups. This is because the trie APIs use storage in the
data space to implement necessary locking primitives.

The reusable server kernel makes no attempt to recover from program checks that will occur in worker
machines if the owning virtual machine should delete the index. When deletion of an index (that is, a call
to ssTrieDelete) is required, the application must take care to inform the workers and receive their
acknowledgements prior to deleting the index.

No Record Deletion?

For reasons of complexity, there is no ssTrieRecordDelete function. If it becomes necessary to

"delete a record", the application should simply ignore that record's number when it appears in the output
of ssTrieRecordList.

Commands

A very simple built-in service, TRIE, offers a command, LIST, that can be used to display pertinent
information about the indices the server has created. For each such index, the reusable server kernel
displays the index name and ASIT, the index size, the amount of data space storage actually being used,
the number of records being held, and the number of nodes in the trie.

There are no command equivalents for the ssTrieRecordInsert and ssTrieRecordList entry
points.

48 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 8. Anchors

The reusable server kernel lets the application set and query the value of an application-wide

anchor word. This is similar in intent to CMS's ANCHOR macro and its ThreadSetUserData and
ThreadQueryUserData CSL routines. Unlike ANCHOR, the reusable server kernel facility is callable.
Unlike the thread functions, the reusable server kernel facility provides application-wide scope.

A server program would typically use the anchor services for holding the address of some server-

wide control block. This control block would typically be acquired early in the server's life and the
ssAnchoxSet function would be called to record the address of this control block. When the address of
the control block is required, the server can call ssAnchozrGet to retrieve the control block's address.

Note also that ssAnchoxGet returns the address and length of the buffer in which the server may place
data to be accrued by the CP monitor (APPLDATA -- DIAG X'00DC").

The reusable server kernel does not use CSL routines ThreadSetUsexrData or ThreadQueryUserData.
The server writer is free to use these routines as he wishes.

The ANCHOR macro works correctly only in virtual uniprocessor situations. It is not recommended for use
in virtual multiprocessor situations.

© Copyright IBM Corp. 1999, 2024 49

50 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 9. Memory Management

Fast, efficient allocation and release of primary storage (memory) is vital to the execution of a server
program. CMS provides the CMSSTOR facility for storage management; CMSSTOR works very well

for single-threaded, assembler-only, base-VCPU-only programs, but for multithreaded, parallel servers
CMSSTOR shows its limits. In particular, the following characteristics of CMSSTOR are undesirable for
server writers:

 Base-only execution: though the macro can be invoked from non-base processors, CMSSTOR actually
runs on the base VCPU. This means that the base VCPU becomes a serialization point for the server.

« Assembler only: callable support is not provided.
- Base address space only: CMSSTOR is not capable of managing storage in a data space.

To overcome these difficulties, the reusable server kernel implements a “front end” for CMSSTOR whose
purpose is to relieve these constraints. The following entry points are provided:

- ssMemoryCreateDS: creates a data space and prepares to manage the storage thereof. The caller
sees the data space as a subpool.

- ssMemoryAllocate: allocates storage, either from a data space or the primary address space.
- ssMemoryRelease: releases storage.
- ssMemoryDelete: deletes a subpool and the corresponding data space.

For management of data space storage, the reusable server kernel storage management facility provides
an interface that lets the caller see a data space as a subpool, as follows:

- To create a data space and assign a subpool name to it, the caller invokes ssMemoryCreateDS, passing
it the subpool name to use and the size of the data space. Subject to any constraints imposed by the
virtual machine's XCONFIG ADDRSPACE directory entry, the reusable server kernel creates the data
space, prepares to manage the storage therein, and returns to the caller the new data space's ASIT and
ALET.

ssMemoryCreateDS accepts a storage key and option array on input and passes these directly to

CSL routine DMSSPCC (Create Data Space). If the caller of ssMemoxryCreateDS supplies a zero-length
option array, ssMemoryCreateDS uses all of DMSSPCC's defaults, except that the data space is created
SHARE.

Regarding establishing addressability to the data space, ssMemoryCreateDS calls DMSSPLA with the
WRITE and SYNCH options.

« To allocate and release storage in the data space, the caller uses ssMemoryAllocate and
ssMemoryRelease, referring to the data space by its subpool name.

- To delete the data space, the caller uses ssMemoryDelete.

For the primary address space, the reusable server kernel storage management facility is a front-end for
CMSSTOR, as follows:

« For each subpool name ever used in a call to (that is, “seen by”) ssMemoryAllocate, the reusable
server kernel keeps track of storage allocated through ssMemoryAllocate and storage released
through ssMemoryRelease. In other words, for each subpool, the reusable server kernel maintains a
free storage subpool cache that can be manipulated without serializing on the base VCPU.22

« When ssMemoryAllocate is called, it performs the following steps in an attempt to locate storage for
the caller:

22 1n fact, non-trivial serialization occurs only when two VCPUs try to manipulate the same subpool.

© Copyright IBM Corp. 1999, 2024 51

Step Description

1 The subpool's cache is checked, and if max_bytes_needed can be satisfied from there
then the request completes.

2 CMSSTOR OBTAIN is consulted in variable fashion, the lower bound being the largest
qualifying size available in the cache (or min_bytes_needed, if all cache pieces are too
small) and the upper bound being max_bytes_needed.

3 The request is satisfied from either the result of CMSSTOR OBTAIN or whatever was
available in the cache, whichever is larger.

- When ssMemoryRelease is called, the released storage is added to the appropriate subpool cache,
and if the free storage in the cache is above the maximum free amount specified by the MEM&_MAXFREE
configuration parameter, the cache is trimmed.

- When ssMemoxyDelete is called, the cache for the named subpool is destroyed, all storage being
released through SUBPOOL DELETE.

The application should not call SUBPOOL DELETE for subpools that have been manipulated through calls
to ssMemoryAllocate and ssMemoryRelease; such an invocation will confuse the reusable server
kernel. Use ssMemoryDelete instead.

After the application ends, the reusable server kernel issues ssMemoxryDelete for each subpool cache
remaining.

For more information on the forms of the subpool names used internally by the reusable server kernel,
see Appendix F, “Reserved Names,” on page 375.

52 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 10. Worker Machines

In some server situations, a single virtual machine performing complex operations for lots of clients
simultaneously is an inconvenient, risky, or unachievable proposition. For example, if the clients are
submitting code for the server to run as the clients' proxy, it would be desirable for each such client
submission to run in an environment where it cannot tamper with, harm, or even innocently interfere
with the execution of other clients' similar submissions. Similarly, if the server must run code that is
under test or is at risk for terminating abnormally, the server designer should have at his disposal a
means for running such code in isolation. In some cases, performance of the server might even improve
if client work could be distributed among a set of worker virtual machines, each such worker performing
a dedicated function for multiple clients simultaneously or perhaps working alone on behalf of a single
client. These are no doubt only a few of the possible scenarios where the ability to run some of the
server's work in other virtual machines would be an attractive feature.

The reusable server kernel recognizes these situations and offers an API that lets the server author
distribute work among sets of subordinate virtual machines. These subordinates, called workers, usually
run on the same CP instance as the main server. Sets of subordinates are defined to the main server

via operator commands, probably in PROFILE RSK. The server kernel establishes communication
connections to workers in response to API calls made by service instances; however, the format and
meaning of the data actually exchanged with workers is left to the server author. In addition, when the
workers are running on the same CP instance as the main server, the server kernel uses the XAUTOLOG
and FORCE commands to log on and log off workers as appropriate. Finally, it should be emphasized that
the relationship with the worker machine is mediated entirely by the service instance. The server kernel
never shunts data directly from a client to a worker or vice-versa.

Functional Overview

For organizational purposes, the server kernel organizes worker machines into groups called classes. The
virtual machines making up a class are all functionally equivalent to one another as far as the server
author is concerned. In other words, when a service instance needs help from a worker, any member of
the class will do; the server author leaves it up to the server kernel to select a class member and establish
a connection to it. The server kernel is able to manage multiple worker classes simultaneously.

To initiate a connection to a worker, a service instance calls entry point ssWorkerAllocate, specifying
the class from which the server kernel is to select a worker machine and specifying some details about
how the connection is to be allocated. In response to this call, the reusable server kernel evaluates the
load on each worker in the class, selects the least-loaded member, and attempts to establish an IUCV
connection to it. The service instance can influence the selection algorithm slightly; it can specify either
that the server kernel should XAUTOLOG another worker only if all currently logged-on workers are full, or
it can specify that the server kernel should route the new connection to an empty or newly-autologged
worker if possible, resorting to multiple connections to a single worker only if the class is sufficiently
active. When ssiWorkerAllocate returns to its caller, either the connection to the worker is in place or
all reasonable attempts to contact a worker have been exhausted.

Each member of a worker class -- in other words, each worker virtual machine -- has associated with

it a maximum number of IUCV connections it can handle simultaneously. The server author or server
operator specifies this limit via operator command when he adds the worker to the class. For the purpose
of worker machine selection, the load being imposed on a given worker is taken to be the fraction of

its IUCV capacity in use. For example, a worker capable of handling four IUCV connections but handling
only two at the moment is considered by the server kernel to be 50% utilized, while if that worker were
handling only one IUCV connection at the moment, it would be considered to be 25% utilized. The load
distribution algorithm selects the least-loaded machine, using round-robin to break ties.

If the caller requests it, the reusable server kernel can set alternate user ID and security label (seclabel)
information for the worker as part of selecting the worker. To be able to set a worker's alternate user ID
and seclabel, the controlling virtual machine must have permission to issue Diagnose X'D4'. See z/VM: CP

© Copyright IBM Corp. 1999, 2024 53

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

Programming Services for more information. If you attempt to use the reusable server kernel's alternate
user ID machinery and your virtual machine does not have the privilege necessary to issue Diagnose
X'D4', your virtual machine will take a program check. It is your responsibility to recover from this. Also
note that the reusable server kernel always uses the subcode X'04' form of Diagnose X'D4'".

Once the connection to the worker is established, the service instance communicates with the worker
using the ssClient APIs and CMS IPC, just as it would communicate with a client. More specifically,
ssWorkerAllocate returns a C-block that represents the connection between the service instance and
the worker. To write to the worker, the service instance uses ssClientDataPut followed by a CMS IPC
message telling the server kernel that it has generated new data to be sent to the worker. Reading from
the worker is similar; after it sees a CMS IPC message informing it that new data are available, the service
instance calls ssClientDataGet to retrieve what the worker sent.

When a service instance is done using a worker, it notifies the reusable server kernel via CMS IPC, just as
it would do to notify a server kernel line driver that it had finished with a client. The IPC message causes
the server kernel to sever the IUCV connection to the worker. In the event that the worker terminates the
connection first, the service instance is notified and must acknowledge the connection loss, just as it must
respond to a line driver when it learns of the loss of communication to a client.

Server Configuration Considerations

The worker API uses IUCV to move data between the main server and the workers, and when the workers
are running on the same CP instance as the main server, the worker API employs the CP XAUTOLOG and
FORCE commands to start and stop worker machines. The following configuration considerations apply:

« The main server must be permitted to IUCV CONNECT to each worker machine. There are many ways
to arrange this. Perhaps the simplest way is to insert IUCV ALLOW into the CP directory entry for each
worker machine. Any method that lets the connection proceed is just fine.

« If the workers are running on the same CP instance as the main server, the main server virtual machine
must be permitted to XAUTOLOG and FORCE worker machines. XAUTOLOG requires class A or B or an
entry in the CP directory entry of each worker machine. FORCE requires CP class A.

Distributing Worker Machines

Some installations might choose to employ a single system image (SSI) cluster or the VM/Pass-Through
Facility (PVM) to distribute IUCV and thereby run worker machines on systems other than the local CP. For
example, specialized hardware might be available on some other processor, and a worker machine might
be placed there to handle requests originating from other systems.

On a per-class basis, the server operator decides whether the server kernel is to manage workers as local
or distributed. If the class is specified to be local, the server kernel employs XAUTOLOG and FORCE to log
workers on and off as necessary. If the class is specified as distributed, the server kernel skips all such
management steps, merely attempting IUCVY CONNECT and returning an error if the connection attempt
fails.

When a class is specified as distributed, the server operator or server designer is responsible for making
sure that the worker machines are autologged at an appropriate time and that they are reset if errors or
abends occur. A system management tool such as IBM Operations Manager for z/VM can be used for this
purpose.

When the server kernel issues TUCV CONNECT to connect to a worker machine, it does so in a manner
that can be distributed to other systems if CP is appropriately configured. To make this work in a non-

SSI environment, the system administrator must specify DISTRIBUTE IUCV YES in the CP system
configuration file (SYSTEM CONFIG). He must also make sure that the IUCV carrier (for example, PVM)

is working properly. Within an SSI cluster, IUCV is automatically available among the member systems,
regardless of the DISTRIBUTE IUCV configuration. However, to connect to a worker machine on a
system that is part of the same ISFC collection but is not a member of the same SSI cluster, DISTRIBUTE
IUCV YES must be specified.

54 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

API Details

To allocate a connection to a worker machine, the service instance calls ssWorkerAllocate, passing it a
few pieces of information:

« The address of its own C-block
« The worker class in which the connection should be allocated
« Anindication of how the server kernel is to select a worker:

— Theinstance can ask that the server kernel attempt to minimize the number of worker machines
logged on, routing connections to logged-on, not-completely-full workers whenever possible, or

— The instance can ask that the server kernel route connections to empty or not-yet-logged-on workers
whenever possible, choosing partially-busy, already-logged-on workers only when necessary.

« Aninteger specifying the number of workers the server kernel should try before giving up and returning
failure to the caller.

Optional alternate user ID and seclabel information.

Subject to these parameters, the server kernel selects a worker machine and tries to establish a
connection to it. If the attempt fails, the server kernel will retry a small number of times, and if the worker
proves unreachable, the server kernel will record this fact (so it can skip the worker when it handles
subsequent ssWorkerAllocate calls) and move to another worker. The server kernel will iterate in

this way until either the caller's specified number of tries expires or the whole worker class proves
unreachable. Normally the retry strategy is not a factor - the usual case will be that the worker will be
waiting for work and will accept the server kernel's ITUCV CONNECT request immediately.

When ssWorkerAllocate returns to the calling instance, it supplies two pieces of information that are
crucial to the instance's being able to interact with the assigned worker:

- It supplies a three-byte unsigned binary integer that uniquely identifies the connection to the worker.
This integer is called the connection ID. This integer is returned in an unsigned four-byte buffer, the
uppermost byte of said buffer always being zero.

« It supplies the address of a C-block that represents the connection to the worker. This is called the
worker C-block.

To detect activity on the worker connection, the instance issues QueueReceiveBlock against its line
driver queue, just as it normally does. Recall that under normal circumstances, this API call completes
when the instance's line driver sends a message to the instance, informing the instance that something
significant has happened with respect to its client. When using the worker API, though, the instance
needs to be aware that messages indicative of worker activity will also arrive on its line driver queue.

The instance can detect that a received IPC message is indicative of worker activity by examining the
message type field of the received IPC message. A message indicative of worker activity contains X'01' as
the high-order byte of the message type; the lower three bytes of the type field are the 24-bit connection
ID returned by ssWorkerAllocate. Thus the instance can wait for either client activity or worker activity
with a single call to QueueReceiveBlock, and the arriving message will tell the instance whether it's the
client or a worker that needs attention.

To exchange data with the worker, the instance calls the ssClient APIs just as usual, using the
ss_cli_iam_instance qualifier. Data are moved between the instance and the worker in the same manner
as they are moved between instance and client. When the instance must send an IPC message to the
"worker line driver" -- for example, to inform the server kernel that it has used ssClientDataPut

to queue data for transmission to the worker -- it forms the instance-to-line-driver message just as it
would for any line driver interaction and then transmits the IPC message to the queue handle appearing
in the worker C-block. The server kernel receives the message and operates on the worker connection
accordingly.

The Worker C-Block

The worker C-block contains a few fields that will be of special interest to the service instance. These
fields are:

Chapter 10. Worker Machines 55

- A queue handle that represents the queue to which the instance should transmit CMS IPC messages
relevant to the connection to the worker.

« Aline driver key that should be used as the key in any such transmitted messages.
« The vc_userid field of the worker C-block contains the user ID of the worker virtual machine.

Further, certain fields in the worker C-block are zero because they are irrelevant in the context of a
connection to a worker machine. For example, a worker C-block does not contain a pointer to an S-block.

Operator Commands

The reusable server kernel supplies a service, WORKER, which lets the server operator manipulate worker
classes. The commands are given in the following table.

Table 27. WORKER Commands

Command Description Page
WORKER ADD Lets the operator add a worker machine to a “WORKER ADD” on
worker class, specifying the number of IUCV page 203

connections the worker machine is capable of

handling simultaneously. This command would
usually be found in PROFILE RSK, though the

operator is free to issue it while the server is

running.

WORKER CLASSES Displays the existing worker machine classes and “WORKER CLASSES”
some brief status information about each class. on page 204

WORKER DELCLASS Deletes an entire worker class. Normally this just “WORKER DELCLASS”

means that any instances connected to workers in on page 205
the class would receive an IPC message asking them

to stop their activity. The FORCE option will cause

the server kernel to sever the IUCV connections,

to inform the instances that communication to the

workers has been lost, and to CP FORCE any

workers running disconnected. When DELCLASS

processing completes, the worker class is no longer

available for use.

WORKER DELETE Operates on a single worker machine in a manner “WORKER DELETE” on

similar to DELCLASS. page 206
WORKER DISTRIBUTE Informs the server kernel that a worker class “WORKER
should be managed as if its worker machines are DISTRIBUTE” on page
distributed across systems. 207
WORKER MACHINES Displays a table of status information about the “WORKER
machines in a given class. MACHINES” on page
208
WORKER RESET Clears any persistent error information the server “WORKER RESET” on
kernel may have remembered about worker page 210

machines. This restores the workers to usable status
and is useful after manual intervention has resolved
a problem with a given worker machine or class of
worker machines.

WORKER STATUS Displays a table of status information about each “WORKER STATUS” on

worker connection existing at the moment. page 211

56 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Writing a Worker Machine Program

IBM does not supply a program to run in the worker machine. The server author must write this program,
being aware of the following configuration and execution considerations:

The worker machine's CP directory entry and profiles must be configured so that the worker machine
will start itself completely if autologged. If the worker machine is running a CMS-based program, IPL
CMS PARM AUTOCR is appropriate in the worker's CP directory entry and the worker's PROFILE EXEC
should be rigged so that the worker program starts automatically. If the worker program is running
under some other operating system, the other operating system's corresponding mechanisms should be
employed.

The server kernel will attempt to TUCV CONNECT to the worker machine, using RSKWORK as the first
eight bytes of the user data area of its connection parameter list. If the worker program is CMS-based,
this means that the worker program will need to issue HNDIUCV SET to identify an exit named
RSKWORK. When the server kernel attempts to connect, the worker program's RSKWORK exit routine
will be driven. The worker program should respond with CMSTUCV ACCEPT.

The format and meaning of the data exchanged on the IUCV connection is up to the server author.

Eventually it will be time to bring down the IUCV connection. The server kernel will IUCV SEVER if the
service instance instructs it that the relationship between the instance and the worker is to be ended; in
this case the worker program should respond with TUCV SEVER. If the worker machine is the one that
decides when the connection is over, it should issue IUCV SEVER and the server kernel will respond
with its own IUCV SEVER, reflecting the connection loss to the service instance.

If the main server is configured such that it might route multiple IUCV connections to a worker
simultaneously, the worker program should be prepared to handle multiple IUCV connections
simultaneously.

The worker program should not use IUCV SEND, TYPE=2WAY, IUCV QUIESCE, or IUCV RESUME. The
server kernel is not prepared to handle these and will respond with TUCV SEVER.

Finally, it is interesting to note that the reusable server kernel itself could be used as the base for a
program to be run in the worker machine. The server kernel's IUCV line driver is capable of being the
recipient of IUCV activity generated by the server kernel's worker API.

Chapter 10. Worker Machines 57

58 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 11. Run-Time Environment

To facilitate the writing of well-performing programs and to provide high-performance interprocedure
linkage, the reusable server kernel implements its own procedure linkage convention. The reusable server
kernel entry points themselves (for example, ssSgpStart) all expect to be driven using this convention,
and routines provided by the server writer (for example, RSKMAIN, service entry points, thread entry
points, and so on) are all driven by the reusable server kernel using this convention. This convention
greatly reduces the need to call a storage management interface to allocate and release save areas and
local variable storage. This keeps overhead down, letting procedure linkage happen without excessive
SVCs or other calls. 23

Associated with each thread is a chain of control blocks known as dynamic storage area frames or stack
frames. Each stack frame is at least 4 KB in size. Contained in each frame is a frame header and one or
more dynamic storage areas (DSAs). The anchor for this chain of DSA frames is held in a control block
called the run-time anchor block (RAB). An example is shown in Figure 4 on page 60.

23 The linkage resembles the linkage used among internal entry points in the CMS Application Multitasking
kernel.

© Copyright IBM Corp. 1999, 2024 59

DSA Frame

0 A (next DSA frame)
Size (bytes) of this frame
64-byte save area for use by
frame overflow handler

72 First DSA in frame
77 Next DSA in frame

(etc. for several DSAs)
77 Last DSA in frame
77 Unused space

Dynamic Storage Area (DSA)

Unused word
A (previous DSA)
A (next DSA)
12| 60-byte save area for R14...R12

| & O

72 Unused area
84 | Next available byte in DSA frame
88 Unused area

120 Procedure's automatic storage

Run-Time Anchor Block (RAB)

A (first DSA frame)
4| A (first byte past frame end)
A (frame overflow handler)

Figure 4. Run-Time Environment Control Blocks

The register contents at procedure entry are described in Table 28 on page 60.

Table 28. Register Contents at Procedure Entry
Register Description
R1 Pointer to an OS Type I parameter list. The entries in this list are addresses of the
actual parameter values.
R12 Pointer to the RAB, organized as shown above.
R13 Pointer to a DSA, organized as shown above.
R14 Return address.
R15 Called procedure's entry address.

When a procedure is entered, it uses the save area pointed to by R13 in the usual OS fashion (STM

R14,R12,12(R13)). It then computes the size of the DSA it needs (120 bytes plus amount of automatic
storage needed) and compares that to the amount left in the frame; this comparison is done by adding
the amount needed to the next available byte (NAB) in the caller's save area and comparing that to the

60 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

frame end field in the RAB. If there is enough space in the frame, the new DSA is built starting at the

byte pointed to by the NAB field in the current DSA, and this new DSA is chained to the caller's DSA in

the usual OS fashion. If not enough space is left, then the frame overflow handler is called to add a new
frame to the end of the frame list (the frame overflow handler's address is in the RAB). The frame overflow
handler is cognizant of the registers used during procedure entry and returns with the registers set such
that the linkage processing can continue as if no overflow had occurred.

When a procedure exits, it unchains its save area, restores the caller's registers (including the caller's
R13, which comes from the previous DSA pointer field in the exiting procedure's DSA), and returns to the
caller through BR R14.

The reusable server kernel provides PL/X and assembler macros implementing these entry and exit
conventions. For PL/X, the macros are invoked through the OPTIONS clause on the PROCEDURE
statement. For assembler, the macros are invoked directly by the assembler programmer. The assembler
programmer must ensure that the amount of DSA storage he requests is an integral number of doublewords.
An example is shown in Figure 5 on page 61 and Figure 6 on page 62.

@PROCESS ENVIRONMENT (VM/ESAQS) OPT(MAX);
/* illustration of linkage convention x*/

sstest: procedure

pl_epptr, /* A(eplist) =*/

pl_tpptr, /* A(tplist) =*/

pl_scptr /* A(schlock) =/

)
options

id /* generates identifier */
reentrant /* no static data, please */
amode (31) /* AMODE 31 */
rmode (any) /* can live anywhere */
datareg(13) /* R13 locates automatic storage x/
savearea(120) /* size of fixed part of DSA */
stack('SSPRLG', 'SSEPIL") /* entry and exit macros */

)i

/* note BYVALUE because the pointer values we want are x/
/* in the array pointed to by R1 x/
declare sstest entry

pointer(31) byvalue,
pointer(31) byvalue,
pointer(31) byvalue

)
external as ('RSKMAIN');

declare
pl_epptr pointer(31), /* pointer to eplist */
pl_tpptr pointer(31), /* pointer to tplist */
pl_scptr pointer(31); /* pointer to SCBLOCK */
respecify (x12) restricted; /x stay away from RAB pointer */

/* body of procedure goes here x*/

end sstest;

Figure 5. PL/X Linkage

Chapter 11. Run-Time Environment 61

*kk
*

* TIllustration of linkage convention

*

Kk

*

* Procedure entry:

*RSKMAIN
CSECT , Declare CSECTRSKMAIN
AMODE 31 Establish AMODERSKMAIN
RMODE ANY Establish RMODE
STM R14,R12,12(R13) Save registers
LR R11,R15 R11 is base register
USING RSKMAIN,R11 Establish addressability
LA RO, DSASIZE RO = size of DSA needed
SSPRLG R1,R2 -> new DSA, RO = new NAB
LR R15,R13 R15 -> caller DSA
LR R13,R2 R13 -> my DSA
ST R15,4(,R13) Write my backward pointer
ST R13,8(,R15) Write caller's forward pointer
LM R15,R2,16 (R15) Restore R15-R2
*
* Your code goes in here.. stay away from R11-R13. R14
* and R15 can be used as needed for calls to other routines.
*
* Note that your automatic storage area (the storage you
* requested via RO when you called SSPRLG) starts at offset
* X'78' into the save area returned by SSPRLG.
*
*
* Procedure exit (note RC is in R15):
*
L R13,4(,R13) R13 -> caller's DSA
LA RO,DSASIZE Size of DSA I used
SSEPIL Release it
L R14,12(,R13) Get return address
LM RO,R12,20(R13) Restore rest of registers
BR R14 Return to caller

*
* Other stuff

* Note DSASIZE is a multiple of 8 bytes!

DSASIZE EQU

REGEQU

200

*
END

Figure 6. Assembler Linkage

200-120 = 80 bytes of local vars
Register equates

Like all other routines, the server entry point RSKMAIN is driven using this linkage convention. The
parameter list array passed to RSKMAIN through R1 is organized as described in Table 29 on page 62.

Table 29. Parameter List Array for RSKMAIN
Offset Usage
0 Pointer to the extended parameter list with which CMS invoked the module.
4 Pointer to the tokenized parameter list with which CMS invoked the module.
8 Pointer to the SCBLOCK for the module, if the module is a nucleus extension.

The reusable server kernel uses CMS Application Multitasking's support for custom language run-time
environments to implement its convention for procedure linkage. BKWRTE MODULE is the language
environment manager for the reusable server kernel and needs to be present in the file mode search
order when the server module starts. CMS loads BKWRTE as a nucleus extension prior to giving control to
the server module. BKWRTE must remain loaded as a nucleus extension for the life of the server program.

62 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 12. Initialization and Profiles

This chapter describes the flow of control during server execution and describes how to set up PROFILE
RSK. For descriptions of the various command sets, see Chapter 14, “Command Descriptions,” on page
77.

To accomplish most of the work of initializing and configuring the server, the server author writes a Rexx
exec, PROFILE RSK. In this exec the server author supplies commands necessary to configure the server,
start it, and wait for its completion. The reusable server kernel runs PROFILE RSK as part of server
startup.

Most of the work done in PROFILE RSKis accomplished through ADDRESS RSK and command sets
implemented by the reusable server kernel. These command sets fall into a few broad categories:

« CONFIG commands, meant to set certain configuration parameters needed by the reusable server
kernel during execution.

« SGP commands, meant to manipulate storage groups.

« AUTH commands, meant to provide a means for manipulating the authorization database.
« CACHE commands, meant to provide a means for configuring file caches.

« ENROLL commands, meant to manipulate enrollment data.

« WORKER commands, meant to define pools of worker machines.

« Line driver commands, meant to manipulate line drivers and the relationships between line drivers and
services.

Flow of Control

The general flow of control during the execution of the server is illustrated in Figure 7 on page 64. The
execution of the server has these general stages:

Step Description

1 The module begins, and the reusable server kernel performs some rudimentary
initialization.
2 The reusable server kernel passes control to RSKMAIN, the server entry point provided by

the server author.

3 RSKMAIN performs whatever setup is needed, including binding its services through calls
to ssServiceBind.

4 RSKMAIN calls ssServerRun to begin the server.

© Copyright IBM Corp. 1999, 2024 63

Step Description

5 ssServerRun passes control to PROFILE RSK. The processing in PROFILE RSK
proceeds in several stages, as follows:

1. The profile may perform appropriate initialization.

2. The profile issues several CONFIG commands to set configuration parameters for the
reusable server kernel.

3. The profile issues the RUNSERV command to begin the execution of the server. In
response to RUNSERV, the reusable server kernel brings up line drivers and makes
APIs available for use. When RUNSERV returns, the reusable server kernel is ready for
operation.

4. The profile issues any AUTH, CACHE, or other commands necessary to configure the
server.

5. The profile issues one or more line driver START commands to start services. At this
point the server is running.

6. The profile issues the WAITSERV command to wait for the server to end.
7. The profile may perform appropriate termination activities.
8. The profile returns to its caller.

6 ssServerRun returns to RSKMAIN. The return and reason code from ssServerRun
indicate whether the server was able to be started.

7 RSKMAIN performs termination processing.
8 RSKMAIN returns to the reusable server kernel, supplying a return code.
9 The reusable server kernel performs termination and returns to CMS. The return code

supplied to CMS by the server module is the return code of RSKMAIN.

CMS
* Server module

1. Init anchor block
2. Establish subcom handler
3. Establish CONFIG command
4, Call RSKMAIN
a. Server-wide initialization
b. Bind services
c. Call ssServerRun
(1) Invoke PROFILE RSK
(a) Issue CONFIG command
(b) Issue RUNSERY command
((1}) Load user ID mapping file
((2)) Init cradle subsystems
((3)) Return to PROFILE RSK
(c¢) Issue AUTH, SGP, CACHE commands
(d) Issue line driver START command
(e) Issue WAITSERV command
(2) Return to RSKMAIN
d. Server-wide termination
e. Return to caller
5. Remove subcom handler
6. Perform cleanup
7. Return to CMS

Figure 7. Flow of Control

64 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Execution Conditions within RSKMAIN

RSKMAIN has only two reusable server kernel APIs at its disposal:

» ssServiceBind, to bind services.
« ssServerRun, to start the server and wait for its completion.

No other APIs are permitted. Attempts to call them will produce unpredictable results.

PROFILE RSK

Shortly after the server module begins execution, PROFILE RSK gets control. This is just a Rexx exec that
performs initialization, configures the server, starts it, waits for it to end, and then performs termination
functions.

For the server author's convenience, any parameters present on the command line used to invoke the
server module are passed to PROFILE RSK such that they can be retrieved with parse arg.

In general, anything one can do from Rexx is permitted in PROFILE RSK. However, here are some things
to keep in mind:

« Some CONFIG commands are usable only before RUNSERV while others are usable anytime. For more
information, see Table 31 on page 66.

« All of the rest of the commands sets (for example, AUTH) are usable only between RUNSERV and
WAITSERV, that is, only while the server is running. Attempts to use these commands at other times
produce RC=-3.

For a sample of PROFILE RSK, see Appendix A, “Sample PROFILE RSK,” on page 361.

Starting and Stopping

Table 30 on page 65 illustrates the syntax for the RUNSERV and WAITSERV commands. Issue these from
Rexx using ADDRESS RSK.

Table 30. RUNSERV and WAITSERV Commands

Command Usage Syntax Notes
RUNSERV Used within PROFILE »»— RUNSERV —»< Return codes:
RSK to start the server. 0
Server started OK
X
Some other situation
WAITSERV Used with!n PROFILE »»— WAITSERV —p< Return codes:
RSK to wait for the 0
server to stop. Server terminated
normally
X

Some other situation

Configuration Parameters

The reusable server kernel defines certain configuration parameters so that the server author or system
programmer can control the manner in which the server behaves. These configuration parameters are
manipulated by a command, CONFIG, which is useful in PROFILE RSK. CONFIG is issued through
ADDRESS RSK. Most CONFIG commands are useful only prior to issuing RUNSERV, but some are useful
anytime.

Chapter 12. Initialization and Profiles 65

The parameters and their meanings are given in Table 31 on page 66. For definitions of the commands
used to manipulate these parameters, see Chapter 14, “Command Descriptions,” on page 77.

In truth, CONFIG is a service meant for the manipulation of configuration variables. This means that a
command such as MSG START CONFIG could be used to permit remote manipulation of configuration

variables.

Table 31. Configuration Variables

service will perform authorization
checking for its commands.

Variable Function When? Notes

AUT_CACHE Sets the number of rows of Anytime. |Specify rows as a
authorization data to cache. positive integer.

AUT_DATA_1 Sets the name of copy 1 of the Pre-
authorization data file. RUNSERV

AUT_DATA_2 Sets the name of copy 2 of the Pre- Ignored when
authorization data file. RUNSERV | AUT_LOCATION s

SFS.

AUT_FREE Sets the maximum number of row | Anytime. [Specify rows as a
buffers to keep on the free row positive integer.
buffer list.

AUT_INDEX_1 Sets the name of copy 1 of the Pre-
authorization index file. RUNSERV

AUT_INDEX_2 Sets the name of copy 2 of the Pre- Ignored when
authorization index file. RUNSERV | AUT_LOCATION s

SFS.

AUT_LOCATION Sets the repository for the Pre-
authorization data. RUNSERV

AUT_LOG Sets the name of the authorization | Pre- Ignored when
logfile. RUNSERV | AUT_LOCATIONIis

SFS.

AUTHCHECK_AUTH Sets whether the AUTH service will | Anytime.
perform authorization checking for
its commands.

AUTHCHECK_CACHE Sets whether the CACHE Anytime.
service will perform authorization
checking for its commands.

AUTHCHECK_CMS Sets whether the CMS service will [Anytime.
perform authorization checking for
its commands.

AUTHCHECK_CONFIG Sets whether the CONFIG Anytime.
service will perform authorization
checking for its commands.

AUTHCHECK_CP Sets whether the CP service will Anytime.
perform authorization checking for
its commands.

AUTHCHECK_ENROLL Sets whether the ENROLL Anytime.

66 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 31. Configuration Variables (continued)

Variable

Function

When?

Notes

AUTHCHECK_LD

Sets whether line drivers will
perform authorization checking for
START or STOP commands.

Anytime.

AUTHCHECK_MONITOR

Sets whether the MONITOR
service will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_SERVER

Sets whether the SERVER
service will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_SGP

Sets whether the SGP service will
perform authorization checking for
its commands.

Anytime.

AUTHCHECK_TRIE

Sets whether the TRIE service will
perform authorization checking for
its commands.

Anytime.

AUTHCHECK_USERID

Sets whether the USERID
service will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_WORKER

Sets whether the WORKER
service will perform authorization
checking for its commands.

Anytime.

MEM_MAXFREE

Sets the maximum number of
pages that should be kept
preallocated by the reusable
server kernel storage manager for
any one subpool.

Anytime.

Specify pages as a
positive integer.

MON_PRODUCT_ID

Sets the 16-byte product identifier
the reusable server kernel will

use when it invokes DIAG X'00DC'
to identify the server's APPLDATA

monitor buffer.

Pre-
RUNSERV

MON_USER_SIZE

Sets the size of the application
monitor buffer.

Pre-
RUNSERV

The address of the
application monitor
buffer is returned by
ssAnchozrGet.

MON_KERNEL_ROWS

Sets the number of rows the kernel
monitor buffer will contain.

Pre-
RUNSERV

MSG_NOHDR

Sets whether the MSG/SMSG
line driver will use CP's MSGNOH
command to issue replies.

Anytime.

NOMAP_APPC

Sets whether the APPC line driver
will pass an unmappable user ID to
an instance.

Anytime.

NOMAP_TIUCV

Sets whether the IUCV line driver
will pass an unmappable user ID to
an instance.

Anytime.

Chapter 12. Initialization and Profiles 67

Table 31. Configuration Variables (continued)

Variable

Function

When?

Notes

NOMAP_MSG

Sets whether the MSG/SMSG line
driver will pass an unmappable
user ID to an instance.

Anytime.

NOMAP_TCP

Sets whether the TCP line driver
will pass an unmappable user ID to
an instance.

Anytime.

NOMAP_UDP

Sets whether the UDP line driver
will pass an unmappable user ID to
an instance.

Anytime.

NOMAP_SPOOL

Sets whether the SPOOL line driver
will pass an unmappable user ID to
an instance.

Anytime.

RSCS_USERID

Sets the user ID of the RSCS
machine the SPOOL driver should
use.

Anytime.

SGP_FILE

Sets the name of the storage group
definition file.

Pre-
RUNSERV

SPL_CATCHER

Sets the user ID to which

the SPOOL line driver will CP
TRANSFER spool files it is unable
to decode.

Anytime.

SPL_INPUT_FT

Sets the file type of reader files the
SPOOL line driver will recognize as
service input.

Anytime.

SPL_OUTPUT_FT

Sets the file type of punch files the
SPOOL line driver will generate in
response to service output.

Anytime.

SRV_THREADS

Sets the maximum number of
threads of a service a parallelizing
line driver will attempt to run
simultaneously.

Anytime.

UMAP_FILE

Sets the name of the user ID
mapping file.

Anytime.

VM_CONSOLE

Sets whether the console line
driver will pass unrecognized
command lines to CMS for
execution.

Anytime.

VM_MSG

Sets whether the MSG/SMSG
line driver will pass unrecognized
messages to CMS for execution.

Anytime.

VM_SUBCOM

Sets whether the SUBCOM line
driver will pass unrecognized
messages to CMS for execution.

Anytime.

VM_SPOOL

Sets whether the SPOOL line driver
will pass unrecognized input to
CMS for execution.

Anytime.

68 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Storage Group Definition File

The storage groups known to the reusable server kernel are recorded in the file whose name is given

in configuration variable SGP_FILE. Each time an API call that changes the storage group configuration
executes successfully, the reusable server kernel rewrites the file. Thus storage group definitions persist
across invocations of the server program.

This file is not meant for manual manipulation. It should be manipulated only with the appropriate API
calls or administration commands.

This file must be present when the reusable server kernel starts. If it is not present, the reusable server
kernel will not start. To create the first-ever configuration file, just use XEDIT to make a one-record,
V-format file whose only record contains an asterisk as its first character. The reusable server kernel will
ignore this record and realize that no storage groups are defined.

User ID Mapping Facility

Frequently the reusable server kernel translates (nodeid,userid) pairs to single-token user IDs. This
mapping is part of the scheme by which the reusable server kernel presents single-token user IDs to
service instances. For example, the spool file line driver translates the origin node and origin user ID

of a request file into a single-token user ID and passes that single-token user ID to a service instance.
Similarly, the TCP/IP line driver translates the client's IP address into a single-token user ID. 24 Both these
translations are done through a translation database called the user ID mapping file. The user ID mapping
data is kept in a file whose name is given in configuration variable UMAP_FILE.

The reusable server kernel loads the mapping file into storage when the server starts and uses the
in-storage copy for translations. The command USERID RELOAD is available for reloading the in-storage
copy from disk. This lets the server operator change the mapping while the server is running.

Each time the reusable server kernel needs to translate a (userid,nodeid) pair to a single-token user ID,
the translation is done according to the rules in the mapping file. The translation scan goes from top to
bottom through the file, stopping at the first matching entry. The entries can contain wildcards to ease the
handling of groups of users (nodes, and so forth). The rules for wildcard use are the same as the rules for
wildcards in CMS Application Multitasking's IPC message keys and event keys.

The syntax rules for the user ID mapping file are illustrated in Appendix B, “Sample User ID Mapping File,”
on page 365 contains a sample user ID mapping file.

The mapping file must be present when the server starts; the server will not start without it.

24 For TCP/IP, nodeid is the IP address, and userid is *.

Chapter 12. Initialization and Profiles 69

70 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 13. Monitor Data

While the server runs, the reusable server kernel uses CP's APPLDATA facility (Diagnose X'00DC') to
accrue monitor data. The monitor data support is arranged so that both the reusable server kernel itself
and the server application can generate monitor data concurrently.

The monitor data facility works like this:

- As part of setting up the server virtual machine's CP directory entry, the system administrator must
insert OPTION APPLMON so that the server virtual machine will be permitted to produce monitor data.

« InPROFILE RSK prior to the RUNSERV command, the server author places CONFIG commands to set
the values of the MON_PRODUCT_ID and MON_KERNEL_ROWS configuration variables. These variables
control the following things:

— The value of MON_PRODUCT_ID is the product ID the reusable server kernel uses when it invokes
Diagnose X'00DC' to identify each monitor buffer.

— The value of MON_KERNEL_ROWS is the number of monitor rows the server kernel should allocate for
its own purposes. The minimum and default value is 36 rows.

- Just after RUNSERV, the server kernel allocates one or more monitor buffers according to the
configuration parameters specified, using Diagnose X'00DC' to identify each monitor buffer. If an error
occurs in trying to identify a monitor buffer, the server kernel will write a message to the server console,
specifying the Diagnose X'00DC' return code produced by CP. The server administrator will need to
interpret the return code and take appropriate action.

- While the server runs, the server kernel employs rows of the monitor buffer to log information pertinent
to the use of various resources (memory subpools, for example). Monitor data is produced for a
resource for only as long as the resource exists; when the resource is deleted, the monitor row is
marked free and might be reused later for some other resource.

« If the server application wants to produce its own monitor data, it can call entry point ssAnchorGet to
retrieve the address and length of the portion of the monitor buffer reserved for application use.

- The application can store information into the application portion of the monitor buffer, and the values
stored in the buffer will be picked up by CP as APPLDATA.

- As part of server shutdown, the server kernel invokes Diagnose X'00DC' again to retract the monitor
buffers.

Monitor Buffer Organization

The first part of each monitor buffer is reserved for use by the server kernel. This reserved portion is
organized into records called monitor rows. The first eight bytes of each row tell the kind of data accruing
in that row, according to Table 32 on page 71.

Table 32. Monitor Data Rows

Identifier Type of Row

KERNEL Kernel information
SERVICE Service information
LINEDRV Line driver information
AUTH Authorization information
SGP Storage group information
MEM Memory information
ENROLL Enrollment information

© Copyright IBM Corp. 1999, 2024 71

Table 32. Monitor Data Rows (continued)
Identifier Type of Row
CACHE File cache row
TRIE Trie API row
WORKER Worker API row
$UNUSED Unused row

After the area used by the server kernel comes the application portion of the monitor buffer. The
application can use ssAnchoxGet to retrieve the address and length of this area.

The sections below describe the organizations of the server kernel's monitor buffer rows.

Kernel Row

The kernel row gives basic information about the organization of the monitor area. There is only one
kernel row per monitor buffer. In each monitor buffer, the kernel row is the first row in the buffer.

Table 33. KERNEL Monitor Row
Offset Length Data Type Usage

0 8 CHAR String "KERNEL"
8 8 CHAR Blanks (X'40")
16 4 INT Number of rows
20 4 INT Size of row (bytes)
24 4 INT Size of application portion
28 4 INT Reserved for IBM

Service Row

A service row accumulates information about the operation of a specific service.

Table 34. SERVICE Monitor Row
Offset Length Data Type Usage

0 8 CHAR String "SERVICE"
8 8 CHAR Service name
16 4 INT Reserved for IBM
20 4 INT Number of completed transactions
24 8 INT Total bytes from clients
32 8 INT Total bytes to clients

Line Driver Row

A line driver row accumulates information about the operation of a specific line driver.

72 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 35. LINEDRV Monitor Row
Offset Length Data Type Usage

0 8 CHAR String "LINEDRV"
8 8 CHAR Service name
16 4 INT Reserved for IBM
20 4 INT Number of completed transactions
24 8 INT Total bytes from clients
32 8 INT Total bytes to clients

Authorization Row

The authorization row accumulates information about the operation of the authorization API.

Table 36. AUTH Monitor Row
Offset Length Data Type Usage

0 8 CHAR String "AUTH"
8 8 CHAR Unused
16 4 INT Number of permits
20 4 INT Number of inquiries
24 4 INT Number of rows retrieved
28 4 INT Number of row cache hits

Storage Group Row

A storage group row accumulates information about the operation of a particular storage group.

Note that times are accrued only when I/O is performed through DIAG X'00A4".

Table 37. SGP Monitor Row
Offset Length Data Type Usage

0 8 CHAR String "SGP"

8 8 CHAR Storage group name
16 4 INT Reserved for IBM
20 4 INT I/0 technique:

0
Diag X'A4"*
1
Diag X'0250'
2
VM Data Spaces

24 4 INT Number of reads
28 8 INT Pages read
36 8 INT Time spent reading (STCK)

Chapter 13. Monitor Data 73

Table 37. SGP Monitor Row (continued)

Offset Length Data Type Usage
a4 4 INT Number of writes
48 8 INT Pages written
56 8 INT Time spent writing (STCK)

Memory Row

A memory row accumulates information about the operation of a particular subpool.

Table 38. MEM Monitor Row
Offset Length Data Type Usage

0 8 CHAR String "MEM"
8 8 CHAR Subpool name
16 4 INT Free storage in server kernel cache
20 4 INT Amount currently in use through ssMemoryAllocate
24 4 INT Calls to ssMemoryAllocate
28 8 INT Total taken through ssMemoryAllocate
36 4 INT Calls to ssMemoryRelease
40 8 INT Total returned through ssMemoryRelease
48 4 INT Times extended through CMSSTOR
52 8 INT Total taken through CMSSTOR
60 4 INT Times depleted through CMSSTOR
64 8 INT Total returned through CMSSTOR

Enrollment Row

An enrollment row accumulates information about the operation of a particular enrollment set.

Table 39. ENROLL Monitor Row
Offset Length Data Type Usage
0 8 CHAR String "ENROLL"
8 8 CHAR Enrollment set name
16 4 INT Number of records in set
20 4 INT Bytes in use holding records
24 4 INT Count of insertions
28 4 INT Count of removals
32 4 INT Count of retrievals
Cache Row

The cache row accumulates information about the operation of the file caching API.

74 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Trie Row

Table 40. CACHE Monitor Row
Offset Length Data Type Usage
0 8 CHAR String "CACHE"
8 8 CHAR Cache name
16 4 INT Cache size in bytes
20 4 INT Bytes in use
24 4 INT Files in cache
28 4 INT Number of opens
32 4 INT Number of hits
36 4 INT Number of discards
The trie row accumulates information about the operation of the trie API.
Table 41. TRIE Monitor Row
Offset Length Data Type Usage
0 8 CHAR String "TRIE"
8 8 CHAR Trie name
16 4 INT Last free trie byte
20 4 INT Next free trie byte
24 4 INT Records indexed
28 4 INT Internal node count
32 4 INT Number of lookups done
36 4 INT Number of records returned

A trie's monitor data is maintained only in the virtual machine that owns the trie and is updated only when
the owning virtual machine performs an operation against the trie.

Worker Row

The worker row accumulates information about the operation of the worker machine API.

The worker row is updated every 30 seconds as long as there is activity through the worker API (if no calls
to the worker API happen, the row does not get updated). The worker row contains information about the
three most active worker classes, as measured by total number of worker connections since the server
started. The information in the worker row can be trusted if the STCK field of the row is nonzero. While
the row is being recomputed, the STCK field is set to zero. There is no guarantee that the classes will be
mentioned in the row in order of their activity - the most active class might appear in the "class 3" slot, for
example.

Table 42. WORKER Monitor Row

Offset Length Data Type Usage
0 8 CHAR String "WORKER"
8 8 CHAR Unused

Chapter 13. Monitor Data 75

Table 42. WORKER Monitor Row (continued)
Offset Length Data Type Usage

16 8 DWORD STCK of last monitor row update
24 8 CHAR Class name 1

32 4 INT Total connections to class 1

36 4 INT Connections right now to class 1
40 8 CHAR Class name 2

48 4 INT Total connections to class 2

52 4 INT Connections right now to class 2
56 8 CHAR Class name 3

64 4 INT Total connections to class 3

68 4 INT Connections right now to class 3

76 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 14. Command Descriptions

NOT-PI
This chapter contains information that is NOT intended to be used as Programming Interfaces of z/VM.

This chapter describes commands made available by the set of services shipped as part of the reusable
server kernel:

Table 43. Command Subsets

Subset Description

APPC Provides a means of controlling the APPC/VM line driver.
AUTH Provides a means of manipulating the authorization database.
CACHE Provides a means of manipulating file caches.

CMS Provides a means of issuing CMS commands.

CONFIG Provides a means of manipulating configuration parameters.
CONSOLE Provides a means of manipulating the console line driver.

CP Provides a means of issuing CP commands.

ENROLL Provides a means of manipulating enrollment data.

Iucv Provides a means of manipulating the IUCV line driver.
MONITOR Provides a means of displaying monitor rows.

MSG Provides a means of manipulating the MSG/SMSG line driver.
SERVER Provides a means of controlling the execution of the server.
SGP Provides a means of manipulating storage groups.

SPOOL Provides a means of manipulating the SPOOL line driver.
SUBCOM Provides a means of manipulating the SUBCOM line driver.
TCP Provides a means of manipulating the TCP/IP line driver.
TRIE Provides a means of manipulating tries.

UDP Provides a means of manipulating the UDP/IP line driver.
USERID Provides a means of manipulating the user ID mapping file.
WORKER Provides a means of manipulating worker machine pools.

In truth, each of these command sets is implemented as a reusable server kernel service of the same
name. Said services all expect record-oriented input and they all produce record-oriented output. This
means that they can be sourced by any of the reusable server kernel's record-oriented line drivers.

In addition, these services can be sourced by the bulk data line drivers if the client program takes
responsibility for managing the data stream in record-oriented fashion (see Table 8 on page 12).

To set up the particular sourcing arrangement you want, use PROFILE RSK. For an example of a PROFILE
RSK that establishes several sourcing arrangements for each of these services, see Appendix A, “Sample
PROFILE RSK,” on page 361.

In addition to the specific messages listed in the command descriptions that follow, any of these
commands might produce any of these messages:

© Copyright IBM Corp. 1999, 2024 77

BKWOO0OOI Operation completed OK.
BKWOOO1E Not authorized.
BKWOOO2E Enter a command.
BKWOOO3E Syntax error.

BKWOO0O0O4E Unrecognized command.

For more information about messages, see Appendix H, “Messages,” on page 393.

Syntax, Message, and Response Conventions

The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

« The » »~——symbol indicates the beginning of the syntax diagram.

« The — symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.

- The m——symbol, at the beginning of a line, indicates that the syntax diagram is continued from the
previous line.

e The — < symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 44 on page 78.

Table 44. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants »»— KEYWORD <

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or

constant in uppercase letters, lowercase letters, or

any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

Abbreviations »— KEYWOrd -»<

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

78 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 44. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example
Symbols *
You must specify these symbols exactly as they appear in the Asterisk
syntax diagram. :
Colon
Comma
Equal Sign
Hyphen
0
Parentheses
Period

Variables »— KEYWOrd — var_name >«

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

Repetitions
An arrow returning to the left means that the item can be { . l
repea

repeated.
A character within the arrow means that you must separate)
each repetition of the item with that character. £
repeat

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated. 1

. . repeat
Syntax notes may also be used to explain other special
aspects of the syntax. Notes:

1 Specify repeat up to 5 times.

Required Item or Choice — A -pd

When an item is on the line, it is required. In this example,

you must specify A. A
B
When two or more items are in a stack and one of them is c

on the line, you must specify one item. In this example, you
must choose A, B, or C.

Optional Item or Choice »ﬁn
A

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of A
them are optional. In this example, you can choose A, B, C, B
or nothing at all. c

Chapter 14. Command Descriptions 79

Table 44. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the ling, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

O W >

In this example, A is the default. You can override A by
choosing B or C.

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

. 0O w »

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

A Fragment

In this example, the fragment is named "A Fragment."

O W >

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

XXX
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

Brackets enclose optional text that might be displayed.
{1
Braces enclose alternative versions of text, one of which will be displayed.

The vertical bar separates items within brackets or braces.

The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

80 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

APPC LIST

APPC LIST

»— APPC — LIST »«

Purpose
Lists the subtasks associated with the APPC/VM line driver.

Operands

None

Options

None

Usage Notes
The output form is:

Subtask ServName T ExitName Capacity InUse Threads Waiters

0 ECHO G BKWGOOOO 40 0 1 0

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

ServName
The name of the service involved.
T
The type of APPC/VM resource, as follows:

G
APPC/VM global resource

APPC/VM local resource

P
APPC/VM private resource

ExitName
The name of the CMSIUCV exit the server kernel opened. Also known as the transaction program
name.

Capacity
The number of concurrent clients the subtask can handle.

InUse
The number of clients currently being handled.

Threads
The number of CMS threads working on behalf of this subtask.

Waiters
The number of clients whose conversations are waiting to be accepted (unhandled connection
pending interrupts).

Chapter 14. Command Descriptions 81

APPC LIST

Messages and Return Codes
BKWO0201E Subtask not found.

82 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

APPC QUERY

APPC QUERY

»— APPC — QUERY — subtaskid »«

Purpose
Queries a specific APPC/VM subtask.

Operands

subtaskid
The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid IPVMID LUName

1 01AFD1B8 BKW WADEB *USERID:WADEB

The columns have the following meanings:

Instance
The numeric identifier of the instance.

C-Block
The address of the instance's C-block.

Userid
The mapped user ID of the client.
IPVMID
The security user ID of the client.
LUName
The name of the LU at which the client resides.

BytesIn

The number of bytes the client has sent the instance.

BytesOut

The number of bytes the instance has sent the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKW0208I Subtask is handling no clients.

BytesIn BytesOut

Chapter 14. Command Descriptions 83

APPC REPORT

APPC REPORT

»— APPC — REPORT T ON
OFF

Purpose
Toggles reporting state for the APPC line driver.

Operands

ON
Turns reporting on.

OFF
Turns reporting off.

Options

None

Usage Notes

When reporting is on, the APPC line driver issues the following messages to describe client activity:
- BKW17041
« BKW17051
« BKW17061
- BKW17071

For more information, see “APPC Line Driver Messages” on page 412.

Messages and Return Codes

None

84 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

APPC START

APPC START

L)

h GLOBAL — srv_threads — servicename ﬁ
»w— APPC — START — servicename J >4

GLOBAL

LOCAL L maxclients ﬁ—J
tpn

PRIVATE

Purpose

Starts a service, connecting it to the APPC/VM line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

GLOBAL
The transaction program should be registered as an APPC/VM global resource.

LOCAL
The transaction program should be registered as an APPC/VM local resource.

PRIVATE
The transaction program should be registered as an APPC/VM private resource.

maxclients
The maximum number of clients this subtask should be permitted to serve concurrently.

tpn
The transaction program name the APPC/VM line driver should use.

Options
GLOBAL
The transaction program should be registered as an APPC/VM global resource.

srv_threads
The current value of configuration parameter SRV_THREADS.

servicename
The name of the service being started.

Usage Notes

1. To register a global or local resource, the server virtual machine's CP directory entry must be
appropriately configured.
2. To register a private resource, $SERVER$ NAMES must be set up correctly.

3. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

For more information, see z/VM: Connectivity.

Messages and Return Codes

BKWOOOS5E Out of storage.
BKWO0200E Service not found.
BKWO0205E Prefix already in use.

Chapter 14. Command Descriptions 85

APPC START

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

BKW1607E Client count must be greater than zero.

BKW1608E Unable to HNDIUCV SET.

BKW1609E Unable to create controlling thread.

BKW1700E (Resource &1) CMSIUCV CONNECT to *IDENT RC=&2
BKW21702E Unable to identify APPC/VM resource.

86 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

APPC STOP

APPC STOP

»— APPC — STOP — subtaskid ﬁ“
NOwW

Purpose

Stops a specific APPC/VM subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid
The identifier of the subtask to stop.
Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKW21600I Instance STOP requested.
BKW1606E Wait expired for STOP.

Chapter 14. Command Descriptions 87

AUTH CRECLASS

AUTH CRECLASS

»— AUTH — CRECLASS — class foper;Du

Purpose

Creates an object class in the authorization database.

Operands

class
The name of the class to be created.

operation
The name of an operation to be defined on objects of this class.
Options

None

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWOOO7E RC=&1 RE=&2 from routine &3
BKWOB80O0E The class specified already exists
BKWOB801E Unable to read the authorization files
BKWO0B802E Unable to write to the authorization files

88 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

AUTH CREOBJECT

AUTH CREOBJECT

»— AUTH — CREOBJECT — object — class >«

Purpose

Creates an object class in the authorization database.

Operands

object
The name of the object to be created.

class
The name of the class to which the object is to belong.
Options

None

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWOOO7E RC=&1 RE=&2 from routine &3
BKWOB80O0E The class specified already exists
BKWOB801E Unable to read the authorization files
BKWOB802E Unable to write to the authorization files
BKWOB805E The class specified does not exist
BKWOB806E The object specified already exists

Chapter 14. Command Descriptions 89

AUTH DELCLASS

AUTH DELCLASS

»— AUTH — DELCLASS — class >
L, |

L OBJECTSONLY J

Purpose

Deletes the objects of a given class.

Operands

class
The class for which objects are to be deleted.

Options

OBJECTSONLY
Delete the objects for the class, but leave the class itself in the authorization database.

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If OBJECTSONLY is omitted, then the class itself is also deleted from the authorization database.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWO801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files
BKWO8O05E The class specified does not exist

BKWO8O07E At least one of the options specified is unrecognized

90 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

AUTH DELOBJECT

AUTH DELOBJECT

»— AUTH — DELOBJECT — object >«
L |

L RULESONLY J

Purpose

Deletes the authorization rules for a given object.

Operands

object
The object for which rules are to be deleted.

Options

RULESONLY
Delete the rules for the object, but leave the object itself in the authorization database.

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If RULESONLY is omitted, then the object itself is also deleted from the authorization database.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWO801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files
BKWO8O07E At least one of the options specified is unrecognized
BKWO808E The object specified does not exist

Chapter 14. Command Descriptions 91

AUTH DELUSER

AUTH DELUSER

»w— AUTH — DELUSER — userid ﬁ’(
class

Purpose

Deletes authorization rules for a user.

Operands

userid
The user ID for which authorization rules are to be deleted.

class
The class from which userid's rules are to be deleted.
Options

None

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If class is not specified, then userid's rules for all classes are deleted.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWOB801E Unable to read the authorization files

BKWOB802E Unable to write to the authorization files
BKWO8O07E At least one of the options specified is unrecognized
BKWOB810E No rules exist for the userid specified

92 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

AUTH LISTCLASS

AUTH LISTCLASS

*

> AUTH — LISTCLASS 9
match_key

Purpose

Lists the classes defined in the authorization data.

Operands

match_key
The key a class ID must match in order for it to show up in the output.

Options

None

Usage Notes

1. match_key is expressed using the CMS Application Multitasking syntax for IPC and event keys.

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

3. Output from this command appears as follows:

For class: File
R W

For class: Dir
R W NR NW

For class: Service
STRT STOP EXEC

The output just cites each class and then follows the citation with a list of the operations defined on it.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWO801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files
BKWO8O05E The class specified does not exist

BKWO8O07E At least one of the options specified is unrecognized
BKWO0813E No classes exist for the match key specified

Chapter 14. Command Descriptions 93

AUTH LISTOBJECT

AUTH LISTOBJECT

*

»w— AUTH — LISTOBJECT — class_id 9
match_key

Purpose

Lists the objects belonging to a specified class.

Operands

match_key
The key an object name must match in order for it to show up in the output.

Options

None

Usage Notes

1. Operand match_key is expressed using the CMS Application Multitasking syntax for IPC and event
keys.

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

3. Output from this command appears as follows:

For class: Service
ECHO
SGEXER
HTTP
AUTH
CACHE
CONFIG
ENROLL
MONITOR
SERVER
SGP
USERID
CcP

CMS

The name of the class appears, followed by a list of the names of the objects in the class.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWO801E Unable to read the authorization files

BKWO0802E Unable to write to the authorization files
BKWO8O05E The class specified does not exist

BKWO8O07E At least one of the options specified is unrecognized
BKWO0814E No objects exist for the match key specified

94 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

AUTH MODCLASS

AUTH MODCLASS

»— AUTH — MODCLASS — class fopm:tDu

Purpose

Adds operations to the definition of an existing object.

Operands

class
The name of the class to be modified.

operation
The name of an operation to be defined on objects of this class.
Options

None

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWOOO7E RC=&1 RE=&2 from routine &3

BKWOB801E Unable to read the authorization files

BKWOB802E Unable to write to the authorization files

BKWOB805E The class specified does not exist

BKWO0812E Operation limit for the class specified has been exceeded

Chapter 14. Command Descriptions 95

AUTH PERMIT

AUTH PERMIT

l h (— ADD
»— AUTH — PERMIT — userid — object operation
(— ADD
L (

k REMOVE
REPLACE

=l

Purpose

Controls the operations a user can perform on an object.

Operands

userid
The user ID to which this rule is to apply.

object
The object to which this rule is to apply.

operation
An operation defined on this object.

Options
ADD
This rule is to be added to userid's permissions for object.

REMOVE
This rule is to be removed from userid's permissions for object.

REPLACE
This rule is to replace userid's permissions for object.

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWOOO7E RC=&1 RE=&2 from routine &3
BKWOB801E Unable to read the authorization files
BKWO0B802E Unable to write to the authorization files
BKWO808E The object specified does not exist

96 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

AUTH QOBJECT

AUTH QOBJECT

»— AUTH — QOBJECT — object ﬁ—n
userid

Purpose

Inquires about the permitted operations associated with a given object.

Operands

object
The object for which rules are to be displayed.

userid
The user ID for which rules are to be displayed.

Options

None

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If userid is supplied, then only userid's rules for object are displayed.

3. If userid is omitted, then all rules for object are displayed.

4. Qutput from this command is as follows:

For object: SGP
For userid: RANDOPM
STRT STOP

For userid: BKW
STRT STOP EXEC

The output identifies the user IDs for whom there are rules in the data and for each such user ID the
output lists the permitted operations.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWOOO7E RC=&1 RE=&2 from routine &3
BKWO801E Unable to read the authorization files
BKWOB803E Too many operations or options specified
BKWOB808E The object specified does not exist
BKWOB815E No userids exist for the object specified
BKWOB816E No rules exist for the userid specified

Chapter 14. Command Descriptions 97

AUTH RELOAD

AUTH RELOAD

»— AUTH — RELOAD -»«

Purpose

Causes the authorization API to reset its attempts to use the authorization database.

Operands

None

Options

None

Usage Notes

For support information, see “ssAuthReload — Reload Authorization Data” on page 240.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3
BKWO0B801E Unable to read the authorization files
BKWO0B802E Unable to write to the authorization files
BKWO0B811E Unable to open the authorization files

98 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

BKWENRCP

BKWENRCP

f_ BKWENRDB — * T
»— BKWENRCP — fn >

==

kfmﬂ
dirid

Removes redundant information from the SFS file holding an enrollment set.

Purpose

Operands
set_name

The name of the set to be interrogated.
fn

The file name of the SFS enrollment file.
ft

The file type of the SFS enrollment file.
fm

The file mode of the SFS enrollment file.
dirid

The directory name of the SFS enrollment file.
Options
None

Usage Notes
1. BKWENRCP is an EXEC, not an internal command provided by the reusable server kernel (such as the
ENROLL command set).

2. To be processed by BKWENRCP, the SFS file containing the enrollment set must not be active -- that
is, the corresponding enrollment set must be dropped through ENROLL DROP before BKWENRCP can

work.

3. The output is written to the A file mode in a file whose file name matches fn and whose file type is
BKWENRCP.

4. If your enrollment set is very large, a large virtual machine might be required to process it.

Messages and Return Codes

The return codes produced by BKWENRCP all come from CMS Pipelines. For more information, see z/VM:
CMS Pipelines User's Guide and Reference.

Chapter 14. Command Descriptions 99

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/c2462521.pdf

CACHE CREATE

CACHE CREATE

»— CACHE — CREATE — cname ﬁ“
size

Purpose

Creates a file cache.

Operands

chame
The name of the file cache to be created.

size
The size of the file cache, in pages.
Options

None

Usage Notes

1. The name cname is used directly in a call to ssMemoryCreateDS and therefore must be unique
among all storage subpool names.

2. The cache size size is given in pages. It must be greater than zero and less than or equal to 524288.
The size you specify is rounded up to the next 16-page boundary. If you do not specify a size, a size of
16 MBis used.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

100 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CACHE DELETE

CACHE DELETE

»— CACHE — DELETE — cname -»«

Purpose

Deletes a file cache.

Operands

chame
The name of the file cache to be deleted.

Options

None

Usage Notes

1. Once deletion starts, no more new files will be cached.
2. The deletion completes after the last file is closed.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 101

CACHE LIST

CACHE LIST

»— CACHE — LIST »«

Purpose

Lists the set of file caches.

Operands

None

Options

None

Usage Notes

The output form is:

Name Size InUse FileCount Opens Hits
CACHE1 16384000 433567 421 1633 1185
CACHE2 32768000 2236541 28 4532 4158

The columns have the following meanings:

Column
Meaning

Name
Name of cache

Size
Cache size in bytes

InUse
Bytes in use in cache

FileCount
Number of files in cache

Opens
Number of file opens processed

Hits
Number of cache hits on opens

Messages and Return Codes
BKW21500E No file caches found.

102 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CMS

CMS

»— CMS — cms_command_string —»<

Purpose

Provides a means of issuing CMS commands.

Operands

cms_command_string
The command string to pass to CMS.

Options

None

Usage Notes

The command is issued by passing it to the CMS subcommand environment.

Messages and Return Codes
BKW1000I RC=&1 from CMS.

Chapter 14. Command Descriptions 103

CONFIG AUT_CACHE

CONFIG AUT_CACHE

»— CONFIG — AUT_CACHE — rows —»«

Purpose

Sets the number of authorization rows that will be cached.

Operands

rows
The number of rows to be cached.

Options

None

Usage Notes

For rows, specify a positive integer.

Messages and Return Codes

None

104 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUT_DATA_1

CONFIG AUT_DATA 1

»— CONFIG — AUT_DATA_1 — filespec >«

Purpose
Sets the name of copy 1 of the authorization data file.

Operands

filespec
The name of copy 1 of the authorization data file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

Chapter 14. Command Descriptions 105

CONFIG AUT_DATA_2

CONFIG AUT_DATA_2

»— CONFIG — AUT_DATA_2 — filespec —»«

Purpose

Sets the name of copy 2 of the authorization data file.

Operands
filespec

The name of copy 2 of the authorization data file.
Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes

None

106 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUT_FREE

CONFIG AUT_FREE

»— CONFIG — AUT_FREE — rows —»«

Purpose
Sets the maximum number of free buffers that will be retained for the purpose of caching authorization
rows.

Operands

rows
The maximum number of row buffers to retain.

Options

None

Usage Notes

For rows, specify a positive integer.

Messages and Return Codes

None

Chapter 14. Command Descriptions 107

CONFIG AUT_INDEX_1

CONFIG AUT_INDEX_ 1

»— CONFIG — AUT_INDEX_1 — filespec —»«

Purpose

Sets the name of copy 1 of the authorization index file.

Operands

filespec
The name of copy 1 of the authorization index file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

108 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUT_INDEX_2

CONFIG AUT_INDEX 2

»— CONFIG — AUT_INDEX_2 — filespec —»«

Purpose

Sets the name of copy 2 of the authorization index file.

Operands
filespec

The name of copy 2 of the authorization index file.
Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes

None

Chapter 14. Command Descriptions 109

CONFIG AUT_LOCATION

CONFIG AUT_LOCATION

»— CONFIG — AUT_LOCATION tMINIDISKj—N
SFS

Purpose

Sets the repository type of the authorization database.

Operands

MINIDISK
The authorization database is stored on CMS minidisks.

SFS
The authorization database is stored in the CMS Shared File System.

Options

None

Usage Notes
Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

110 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUT_LOG

CONFIG AUT_LOG

»— CONFIG — AUT_LOG — filespec —»«

Purpose

Sets the name of the authorization logfile.

Operands
filespec

The name of the authorization logfile.
Options

None

Usage Notes

1. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
2. For filespec, any syntax acceptable to DMSOPEN may be used.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes

None

Chapter 14. Command Descriptions 111

CONFIG AUTHCHECK_AUTH

CONFIG AUTHCHECK_AUTH

»— CONFIG — AUTHCHECK_AUTH T ON
OFF

Purpose

Controls whether the AUTH commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

112 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUTHCHECK_CACHE

CONFIG AUTHCHECK_CACHE

»— CONFIG — AUTHCHECK_CACHE T ON
OFF

Purpose

Controls whether the CACHE commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

Chapter 14. Command Descriptions 113

CONFIG AUTHCHECK_CMS

CONFIG AUTHCHECK_CMS

»— CONFIG — AUTHCHECK_CMS T ON
OFF

Purpose

Controls whether the CMS service will perform authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

114 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUTHCHECK_CONFIG

CONFIG AUTHCHECK_CONFIG

»— CONFIG — AUTHCHECK_CONFIG T ON
OFF

Purpose

Controls whether the CONFIG commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

Chapter 14. Command Descriptions 115

CONFIG AUTHCHECK_CP

CONFIG AUTHCHECK_CP

»— CONFIG — AUTHCHECK_CP T ON
OFF

Purpose

Controls whether the CP service will perform authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

116 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUTHCHECK_ENROLL

CONFIG AUTHCHECK_ENROLL

»— CONFIG — AUTHCHECK_ENROLL T ON
OFF

Purpose

Controls whether the ENROLL service will perform authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

Chapter 14. Command Descriptions 117

CONFIG AUTHCHECK_LD

CONFIG AUTHCHECK_LD

»— CONFIG — AUTHCHECK_LD T ON
OFF

Purpose

Controls whether line driver commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

118 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUTHCHECK_MONITOR

CONFIG AUTHCHECK_MONITOR

»— CONFIG — AUTHCHECK_MONITOR T ON
OFF

Purpose

Controls whether the MONITOR service will perform authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

Chapter 14. Command Descriptions 119

CONFIG AUTHCHECK_SERVER

CONFIG AUTHCHECK_SERVER

»— CONFIG — AUTHCHECK_SERVER T ON
OFF

Purpose

Controls whether the SERVER commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

120 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUTHCHECK_SGP

CONFIG AUTHCHECK_SGP

»— CONFIG — AUTHCHECK_SGP T ON
OFF

Purpose

Controls whether the SGP commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

Chapter 14. Command Descriptions 121

CONFIG AUTHCHECK_TRIE

CONFIG AUTHCHECK_TRIE

»— CONFIG — AUTHCHECK_TRIE T ON
OFF

Purpose

Controls whether the TRIE service will perform authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

122 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG AUTHCHECK_USERID

CONFIG AUTHCHECK_USERID

»— CONFIG — AUTHCHECK_USERID T ON
OFF

Purpose

Controls whether the USERID commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

Chapter 14. Command Descriptions 123

CONFIG AUTHCHECK_WORKER

CONFIG AUTHCHECK_WORKER

»— CONFIG — AUTHCHECK_WORKER T ON
OFF

Purpose

Controls whether the WORKER commands will be subject to authorization checking.

Operands

ON
Authorization checking will be performed.

OFF
Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

124 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG MEM_MAXFREE

CONFIG MEM_MAXFREE

»— CONFIG — MEM_MAXFREE — pages >«

Purpose

Sets the maximum number of pages that the reusable server kernel storage manager will retain for a
given subpool before returning storage from that subpool to CMS.

Operands
pages

The maximum number of pages to retain.

Options

None

Usage Notes

For pages, specify a positive integer.

Messages and Return Codes

None

Chapter 14. Command Descriptions 125

CONFIG MON_KERNEL_ROWS

CONFIG MON_KERNEL_ROWS

»— CONFIG — MON_KERNEL_ROWS — rows >«

Purpose

Sets the number of monitor data rows the reusable server kernel defines.

Operands

rows
The number of rows to define.
Options

None

Usage Notes

1. You must choose rows in range [36..55000].

2. The reusable server kernel rounds rows to the next higher multiple of 55. For example, if you ask for 75
rows you will actually get 110.

Messages and Return Codes

None

126 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG MON_PRODUCT_ID

CONFIG MON_PRODUCT_ID

»— CONFIG — MON_PRODUCT_ID — identifier -»«

Purpose
Sets the product identifier the reusable server kernel will use when it invokes Diagnose X'00DC' to start
APPLDATA monitor data collection.

Operands
identifier
The 16-byte identifier to use.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 127

CONFIG MON_USER_SIZE

CONFIG MON_USER_SIZE

»— CONFIG — MON_USER_SIZE — bytes >«

Purpose

Sets the size of the monitor buffer the reusable server kernel will reserve for application use.

Operands

bytes
The number of bytes to reserve.

Options

None

Usage Notes

This command is obsolete. No matter what you ask for, you will now get 3952 bytes of user monitor
buffer, which is the largest amount of user data the server kernel can put in a single monitor buffer.

Messages and Return Codes

None

128 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG MSG_NOHDR

CONFIG MSG_NOHDR

»— CONFIG — MSG_NOHDR T ON
OFF

Purpose

Controls whether the MSG/SMSG line driver will use the MSGNOH command to reply to a client.

Operands

ON
MSGNOH will be used.

OFF
MSG will be used.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 129

CONFIG NOMAP_APPC

CONFIG NOMAP_APPC

»— CONFIG — NOMAP_APPC T ON
OFF

Purpose

Controls whether the APPC line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes

None

Messages and Return Codes

None

130 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG NOMAP_IUCV

CONFIG NOMAP_IUCV

»— CONFIG — NOMAP_IUCV T ON
OFF

Purpose

Controls whether the IUCV line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes
If NOMAP_TIUCV is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

Chapter 14. Command Descriptions 131

CONFIG NOMAP_MSG

CONFIG NOMAP_MSG

»— CONFIG — NOMAP_MSG T ON
OFF

Purpose

Controls whether the MSG/SMSG line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes
If NOMAP_MSG is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

132 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG NOMAP_SPOOL

CONFIG NOMAP_SPOOL

»— CONFIG — NOMAP_SPOOL T ON
OFF

Purpose

Controls whether the SPOOL line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 133

CONFIG NOMAP_TCP

CONFIG NOMAP_TCP

»— CONFIG — NOMAP_TCP T ON
OFF

Purpose

Controls whether the TCP line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes
If NOMAP_TCP is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

134 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG NOMAP_UDP

CONFIG NOMAP_UDP

»— CONFIG — NOMAP_UDP T ON
OFF

Purpose

Controls whether the UDP line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes
If NOMAP_UDP is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

Chapter 14. Command Descriptions 135

CONFIG RSCS_USERID

CONFIG RSCS_USERID

»— CONFIG — RSCS_USERID — userid »<

Purpose
Sets the user ID of the virtual machine in which the SPOOL and MSG/SMSQG line drivers will assume RSCS
is running.

Operands

userid
The user ID of the RSCS machine.
Options

None

Usage Notes

Most installations will tailor PROFILE RSK so that it issues CMS's IDENTIFY command, parses the
response so as to obtain the user ID of the RSCS machine, and then issues an appropriate CONFIG
RSCS_USERID command.

Messages and Return Codes

None

136 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG SGP_FILE

CONFIG SGP_FILE

»— CONFIG — SGP_FILE — filespec »«

Purpose

Sets the name of the storage group configuration file.

Operands

filespec
The string identifying the storage group configuration file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

Chapter 14. Command Descriptions 137

CONFIG SPL_CATCHER

CONFIG SPL_CATCHER

»— CONFIG — SPL_CATCHER — userid -»<

Purpose

Controls the user ID to which the SPOOL driver will transfer spool files it is unable to decode.

Operands

userid
The user ID to which the SPOOL driver will transfer files it is unable to decode.

Options

None

Usage Notes

1. The SPOOL line driver is able to decode files sent in NETDATA (aka SENDFILE NEW) or DISK DUMP
(aka SENDFILE OLD) formats. All other formats are undecodable.

2. If userid is %, the reusable server kernel will leave such files in the server's reader in USER HOLD
status.

Messages and Return Codes

None

138 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG SPL_INPUT_FT

CONFIG SPL_INPUT_FT

»— CONFIG — SPL_INPUT_FT — filetype >«

Purpose

Controls the file type the SPOOL driver will recognize as input for a service.

Operands

filetype
The file type the SPOOL line driver will recognize.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 139

CONFIG SPL_OUTPUT_FT

CONFIG SPL_OUTPUT FT

»— CONFIG — SPL_OUTPUT_FT — filetype >«

Purpose

Controls the file type the SPOOL driver will produce as output from a service.

Operands

filetype
The file type the SPOOL line driver will produce.

Options

None

Usage Notes

None

Messages and Return Codes

None

140 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG SRV_THREADS

CONFIG SRV_THREADS

»— CONFIG — SRV_THREADS — threads »<

Purpose

Controls the number of threads on which a given line driver will attempt to run a given service.

Operands

threads
The maximum number of threads on which a given line driver will attempt to run a given service.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 141

CONFIG UMAP_FILE

CONFIG UMAP_FILE

»— CONFIG — UMAP_FILE — filespec —»«

Purpose
Sets the name of the user ID mapping file.
Operands
filespec
The string identifying the user ID mapping file.

Options

None

Usage Notes
For filespec, any string acceptable to DMSOPEN is acceptable.

Messages and Return Codes

None

142 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG VM_CONSOLE

CONFIG VM_CONSOLE

»— CONFIG — VM_CONSOLE T ON
OFF

Purpose

Controls whether the console line driver will pass unrecognized input to CMS for execution.

Operands

ON
The console driver will pass unrecognized input to CMS.

OFF
The console driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 143

CONFIG VM_MSG

CONFIG VM_MSG

»— CONFIG — VM_MSG T ON
OFF

Purpose

Controls whether the MSG/SMSG line driver will pass unrecognized input to CMS for execution.

Operands

ON
The MSG/SMSG driver will pass unrecognized input to CMS.

OFF
The MSG/SMSG driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

144 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG VM_SPOOL

CONFIG VM_SPOOL

»— CONFIG — VM_SPOOL T ON
OFF

Purpose

Controls whether the SPOOL line driver will pass unrecognized input to CMS for execution.

Operands

ON
The SPOOL driver will pass unrecognized input to CMS.

OFF
The SPOOL driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

Chapter 14. Command Descriptions 145

CONFIG VM_SUBCOM

CONFIG VM_SUBCOM

»— CONFIG — VM_SUBCOM T ON
OFF

Purpose

Controls whether the SUBCOM line driver will pass unrecognized input to CMS for execution.

Operands

ON
The SUBCOM driver will pass unrecognized input to CMS.

OFF
The SUBCOM driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

146 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONSOLE LIST

CONSOLE LIST

»— CONSOLE — LIST »«

Purpose

Lists the subtasks associated with the console line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the console line driver. The output
form is:

Subtask Service Prefix Instances

0 CONSOLE CONSOLE 1
1 SERVER SERVER 1

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

Service
The name of the started service.

Prefix
The prefix used to send input to the service.

Instances
The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

Chapter 14. Command Descriptions 147

CONSOLE QUERY

CONSOLE QUERY

»— CONSOLE — QUERY — subtaskid —»«

Purpose

Queries a specific console subtask.

Operands
subtaskid

The identifier of the subtask to query.
Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEQF5C 16 * 175 446

In this output, the columns have the following meanings:

Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
BytesIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

148 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONSOLE START

CONSOLE START

»— CONSOLE — START — servicename ﬁ
prefix

Purpose

Starts a service, connecting it to the console line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

prefix
The prefix that will identify commands that should be sent to this service.
Options

None

Usage Notes

1. If prefix is not specified, the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWO0200E Service not found.

BKWO205E Prefix already in use.

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

Chapter 14. Command Descriptions 149

CONSOLE STOP

CONSOLE STOP

»— CONSOLE — STOP — subtaskid ﬁ’(
NOW

Purpose

Stops a specific console subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands

subtaskid
The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

150 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CP

Ccp

»— CP — cp_command_string —»<

Purpose

Provides a means of issuing CP commands.

Operands

cp_command_string
The command string to pass to CP.

Options

None

Usage Notes

The command is issued by passing it to CP through DIAG X'08'.

Messages and Return Codes

BKWQ900I RC=&1 from CP.
BKWO0901E CP response was truncated.
BKW0902E CP command was too long.

Chapter 14. Command Descriptions 151

ENROLL COMMIT

ENROLL COMMIT

»— ENROLL — COMMIT — set_name -»«

Purpose

Commits changes to the named enrollment set.

Operands

set_name
The name of the set to be committed.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 264.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

152 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ENROLL DROP

ENROLL DROP
COMMIT
»— ENROLL — DROP — set_name H
ROLLBACK
Purpose

Commits changes to the named enrollment set.

Operands

set_name
The name of the set to be committed.

COMMIT
The uncommitted changes should be committed.

ROLLBACK
The uncommitted changes should be rolled back.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 266.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 153

ENROLL GET

ENROLL GET

»— ENROLL — GET — set_name — key —»«

Purpose

Retrieves a record from an enrollment set.

Operands

set_name
The name of the set to be interrogated.

key
The key of the record to be retrieved.
Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a space.
2. For more information, see “Usage Notes” on page 272.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

154 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ENROLL INSERT

ENROLL INSERT

»— ENROLL — INSERT — set_name — key — data -»«

Purpose

Inserts or replaces a record in an enrollment set.

Operands

set_name
The name of the set to be updated.

key
The key of the record to be inserted.

data
The data to be inserted.
Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a space.
2. The record is inserted with method ss_enr_insert_replace.
3. For more information, see “Usage Notes” on page 274.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 155

ENROLL LIST

ENROLL LIST

»— ENROLL — LIST >«

Purpose

Generates a list of the loaded enrollment sets.

Operands

None

Options

None

Usage Notes

For more information, see “ssEnrollList — List Enrollment Sets” on page 268.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

156 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ENROLL LOAD

ENROLL LOAD

»— ENROLL — LOAD — set_name DISK size — filename —»<«
L MEM —J

Purpose

Loads an enrollment set from the Shared File System, or initializes a transient enrollment set.

Operands

set_name
The name of the set to be loaded.

DISK
This is a permanent enrollment set.

MEM
This is a transient enrollment set.

size
The data space size to use, in pages.

filename
The file specification of the Shared File System file to be used.

Options

None

Usage Notes

For more information, see “ssEnrollLoad — Load Enrollment Set” on page 270.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 157

ENROLL RECLIST

ENROLL RECLIST

»— ENROLL — RECLIST — set_name -»«

Purpose

Generates a list of the keys of the records stored in the named enrollment set.

Operands

set_name
The name of the set to be interrogated.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 276.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

158 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ENROLL REMOVE

ENROLL REMOVE

»— ENROLL — REMOVE — set_name — key »<

Purpose

Removes a record from an enrollment set.

Operands

set_name
The name of the set to be updated.

key
The key of the record to be removed.
Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a space.
2. For more information, see “Usage Notes” on page 278.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 159

IUCV LIST

IUCV LIST

»— IUCV — LIST »«

Purpose

Lists the subtasks associated with the IUCV line driver.

Operands

None

Options

None

Usage Notes

The output form is:

Subtask ServName ExitName Capacity InUse Threads Waiters

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

ServName
The name of the started service.

ExitName
The name of the IUCV exit for this subtask.

Capacity
The number of clients this subtask can handle concurrently.

InUse
The number of clients currently connected.

Threads
The number of threads available to service clients of this subtask.

Waiters
The number of clients waiting to be serviced.

Messages and Return Codes

BKWO0201E Subtask not found.

160 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

IUCV QUERY

IUCV QUERY

»— IUCV — QUERY — subtaskid >«

Purpose
Queries a specific IUCV subtask.

Operands

subtaskid
The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid BytesIn BytesOut

32 01D2E6DC RICHARD 22 22

The columns have the following meanings:

Instance
The numeric identifier of the instance.

C-Block
The address of the C-block for this client.

Userid
The mapped user ID of the client.

BytesIn
The number of bytes the IUCV line driver has queued for the instance.

BytesOut
The number of bytes the instance has queued for the IUCV line driver to transmit to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

Chapter 14. Command Descriptions 161

IUCV REPORT

IUCV REPORT

»— IUCV — REPORT T ON
OFF

Purpose
Toggles reporting state for the IUCV line driver.

Operands

ON
Turns reporting on.

OFF
Turns reporting off.

Options

None

Usage Notes

When reporting is on, the IUCV line driver issues the following messages to describe client activity:
- BKW16021
« BKW16031
« BKW16041
- BKW1605I

For more information, see “IUCV Line Driver Messages” on page 409.

Messages and Return Codes

None

162 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

IUCV START

IUCV START

»d

»— IUCV — START — servicename L J »><
maxclients

L exitname J

Purpose

Starts a service, connecting it to the IUCV line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

maxclients
The maximum number of concurrent clients permitted for the subtask.

exithame
The HNDIUCV exit name to be used for the subtask.

Options

None

Usage Notes

1. If maxclients is not specified, the current value of configuration parameter SRV_THREADS is used.
2. If exitname is not specified, the value of servicename is used.

3. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWO0200E Service not found.

BKWO0207E Start of self is prohibited.

BKW1607E Client count must be greater than zero.
BKW1608E Unable to HNDIUCV SET.

BKW1609E Unable to create controlling thread.

Chapter 14. Command Descriptions 163

IUCV STOP

IUCV STOP
»— IUCV — STOP — subtaskid »<
M NOW ——H
— instance —
Purpose

Stops a specific IUCV subtask, optionally denying currently-connected clients the privilege of completing
their operations, or stops a specific client and affiliated instance.

Operands

subtaskid
The identifier of the subtask to stop.

instance
The number of the instance to stop.

Options

NOwW
Stop the subtask without letting current clients complete normally.

Usage Notes

1. If NOW is specified, the subtask is stopped immediately and clients are not given the opportunity to
finish their work.

2. If instance is specified, only that specific connection is terminated.

Messages and Return Codes

BKWO0201E Subtask not found.
BKW21600I Instance STOP requested.
BKW1606E Wait expired for STOP.

164 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

MONITOR DISPLAY

MONITOR DISPLAY

»— MONITOR — DISPLAY >«

L e J
L name J

Purpose

Displays one or more rows of monitor data.

Operands

type
The type of monitor row to display.

size
The name of a specific monitor row of the given type.
Options

None

Usage Notes

1. If type is not specified, all monitor rows are displayed.
2. If only type is specified, all rows of the specified type are displayed.
3. If both type and name are specified, the specific row described is displayed.

4. For each qualifying monitor row, the display consists simply of the address and length of the row and
the storage at those locations.

Messages and Return Codes

BKW21400E Matching monitor row not found.

Chapter 14. Command Descriptions 165

MONITOR USER

MONITOR USER

»— MONITOR — USER >«

Purpose

Displays the user monitor buffer.

Operands

None

Options

None

Usage Notes

The display consists simply of the address and length of the user monitor buffer and the storage at those
locations.

Messages and Return Codes

None

166 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

MSG LIST

MSG LIST

»— MSG — LIST >«

Purpose
Lists the subtasks associated with the MSG/SMSQG line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the MSG/SMSG line driver. The
output form is:

Subtask Service Prefix Instances

0 MSG MSG 1
1 SERVER SERVER 1

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

Service
The name of the started service.

Prefix
The prefix used to send input to the service.

Instances
The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

Chapter 14. Command Descriptions 167

MSG QUERY

MSG QUERY

»— MSG — QUERY — subtaskid »«

Purpose
Queries a specific MSG/SMSG subtask.

Operands
subtaskid

The identifier of the subtask to query.
Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEQF5C 16 BKW 175 446

In this output, the columns have the following meanings:

Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
BytesIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

168 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

MSG START

MSG START

»w— MSG — START — servicename ﬁn
prefix

Purpose

Starts a service, connecting it to the MSG/SMSG line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

prefix
The prefix that will identify commands that should be sent to this service.
Options

None

Usage Notes

1. If prefix is not specified, then the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWO0200E Service not found.

BKWO205E Prefix already in use.

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

Chapter 14. Command Descriptions 169

MSG STOP

MSG STOP

»w— MSG — STOP — subtaskid ﬁ“
NOW

Purpose

Stops a specific MSG/SMSG subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands

subtaskid
The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

170 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SERVER SERVICES

SERVER SERVICES

»— SERVER — SERVICES —»«

Purpose

Displays a summary of the bound services.

Operands

None

Options

None

Usage Notes

This command causes the reusable server kernel to display a list of the bound services with some

descriptive information about each service. The output form is:

Service S-block Type Init Service Term

USERID O1EFEF40 N 00000000 81E94530 81E94D18 O
SERVER Q1EFEF70 N 00000000 81E94530 81E94D18 1
CONFIG O1EFEFAG N 00000000 81E94530 81E94D18 1

CONSOLE OQ1EFEFDO LDSS 81E93478 81E939C8 81E94408 1

The meanings of the columns are:
Service

The name of the bound service.
S-block

The address of the service's S-block.

Type
The type of the bound service. Types are:

N
Normal service

LD
Line driver

LDSS
Self-sourced line driver

Init
The address of the service's initialization routine.

Service
The address of the service's service routine.

Term
The address of the service's termination routine.

Count
The number of line drivers that have started this service.

Messages and Return Codes

None

Chapter 14. Command Descriptions 171

SERVER MONITOR

SERVER MONITOR

»— SERVER — MONITOR >«

Purpose

Gives information about the Diagnose X'00DC' monitor buffers.

Operands

None

Options

None

Usage Notes
For each monitor buffer, this command tells the user the:

« Location of the monitor buffer

- Size of the monitor buffer

« Number of rows in the monitor buffer

« Number of free rows in the monitor buffer

Messages and Return Codes

BKWO0301I Monitor buffer at &1.&2, &3 rows, &4 free

172 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SERVER STOP

SERVER STOP

»— SERVER — STOP »«

Purpose

Stops the server and the reusable server kernel.

Operands

None

Options

None

Usage Notes

Issuing this command is equivalent to calling entry point ssServerStop. Both of these facilities cause
WAITSERV to complete.

Messages and Return Codes

None

Chapter 14. Command Descriptions 173

SGP CREATE

SGP CREATE
»— SGP — CREATE — sgn fmd:skjn
Purpose

Creates a storage group.

Operands

sgn
The number of the storage group to create.

mdisk
The device number of a minidisk to be used for the storage group.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 293.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

174 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SGP DELETE

SGP DELETE

»— SGP — DELETE — sgn —»«

Purpose

Deletes a storage group.

Operands

sgn
The number of the storage group to delete.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 295.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 175

SGP LIST

SGP LIST

»— SGP — LIST >«

Purpose

Displays a list of the known storage groups.

Operands

None

Options

None

Usage Notes

1. This command causes the reusable server kernel to display a list of the known storage groups. The
output format is:

SGrp Name Blocks IOMode Status
2 main 4000 blk-rw 40000000
5 spare 82400 blk-ro 20000000

The meanings of the columns are:

SGrp
The storage group number.

Name
The name of the storage group.
Blocks
The total number of 4 KB blocks in the storage group.
IOMode
The mode in which the storage group was started.
off
not started
blk-ro
block mode read-only
blk-rw
block mode read-write
Status
Status bits
X'80000000'
Stop is in progress
X'40000000'
I/O using VM Data Spaces
X'20000000'

I/O using DIAG X'250"
2. For more information, see “Usage Notes” on page 299 and “Usage Notes” on page 302.

176 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SGP LIST

Messages and Return Codes

BKWOOOS5E Out of storage.
BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 177

SGP MDLIST

SGP MDLIST

»— SGP — MDLIST — sgn -»<

Purpose

Displays specific information about the minidisks of a storage group.

Operands

sgn
The number of the storage group to interrogate.

Options

None

Usage Notes

1. This command causes the reusable server kernel to display a list of the minidisks associated with a
given storage group. The output format is:

VDev Blocks

1004 34006
OFC2 14200

The meanings of the columns are:

VDev
The device number of the minidisk.

Total
The number of 4 KB blocks on the minidisk.

2. For more information, see “Usage Notes” on page 302.

Messages and Return Codes

BKWOOOS5E Out of storage.
BKWOOO7E RC=&1 RE=&2 from routine &3

178 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SGP START

SGP START

BLOCKRW

t oo j % , ﬂ
BLOCKRW NODS

DS

»— SGP — START — sgn — groupname

I

—
—1
—

Purpose

Starts a specific storage group.

Operands
sgn
The number of the storage group to start.

groupname
The symbolic name to be assigned to the storage group.

BLOCKRO
The storage group should be started in block mode read-only.

BLOCKRW
The storage group should be started in block mode read-write.

DS
The reusable server kernel should attempt to use VM Data Spaces for I/0.

NODS
The reusable server kernel should not attempt to use VM Data Spaces for I/0.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 306.

Messages and Return Codes

BKWOOO7E RC=&1 RE=&2 from routine &3

Chapter 14. Command Descriptions 179

SGP STOP

SGP STOP

»— SGP — STOP — sgn »«

Purpose

Stops a specific storage group.

Operands

sgn
The number of the storage group to stop.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 309.

Messages and Return Codes
BKWOOO7E RC=&1 RE=&2 from routine &3

180 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SPOOL LIST

SPOOL LIST

»— SPOOL — LIST -»«

Purpose

Lists the subtasks associated with the SPOOL line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the spool line driver. The output
form is:

Subtask Service Prefix Instances

0 SPOOL SPOOL 1
1 SERVER SERVER 1

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

Service
The name of the started service.

Prefix
The file name used to send input to the service.

Instances
The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

Chapter 14. Command Descriptions 181

SPOOL QUERY

SPOOL QUERY

»— SPOOL — QUERY — subtaskid »«

Purpose
Queries a specific SPOOL subtask.

Operands
subtaskid

The identifier of the subtask to query.
Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEQF5C 16 BKW 175 446

In this output, the columns have the following meanings:

Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
ByteslIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

182 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SPOOL START

SPOOL START

»— SPOOL — START — servicename — spoolfn »<

Purpose

Starts a service, connecting it to the SPOOL line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

spoolfn
The file name of spool files that should be directed to this service.

Options

None

Usage Notes

1. If prefix is not specified, then the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWO0200E Service not found.

BKWO0205E Prefix already in use.

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

Chapter 14. Command Descriptions 183

SPOOL STOP

SPOOL STOP

»— SPOOL — STOP — subtaskid ﬁ“
NOW

Purpose

Stops a specific SPOOL subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands

subtaskid
The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

184 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SUBCOM LIST

SUBCOM LIST

»— SUBCOM — LIST >«

Purpose
Lists the subtasks associated with the SUBCOM line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the SUBCOM line driver. The
output form is:

Subtask Service Prefix Instances

0 SUBCOM SUBCOM 1
1 SERVER SERVER 1

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

Service
The name of the started service.

Prefix
The prefix used to send input to the service.

Instances
The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

Chapter 14. Command Descriptions 185

SUBCOM QUERY

SUBCOM QUERY

»— SUBCOM — QUERY — subtaskid —»«

Purpose
Queries a specific SUBCOM subtask.

Operands
subtaskid

The identifier of the subtask to query.
Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut

1 O1EEQF5C 16 * 175 446

In this output, the columns have the following meanings:

Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
ByteslIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

186 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SUBCOM START

SUBCOM START

»— SUBCOM — START — servicename ﬁ—n
prefix

Purpose

Starts a service, connecting it to the SUBCOM line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

prefix
The prefix that will identify commands that should be sent to this service.
Options

None

Usage Notes

1. If prefix is not specified, the value of servicename is used for the prefix.

2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWOOOS5E Out of storage.

BKWO0200E Service not found.

BKWO205E Prefix already in use.

BKWO0206E Service INIT routine failed - RC=&1 RE=&2.
BKWO0207E Start of self is prohibited.

Chapter 14. Command Descriptions 187

SUBCOM STOP

SUBCOM STOP

»— SUBCOM — STOP — subtaskid ﬁ’(
NOW

Purpose

Stops a specific SUBCOM subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands

subtaskid
The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0202E Stop of self is prohibited.
BKWO0203I Subtask asked to STOP.
BKWO0204I Subtask killed.

188 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

TCP LIST

TCP LIST

»— TCP — LIST »«

Purpose
Lists the subtasks associated with the TCP/IP line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the TCP/IP line driver. The output
form is:

Subtask ServName BPort Adapter_Address TCPStack Sokts InUse Thrds

2 WEBSERV 80 0.0.0.0 TCPIP 100 17 31
4 WEBADMIN 90 9.117.32.29 TCPIP 50 4 13

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

ServName
The name of the started service.

BPort
The port number to which the service is bound.

Adapter_Address
The adapter address to which the port is bound.

TCPStack
The user ID of the TCP/IP virtual machine through which this subtask's TCP activity is taking place.

Sokts
The number of sockets available to the subtask.

InUse
The number of sockets currently in use.

Thrds
The number of CMS threads servicing this subtask.

Messages and Return Codes

BKWO0201E Subtask not found.

Chapter 14. Command Descriptions 189

TCP QUERY

TCP QUERY

»— TCP — QUERY — subtaskid —»«

Purpose
Queries a specific TCP/IP subtask.

Operands

subtaskid
The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid RPort Remote_Host BytesIn BytesOut
2 030F0210 PAUL 1401 9.130.79.171 165 32436
5 030F0500 FRED 833 9.117.32.29 8223 11234385

The columns and their meanings are:
Instance
The numeric identifier of this instance.
C-Block
The address of the instance's C-block.
Userid
The mapped user ID of the client being served by this instance, as produced by the ssUsexridMap.
RPort
The port number through which the client's connection is exiting the client computer.

Remote_Host
The IP address of the client computer.

BytesIn
The number of bytes received from the client so far.

BytesOut
The number of bytes sent to the client so far.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

190 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

TCP REPORT

TCP REPORT

»— TCP — REPORT T ON
OFF

Purpose
Toggles reporting state for the TCP/IP line driver.

Operands

ON
Turns reporting on.

OFF
Turns reporting off.

Options

None

Usage Notes

When reporting is on, the TCP/IP line driver issues the following messages to describe client activity:
« BKW05001I
« BKW05011I
« BKW0502I
- BKW05041

For more information, see “TCP and UDP Line Driver Messages” on page 397.

Messages and Return Codes

None

Chapter 14. Command Descriptions 191

TCP START

TCP START

ﬁ 50 — 0.0.0.0 — TCPIP ﬁ
»— TCP — START — servicename — port L >4
(— 0.0.0.0 — TCPIP ﬁ J
sockets L
(— TCPIP ﬁ [
adapter L

tcpname

Purpose

Starts a service, connecting it to the TCP line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

port
The port number on which the reusable server kernel should make the service available.

sockets
The number of sockets the reusable server kernel should make available for this port.

adapter
The IP address of the adapter over which you want this service to accept requests (specify 0.0.0.0
to mean “any of this VM system's adapters”).

tcpname
The name of the TCP/IP service machine through which the reusable server kernel should access the
TCP/IP network.

Options

None

Usage Notes

1. Operand port must be between 1 and 65535 inclusive.
2. Operand sockets must be between 50 and 2000 inclusive.

3. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWO0200E Service not found.

BKWO0207E Start of self is prohibited.

BKWO0513E Port number must be in range [0..65535].
BKWO0514E Socket count must be in range [50..2000].
BKWOOOS5E Out of storage.

BKWO0516E Creation of subtask controller thread failed.
BKWO517E Creation of TCP/IP socket group failed.
BKWO0518E Creation of listen socket failed.

BKWO519E Setting listen socket to SO_REUSEADDR failed.

192 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

TCP START

BKWO0520E Setting listen socket to nonblocking failed.
BKWO0521E bind() for listen socket failed.
BKWO0522E listen() for listen socket failed.

Chapter 14. Command Descriptions 193

TCP STOP

TCP STOP

»— TCP — STOP — subtaskid ﬁ’(
NOW

Purpose

Stops a specific TCP/IP subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid
The identifier of the subtask to stop.
Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0523I Instance STOP requested.
BKWO0524E Wait expired for STOP.

194 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

TRIE LIST

TRIE LIST

»— TRIE — LIST >«

Purpose

Lists the tries created by this virtual machine.

Operands

None

Options

None

Usage Notes

The output form is:

Name ASIT LastFree NextFree Nodes Recozrds

DOOOOOOL 7690F900000000LE 7FFFFFFF OF4585B8 3050166 421008
DOOOOOO2 7690F88000000008 3FFFFFFF 2B934EEC 8697007 421008

The columns have the following meanings:

Name
The trie name supplied by the creator.

ASIT
The ASIT of the data space containing the trie.

LastFree
The address of the last byte of the trie data space.

NextFree
The address of the next free byte in the trie data space.

Nodes
The number of nodes in the trie.

Records
The number of record numbers being held onto by the trie.

Messages and Return Codes
BKW21900E No tries found.

Chapter 14. Command Descriptions 195

UDP LIST

UDP LIST

»— UDP — LIST »«

Purpose
Lists the subtasks associated with the UDP/IP line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the UDP/IP line driver. The output
form is:

Subtask ServName BPort Adapter_Address TCPStack InProg Thrds

2 MYSERV 85 0.0.0.0 TCPIP 17 31
4 MYADMIN 95 9.117.32.29 TCPIP 4 13

The columns have the following meanings:

Subtask
The numeric identifier of the subtask.

ServName
The name of the started service.

BPort
The port number to which the service is bound.

Adapter_Address
The adapter address to which the port is bound.

TCPStack
The user ID of the TCP/IP virtual machine through which this subtask's UDP activity is taking place.

InProg
The number of transactions in progress at the moment.

Thrds
The number of CMS threads servicing this subtask.

Messages and Return Codes
BKWO0201E Subtask not found.

196 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

UDP QUERY

UDP QUERY

»— UDP — QUERY — subtaskid —»«

Purpose
Queries a specific UDP/IP subtask.

Operands

subtaskid
The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid RPort Remote_Host BytesIn BytesOut
2 030F0210 PAUL 1401 9.130.79.171 165 0
5 030F0500 FRED 833 9.117.32.29 8223 0

The columns and their meanings are:
Instance
The numeric identifier of this instance.
C-Block
The address of the instance's C-block.
Userid
The mapped user ID of the client being served by this instance, as produced by the ssUseridMap.
RPort
The port number through which the client's connection is exiting the client computer.

Remote_Host
The IP address of the client computer.

ByteslIn
The number of bytes received from the client so far.

BytesOut
The number of bytes sent to the client so far.

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0208I Subtask is handling no clients.

Chapter 14. Command Descriptions 197

UDP REPORT

UDP REPORT

»— UDP — REPORT T ON
OFF

Purpose
Toggles reporting state for the UDP/IP line driver.

Operands

ON
Turns reporting on.

OFF
Turns reporting off.

Options

None

Usage Notes

When reporting is on, the UDP/IP line driver issues the following messages to describe client activity:
« BKW05001
« BKW05011I
« BKW0502I
- BKW05041

For more information, see “TCP and UDP Line Driver Messages” on page 397.

Messages and Return Codes

None

198 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

UDP START

UDP START

(— 0.0.0.0 — TCPIP ﬁ
»— UDP — START — servicename — port L >«
(— TCPIP j J
adapter

tcpname

Purpose

Starts a service, connecting it to the UDP line driver.

Operands

servicename
The name of the service to start, as specified on a call to ssServiceBind.

port
The port number on which the reusable server kernel should make the service available.

adapter
The IP address of the adapter over which you want this service to accept requests (specify 0.0.0.0
to mean “any of this VM system's adapters”).

tcpname
The name of the TCP/IP service machine through which the reusable server kernel should access the
TCP/IP network.

Options

None

Usage Notes

1. Operand port must be between 1 and 65535 inclusive.

2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the
started service in future commands.

Messages and Return Codes

BKWO0200E Service not found.

BKWO0207E Start of self is prohibited.

BKWO0513E Port number must be in range [0..65535].
BKWO0514E Socket count must be in range [50..2000].
BKWOOOS5E Out of storage.

BKWO0516E Creation of subtask controller thread failed.
BKWO517E Creation of TCP/IP socket group failed.
BKWO0518E Creation of listen socket failed.

BKWO519E Setting listen socket to SO_REUSEADDR failed.
BKWO0520E Setting listen socket to nonblocking failed.
BKWO0521E bind() for listen socket failed.

BKWO0522E listen() for listen socket failed.

Chapter 14. Command Descriptions 199

UDP STOP

UDP STOP

»— UDP — STOP — subtaskid ﬁ’(
NOW

Purpose

Stops a specific UDP/IP subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid
The identifier of the subtask to stop.
Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKWO0201E Subtask not found.
BKWO0523I Instance STOP requested.
BKWO0524E Wait expired for STOP.

200 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

USERID MAP

USERID MAP
»— USERID — MAP — line_driver_name — node — user »«
Purpose

Interrogates the user ID mapping file.

Operands

line_driver_name
The name of the line driver whose mapping is being interrogated.

node
The nodename as known to the specified line driver.

user
The user ID as known to the specified line driver.

Options

None

Usage Notes

The mapping is interrogated and the result displayed.

Messages and Return Codes

BKWO0401I &1 &2 &3 maps to &4
BKW0402E RC=&1 RE=&2 mapping &3 &4 &5

Chapter 14. Command Descriptions 201

USERID RELOAD

USERID RELOAD

»— USERID — RELOAD -»«

Purpose
Reloads the user ID mapping file.

Operands

None

Options

None

Usage Notes

The user ID mapping file is reloaded from whatever file is nominated by configuration parameter
UMAP_FILE.

Messages and Return Codes

BKWO0400E Reload failed - DMSOPEN or DMSREAD RC=&1 RE=&2.

202 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

WORKER ADD

WORKER ADD

1
»w— WORKER — ADD — classname — userid %N
capacity

Purpose

Adds a worker machine to a worker class, creating the class if the class does not yet exist.

Operands

classname
The name of the worker class to which the worker machine should be added.

userid
The user ID of the worker virtual machine.

capacity

The number of IUCV connections the worker machine is capable of handling concurrently.
Options
1

The worker is capable of handling one connection at a time.

Usage Notes

1. Case is significant in class names.

2. Do not add a given worker virtual machine to more than one worker class. Unpredictable results will
occur.

Messages and Return Codes

BKW1800E Worker machine is already in the specified class.

Chapter 14. Command Descriptions 203

WORKER CLASSES

WORKER CLASSES

»— WORKER — CLASSES -»«

Purpose

Displays summary information about the worker classes.

Operands

None

Options

None

Usage Notes

The output format is:

Class D Machines C-Limit C-InUse

cgiserv n 2 2 0

The columns have the following meanings:

Column
Meaning

Class
Name of class

D
Whether workers are being managed as if they might be distributed on other nodes

y
Managed as if distributed

Managed as if local

Machines
Number of worker machines

C-Limit
Total number of connections permitted

C-InUse
Number of connections at the moment

Messages and Return Codes

BKW1803E No worker classes defined.

204 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

WORKER DELCLASS

WORKER DELCLASS

»— WORKER — DELCLASS — classname L J >
FORCE

Purpose

Deletes a worker class, requesting instances to close their connections to the workers therein.

Operands

classname
The name of the worker class being deleted.

FORCE
The server kernel should forcibly sever the IUCV connections to the workers in the class.

Options

None

Usage Notes

1. Case is significant in class names.

2. If FORCE is not specified, the server kernel sends each instance a message asking it to end its
connections with its workers in the affected class. Each instance is expected to finish up quickly and
end its connection.

3. If FORCE is specified, the server kernel will IUCV SEVER all connections to workers in the class and
inform each affected instance that its connections to those workers have been lost. After this, each
worker machine found to be running disconnected will be forced off through CP FORCE.

Messages and Return Codes

BKW1802E Worker class not found.

Chapter 14. Command Descriptions 205

WORKER DELETE

WORKER DELETE

»— WORKER — DELETE — userid L J)
FORCE

Purpose

Deletes a single worker machine from its class.

Operands

userid
The user ID of the worker virtual machine.

FORCE
The server kernel should forcibly break any existing IUCV connections to the worker machine.

Options

None

Usage Notes

1. If FORCE is not specified, the server kernel sends each affected instance a message asking it to end its
connections with the worker. The instances are expected to finish up quickly and end their connections
to the worker.

2. If FORCE is specified, the server kernel will IUCV SEVER all connections to the worker and inform
each affected instance that its connections to the worker have been lost. After this, if the worker is
found to be running disconnected, it will be forced off through CP FORCE.

Messages and Return Codes
BKW1801E Worker machine not found.

206 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

WORKER DISTRIBUTE

WORKER DISTRIBUTE

»— WORKER — DISTRIBUTE — classname ON
OFF

Purpose

Controls whether the reusable server kernel will attempt to manage a worker class as if the worker
machines were located on other systems.

Operands
classname
The name of the worker class to which the command applies.

ON
Manage as if distributed.

OFF
Manage as if local.

Options

None

Usage Notes

1. Case is significant in class names.

2. When you set DISTRIBUTE OFF for a class, the reusable server kernel manages the workers as if they
were running on the same instance of CP as the server itself. More specifically, the reusable server
kernel uses the XAUTOLOG and FORCE commands to control the workers in the class. For example, if

the server kernel determines that another worker needs to be logged on, it will issue XAUTOLOG to log
on the new worker.

3. When you set DISTRIBUTE ON for a class, the reusable server kernel manages the workers as if they
might be running on other systems. In particular, the reusable server kernel suppresses any attempts
it might make to use the XAUTOLOG or FORCE commands to manage the worker machines in the class.
Instead, responsibility for managing the machines is left to the server operator or system programmer.

Messages and Return Codes

BKW1802E Worker class not found.

Chapter 14. Command Descriptions 207

WORKER MACHINES

WORKER MACHINES

»w— WORKER — MACHINES — classname —»<«

Purpose

Displays a table of status information about worker machines in a given class.

Operands

classname
The name of the class for which worker status should be displayed.
Options

None

Usage Notes

1. Case is significant in class names.
2. The output form is:

Machine State S Capacity InUse

MPTOO2 = 01 0

The columns have the following meanings:

Column
Meaning
Machine
The user ID of the worker machine
State
What CP QUERY USER reports about the worker machine, or - if the worker is not logged on
S
The status of the worker machine, as follows:
0
Seems usable
1
Repeated FORCE -XAUTOLOG cycles did not bring this worker to life
2
Tried to XAUTOLOG this worker but could not do so - possible insufficient privilege to use
XAUTOLOG command
3
Unrecoverable error trying to IUCV CONNECT
4
Tried to reset worker through CP FORCE but command failed - possible insufficient privilege to
use FORCE
5
CP FORCE succeeded but virtual machine did not log off - worker machine appears hung
Capacity

The number of IUCV connections the worker can handle concurrently

208 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

WORKER MACHINES

InUse
The number of IUCV connections to the worker right now

Messages and Return Codes

BKW1802E Worker class not found.
BKW1805E No worker machines found.

Chapter 14. Command Descriptions 209

WORKER RESET

WORKER RESET

»w— WORKER — RESET — classname ﬁ—k
userid

Purpose

Resets the status information the server kernel retains about a worker machine.

Operands

classname
The name of the class to be reset.

userid
The specific worker machine whose status is to be reset.

Options

None

Usage Notes

1. Case is significant in class names.

2. This command is meant to be used after manual intervention has supposedly resolved the problems
the server kernel has detected in trying to use a worker machine or a class of worker machines. For
example, the system administrator might have omitted the TUCV ALLOW statements in the workers'
CP directory entries, and when the server attempted to use those workers, it found it could not
connect to them. Once the CP directory has been repaired, WORKER RESET can be used to wipe out
the server kernel's memory of the difficulty.

3. If userid is omitted, the status for all machines in the class is reset.

Messages and Return Codes

BKW1801E Worker machine not found.
BKW1802E Worker class not found.

210 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

WORKER STATUS

WORKER STATUS

»— WORKER — STATUS

L -
classname

Purpose

Displays information about the current set of connections to worker machines.

Operands

classname
The name of the worker class for which status information should be displayed.

Options

None

Usage Notes

1. Case is significant in class names.
2. The output form is:

Class Machine W-CBlock 1I-CBlock I-Service

cgiserv MPTOO1 0O3FF3048 0O3FE21F8 HTTP

The columns and their meanings are:

Column
Meaning

Class
The worker class involved

Machine
The worker machine to which the connection leads

W-CBlock
The address of the worker C-block

I-CBlock
The address of the instance C-block

I-Service
The service with which the instance is affiliated

Messages and Return Codes

BKW1802E Worker class not found.
BKW1804E No worker connections found.

Chapter 14. Command Descriptions 211

WORKER STATUS

212 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 15. Function Descriptions

This chapter describes application programming interfaces (APIs) provided as part of the reusable server
kernel. To review, the APIs can be partitioned into a number of subsets:

Table 45. Programming Interfaces

Subset

Description

Anchor

Provides a means for manipulating an anchor word.

Authorization

Provides a means for manipulating an authorization database.

Cache Provides a means for manipulating cached files.
Client Provides a means for manipulating buffers of client data.
Enroll Provides a means for manipulating enrollment data.
Memory Provides a means for manipulating memory.
Server Provides a means for starting and stopping the server.
Service Provides a means for identifying services.
Storage group Provides a means for manipulating storage groups.
Tries Provides a means for manipulating tries.
User ID Provides a means for mapping user IDs.
Worker Provides a means for connecting to a worker machine.

Programmers should be aware of the these restrictions regarding the use of these APIs:

« RSKMAIN can call only ssServiceBind and ssServerRun.

« ssServiceBind can be called only by RSKMAIN and only before ssServerRun.

« ssServerRun can be called only by RSKMAIN and only once.

Note: Failure to adhere to these restrictions could cause unpredictable results.

© Copyright IBM Corp. 1999, 2024

213

ssAnchorGet

ssAnchorGet — Get Anchor Value

ssAnchoxGet

retcode
reascode
anchor
monbufptr
monbufsize

Purpose

Retrieves the value of the application-wide anchor word and the address and size of the application
monitor data area.

Operands

ssAnchorGet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAnchoxGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAnchozxGet.

anchor
(output,INT,4) is a signed four-byte binary output variable to hold the returned anchor value.

monbufptr
(output,POINTER,4) is a signed four-byte binary output variable to hold the address of the application
monitor buffer.

monbufsize
(output,INT,4) is a signed four-byte binary output variable to hold the size of the application monitor
buffer.

Usage Notes

1. If the application-wide anchor word has not yet been set, this routine returns zero as the value of the
anchor word.

2. The value returned in monbufsize is the value of the MON_USER_SIZE configuration variable.

Messages and Return Codes

Return Code Reason Code Meaning

SS_anc_rc_success SS_anc_re_success ssAnchorGet completed successfully

214 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAnchorGet

Programming Language Bindings

Language Language Binding File
Assembler SSASMANC MACRO
PL/X SSPLXANC COPY

Chapter 15. Function Descriptions 215

ssAnchorSet

ssAnchorSet — Set Anchor Value

ssAnchoxSet

retcode
reascode
anchor

Purpose

Sets the value of the application-wide anchor word.

Operands

ssAnchorSet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAnchoxSet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAnchozxSet.

anchor
(input,INT,4) is a signed four-byte binary input variable holding the new anchor value.

Usage Notes

None

Messages and Return Codes

Return Code Reason Code Meaning

SS_anc_rc_success SS_anc_re_success ssAnchoxrSet completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMANC MACRO
PL/X SSPLXANC COPY

216 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthCreateClass

ssAuthCreateClass — Create an Object Class

ssAuthCreateClass

retcode
reascode
class_id
operation_count
operation_array

Purpose

Creates a class in the authorization rule base.

Operands

ssAuthCreateClass
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthCreateClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthCreateClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the new class.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the number of operations defined on
the class.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the operations defined on the
class.

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code
Ss_aut_rc_success
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_success
ss_aut_re_bad_count
ss_aut_re_out_of storage
ss_aut_re_exists
ss_aut_re_magq_fail
ss_aut_re_cvw._fail

ss_aut_re_cvs_fail

Meaning

ssAuthCreateClass completed successfully
operation_count out of range

Not enough storage available

Class already exists

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Chapter 15. Function Descriptions 217

ssAuthCreateClass

Return Code

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_write_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMAUT MACRO

SSPLXAUT COPY

Meaning

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

218 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthCreateObject

ssAuthCreateObject — Create an Object

ssAuthCreateObject

retcode

reascode
object_name
object_name_length
class_id

Purpose

Creates an object in the authorization rule base, assigning the object to the specified class.

Operands

ssAuthCreateObject
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthCreateObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthCreateObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

class_id
(input,INT,4) is a signed four-byte binary input variable holding the identifier of the class to which the
object belongs.

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthCreateObject completed successfully
ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range
ss_aut_rc_error ss_aut_re_out_of storage Not enough storage available

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_error ss_aut_re_exists Object already exists

ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw._fail Condition variable wait failed

Chapter 15. Function Descriptions 219

ssAuthCreateObject

Return Code

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_write_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMAUT MACRO

SSPLXAUT COPY

Meaning

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

220 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthDeleteClass

ssAuthDeleteClass — Delete a Class

ssAuthDeleteClass

retcode
reascode
class_id
option_count
option_array

Purpose

Deletes the objects in a class, and optionally deletes the class.

Operands

ssAuthDeleteClass
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthDeleteClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthDeleteClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the class to be deleted.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of options in option_array.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding the deletion
options.

Usage Notes
1. These options are recognized:

ss_aut_objects_only
Delete only the class's objects

ss_aut_objects_and_class
Delete the class and the class's objects (default)

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_aut_rc_success Ss_aut_re_success ssAuthDeleteClass completed successfully
ss_aut_rc_error ss_aut_re_bad_count option_count is out of range

ss_aut_rc_error ss_aut_re_bad_option At least one element of option_array is unrecognized

Chapter 15. Function Descriptions 221

ssAuthDeleteClass

Return Code

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_no_class
ss_aut_re_magq_fail
ss_aut_re_cvw._fail
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_write_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMAUT MACRO

SSPLXAUT COPY

Meaning

Class does not exist

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

222 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthDeleteObject

ssAuthDeleteObject — Delete an Object

ssAuthDeleteObject

retcode

reascode
object_name
object_name_length
option_count
option_array

Purpose

Deletes the rules associated with an object, and optionally deletes the object.

Operands

ssAuthDeleteObject
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthDeleteObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthDeleteObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of options in option_array.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding the options to
be applied to the deletion.

Usage Notes

1. These deletion options are recognized:

ss_aut_rules_only
Delete only the object's rules

ss_aut_rules_and_object
Delete the object and all its rules (default)

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthDeleteObject completed successfully

Chapter 15. Function Descriptions 223

ssAuthDeleteObject

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count option_count is out of range

ss_aut_rc_error ss_aut_re_bad_option Unrecognized option in option_array

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw._fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

224 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthDeleteUser

ssAuthDeleteUser — Delete a User

ssAuthDeleteUser

retcode

reascode
user_name
user_name_length
class_name
option_count
option_array

Purpose

Deletes rules associated with a given user.

Operands

ssAuthDeleteUser
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthDeleteUser.

reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthDeleteUser.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.
user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of user_name
class_name
(input,CHAR,8) is the name of the class from which rules should be deleted.
option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of deletion options
specified.
option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding the deletion
options.

Usage Notes

1. If no deletion options are specified, or if option ss_aut_all_classes is specified, then every rule
applicable to the named user is deleted.

2. If ss_aut_specific_class is specified in the options array, then the only rules deleted are those that both
apply to objects belonging to class class_name and mention the named user.

3. To adjust a given user's rules for a specific object, use routine ssAuthPermitUser.

4. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Chapter 15. Function Descriptions 225

ssAuthDeleteUser

Messages and Return Codes

Return Code

ss_aut_rc_success

ss_aut_rc_error

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code

ss_aut_re_success

ss_aut_re_bad_user_lengt

h

ss_aut_re_bad_count

ss_aut_re_bad_option

Ss_aut_re_no_user

ss_aut_re_magq_fail

ss_aut_re _cvw_fail

ss_aut_re cvs_fail

ss_aut_re_mr_fail

ss_aut_re_read_fail

ss_aut_re_write_fail

ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File

SSASMAUT MACRO

SSPLXAUT COPY

Meaning
ssAuthDeleteUser completed successfully

user_name_length out of range

option_count out of range

Unrecognized option in option_array

No rules exist for user_name

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

226 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthListClasses

ssAuthListClasses — List Classes

ssAuthListClasses

retcode

reascode
match_key
match_key length
classes_expected
class_buffer
classes_returned

Purpose

Returns a list of classes.

Operands

ssAuthListClasses
is the name of the function being invoked.
retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthlListClasses.
reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthListClasses.
match_key
(input,CHAR,match_key_length) is an input character string holding the match key.
match_key_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the match key.
classes_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of eight-byte class names
that will fit in class_buffer.

class_buffer
(output,CHAR,140*classes_expected) is an output buffer into which the list of classes and their
defined operations is to be placed.

classes_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of classes defined.

Usage Notes
1. ssAuthListClasses returns a list of the classes whose names match the match key specified by the
caller. The operations defined on those classes are also returned.

2. The key expressed in match_key is expressed according to the CMS Application Multitasking syntax for
IPC and event match keys.

3. Each class returned consumes 140 bytes in the output buffer, as follows:

Offset.Length
Usage

Chapter 15. Function Descriptions 227

ssAuthListClasses

0.8
Class name

8.4
Number of operations

12.128
Operations (4 bytes each)

4. If the actual number of classes defined is greater than classes_expected, then the actual number of
classes defined is returned in classes_returned, as many class names as will fit are filled into the
output buffer, and a warning return and reason code are produced.

5. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_aut_rc_success Ss_aut_re_success ssAuthListClasses completed successfully

ss_aut_rc_error ss_aut_re_bad_count classes_expected is out of range

ss_aut_rc_warning ss_aut_re_too_many Some class names did not fit into the output buffer

ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

228 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthListObjects

ssAuthListObjects — List Objects in Class

ssAuthListObjects

retcode

reascode

class_id

match_key

match_key length
object_names_expected
object_name_buffer_pointers
object_name_buffer_sizes
object_name_lengths
object_names_returned

Purpose

Generates a list of the names of the objects belonging to a given class.

Operands

ssAuthListObjects
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthListObjects.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthListObjects.

class_id
(input,CHAR,8) is a character string holding the class to be interrogated.

match_key
(input,CHAR,match_key length) is an input character string holding the match key.

match_key_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the match key.

object_names_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in the
object_name_buffer_pointers, object_name_buffer_sizes, and object_name_lengths arrays.

object_name_buffer_pointers
(input,POINTER,4*object_names_expected) is an array of pointers to buffers to hold the returned
object names.

object_name_buffer_sizes
(input,INT,4*object_names_expected) is an array of signed four-byte binary input variables holding the
sizes of the buffers pointed to by the elements of object_name_buffer_pointers.

object_name_lengths
(output,INT,4*object_names_expected) is an array of signed four-byte binary output variables to hold
the lengths of the returned object names.

object_names_returned
(output,INT,4) is a signed four-byte binary output variable to hold the actual number of object names
matching the supplied key.

Chapter 15. Function Descriptions 229

ssAuthListObjects

Usage Notes

1. This function returns the names of the objects belonging to class class_id and matching key
match_key.

2. The key expressed in match_key is expressed according to the CMS Application Multitasking syntax for
IPC and event match keys.

3. If the actual number of objects selected by match_key is greater than object_names_expected, then
the actual number of objects selected is returned in object_names_returned, as many object names as
will fit are filled into the output arrays, and a warning return and reason code are produced.

4. If an object name does not fit into the buffer described by its pair of elements from the
object_name_buffer_pointers and object_name_buffer_sizes arrays, then the actual length of the object
name is returned in the corresponding element of the object_name_lengths, as much of the object
name as will fit is returned in the object name buffer, and a warning return and reason code are
produced.

5. If both of the above-mentioned warning conditions are encountered, the reason code will indicate that
more object names were available than would fit in the output arrays (in other words, the truncated
object name condition will not be visible through reason code).

6. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_aut_rc_success Ss_aut_re_success ssAuthListObjects completed successfully

ss_aut_rc_error ss_aut_re_bad_count object_names_expected out of range

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_warning ss_aut_re_too_many More object names were available than caller
expected

ss_aut_rc_warning ss_aut_re_trunc One or more returned object names was truncated

ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

230 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthModifyClass

ssAuthModifyClass — Modify an Object Class

ssAuthModifyClass

retcode
reascode
class_id
operation_count
operation_array

Purpose

Adds operations to an existing object class.

Operands

ssAuthModifyClass
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthModifyClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthModifyClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the class being modified.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the number of operations to be added
to the class.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the operations to be added to
the class.

Usage Notes

1. Use this function when it becomes necessary to define one or more new operations on a class (and
therefore on all objects belonging to it).

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_aut_rc_success Ss_aut_re_success ssAuthModifyClass completed successfully
ss_aut_rc_error ss_aut_re_bad_count operation_count out of range

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_error ss_aut_re_too_many Operation limit on class would be exceeded
ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed

Chapter 15. Function Descriptions 231

ssAuthModifyClass

Return Code

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_cvw._fail
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_write_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMAUT MACRO

SSPLXAUT COPY

Meaning

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

232 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthPermitUser

ssAuthPermitUser — Permit a User

ssAuthPexrmitUser

retcode

reascode
user_name
user_name_length
object_name
object_name_length
use_arrays
operation_count
operation_array
operation_qualifiers
update_results

Purpose

Installs, modifies, or deletes a rule in the rule base.

Operands

ssAuthPermitUser
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthPermitUser.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthPermitUser.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of user_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

use_arrays
(input,INT,4) is a signed four-byte binary input variable holding a flag indicating how the operation
arrays should be applied to the rule.

operation_count

(input,INT,4) is a signed four-byte binary input variable holding the length of the operation_array,
operation_qualifiers and update_results arrays.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the operations being edited.

operation_qualifiers
(input,INT,4*operation_count) is an array of signed four-byte binary input variables holding the
interpretation rules for the corresponding elements of operation_array.

Chapter 15. Function Descriptions 233

ssAuthPermitUser

update_results
(output,INT,4*operation_count) is an array of signed four-byte binary output variables to hold the
results of applying the changes requested in the corresponding elements of the operation_array and
operation_qualifier arrays.

Usage Notes

1. These values are recognized in use_arrays:

ss_aut_add_all
First add all operations defined on the object to the user's rule for the object, then use the
operation arrays to further update the user's rule

ss_aut_delete_all
First completely delete the current rule, then use the operation arrays to construct a new rule

ss_aut_use_arrays
Just update the current rule, using the operation arrays

2. These items are recognized in operation_qualifiers:

ss_aut_add_operation
Add the corresponding operation in operation_array

ss_aut_remove_operation
Remove the corresponding operation in operation_array

3. These items are filled into update_results:
ss_aut_op_not_defined
Operation is not defined on class to which object belongs

ss_aut_op_permitted
Operation is now permitted

ss_aut_op_not_permitted
Operation is now not permitted

ss_aut_no_change
Requested update did not change user's rule for object
4. To completely remove a rule, use ss_aut_delete _all and operation_count=0.
5. To grant "blanket" access to an object, use ss_aut_add_all and operation_count=0.

6. To grant all authorities except ones you explicitly wish to exclude, use ss_aut_add_all followed
by an operation array naming the authorities you wish to exclude, each entry being qualified by
Ss_aut_remove_operation.

7. To "edit" an existing rule, use ss_aut_use_arrays and operation arrays containing the changes you wish
to apply.

8. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning
Ss_aut_rc_success Ss_aut_re_success ssAuthPermitUser completed successfully
ss_aut_rc_warning ss_aut_re_bad_op One or more of the elements of operation_array is not
defined on this object's class
ss_aut_rc_error ss_aut_re_bad_user_lengt user_name_length out of range
h
ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range
ss_aut_rc_error ss_aut_re_bad_use use_arrays contains an unrecognized value

234 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Return Code
ss_aut_rc_error

ss_aut_rc_error

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_bad_count

ss_aut_re_bad_qual

ss_aut_re_out_of storage
ss_aut_re_no_object
ss_aut_re_magq_fail
ss_aut_re_cvw._fail
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_write_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File

SSASMAUT MACRO

SSPLXAUT COPY

ssAuthPermitUser

Meaning
operation_count out of range

One or more of the elements of operation_qualifiers is
unrecognized

Not enough storage available

Object does not exist

Mutex acquisition failed

Condition variable wait failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

Unable to write authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

Chapter 15. Function Descriptions 235

ssAuthQueryObject

ssAuthQueryObject — Query an Object

ssAuthQuexryObject

retcode

reascode

object_name
object_name_length
class_id
userids_expected
userid_buffer_pointers
userid_buffer_sizes
userid_lengths
userids_returned

Purpose

Queries an object, returning the class to which it belongs and a list of the user IDs for which a rule exists
for the object.

Operands

ssAuthQueryObject
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthQueryObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthQueryObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

class_id
(output,CHAR,8) is a character string to hold the class to which the object belongs.

userids_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in the
userid_buffer_pointers, userid_buffer_sizes, and userid_lengths arrays.

userid_buffer_pointers
(input,POINTER,4*userids_expected) is an array of pointers to buffers to hold the returned user IDs.

userid_buffer_sizes
(input,INT,4*userids_expected) is an array of signed four-byte binary input variables holding the sizes
of the buffers pointed to by the elements of userid_buffer_pointers.

userid_lengths
(output,INT,4*userids_expected) is an array of signed four-byte binary output variables to hold the
lengths of the returned user IDs.

userids_returned
(output,INT,4) is a signed four-byte binary output variable to hold the actual number of user IDs for
which a rule exists for the object.

236 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthQueryObject

Usage Notes

1. If the actual number of user IDs for which a rule exists is greater than userids_expected, then the
actual number of user IDs is returned in userids_returned, as many user IDs as will fit are filled into the
output arrays, and a warning return and reason code are produced.

2. If auser ID does not fit into the buffer described by the pair of elements from the
userid_buffer_pointers and userid_buffer_sizes arrays, then the actual length of the user ID is returned
in the corresponding element of the userid_lengths arrays, as much of the user ID as will fit is returned
in the buffer, and a warning return and reason code are produced.

3. If both of the above-mentioned warning conditions are encountered, the reason code will indicate that
more user IDs were available than would fit in the output arrays (in other words, the truncated user ID
condition will not be visible through reason code).

4. To determine the specific access rights afforded to one of the returned user IDs, use
ssAuthQueryRule.

5. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthQueryObject completed successfully

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count userids_expected out of range

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_warning ss_aut_re_too_many Some user IDs did not fit into the output arrays

ss_aut_rc_warning ss_aut_re_trunc One or more returned user IDs was truncated

ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Chapter 15. Function Descriptions 237

ssAuthQueryRule

ssAuthQueryRule — Query a Rule

ssAuthQuexyRule

retcode

reascode
user_name
user_name_length
object_name
object_name_length
operations_expected
operation_array
operations_returned

Purpose

Queries the operations a user can perform against an object.

Operands

ssAuthQueryRule
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthQueryRule.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthQueryRule.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of user_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

operations_expected
(input,INT,4) is a signed four-byte binary input variable holding the size of operation_array.

operation_array
(output,CHAR,4*operations_expected) is an array of character strings to hold the operations the user is
permitted to perform.

operations_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of operations filled into
operation_array.

Usage Notes

1. If the actual number of operations permitted is greater than operations_expected, then the actual
number of operations permitted is returned in operations_returned, as many operations as will fit are
filled into operation_array, and a warning return and reason code are produced.

238 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthQueryRule

2. If the named user is not permitted any operations against the named object, then a successful return
and reason code are generated and operations_returned is set to zero.

3. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code
Ss_aut_rc_success

ss_aut_rc_error

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_warning
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
Ss_aut_re_success

ss_aut_re_bad_user_lengt
h

ss_aut_re_bad_obj_length
ss_aut_re_bad_count
ss_aut_re_no_object
ss_aut_re_too_many
ss_aut_re_magq_fail
ss_aut_re_cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMAUT MACRO

SSPLXAUT COPY

Meaning
ssAuthQueryRule completed successfully

user_name_length out of range

object_name_length out of range
operations_expected out of range

Object does not exist

Some operations did not fit into operation_array
Mutex acquisition failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

Chapter 15. Function Descriptions 239

ssAuthReload

ssAuthReload — Reload Authorization Data

ssAuthReload

retcode
reascode

Purpose

Resets the internal authorization engine.

Operands

ssAuthReload
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssAuthReload.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssAuthReload.

Usage Notes

This function is intended for use when an I/O error of some kind shuts off the authorization API (causes
ss_aut_re_prev_io_error to be returned). It performs these functions:

« Closes all authorization data files, ignoring close errors.

Note: For the SFS, the work unit was rolled back at the time the error was detected. For other
repositories, the log file and update algorithms provide appropriate recovery mechanisms.

« Returns its CMS work unit ID, if applicable.
* Flushes all caches.

« Gets a new CMS work unit ID, if applicable.
« Reopens the data files.

- If applicable, attempts to recover the authorization database (processes log file and realigns the two
copies).

« Reloads the authorization index into storage.

If all these operations were successful, the authorization API is again available for use.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_aut_rc_success Ss_aut_re_success ssAuthReload completed successfully
ss_aut_rc_error ss_aut_re_magq_fail Mutex acquisition failed
ss_aut_rc_error ss_aut_re_cvw._fail Condition variable wait failed
ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed
ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_gwu_fail DMSGETWU (Get Work Unit ID) failed

240 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssAuthReload

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_open_fail Unable to open authorization files

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File
Assembler SSASMAUT MACRO
PL/X SSPLXAUT COPY

Chapter 15. Function Descriptions 241

ssAuthTestOperations

ssAuthTestOperations — Test Operations

ssAuthTestOperations

retcode

reascode
user_name
user_name_length
object_name
object_name_length
operation_count
desired_operations
test_results

Purpose

Tests a given user's rights to perform a set of actions against a given object.

Operands

ssAuthTestOperations
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthTestOperations.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthTestOperations.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of us/r_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the length of the desired_operations
and test_results arrays.

desired_operations
(input,CHAR,4*operation_count) is an array of character strings holding the operations to be tested.

test_results
(output,INT,4*operation_count) is an array of signed four-byte binary output variables to hold the
results of the tests.

Usage Notes

1. On successful completion, each element of test_results will contain one of these values:

ss_aut_op_permitted
Operation is permitted

242 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ss_aut_op_not_permitted
Operation is not permitted

ss_aut_op_not_defined
Operation is not defined

ssAuthTestOperations

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code
ss_aut_rc_success

ss_aut_rc_error

ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error
ss_aut_rc_error

ss_aut_rc_error

Reason Code
ss_aut_re_success

ss_aut_re_bad_user_lengt
h

ss_aut_re_bad_obj_length
ss_aut_re_bad_count
ss_aut_re_no_object
ss_aut_re_magq_fail
ss_aut_re cvs_fail
ss_aut_re_mr_fail
ss_aut_re_read_fail
ss_aut_re_prev_io_error

ss_aut_re_prev_sync_error

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMAUT MACRO

SSPLXAUT COPY

Meaning
ssAuthTestOperations completed successfully

user_name_length out of range

object_name_length out of range
operation_count out of range

Object does not exist

Mutex acquisition failed

Condition variable signal failed

Mutex release failed

Unable to read authorization files

API disabled due to I/O error on previous call

API disabled due to synchronization error on previous
call

Chapter 15. Function Descriptions 243

ssCacheCreate

ssCacheCreate — Create Cache

ssCacheCreate

retcode
reascode
cache_name
cache_size
cache_alet

Purpose

Creates a file cache, using a VM Data Space.

Operands
ssCacheCreate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheCreate.

cache_name
(input,CHAR,8) is a character string holding the name of the new file cache.

cache_size
(input,INT,4) is a signed four-byte binary input variable holding the size of the new file cache.

cache_ALET
(output,INT,4) is a signed four-byte binary output variable to hold the returned ALET.

Usage Notes

1. The cache name is used directly in a call to ssMemoryCreateDS and therefore must not conflict with
any other subpool names.

2. The cache size is to be given in pages. It must be greater than 0 and less than or equal to 524288. The
actual size of the created cache is rounded up to the next 16-page boundary.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheCreate completed successfully
ss_fil_rc_error ss_fil_re_bad_size cache_size is out of range

ss_fil_rc_error ss_fil_re_cache_exists Cache already exists

ss_fil_rc_error ss_fil_re_out_of storage Out of storage

ss_fil_rc_error ss_fil_re_dscr_fail Creation of data space failed

244 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssCacheCreate

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 245

ssCacheDelete

ssCacheDelete — Delete Cache

ssCacheDelete

retcode
reascode
cache_name

Purpose

Deletes a file cache.

Operands

ssCacheDelete
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheDelete.

cache_name
(input,CHAR,8) is a character string holding the name of the file cache to be deleted.

Usage Notes

1. Once deletion starts, the server kernel will not honor any more calls to ssCacheFileOpen for this
cache.

2. The deletion does not complete until the last open file in this cache is closed.

Messages and Return Codes

Return Code Reason Code Meaning
ss_fil_rc_success ss_fil_re_success ssCacheDelete completed successfully
ss_fil_rc_error ss_fil_re_cache_not_found Cache not found

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

246 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssCacheFileClose

ssCacheFileClose — Close Cached File

ssCacheFileClose

retcode
reascode
cache_name
file_token

Purpose

Close a cached file.

Operands
ssCacheFileClose
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheFileClose.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheFileClose.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the file being closed is
located.

file_token
(input,CHAR,8) is a character string holding the token of the file being closed.

Usage Notes

If the file being closed was previously marked as stale, it is dropped from the cache.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheFileClose completed successfully
ss_fil_rc_error ss_fil_re_cache_not_found Cache does not exist

ss_fil_rc_error ss_fil_re_bad_token File token is bad

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 247

ssCacheFileOpen

ssCacheFileOpen — Open Cached File

ssCacheFileOpen

retcode
reascode
cache_name
file_name
file_name_length
ESM_data
ESM_data_length
flag_count
flag_names
flag_values
file_token

cache ALET
file_address
file_size
file_stamp

Purpose

Makes a file ready for reading from a cache, loading it from minidisk, SFS, or BFS if necessary.

Operands

ssCacheFileOpen
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheFileOpen.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheFileOpen.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the file is to be placed.

file_name
(input,CHAR,file_name_length) is a character string holding the name of the file to be cached.

file_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of file_name.

ESM_data
(input,CHAR,ESM_data_length) is a character string holding ESM data to be passed to DMSOPEN.

ESM_data_length
(input,INT,4) is a signed four-byte binary input variable holding the length of ESM_data.

flag_count
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in each of the

the flag_names and flag_values arrays.

flag_names
(input,INT,4*flag_count) is an array of signed four-byte binary input variables holding flag names.

248 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssCacheFileOpen

flag_values
(input,INT,4*flag_count) is an array of signed four-byte binary input variables holding flag values.

file_token
(output,CHAR,8) is a character string to hold the returned file token.

cache ALET
(output,INT,4) is a signed four-byte binary output variable to hold the ALET of the cache data space.

file_address
(output,POINTER,4) is a signed four-byte binary output variable to hold the address of the file in the
data space.

file_size
(output,INT,4) is a signed four-byte binary output variable to hold the size of the cached file in bytes.

file_stamp
(output,CHAR,32) is a character string to hold the returned last update date and time of the file.

Usage Notes

1. Parameters file_name and file_name_length together describe a string which will be passed
unchanged to either CSL routine DMSOPEN or CSL routine BPX10PN as the name of the file to be
opened. The CSL routine the server kernel chooses depends on the values you specify in the flag
arrays. Be aware that case is significant in file names.

2. The server kernel will pass parameters ESM_data and ESM_data_length unchanged to DMSOPEN if
it ends up calling DMSOPEN to find the file. The server kernel will ignore the ESM data if it ends up
calling BPX10PN.

3. Parameter arrays flag_names and flag_values together contain integers specifying various controls
on how the file is to be cached. These integers and their meanings are described in Table 46 on page
249.

Table 46. Flags for ssCacheFileOpen

Flag Name

Function

Acceptable Values

Default Value

ss_cac_ofn_bfs

Corresponding value
tells the server kernel
whether to use
BPX10PN to open the
file.

Specify ss_cac_ofv_yes
for BPX10PN or
ss_cac_ofv_no for
DMSOPEN.

If you do not mention this flag in your flag arrays,
the server kernel will try to guess whether to use
DMSOPEN or BPX10PN based on the composition
of the filename string you supply. If the filename
you supply contains a blank (X'40"), the server
kernel will try DMSOPEN. If it contains no blanks,
the server kernel will try BPX10PN.

ss_cac_ofn_xlate

Corresponding value
nominates a translation
table previously
identified through
ssCacheX1TabSet.

Any table ID, or zero to
bypass translations.

Zero

ss_cac_ofn_preserve_dolr

Corresponding value
specifies whether the
file's date of last
reference should be
preserved (that is, not
updated). Ignored if the
server kernel ends up
calling BPX10PN.

Specify ss_cac_ofv_yes
or ss_cac_ofv_no.

ss_cac_ofv_no

Chapter 15. Function Descriptions 249

ssCacheFileOpen

Table 46. Flags for ssCacheFileOpen (continued)

Flag Name

Function

Acceptable Values

Default Value

ss_cac_ofn_recmethod_fs

Corresponding value
describes how the
server kernel should
expect the records to be
delimited in the file it is
reading from disk.

« X'00xxxxxx' - The
file's records are
delimited according
to the structure
recorded by the CMS
file system (F1 for
BFS files).

« X'O1nnssss' - The
file's records are
delimited by an nn-
byte suffix appearing
in the file's data after
each record. Set nn
equal to X'00', X'01',
or X'02". The suffix
bytes to be used are
ssss. If nnis X'01' the
second suffix byte is
ignored.

» X'02nnxxxx' - The
file's records are
delimited by an nn-
byte length prefix
appearing in the
file's data before
each record. The
length prefix does not
include the length of
the prefix itself. Set
nn equal to X'02' or
X'04".

X'00000000"

ss_cac_ofn_recmethod_cache

Corresponding value
describes how the
server kernel should
delimit records in the
cached file.

« X'01nnssss' - Put
an nn-byte suffix on
each record. Set nn
equal to X'00', X'01',
or X'02". The suffix

X'01000000"

bytes to be used are
ssss. If nnis X'01' the
second suffix byte is
ignored.

« X'02nnxxxx' - Prefix
each record with a
nn-byte length field.
The length prefix
does not include the
length of the prefix
itself. Set nn equal to
X'02' or X'04".

4. Use the value supplied in output file_token in calls to ssCacheFileRead and ssCacheFileClose.

6.

7.

250 z/VM:

. If the server kernel was able to load the file contiguously in data space storage, then it returns the

cache's ALET in cache_ALET and the address of the file buffer in file_address. This lets the server
know that it can use AR mode to access the file data directly if it chooses. If the file was not loaded
contiguously, cache_ALET and file_address are returned as zero.

The number of bytes cached -- that is, the size of the transformed file, in bytes -- is returned in
file_size.

If the data space is too full to contain the file, the server kernel throws away cached files in LRU
fashion, skipping those files that are still open, until enough storage is freed to hold the new file. If
the server kernel removes all files eligible for removal but the new file still will not fit, an error is
returned.

. If there are stale versions of the new file still in the cache, and those stale versions are no longer

open, they are discarded prior to loading the new file. Stale, still-open versions are marked as stale
and thrown out when they are finally closed.

. Afile's date of last reference is never updated on a cache hit, no matter what the caller requested.

7.4 Reusable Server Kernel Programmer's Guide and Reference

10.

ssCacheFileOpen

Cache contents are indexed by file name as passed by the caller. Depending on accessed file modes,

default filepools, SFS aliasing, and default filespaces, several different file names might actually refer
to the same physical file; the server kernel cannot discern that these names all refer to the same file.

Callers need to be aware of this phenomenon and might need to perform some file name resolution

prior to calling ssCacheFileOpen in order to

keep unnecessary duplicates out of a file cache.

Similarly, if the server is referring to files using file mode letters and is switching the accessed
file mode set through the ACCESS and RELEASE commands, the same name might refer to two
different files at two different moments in time. The cache will be unharmed by this as long as

those two different files have different update
update timestamp the cache will fail to reload
responsible for avoiding this situation.

11.
12.
13.

Files with record formats other than V or F (as

timestamps, but if two such files have the same
when a reload truly is required. The server author is

returned by DMSEXIST) cannot be cached.

Files with names longer than 256 bytes cannot be cached.
If you requested suffixing or prefixing for ss_cac_ofn_recmethod_fs, the records encountered in the

file must all be less than or equal to 65,535 bytes in length.

14.

On VM/ESA 2.3.0 and later, file_stamp is always returned in ISO format. On earlier VM/ESA releases,

if the cached file was loaded from SFS or minidisk the stamp is returned in ISO format, but if the

cached file was loaded from BFS the first four
remainder of the stamp is blank (X'40").

Messages and Return Codes

Return Code Reason Code

ss_fil_rc_success ss_fil_re_success
ss_fil_rc_error ss_fil_re_cache_not_found
ss_fil_rc_error ss_fil_re_bad_length
ss_fil_rc_error ss_fil_re_bad_count
ss_fil_rc_error ss_fil_re_bad_esmdl
ss_fil_rc_error ss_fil_re_bad_fname
ss_fil_re_bad_fval

ss_fil_re_exist_fail

ss_fil_rc_error
ss_fil_rc_error
ss_fil_rc_error ss_fil_re_file_not_found

ss_fil_rc_error ss_fil_re_bad_recfm

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

bytes of the returned stamp are Posix time and the

Meaning

ssCacheFileOpen completed successfully
Cache does not exist

Bad value in file_name_length

Bad value in flag_count

Bad value in ESM_data_length

Bad value in flag_names

Bad value in flag_values

Call to DMSEXIST failed

DMSOPEN could not find file

Record format is neither F nor V

Chapter 15. Function Descriptions 251

ssCacheFileRead

ssCacheFileRead — Read Cached File

ssCacheFileRead

retcode
reascode
cache_name
file_token
byte_offset
byte_count
buffer
bytes_read

Purpose

Reads data from a cached file.

Operands
ssCacheFileRead
is the name of the function being invoked.

retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheFileRead.

reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheFileRead.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the file is located.

file_token

(input,CHAR,8) is a character string holding the token of the file to be read.
byte_offset

(input,INT,4) is the zero-origin offset to the first byte of the file to be read.

byte_count
(input,INT,4) is the number of bytes to be read.

buffer
(output,CHAR,byte_count) is a character string to hold the bytes read from the file.

bytes_returned

(output,INT,4) is a signed four-byte binary output variable to hold the number of bytes read from the
file.

Usage Notes

1. The server kernel supports multiple simultaneous read operations against a given file.

2. If not enough bytes are available to satisfy the call, as many bytes as are available are returned in the
output buffer and success is returned.

3. If the supplied offset is less than zero or is past the end of the file, an error is returned.

252 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssCacheFileRead

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheFileRead completed successfully
ss_fil_rc_error ss_fil_re_cache_not_found Cache does not exist

ss_fil_rc_error ss_fil_re_bad_token Bad file token

ss_fil_rc_error ss_fil_re_bad_offset Bad file offset

ss_fil_rc_error ss_fil_re_bad_length Bad byte count

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 253

ssCacheQuery

ssCacheQuery — Query Cache

ssCacheQuery

retcode
reascode
cache_name
files_cached
cache_size
in_use
open_count
hit_count

Purpose

Returns basic statistics about a cache's operation.

Operands

ssCacheQuery
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheQuery.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheQuery.

cache_name
(input,CHAR,8) is a character string holding the name of the file cache to be queried.

files_cached
(output,INT,4) is a signed four-byte binary output variable to hold the number of files currently
resident in the cache.

cache_size
(output,INT,4) is a signed four-byte binary output variable to hold the size of the cache.

in_use
(output,INT,4) is a signed four-byte binary output variable to hold the amount of cache space currently
in use.

open_count
(output,INT,4) is a signed four-byte binary output variable to hold the number of file opens processed
through this cache.

hit_count
(output,INT,4) is a signed four-byte binary output variable to hold the number of times a file open was
satisfied without having to call CMS to read the file from disk.

Usage Notes

Parameters cache_size and in_use are returned in bytes.

254 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssCacheQuery

Messages and Return Codes

Return Code Reason Code Meaning
ss_fil_rc_success ss_fil_re_success ssCacheQuery completed successfully
ss_fil_rc_error ss_fil_re_cache_not_found Cache not found

Programming Language Bindings

Language Language Binding File
Assembler SSASMCAC MACRO
PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 255

ssCacheXlTabSet

ssCacheXlTabSet — Set Translation Table

ssCacheXlTabSet

retcode
reascode
table_id
table

Purpose

Sets translation table for use when reading files.

Operands

ssCacheXlTabSet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheX1TabSet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheX1TabSet.

table_id
(input,INT,4) is a signed four-byte binary input variable holding the identifier of the new translation
table.

table
(input,CHAR,256) is a character string holding the translation table itself.

Usage Notes

1. Parameter table_id can be any four-byte integer except zero.
2. If table_id was previously in use, the previous table is replaced and a warning is returned.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheX1TabSet completed successfully
ss_fil_rc_warning ss_fil_re_table_replaced Table was replaced

ss_fil_rc_error ss_fil_re_bad_table_id Table ID cannot be zero

ss_fil_rc_error ss_fil_re_out_of storage Out of storage

Programming Language Bindings
Language Language Binding File

Assembler SSASMCAC MACRO

256 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssCacheXlTabSet

Language Language Binding File

PL/X SSPLXCAC COPY

Chapter 15. Function Descriptions 257

ssClientDataGet

ssClientDataGet — Get Client Data

ssClientDataGet

retcode

reascode
caller_type
C-block_address
get_method
buffer_alet
data_buffer
amount_wanted
amount_given
amount_remaining

Purpose

Obtains or discards data from client data buffers.

Operands

ssClientDataGet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataGet.

caller_type
(input,INT,4) is a signed four-byte binary input variable holding an indicator of the kind of caller
(instance or line driver).

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

get_method
(input,INT,4) is a signed four-byte binary input variable holding an indicator of the kind of retrieval
operation to be performed.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when accessing
data_buffer.

data_buffer
(input,CHAR,amount_wanted) is a character string into which the retrieved data is to be placed.
amount_wanted

(input,INT,4) is a signed four-byte binary input variable holding the number of bytes of data to be
retrieved or discarded.

amount_given
(output,INT,4) is a signed four-byte binary output variable to hold the number of bytes actually
returned or discarded.

258 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssClientDataGet

amount_remaining
(output,INT,4) is a signed four-byte binary output variable to hold the number of bytes remaining in
the client's buffers after the caller's operation completed.

Usage Notes

1. The caller_type should be set to one of these values:

ss_cli_iam_instance

The caller is an instance thread.
ss_cli_iam_linedriver

The caller is a line driver.

2. The get_method should be set to one of these values:

ss_cli_method_peek
Fill the caller's buffer but do not dequeue and discard it just yet from the reusable server kernel's
internal buffers.

ss_cli_method_read
Fill the caller's buffer and dequeue and discard it from the reusable server kernel's internal buffers.

ss_cli_method_discard
Dequeue and discard the data from the reusable server kernel's internal buffers but do not fill it
into the caller's buffer.

3. Setting amount_wanted to -1 means "perform this operation on all of the data currently buffered".

4. If the caller asks for more data than is currently buffered, all of the currently available data is returned,
amount_given is filled in appropriately, and no error is returned.

5. If the line driver you are using is record-oriented, then the data stream you read from the client will
be organized into records, each record prefixed by a four-byte length. For more information on the
description of record-oriented line drivers, see Table 8 on page 12.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataGet completed successfully
ss_cli_rc_error ss_cli_re _bad_iam caller_type contains unrecognized value
ss_cli_rc_error ss_cli_re_bad_method get_method contains unrecognized value
ss_cli_rc_error ss_cli_re_out_of range amount_wanted contains illegal value

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

Chapter 15. Function Descriptions 259

ssClientDatalnit

ssClientDatalnit — Initialize Client Data Buffers

ssClientDataInit

retcode
reascode
C-block_address
subpool_name

Purpose

Initializes client data buffer structures.

Operands

ssClientDatalnit
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDatalnit.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDatalnit.

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

subpool_name
(input,CHARACTER,8) is a character string holding the name of the subpool from which these client
buffers should be allocated.

Usage Notes

1. This routine is meant for use by a line driver that is preparing to handle a new client. As part of
initializing the C-block that describes the new client, the line driver should call ssClientDataInit to
ensure that the structures relating to buffering the client's data are initialized.

2. Subpool subpool_name must not be a subpool that refers to a VM Data Space.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataInit completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

260 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssClientDataPut

ssClientDataPut — Put Client Data

ssClientDataPut

retcode

reascode

caller_type
C-block_address
buffer_alet
data_buffer
amount_of data
new_amount_buffered

Purpose

Writes data to client data buffers.

Operands

ssClientDataPut
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataPut.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataPut.

caller_type
(input,INT,4) is a signed four-byte binary input variable holding an indicator of the kind of caller
(instance or line driver).

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

buffer_alet

(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when accessing
data_buffer.

data_buffer
(input,CHAR,amount_of data) is a character string containing the data to be written.

amount_of data
(input,INT,4) is a signed four-byte binary input variable holding the length of data_buffer.

new_amount_buffered
(output,INT,4) is a signed four-byte binary output variable to hold the new amount of data in the client
buffer.

Usage Notes

1. caller_type should be set to one of these values:

ss_cli_iam_instance
The caller is an instance thread.

Chapter 15. Function Descriptions 261

ssClientDataPut

ss_cli_iam_linedriver
The caller is a line driver.

2. ssClientDataPut maintains the bytes in and bytes out fields of the C-block. A line driver should not
attempt to maintain these itself.

3. ssClientDataPut exerts flow control on its caller. When the caller's operation results in either more
than 16 MB being queued for the client or more than 128 distinct buffers being queued for the client,
ssClientDataPut waits until the corresponding line driver empties the buffers before returning to
the caller. The buffer will be emptied only if the server has sent the appropriate IPC message to its line
driver; ssClientDataPut does not send any IPC messages on behalf of its caller.

4. If the line driver you are using is record-oriented, then the data stream you build for the client must
be organized into records, each record prefixed by a four-byte length. For more information on the
description of record-oriented line drivers, see Table 8 on page 12.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataPut completed successfully
ss cli_rc_error ss cli_re_bad_iam caller_type contains unrecognized value

ss cli_rc_error ss_cli_re_out_of range amount_of _data contains illegal value

ss cli_rc_error ss_cli_re_out_of storage Not enough free storage to buffer this data

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

262 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssClientDataTerm

ssClientDataTerm — Terminate Client Data Buffers

ssClientDataTexm

retcode
reascode
C-block_address

Purpose

Terminates client data buffer structures.

Operands

ssClientDataTerm
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataTexm.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataTezrm.

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

Usage Notes

This routine is meant for use by a line driver that is ending its handling of a client. As part of its
termination processing, the line driver should call ssClientDataTerm so that the reusable server kernel
can clean up its handling of buffered client data.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataTerm completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMCLI MACRO
PL/X SSPLXCLI COPY

Chapter 15. Function Descriptions 263

ssEnrollCommit

sseEnrollCommit — Commit Enrollment Set

ssEnrollCommit

retcode
reascode
set_name

Purpose

Commits changes to an open enrollment set.

Operands

ssEnrollCommit
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollCommit.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollCommit.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be committed.

Usage Notes

1. This entry point commits the SFS file holding the named enrollment set. The enrollment set remains
loaded and available for other transactions.

2. If the commit fails, the appropriate action is to call ssEnrol1Drop to drop the set, using drop type
ss_enr _drop_rollback.

3. An attempt to commit a transient enrollment set will return a warning. No other action is taken.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrollCommit completed successfully
Ss_enr_rc_error ss_enr_re_db_not_found Named enrollment set not found
ss_enr_rc_warning ss_enr_re_not_disk Named enrollment set is transient
Ss_enr_rc_error ss_enr_re_comm_fail Call to DMSCOMM failed

Programming Language Bindings
Language Language Binding File

Assembler SSASMENR MACRO

264 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollCommit

Language Language Binding File

PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 265

ssEnrollDrop

ssEnrollDrop — Drop Enrollment Set

ssEnxrollDxop

retcode
reascode
set_name
drop_type

Purpose

Drops (closes, unloads) an enrollment set.

Operands

ssEnrollDrop
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollDrop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollDrop.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be dropped.

drop_type
(input,INT,4) is a signed four-byte binary input variable holding a value indicative of the kind of drop to
be performed:

ss_enr_drop_commit
Commit changes

ss_enr_drop_rollback
Roll back changes

Usage Notes

1. This entry point closes the SFS file holding the named enrollment set, either rolling back or committing
the changes, according to the value of parameter drop_type. It also deletes the data space and
performs other cleanup operations.

2. If ss_enr _drop_commit is requested and the commit fails, an error will be returned and no other action
will be taken. The appropriate recovery action is to attempt a rollback drop.

3. An attempt to commit a transient enrollment set will return a warning and the drop will proceed.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrollDrop completed successfully
ss_enr_rc_error ss_enr_re_bad_drop_type Unrecognized drop type

Ss_enr_rc_error ss_enr_re_db_not_found = Named enrollment set not found

266 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollDrop

Return Code Reason Code Meaning
ss_enr_rc_warning ss_enr_re_not_disk Named enrollment set is transient
Ss_enr_rc_error ss_enr_re_close_fail Call to DMSCLOSE failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 267

ssEnrollList

ssEnrollList — List Enrollment Sets

ssEnrollList

retcode
reascode
C-block_pointer

Purpose

Produces a summary list of the loaded enrollment sets.

Operands

ssEnrollList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrolllist.

reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrolllist.

C-block_pointer

(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block

representing the client to whom the summary list should be sent.

Usage Notes

1. The reusable server kernel writes the summary list to the client represented by C-block_pointer, using

routine ssClientDataPut.

. If the programmer wishes to capture the output of ssEnrollList for his own purposes, he can
allocate storage to represent a C-block, initialize the C-block using routine ssClientDatalnit,
and then call routine ssEnrolllList. When ssEnrolllList returns, the programmer can call
ssClientDataGet to retrieve the response. After the response is decoded, he should deallocate
the C-block. Note that the response is record-oriented.

. The form of the output is:

Name Pages Entries InUse

D K
test 256 1 1 0d

The columns are:
Name
The name of the enrollment set

Pages
The size of the data space, in pages
Entries
The number of records in the enrollment set

InUse
The number of pages of data space storage being used to hold records

268 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollList

D
"Dirty" bit - if 1, set needs to be committed

K
Kind of set

d
On-disk (permanent)

m
In-memory (transient)

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrollList completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 269

ssEnrollLoad

ssEnrollLoad — Load Enrollment Set

ssEnrollLoad

retcode
reascode
set_name
set_kind
dataspace_size
file_name
file_name_length

Purpose

Loads an enrollment set from the Shared File System, or initializes an empty transient enrollment set.

Operands

ssEnrollLoad
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollload.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollload.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be loaded.

set_kind
(input,INT,4) is a signed four-byte binary input variable holding a value that indicates whether the
enrollment set is permanent or transient, as follows:

ss_enr_kind_memory
transient set

ss_enr_kind_disk
permanent set

dataspace_size
(input,INT,4) is a signed four-byte binary input variable holding the size of the dataspace.

file_name
(input,CHAR,file_name_length) is a character string holding the name of the SFS file containing the

enrollment set.

file_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of file_name.

Usage Notes

1. The name supplied in parameter set_name is used unchanged as a subpool hame in a call to
ssMemoxryCreateDS. The server author must ensure that this name does not collide with any subpool
names he might be using for other purposes.

270 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollLoad

2. The caller can use parameter dataspace_size to influence the size of the created data space. Express
the size in pages. The reusable server kernel rounds the suggested size up to the next 16-page
boundary before using it further. To refrain from influencing the data space size, specify a size of zero.

3. When it creates the data space, the reusable server kernel uses the larger of the following two
parameters as the size of the space:

« The number of records in the SFS file multiplied by the LRECL of the SFS file, multiplied by 1.5
« The size requested by the caller in the dataspace_size parameter

If the larger of these two sizes is less than 1 MB, then the reusable server kernel uses 1 MB (256

pages) instead.

4. Parameter file_name accepts any syntax acceptable to CSL routine DMSOPEN. This includes NAMEDEFs.

5. The file nominated by file_name must reside in the Shared File System. If the file does not (or would
not) reside in the Shared File System, an error is returned and the enrollment set is not loaded.

6. The virtual machine in which the server program is running must have write authority to the file
nominated by file_name.

7. If the file nominated by file_name does not exist, it is created and a warning is returned.

8. The file nominated by file_name is opened on its own work unit.

9. If a transient enrollment set is being loaded, no CMS file I/O takes place and no work unit is gotten.
The data space is created, initialized as empty, and made ready to hold records.

Messages and Return Codes

Return Code
SS_enr_rc_success
Ss_enr_rc_error

ss_enr_rc_error

ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error
ss_enr_rc_error

ss_enr_rc_warning

Reason Code
SS_enr_re_success
ss_enr_re_bad_kind

ss_enr_re_bad_length

ss_enr_re_no_storage
ss_enr_re_db_exists
ss_enr_re_dscr_fail
ss_enr_re_gwu_fail
ss_enr_re_open_fail
ss_enr_re_not_sfs
Ss_enr_re_not_v
ss_enr_re_point._fail
ss_enr_re_read_fail

ss_enr_re_new_file

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File

SSASMENR MACRO

SSPLXENR COPY

Meaning
ssEnrollLoad completed successfully
Parameter set_kind contains an unrecognized value

Parameter file_name_length contains an unrecognized
value

Insufficient storage is available

Set set_name already exists
Attempt to create data space failed
Attempt to get work unit failed
Attempt to open file failed

File is not SFS-resident

File is not V-format

Attempt to move file pointers failed
Attempt to read SFS file failed

SFS file not found - new permanent enrollment set
created

Chapter 15. Function Descriptions 271

ssEnrollRecordGet

ssEnrollRecordGet — Get Enrollment Record

ssEnrollRecordGet

retcode
reascode
set_name
key

buffer
buffer_size
data_length

Purpose

Retrieves a record from an enrollment set.

Operands
ssEnrollRecordGet
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordGet.
reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordGet.
set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be interrogated.
key
(input,CHAR,64) is a character string holding the key of the record to be retrieved.
buffer
(output,CHAR,buffer_size) is a character string buffer to hold the data of the retrieved record.
buffer_size
(input,INT,4) is a signed four-byte binary input variable holding the size of buffer.
data_length

(output,INT,4) is a signed four-byte binary output variable to hold the amount of data stored under key
key.

Usage Notes

1. Every byte of the key is significant. If your application's keys are, say, text strings, be sure to pad your
keys on the right to fill out the entire key field.

2. Case is significant in keys.

3. If the amount of data stored under key key will not fit in buffer, as much as will fit is returned, output
data_length is set to the actual size of the data, and a warning is returned. This lets the caller retry the
operation with a buffer large enough to hold all of the data.

4. If the record does not exist in set set_name, an error is returned.

272 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollRecordGet

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrollRecordGet completed successfully
Ss_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

Ss_enr_rc_error ss_enr_re_rec_not_found No record matches key key

ss_enr_rc_warning ss_enr_re_truncated Record was found but truncated because buffer could

not contain all of it

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 273

ssEnrollRecordInsert

ssEnrollRecordInsert — Insert Enrollment Record

ssEnrollRecordInsert

retcode
reascode
set_name
key

buffer
data_length
insert_type

Purpose

Inserts or replaces a record in an enrollment set.

Operands

ssEnrollRecordInsert
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordInsert.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordInsert.

set_name

(input,CHAR,8) is a character string holding the name of the enrollment set to be modified.
key

(input,CHAR,64) is a character string holding the key of the record to be inserted or replaced.
buffer

(output,CHAR,data_length) is a character string buffer holding the data to be associated with key.

buffer_size
(input,INT,4) is a signed four-byte binary input variable holding the size of buffer.

data_length
(output,INT,4) is a signed four-byte binary output variable to hold the amount of data stored under key
key.

insert_type
(input,INT,4) is a signed four-byte binary input variable to hold the kind of insertion being done:

ss_enr_insert_new
New record

ss_enr_insert_replace
Replacement record

Usage Notes

1. Every byte of the key is significant. If your application's keys are, say, text strings, be sure to pad your
keys on the right to fill out the entire key field.

2. Case is significant in keys.

274 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollRecordInsert

3. The differences between ss_enr_insert_new and ss_enr_insert_replace are:

« For _new, the reusable server kernel will fail the API call if the enrollment set already holds a record
bearing key key. Thus the programmer can use _new to guard against inadvertent replacements.

« For_replace, if the record bearing key key already exists, it is replaced and a warning is returned.
4. The change is not permanent until it is committed.
5. For permanent enrollment sets, the data cannot be more than 65,500 bytes long.
6. For transient enrollment sets, the data cannot be more than 16 MB long.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrollRecordInsert completed successfully
Ss_enr_rc_error ss_enr_re_bad_method Parameter insert_type contains an unrecognized value
ss_enr_rc_error ss_enr_re_bad_length Parameter data_length contains an invalid value
Ss_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

Ss_enr_rc_error ss_enr_re_no_storage Insufficient storage to satisfy request

Ss_enr_rc_error ss_enr_re_write_storage Write to SFS file failed

ss_enr_rc_warning Ss_enr_re_rec_exists Record exists and was replaced

Ss_enr_rc_error Ss_enr_re_rec_exists Record exists and was not replaced

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 275

ssEnrollRecordList

ssEnrollRecordList — List Records In Enrollment Set

ssEnrollRecoxdList

retcode
reascode
set_name
C-block_pointer

Purpose

Produces a summary list of the records in an enrollment set.

Operands

ssEnrollRecordList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordList.

reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordList.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set.

C-block_pointer
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block
representing the client to whom the summary list should be sent.

Usage Notes

1. The reusable server kernel writes the summary list to the client represented by C-block_pointer, using
routine ssClientDataPut.

2. If the programmer wishes to capture the output of ssEnrol1lRecordList for his own purposes, he
can allocate storage to represent a C-block, initialize the C-block using routine ssClientDataInit,
and then call routine sseEnrollRecordList. When ssEnrollRecordList returns, the programmer
can call ssClientDataGet to retrieve the response. After the response is decoded, he should
deallocate the C-block. Note that the response is record-oriented.

3. The output of ssEnrollRecordList is simply one enrollment record per output record. Each output
record contains only the key of the corresponding enrollment record.

4. To retrieve the data associated with a given key, use ssEnrol1RecordGet.

Messages and Return Codes

Return Code Reason Code Meaning
SS_enr_rc_success SS_enr_re_success ssEnrollRecordList completed successfully
Ss_enr_rc_error ss_enr_re_db_not_found Set set_name is not loaded

276 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollRecordList

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 277

ssEnrollRecordRemove

ssEnrollRecordRemove — Remove Enrollment Record

ssEnrollRecoxrdRemove

retcode
reascode
set_name
key

Purpose

Removes a record from an enrollment set.

Operands

ssEnrollRecordRemove
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordRemove.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordRemove.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be modified.

key
(input,CHAR,64) is a character string holding the key of the record to be removed.

Usage Notes

1. Every byte of the key is significant. If your application's keys are, say, text strings, be sure to pad your
keys on the right to fill out the entire key field.

2. Case is significant in keys.
3. If the record bearing key key is not found, an error is returned.
4. The change is not permanent until it is committed.

Messages and Return Codes

Return Code Reason Code Meaning

SS_enr_rc_success SS_enr_re_success ssEnrollRecordRemove completed successfully
Ss_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

Ss_enr_rc_error ss_enr_re_rec_not_found Record bearing key key does not exist
Ss_enr_rc_error ss_enr_re_write_storage Write to SFS file failed

278 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssEnrollRecordRemove

Programming Language Bindings

Language Language Binding File
Assembler SSASMENR MACRO
PL/X SSPLXENR COPY

Chapter 15. Function Descriptions 279

ssMemoryAllocate

ssMemoryAllocate — Allocate Memory

ssMemoxryAllocate

return_code
reason_code
min_bytes_needed
max_bytes_needed
subpool_name
align_type
memory_pointer
bytes_obtained

Purpose

Allocates a block of primary storage (memory).

Operands

ssMemoryAllocate
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryAllocate.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryAllocate.

min_bytes_needed
(input,INT,4) is a signed four-byte binary input variable holding the minimum number of bytes needed.

max_bytes_needed
(input,INT,4) is a signed four-byte binary input variable holding the maximum number of bytes
needed.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool from which the storage should be
allocated.

align_type
(input,INT,4) is a signed four-byte binary input variable holding the type of alignment the new buffer
will require.

memory_pointer
(output,INT,4) is a signed four-byte binary output variable to hold the returned memory address.

bytes_obtained
(output,INT,4) is a signed four-byte binary output variable to hold the returned number of bytes
actually allocated.

Usage Notes

1. To issue a request for a block of storage of variable size, set min_bytes_needed equal to the minimum
amount of storage needed and set max_bytes_needed equal to the maximum amount of storage
desired.

2. Toissue a request for a block of storage of fixed size, set min_bytes_needed=max_bytes_needed.

280 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssMemoryAllocate

. Parameter subpool_name is used unchanged in calls to CMSSTOR and therefore must adhere to
CMSSTOR's rules for subpool names.

. Parameter align_type must have one of these values:

ss_mem_align_norm
Align allocated storage on doubleword boundary

ss_mem_align_page

Align allocated storage on page boundary

5. The reusable server kernel allocates and releases memory in multiples of doublewords. The amount
of storage requested by the caller will be rounded up to the next doubleword boundary before the
allocation request is processed.

6. If the requested storage could not be obtained, memory_pointer and bytes_obtained are set to zero and
appropriate return and reason codes are returned.

Messages and Return Codes

Return Code

$S_mem_rc_success

SS_mem_rc_error
SS_mem_rc_error
SS_mem_rc_error

SS_mem_rc_error

Reason Code

SS_mem_re_success

ss_mem_re_bad_align
ss_mem_re_bad_amount
ss_mem_re_out_of storage

ss_mem_re_subpool_deleted

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMMEM MACRO

SSPLXMEM COPY

Meaning

ssMemoryAllocate completed
successfully

align_type is not recognized
Error in amount specification
Storage could not be obtained

Subpool deleted while call was in progress

Chapter 15. Function Descriptions 281

ssMemoryCreateDS

ssMemoryCreateDS — Create Data Space

ssMemoxryCreateDS

return_code
reason_code
subpool_name
number_of_pages
storage_key
option_count
option_array

asit

alet

Purpose

Creates a data space and prepares the reusable server kernel to manage the storage therein.

Operands

ssMemoryCreateDS
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryCreateDS.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryCreateDS.

subpool_name
(input,CHAR,8) is a character string holding the subpool name to be assigned to the new data space.

number_of _pages
(input,INT,4) is a signed four-byte binary input variable specifying the size to be passed to DMSSPCC.

storage_key
(input,INT,4) is a signed four-byte binary input variable specifying the storage key to be passed to
DMSSPCC.

option_count
(input,INT,4) is a signed four-byte binary input variable specifying the option count to be passed to
DMSSPCC.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables specifying the option
array to be passed to DMSSPCC.

asit
(output,CHAR,8) is an output character buffer to hold the returned ASIT.

alet
(output,INT,4) is an signed four-byte binary output variable to hold the returned ALET.

Usage Notes

1. Review the usage notes for CSL routines DMSSPCC and DMSSPLA before using ssMemoryCreateDS.
For more information, see z/VM: CMS Callable Services Reference.

282 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssMemoryCreateDS

. The value of subpool_name is used in constructing the name of the data space and therefore must

adhere to the character set composition rules for data space names. For more information, see the
description of CSL routine DMSSPCC in the book z/VM: CMS Callable Services Reference.

. The reusable server kernel uses storage in the primary address space to keep track of free and used

pieces of storage in the data space. The primary address space storage used for this purpose is taken
from CMS through CMSSTOR OBTAIN under subpool name subpool_name.

4. Parameters number_of pages and storage_key are passed directly to DMSSPCC.

. If option_count is zero, ssMemoryCreateDS uses DMSSPCC's defaults, except that it asks for the data

space to be created SHARE. The virtual machine's XCONFIG ADDRSPACE directory entry must be set
up accordingly.

6. ssMemoryCreateDS asks DMSSPLA to create the ALET using the WRITE and SYNCH options. The
reusable server kernel does not keep track of the generated ALET; the application is free to use
DMSSPLR and DMSSPLA to manipulate ALETs.

7. After calling ssMemoryCreateDS successfully, allocate and release storage in the data space using
routines ssMemoryAllocate and ssMemoryRelease.

8. To delete the data space, use ssMemoryDelete.

Messages and Return Codes

Return Code
SS_mem_rc_success
SS_mem_rc_error
SS_mem_rc_error
SS_mem_rc_error
SS_mem_rc_error

$s_mem_rc_error

$s_mem_rc_error

Reason Code Meaning

SS_mem_re_success ssMemoryCreateDS completed successfully

ss_mem_re_bad_amount number_of_pages is invalid

ss_mem_re_bad_key storage_key is invalid
ss_mem_re_spcc_fail DMSSPCC failed
ss_mem_re_spla_fail DMSSPLA failed

ss_mem_re_out_of _storag Storage could not be obtained

e

ss_mem_re_subpool_exist Subpool already exists

S

Programming Language Bindings

Language Language Binding File
Assembler SSASMMEM MACRO
PL/X SSPLXMEM COPY

Chapter 15. Function Descriptions 283

ssMemoryDelete

ssMemoryDelete — Delete Subpool

ssMemoxyDelete

return_code
reason_code
subpool_name

Purpose

Deletes a memory subpool, and the corresponding data space if there is one.

Operands

ssMemoryDelete
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryDelete.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryDelete.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool to be deleted.

Usage Notes

1. The reusable server kernel deletes its record of the subpool and issues a corresponding SUBPOOL
DELETE call to CMS.

2. If the subpool is a data space, the corresponding data space is also deleted.

Messages and Return Codes

Return Code Reason Code Meaning

SS_mem_rc_success SS_mem_re_success ssMemoryDelete completed successfully
Ss_mem_rc_error ss_mem_re_no_subpool Unrecognized subpool hame
Ss_mem_rc_error ss_mem_re_spd_fail SUBPOOL DELETE call failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMMEM MACRO
PL/X SSPLXMEM COPY

284 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssMemoryRelease

ssMemoryRelease — Release Memory

ssMemoxryRelease

return_code
reason_code
bytes_released
subpool_name
memory_pointer

Purpose

Releases a block of primary storage (memory).

Operands

ssMemoryRelease
is the name of the function being invoked.

return_code
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryRelease.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryRelease.

bytes_released
(input,INT,4) is a signed four-byte binary input variable holding the number of bytes being released.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool from which the storage was
allocated.

memory_pointer
(input,INT,4) is a signed four-byte binary input variable holding the address of the storage being
released.

Usage Notes

1. The buffer being released must reside on a doubleword boundary.

2. If it does not represent an integral number of doublewords, parameter bytes_released is rounded up to
the next doubleword boundary before being used.

Messages and Return Codes

Return Code Reason Code Meaning

SS_mem_rc_success SS_mem_re_success ssMemoryRelease completed
successfully

SS_mem_rc_error ss_mem_re_bad_align Buffer is not aligned on doubleword
boundary

SS_mem_rc_error ss_mem_re_bad_amount Error in amount specification

SS_mem_rc_error ss_mem_re_no_subpool Unrecognized subpool name

Chapter 15. Function Descriptions 285

ssMemoryRelease

Return Code
SS_mem_rc_error
SS_mem_rc_error

Ss_mem_rc_error

Reason Code
ss_mem_re_not_alloc
ss_mem_re_subpool_deleted

ss_mem_re_out_of_storage

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMMEM MACRO

SSPLXMEM COPY

Meaning
Some or all of buffer is already free
Subpool deleted while call in progress

Not enough storage available

286 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssServerRun

ssServerRun — Run the Server

ssServerRun

retcode
reascode

Purpose

Runs the server program.

Operands

ssServerRun
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from

ssServerRun.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from

ssServerRun.

Usage Notes

Call this routine only from RSKMAIN and only after you have called ssServiceBind sufficiently to set up
your server.

Messages and Return Codes

Return Code Reason Code Meaning
SS_Srv_rc_success SS_Srv_re_success ssServerRun completed successfully
SS_srv_rc_error anything else Nonzero return code from PROFILE RSK.

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

Chapter 15. Function Descriptions 287

ssServerStop

ssServerStop — Stop the Server

ssServexrStop

retcode
reascode

Purpose

Stops the server program.

Operands

ssServerStop
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServerStop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServerStop.

Usage Notes
Calling this function will cause the WAITSERY command in PROFILE RSK to complete.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Srv_rc_success SS_SIv_re_success ssServerStop completed successfully

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

288 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssServiceBind

ssServiceBind — Bind A Service

ssServiceBind

retcode

reascode
service_name
service_name_length
init_addr
service_addr
term_addr

Purpose

Informs the reusable server kernel of the existence of a new service.

Operands

ssServiceBind
is the name of the function being invoked.
retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServiceBind.
reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServiceBind.
service_name
(input,CHAR,service_name_length) is the name of the new service.
service_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the service name.
init_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of the service's
initialization entry point.
service_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of the service's service
entry point.
term_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of the service's
termination entry point.
service_type
(input,INT,4) is a signed four-byte binary input variable holding the kind of service being bound.

Usage Notes

1. Case is not significant in service names.

2. The parameter list array passed to the initialization entry point (pointed to by R1) is organized as
shown in Table 3 on page 6.

3. To signal successful initialization, the initialization entry point should return with the return and reason
code words set to zero. A nonzero return code will cause the start of the service to fail.

Chapter 15. Function Descriptions 289

ssServiceBind

4. The parameter list array passed to the service entry point (pointed to by R1) is organized as shown in
Table 4 on page 7.

5. The parameter list array passed to the termination entry point (pointed to by R1) is organized as shown
in Table 5 on page 7.

6. The values that can be supplied for service_type are:

ss_srv_srvtype_normal
Plain old service.

ss_srv_srvtype_ld
Plain old line driver.

ss_srv_srvitype_ldss
Self-sourced line driver.

7. To activate the service, use one of the line drivers' START commands.

8. ssServiceBind will produce correct results only when it is called by RSKMAIN prior to
ssServerRun. ssServiceBind should never be called under any other conditions. Unpredicable
results could occur.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Srv_rc_success SS_Srv_re_success ssServiceBind completed successfully
SS_Srv_rc_error ss_srv_re_out_of range service_name_length<0 or >8
SS_Srv_rc_error ss_srv_re_bad_type service_type contains unrecognized value.
SS_Srv_rc_error SS_Srv_re_exists Service already exists

SS_Srv_rc_error ss_srv_re_out_of storage Out of storage

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

290 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssServiceFind

ssServiceFind — Find A Service

ssServiceFind

retcode

reascode
service_name
service_name_length
S-block_address

Purpose

Obtains descriptive information about a service.

Operands
ssServiceFind
is the name of the function being invoked.

retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServiceFind.

reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServiceFind.

service_name
(input,CHAR,service_name_length) is the name of the new service.

service_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the service name.

S-block_address
(output,POINTER,4) is a signed four-byte binary output variable to hold the address of the found

service's S-block.
Usage Notes

1. Case is not significant in service names.
2. The returned S-block is organized according to Table 2 on page 6.

3. If the service could not be found, a return and reason code are generated and sblock_address is
returned as 0.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Srv_rc_success SS_Srv_re_success ssServiceFind completed successfully
SS_Srv_rc_error ss_srv_re_out_of_range service_name_length<0 or >8
SS_Srv_rc_error ss_srv_re_not_found The named service could not be found.

Chapter 15. Function Descriptions 291

ssServiceFind

Programming Language Bindings

Language Language Binding File
Assembler SSASMSRV MACRO
PL/X SSPLXSRV COPY

292 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpCreate

ssSgpCreate — Create a Storage Group

ssSgpCreate

retcode

reascode
storage_group_number
minidisk_count
minidisk_array
attribute_count
attribute_array

Purpose

Identifies a set of minidisks to be managed as a storage group.

Operands

ssSgpCreate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssSgpCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssSgpCreate.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the new storage group.

minidisk_count
(input,INT,4) is a signed four-byte binary input variable holding the number of minidisks in the new
storage group.

minidisk_array
(input,INT,4*minidisk_count) is an array of signed four-byte binary input variables holding the device
addresses of the minidisks to be included in the new storage group.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of attributes in the
attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input variables holding the
attributes to be associated with the new storage group.

Usage Notes

1. Parameter storage_group_number must be in the range 0 to 1023, inclusive.

2. Each minidisk to be included in the storage group must have already been formatted at 4 KB by the
FORMAT command and reserved by the RESERVE command. The reusable server kernel requires that
its minidisks exhibit this format.

3. There is a limit of 13,000 minidisks per storage group, and the sum of the sizes of the data areas on
the minidisks must not exceed X'FFFFFFFF' 4 KB blocks.

Chapter 15. Function Descriptions 293

ssSgpCreate

4. The storage group's existence is recorded in the storage group definition file and persists across
instances of the server program. For more information on the description of the storage group
definition file, see Chapter 12, “Initialization and Profiles,” on page 63.

5. No attributes are currently recognized in the attribute_array (in other words, if attribute_count is
nonzero, ss_sgp_re_bad_attrib is returned).

Messages and Return Codes

Return Code
SS_Sgp_rc_success

SS_sgp_rc_error

SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error

SS_sgp_rc_warning

Reason Code
SS_Sgp_re_success

ss_sgp_re_out_of range

ss_sgp_re_bad_attrib
ss_sgp_re_mx_fail
SS_sgp_re_exists
ss_sgp_re_out_of storage
ss_sgp_re_cv_fail

ss_sgp_re_rewrite_fail

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File

SSASMSGP MACRO

SSPLXSGP COPY

Meaning
ssSgpCreate completed successfully

storage_group_number, minidisk_count or
attribute_count is out of range

attribute_array contains an unrecognized attribute
Mutex creation or acquisition failed

Storage group already exists

Out of storage

Condition variable creation failed

Rewrite of storage group definitions failed

294 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpDelete

ssSgpDelete — Delete a Storage Group

ssSgpDelete

retcode
reascode
storage_group_number

Purpose

Removes a set of minidisks from the control of the reusable server kernel.

Operands

ssSgpDelete
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssSgpDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssSgpDelete.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to be
deleted.

Usage Notes

1. To be deleted, the storage group must not be started.
2. The storage group definition file is updated to reflect the fact that the storage group no longer exists.

3. No I/O is done to the storage group as part of deletion; the minidisks remain as they were. To recreate
the storage group, just issue an appropriate call to ssSgpCreate.

Messages and Return Codes

Return Code
SS_Sgp_rc_success
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error
SS_sgp_rc_error

SS_sgp_rc_warning

Reason Code
SS_Sgp_re_success
ss_sgp_re_mx_fail
ss_sgp_re_not_found
ss_sgp_re_online
ss_sgp_re_maint

ss_sgp_re_rewrite_fail

Meaning

ssSgpDelete completed successfully
Mutex acquisition failed

Storage group not found

Storage group is online

Maintenance in progress

Rewrite of storage group definitions failed

Chapter 15. Function Descriptions 295

ssSgpDelete

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

296 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpFind

ssSgpFind — Find a Storage Group

ssSgpFind

retcode

reascode
storage_group_name
storage_group_number
io_mode

total_blocks

Purpose

Returns information about the storage group whose name is supplied.

Operands
ssSgpFind
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpFind.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpFind.

storage_group_name
(input,CHAR,8) is an input character string holding the name of the storage group to find.

storage_group_number
(output,INT,4) is a signed four-byte binary output variable to hold the number of the found storage
group.

io_mode
(output,INT,4) is a signed four-byte binary output variable to hold the I/O mode of the found storage
group.

total_blocks
(output,INT,4) is a signed four-byte binary output variable to hold the number of blocks in the storage
group.

Usage Notes

1. Because the lookup is by name, only started storage groups can be found.
2. Right-pad the name with spaces.
3. The value returned in io_mode is one of:

ss_sgp_attrib_block_rw
Started read-write

ss_sgp_attrib_block_ro
Started read-only

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_sgp_re_success ssSgpFind completed successfully

Chapter 15. Function Descriptions 297

ssSgpFind

Return Code Reason Code Meaning

SS_Sgp_rc_error ss_sgp_re_not_found Storage group is not found

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

298 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgplList

ssSgpList — List Storage Groups

ssSgplList

retcode

reascode
number_expected
number_returned
storage_group_list

Purpose

Returns a list of the known storage groups.

Operands

ssSgplList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpList.

number_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of storage groups whose
identifiers can fit into the storage_group_list array.

number_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of storage group
identifiers placed into the storage_group_list array.

storage_group_list
(output,INT,4*number_expected) is an array of signed four-byte binary output variables to hold the
identifiers of the existing storage groups.

Usage Notes

1. If the actual number of existing storage groups is greater than number_expected, then the actual
number of storage groups is filled into number_returned, the identifiers of the first number_expected
storage groups are returned in storage_group_list, and a warning is given.

2. To determine information about a particular storage group, use ssSgpQuery.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_Sgp_re_success ssSgplList completed successfully
SS_Sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

§s_sgp_rc_warning ss_sgp_re_too_many More storage groups than number_expected

Chapter 15. Function Descriptions 299

ssSgplist

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

300 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpQuery

ssSgpQuery — Query a Storage Group

ssSgpQuery

retcode

reascode
storage_group_number
io_mode

total_blocks
status_word
attributes_expected
attributes_returned
attribute_array
minidisks_expected
minidisks_returned
minidisk_address_array
minidisk_blocks_array

Purpose

Returns information about a specific storage group.

Operands

ssSgpQuery
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpQuery.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpQuexry.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group about
which information is desired.
io_mode
(output,INT,4) is a signed four-byte binary output variable to hold the storage group I/O mode.
total_blocks
(output,INT,4) is a signed four-byte binary output variable to hold the total number of 4 KB blocks in
the storage group.

status_word
(output,INT,4) is a signed four-byte binary output variable to hold the storage group status word.

attributes_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of attribute identifiers that
will fit in the attribute_array array.

attributes_returned
(input,INT,4) is a signed four-byte binary output variable to hold the number of entries filled into the
attribute_array array.

attribute_array
(output,INT,4*attribute_count) is an array of signed four-byte binary output variables to hold the
returned storage group attribute indicators.

Chapter 15. Function Descriptions 301

ssSgpQuery

minidisks_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of minidisks for
which descriptive information will fit in the minidisk_address_array, minidisk_total_array, and
minidisk_free_array arrays.

minidisks_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of minidisks for
which descriptive information was deposited in the minidisk_address_array, minidisk_total_array, and
minidisk_free_array arrays.

minidisk_address_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output variables to hold the
returned minidisk addresses.

minidisk_total_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output variables to hold the
returned sizes of each of the minidisks in the storage group.

minidisk_free_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output variables to hold the
returned free block counts for each of the minidisks in the storage group.

Usage Notes

1. The possible values returned for io_mode are:

ss_sgp_attrib_offline
Not started (not online)

ss_sgp_attrib_block_ro
Started for read-only block I/O

ss_sgp_attrib_block_rw
Started for read-write block I/0

2. The size information (total blocks, blocks per minidisk) and status word returned by this function are
meaningful only if the storage group is started.

3. The integer returned in status_word is to be interpreted bit-by-bit according to the following key. In
this key, the bits are numbered from 0 to 31, most significant to least significant. If the named bit is
set, the condition is true. The bits that are not mentioned are meaningless.

Bit Description

0 Stop in progress

1 VM Data Spaces in use
2 DIAG X'250"in use

4. No attributes are currently returned in attribute_array.

5. If the actual number of minidisks is greater than minidisks_expected, then the actual number
of minidisks is returned in parameter minidisks_returned, the descriptive information for the first
minidisks_expected minidisks is filled into the arrays, and a warning is given.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_Sgp_re_success ssSgpQuery completed successfully

SS_Sgp_rc_error ss_sgp_re_out_of range Bad value for attributes_expected or
minidisks_expected

SS_Sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

SS_Sgp_rc_error ss_sgp_re_not_found Storage group not found

302 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpQuery

Return Code Reason Code Meaning

SS_sgp_rc_warning ss_sgp_re_too_many More attributes than attributes_expected or more
minidisks than minidisks_expected

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 303

ssSgpRead

ssSgpRead — Read a Storage Group

ssSgpRead

retcode

reascode
storage_group_number
starting_block
block_count
buffer_alet

buffer

Purpose

Reads one or more blocks from a storage group.

Operands
ssSgpRead
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpRead.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpRead.

storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group from
which blocks should be read.

starting_block

(input,INT,4) is a signed four-byte binary input variable holding the starting block number of the block
extent to be read.

block_count
(input,INT,4) is a signed four-byte binary input variable holding the number of blocks to be read.

buffer_alet

(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when referring to
buffer.

buffer
(output,CHAR,4096*block_count) is a character string to hold the data read from the storage group.

Usage Notes

1. The first block of the storage group is block 0.
2. This entry point can be used only if the storage group is online.

3. This entry point does not serialize access to storage groups. If your application performs storage group
I/O on multiple threads, it is possible that the I/O might happen in parallel, especially in MP situations.
It is the application developer's responsibility to implement any serialization paradigms required.

4. When VM Data Spaces are used, the transfer from the storage group's data space to the target space is
done with PSW key 0.

5. When a CP DIAGNOSE is used, CP is instructed to use key 0 in the channel programs it builds.
6. If DIAG X'A4' is being used for storage group I/0, buffer_alet must be 0.

304 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpRead

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_Sgp_re_success ssSgpRead completed successfully
SS_Sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed
SS_Sgp_rc_error ss_sgp_re_not_found Storage group not found
SS_sgp_rc_error ss_sgp_re_out_of range Extent is not within storage group size
SS_Sgp_rc_error ss_sgp_re_io_fail Requested read failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

Chapter 15. Function Descriptions 305

ssSgpStart

ssSgpStart — Start a Storage Group

ssSgpStart

retcode

reascode
storage_group_number
storage_group_name
attribute_count
attribute_array

Purpose

Makes a storage group ready for use.

Operands

ssSgpStart
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpStart.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpStart.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to be
brought online.

storage_group_name
(input,CHAR,8) is a character string holding the name to be assigned to the storage group while it is
online.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of attributes present in the
attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input variables holding the
attributes to be used in bringing the storage group online.

Usage Notes

1. Each minidisk to be included in the storage group must have already been formatted at 4 KB by the
FORMAT command and reserved by the RESERVE command. The reusable server kernel requires that
its minidisks exhibit this format.

2. There is a limit of 13,000 minidisks per storage group, and the sum of the sizes of the data areas on
the minidisks must not exceed 16 TB (X'FFFFFFFF' 4 KB blocks).

3. To be eligible for starting, the storage group must be completely stopped.
4. These attributes are recognized in the attribute_array (defaults are labeled as such):

ss_sgp_attrib_ds
Use VM Data Spaces MAPMDISK facility (default)

ss_sgp_attrib_no_ds
Do not use VM Data Spaces MAPMDISK facility

306 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpStart

ss_sgp_attrib_block_rw
Online read-write for block I/O (default)

ss_sgp_attrib_block_ro
Online read-only for block I/O

5. To use ss_sgp_attrib_ds successfully, the real hardware and the server virtual machine's CP directory
entry must be set up appropriately. This includes:
« The z/VM system must be running on an ESA/390(™) processor.
» Inthe CP directory, MACHINE XC must be specified.

« In the CP directory, XCONFIG ADDRSPACE must allow enough data spaces to span the storage
groups. Each 2 GB or fraction thereof in a storage group requires one data space.

 Inthe CP directory, XCONFIG ADDRSPACE must allow an aggregate data space size at least as
large as the sum of the sizes of the storage groups to be brought online with this attribute.

6. If ss_sgp_attrib_ds is specified and the reusable server kernel could not activate VM Data Spaces
support for it, then the reusable server kernel:

a. Sets a warning return code indicating why VM Data Spaces failed, and
b. Attempts to bring the storage group online as if ss_sgp_attrib_no_ds had been specified.

7. If ss_sgp_attrib_no_ds is specified, then the reusable server kernel makes use of DIAGNOSE X'250' or
DIAGNOSE X'A4' for I/O to the storage group, as follows:

a. The reusable server kernel attempts to initialize the DIAGNOSE X'250' environment for each
minidisk in the storage group, using the diagnose in asynchronous mode and with minidisk caching
(MDC) enabled.

b. If DIAGNOSE X'250' initialization is successful for all minidisks in the storage group, then
DIAGNOSE X'250' is used for I/O to the storage group.

c. If DIAGNOSE X'250' initialization fails for at least one minidisk in the storage group, then
DIAGNOSE X'A4' is used for I/0 to the storage group and a warning return code and reason code
are returned.

8. Reason codes related to VM Data Spaces are produced with a warning return code. These reason
codes indicate that the use of VM Data Spaces failed and that DIAGNOSE X'250' is being used
instead.

9. Reason codes related to DIAGNOSE X'250' are produced with a warning return code. These reason
codes indicate that the use of DIAGNOSE X'250' failed and that DIAGNOSE X'A4' is being used
instead.

10. If reason code ss_sgp_re_read_only is produced and it really is desired to bring the storage group
online read-write, follow these steps:

Step Task

1 Determine which minidisk(s) are linked read-only.

2 Detach the read-only minidisks and link them read-write.

3 Try again to start the storage group.

Messages and Return Codes

Return Code Reason Code Meaning

SS_Sgp_rc_success SS_sgp_re_success ssSgpStart completed successfully
SS_Sgp_rc_error ss_sgp_re_bad_attrib Unrecognized item in attribute array
SS_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed
SS_Sgp_rc_error ss_sgp_re_not_found Storage group not found

Chapter 15. Function Descriptions 307

ssSgpStart

Return Code
SS_Sgp_rc_error
SS_sgp_rc_warning
SS_Sgp_rc_error
SS_Sgp_rc_error
SS_sgp_rc_warning
SS_sgp_rc_warning
SS_sgp_rc_warning

SS_sgp_rc_warning

Reason Code
SS_Sgp_re_name_in_use
ss_sgp_re_online
ss_sgp_re_vdq_fail
ss_sgp_re_read_only
ss_sgp_re_ds_fail
ss_sgp_re_pool_fail
ss_sgp_re_map_fail

ss_sgp_re_diag_250_fail

Programming Language Bindings

Language
Assembler

PL/X

Language Binding File
SSASMSGP MACRO

SSPLXSGP COPY

Meaning

Storage group name already in use

Storage group is already online

Minidisk format incorrect or query of format failed
At least one minidisk is linked read-only

Data space creation failed

MAPMDISK minidisk pool definition failed
MAPMDISK minidisk pool mapping failed

Use of DIAGNOSE X'250' failed

308 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpStop

ssSgpStop — Stop a Storage Group

ssSgpStop

retcode

reascode
storage_group_number
attribute_count
attribute_array

Purpose

Makes a storage group unready.

Operands

ssSgpStop
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpStop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpStop.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to be
taken offline.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of attributes present in the
attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input variables holding the
attributes to be used in taking the storage group offline.

Usage Notes

1. To stop all defined storage groups, set storage_group_number to -1.

2. Once the stop of the storage group begins, no more block I/O may be started, and the stop completes
only after all block I/O to the storage group is completed.

3. No elements are currently recognized in attribute_array.

Messages and Return Codes

Return Code Reason Code Meaning

§S_Sgp_rc_success SS_Sgp_re_success ssSgpStop completed successfully
SS_sgp_rc_error ss_sgp_re_out_of range Bad value for attribute_count
SS_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed
SS_sgp_rc_error ss_sgp_re_not_found Storage group not found
§S_sgp_rc_warning ss_sgp_re_offline Already stopped or stop in progress

Chapter 15. Function Descriptions 309

ssSgpStop

Return Code Reason Code Meaning

SS_Sgp_rc_error ss_sgp_re_cv_fail Condition variable wait failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMSGP MACRO
PL/X SSPLXSGP COPY

310 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssSgpWrite

ssSgpWrite — Write a Storage Group

ssSgphirite

retcode

reascode
storage_group_number
starting_block
block_count
buffer_alet

buffer

Purpose

Writes one or more blocks to a storage group.

Operands
ssSgpWrite
is the name of the function being invoked.
retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpWrite.
reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpWrite.

storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to
which blocks should be written.

starting_block

(input,INT,4) is a signed four-byte binary input variable holding the starting block number of the block
extent to be written.

block_count
(input,INT,4) is a signed four-byte binary input variable holding the number of blocks to be written.

buffer_alet

(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when referring to
buffer.

buffer
(input,CHAR,4096*block_count) is a character string holding the data to be written to the storage
group.

Usage Notes

1. The first block of the storage group is block 0.
2. This entry point can be used only if the storage group is online with attribute ss_sgp_attrib_block_rw.

3. This entry point does not serialize access to storage groups. If your application performs storage group
I/O on multiple threads, it is possible that the I/O might happen in parallel, especially in MP situations.
It is the application developer's responsibility to implement any serialization paradigms required.

4. When VM Data Spaces are used, the transfer from the source space to the storage group's data space
is done with PSW key 0.

5. When a CP DIAGNOSE is used, CP is instructed to use key 0 in the channel programs it builds.

Chapter 15. Function Descriptions 311

ssSgpWrite

6. If DIAG X'A4' is being used for storage group I/0, buffer_alet must be 0.

Messages and Return Codes

Return Code
SS_Sgp_rc_success
SS_Sgp_rc_error
SS_Sgp_rc_error
SS_Sgp_rc_error
SS_Sgp_rc_error

SS_sgp_rc_error

Reason Code
SS_sgp_re_success
ss_sgp_re_mx_fail
ss_sgp_re_not_found
ss_sgp_re_out_of range
ss_sgp_re_wrong_mode

ss_sgp_re_io_fail

Programming Language Bindings

Language

Assembler

PL/X

Language Binding File
SSASMSGP MACRO

SSPLXSGP COPY

Meaning

ssSgpWrite completed successfully

Mutex acquisition failed

Storage group not found

Extent is not within storage group size

Storage group is not started for read-write block I/0

Requested write failed

312 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssTrieCreate

ssTrieCreate — Create a Trie

ssTrieCreate

retcode
reascode
triename
triesize
trieasit
triealet

Purpose

Creates a trie.

Operands
ssTrieCreate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieCreate.

triename
(input,CHAR,8) is a character string holding the name of the new trie.

triesize
(input,INT,4) is a signed four-byte binary input variable holding the size of the new trie's data space, in
pages.

trieasit
(output,CHAR,8) is a character string to hold the ASIT of the data space for the new trie.

triealet
(output,INT,4) is a signed four-byte binary output variable to hold the ALET associated with the new
trie's data space.

Usage Notes

1. The name supplied in parameter triename is used unchanged as a subpool nhame in a call to
ssMemoryCreateDS. The server author must ensure that this name does not collide with any subpool
names he might be using for other purposes.

2. The caller should specify parameter triesize in pages. The reusable server kernel passes triesize
directly to ssMemoryCreateDS.

3. The reusable server kernel creates the new trie in a data space and returns the data space's ASIT and
ALET to the caller.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_tri_rc_success Ss_tri_re_success ssTrieCreate completed successfully

Chapter 15. Function Descriptions 313

ssTrieCreate

Return Code Reason Code Meaning

ss_tri_rc_error ss_tri_re_bad_size triesize <0 or >524288
ss_tri_rc_error Ss_tri_re_trie_exists Trie triename already exists
ss_tri_rc_error ss_tri_re_out_of storage Out of storage

ss_tri_rc_error ss_tri_re_dscr_fail Call to ssMemoryCreateDS failed

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

314 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssTrieDelete

ssTrieDelete — Delete a Trie

ssTrieDelete

retcode
reascode
triename

Purpose

Deletes a trie.

Operands

ssTrieDelete
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieDelete.

triename
(input,CHAR,8) is a character string holding the name of the trie to be deleted.

Usage Notes

1. This call results in the data space being deleted via call to ssMemoryDelete.

2. If your application has shared the trie's ASIT with other virtual machines, your application is
responsible for telling those other virtual machines about the upcoming deletion prior to calling
ssTrieDelete.

Messages and Return Codes

Return Code Reason Code Meaning

Ss_tri_rc_success Ss_tri_re_success ssTrieDelete completed successfully
ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to delete trie

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

Chapter 15. Function Descriptions 315

ssTrieRecordInsert

ssTrieRecordInsert — Insert Record Into Trie

ssTrieRecoxrdInsert

retcode
reascode
triename
triealet
recnum
index_buffer
index_length

Purpose

Inserts the record number into the trie, using the specified key.

Operands

ssTrieRecordInsert
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieRecordInsert.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieRecordInsert.

triename
(input,CHAR,8) is a character string holding the name of the trie into which the record is to be
inserted.

triealet
(input,INT,4) is a signed four-byte binary input variable holding the ALET of the data space in which
the trie resides.

recnum

(input,INT,4) is a signed four-byte binary input variable holding the record number to be inserted into
the trie.

index_buffer
(input,CHAR,index_length) is a character string holding the index of the record being inserted.

index_length
(input,INT,4) is a signed four-byte binary input variable holding the length of index_buffer.

Usage Notes

1. If your virtual machine created the trie, you may use either the trie name or the trie ALET value to
identify the trie. If triealet is nonzero the reusable server kernel will use your ALET directly. To refer to
your trie by name, set triealet to zero and use input triename to specify the name of your trie.

2. If your virtual machine did not create the trie (that is, if the creator passed you the trie ASIT and you
generated the ALET yourself), you must use parameter triealet to pass the reusable server kernel the
ALET you generated for the trie. In this case, what you pass via triename is irrelevant.

3. The index string must not be longer than 256 bytes.

316 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssTrieRecordInsert

Messages and Return Codes

Return Code Reason Code Meaning
Ss_tri_rc_success Ss_tri_re_success ssTrieRecordInsert completed successfully
ss_tri_rc_error ss_tri_re_bad_index_len Index string has improper length
ss_tri_rc_error ss_tri_re trie_not_found Trie triename was not found
ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to update trie
ss_tri_rc_error ss_tri_re_out_of ds_storag The data space is full

e

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

Chapter 15. Function Descriptions 317

ssTrieRecordList

ssTrieRecordList — List Matching Records

ssTrieRecorxrdList

retcode

reascode

triename

triealet

index_buffer
index_length
recnum_array
recnum_array_capacity
records_found

Purpose

Generates a list of all the record numbers whose keys match the specified prefix.

Operands

ssTrieRecordList
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieRecordList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieRecordlList.

triename
(input,CHAR,8) is a character string holding the name of the trie to be interrogated.

triealet
(input,INT,4) is a signed four-byte binary input variable holding the ALET of the data space in which
the trie resides.

index_buffer
(input,CHAR,index_length) is a character string holding the key prefix to be used in the lookup.

index_length
(input,INT,4) is a signed four-byte binary input variable holding the length of index_buffer.

rechnum_array
(output,INT,4*recnum_array_capacity) is an array of signed four-byte binary output variables to hold
the record numbers whose keys match the supplied prefix.

recnum_array_capacity
(input,INT,4) is a signed four-byte binary input variable holding the size of recnum_array.

records_found
(output,INT,4) is a signed four-byte binary output variable to hold the number of record numbers
found.

318 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssTrieRecordList

Usage Notes

1. If your virtual machine created the trie, you may use either the trie name or the trie ALET value to
identify the trie. If triealet is nonzero the reusable server kernel will use your ALET directly. To refer to
your trie by name, set triealet to zero and use input triename to specify the name of your trie.

2. If your virtual machine did not create the trie (that is, if the creator passed you the trie ASIT and you
generated the ALET yourself), you must use parameter triealet to pass the reusable server kernel the
ALET you generated for the trie. In this case, what you pass via triename is irrelevant.

3. The index string must not be longer than 256 bytes.

4. The reusable server kernel examines the trie and determines the set of record numbers whose keys'
prefixes match the prefix you specified in index_buffer. It then writes the record numbers to the
recnum_array array.

5. If there are more matching records than rechnum_array can hold, the reusable server kernel fills
recnum_array to capacity, writes the actual number of matching records to records_found, and returns
success. You must always examine records_found to determine whether your array was large enough.

Messages and Return Codes

Return Code Reason Code Meaning
Ss_tri_rc_success ss_tri_re_success ssTrieRecordList completed successfully
ss_tri_rc_error ss_tri_re_bad_index_len Index string has improper length
ss_tri_rc_error ss_tri_re_bad_capacity le recnum_array _capacity must be =0

n
ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found
ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to update trie

Programming Language Bindings

Language Language Binding File
Assembler SSASMTRI MACRO
PL/X SSPLXTRI COPY

Chapter 15. Function Descriptions 319

ssUseridMap

ssUseridMap — Produce Mapped User ID

ssUseridMap

retcode

reascode

linedriver
linedriver_length
input_node
input_node_length
input_userid
input_userid_length
output_userid
output_userid_length

Purpose

Maps line-driver-specific information through the user ID mapping file.

Operands

ssUseridMap
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssUseridMap.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssUseridMap.

linedriver
(input,CHAR,linedriver_length) is a character string holding the name of the line driver.

linedriver_length

(input,INT,4) is a signed four-byte binary input variable holding the length of linedriver.
input_node

(input,CHAR,input_node_length) is a character string holding the input node for the mapping function.
input_node_length

(input,INT,4) is a signed four-byte binary input variable holding the length of input_node.
input_userid

(input,CHAR,input_userid_length) is a character string holding the input user ID for the mapping

function.
input_userid_length

(input,INT,4) is a signed four-byte binary input variable holding the length of input_userid.
output_userid

(output,CHAR,64) is a character string to hold the output of the mapping function.

output_userid_length
(output,INT,4) is a signed four-byte binary output variable to hold the length of the retrieved user ID.

320 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssUseridMap

Usage Notes

1. The reusable server kernel maps the triplet (linedriver,input_node,input_userid) through the user ID
mapping file and returns the resultant user identifier.

2. For more information about the organization and use of the user ID mapping file, see “User ID Mapping
Facility” on page 69.

Messages and Return Codes

Return Code Reason Code Meaning
ss_uid_rc_success ss_uid_re_success ssUseridMap completed successfully
ss_uid_rc_error ss_uid_re_not_found No matching entry in user ID mapping file

Programming Language Bindings

Language Language Binding File
Assembler SSASMUID MACRO
PL/X SSPLXUID COPY

Chapter 15. Function Descriptions 321

ssWorkerAllocate

ssWorkerAllocate — Allocate Connection to Worker Machine

sshiorkerAllocate

retcode
reascode
instance_C-block
class_name
option_count
option_names
option_values
worker_C-block
connection_ID

Purpose

Allocates a connection to a worker machine, autologging a worker if necessary.

Operands

ssWorkerAllocate
is the name of the function being invoked.

retcode
(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssWorkerAllocate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssWorkerAllocate.

instance_C-block
(input,POINTER,4) is a pointer holding the address of the C-block previously created for the calling
instance by its own line driver.

class_name
(input,CHAR,8) is a character string holding the name of the class from which a worker machine
should be selected.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in the
option_names and option_values arrays.

option_names

(input,INT,4*option_count) is an array of signed four-byte binary input variables holding option names.
option_values

(input,INT,4*option_count) is an array of signed four-byte binary input variables holding option values.
worker_C-block

(output,POINTER,4) is a pointer to hold the address of the returned worker C-block, constructed by
the server kernel to represent the connection between the instance and the selected worker.

connection_ID
(output,INT,4) is a signed four-byte binary output variable to hold the returned connection ID.

322 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssWorkerAllocate

Usage Notes

1. Input instance_C-block is the address of the C-block assigned to the instance by its line driver. This
value was passed to the instance in its own parameter list when the instance was started.

2. If the service instance prefers not to receive worker API notifications on its line driver's queue, the
service instance can set parameter instance_C-block to 0 (zero) instead. Supplying a value of 0 will
cause the server kernel to build an instance C-block in which only the following fields are valid:

vc_gh

line driver queue handle
vc_ikey

instance key

The service instance can use these values as inputs in subsequent calls to QueueReceivelmmed
or QueueReceiveBlock, to receive messages indicating worker activity. The C-block is not useful
for any other purpose. The server kernel returns the address of the built C-block in parameter
instance_C-block.

3. The worker class class_name should correspond to a class defined through the WORKER ADD
command. If the class has not yet been created through WORKER ADD, an error is returned.

4. Case is significant in class names.
5. The option_names array can contain any of these values:

ss_wrk_ofn_prefer_empty
The corresponding entry in the option_values array controls how the server kernel will search for
an available worker, as follows:

ss_wrk_ofv_yes
The server kernel will search for empty or not-yet-logged-on worker machines first and direct
the connection to one of those. If no such worker is found the server kernel will determine the
least burdened worker and direct the connection to it.

ss_wrk_ofv_no
The server kernel will search the already-logged-on workers, determine the least burdened
one, and direct the connection to it. If no workers are logged on yet, or if all logged-on
workers are full, the server kernel will autolog another worker and direct the connection to it.

ss_wrk_ofn_retry_count
The corresponding value in the option_values array is the number of worker machines the server
kernel should try before it gives up. Specifying a count of zero means that the server kernel
should try until it runs out of worker machine candidates.

ss_wrk_ofn_alt_userid

The corresponding value in the option_values array is a pointer to an 8-byte character string
which is the alternate user ID to use.

ss_wrk_ofn_alt_seclabel
The corresponding value in the option_values array is a pointer to an 8-byte character string
which is the alternate seclabel to use.

6. The server kernel maintains status information about the workers in each class and uses that status
information when considering whether to try to connect to a worker. The status information, an
integer, indicates either that the worker machine appears healthy or tells the reason why the last
attempt to connect to the worker machine failed. For more information, see “WORKER MACHINES”
on page 208.

7. To be able to set a worker's alternate user ID and seclabel, the controlling virtual machine must
have permission to issue Diagnose X'D4'. See z/VM: CP Programming Services for more information.
If you attempt to use the reusable server kernel's alternate user ID machinery and your virtual
machine does not have the privilege necessary to issue Diagnose X'D4', your virtual machine will take
a program check. It is your responsibility to recover from this.

8. If you specify an alternate seclabel, you must also specify an alternate user ID. The reusable server
kernel does not check this.

Chapter 15. Function Descriptions 323

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

ssWorkerAllocate

9. Output worker_C-block will contain the address of the C-block that describes the connection from the
instance to the worker. The instance should consult this C-block for:

« The queue handle it should use when sending IPC messages to the server kernel about this worker

connection

« The line driver key it should use when sending IPC messages to the server kernel about this worker

connection

10. The returned connection ID will appear in IPC messages arriving on the instance's line driver queue.
These messages, keyed with the instance's key, are indicative of activity on the worker connection.

Messages and Return Codes

Return Code

ss_wrk_rc_success

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error
ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

ss_wrk_rc_error

Reason Code

ss_wrk_re_success

ss_wrk_re_out_of storage

ss_wrk_re_bad_count

ss_wrk_re_bad_flag_name

ss_wrk_re_bad_flag_value

ss_wrk_re_no_class
ss_wrk_re_no_subordinates

ss_wrk_re_algtries_exceeded

ss_wrk_re_autolog_fail

ss_wrk_re_timer_fail

ss_wrk_re_iucvcon_fail

ss_wrk_re_force_fail

ss_wrk_re_force_timeout

ss_wrk_re_oper_delete

Meaning

ssWorkerAllocate completed
successfully

Insufficient storage to connect to
worker

Input option_count contains a negative
value

Input option_names contains an
unrecognized name

Input option_values contains an
unrecognized value

The class you requested does not exist
No worker machine could be found

The last worker machine tried was
autologged several times but the IUCV
connection never succeeded

The server kernel was unable to autolog
the last virtual machine it tried

The server kernel tried to use the CMS
Timer API to set a timer but the Timer
API failed

The server kernel encountered an
unrecoverable TUCV CONNECT error on
the last worker virtual machine it tried

The server kernel tried to CP FORCE a
worker (to reset it) but was unable to
issue the FORCE command

The server kernel FORCEd a worker (to
reset it) but did not see the worker
become logged off - possible hung user

While the server kernel was trying to
bring up the worker connection, the
operator issued WORKER DELETE or
WORKER DELCLASS, thus nullifying the
connection attempt

324 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssWorkerAllocate

Programming Language Bindings

Language Language Binding File
Assembler SSASMWRK MACRO
PL/X SSPLXWRK COPY

Chapter 15. Function Descriptions 325

ssWorkerAllocate

326 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Chapter 16. RSK Sockets

The RSK socket library is a PL/X application programming interface for socket programming. The library is
a very thin layer over the IUCV socket interface and can be used only within an RSK program. 2> While the
RSK socket library does not provide a correspondent for every IUCV socket function, it provides many of
the basic operations necessary to communicate with other socket programs. The RSK socket library also
provides some RSK-specific functions.

The RSK socket library is aware of multitasking CMS and integrates well with it. For example, when a
socket operation blocks, only the calling thread blocks. Further, the library offers extensions to traditional
socket semantics, making available asynchronous versions of often-used socket calls (such as write()).
When the caller performs an asynchronous socket operation, the completion notice arrives as a message
on a CMS queue.

Prerequisite Knowledge

This chapter assumes you have a working knowledge of the Reusable Server Kernel. You will also

need to be experienced in socket programming, such as from having used IUCV sockets, C sockets,

or Rexx/Sockets. To use the asynchronous features of the RSK socket library, you will need to understand
CMS interprocess communication (IPC) as implemented by multitasking CMS's "queue" functions (e.g.,
QueueReceiveBlock). Finally, you will need to know how to program in PL/X.

To use the RSK socket documentation effectively, you will need a copy of the "IUCV Sockets" section
of z/VM: TCP/IP Programmer's Reference. That material gives complete usage information for the IUCV
socket API. The best way to use this RSK socket library documentation is to refer to the RSK socket
documentation and the IUCV socket documentation side-by-side.

Available Functions

The following IUCV socket functions have correspondents in the RSK socket interface:

Table 47. Socket Functions Available in RSK Library

IUCV socket function name RSK entry point name
accept() PS_accept()

bind() PS_bind()

close() PS_close()

connect() PS_connect()
gethostid() PS_gethostid()
getpeername() PS_getpeername()
getsockname() PS_getsockname()
getsockopt() PS_getsockopt()

25 That is, the callers of the RSK socket library entry points must adhere to the RSK linkage and automatic
storage conventions. See Chapter 11, “Run-Time Environment,” on page 59 for more information.

© Copyright IBM Corp. 1999, 2024 327

Table 47. Socket Functions Available in RSK Library (continued)

IUCV socket function name RSK entry point name
joctl() PS_ioctl()
listen() PS_listen()
read() PS_read()
recvfrom() PS_recvfrom()
select() PS_select()
sendto() PS_sendto()
setsockopt() PS_setsockopt()
shutdown() PS_shutdown()
socket() PS_socket()
write() PS_write()

The following additional functions are specific to the RSK socket library:

Table 48. Additional RSK-Specific Functions in Library

Function RSK entry point name
Library initialization PS_libinit()
Library termination PS_libterm()

Application initialization

PS_applinit()

Application termination

PS_applterm()

Asynchronous read()

PS_async_read()

Asynchronous recvfrom()

PS_async_recv()

Asynchronous sendto() PS_async_sendto()
Asynchronous write() PS_async_write()
Cancel asynchronous operation PS_cancel()

Programming with RSK Sockets

Programming with the RSK socket library involves the following steps:

328 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

1. In each of your PL/X compilation units that will use the RSK socket library, you must include the RSK

socket library language binding macro. To do so, put the following statement into each compilation
unit:

%include syslib(plxsock);
PLXSOCK COPY isin DMSRP MACLIB, which is part of the z/VM PL/X Restricted Source Feature, which

you can order as a feature of z/VM.

. At run-time, your first step must be to initialize the RSK socket library. This prepares the library to
receive socket calls. To initialize the library, you must either call PS_libinit() yourself or arrange for the
RSK to call it. See “PS_libinit” on page 349 for more information.

. To perform socket operations, you must create a socket set. 26 We call each RSK socket set an
application and hence the entry point you use for this is PS_applinit().

You supply PS_applinit() with the name (VM user ID) of the TCP/IP stack machine, a unique name for
your new set of sockets, and the number of sockets you want in the set.

PS_applinit() establishes the IUCV connection to the TCP/IP stack machine and prepares the socket
set for your use.

. You perform operations on the sockets in your set. You use the RSK socket library entry points to do
so. For example, to allocate a new socket, you call PS_socket(), or to write data to a socket, you call
PS_write().

. When you are done with your set of sockets, you dispose of it by calling PS_applterm(), identifying the
socket set by the unique name you chose for it at its creation.

. Prior to your server ending, either you should call PS_libterm() or you should arrange for the RSK to call
it. See “PS_libterm” on page 350 for more information.

Restrictions and Limitations

Be aware of the following restrictions and limitations when you use the RSK socket library:

The RSK socket library uses storage subpool name DMSSBPSO. You should refrain from using this
subpool name.

The RSK socket library creates an HNDIUCV exit named DMSPLXSK. You should refrain from using this
HNDIUCV exit name.

The RSK socket library creates CMS semaphores whose names are of the form DMSPLXSKxxxx, where
xxxX is a hexadecimal number. You should refrain from using semaphore names of these forms.

Each socket set may contain 50 to 2000 sockets, inclusive.

The RSK itself uses socket set names of the form Uxxxxxxx and TXXXXXXX, wWhere XxxxXXxxx is a
hexadecimal number. You should refrain from using socket set names of these forms.

You may create more than one named socket set concurrently. The absolute limit on the number of
socket sets the library can manage is set by call to PS_libinit(). 27 This limit counts both socket sets you
create yourself and RSK UDP or TCP subtasks you have running in your server. Each such subtask uses
one socket set.

You may overlap operations on a socket set, but you should not overlap operations on a single socket.
For example, if you use PS_async_write() to write data to a socket, you should not start another write to
that socket until the current write to that socket finishes.

When you call a synchronous socket operation (such as PS_write()), the calling thread blocks until the
operation completes. Other CMS threads might run while the calling thread waits for the operation

to complete. While the synchronous operation is in progress, other threads are permitted to perform
operations on other sockets in that socket set and on other socket sets.

26 In IUCV sockets, this step corresponds to establishing a connection to the TCP/IP stack machine and
sending the initial message. In Rexx/Sockets, this step corresponds to invoking Socket ('Initialize"').
27 When the RSK calls PS_libinit(), it sets the limit to 100.

Chapter 16. RSK Sockets 329

Data Structures

Certain data structures are important in socket programming. For example, the 16-byte structure
containing the address of a new client (known to C programmers as sockaddr_in) is used throughout the
API. Here are some hypothetical PL/X representations of those data structures. These representations are
referred to in the routines' descriptions below, but they are not provided in PLXSOCK COPY and are here
just for illustrative purposes.

Address Structure

/* sockaddr_in */

declare

1 sockaddr_in based boundary(word),
5 si_family fixed(15), /* address family =/
5 si_port fixed(16), /* port number */
5 si_address fixed(32), /* IP address */
5 si_zero char(8); /* must be zero */

Timeout Structure

/* timeout structure for select() =/

declare

1 timeval based boundary(word),
5 tv_sec fixed(31), /* seconds */
5 +tv_usec fixed(31); /* microseconds */

Notes on PLXSOCK COPY

The language binding file PLXSOCK COPY contains constant definitions, structure definitions, and
function prototypes. Some notes on each:

Constants

Certain (but certainly not all) constants relevant to socket programming appear in PLXSOCK COPY. When
the library requires you to supply a constant (such as AF_INET), check the binding to see if a symbolic
name is available. If there is no symbolic name, you will have to make up your own.

Structures

PLXSOCK COPY contains definitions for certain structures commonly used in socket programming. Feel
free to use these structures if you find them helpful.

Function Prototypes
PLXSOCK COPY contains function prototypes for each RSK socket library entry point.

Return Codes and ERRNO Values

By and largg, the return code values and errno values returned by the RSK socket library correspond
exactly to the values returned by the IUCV socket API. The following exceptions apply:

« Some entry points unique to the RSK socket library (such as PS_applinit()) supply a return and reason
code. The descriptions below list the return and reason codes that might be produced.

« The RSK socket library defines additional errno values not found in the IUCV socket API. These errno
values come from the additional complexity in the RSK socket library. Their symbolic names and
meanings are:

330 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_accept

Name
Meaning

EIBMIUCVERR

Some kind of IUCV error occurred
EIBMLIBERR

The RSK socket library is not initialized
EIBMNOAPPL

The socket set you named does not exist

EIBMNOSOCKAVAIL
No sockets available in socket set

EIBMBADKEYLEN

Notify key length is invalid
EIBMNOSTORAGE

No storage available
EIBMBADBUFLEN

A supplied buffer length is invalid
EIBMBADPARM

Timeout buffer length is invalid

EIBMSHUTDOWN
The TCP/IP stack is shutting down

Any of the RSK socket library routines having errno as an output might produce some of these errno
values.

RSK Socket Calls

This section provides the PL/X language syntax, parameters, and other appropriate information for each
socket call the RSK supports.

The parameter lists and syntax for each routine are illustrated with PL/X snippets. These snippets are not
verbatim examples you can compile and run. They just show the data type of each parameter list entry,
whether the item is input (I) or output (0), and how to code the CALL statement to invoke the function.

Usage notes here are confined to explaining particulars of the RSK socket API. As a result, the information
here is intentionally terse. Again, refer to "IUCV Sockets" in z/VM: TCP/IP Programmer's Reference.

PS_accept

Purpose

Performs socket accept() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
applname char(8),
lsocket fixed(31),

addrbufptr pointer(31),
addrbufsize fixed(31),

addrlen fixed(31),
socket fixed(31),
errno fixed(31);

/* how to call %/
call PS_accept
(

Chapter 16. RSK Sockets 331

PS_applinit

applname, /* I: application name */
lsocket, /* I: 1listen socket */
addrbufptzr, /* I: address buffer pointer =«/
addrbufsize, /* I: address buffer size */
addrlen, /* 0: address length */
socket, /* 0: new socket number */
errno /* 0: ERRNO */
)8
Parameters
Parameter
Definition
applname
Name of socket set
lsocket
Socket you listened on
addrbufptr

Pointer to buffer into which API should place a completed sockaddr_in structure

addrbufsize
Size of said buffer

addrlen
Returned length of sockaddr_in structure

socket
Socket number for new connection

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.
PS_applinit

Purpose

Creates a socket set.

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare

rc fixed(31),
re fixed(31),
tcpname char(8),
applname char(8),

numwanted fixed(31),
numgotten fixed(31);

/* how to call =/
call PS_applinit
(

rc, /* 0: return code */
re, /* 0: 1reason code */
tcpname, /* I: name of TCP/IP stack */

332 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_applterm

applname, /* I: appl name to use */
numwanted, /> I: num of sockets wanted */
numgotten /* 0: num of sockets gotten */
Parameters
Parameter
Definition
rc

Return code

re
Reason code

tcpname
User ID of TCP/IP stack machine

applname
Name for new socket set

numwanted
Number of sockets wanted (50 to 2000)

numgotten
Number of sockets gotten

Reason Codes

Reason Code
Meaning

sok_re_bad_ns
numwanted is out of range

sok_re_dup_appl
applname already in use

sok_re_ic_fail
IUCV CONNECT to stack failed

sok_re_bad_inttype
Stack responded improperly to CONNECT

sok_re_is_fail
IUCV SEND to stack failed

sok_re_diff_ns
numgotten == numwanted

sok_re_no_library
Socket library not initialized

sok_re_no_apps
Library unable to handle additional socket sets
Usage Notes

1. If you get a warning return code and you get reason code sok_re_diff_ns, you may proceed to use the
socket set, recognizing you did not get as many sockets as you requested.

2. If you get an error return code and you get reason code sok_re_diff_ns, the socket set was not created
because the TCP/IP stack tried to give you more sockets than you requested.

PS_applterm

Chapter 16. RSK Sockets 333

PS_async_read

Purpose

Terminates a socket set.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
rc fixed(31),
re fixed(31),
applname char(8);

/* how to call */
call PS_applterm
(

Ic, /* 0: zreturn code */

re, /* 0: 1reason code */
applname /* I: set to terminate */

’

Parameters

Parameter
Definition
rc
Return code

re
Reason code

applname
Name of socket set to terminate
Reason Codes

Reason Code
Meaning

sok_re_no_appl
Application not found

sok_re_no_library
Socket library not initialized

Usage Notes

None.

PS_async_read

Purpose

Starts a read of a socket. The library sends an IPC message when the read completes.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
applname char(8),
socket fixed(31),

334 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_async_read

bufpointer pointer(31),

bufsize fixed(31),
nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),
xid fixed(31),
Ic fixed(31),
errno fixed(31);

/* how to call %/
call PS_async_read

applname, /*
socket, /*
bufpointer, /*
bufsize, /*
nghandle, /*
nkpointer, /*
nklength, /*
xid, /*
rc, /*
errno /*

)i

application name */
socket to read */
pointer to read buffer «/
size of read buffer */
handle of notify queue =*/
pointer to notify key %/
length of notify key */
transaction ID */
return code */
ERRNO */

COOHHHHHKHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket to read

bufpointer
Pointer to buffer to be filled

bufsize
Amount of data wanted

nghandle
Handle of notify queue

nkpointer
Pointer to key for notify message

nklength
Length of notify message

xid
Transaction ID

rc
Return code

errno

Returned ERRNO
Reason Codes
Not applicable.

Usage Notes

1. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by
calling QueueldentifyService.

2. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:

Chapter 16. RSK Sockets 335

PS_async_recv

Offset.Length
Usage

0.4
Return code

4.4
Errno

8.16
Unused

3. The message will be sent with your notify key as its key.

4. If you need to cancel the operation before it completes, use the returned transaction ID in a call to
PS_cancel().

PS_async_recv

Purpose

Starts a receive of a datagram. The library sends an IPC message when the receive completes.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
flagword fixed(31),
nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),
xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call x/
call PS_async_recv

(

applname, /* I: application name */
socket, /* I: socket to receive on */
bufpointer, /* I: pointer to recv buffer =«/
bufsize, /* I: size of recv buffer */
flagword, /* I: flag word */
nghandle, /* I: handle of notify queue =x/
nkpointer, /* I: pointer to notify key «/
nklength, /* I: length of notify key */
xid, /* 0: transaction ID */
rc, /* 0: return code */
errno /* 0: ERRNO */
)8

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket to receive on

bufpointer
Pointer to buffer to be filled

336 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_async_sendto

bufsize
Amount of data wanted

flagword
Flag word

nghandle
Handle of notify queue

nkpointer
Pointer to key for notify message

nklength
Length of notify message

xid
Transaction ID

rc
Return code

errno
Returned ERRNO

Reason Codes
Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.

2. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by
calling QueueldentifyService.

3. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:

Offset.Length
Usage

0.4
Return code

4.4
Errno

8.16
sockaddr_in describing message source

4. The message will be sent with your notify key as its key.

5. If you need to cancel the operation before it completes, use the returned transaction ID in a call to
PS_cancel().

PS_async_sendto

Purpose

Starts a send of a datagram. The library sends an IPC message when the send completes.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

Chapter 16. RSK Sockets 337

PS_async_sendto

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
flagword fixed(31),

addrbufptr pointer(31),
addrbufsize fixed(31),

nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),
xid fixed(31),
Ic fixed(31),
errno fixed(31);

/* how to call %/
call PS_async_sendto

applname, /* I: application name */
socket, /* I: socket to send on */
bufpointer, /* I: pointer to data buffer =«/
bufsize, /* I: size of data buffer */
flagword, /* I: flag word */
addrbufptr, /* I: pointer to addr buffer =x/
addrbufsize, /* I: size of addr buffer */
nghandle, /* I: handle of notify queue =*/
nkpointer, /* I: pointer to notify key «/
nklength, /* I: length of notify key */
xid, /* 0: transaction ID */
Ic, /* 0: return code */
errno /* 0: ERRNO */
)8
Parameters
Parameter
Definition
applname
Name of socket set
socket
Socket to send on
bufpointer
Pointer to data buffer
bufsize
Length of data buffer
flagword
Flag word
addrbufptr
Pointer to sockaddr_in structure
addrbufsize
Length of sockaddr_in structure
nghandle
Handle of notify queue
nkpointer
Pointer to key for notify message
nklength
Length of notify message
xid

Transaction ID

rc
Return code

338 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_async_write

errno
Returned ERRNO

Reason Codes
Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.

2. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by
calling QueueldentifyService.

3. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:

Offset.Length
Usage

0.4
Return code

4.4
Errno

8.16
Unused

4. The message will be sent with your notify key as its key.
5. If you need to cancel the operation before it completes, use the returned transaction ID in a call to

PS_cancel().
PS_async_write

Purpose

Starts a write to a socket. The library sends an IPC message when the write completes.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */

declare
applname chax(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),
xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call x/
call PS_async_write

applname, /* I: application name */
socket, /* I: socket to write to */
bufpointer, /* I: pointer to data buffer =«/
bufsize, /*x I: size of data buffer */
nghandle, /* I: handle of notify queue =/
nkpointer, /*x I: pointer to notify key */
nklength, /*x I: length of notify key */
xid, /* 0: transaction ID */
rc, /* 0: zreturn code */

Chapter 16. RSK Sockets 339

PS_bind

errno /* 0: ERRNO */
)8

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket to write to

bufpointer
Pointer to data buffer

bufsize
Length of data buffer

nghandle
Handle of notify queue

nkpointer
Pointer to key for notify message

nklength
Length of notify message

xid
Transaction ID

rc
Return code

errno
Returned ERRNO

Reason Codes
Not applicable.

Usage Notes

1. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by
calling QueueldentifyService.

2. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:

Offset.Length
Usage

0.4
Return code

4.4
Errno

8.16
Unused

3. The message will be sent with your notify key as its key.

4. If you need to cancel the operation before it completes, use the returned transaction ID in a call to
PS_cancel().

PS_bind

340 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_cancel

Purpose

Performs bind() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
applname char(8),
socket fixed(31),

addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call x/

call PS_bind

(

applname, /*
socket, /*
addrbufptzr, /*
addrbufsize, /*
G /*
errno /*

) r

application name */
socket for bind */
address buffer pointer =/
address buffer size */
return code */
ERRNO */

COHHMHH

Parameters
Parameter

Definition
applname

Name of socket set

socket
Socket for bind

addrbufptr
Pointer to your built sockaddr_in structure

addrbufsize
Length of your sockaddr_in structure

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_cancel

Purpose

Cancels an asynchronous RSK socket function.

Chapter 16. RSK Sockets 341

PS_close

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare

applname char(8),
xid fixed(31),
Ic fixed(31),
errno fixed(31);

/* how to call */
call PS_cancel

(

applname, /* I: application name */
xid, /* I: transaction to cancel */
rc, /* 0: return code */
errno /* 0: ERRNO */
Parameters
Parameter
Definition
applname
Name of socket set
xid
Transaction to cancel
rc
Return code
errno
Returned ERRNO value
Reason Codes
Not applicable.
Usage Notes
None.
PS_close
Purpose
Performs close() function.
PL/X Illustration
%include syslib(plxsock);
/* parameter data types */
declare
applname char(8),
socket fixed(31),
rc fixed(31),
errno fixed(31);
/* how to call */
call PS_close
(
applname, /* I: application name */
socket, /* I: socket to close */

342 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_connect

rc, /* 0: return code */
errno /* 0: ERRNO */

’

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket to close

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_connect

Purpose

Performs connect() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */

declare
applname char(8),
socket fixed(31),

addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call %/
call PS_connect

(

applname, /> I: application name */
socket, /* I: socket to use */
addrbufptr, /* I: pointer to sockaddr_in x/
addrbufsize, /* I: length of sockaddr_in */
rc, /* 0: return code */
errno /* 0: ERRNO */
)8

Parameters

Parameter

Definition
applname

Name of socket set

Chapter 16. RSK Sockets 343

PS_gethostid

socket
Socket to close

addrbufptr
Pointer to sockaddr_in describing target

addrbufsize
Length of sockaddr_in

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_gethostid

Purpose

Performs gethostid() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */

declare

applname char(8),
hostid fixed(31),
errno fixed(31);

/* how to call %/
call PS_gethostid
(

applname, /> I: application name */

hostid, /* 0: host ID */
errno /* 0: ERRNO */

’

Parameters

Parameter

Definition
applname

Name of socket set

hostid
Returned host ID

errno
Returned ERRNO value

Reason Codes
Not applicable.

344 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_getpeername

Usage Notes

None.

PS_getpeername

Purpose

Performs getpeername() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types %/
declare

applname char(8),
socket fixed(31),
addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS_getpeername

applname, /*
socket, /*
addrbufptr, /*
addrbufsize, /*
xc, /*
errno /*

IF

application name */
socket number */
pointer to sockaddr_in */
length of sockaddr_in */
return code */
ERRNO */

COHHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

addrbufptr
Pointer to buffer to contain sockaddr_in

addrbufsize
Length of sockaddr_in

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_getsockname

Chapter 16. RSK Sockets 345

PS_getsockopt

Purpose

Performs getsockname() function.

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare
applname char(8),
socket fixed(31),

addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =%/
call PS_getsockname

applname, /*
socket, /*
addrbufptzr, /*
addrbufsize, /*
xc, /*
errno /*

) r

application name */
socket number */
pointer to sockaddr_in =/
length of sockaddr_in %/
return code */
ERRNO */

COHHMHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

addrbufptr
Pointer to buffer to contain sockaddr_in

addrbufsize
Length of sockaddr_in

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_getsockopt

Purpose

Performs getsockopt() function.

346 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_ioctl

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare

applname char(8),
socket fixed(31),
level fixed(31),
optname fixed(31),
optvalptr pointer(31),
optvalbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */
call PS_getsockopt
(

applname, /*
socket, /*
level, /*
optname, /*
optvalptr, /*
optvalbufsize, /*
rc, /*
errno /*

)i

application name */
socket number */
level setting */
option name */
pointer to value buffer x/
length of value buffer =«/
return code */
ERRNO */

OO HHHHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

level
Option level

optname
Name of option being interrogated

optvalptr
Pointer to buffer for option value

optvalbufsize
Size of buffer for option value

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_ioctl

Chapter 16. RSK Sockets 347

PS_ioctl

Purpose

Performs ioctl() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare

applname char(8),
socket fixed(31),
command fixed(31),
argstrptr pointer(31),
argstrlen fixed(31),
respbufptr pointer(31),
respbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =%/
call PS_joctl
(

applname, /*x I: application name */
socket, /* I: socket number */
command, /> I: ioctl command */
argstrptr, /* I: pointer to arg string =/
argstrlen, /*x I: length of arg string */
respbufptr, /* I: pointer to resp buffer =«/
respbufsize, /*x I: size of resp buffer */
rc, /* 0: zreturn code */
errno /* 0: ERRNO */
)5

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

command
ioctl() command

argstrptr
Pointer to argument string

argstrlen
Length of argument string

respbufptr
Pointer to response buffer

respbufsize
Size of response buffer

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

348 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_libinit

Usage Notes

None.
PS_libinit

Purpose
Initializes the RSK socket library.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
rc fixed(31),
re fixed(31),
numofapps fixed(31);

/* how to call =/
call PS_libinit
(

rc, /* 0: return code */
re, /* 0: reason code */
numofapps /* I: number of applications =*/
Parameters
Parameter
Definition
rc

Return code

re
Reason code

numofapps
Number of concurrent applications

Reason Codes

Reason Code
Meaning

sok_re_success
Function worked correctly

sok_re_already
Socket library already initialized

sok_re_bad_appl_count
numofapps is out of range

sok_re_out_of_storage
Insufficient storage

sok_re_hs_fail
HNDIUCV SET failed

sok_re_sc_fail
SemCreate failed

Chapter 16. RSK Sockets 349

PS_libterm

Usage Notes
1. You need to coordinate your use of PS_libinit() with the RSK's TCP and UDP line drivers.

The objective in such coordination is to make sure that if the RSK decides to call PS_libinit(), its call will
work. (Most service levels of the RSK cannot tolerate failure of a call to PS_Ilibinit().)

If you plan never ever to use any of the IP functions in the RSK, you will definitely need to call
PS_libinit() exactly once to initialize the RSK socket library, so you should go ahead and issue the call
before you issue any other RSK socket calls.

However, if your server starts the TCP or UDP line drivers (for example, SUBCOM START UDP appears
in your PROFILE RSK), then you should refrain from calling PS_libinit() because the RSK will do so as
part of initializing those line drivers.

If the latter is your situation, you can assume that the RSK has initialized the socket library as soon
as control returns from the first START of the TCP or UDP line driver (e.g., SUBCOM START TCPin
PROFILE RSK).

PS_libterm

Purpose

Terminates the RSK socket library.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
rC fixed(31),
re fixed(31),

/* how to call */
call PS_libterm
(

rc, /* 0: return code */
re /* 0: reason code */
)8
Parameters
Parameter
Definition
rc

Return code

re
Reason code

Reason Codes

Reason Code
Meaning

sok_re_success
Function worked correctly

Usage Notes
1. You need to coordinate your use of PS_libterm() with the RSK's TCP and UDP line drivers.

350 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_listen

The objective in such coordination is to make sure that you do not terminate the socket library prior to
the RSK's being ready for it to be terminated.

If you plan never ever to use any of the IP functions in the RSK, you will definitely need to call
PS_libinit() exactly once to terminate the RSK socket library, so you should go ahead and issue the call
after you are all done issuing other RSK socket calls.

However, if your server starts the TCP or UDP line drivers (for example, SUBCOM START UDP appears
in your PROFILE RSK), then you should refrain from calling PS_libterm() because the RSK will do so as
part of terminating those line drivers.

The RSK will terminate the TCP and UDP line drivers only after all of your instance threads have
terminated.

PS_listen

Purpose

Performs listen() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare

applname char(8),
socket fixed(31),
queuesize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */

call PS_listen

(

applname, /*
socket, /*
queuesize, /*
rc, /*
errno /*

’

application name */
socket number */
backlog queue size */
return code */
ERRNO */

COHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

queuesize
Backlog queue size

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Chapter 16. RSK Sockets 351

PS_read

Usage Notes

None.

PS_read

Purpose

Performs read() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call =/

call PS_read

(

applname, /*
socket, /*
bufpointer, /*
bufsize, /*
rc, /*
errno /*

IF

application name */
socket number */
pointer to read buffer =«/
size of read buffer */
return code */
ERRNO x/

COHHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

bufpointer
Pointer to read buffer

bufsize
Size of read buffer

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_recvfrom

352 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Purpose

Performs recvfrom() function.

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare
applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
flagword fixed(31),
addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */

call PS_recvfrom

(

applname, /*
socket, /*
bufpointer, /*
bufsize, /*
flagword, /*
addrbufptzr, /*
addrbufsize, /*
xc, /*
errno /*

) r

application name
socket number

size of recv buffer
flag word

size of sockaddr_in
return code
ERRNO

OCOHHHHIHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

bufpointer
Pointer to recv buffer

bufsize
Size of recv buffer

flagword
Flag word

addrbufptr
Pointer to buffer to receive sockaddr_in

addrbufsize
Size of buffer to receive sockaddr_in

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

pointer to recv buffer

pointer to sockaddr_in

PS_recvfrom

Chapter 16. RSK Sockets 353

PS_select

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.

PS_select

Purpose

Performs select() function. Completion notification arrives as an IPC message in a CMS queue.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare
applname char(8),
numinuse fixed(31),
rdptr pointer(31),
wrptr pointer(31),
exptr pointer(31),
toptr pointer(31),
nghandle fixed(31),
nkpointer pointer(31),
nklength fixed(31),
xid fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call x/
call PS_select
(

applname, /* I: application name */
numinuse, /* I: sockets in use */
rdptr, /> I: pointer to read descriptor */
wrptr, /* I: pointer to write descriptor */
exptr, /* I: pointer to exception descriptor =/
toptr, /> I: pointer to timeval structure */
nghandle, /* I: handle of notify queue */
nkpointer, /* I: pointer to notify key */
nklength, /> I: length of notify key */
xid, /* 0: transaction ID */
rc, /* 0: return code */
errno /* 0: ERRNO */

Parameters

Parameter

Definition
applname

Name of socket set

numinuse
Number of sockets named in descriptors

rdptr
Pointer to read-interrogation descriptor

wrptr
Pointer to write-interrogation descriptor

exptr
Pointer to exception-interrogation descriptor

toptr
Pointer to timeval structure

354 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_sendto

nghandle
Handle of notify queue

nkpointer
Pointer to notify key

nklength
Length of notify key

xid
Returned transaction ID

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

1. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by
calling QueueldentifyService.

2. The size of each descriptor in bytes, fdsize, is given by the formula 4 * ((numinuse+31)/32).

3. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:
Offset.Length
Usage

0.4
Return code

4.4
Errno

8.8
Unused

16.fdsize
Read-readiness descriptor

16+fdsize.fdsize
Write-readiness descriptor

16+2*fdsize.fdsize
Exception-readiness descriptor

4. The message will be sent with your notify key as its key.

5. If you need to cancel the operation before it completes, use the returned transaction ID in a call to
PS_cancel().

PS_sendto

Purpose

Performs sendto() function.

Chapter 16. RSK Sockets 355

PS_sendto

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare

applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
flagword fixed(31),
addrbufptr pointer(31),
addrbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call */

%all PS_sendto

applname, /*
socket, /*
bufpointer, /*
bufsize, /*
flagword, /*
addrbufptzr, /*
addrbufsize, /*
1iCH /*
errno /*

) r

application name */
socket number */
pointer to send buffer «/
size of send buffer */
flag word */
pointer to sockaddr_in =/
size of sockaddr_in */
return code */
ERRNO */

OCOHHHHIHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

bufpointer
Pointer to send buffer

bufsize
Size of send buffer

flagword
Flag word

addrbufptr
Pointer to sockaddr_in describing recipient

addrbufsize
Size of buffer to receive sockaddr_in

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.

356 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_setsockopt

PS_setsockopt

Purpose

Performs setsockopt() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/

declare

applname char(8),
socket fixed(31),
level fixed(31),
optname fixed(31),
optvalptr pointer(31),
optvalbufsize fixed(31),
rc fixed(31),
errno fixed(31);

/* how to call %/

call PS_setsockopt

(

applname, /*
socket, /*
level, /*
optname, /*
optvalptz, /*
optvalbufsize, /*
c, /*
errno /*

)8

application name */
socket number */
level setting */
option name */
pointer to value buffer %/
length of value buffer =«/
return code */
ERRNO */

COHHHHHH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

level
Option level

optname
Name of option being set

optvalptr
Pointer to option value

optvalbufsize
Size of option value

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Chapter 16. RSK Sockets 357

PS_shutdown

Usage Notes

None.

PS_shutdown

Purpose

Performs shutdown() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/
declare

applname char(8),

socket fixed(31),
method fixed(31),
Ic fixed(31),
errno fixed(31);

/* how to call %/

call PS_shutdown

(

applname, /> I: application name */
socket, /% I socket number */
method, /* I: shutdown method */
rc, /* 0: zreturn code */
errno /* 0: ERRNO */

’

Parameters
Parameter

Definition
applname

Name of socket set

socket
Socket number

method
Shutdown method

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

PS_socket

Purpose

Performs socket() function.

358 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

PS_write

PL/X Illustration

%include syslib(plxsock);

/% parameter data types x/

declare

applname char(8),
domain fixed(31),
type fixed(31),
protocol fixed(31),
socket fixed(31),
errno fixed(31);

/* how to call x/

%all PS_socket

applname, /*
domain, /*
type, /*
protocol, /*
socket, /*
errno /*

) r

application name */
domain */
type */
protocol */
socket number */
ERRNO */

OCOHHHH

Parameters
Parameter

Definition
applname

Name of socket set

domain
Socket domain

type
Socket type

protocol
Protocol to use

socket
Socket number

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes
1. Only domain AF_INET is supported.

PS_write

Purpose

Performs write() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types x/
declare

Chapter 16. RSK Sockets 359

PS_write

applname char(8),
socket fixed(31),
bufpointer pointer(31),
bufsize fixed(31),
Ic fixed(31),
errno fixed(31);

/* how to call */

call PS_write

(

applname, /*
socket, /*
bufpointer, /*
bufsize, /*
rc, /*
errno /*

)i

application name */
socket number */
pointer to write buffer x/
size of write buffer */
return code */
ERRNO x/

COHHHMH

Parameters

Parameter

Definition
applname

Name of socket set

socket
Socket number

bufpointer
Pointer to write buffer

bufsize
Size of write buffer

rc
Return code

errno
Returned ERRNO value

Reason Codes
Not applicable.

Usage Notes

None.

360 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix A. Sample PROFILE RSK

/* */

[HHEXH SRR AFARIRE RS SRS AR AFARE R R RS SAAFARA TR /
/* */
/* Sample Reusable Server Kernel profile file */
/* */

/**/

parse arg stuff
say 'Args were' stuff

/****************************/
/* set names of data files =%/

/* configure key data files x/
'"CONFIG SGP_FILE MYSERV RSKSGP A'
'"CONFIG UMAP_FILE MYSERV RSKUMAP A'

/* config auth data =/
"CONFIG AUT_LOCATION MINIDISK'

'CONFIG AUT_LOG MYSERV RSKAUL B'
'"CONFIG AUT_DATA_1 MYSERV1 RSKAUD B'
'"CONFIG AUT_INDEX_1 MYSERV1 RSKAUX B'
'"CONFIG AUT_DATA_2 MYSERV2 RSKAUD B'
"CONFIG AUT_INDEX_2 MYSERV2 RSKAUX B'
|||||||||||||||||||||||||||| /

/* set other config vars */

/****************************/

/* configure RSCS userid =/
address command 'IDENTIFY (LIFO'
parse pull rscsid .
"CONFIG RSCS_USERID' rscsid

/* configure monitor data x/
"CONFIG MON_PRODUCT_ID MYSERVER'
'"CONFIG MON_KERNEL_ROWS 50'

/* configure authorization database */
"CONFIG AUT_CACHE 100'
'CONFIG AUT_FREE 100'

/* configure AUTHCHECK family x/
'CONFIG AUTHCHECK_AUTH ON'
"CONFIG AUTHCHECK_CACHE ON'
"CONFIG AUTHCHECK_CMS ON'
'"CONFIG AUTHCHECK_CONFIG ON'
"CONFIG AUTHCHECK_CP ON'
"CONFIG AUTHCHECK_ENROLL ON'
'"CONFIG AUTHCHECK_LD ON'
'CONFIG AUTHCHECK_SERVER ON'
"CONFIG AUTHCHECK_SGP ON'
'"CONFIG AUTHCHECK_USERID ON'
'CONFIG AUTHCHECK_WORKER ON'

/* configure memory API x/
'"CONFIG MEM_MAXFREE 100'

/* set NOMAP actions %/
'CONFIG NOMAP_TCP OFF'
'CONFIG NOMAP_UDP OFF'
'CONFIG NOMAP_MSG OFF'
"CONFIG NOMAP_APPC OFF'
'CONFIG NOMAP_IUCV OFF'
"CONFIG NOMAP_SPOOL OFF'

/* configure MSG driver =/
'"CONFIG MSG_NOHDR OFF'

© Copyright IBM Corp. 1999, 2024

361

/* configure SPOOL driver x/
"CONFIG SPL_INPUT_FT RSKRQST'
'"CONFIG SPL_OUTPUT_FT RSKRESP'

/* configure implicit routing */
"CONFIG VM_CONSOLE ON'

"CONFIG VM_MSG ON'

"CONFIG VM_SPOOL ON'

'CONFIG VM_SUBCOM ON'

/***************************/

/* and start it */
[HHFEFASHEFA SR AFA IS AFA KA /
"RUNSERV'

if (xrc<>0) then

return 100

‘SUBCOM START WORKER'
'SUBCOM START USERID'
'SUBCOM START SERVER'
'SUBCOM START AUTH'
'SUBCOM START ENROLL'
'SUBCOM START SGP'
'SUBCOM START CMS'
'SUBCOM START CP'

'SUBCOM START TCP'
'SUBCOM START IUCV'
'SUBCOM START APPC'
'SUBCOM START SPOOL'
'SUBCOM START MSG'
'SUBCOM START CONSOLE'

/* attach certain services to console too */
/**/

"CONSOLE START CACHE'
'CONSOLE START CONFIG'
'CONSOLE START USERID'
"CONSOLE START WORKER'
'CONSOLE START SERVER'
'CONSOLE START AUTH'
"CONSOLE START SGP'
'CONSOLE START CMS'
"CONSOLE START CP'
"CONSOLE START ENROLL'

'CONSOLE START TCP'
"CONSOLE START IUCV'
'CONSOLE START APPC'
'CONSOLE START SPOOL'
"CONSOLE START MSG'
'CONSOLE START SUBCOM'

‘MSG START CACHE'
'MSG START CONFIG'
'"MSG START USERID'
‘MSG START SERVER'
'MSG START AUTH'
'MSG START SGP'
‘MSG START CMS'
‘MSG START CP'
'"MSG START ENROLL'
‘MSG START WORKER'

'MSG START TCP'
‘MSG START SPOOL'
'MSG START MSG'
'MSG START SUBCOM'

362 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

/* start author-supplied services */

/* for example... %/
'"TCP START MYSERV 500 10 0.0.0.0 TCPIP1'
'TCP START MYSERV 500 10 0.0.0.0 TCPIP2'
'"TCP START MYSERV 500 10 0.0.0.0 TCPIP3'
'SUBCOM START MYOP'

"CONSOLE START MYOP'
'MSG START MYOP'

/* wait for server to end */
/**/

'"WAITSERV'

/* perform server-specific termination here x/
[*k ko kok ok ko kok ok kok ok kok sk ok k ok ok ok sk k ok ok ok ko k ok ok kok ok /

[HRER AR AR SR SRS SR RER AR AR ARSI SRR A /
/* and return to caller */
e /
return 0

Appendix A. Sample PROFILE RSK 363

364 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix B. Sample User ID Mapping File

khkkkkhkkhkkkkhkkhkhkkhkkhkhkhkkhkkhhkkkhkhhkkhkkhhhkkhkhhkhkkhhhkkhkhhkhkkhkhhkkhkhhhkkhkhhkkhkkhhhkkhhhhkkhhhkkhkkhhhkkhhhkkkhhhkkkikx
Sample Reusable Server Kernel userid mapping file

This file contains the mapping table that translates

a two-token userid identifier to a single-token userid.
USAGE NOTES:

1. File can be V-format or F-format, it doesn't matter.
LRECL doesn't matter, either.

2. Blank lines and lines starting with "x" are ignored.

3. If a ";" appears in the line, the ";" and everything
after the ";" are ignored.

4. Each clause must fit completely in one file recoxd.

5. Case IS significant in this file.

6. The keyword in each clause must be in UPPER CASE.

7. Unrecognized clauses are skipped without mention.

8. The server kernel requires a userid mapping file to

be present.

CLAUSE DEFINITION:
Each clause is a record as follows:

MAP input_conn input_nodeid input_userid output_userid ; comment

where:
MAP is a literal identifying a mapping record
input_conn is the input connectivity technology name
input_nodeid is the input node ID
input_userid is the input user ID
output_userid is the output of translation
comment is an optional comment

input_conn is one of:

TCP describes a TCP/IP mapping
ubP describes a UDP/IP mapping
Iucv describes an IUCV mapping
APPC describes an APPC/VM mapping
SPOOL describes a SPOOL mapping
MSG describes a MSG mapping
* applies to all technologies
Notes:

1. The input fields are expressed in the same notation as queue
and event keys in CMS Application Multitasking, namely:

Case is significant,

"x" is a wildcard of O or more characters,
"%" is a wildcard of exactly one character,
"'" is an escape character.

o0 Tw

For example, "GDLVM%" matches GDLVM1, GDLVM2, etc. but not
GDLVMV50, and "GDL%" matches GDLVM1, GDLVMV50, GDLAIX, etc.
WARNING: if you want "x", "%", or "'" to be a literal in
the field, precede it by the escape character '

2. The output_userid field can be any literal or "=" to mean

"use the value of input_userid".

%k o bk ok Sk o ok ok ok Sk ok 3k ok ok 3 b 3k % ok % o 3k ok ok % ok b ok ok % b 3k ok ok % ok 3k ok ok % ok 3k ok ok % ok 3k Kk ok % ok 3 Kk ok % ok 3k Kk ok ¥ ok * Kk ok * ok * * * * *
%k ok k% ok Sk o ko ok %k ok b ok ok 3k b b % ok ok o 3k ok ok % ok b ok ok % o 3k ok ok % ok 3k ok ok % ok 3k ok ok % ok 3k Kk ok % ok F Kk ok % ok 3k Kk ok ¥ ok * Kk ok ¥ ok * F o * o*

3. The input fields can each be up to 64 bytes long.

© Copyright IBM Corp. 1999, 2024

365

4. The output_userid field can be up to 64 bytes long.

Examples:

MAP APPC 'xUSERID:* BKW BKW
MAP IUCV GDLVM7 BKW BKW
MAP TCP 9.130.57.10 * BKW
MAP UDP 9.130.57.10 * BKW
MAP SPOOL GDLVM7 BKW BKW
MAP MSG GDLVMWEB BKW BKW

In these examples, all of the following clients appear to be
userid BKW:

- an IUCV-connected client coming from a virtual machine
whose userid is BKW

- an APPC/VM-connected client whose LU starts with "xUSERID"
and whose security userid is BKW

- a TCP/IP-connected client residing on machine 9.130.57.10
- a UDP/IP-connected client residing on machine 9.130.57.10
- a spool-connected client sending from BKW at GDLVM7

- a MSG-connected client sending from BKW at GDLVMWEB

SEARCH TECHNIQUE:

The file is searched top to bottom, the first matching clause
being the one that takes effect.

ok % ok Sk ok ok Ok ok Sk ok 3k ok ok % ok 3 ok ok % ok 3k F ok % ok F F ok X ok * F o X
ok % ok Sk ok ok ok ok % ok b ok ok % ok 3 ok ok % ok Ok ok % ok F F ok X ok * F o X

kkkkkkkkkkkkkkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkk

366 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix C. Authorization Data File Formats

This appendix describes the internals of the files used to hold authorization data managed by the reusable
server kernel. The information is provided so that vendors and toolsmiths might have a way to write
management tools for these data files.

Overview

First, it's important to note that an authorization data set consists of a data file together with its
corresponding index file. The data file contains records that define object classes, objects, users, and
rules. The index file contains hash tables that let the reusable server kernel quickly locate specific
objects' and specific users' information in the corresponding data file.

If the authorization data is being kept on minidisk, the reusable server kernel will keep twin copies of

the authorization data set and will also keep a third kind of file, a log file, that lets it ensure consistency
between an index file and its corresponding data file.28 The reusable server kernel uses the log file to
keep track of whether related changes are successfully applied to both an index file and its corresponding
data file. The log file lets the reusable server kernel recover an authorization data set from its twin if a
system failure should introduce some kind of integrity problem.

The authorization data files make heavy use of linked lists within the files themselves to relate records to
one another. For example, all of the authorization rules applying to a given user are linked to one another,
so that they may all be removed together by ssAuthDeleteUser. In all such linked lists, the linking is
accomplished by file record number.

The Data File

The data file's role is to contain specific definitions of objects, users, classes, and rules. The data file is an
F 300 file. Each record (or row) of a data file contains:

« A definition of an object class and a doubly-linked-list listhead that anchors all of the rows defining
objects in this class, OR

A definition of an object and a doubly-linked-list listhead that anchors all of the rows defining rules
applying to this object, OR

A definition of a user and a doubly-linked-list listhead that anchors all of the rules mentioning this user,
OR

A definition of a specific rule, that is, a correlation between an object, a user, and some subset of the
actions defined on the class to which the object belongs, OR

A stamp indicating that the row is free (unused) so that it might be allocated for another purpose at
some time in the future.

One can see, then, that the relationship between object classes, objects, users, and actions is recorded by
maintaining linkages among the records in the data file.

The following tables give the specific formats of each of the kinds of records found in the data file.

Table 49. Free Row

Offset Length Usage
0 4 X'00000000'
4 8 Unused

28 The log file is unnecessary for SFS situations because the reusable server kernel just dedicates a work unit
to the authorization data set.

© Copyright IBM Corp. 1999, 2024 367

Table 49. Free Row (continued)

Offset

Length

Usage

12

4

Row number of next free row

Table 50. Class Row

Offset Length Usage

0 4 X'00000001"

4 4 Row number of next class row

8 4 Row number of previous class row

12 4 Row number of first object in class

16 4 Row number of last object in class

20 4 Class identifier

24 8 Class name

32 4 Number of operations defined on class
36 128 Operation names (four bytes each)

Table 51. Object Row

Offset Length Usage

0 4 X'00000002"

4 4 Row number of first rule for object

8 4 Row number of last rule for object

12 4 Row number of next object in class

16 4 Row number of previous object in class
20 4 Row number of next object in object hash
24 4 Row number of previous object in object hash
28 4 Object ID

32 4 Class ID of class to which object belongs
36 4 Row number of said class's row

40 4 Length of object name

44 256 Object name

Table 52. User Row

Offset Length Usage

0 4 X'00000003'

4 4 Length of user ID

8 4 Unused

12 4 Row number of first rule for user

16 4 Row number of last rule for user

368 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 52. User Row (continued)

Offset Length Usage

20 4 Row number of next user in user hash
24 4 Row number of previous user in user hash
28 64 User ID

Table 53. Rule Row

Offset Length Usage

0 4 X'00000004'

4 4 Row number of next rule for object

8 4 Row number of previous rule for object
12 4 Row number of next rule for user

16 4 Row number of previous rule for user
20 4 Row number of user row

24 4 Row number of object row

28 4 Length of user ID

32 64 User ID

96 4 Object ID

100 4 Operation count

104 128 Permitted operations (four bytes each)

The Index File

The index file, an F 4096 file, contains these three things:

= An anchor row that gives certain critical information about the authorization data set

« An object hash that lets the reusable server kernel find a given object's row quickly

« A user hash that lets the reusable server kernel find a given user's row quickly

The anchor row -- record 1 of the index file -- is described in Table 54 on page 369.

Table 54. Anchor Row

Offset Length Usage

0 4 Number of rows in data file

4 4 Row number of first class row in data file
8 4 Row number of last class row in data file
12 4 Row number of first free row in data file
16 4 Next class ID to use

20 4 Next object ID to use

24 4 Status bits (all zero when server down)

Appendix C. Authorization Data File Formats 369

The object hash and user hash are each the same size. Each hash consists of 4096 buckets, numbered 1
to 4096. Each bucket consists of an eight-byte listhead - a first row in hash record number and a last row
in hash record number. Thus each hash is 8 4096-byte records long. Records 2-9 are the object hash, and
records 10-17 are the user hash.

To locate the row for a given object, the reusable server kernel hashes the object name to produce an
integer i in the range [1,4096]. It then searches object hash bucket i for the object row nominating the
object of interest. A similar hash-and-search procedure is used to find the row for a given user.

The Log File

When the authorization data sets reside on minidisk, the reusable server kernel maintains an F 256 log file
that records updates that are in progress against an authorization data set's pair of files. The records in
the log file are these:

« The log stamp row records which twin is known to be good and which twin has an update in progress.
There is only one log stamp row in the log file and it is always record 1.

« A log update row lists a set of records in either an index file or a data file. Said list of records is in the
process of being updated (rewritten).

The following tables give the organizations of these records.

Table 55. Log Stamp Row

Offset Length Usage

0 4 Last known good authorization set (1 or 2)

4 4 Set against which an update is in progress

8 4 Number of update records following in log file

Table 56. Log Update Row

Offset Length Usage

0 4 Data file (1) or index file (2) changes

4 4 Number of records being changed

8 248 Record numbers of records being changed (four bytes each)

The reusable server kernel performs log file updates, index file updates, data file updates, and file closes

in a specific order which exploits the safety properties of the minidisk file system. The order of updates to
these files is carefully controlled so that the files are always maintained on disk in a state from which the

authorization database can be recovered even if there is an I/O failure.

The recovery algorithm is simple. When the reusable server kernel starts, it reads the first record of

the log file to determine whether one of the twins was in the process of being updated when the files
were last committed to disk. If one of the twins was being updated, the log update records tell which
records were being rewritten. The reusable server kernel uses that list to restore the in-progress twin

to a consistent state, merely copying the named records from the known-good twin to the in-progress
twin. If the failing writes reflected a transaction that had already been performed against the known-good
twin, the transaction will be propagated to the in-progress twin; if the failing writes reflected a transaction
that had not yet been performed against the known-good twin, the transaction will be backed out. In this
manner the in-progress twin is restored to a consistent state.

370 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix D. Enrollment Data File Format

An enrollment file is just a V-format CMS file, one file record per enrolled .
Columns
Usage
1
A for add, D for delete
2-65
Record's key

66-end
Record's data, if column 1 is A

When it loads the file into the data space, the reusable server kernel reads the file one record at a time,
performing the operation specified in column 1. As API calls change the database, records are written
to the end of the enrollment file, describing the API calls that took place. When the enrollment set is
dropped, the file is closed with commit. If commit could not take place, the changes are backed out.

© Copyright IBM Corp. 1999, 2024 371

372 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix E. Storage Group File

The file containing storage group definitions is very simple. Each storage group is represented by one
record. The first token of the record is the storage group number in decimal. The remaining tokens of the
record are the hexadecimal virtual device numbers of the minidisks making up the storage group.

© Copyright IBM Corp. 1999, 2024 373

374 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix F. Reserved Names

The reusable server kernel uses several named CMS objects, such as storage subpools, mutexes, and the
like. Further, in some cases the reusable server kernel uses named objects managed by its own entry
points (for example, services registered through call to ssServiceBind).

The names of all CMS-managed objects used by the reusable server kernel start with the prefix BKW (case
is not significant). Server authors should avoid this prefix.

Of course, CMS itself names objects with the prefixes DMS and VM, so these prefixes should be avoided as
well.

Service Names

Specifically, the following service names are used:

Name

Object
APPC

APPC/VM line driver service name
AUTH

Authorization data manipulation service
CACHE

File cache manipulation service
CMS

CMS command execution service name
CONFIG

Configuration manipulation service
CONSOLE

Console line driver service name
cpP

CP command execution service name
ENROLL

Enrollment service name
IUCV

IUCV line driver service name
MSG

MSG/SMSG line driver service name
SERVER

Server management service name
SPOOL

Spool line driver service name
SUBCOM

Subcom line driver service name
TCP

TCP/IP line driver service name
TRIE

Trie manipulation service
ubDP

TCP/IP line driver service name

© Copyright IBM Corp. 1999, 2024 375

USERID
Userid mapping service name

WORKER
Userid mapping service name

Data Spaces

The reusable server kernel creates data spaces whose names are of the form BKW@n, where n is the
storage group number. It also creates data spaces whose names begin with BKW_.

TCP/IP Subtask Names

The TCP/IP line driver uses the IUCV interface to TCP/IP. When it connects to the TCP/IP service machine,
it uses subtask names that are uppercase seven-digit hexadecimal numbers prefixed by T (that is,
anything from TOOEEOOO to TFFFFFFF).

UDP/IP Subtask Names

The UDP/IP line driver uses the IUCV interface to TCP/IP. When it connects to the TCP/IP service machine,
it uses subtask names that are uppercase seven-digit hexadecimal numbers prefixed by U (that is,
anything from UOGOOOO0 to UFFFFFFF).

376 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix G. More Detail On Reason Codes

Table 57 on page 377 gives the correspondence between numeric values of nonzero reason codes and

their symbolic names. When an entry point (for example, ssSgpStart) gives you a nonzero reason code,
use the table to interpret the reason code and devise a recovery strategy.

Table 57. Reason Codes and Recommended Actions

Numeric

Symbolic

Routine

Action

101

ss_uid_re_not_found

all

Add the appropriate mapping
information to the user ID mapping file.

301

ss_aut_re_bad_count

all

Supply a valid option count or array
length count.

302

ss_aut_re_bad_user_length

all

Supply a user ID length between 1 and
64 inclusive.

303

ss_aut_re_bad_obj_length

all

Supply an object length between 1 and
256 inclusive.

304

ss_aut_re_bad_option

all

Review the options array you supplied.
One of the entries contains an
unrecognized option code.

305

ss_aut_re_bad_qual

all

Review the qualifiers array you
supplied. One of the entries contains a
bad qualifier.

307

ss_aut_re_exists

all

The class or object you are trying to
create already exists. Supply a different
class name or object name.

308

ss_aut_re_no_class

all

The class to which you are referring
does not exist. Supply a different class
name.

309

ss_aut_re_no_object

all

The object to which you are referring
does not exist. Supply a different object
name.

310

ss_aut_re_magq_fail

all

A call by the server kernel to CSL
routine MutexAcquizre has failed.
Contact IBM support.

311

ss_aut_re_cvw_fail

all

A call by the server kernel to
CSL routine CondVaxWait has failed.
Contact IBM support.

312

ss_aut_re_cvs_fail

all

A call by the server kernel to CSL
routine CondVarSignal has failed.
Contact IBM support.

313

ss_aut_re_mr_fail

all

A call by the server kernel to CSL
routine MutexRelease has failed.
Contact IBM support.

314

ss_aut_re_too_many

ssAuthListClasses

There were more classes defined than
your output array expected. Use a
larger array.

© Copyright IBM Corp. 1999, 2024

377

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

314

ss_aut_re_too_many

ssAuthListObjects

There were more objects defined than
your output array expected. Use a
larger array.

314

ss_aut_re_too_many

ssAuthModifyClass

Your call would result in exceeding
the limit of 32 operations defined per
object class. Use fewer operations.

314

ss_aut_re_too_many

ssAuthQueryObject

There were more user IDs defined
than your output array expected. Use a
larger array.

314

ss_aut_re_too_many

ssAuthQueryRule

There were more rules defined than
your output array expected. Use a
larger array.

316

SS_aut_re_no_user

all

The user ID you are attempting

to locate does not exist in the
authorization data. Try a different user
1D.

317

ss_aut_re_prev_io_error

all

A previous I/O error to the
authorization data base has taken it
offline. Try ssAuthReload.

318

ss_aut_re_prev_sync_error

all

A previous error in calling one of
CMS's synchronization routines (for
example, CondVarSignal) has taken
the authorization data base offline. Try
ssAuthReload.

319

ss_aut_re_read_fail

all

An attempt to retrieve one or more
records from one of the authorization
data files has failed. This could mean
either that an I/O error to one of

the files has occurred or that there is
insufficient storage to hold the records
retrieved. Check for both conditions
and respond accordingly.

320

ss_aut_re_write_fail

all

An attempt to write one or more
records to one of the authorization data
files has failed. This means an I/O

error to one of the files has occurred.
Check the file system and respond
accordingly.

321

ss_aut_re_trunc

ssAuthListObjects

One or more returned object names
was truncated. Use larger buffers.

321

ss_aut_re_trunc

ssAuthQueryObject

One or more returned user IDs was
truncated. Use larger buffers.

322

ss_aut_re_gwu_fail

all

An attempt to get a CMS work unit has
failed. Contact IBM support.

378 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric | Symbolic Routine

Action

323 ss_aut_re_open_fail all

An attempt to open one of

the authorization data files has
failed. Check the AUT_ configuration
parameters and the file system and
respond accordingly.

601 ss_sgp_re_too_many ssSgplist

There were more storage groups
defined than your output array could
hold. Use a larger array.

601 ss_sgp_re_too_many ssSgpQuery

There were more minidisks defined
than your output array could hold. Use
a larger array.

602 ss_sgp_re_not_found all

The storage group to which you are
referring does not exist. Check the
storage group identifier you are using
(name or ID, as appropriate) and retry
the operation.

603 ss_sgp_re_out_of_storage all

There is insufficient storage to hold the
control blocks necessary to represent
the storage group. Use a larger virtual
machine and try again.

604 ss_sgp_re_mx_fail all

One of the server kernel's calls to the
CSL mutex routines has failed. Contact
IBM support.

607 Ss_sgp_re_exists all

The storage group you are attempting
to create already exists. Use a different
storage group number or delete the
storage group first.

608 ss_sgp_re_vdq_fail all

The server kernel's attempt to
determine the attributes of one or more
of the minidisks defined in your storage
group has failed. You might have an
incorrect device number or perhaps the
minidisk is not linked. It is also possible
that the minidisk is not formatted at 4
KB or that it has not been reserved.
Check all of these conditions and try
again.

609 ss_sgp_re_online ssSgpDelete

You cannot delete this storage group
because it is online right now. Take it
offline (use ssSgpStop) and then retry
the operation.

609 ss_sgp_re_online ssSgpStart

The storage group is already started.
Stop it first.

610 ss_sgp_re_offline ssSgpStop

The storage group is already offline.

610 ss_sgp_re_offline ssSgpWrite

The storage group is offline and
therefore writes cannot happen. Bring
the storage group online first.

Appendix G. More Detail On Reason Codes 379

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

612

ss_sgp_re_cv_fail

all

One of the server kernel's calls to
the CSL condition variable routines has
failed. Contact IBM support.

615

ss_sgp_re_ds_fail

all

The server kernel's attempt to create
data spaces to map a storage group's
minidisks has failed. Check your virtual
machine's XCONFIG ADDRSPACE CP
directory statement to ensure that you
have not exceeded either the number
of dataspaces limit or the aggregate
storage size limit. Adjust the directory
statement as appropriate. If you
cannot adjust the directory statement,
consider starting the storage group
using DIAG X'0250' I/O instead.

616

ss_sgp_re_pool_fail

all

The server kernel's attempt to

define the minidisk pool (MAPMDISK
IDENTIFY) might have failed. If this
happened, there should be a return
and reason code on the virtual machine
console. Research the return and
reason code and act appropriately. This
error can also be caused by insufficient
storage. If this appears to be the cause,
try increasing your virtual machine size.

617

ss_sgp_re_map_fail

all

The server kernel's attempt to map
data space pages to minidisk blocks
failed. There should be a MAPMDISK
DEFINE return code on the virtual
machine console. Contact IBM support.

618

ss_sgp_re_bad_attrib

all

The attribute array you supplied
contains an unrecognized value. Repair
the attribute array and try again.

619

ss_sgp_re_rewrite_fail

all

The server kernel's attempt to rewrite
the file pointed to by configuration
parameter SGP_FILE failed. Check
to make sure the configuration value
is correct and check to make sure

the server virtual machine has the
permissions necessary to write to the
file.

620

ss_sgp_re_read_only

all

You asked to start the storage group
read-write but one or more of the
minidisks in the storage group is linked
read-only. Change the link and try
again, or start the storage group read-
only.

380 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

622

ss_sgp_re_out_of _range

all

Some scalar parameter you supplied,

such as a storage group number or the
count of elements in an array, is out of
range. Check your inputs and try again.

623

ss_sgp_re_wrong_mode

all

You attempted to write to the storage
group but the storage group is started
read-only. Stop the storage group and
restart it in read-write mode or refrain
from writing to the storage group.

624

ss_sgp_re_io_fail

all

If you started the storage group using
DIAG X'00A4', you cannot specify an
nonzero ALET value. If this is your
situation, use zero for the value of your
ALET.

It is possible your virtual machine is
out of storage. Try using a larger virtual
storage size.

Finally, it is possible that the real

I/0 failed. Check with your system
programmer about whether the devices
on which your minidisks reside have
incurred some kind of failure. Be sure
to tell the system programmer how you
had started the storage group -- DIAG
X'0250', DIAG X'00A4', or VM Data
Spaces.

625

ss_sgp_re_diag_250_fail

all

You asked to use DIAG X'0250' as
the I/O method for your storage
group but the server kernel was
unable to initialize the DIAG X'0250'
environment. A return code of other
than O or 4 was returned by

DIAG X'0250' Initialize. Check the
appropriate CP documentation and
recover as necessary.

626

ss_sgp_re_too_big

all

The storage group you are attempting
to start is too large - there are more
than X'FFFFFFFF' 4 KB blocks in it. Use
a smaller storage group.

628

ss_sgp_re_bad_name

all

You are attempting to start the storage
group with an all-blank name. Supply
a non-blank name for the name of

the storage group. IBM recommends

a printable EBCDIC name for storage
groups.

629

ss_sgp_re_name_in_use

all

The storage group name you are trying
to assign is already in use. Try a
different storage group name.

Appendix G. More Detail On Reason Codes 381

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

701

ss_srv_re_bad_type

all

The service type you are supplying is
unrecognized. Check your parameter
list and try again.

702

ss_srv_re_not_found

all

The service you are trying to locate has
not been bound. Check your RSKMAIN
to be sure you called ssServiceBind
and make sure you supplied the correct
name in your call to ssServiceFind.

703

ss_srv_re_out_of_range

all

The service name length you supplied
is out of range. Change the value to be
within limits and try the API call again.

706

ss_srv_re_out_of_storage

all

There is not enough storage to hold
the control blocks necessary to keep
a record of the service. Increase your
virtual storage size and try the server
again.

709

SS_Srv_re_exists

all

The service you are trying to bind
already exists. Check your program

to see whether you are calling
ssServiceBind more than once, and
check to see that you are supplying a
unique service name each time. Check
also to see whether you are trying to
use one of the names IBM uses.

801

ss_mem_re_out_of_storage

all

There is not enough memory in the
virtual machine or data space to satisfy
your storage request. Use a larger
virtual machine or a larger data space
or be more economical in your use of
storage.

802

ss_mem_re_bad_amount

ssMemoryAllocate

The storage size you supplied is out of
range. Adjust the size and try again.

802

ss_mem_re_bad_amount

ssMemoryCreateDS

The size of the data space you are
attempting to create is out of range.
Adjust the data space size and try
again.

802

ss_mem_re_bad_amount

ssMemoryRelease

The storage size you supplied is out of
range. Adjust the size and try again.

803

ss_mem_re_bad_align

all

The alignment request you made

in your call to ssMemoryAllocate

is unrecognized. Specify one of the
supported alignment types and try the
API call again.

804

ss_mem_re_no_subpool

all

The subpool you named does not exist.
Check the subpool name and try your
API call again.

382 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

805

ss_mem_re_not_alloc

all

The storage you are attempting to
release does not seem to be allocated.
Check the storage pointer you are
supplying and try the API call again.

807

ss_mem_re_spd_fail

all

The server kernel's call to SUBPOOL
DELETE failed. Contact IBM support.

808

ss_mem_re_bad_key

all

The storage key you provide must be in
the range [0,15]. Correct the error and
try the API call again.

809

ss_mem_re_subpool_exists

all

The server kernel is already managing
a subpool of this name. Change the
subpool name to one that will be
unique and try your API call again.

810

ss_mem_re_spcc_fail

all

The server kernel attempted to create a
VM Data Space for you but could not do
so. The virtual machine console should
be displaying the return and reason
code from CSL routine DMSSPCC.
Interpret the return and reason code,
correct the situation, and try again. The
most likely reason for failure is that

you have exceeded some limit imposed
by the virtual machine's XCONFIG
ADDRSPACE CP directory statement.

811

ss_mem_re_spla_fail

all

The server kernel attempted to
establish addressability to a VM Data
Space for you but could not do so.
The virtual machine console should be
displaying the return and reason code
from CSL routine DMSSPLA. Interpret
the return and reason code, correct
the situation, and try again. The

most likely reason for failure is that
you have exceeded the limit imposed
by the virtual machine's XCONFIG
ACCESSLIST CP directory statement.

901

ss_cli_re_out_of_range

all

The amount of data you are attempting
to put or get is out of range. Check

your parameter list and try your API call
again.

902

ss_cli_re_out_of_storage

all

There is insufficient storage to process
your request to put data. Increase your
virtual machine size and try your call
again.

903

ss_cli_re_bad_iam

all

The caller type you specified is not one
of the recognized caller types. Review
your parameter list and try again.

Appendix G. More Detail On Reason Codes 383

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

904

ss_cli_re_bad_method

all

The byte retrieval method you specified
is not one of the recognized retrieval
methods. Review your parameter list
and try again.

905

ss_cli_re_semc_fail

all

The server kernel performed a call to
CSL routine SemCreate and the call
failed. Contact IBM support.

1001

ss_enr_re_db_not_found

all

The enrollment data base you specified
in your call does not exist. Check your
parameter list and try your call again.

1002

ss_enr_re_rec_not_found

all

The enrollment record you requested
does not exist. You might have
specified the wrong record key, or
you might be looking in the wrong
enrollment data base. Check your
parameter list and try again.

1003

ss_enr_re_truncated

all

The enrollment data you retrieved was
truncated because your output buffer
was not large enough. Change your
program to specify a larger output
buffer and try your call again.

1005

sSs_enr_re_rec_exists

all

The record you tried to insert

already exists. The enrollment record
you specified on your call was
replaced if you used method
ss_enr_insert_replace, otherwise it was
not replaced. Depending on your
intentions, you may need to change
your API call and try your call again.

1006

ss_enr_re_bad_length

ssEnrollLoad

The file name length you specified
contains an invalid value. Change your
parameter list and try your call again.

1006

ss_enr_re_bad_length

ssEnrollRecordGet

You specified an unacceptable length
for the buffer in which the server kernel
is to place the retrieved enrollment
data. Change your parameter list and
try your call again.

1006

ss_enr_re_bad_length

ssEnrollRecordInsert

You specified an unacceptable length
for the data portion of the enrollment
record you are attempting to insert.
Change your parameter list and try your
call again.

1007

ss_enr_re_bad_droptype

all

The parameter list you specified
contains an unrecognized value for the
drop type. Change your parameter list
and try your API call again.

384 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric | Symbolic Routine Action

1008 ss_enr_re_no_storage ssEnrollLoad There is not enough storage available to
load the enrollment set. The data space
containing the records is full. Unload
the data base and reload it using a
larger data space size.

1008 ss_enr_re_no_storage ssEnrollRecordInsert There is not enough storage available
to insert the record. The data space
containing the records is full. Unload
the data base and reload it using a
larger data space size.

1009 ss_enr_re_close_fail all The file backing the VM Data Space
could not be closed. The changes
made to the enrollment data base were
backed out. Check into your SFS server
to see whether it went down or the
communication connection to it was
severed (for example, VTAM® outage).

1010 ss_enr_re_write_fail all The server kernel's attempt to write

to the enrollment file failed. Because
the file is opened at load time and

kept open, this write failure probably
means some error has happened in the
SFS server. Check with your system
administrator.

1011 ss_enr_re_bad_method all The insertion method you specified in

your parameter list was unrecognized.
Check your parameter list and try your
call again.

1012 ss_enr_re_open_fail all The server kernel's attempt to open

the enrollment file failed. The name
you specified might be incorrect, or the
server might not have the permissions
necessary to open the enrollment file
for write, or the SFS server might not be
operating. Check these things and try
your call again.

1013 ss_enr_re_gwu_fail all The server kernel was not able to

get a work unit on which to open

the enrollment file. The return and
reason code from DMSGETWU should
have appeared on the virtual machine
console. Investigate the return and
reason code and take appropriate
action.

Appendix G. More Detail On Reason Codes 385

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1014

ss_enr_re_point_fail

all

The server kernel was not able to move
the file pointers for the enrollment

file. The return and reason code from
DMSPOINT should have appeared on
the virtual machine console. Investigate
the return and reason code and take
appropriate action.

1015

ss_enr_re_exist_fail

all

The server kernel attempted to retrieve
the attributes of the enrollment file

but was not able to do so. The

return and reason code from DMSEXIST
should have appeared on the virtual
machine console. Investigate the return
and reason code and take appropriate
action.

1016

ss_enr_re_not_sfs

all

The server kernel determined that the
enrollment file does not reside in the
Shared File System. Move the file to an
SFS directory and try your call again.

1017

ss_enr_re_not_v

all

The server kernel determined that the
enrollment file does not use V records.
Change the file to V-format (use XEDIT,
perhaps, or write a pipeline) and try
your call again.

1018

ss_enr_re_dscr_fail

all

The server kernel was not able to
create the data space needed to hold
the enrollment records. It is possible
that some limit associated with
XCONFIG ADDRSPACE was violated;
check these limits and retry. It's also
possible that the enrollment set name
you used is already in use as a subpool
for some other purpose. If this is the
case, choose a different enrollment set
name.

1019

ss_enr_re_read_fail

all

The server kernel was unable to read
the enrollment file. Because the server
kernel's call to DMSOPEN worked, this
probably indicates an SFS error of some
kind. Check the health of the SFS server
and try your call again.

1020

ss_enr_re_db_exists

all

The enrollment set you are attempting
to load already exists. Choose a
different name and try your call again.
If you meant to reload the enrollment
set, drop the set first and then load it
again.

386 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1021

ss_enr_re_comm_fail

all

The server kernel's attempt to commit
the changes to the enrollment set

has failed. The most likely cause is
that the enrollment set has grown so
large that the filespace limit has been
exceeded - your SFS administrator
might have to issue MODIFY USER
before your commit will work. The
return and reason code from DMSCOMM
are displayed on the virtual machine
console. Investigate the return and
reason code and take appropriate
corrective action.

1022

ss_enr_re_not_disk

all

You tried to commit changes to a
transient enrollment set. Because a
transient enrollment set has no backing
file in the Shared File System, you
cannot commit its changes. Use a
permanent enrollment set instead of a
transient one.

1023

ss_enr_re_bad_kind

all

The set_kind parameter you specified
contains an unrecognized value.
Change your parameter list and try your
call again.

1024

ss_enr_re_new_file

all

The file you nominated doesn't exist,
so the server kernel created it and
initialized the enrollment set as empty.
If you did not expect this result, check
the file name you supplied and try your
call again.

1025

Ss_enr_re_no_sets

all

There are no enrollment sets loaded.
If you didn't expect this, check

your program to see whether you
forgot to load your enrollment set or
whether you dropped the enrollment
set unknowingly.

1026

ss_enr_re_set_empty

all

The enrollment set you interrogated
contains no records. If you didn't
expect this, check to make sure you
loaded the correct SFS file.

1501

ss_cac_re_out_of_storage

all

There is insufficient storage available to
process your cache request. Increase
your virtual machine's storage size.

1502

ss_cac_re_table_replaced

all

You submitted a translation table n
when there was already a table known
by that number. If you did not expect
this result, check your parameter list
and the other ssCacheX1TabhSet calls
your server has performed.

Appendix G. More Detail On Reason Codes 387

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1503

ss_cac_re_cache_not_found

all

The cache you are attempting to use
does not exist. Check to be sure the
cache was created.

1504

ss_cac_re_dscr_fail

all

The server kernel attempted to create
a VM Data Space to hold the cached
files but was not able to create it.

The most likely cause here is that

you have exceeded some limit set

by XCONFIG ADDRSPACE. Check your
CP directory entry, issue CP QUERY
SPACES, compare the two, and make a
configuration change if necessary.

1505

ss_cac_re_cache_exists

all

The cache you are trying to create
already exists. Delete the cache before
recreating it, or change your parameter
list to specify a different cache name.

1506

ss_cac_re_bad_size

all

The cache size you specified is out

of range. Check your parameter list
against the documentation to see
whether your cache size is in range. The
cache size is specified in pages.

1511

ss_cac_re_bad_token

all

The file token you supplied is not
recognized. Check your parameter list
to be sure that the token you are
providing is one that was given to you
by ssCacheFileOpen.

1512

ss_cac_re_bad_length

ssCacheFileOpen

The file name length you supplied

is unacceptable. Check to be sure
the length is in range. Correct your
parameter list and try your call again.

1512

ss_cac_re_bad_length

ssCacheFileRead

The byte count you supplied is out of
range. Check your parameter list and
try your call again.

1513

ss_cac_re_bad_count

all

The flag_count value you supplied is
out of range. Correct your parameter
list and try your call again.

1514

ss_cac_re_bad_esmdl

all

The ESM data length you supplied is
unacceptable. Check your parameter
list and make the appropriate
correction.

1515

ss_cac_re_bad_fname

all

One of the flag names you specified in
your flag name array is unrecognized.
Check your flag name array and try your
call again.

1516

ss_cac_re_bad_fval

all

One of the flag values you specified in
your flag value array is unrecognized.
Check your flag value array and try your
call again.

388 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1517

ss_cac_re_exist_fail

all

The server kernel's call to DMSEXIST
failed. The return and reason code from
DMSEXIST can be found on the virtual
machine console. Investigate the return
and reason code and try your call again.

1518

ss_cac_re_file_not_found

all

The server kernel was not able to find
the file you are trying to cache. Check
the file name to be sure it is what you
intended, and then try your call again.

1519

ss_cac_re_delete_in_progress

all

The server kernel was not able to cache
the file you specified because the cache
you specified is in the process of being
deleted. Use a different cache to cache
the file.

1520

ss_cac_re_bad_offset

all

The byte offset you specified is
negative or goes beyond the last byte
of the file. Correct your parameter list.

1521

ss_cac_re_bad_table_id

all

The table ID you specified was zero.
Zero is a reserved table identifier.
Specify any non-zero table identifier.

1522

ss_cac_re_table_not_found

all

The translation table you requested in
your call to ssCacheFileOpen does
not exist. Check your parameter list
to see if you used the table ID you
intended, or check to see that you did
not omit a call to ssCacheX1TabhSet.

1523

ss_cac_re_open_fail

all

The server kernel was not able to

open the file you wanted to cache.

The return and reason code from
DMSOPEN are displayed on the virtual
machine console. Investigate the return
and reason code and take appropriate
action.

1524

ss_cac_re_bad_recfm

all

The file you wanted to cache has a
record format other than F or V. The
server kernel cannot cache it. Change
the file's record format and try the call
again.

1526

ss_cac_re_out_of _storage_ds

all

There is not enough free storage in the
data space to cache your file. Create a
larger file cache and try your operation
again.

1527

ss_cac_re_read_fail

all

The server kernel was able to open the
file being cached but could not read

it. The return code and reason code
from DMSREAD appear on the virtual
machine console. Investigate the return
and reason code and try the call again.

Appendix G. More Detail On Reason Codes 389

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1528

ss_cac_re_bad_data_stream

all

The server kernel was looking for
record delimiters in the data of a CMS
file (SFS, minidisk, or BFS) but did not
find them. The probable cause is that
there is a run of more than 65,535
bytes without a delimiter - in other
words, some record in the file is too
long. Change the file and try again.

1601

ss_wrk_re_out_of_storage

all

The server kernel was unable to
allocate storage to hold information
related to your connection to a worker.
Increase your virtual storage size.

1602

ss_wrk_re_bad_count

all

You supplied a less-than-zero option
count. Fix your API call and try again.

1603

ss_wrk_re_bad_flag_name

all

One of the flag names you supplied in
your parameter list is incorrect. Inspect
the parameter list you built and try
again.

1604

ss_wrk_re_bad_flag_value

all

One of the flag values you supplied in
your parameter list is incorrect. Inspect
the parameter list you built and try
again.

1605

ss_wrk_re_no_class

all

The worker class you specified in

your call is not defined. Inspect your
parameter list and try your call again, or
inspect PROFILE RSK to see whether
you misspelled or omitted the WORKER
commands necessary to create your
worker machine class.

1606

ss_wrk_re_no_subordinates

all

The server kernel tried to allocate a
connection for you to a worker machine
but could not do so. Either all of

the workers are full or the non-full
ones didn't answer (autologging failed,
IUCV connections failed, or some other
indeterminate failure happened).

1607

ss_wrk_re_algtries_exceeded

all

The server kernel tried repeatedly
to autolog a worker machine but
the worker did not answer IUCV
connection requests. Check your
workers' configurations and try the
server again.

1608

ss_wrk_re_autolog_fail

all

The server kernel tried to autolog a
worker machine but the XAUTOLOG
command failed. The server virtual
machine probably has insufficient

CP privilege to use the XAUTOLOG
command. Check the configuration and
try again.

390 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1609

ss_wrk_re_timer_fail

all

The server kernel tried to use CMS's
Timer API to set a timer but was not
able to do so. Contact IBM support.

1610

ss_wrk_re_iucvcon_fail

all

The server kernel tried to TUCV
CONNECT to a worker machine but
encountered some kind of permanent
error, such as the worker not having
IUCV ALLOW inits CP directory
entry. Check your worker machine
configurations and try again.

1611

ss_wrk_re_force_fail

all

The server kernel tried to issue the

CP FORCE command to force a worker
machine but was unable to do so. The
most likely cause is that the server
virtual machine has insufficient CP
privilege to use the FORCE command.
Check the server virtual machine's CP
directory entry and try again.

1612

ss_wrk_re_force_timeout

all

The server kernel issued the CP FORCE
command to force off a worker and
began waiting for the worker machine
to be logged off, but after a timeout
period the CP QUERY command
showed that the worker was still logged
on. The most likely cause is that the
worker machine is a hung user.

1613

ss_wrk_re_oper_delete

all

Your program attempted to allocate
a connection to a worker machine,
but while the connection was

being established an operator used
the WORKER DELETE or WORKER
DELCLASS command to delete the
worker machine. Your connection
attempt failed.

1701

ss_tri_re_bad_size

all

The trie size you specified is out

of range. Check your parameter list
against the documentation to see
whether your size is in range. The trie
size is specified in pages.

1702

ss_tri_re_trie_exists

all

You are trying to create a trie but it
already exists. Choose a different trie
name or delete the previous instance of
the trie.

1703

ss_tri_re_out_of_storage

all

There is not enough primary storage
(memory) to create your trie. Run your
server in a larger virtual machine.

Appendix G. More Detail On Reason Codes 391

Table 57. Reason Codes and Recommended Actions (continued)

Numeric

Symbolic

Routine

Action

1704

ss_tri_re_dscr_fail

all

Creation of the trie's data space failed.
You probably have created too many
data spaces or the total size of

your data spaces would be too large.
Check your server and its XCONFIG
ADDRSPACE CP directory entry and
make any needed corrections.

1705

ss_tri_re_trie_not_found

all

The trie you are attempting to
manipulate does not exist. Check the
name your are using and try again.

1706

ss_tri_re_trie_busy

all

The server kernel was unable to acquire
your trie's lock in a reasonable period
of time. Perhaps the trie is shared
among many virtual machines and the
lock holder has abended or logged

off unexpectedly. Re-IPL your set of
servers.

1707

ss_tri_re_bad_index_len

all

The index you supplied has an incorrect
length. Correct the index length and try
the API call again.

1708

ss_tri_re_bad_capacity

all

The array capacity you supplied is
incorrect. Correct the value and try the
API call again.

1709

ss_tri_re_out_of_ds_storage

all

There is no room left in the trie's data
space. No more indices can be added.
Create the trie with a larger size.

392 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix H. Messages

Here is a summary of messages and recommended recovery actions.

Generally Applicable Messages

BKWO0000I Operation completed OK.

Explanation

The command you issued completed normally.

System action

The system performed the action you requested.

System programmer response
Nothing.

BKWOOO1E Not authorized.

Explanation
You are not authorized to issue the command you
attempted.

System action

The system declined to execute the command you

supplied, responding with this error message instead.

System programmer response

The system programmer can use the AUTH command
set to grant you permission to perform the requested
operation.

BKWOOO02E Enter a command.

Explanation

You entered a null command.

System action
The system did nothing.

System programmer response

Enter a non-null command.

BKWOOO3E Syntax error.

© Copyright IBM Corp. 1999, 2024

Explanation

There is a syntax error in the command you issued.

System action
The system did nothing.

System programmer response

Refer to the syntax diagram for the command you
issued, repair its syntax, and reissue the command.

BKWOO0O4E Unrecognized command.

Explanation

The command you entered is not recognized.

System action
The system did nothing.

System programmer response

Refer to the command documentation and submit a
recognized command.

BKWOOOS5E Out of storage.

Explanation

Not enough virtual storage was available to perform
the operation you requested.

System action

The system backed out any partial results and
returned to the state it had just prior to your issuing
the failing command.

System programmer response

Define a larger virtual machine.

BKWOOO7E RC=&1 RE=&2 from routine &3

Explanation

The displayed routine produced the given return and
reason code.

393

System action

The system did not complete the operation you
requested.

System programmer response

Locate the documentation for the displayed routine
and research the return and reason code. Take
appropriate corrective action.

BKWOO10E DMSQEFL returns CP_product &1
CP_level &1

Explanation
CSL routine DMSQEFL returned the displayed CP

product code and CP level code.

System action

The server kernel refuses to start because CP is too far
back-level.

System programmer response

Upgrade to a newer release of z/VM.

BKWO0O011E DMSQEFL returns CMS_level &1

Explanation

CSL routine DMSQEFL returned the displayed CMS
level.

System action

The server kernel refuses to start because CMS is too
far back-level.

CONFIG Service Messages

System programmer response

Upgrade to a newer release of z/VM.

BKWOO012E Insufficient VM/ESA functional
level to run RSK - returning

Explanation

The level of VM/ESA is insufficient to support
execution of the reusable server kernel.

System action

The server kernel refuses to start.

System programmer response

Upgrade to a newer release of z/VM.

BKWO00131 CMS 13 detected - ensure

VM61422 is applied

Explanation

The reusable server kernel detected CMS 13. For
best results, CMS 13 must have the displayed APAR
applied. The server kernel will work if the APAR is not
applied but it might not work well.

System action

The server kernel starts anyway.

System programmer response

Install the named APAR for best results (the message
will still appear even after the APAR is applied).

BKWO0100E

Explanation

Operation now irrelevant.

The configuration variable whose value you changed is relevant only before PROFILE RSKissues RUNSERV.
After RUNSERYV, the server kernel no longer pays attention to the value of this variable.

System action
The system did nothing.

System programmer response
Change this configuration variable before RUNSERV.

394 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Line Driver Messages

BKWO0200E Service not found.

Explanation

The service you are attempting to manipulate does not
exist.

System action
The system did nothing.

System programmer response

Correct the name of the service, or use the SERVER
SERVICES command to determine whether the
service is known to the server kernel.

BKWO0201E Subtask not found.

Explanation

The subtask you attempted to manipulate does not
exist.

System action
The system did nothing.

System programmer response

Use the line driver's LIST command to confirm

the existence of the subtask you are attempting to
manipulate. Also, confirm that you have supplied the
correct line driver name in your command. Make
appropriate corrections and resubmit the command.

BKW0202E Stop of self is prohibited.

Explanation
You asked a self-sourced line driver to stop itself. A
self-sourced driver cannot stop itself.

System action
The system did nothing.

System programmer response

You probably meant to stop some other subtask.
Correct the subtask number and try again.

BKWO02031 Subtask asked to STOP.

Explanation

The line driver has sent STOP messages to the threads
running this subtask.

System action

The subtask will stop when all such threads respond
with stop acknowledgements.

System programmer response
Wait for the subtask to stop.
BKWO02041 Subtask killed.

Explanation

The line driver has deleted the threads of the subtask.

System action

The server kernel has stopped a subtask in a forceful
way. Threads running the service were not given an
opportunity to complete their work normally.

System programmer response
Nothing.
BKWO0205E

Prefix already in use.

Explanation

The prefix you requested is already in use by this line
driver.

System action

The system did nothing.

System programmer response
Select a different prefix and reissue the command.

BKWO0206E

Service INIT routine failed -
RC=&1 RE=&2.
Explanation

During handling of a START command, the server
kernel drove the service's INIT routine but the INIT
routine produced a nonzero return and reason code.

System action

The system refused to start the service.

Appendix H. Messages 395

System programmer response

Use the documentation of the service itself to
interpret the return and reason code. Take appropriate
corrective actions and try the START again.

BKWO0207E Start of self is prohibited.

Explanation

You asked a self-sourced line driver to start itself.

System action

The system refused to do this. The server kernel
starts self-sourced line drivers automatically as part
of server initialization.

System programmer response

You probably submitted the START command to the
wrong service or attempted to start the wrong service.

SERVER Service Messages

Make the appropriate corrections in your command
and issue it again.

BKWO0208I Subtask is handling no clients.

Explanation

The subtask you attempted to interrogate through
QUERY is not handling any clients right now.

System action
The system did nothing.

System programmer response

None needed.

BKWO0300I Shutdown initiated.

Explanation

You issued SERVER STOP and the server kernel is
attempting to stop the server.

System action

The line drivers are attempting to stop all services
normally. When all services are stopped shutdown of
the server will complete.

System programmer response

None needed.

BKWO0301I Monitor buffer at &1.&2, &3 rows,

&4 free

USERID Service Messages

Explanation

The message indicates the location in storage of the
server kernel's monitor buffer.

System action

None, other than having issued the message.

System programmer response

None needed. The CP DISPLAY command can be
used to display the monitor buffer. The MONITOR
DISPLAY command can be used to display specific
monitor rows without knowing their addresses in
memory.

BKWO0400E Reload failed - DMSOPEN or

DMSREAD RC=&1 RE=&2.

Explanation

The server kernel was not able to reload the user
ID mapping file because either DMSOPEN or DMSREAD
failed with the displayed return and reason code.

System action

The previous user ID mapping remains in effect.

System programmer response

Research the return and reason code and take the
appropriate action. Also, issue SERVER CONFIG and
look at the value of the UMAP_FILE variable and see if
it references the file you expected.

BKWO04011I &1 &2 &3 maps to &4

396 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Explanation

The user ID mapping facility maps your inputs to this
output.

System action
None, other than displaying the mapping.

System programmer response

If the mapping needs to be corrected, use XEDIT to
change the mapping file, then issue USERID RELOAD.

BKWO0402E RC=&1 RE=&2 mapping &3 &4 &5

Explanation

ssUseridMap produced the displayed return and
reason code when interrogating the user ID map with
the inputs you provided.

System action

None, other than displaying the error message.

System programmer response

Research the return and reason code and take
appropriate corrective action. If you need to update
the user ID map, edit the mapping file and issue
USERID RELOAD.

BKWO0403E Open of UMAP_FILE failed - server

will not start.

Explanation

The server kernel attempted to read the user ID
mapping file as part of its startup processing, but was
not able to read the file.

System action

Startup fails and the RUNSERV command will complete
with a nonzero return code.

System programmer response

The configuration variable UMAP_FILE is probably
not set correctly. Make sure it points to the user ID
mapping file and then try again to start the server.

BKWO0404E

Reload ignored some records due
to syntax errors

Explanation

The server kernel attempted to reload the user ID
mapping file, but while reading the file it found some
records having invalid syntax.

System action

The load finished, ignoring the bad records. Message
BKWO0405E was issued for each bad record.

System programmer response

Use the record numbers named in message
BKWO405E to locate to locate the bad records. Repair
each one.

BKWO0405E

Record &1 in UMAP_FILE has bad
syntax

Explanation

The server kernel found a bad record in the user
ID mapping file. This message announces the record
number of the bad record.

System action

The server kernel skipped the bad record and
continued to load the user ID mapping file.

System programmer response

Repair the bad record.

TCP and UDP Line Driver Messages

BKWO05001I A-block &1 Client &2 &3 done,

lifetime &4 msec

Explanation

A TCP or UDP subtask has finished handling the client
at the displayed port and IP address. The transaction
lasted for the displayed number of milliseconds.

System action

The system handled the client.

System programmer response
None.

BKWO05011

A-block &1 Client &2 &3 done,
inbytes &4, inrate &5 KB/s

Appendix H. Messages 397

Explanation

A TCP or UDP subtask has finished handling the client
at the displayed port and IP address. The data rate
from the client was as displayed.

System action
The system handled the client.

System programmer response

None.

BKWO05021 A-block &1 Client &2 &3 done,
outhytes &4, outrate &5 KB/s

Explanation

A TCP or UDP subtask has finished handling the client
at the displayed port and IP address. The data rate to
the client was as displayed.

System action
The system handled the client.

System programmer response

None.

BKWO05041 A-block &1 Client &2 &3 started,
C-block &4

Explanation

A TCP or UDP subtask has begun handling the client at
the displayed port and IP address.

System action

The system is beginning to handle the client.

System programmer response

None.

BKWO505E A-block &1 errno &2 accept failed

Explanation

The TCP line driver received the displayed errno value
when it attempted to accept a connection from a
client.

System action

The line driver did not accept the connection but
continues handling work for other clients.

System programmer response

Research the errno and determine whether a
configuration change is necessary.

BKWO506E A-block &1 C-block &2 errno &3
ioctl(FIONBIO) failed

Explanation

The TCP line driver received the displayed errno value
when it attempted to set a socket to blocking I/0.

System action
The line driver closed the connection to the client but

continues handling work for other clients.

System programmer response

Research the errno and determine whether a
configuration change is necessary.

BKWO508E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(major)

Explanation

The TCP or UDP line driver was not able to create a
CMS thread when one was absolutely required.

System action

The line driver ended the subtask.

System programmer response

Research the return and reason code and take
corrective action.

BKWO509E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(minor)

Explanation

The TCP or UDP line driver was not able to create

a CMS thread when it felt one would be helpful, but
there appear to be enough suitable threads to take up
the slack.

System action

The line driver uses the threads it's already created to
handle the new client.

398 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

System programmer response

Research the return and reason code and take
corrective action.

BKWO0510E A-block &1 errno &2 select()-start

failed

Explanation

The TCP line driver was not able to start a socket
select() function.

System action

The line driver stops the affected subtask. Clients
already connected are permitted to complete their
transactions, but no new clients are served.

System programmer response

Research the errno and take corrective action.

BKWO511E A-block &1 rsn &2
QueueReceiveBlock RC=&3 RE=&4
failed

Explanation

The TCP or UDP line driver was not able to receive a
message from a CMS queue.

System action

The line driver stops the affected subtask immediately.

System programmer response

Re-IPL CMS. If the problem persists, contact IBM
support.

BKWO0512E A-block &1 errno &2 select() failed

Explanation

The TCP line driver started a socket select() function
but the function completed with error.

System action

The line driver stops the affected subtask. Clients
already connected are permitted to complete their
transactions, but no new clients are served.

System programmer response

Research the errno and take corrective action.

BKWO0513E Port number must be in range

[0..65535].

Explanation
Your START command specified an out-of-range port
value.

System action

None, other than issuing an error message.

System programmer response
Correct your START command and try again.

BKWO0514E

Socket count must be in range
[50..2000].

Explanation

Your START command specified an out-of-range value
for the number of sockets permitted.

System action

None, other than issuing an error message.

System programmer response
Correct your START command and try again.

BKWO0515E

Maximum subtask number would
be exceeded.

Explanation

The TCP or UDP line driver was not able to start a new

subtask because it has run out of subtask numbers.

System action

The subtask was not started.

System programmer response
Restart the server.

BKWO0516E

Creation of subtask controller
thread failed.

Explanation

The TCP or UDP line driver attempted to create a
thread to control the new subtask but was not able
to do so.

System action

The subtask was not started.

Appendix H. Messages 399

System programmer response

Re-IPL CMS. If the problem persists, contact IBM
support.

BKWO517E Creation of TCP/IP socket group

failed.

Explanation

The TCP or UDP line driver was not able to connect to
the TCP/IP service machine.

System action

The subtask was not started.

System programmer response

The usual cause here is that the name of the TCP/IP
machine was specified incorrectly. Another cause
might be that the TCP/IP machine you are attempting
to use is configured with PermittedUsersOnly but
your server is not in the permitted users list. Check
your START command and your TCP/IP configuration
carefully and try your command again.

BKWO0518E Creation of listen socket failed.

Explanation

The TCP or UDP line driver was not able to create

the socket on which it will listen for connections from
clients.

System action

The subtask was not started.

System programmer response
Check your TCP/IP configuration.

BKWO0519E Setting listen socket to

SO_REUSEADDR failed.

Explanation

The TCP or UDP line driver was not able to set the
listen socket to enable option SO_REUSEADDR.

System action

The subtask was not started.

System programmer response
Check your TCP/IP configuration.

BKWO0520E Setting listen socket to

nonblocking failed.

Explanation

The TCP line driver was not able to set the listen
socket to non-blocking I/0.

System action

The subtask was not started.

System programmer response
Check your TCP/IP configuration.
BKWO0521E

bind() for listen socket failed.

Explanation

The TCP or UDP line driver was not able to bind the
port number you specified in your START command to
the IP address you specified in your START command.

System action

The subtask was not started.

System programmer response

The most likely cause is that the port number is in the
reserved port number list in your TCP/IP configuration
but the user ID in which your server is running is

not listed as one of the user IDs that can bind the
reserved port. Check your TCP/IP configuration and
try again if this was the situation. Another possible
cause is that some other server on your system has
already bound that port but did not set its listen socket
to SO_REUSEADDR. If this is the case, contact your
TCP/IP support programmer for help in locating the
offending server, or use another port number in your
own START command.

BKWO0522E

listen() for listen socket failed.

Explanation

The TCP line driver was not able to set the backlog
queue size for its listen socket.

System action

The subtask was not started.

System programmer response
Check your TCP/IP configuration.
BKW05231

Instance STOP requested.

400 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Explanation
In response to your STOP command, the TCP or UDP
line driver has asked an instance thread to stop.

System action

The line driver will close the connection to the client
after the instance acknowledges the STOP request.

System programmer response

None.

BKWO0524E Wait expired for STOP.

Explanation

You asked the TCP or UDP line driver to stop a subtask,
so it initiated the stop and waited for the subtask to
guiesce, but the quiesce wait time ran out.

System action
The stop did not complete.

System programmer response

The stop remains pending and will complete
eventually if all of the instance threads cooperate. If
you require the subtask to stop immediately, reissue
the command using the NOW option.

BKWO0525E A-block &1 C-block &2 read start
failed - errno &3

Explanation

The TCP line driver was not able to start a socket
read() for the displayed client, or the UDP line driver
was not able to start a socket recvfrom().

System action

The TCP line driver closes the connection to the client;
the UDP line driver ends the subtask.

System programmer response
Check your TCP/IP configuration.

BKWO0526E A-block &1 C-block &2 write start
failed - errno &3

Explanation

The TCP line driver was not able to start a socket
write() for the displayed client, or the UDP line driver
was not able to start a socket sendto().

System action

The TCP line driver closes the connection to the client;
the UDP line driver ends the subtask.

System programmer response
Check your TCP/IP configuration.
BKWO05271 A-block &1 stopped.

Explanation
You asked the TCP or UDP line driver to stop a subtask.

System action
The subtask has stopped.

System programmer response
None.

BKW05281

A-block &1 C-block &2 stopped.

Explanation
You asked the TCP or UDP line driver to end its

relationship with a specific client.

System action

The relationship is ended.

System programmer response
None.

BKWO05291

Subtask identifier is out of range.

Explanation

You asked the TCP or UDP line driver to stop a subtask
whose identifier is zero.

System action

None, other than to issue an error message.

System programmer response
Specify a nonzero subtask identifier.

BKWO530E A-block &1 C-block &2 recv failed
- errno &3

Explanation

The UDP line driver attempted to receive a datagram
using recvfrom(), but the call failed.

Appendix H. Messages 401

System action
The UDP line driver stops the subtask and displays the
errno value it encountered.

System programmer response

Research the errno value and restart the subtask.

BKWO0531E A-block &1 C-block &2 sendto
failed - errno &3

Explanation

The UDP line driver attempted to send a datagram

using sendto(), but the call failed.

System action

The UDP line driver stops the subtask and displays the
errno value it encountered.

SGP Service Messages

System programmer response

Research the errno value and restart the subtask.

BKWO0532E No userid mapping for IP address

&1 - ignored

Explanation

The TCP or UDP line driver attempted to map an IP
address to a user ID but was not able to do so.

System action
Because the line driver's NOMAP configuration
parameter was OFF, the line driver ignored the client.

System programmer response

Update the user ID mapping file or set the line driver's
NOMAP parameter ON.

BKW06001 No storage groups found.

Explanation

Your LIST command found no storage groups.

System action

None, other than issuing the error message.

System programmer response

None. If you expected to find storage groups, use
the SERVER CONFIG command to check the value
of configuration variable SGP_FILE. You might have
specified the wrong file name.

BKWO0601E Open of SGP_FILE failed - server
will not start.

RSK SUBCOM Messages

Explanation

The server kernel could not find the storage group
configuration file.

System action

The server kernel will not start and the RUNSERV
command will see a nonzero return code.

System programmer response

Check your PROFILE RSK to make sure you set
configuration variable SGP_FILE correctly.

BKWO0700E Commands cannot be issued -

server not started yet

Explanation

Your PROFILE RSK contains commands other than
CONFIG before RUNSERV.

System action

The non-CONFIG commands are ignored.

System programmer response
Reorganize your PROFILE RSK.

BKWO0701E The server has already been

started

Explanation

You attempted RUNSERV more than once in your
PROFILE RSK.

402 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

System action

The extraneous RUNSERV commands are ignored.

System programmer response
Reorganize your PROFILE RSK.

BKWO0702E RUNSERY failed

Explanation

The server kernel was unable to start.

AUTH Service Messages

System action

The server did not start. Other error messages were
issued to explain the reason. PROFILE RSK will see a
nonzero return code from RUNSERV.

System programmer response

Investigate the reason for the failure and take
corrective action.

BKWO0S800E The class specified already exists

Explanation

You tried to create an object class but the object class
already exists.

System action

None.

System programmer response

Choose a different name for your new object class.

Unable to read the authorization
files

BKWOSO01E

Explanation

The server kernel could not read the authorization
database.

System action
The server kernel has disabled all calls to the

authorization API.

System programmer response

Perhaps an SFS failure or DASD failure has occurred.
Contact your system programmer.

BKWOS802E Unable to write to the

authorization files

Explanation

The server kernel could not write the authorization
database.

System action

The server kernel has disabled all calls to the
authorization API.

System programmer response

Perhaps an SFS failure or DASD failure has occurred.
Contact your system programmer. When access to the
files is repaired, issue AUTH RELOAD.

BKWO0S8O03E

Too many operations or options
specified
Explanation

You have exceeded the limit on options or operations
for this particular command.

System action

The command was not processed.

System programmer response

The most likely cause is that you exceeded the limit of
32 operations per object class. Reduce the number of
operations and try again.

BKWOS04E

The length of the object name is
out of range

Explanation

The object name you specified is too long.

System action

The command was not processed.

System programmer response

The object name must be 256 characters or less.
Reduce its length and try again.

Appendix H. Messages 403

BKWO0S805E The class specified does not exist

Explanation

Your command refers to an object class which does
not exist.

System action

The command was not processed.

System programmer response

Change the class name. You might also have
inadvertently loaded the wrong authorization set.
Use SERVER CONFIG to examine the names of the
authorization files.

BKWOS06E The object specified already exists

Explanation

You tried to create an object but the object already
exists.

System action

The command was not processed.

System programmer response

Choose a different name for your object. You might
also have inadvertently loaded the wrong authorization
set. Use SERVER CONFIG to examine the names of
the authorization files.

BKWO0S807E At least one of the options

specified is unrecognized
Explanation
You supplied a command containing options that are

unrecognized.

System action

The command was not processed.

System programmer response

Check the syntax diagram for the command you
entered, make any necessary corrections, and try
again.

BKWO0S80SE The object specified does not exist

Explanation

The object you attempted to manipulate does not
exist.

System action

The command was not processed.

System programmer response

Check the command to be sure you are referring to the
correct object name. You might also have inadvertently
loaded the wrong authorization set. Use SERVER
CONFIG to examine the names of the authorization
files.

BKWO0S809E

The length of the userid specifed is
out of range

Explanation

You specified a user ID that is too long.

System action

The command was not processed.

System programmer response

The user ID must be 64 characters or less in length.
Change your command and try again.

BKWO0810E

No rules exist for the userid
specified
Explanation

You asked for a display of the rules for a given
user and object, but there were no such rules in the
authorization database.

System action

None.

System programmer response

None.

BKWO0811E Unable to open the authorization
files

Explanation

The server kernel was not able to open the
authorization data files.

404 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

System action
The authorization API is disabled.

System programmer response

Perhaps an SFS failure or DASD failure has occurred.
Contact your system programmer. When access to the
files is repaired, issue AUTH RELOAD.

BKWO0812E Operation limit for the class

specified has been exceeded

Explanation

You attempted to add a new operation to a class, but
it would result in exceeding the limit of 32 operations
per object class.

System action

The command was not processed.

System programmer response

Depending on your situation, perhaps a new object
class would solve your problem.

BKWO0S813E No classes exist for the match key

specified
Explanation

You asked for a list of the object classes that match
your key, but no such object classes exist.

System action

No object classes were displayed.

System programmer response

Try a different match key. You might also have
inadvertently loaded the wrong authorization set.
Use SERVER CONFIG to examine the names of the
authorization files.

BKWO0814E No objects exist for the match key

specified

Explanation

You asked for a list of the objects that match your key,
but no such objects exist.

System action

No object names were displayed.

System programmer response

Try a different match key. You might also have
inadvertently loaded the wrong authorization set.
Use SERVER CONFIG to examine the names of the
authorization files.

BKWO0815E

No userids exist for the object
specified

Explanation

You asked for a list of the user IDs for which there exist
rules for the specified object, but there are no rules for
the specified object.

System action

No user IDs were displayed.

System programmer response

You might have inadvertently loaded the wrong
authorization set. Use SERVER CONFIG to examine
the names of the authorization files.

BKWO0816E

No rules exist for the userid
specified
Explanation

You asked for the rule for the specified user ID and
object, but there is no such rule.

System action
No rule is displayed.

System programmer response

You might have inadvertently loaded the wrong
authorization set. Use SERVER CONFIG to examine
the names of the authorization files.

BKWO0817E

Open of authorization data failed -
server will not start.

Explanation

The server kernel attempted to open the authorization
files as part of server startup, but the open failed.

System action

The server will not start and RUNSERV will be given a
nonzero return code.

System programmer response
Correct PROFILE RSKand try again.

Appendix H. Messages 405

CP Service Messages

BKW09001 RC=&1 from CP.

Explanation
CP produced the displayed return code when it

processed your command.

System action

The command was executed.

System programmer response

Investigate the return code and take appropriate
action.

BKWO0901E CP response was truncated.

Explanation

The server kernel passed your command to CP, and CP
executed the command, but the response was too long
for the server kernel to capture.

System action

The command was executed, but some of its response
was not displayed.

CMS Service Messages

System programmer response

Use the displayed portion of the response to
determine whether correct results were obtained.

BKWO0902E CP command was too long.

Explanation

The CP command you attemped to execute was too
long.

System action

The command was not executed.

System programmer response

The length limit is 240 characters. Shorten the
command and try again.

BKW10001I RC=&1 from CMS.

Explanation

CMS produced the displayed return code when it
processed your command.

System action

The command was executed.

System programmer response

Investigate the return code and take appropriate
action.

MSG Line Driver Messages

BKW1001E RC=&1 RE=&2 acquiring CMS

mutex.

Explanation

The server kernel was not able to acquire the mutex it

needs to pass commands to CMS.

System action

The CMS command was not executed.

System programmer response
Contact IBM support.

BKW1100E

No userid mapping for user &1 at &2 - message ignored

406 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Explanation

The MSG line driver used ssUseridMap to map the message's origin user ID and node into a local user ID,
but ssUseridMap was not able to perform a mapping because no applicable entry was found in the user ID

mapping file.

System action

The MSG line driver ignored the message.

System programmer response

Adjust the user ID mapping file if necessary, or set configuration parameter MSG_NOMAP to ON so as to let the

MSG driver accept the message anyway.

SPOOL Line Driver Messages

BKW41200E (file &1) DIAG 14 (order) failed -

RC=&2 - file held

Explanation

The SPOOL line driver attempted to use DIAG X'0014'
to move the displayed spool file to the front of the
reader queue, but it was unable to do so.

System action
The SPOOL driver placed the file in USER HOLD state.

System programmer response

The DIAG X'0014' return code appears in the message
text. Investigate the return code and take appropriate
action.

BKW1201E (file &1) DIAG 14 (select next)

failed - RC=&2 - file held

Explanation

The SPOOL line driver attempted to use DIAG X'0014'
to select the next file in the reader queue, but it was
unable to do so.

System action
The SPOOL driver placed the file in USER HOLD state.

System programmer response

The DIAG X'0014' return code appears in the message
text. Investigate the return code and take appropriate
action.

BKW1202E (file &1) Unrecognized spool file

format - file held

Explanation

The SPOOL line driver did not recognize the format of
the displayed spool file.

System action
The SPOOL driver placed the file in USER HOLD state.

System programmer response

The file is probably not one that the server kernel

is prepared to handle. Transfer it out of the server's
reader queue, locate the sender, and find out what his
intention was.

BKW1203E

(file &1) DIAG 14 (read SPLINK)
failed - RC=&2 - file held

Explanation

The SPOOL line driver attempted to use DIAG X'0014'
to read the next buffer of spool file data, but it was
unable to do so.

System action
The SPOOL driver placed the file in USER HOLD state.

System programmer response

The DIAG X'0014' return code appears in the message
text. Investigate the return code and take appropriate
action.

BKW1204E

(file &1) No userid mapping for
user &1 at &2 - file held

Explanation

The SPOOL line driver used ssUseridMap to map the
spool file's origin user ID and node into a local userid,

Appendix H. Messages 407

but ssUseridMap was not able to perform a mapping
because no applicable entry was found in the user ID
mapping file.

System action

The SPOOL driver placed the file in USER HOLD status.

System programmer response

Adjust the user ID mapping file if necessary, or set
configuration parameter SPL_NOMAP to ON so as to let
the SPOOL driver accept the file anyway.

BKW1205E Punch via DIAG A8 failed - RC=&1

Explanation

The SPOOL driver attempted to punch a response
through DIAG X'00A8' but was not able to do so.

System action

The response was not sent.

System programmer response

The return code from DIAG X'00A8' is displayed in
the message. Investigate the return code and take
appropriate action. The most likely cause is that spool
space is full.

BKW1206E Could not encode instance data

stream

Enrollment API Messages

Explanation

The service in which the response originated used
the correct encoding procedure to generate a record-
oriented response for its client, but the response
contains a record longer than 65,535 bytes.

System action

The response was not sent to the client.

System programmer response

This is a server defect, not an IBM defect. Contact the
server author.

BKW41207E (file &1) Unrecognized spool file

format - file transferred to &2

Explanation

The SPOOL line driver did not recognize the format of
the displayed spool file.

System action

The SPOOL driver transferred the file to the named
user ID.

System programmer response

The file is probably not one that the server kernel is
prepared to handle. Locate the sender and find out
what his intention was.

BKW1300E

Explanation

Enrollment set &1, record &2 skipped

The server kernel encountered an unrecognizable record in the enrollment data file as it was loading the file into

the data space. It skipped the record.

System action

The record was skipped, but loading of subsequent records continued.

System programmer response

Unload the enrollment set and examine the enrollment file with XEDIT. Repair the record so that it conforms to
the format specified in the enrollment file appendix of this book.

MONITOR Service Messages

408 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

BKW1400E Matching monitor row not found.

Explanation

You asked the MONITOR service to display the monitor
rows matching the tokens you specified, but no such
monitor row exists.

System action

None.

System programmer response

None.

BKW1401E DIAG DC RC &1 starting APPLDATA
monitoring

Explanation

The server kernel tried to establish a CP APPLDATA
buffer but was not able to do so. DIAG X'00DC'
returned the displayed return code.

System action

CP will not collect the server virtual machine's
APPLDATA. The server virtual machine will run
normally.

System programmer response

If you want CP to collect the server virtual machine's
APPLDATA, make sure OPTION APPLMON is enabled in
the server virtual machine's CP directory entry.

BKW1402E Monitor adjusted to &1 kernel

rows and &2 bytes user data

CACHE Service Messages

Explanation

The server kernel tried to set up the monitor buffer
according to the configuration you specified, but the
resulting buffer ended up exceeding CP's limit on the
size of a monitor buffer.

System action

The server kernel resized the monitor buffer and
displayed the actual buffer configuration in the
message text.

System programmer response
None.

BKW1403I

No free monitor row for &1

Explanation

Some operator command or API call caused the server
kernel to attempt to allocate another monitor row,

but the monitor buffer cannot accommodate any more
monitor rows.

System action

The server kernel will not accumulate monitor data for
the displayed component, but operation of the server
continues.

System programmer response

If possible, increase the number of monitor rows.

BKW1500E

Explanation

No file caches found.

You asked the CACHE service to display a list of the file caches it is managing, but it is managing no file caches.

System action

None.

System programmer response

None.

IUCV Line Driver Messages

Appendix H. Messages 409

BKW16001 Instance STOP requested.

Explanation

The IUCV line driver has asked an instance thread to
STOP.

System action

The server kernel will sever the path to the client after
the instance thread acknowledges the STOP request.

System programmer response

None.

BKW1601E A-block &1 rsn &2
QueueReceiveBlock RC=&3 RE=&4
failed

Explanation

The thread controlling an IUCV subtask detected the
displayed return and reason code when it attempted to
receive a message from its CMS queue.

System action

The server kernel terminates the subtask.

System programmer response

Research the displayed return and reason code and
take appropriate corrective action.

BKW16021 A-block &1 Client &2 started, C-
block &3

Explanation

The IUCV line driver has accepted a connection from a
client.

System action

The server kernel handles the client.

System programmer response

None.

BKW16031 A-block &1 Client &2 done,
lifetime &3 msec

Explanation

The IUCV line driver was handling a client, and the
connection to the client has ended. The connection
lasted for the displayed number of milliseconds.

System action

The server kernel cleans up and prepares to handle
another client.

System programmer response

None.

BKW16041 A-block &1 Client &2 done, inbytes
&3, inrate &4 KB/s

Explanation

The IUCV line driver was handling a client, and

the connection to the client has ended. The server
experienced the displayed input byte count and input
data rate.

System action
Nothing.

System programmer response

None.

BKW16051 A-block &1 Client &2 done,
outhytes &3, outrate &4 KB/s

Explanation

The IUCV line driver was handling a client, and
the connection to the client has ended. The server
experienced the displayed output byte count and
output data rate.

System action
Nothing.

System programmer response
None.

BKW1606E

Wait expired for STOP.

Explanation

You issued a STOP command to the IUCV line driver,
and it attempted to stop the subtask gracefully, but the
wait expired before the graceful stop completed.

System action

The IUCV line driver continues to wait for the subtask
to stop normally.

410 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

System programmer response

To finish the stop at a later time, reissue the STOP
command.

BKW1607E Client count must be greater than

zZero.

Explanation

You issued an TUCV START command but the client
count was zero.

System action

Nothing, except to issue this message.

System programmer response

Specify a nonzero client count.

BKW1608E Unable to HNDIUCV SET.

Explanation

You issued an TUCV START command but the IUCV
line driver was not able to identify the needed
HNDIUCV exit.

System action

The subtask was not started.

System programmer response

You probably inadvertently duplicated an exit name.
Try another exit name.

BKW1609E Unable to create controlling

thread.

Explanation

You issued an TUCV START command but the IUCV
line driver was not able to create a CMS thread to
control the subtask.

System action

The subtask was not started.

System programmer response
Contact IBM support.

BKW1610E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(major)

Explanation

A client connected to the server through the IUCV
line driver but the line driver was not able to create
a thread to run on behalf of the client.

System action

The subtask is terminated.

System programmer response
Contact IBM support.

BKW1611E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(minor)

Explanation

A client connected to the server through the IUCV
line driver but the line driver was not able to create
a thread to run on behalf of the client.

System action

The client will be served by another thread, as soon as
said other thread becomes available.

System programmer response

None.

BKW1612E A-block &1 C-block &2 IUCV SEND
IPRCODE &3 - severing

Explanation

The IUCV line driver encountered the displayed
IPRCODE when it attempted to send data to a client
using IUCV SEND.

System action

The IUCV line driver severs the connection to the
client.

System programmer response

Research the IPRCODE and take appropriate
corrective action.

BKW1613E

No userid mapping for userid &1 -
severing

Explanation

The IUCV line driver was unable to map the client's VM
user ID.

Appendix H. Messages 411

System action

Because NOMAP_TUCV was set OFF, the server kernel
severed the connection.

APPC Line Driver Messages

System programmer response

Update the user ID mapping file or set NOMAP_IUCV to
ON.

BKW1700E (Resource &1) CMSIUCV CONNECT

to *IDENT RC=&2

Explanation

The APPC line driver encountered the displayed return
code when attempting to connect to *IDENT to begin
managing the displayed APPC/VM resource.

System action
The APPC START command failed.

System programmer response

Using the CP QUERY RESOURCE command to

determine whether some other virtual machine is
already managing the resource. If so, resolve the
conflict. If not, contact your system programmer.

BKW1701E (Resource &1) Unexpected IUCV
interrupt, IPTYPE=&2

Explanation

The server kernel encountered the displayed
external interrupt type while managing an APPC/VM
conversation and was not expecting such an external
interrupt.

System action

The conversation was severed.

System programmer response
Contact IBM support.

BKW1702E Unable to identify APPC/VM
resource.

Explanation

The server kernel was not able to begin managing an
APPC/VM resource.

System action
The APPC START command failed.

System programmer response

This message is issued in conjunction with some
other message that tells what kind of failure was
encountered. Refer to the other message for more
information.

BKW1703E No userid mapping for LU &1,

userid &2 - severing

Explanation

The attempt to pass the displayed user ID and LU
name through the user ID mapping file failed, and
NOMAP_APPC was OFF.

System action

The conversation was severed.

System programmer response

Update the user ID mapping file or set NOMAP_APPC
ON.

BKW17041 A-block &1 Client &2 &3 started,

C-block &4

Explanation

The APPC line driver has accepted a connection from a
client.

System action

The server kernel handles the client.

System programmer response

None.

BKW417051 A-block &1 Client &2 &3 done,
lifetime &4 msec

Explanation

The APPC line driver was handling a client, and the
connection to the client has ended. The connection
lasted for the displayed number of milliseconds.

412 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

System action

The server kernel cleans up and prepares to handle
another client.

System programmer response

None.

BKW17061 A-block &1 Client &2 &3 done,
inbytes &4, inrate &5 KB/s

Explanation

The APPC line driver was handling a client, and

the connection to the client has ended. The server
experienced the displayed input byte count and input
data rate.

System action

System programmer response

None.

BKW17071 A-block &1 Client &2 &3 done,
outhytes &4, outrate &5 KB/s

Explanation

The APPC line driver was handling a client, and
the connection to the client has ended. The server
experienced the displayed output byte count and
output data rate.

System action
Nothing.

System programmer response

None.
Nothing.
Worker API Messages
BKW1800E Worker machine is already inthe ~ Explanation
specified class. .
You attempted to operate on a specific worker class,
. but the class doesn't seem to exist.
Explanation

You attempted to add a worker machine to a given
worker class, but the worker already belongs to that
class.

System action
Nothing.

System programmer response

Probably nothing. If you are attempting to increase the
worker's capacity, delete it first and then add it again.

BKW1801E Worker machine not found.

Explanation
You attempted to delete a worker machine but it does
not seem to belong to any class.

System action

None.

System programmer response

Check the command and try again.

BKW1802E Worker class not found.

System action

None.

System programmer response
Check the command and try again.

BKW1803E

No worker classes defined.

Explanation

You attempted to display information about the worker
machine configuration, but there are no worker classes
defined.

System action

None.

System programmer response

Confirm that you did in fact issue the WORKER ADD
commands necessary to create your worker pools.

BKW1804E

No worker connections found.

Appendix H. Messages 413

Explanation

You attempted to use the STATUS command to

see information about active connections to worker
machines, but there currently are no such connections.
System action

None.

System programmer response

None.

BKW1805E No worker machines found.

Explanation

You attempted to display information about a set
of worker machines, but there are no such worker
machines defined.

System action

None.

Trie Messages

System programmer response

None.

BKW1806E P-block &1 IUCV SEND IPRCODE
&3 - severing

Explanation

The server kernel encountered the displayed IPRCODE
when attempting to use IUCV to send information to a
worker machine.

System action

The server kernel severs the IUCV connection and
informs the instance accordingly.

System programmer response

Investigate the IPRCODE and determine whether a
configuration change is appropriate.

BKW1900E No tries found.

Explanation

You asked to see a list of existing tries, but no tries exist.

System action
Nothing.

System programmer response

If you were expecting tries, check to see whether their creation was attempted, and if so, whether it succeeded

or failed.

414 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix I. Language Bindings

This appendix documents the language bindings used for PL/X and assembler.

Assembler Language Bindings

All of these binding macros invoke the VMASMMAX macro to ease the allocation of storage for parameter
lists. For more information on VMASMMAX, see z/VM: CMS Application Multitasking.

Anchor Bindings (SSASMANC MACRO)

MACRO
SSASMANC &WEAK=
AGO .@ASMAN1

.* Branch around prolog so it is not included in listings

*

LRk kkkkkkhkhkkkhkhkkhkhkkhkhkhkkkhkhkkkhkhkkhkhkhkkhkhkhkhkkhkhkhkhkhkkhkhkhkkhhkhkkhhkhkkkhkhkhkkhkhkhkhkkhikkx

*

ALL RIGHTS RESERVED

STATUS - VM/ESA Version 2 Release 4

R EEEE R NN

NAME - Reusable Server Kernel anchor bindings
FUNCTION - Defines the anchor constants and dsects
COPYRIGHT -

5684-112 (C) COPYRIGHT IBM CORP.1991, 1992
LICENSED MATERIALS - PROPERTY OF IBM
SEE COPYRIGHT INSTRUCTIONS, G120-2083

CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4

*

X X X

*
@vR2020z
@vR2020z
@vR2020z
@vR2020z
@vR2020z
@vR2020z
*
@vR2020z
*

*

chhkkkkkkkhkkhkkkkkhkhkkhhkkhkhkkhkhkkhhkkhkhkhkkhhkhhkkhhkhkhhkhhkkhhkhkhhkhhkhhkhkhhkhhkhhkhkhhkhhkkhhkhkhhkik
. % AOOOOOO-999999 New for VM/ESA Version 2 Release 4
KR AR AR AAAAA A KA AAAAA KA KA KA KA KA *****kk*x

.@ASMAN1 ANOP
PUSH PRINT

AIF ('&SYSPARM' NE 'SUP').ASMAN2

PRINT OFF,NOGEN
.ASMAN2 ANOP

LCLC &$XXTRN
&PXXTRN SETC 'EXTRN'

AIF ('&WEAK' NE 'YES').ASMAN3
&EXXTRN SETC 'WXTRN'

@VR74PVM

.ASMAN3 ANOP
R e *
* Return and reason codes for anchor functions *
R e e e L *
SPACE 1
*
* return codes
SS_ANC_RC_SUCCESS EQU 0]
SS_ANC_RC_WARNING EQU 4
SS_ANC_RC_ERROR EQU 8
SS_ANC_RC_ABEND EQU 12
*
* reason codes
SS_ANC_RE_SUCCESS EQU 0]
T *
* Constants for anchor functions *
R e e *
SPACE 1
R e e e R *
* Definitions for anchor functions *
e *
SPACE 1
R e e *
* Declaration for ssAnchorSet *
R e e e R *
SPACE 1
&$XXTRN BKWAST
SSANCHORSET EQU BKWAST
SPACE 1

© Copyright IBM Corp. 1999, 2024

SSA0O010
SSA00020
SSA0O030
SSA00O040
SSA00050
SSA0O060
SSAOOO70
SSA00080
SSA0OO90
SSA00100
SSA00110
SSA00120
SSA00130
SSA00140
SSA00150
SSA00160
SSA00170
SSA00180
SSA00190
SSA00200
SSA00210
SSA00220
SSA00230
SSA00240
SSA00250
SSA00260
SSA00270
SSA00280
SSA00290
SSA0O300
SSA00310
SSA00320
SSA00330
SSA00340
SSA00350
SSA00360
SSA0O370
SSA00380
SSA00390
SSA00400
SSA00410
SSA00420
SSA00430
SSA00440
SSA00450
SSA00460
SSA00470
SSA00480
SSA00490
SSAQ0500
SSA00510
SSA00520
SSA00530
SSA00540
SSA0O550
SSA00560
SSA0O570
SSA0O580
SSA00590
SSA00600
SSA00610

415

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4

BKWAST_PLIST DSECT SSA00620
BKWAST_PLIST_RC DS A * return code SSA00630
BKWAST_PLIST_RE DS A * reason code SSA00640
BKWAST_PLIST_AV DS A * anchor value SSA00650
BKWAST_PLIST_LENGTH EQU *-BKWAST_PLIST SSA00660
VMASMMAX SSAQ0670
SPACE 1 SSA00680
K = = = e e e e e e e e e e eeeem—meoo-—---o---- * SSA00690
* Declaration for ssAnchorGet * SSAQO700
e * SSAGO710
SPACE 1 SSA00720
&SXXTRN BKWAGT SSA00730
SSANCHORGET EQU BKWAGT SSA00740
SPACE 1 SSA00750
BKWAGT_PLIST DSECT SSAQ0760
BKWAGT_PLIST_RC DS A * return code SSA00770
BKWAGT_PLIST_RE DS A * reason code SSA00780
BKWAGT_PLIST_AV DS A * anchor value SSA00790
BKWAGT_PLIST_MB DS A * monitor buffer SSA00800
BKWAGT_PLIST_MBL DS A * monitor buffer length SSA00810
BKWAGT_PLIST_LENGTH EQU *-BKWAGT_PLIST SSA00820
VMASMMAX SSA00830
K = = m e e e e e e e e ee e eeem—eeoo-—---o---- * SSA00840
* End of declarations * SSA00850
e e * SSA00860
EJECT SSA00870
POP PRINT SSA00880
MEND SSA00890
Authorization Bindings (SSASMAUT MACRO)

MACRO SSA00010

SSASMAUT &WEAK= SSA00020
AGO .@ASMAU1 SSA00030
.%x Branch around prolog so it is not included in listings * SSA00040
R R R R S S 23 SSAOGOO50
L * SSA00060
.* NAME - Reusable Server Kernel authorization bindings * SSA00070
L* * SSA00080
.* FUNCTION - Defines the authorization constants and dsects * SSA00090
Lk * SSA00100
.% COPYRIGHT - @VR20Z0Z SSA00110
LK @VR20Z0Z SSAG0120
Lk 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSAG0130
Lk LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSA00140
L SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSAG0150
Lk ALL RIGHTS RESERVED @VR20Z0Z SSAG0160
L* * SSA00170
.* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z SSAG0180
Lk * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
+ hk e ek kok ok e e sk ke ok ke e sk ke ok ok ke ek ok ke ok ke e s ke ok ke ke e sk oke ok ok ke ek ke ok ke e e kok ok ok ke e ok ke ok ke ke ek ke ok ok ok SSA00210
. % AOOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSAG0220
B R R R R R R S S 23 SSAOG230
.@ASMAU1 ANOP SSA00240
PUSH PRINT SSA00250

AIF ('&SYSPARM' NE 'SUP').ASMAU2 SSA00260
PRINT OFF,NOGEN SSA00270
.ASMAU2 ANOP SSA00280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300

AIF ('&WEAK' NE 'YES').ASMAU3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMAU3 ANOP SSA00330
K = = = e e e e e e eeeeemeeooo-—---o---- * SSA00340
* Return and reason codes for authorization functions * SSA00350
e e L E LT * SSA00360
SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_AUT_RC_SUCCESS EQU 0 SSA00400
SS_AUT_RC_WARNING EQU 4 SSA00410
SS_AUT_RC_ERROR EQU 8 SSA00420
SS_AUT_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_AUT_RE_SUCCESS EQU 0 SSA00460
SS_AUT_RE_BAD_COUNT EQU 301 SSA00470
SS_AUT_RE_BAD_USER_LENGTH EQU 302 SSA00480

416 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SS_AUT_RE_BAD_OBJ_LENGTH EQU 303 SSA00490
SS_AUT_RE_BAD_OPTION EQU 304 SSAGO500
SS_AUT_RE_BAD_QUAL EQU 305 SSABG510
SS_AUT_RE_BAD_USE EQU 306 SSA00520
SS_AUT_RE_EXISTS EQU 307 SSAB0530
SS_AUT_RE_NO_CLASS EQU 308 SSAQO540
SS_AUT_RE_NO_OBJECT EQU 309 SSA00550
SS_AUT_RE_MAQ_FAIL EQU 310 SSABE560
SS_AUT_RE_CVW_FAIL EQU 311 SSAQB570
SS_AUT_RE_CVS_FAIL EQU 312 SSA00580
SS_AUT_RE_MR_FAIL EQU 313 SSA00590
SS_AUT_RE_TOO_MANY EQU 314 SSARE600
SS_AUT_RE_OUT_OF_STORAGE EQU 315 SSA00610
SS_AUT_RE_NO_USER EQU 316 SSAB0620
SS_AUT_RE_PREV_IO_ERROR EQU 317 SSAB0630
SS_AUT_RE_PREV_SYNC_ERROR EQU 318 SSAQ0640
SS_AUT_RE_READ_FAIL EQU 319 SSAQ0650
SS_AUT_RE_WRITE_FAIL EQU 320 SSARB660
SS_AUT_RE_TRUNC EQU 321 SSAQ0670
SS_AUT_RE_GWU_FAIL EQU 322 SSAB0680
SS_AUT_RE_OPEN_FAIL EQU 323 SSARB690
SS_AUT_RE_BAD_CACHE EQU 324 SSAQ0700
SS_AUT_RE_BAD_FREE EQU 325 SSAQ0710
SS_AUT_RE_BAD_OP EQU 326 SSABO720
* SSABQ730
K = = = e e e e e e e e e e e * SSA00740
* Constants for authorization functions * SSA00750
e e L L L L L L L L L L LR ELEEEEEEEEEE LD * SSAOO760

SPACE 1 SSAB0770
e * SSABO780
* Return values from ssAuthTestOperations = SSAB0790
* and ssAuthPermitUser * SSA00800
e e * SSA00810
SS_AUT_OP_PERMITTED EQU 0 SSA00820
SS_AUT_OP_NOT_PERMITTED EQU 1 SSA00830
SS_AUT_OP_NOT_DEFINED EQU 2 SSAQ0840
SS_AUT_OP_NO_CHANGE EQU 3 SSAQE850
* SSAB0860
e e * SSAQE870
* Qualifiers for ssAuthPermitUser * SSA00880
e e * SSABGE890
SS_AUT_ADD_OPERATION EQU 0] SSABRE900
SS_AUT_REMOVE_OPERATION EQU 1 SSA00910
* SSA00920
e e * SSAB0930
* Use arrays in ssAuthPermitUser * SSAB0940
e e * SSABE950
SS_AUT_USE_ARRAYS EQU 0] SSABE960
SS_AUT_DELETE_ALL EQU 1 SSAQ0970
SS_AUT_ADD_ALL EQU 2 SSA0E980
* SSABR0990
e e e * SSAQ1000
* Qualifiers for ssAuthDeleteObject * SSA01010
e e * SSA01020
SS_AUT_RULES_ONLY EQU 0 SSA01030
SS_AUT_RULES_AND_OBJECT EQU 1 SSA01040
* SSAQ1050
e e S e e e et * SSA01060
* Qualifiers for ssAuthDeleteUser * SSA01070
e e * SSA01080
SS_AUT_SPECIFIC_CLASS EQU 0 SSAQ1090
SS_AUT_ALL_CLASSES EQU 1 SSA01100
* SSA01110
e e S e e S IS * SSA01120
* Qualifiers for ssAuthDeleteClass * SSA01130
e e * SSA01140
SS_AUT_OBJECTS_ONLY EQU 0 SSA01150
SS_AUT_OBJECTS_AND_CLASS EQU 1 SSA01160
* SSAQ1170
e e e O e O I e O S * SSA01180
* Definitions for authorization functions * SSA01190
e e e * SSA01200

SPACE 1 SSA01210
e e * SSA01220
* Operations on classes * SSA01230
e e e e e e O O e O * SSA01240
* SSA01250
* create class SSA01260
* SSAQ1270

SPACE 1 SSA01280

&$XXTRN BKWUCC SSA01290
SSAUTHCREATECLASS EQU BKWUCC SSA01300

Appendix I. Language Bindings 417

SPACE 1 SSA01310

BKWUCC_PLIST DSECT SSAQ1320
BKWUCC_PLIST_RC DS A *x return code SSAQ1330
BKWUCC_PLIST_RE DS A * reason code SSA01340
BKWUCC_PLIST_CID DS A * class identifier SSAQ1350
BKWUCC_PLIST_OC DS A * operation count SSA01360
BKWUCC_PLIST_OA DS A * operation array SSA01370
BKWUCC_PLIST_LENGTH EQU *-BKWUCC_PLIST SSAQ1380
VMASMMAX SSAQ1390

SPACE 1 SSA01400

* SSA01410
* modify class SSA01420
* SSA01430
SPACE 1 SSA01440

&$XXTRN BKWUMC SSAQ1450
SSAUTHMODIFYCLASS EQU BKWUMC SSA01460
SPACE 1 SSAQ1470
BKWUMC_PLIST DSECT SSAQ1480
BKWUMC_PLIST_RC DS A * return code SSA01490
BKWUMC_PLIST_RE DS A * reason code SSAQ1500
BKWUMC_PLIST_CID DS A *x class identifier SSAQ1510
BKWUMC_PLIST_OC DS A * operation count SSA01520
BKWUMC_PLIST_OA DS A * operation array SSAQ1530
BKWUMC_PLIST_LENGTH EQU *-BKWUMC_PLIST SSAQ1540
VMASMMAX SSA01550

SPACE 1 SSAQ1560

* SSAQ1570
* list classes SSA01580
* SSA01590
SPACE 1 SSAQ1600

&$XXTRN BKWULC SSA01610
SSAUTHLISTCLASSES EQU BKWULC SSAQ1620
SPACE 1 SSAQ1630
BKWULC_PLIST DSECT SSA01640
BKWULC_PLIST_RC DS A * return code SSAQ1650
BKWULC_PLIST_RE DS A *x reason code SSAQ1660
BKWULC_PLIST_MK DS A * match key SSAQ1670
BKWULC_PLIST_MKL DS A * match key length SSAQ1680
BKWULC_PLIST_NE DS A * number expected SSA01690
BKWULC_PLIST_OB DS A * output buffer SSAG1700
BKWULC_PLIST_NR DS A * number returned SSAQ1710
BKWULC_PLIST_LENGTH EQU *-BKWULC_PLIST SSAQ1720
VMASMMAX SSAG1730

SPACE 1 SSAQ1740

* SSAQ1750
* delete class SSA01760
* SSAQ1770
SPACE 1 SSAQ1780

&$XXTRN BKWUDC SSAG1790
SSAUTHDELETECLASS EQU BKWUDC SSAQ1800
SPACE 1 SSAQ1810
BKWUDC_PLIST DSECT SSA01820
BKWUDC_PLIST_RC DS A * return code SSAQ1830
BKWUDC_PLIST_RE DS A *x reason code SSAQ1840
BKWUDC_PLIST_CID DS A * class identifier SSA01850
BKWUDC_PLIST_OC DS A * option count SSAQ1860
BKWUDC_PLIST_OA DS A *x option array SSAQ1870
BKWUDC_PLIST_LENGTH EQU *-BKWUDC_PLIST SSA01880
VMASMMAX SSA01890

P * SSAQ1900
* Operations on objects * SSA01910
e * SSA01920
* SSAQ1930
* create object SSA01940
* SSA01950
SPACE 1 SSAQ1960

&$XXTRN BKWUCO SSA01970
SSAUTHCREATEOBJECT EQU BKWUCO SSA01980
SPACE 1 SSAQ1990
BKWUCO_PLIST DSECT SSA02000
BKWUCO_PLIST_RC DS A * return code SSAG2010
BKWUCO_PLIST_RE DS A *x reason code SSA02020
BKWUCO_PLIST_ON DS A * object name SSA02030
BKWUCO_PLIST_ONL DS A * object name length SSAG2040
BKWUCO_PLIST_CID DS A *x object class SSAQ2050
BKWUCO_PLIST_LENGTH EQU %-BKWUCO_PLIST SSA02060
VMASMMAX SSA02070

SPACE 1 SSAQ2080

* SSA02090
* list objects in class SSA02100
* SSA02110
SPACE 1 SSA02120

418 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

&$XXTRN
SSAUTHLISTOBJIECTS

SPACE 1
BKWULO_PLIST
BKWULO_PLIST_RC
BKWULO_PLIST_RE
BKWULO_PLIST_CID
BKWULO_PLIST_MK
BKWULO_PLIST_MKL
BKWULO_PLIST_NE
BKWULO_PLIST_BP
BKWULO_PLIST_BS
BKWULO_PLIST_RL
BKWULO_PLIST_NR
BKWULO_PLIST_LENGTH

BKWULO

SPACE 1
* query an object

SPACE 1

&$XXTRN
SSAUTHQUERYOBJECT

SPACE 1
BKWUQO_PLIST
BKWUQO_PLIST_RC
BKWUQO_PLIST_RE
BKWUQO_PLIST_ON
BKWUQO_PLIST_ONL
BKWUQO_PLIST_CID
BKWUQO_PLIST_UX
BKWUQO_PLIST_UBP
BKWUQO_PLIST_UBS
BKWUQO_PLIST_UL
BKWUQO_PLIST_UR
BKWUQO_PLIST_LENGTH

BKWUQO

SPACE 1
* delete an object

SPACE 1

&$XXTRN
SSAUTHDELETEOBJECT

SPACE 1
BKWUDO_PLIST
BKWUDO_PLIST_RC
BKWUDO_PLIST_RE
BKWUDO_PLIST_ON
BKWUDO_PLIST_ONL
BKWUDO_PLIST_OC
BKWUDO_PLIST_OA
BKWUDO_PLIST_LENGTH

BKWUDO

SPACE 1

*
o

T
@
R
QO
+
H.
o
S
)
o)
)
c
)
o
o]
)

*

permit user

SPACE 1

&$XXTRN
SSAUTHPERMITUSER

SPACE 1
BKWUPU_PLIST
BKWUPU_PLIST_RC
BKWUPU_PLIST_RE
BKWUPU_PLIST_UN
BKWUPU_PLIST_UNL
BKWUPU_PLIST_ON
BKWUPU_PLIST_ONL
BKWUPU_PLIST_UA
BKWUPU_PLIST_OC
BKWUPU_PLIST_OA
BKWUPU_PLIST_0Q
BKWUPU_PLIST_OR
BKWUPU_PLIST_LENGTH

BKWUPU

SPACE 1

* query specific rule

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

EQU
VMASMMAX

EQU

DSECT
DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS
EQU
VMASMMAX

BKWULO

return code
reason code
class identifier
match key

match key length
number expected
buffer pointers
buffer sizes
returned lengths
number returned
-BKWULO_PLIST

*>>>>>>>>>>
* % ok Ok F ok OF X ok O

BKWUQO

return code

reason code

object name

object name length
class identifier
userids expected
userid buf pointers
userid buf sizes
userid lengths
userids returned
-BKWUQO_PLIST

*>P>>>>>>>>>
% ok Ok F ok Ok X ok O

BKWUDO

return code
reason code
object name
its length
option count
option array
UDO_PLIST

*>>>>>r>
S ok ok ok ok * *

-BK

BKWUPU

* return code

* reason code

* User name

* its length

* object name

* its length

* use arrays?

* operation count

* operation array

* operation qualifiers
* operation results
-BKWUPU_PLIST

* > r>>>r>

Appendix I. Language Bindings 419

SSA02130
SSA02140
SSA02150
SSA02160
SSA02170
SSA02180
SSA02190
SSA02200
SSA02210
SSA02220
SSA02230
SSA02240
SSA02250
SSA02260
SSA02270
SSA02280
SSA02290
SSA02300
SSA02310
SSA02320
SSA02330
SSA02340
SSA02350
SSA02360
SSA02370
SSA02380
SSA02390
SSA02400
SSA02410
SSA02420
SSA02430
SSA02440
SSA02450
SSA02460
SSA02470
SSA02480
SSA02490
SSA02500
SSA02510
SSA02520
SSA02530
SSA02540
SSA02550
SSA02560
SSA02570
SSA02580
SSA02590
SSA02600
SSA02610
SSA02620
SSA02630
SSA02640
SSA02650
SSA02660
SSA02670
SSA02680
SSA02690
SSA02700
SSA02710
SSA02720
SSA02730
SSA02740
SSA02750
SSA02760
SSA02770
SSA02780
SSA02790
SSA02800
SSA02810
SSA02820
SSA02830
SSA02840
SSA02850
SSA02860
SSA02870
SSA02880
SSA02890
SSA02900
SSA02910
SSA02920
SSA02930
SSA02940

* SSA02950

&$XXTRN BKWUQR SSAB2960
SSAUTHQUERYRULE EQU BKWUQR SSAB2970
SPACE 1 SSA02980
BKWUQR_PLIST DSECT SSAB2990
BKWUQR_PLIST_RC DS A *x return code SSAQ3000
BKWUQR_PLIST_RE DS A * reason code SSAG3010
BKWUQR_PLIST_UN DS A * user name SSAG3020
BKWUQR_PLIST_UNL DS A x its length SSAQ3030
BKWUQR_PLIST_ON DS A * object name SSA03040
BKWUQR_PLIST_ONL DS A * its length SSAQ3050
BKWUQR_PLIST_OE DS A *x ops expected SSAQ3060
BKWUQR_PLIST_OA DS A * operation array SSAG3070
BKWUQR_PLIST_OR DS A * ops returned SSAB3080
BKWUQR_PLIST_LENGTH EQU *-BKWUQR_PLIST SSAQ3090
VMASMMAX SSAG3100

SPACE 1 SSA03110

* SSA03120
* test operations SSA03130
* SSA03140
SPACE 1 SSAQ3150

&$XXTRN BKWUTO SSAG3160
SSAUTHTESTOPERATIONS EQU BKWUTO SSAG3170
SPACE 1 SSAQ3180
BKWUTO_PLIST DSECT SSAG3190
BKWUTO_PLIST_RC DS A * return code SSAG3200
BKWUTO_PLIST_RE DS A *x reason code SSA03210
BKWUTO_PLIST_UN DS A * User name SSAB3220
BKWUTO_PLIST_UNL DS A * its length SSAB3230
BKWUTO_PLIST_ON DS A x object name SSA03240
BKWUTO_PLIST_ONL DS A * its length SSAG3250
BKWUTO_PLIST_OC DS A * operation count SSAB3260
BKWUTO_PLIST_OA DS A * operation array SSA03270
BKWUTO_PLIST_TR DS A * test results SSAB3280
BKWUTO_PLIST_LENGTH EQU *-BKWUTO_PLIST SSAB3290
VMASMMAX SSAQ3300

SPACE 1 SSA03310

* SSA03320
* delete user SSAQ3330
* SSA03340
SPACE 1 SSA03350

&$XXTRN BKWUDU SSAQ3360
SSAUTHDELETEUSER EQU BKWUDU SSAG3370
SPACE 1 SSAQ3380
BKWUDU_PLIST DSECT SSAB3390
BKWUDU_PLIST_RC DS A * return code SSAG3400
BKWUDU_PLIST_RE DS A * reason code SSAG3410
BKWUDU_PLIST_UN DS A * user name SSAQ3420
BKWUDU_PLIST_UNL DS A * its length SSAG3430
BKWUDU_PLIST_CID DS A * class identifier SSA03440
BKWUDU_PLIST_OC DS A *x option count SSAQ3450
BKWUDU_PLIST_OA DS A * option array SSAB3460
BKWUDU_PLIST_LENGTH EQU *-BKWUDU_PLIST SSAQ3470
VMASMMAX SSAQ3480

SPACE 1 SSA03490

R e e e e L * SSAQ3500
* Utility functions * SSA03510
K= == == mmm---------- * SSA03520
* SSA03530
* try to reset access to data files SSA03540
* SSAB3550
SPACE 1 SSA03560

&$XXTRN BKWURL SSAQ3570
SSAUTHRELOAD EQU BKWURL SSAG3580
SPACE 1 SSA03590
BKWURL_PLIST DSECT SSAQ3600
BKWURL_PLIST_RC DS A * return code SSA03610
BKWURL_PLIST_RE DS A * reason code SSAB3620
BKWURL_PLIST_LENGTH EQU *-BKWURL_PLIST SSAQ3630
VMASMMAX SSAB3640

SPACE 1 SSAQ3650
e L L L L L LT * SSAQ3660
* End of declarations * SSAB3670
L L L L LT * SSA03680
EJECT SSAQ3690

POP PRINT SSAG3700

MEND SSA03710

420 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Cache Bindings (SSASMCAC MACRO)

MACRO SSA00010
SSASMCAC &WEAK= SSA00020
AGO .@ASMOB1 SSAQ0030
.* Branch around prolog so it is not included in listings * SSAQO040
L Sk k ke ke ek ok ke ke ok k ke ok ke e ek k ke ok e ek k ke ok ke e ok ke ok ke ek ok ke ok ek k ke ok ke ek ko ke ok ke ek k ko ok ok SSAQ0050
L* * SSAQ0060
.%* NAME - Reusable Server Kernel cache bindings * SSAQEO70
Lk * SSA00080
.%* FUNCTION - Defines the file cache constants and dsects * SSAQ0090
L * SSA00100
.% COPYRIGHT - @VR20Z0Z SSA00110
L* @VR20Z0Z SSAG0120
L 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSAG0130
Lk LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSA00140
L* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSAG0150
L ALL RIGHTS RESERVED @VR20Z0Z SSAG0160
Lk * SSAB0170
.% STATUS - Version 2 Release 4 @VR20Z0Z SSAG0180
L * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSAG0200
R R R T S 3 SSA0G210
.* AOOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSAG0220
L ke kk ke ke ek ok ke ke ok k ke ok ke e e ko e ek ok ke ok ok ek ke ke ok ke ek ke ok ok e ek k ke ok ke e ek ke ke ok ke ko ok ok ok ok SSA00230
.@ASMOB1 ANOP SSA00240
PUSH PRINT SSA00250
AIF ('&SYSPARM' NE 'SUP').ASMOB2 SSA00260
PRINT OFF,NOGEN SSA00270
.ASMOB2 ANOP SSA00280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
AIF ('&WEAK' NE 'YES').ASMOB3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMOB3 ANOP SSA00330
D e * SSA00340
* Return and reason codes for file functions * SSABO350
R * SSA00360
SPACE 1 SSA00370
* return codes SSA00380
SS_CAC_RC_SUCCESS EQU 0 SSA00390
SS_CAC_RC_WARNING EQU 4 SSA00400
SS_CAC_RC_ERROR EQU 8 SSA00410
SS_CAC_RC_ABEND EQU 12 SSA00420
* SSA00430
* reason codes SSA00440
SS_CAC_RE_SUCCESS EQU 0 SSA00450
SS_CAC_RE_OUT_OF_STORAGE EQU 1501 SSA00460
SS_CAC_RE_TABLE_REPLACED EQU 1502 SSA00470
SS_CAC_RE_CACHE_NOT_FOUND EQU 1503 SSA00480
SS_CAC_RE_DSCR_FAIL EQU 1504 SSA00490
SS_CAC_RE_CACHE_EXISTS EQU 1505 SSA00500
SS_CAC_RE_BAD_SIZE EQU 1506 SSA00510
SS_CAC_RE_BAD_TOKEN EQU 1511 SSA00520
SS_CAC_RE_BAD_LENGTH EQU 1512 SSA00530
SS_CAC_RE_BAD_COUNT EQU 1513 SSA00540
SS_CAC_RE_BAD_ESMDL EQU 1514 SSA00550
SS_CAC_RE_BAD_FNAME EQU 1515 SSA00560
SS_CAC_RE_BAD_FVAL EQU 1516 SSA00570
SS_CAC_RE_EXIST_FAIL EQU 1517 SSA00580
SS_CAC_RE_FILE_NOT_FOUND EQU 1518 SSA00590
SS_CAC_RE_DELETE_IN_PROGRESS EQU 1519 SSAQ0600
SS_CAC_RE_BAD_OFFSET EQU 1520 SSA00610
SS_CAC_RE_BAD_TABLE_ID EQU 1521 SSA00620
SS_CAC_RE_TABLE_NOT_FOUND EQU 1522 SSA00630
SS_CAC_RE_OPEN_FAIL EQU 1523 SSA00640
SS_CAC_RE_BAD_RECFM EQU 1524 SSAQ0650
SS_CAC_RE_BAD_LRECL EQU 1525 SSAQ0660
SS_CAC_RE_OUT_OF_STORAGE_DS EQU 1526 SSA00670
SS_CAC_RE_READ_FAIL EQU 1527 SSA00680
SS_CAC_RE_BAD_DATA_STREAM EQU 1528 SSA00690
SPACE 1 SSA00700
e * SSA00710
* Constants for file functions * SSA00720
e e * SSA00730
SPACE 1 SSA00740
* open flag names SSABQ750
SS_CAC_OFN_XLATE EQU 0 SSA00760
SS_CAC_OFN_PRESERVE_DOLR EQU 1 SSA00770
SS_CAC_OFN_BFS EQU 2 SSA00780

Appendix I. Language Bindings 421

SS_CAC_OFN_RECMETHOD_FS EQU
SS_CAC_OFN_RECMETHOD_CACHE EQU
*
* open flag values
SS_CAC_OFV_NO EQU
SS_CAC_OFV_YES EQU
SPACE 1
* Definitions for file functions
SPACE 1
*
* create cache
*
SPACE 1
&$XXTRN BKWOCC
SSCACHECREATE EQU
SPACE 1
BKWOCC_PLIST DSECT
BKWOCC_PLIST_RC DS
BKWOCC_PLIST_RE DS
BKWOCC_PLIST_CNAME DS
BKWOCC_PLIST_PAGES DS
BKWOCC_PLIST_ALET DS
BKWOCC_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* delete cache
*
SPACE 1
&$XXTRN BKWOCD
SSCACHEDELETE EQU
SPACE 1
BKWOCD_PLIST DSECT
BKWOCD_PLIST_RC DS
BKWOCD_PLIST_RE DS
BKWOCD_PLIST_CNAME DS
BKWOCD_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* query cache utilization
*
SPACE 1
&$XXTRN BKWOCQ
SSCACHEQUERY EQU
SPACE 1
BKWOCQ_PLIST DSECT
BKWOCQ_PLIST_RC DS
BKWOCQ_PLIST_RE DS
BKWOCQ_PLIST_CNAME DS
BKWOCQ_PLIST_FCOUNT DS
BKWOCQ_PLIST_CSIZE DS
BKWOCQ_PLIST_INUSE DS
BKWOCQ_PLIST_OCOUNT DS
BKWOCQ_PLIST_HCOUNT DS
BKWOCQ_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* set translation table
*
SPACE 1
&$XXTRN BKWOTS
SSCACHEXLTABSET EQU
SPACE 1
BKWOTS_PLIST DSECT
BKWOTS_PLIST_RC DS
BKWOTS_PLIST_RE DS
BKWOTS_PLIST_XLTABID DS
BKWOTS_PLIST_XLTAB DS
BKWOTS_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* open a cached file
*
SPACE 1
&$XXTRN BKWOFO
SSCACHEFILEOPEN EQU
SPACE 1

return code
reason code

cache name

file name length
storage group num
-BKWOCC_PLIST

* >>>>>
* % ok ok *

BKWOCD

A * return code
A * reason code
A * cache name
*-BKWOCD_PLIST

BKWOCQ

* return code
* reason code
* cache name

* files cached
* cache size

* amt in use

* open count

* hit count
WOCQ_PLIST

> r>>>

-BK

return code
reason code
x1ltab id
x1tab
-BKWOTS_PLIST

* > > > >
* % Kk ok

BKWOFO

422 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSAOO790
SSA0O800
SSA00810
SSA00820
SSA00830
SSA00840
SSAOO850
SSA00860
SSA0O870
SSAOO880
SSAQ0890
SSA0O900
SSA00910
SSAB0920
SSA00930
SSA00940
SSAB0950
SSA00960
SSAPO970
SSABO980
SSA00990
SSA01000
SSA01010
SSA01020
SSA01030
SSAQ1040
SSA01050
SSA01060
SSAQ1070
SSA01080
SSA01090
SSA01100
SSA01110
SSA01120
SSA01130
SSA01140
SSA01150
SSA01160
SSA01170
SSA01180
SSA01190
SSA01200
SSA01210
SSA01220
SSA01230
SSA01240
SSA01250
SSA01260
SSA01270
SSA01280
SSA01290
SSA01300
SSA01310
SSA01320
SSA01330
SSA01340
SSA01350
SSA01360
SSAQ1370
SSA01380
SSA01390
SSAQ1400
SSA01410
SSA01420
SSA01430
SSA01440
SSA01450
SSA01460
SSA01470
SSA01480
SSA01490
SSA01500
SSA01510
SSA01520
SSA01530
SSA01540
SSA01550
SSA01560
SSA01570
SSA01580
SSA01590
SSA01600

BKWOFO_PLIST DSECT SSA01610

BKWOFO_PLIST_RC DS A * return code SSAQ1620
BKWOFO_PLIST_RE DS A % reason code SSA01630
BKWOFO_PLIST_CNAME DS A * cache name SSA01640
BKWOFO_PLIST_FSPEC DS A * file spec SSA01650
BKWOFO_PLIST_FSPECLEN DS A x its length SSA01660
BKWOFO_PLIST_ESMD DS A * ESM data SSA01670
BKWOFO_PLIST_ESMDLEN DS A * its length SSA01680
BKWOFO_PLIST_FCOUNT DS A x flag count SSA01690
BKWOFO_PLIST_FNAMES DS A * flag names SSA01700
BKWOFO_PLIST_FVALS DS A * flag values SSAQ1710
BKWOFO_PLIST_FTOKEN DS A x file token SSA01720
BKWOFO_PLIST_ALET DS A * file ALET SSA01730
BKWOFO_PLIST_DSADDR DS A * file DS address SSAQ1740
BKWOFO_PLIST_DSLEN DS A % file DS length SSA01750
BKWOFO_PLIST_LASTUPD DS A * last update date SSA01760
BKWOFO_PLIST_LENGTH EQU *-BKWOFO_PLIST SSAQ1770
VMASMMAX SSA01780
SPACE 1 SSA01790
* SSA01800
* read cached file SSAQ1810
* SSA01820
SPACE 1 SSA01830
&$XXTRN BKWOFR SSA01840
SSCACHEFILEREAD EQU BKWOFR SSA01850
SPACE 1 SSA01860
BKWOFR_PLIST DSECT SSA01870
BKWOFR_PLIST_RC DS A * return code SSA01880
BKWOFR_PLIST_RE DS A * reason code SSAQ1890
BKWOFR_PLIST_CNAME DS A % cache name SSA01900
BKWOFR_PLIST_FTOKEN DS A * file token SSA01910
BKWOFR_PLIST_OFFSET DS A * byte offset SSA01920
BKWOFR_PLIST_COUNT DS A x byte count SSA01930
BKWOFR_PLIST_BUFFER DS A * out buffer SSA01940
BKWOFR_PLIST_RETURNED DS A * bytes returned SSAQ1950
BKWOFR_PLIST_LENGTH EQU *-BKWOFR_PLIST SSA01960
VMASMMAX SSA01970
SPACE 1 SSA01980
* SSA01990
* close cached file SSA02000
* SSA02010
SPACE 1 SSA02020
&$XXTRN BKWOFC SSA02030
SSCACHEFILECLOSE EQU BKWOFC SSAG2040
SPACE 1 SSA02050
BKWOFC_PLIST DSECT SSA02060
BKWOFC_PLIST_RC DS A * return code SSAB2070
BKWOFC_PLIST_RE DS A % reason code SSA02080
BKWOFC_PLIST_CNAME DS A * cache name SSA02090
BKWOFC_PLIST_FTOKEN DS A * file token SSAG2100
BKWOFC_PLIST_LENGTH EQU *-BKWOFC_PLIST SSA02110
VMASMMAX SSA02120
SPACE 1 SSA02130
e e L e L L * SSA02140
* End of definitions * SSA02150
R L L L L L * SSAB2160
EJECT SSA02170
POP PRINT SSA02180
MEND SSAB2190
Client Bindings (SSASMCLI MACRO)

MACRO SSA00010

SSASMCLI &WEAK= SSA00020
AGO .@ASMSR1 SSA00030
.x Branch around prolog so it is not included in listings * SSAQE040
Lok ke ek kok ok o e ke ok kok ok o ke ke ok kok ok o e ke ok kok ok e ke ke ok kok o e ke ok ok ok ok o ke ke ok ok ok ok ok ke ke ok okok ok ok ke ke ok okok ok ok ke ke SSA0OE50
L * SSAD0060
.x NAME - Reusable Server Kernel services bindings * SSAQEO70
Lk * SSA00080
.%* FUNCTION - LANGUAGE BINDINGS FOR THE CLIENT SERVICES * SSAQO090
L * SSA00100
.%* COPYRIGHT - @VR20Z0Z SSAG0110
Lk @VR20Z0Z SSAG0120
L 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSA00130
Lk LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSAG0140
L SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSA00150
Lk ALL RIGHTS RESERVED @VR20Z0Z SSA00160
Lk * SSABO170

Appendix I. Language Bindings 423

.% STATUS - Version 2 Release 4 @VR20Z0Z SSAG0180
*

Lk SSA00190
.% CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
+ hkde e ek koke ok e e sk ke ok ke e sk ke ok ok ke e sk ok ke ok ke e sk oke ok ke e s sk oke ke ok ke e sk ok ke ok ke e s kok ok ok ke e kok ke ok ke ke sk ke ke ok ok ok SSA00210
.* AGOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSAG0220
LKk kkkkkkkkkkkhkkkkkkhkhkkkkkhhkhkhkkhkhhkhkhkhkhkhhkhkkkhkkhkhkhkhkkkkhkhkkkkkkrkkkkk SSA00230
.@ASMSR1 ANOP SSA00240
PUSH PRINT SSA00250

AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260
PRINT OFF,NOGEN SSA00270
.ASMSR2 ANOP SSA00280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300

AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
K = = = = m e e e e e e e e eeeeem—eeoo-o---o---- * SSA00340
* Return and reason codes for services functions * SSA00350
e e * SSA00360
SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_CLI_RC_SUCCESS EQU 0 SSA00400
SS_CLI_RC_WARNING EQU 4 SSA00410
SS_CLI_RC_ERROR EQU 8 SSA00420
SS_CLI_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_CLI_RE_SUCCESS EQU 0 SSA00460
SS_CLI_RE_OUT_OF_RANGE EQU 901 SSA00470
SS_CLI_RE_OUT_OF_STORAGE EQU 902 SSA00480
SS_CLI_RE_BAD_IAM EQU 903 SSA00490
SS_CLI_RE_BAD_METHOD EQU 9204 SSAQ0500
SS_CLI_RE_SEMC_FAIL EQU 905 SSA00510
* SSA00520
* Who i am SSA00530
SPACE 1 SSA00540
SS_CLI_IAM_INSTANCE EQU 0 SSA00550
SS_CLI_TAM_LINEDRIVER EQU 1 SSA00560
* SSA00570
* Ways to get data SSABB580
SPACE 1 SSA00590
SS_CLI_METHOD_READ EQU 0 SSAQ0600
SS_CLI_METHOD_PEEK EQU 1 SSA00610
SS_CLI_METHOD_DISCARD EQU 2 SSA00620
e e * SSA00630
* Definitions for services function * SSA00640
e * SSAQ0650
SPACE 1 SSA00660
* SSAQ0670
* initialize client data queues SSA00680
* SSA00690
SPACE 1 SSA00700
&SXXTRN BKWIIN SSA00710
SSCLIENTDATAINIT EQU BKWIIN SSA00720
SPACE 1 SSA00730
BKWIIN_PLIST DSECT SSA00740
BKWIIN_PLIST_RC DS A * return code SSA00750
BKWIIN_PLIST_RE DS A * reason code SSA00760
BKWIIN_PLIST_CB DS A * C-block addr SSA00770
BKWIIN_PLIST_SUBPOOL DS A * subpool name SSA00780
BKWIIN_PLIST_LENGTH EQU *-BKWIIN_PLIST SSA00790
VMASMMAX SSA00800
SPACE 1 SSA00810
* SSA00820
* terminate client data queues SSA00830
* SSA00840
SPACE 1 SSA00850
&SXXTRN BKWITM SSA00860
SSCLIENTDATATERM EQU BKWITM SSA00870
SPACE 1 SSA00880
BKWITM_PLIST DSECT SSA00890
BKWITM_PLIST_RC DS A * return code SSA00900
BKWITM_PLIST_RE DS A * reason code SSA00910
BKWITM_PLIST_CB DS A * C-block addr SSA00920
BKWITM_PLIST_LENGTH EQU *-BKWITM_PLIST SSA00930
VMASMMAX SSA00940
SPACE 1 SSA00950
* SSA00960
* get input from client C-block SSABE970
* SSA00980
SPACE 1 SSA00990

424 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

&$XXTRN BKWIDG SSAQ10060

SSCLIENTDATAGET EQU BKWIDG SSAQ1010
SPACE 1 SSA01020
BKWIDG_PLIST DSECT SSAG1030
BKWIDG_PLIST_RC DS A * return code SSAQ1040
BKWIDG_PLIST_RE DS A % reason code SSA01050
BKWIDG_PLIST_INS DS A * instance or 1d? SSA01060
BKWIDG_PLIST_CB DS A * C-block addr SSAQ1070
BKWIDG_PLIST_GM DS A x get method SSA01080
BKWIDG_PLIST_ALET DS A * ALET SSAG1090
BKWIDG_PLIST_BUF DS A * buffer SSAQ1100
BKWIDG_PLIST_AM DS A x amt wanted SSA01110
BKWIDG_PLIST_AG DS A * amt given SSA01120
BKWIDG_PLIST_AL DS A * amt left SSAG1130
BKWIDG_PLIST_LENGTH EQU *-BKWIDG_PLIST SSA01140
VMASMMAX SSA01150

SPACE 1 SSA01160

* SSA01170
* put output onto client C-block SSA01180
* SSA01190
SPACE 1 SSA01200

&$XXTRN BKWIDP SSA01210
SSCLIENTDATAPUT EQU BKWIDP SSA01220
SPACE 1 SSA01230
BKWIDP_PLIST DSECT SSA01240
BKWIDP_PLIST_RC DS A * return code SSAQ1250
BKWIDP_PLIST_RE DS A % reason code SSA01260
BKWIDP_PLIST_INS DS A * instance or 1d? SSA01270
BKWIDP_PLIST_CB DS A * C-block addr SSA01280
BKWIDP_PLIST_ALET DS A % ALET SSA01290
BKWIDP_PLIST_BUF DS A * buffer SSAG1300
BKWIDP_PLIST_AP DS A * amt to put SSAQ1310
BKWIDP_PLIST_NA DS A * new amount SSA01320
BKWIDP_PLIST_LENGTH EQU *-BKWIDP_PLIST SSAG1330
VMASMMAX SSA01340

SPACE 1 SSA01350

e e e O e eSS S * SSA01360
* End of declarations * SSA01370
R e L T * SSA01380
EJECT SSA01390

POP PRINT SSA01400

MEND SSA01410

Enrollment Bindings (SSASMENR MACRO)

MACRO SSAGO010
SSASMENR &WEAK= SSA00020
AGO .@ASMSR1 SSAGOO30
.* Branch around prolog so it is not included in listings * SSAQ0040
L Fokkkok ko k ko ko ko sk ko ok ok ok ok ok ok k ke ok ko ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke SSAGEO50
Lk * SSAQ0060
.%* NAME - Reusable Server Kernel services bindings * SSAQEO70
Lk * SSA00080
.x FUNCTION - Language bindings for enrollment services * SSAQEE90
3 * SSA00100
.% COPYRIGHT - @VR20Z0Z SSAG0110
Lk @VR20Z0Z SSAG0120
3 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSAG0130
Lk LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSAG0140
Lk SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSAGO150
3 ALL RIGHTS RESERVED @VR20Z0Z SSAG0160
Lk * SSA00170
.% STATUS - Version 2 Release 4 @VR20Z0Z SSAG0180
3 * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSAG0200
LKk kkkkkkkkkkkhkhkkkkkhkhkhkkhkhhkhkhkkhhhhkhkhkhkhhhhkhkhkhkhkhhkhkrkkkkkhkhkkkkkkrkhkkkk SSA00210
.* AOOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSAG0220
L Fokkkk ok kk ko ko ko ko ok ko ok ok ok k ko ke ok ko ok ke ok ok ke ok ok ok ok k ok ok ke ok ke ok ok ke ok ok ok ok ok ok ok ok ok ke ke SSAG0230
.@ASMSR1 ANOP SSAG0240
PUSH PRINT SSAG0250
AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260
PRINT OFF,NOGEN SSAGE270
.ASMSR2 ANOP SSAG0280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSAGO300
AIF ('&WEAK' NE 'YES').ASMSR3 SSAG0310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSAGO330
e * SSAG0340

Appendix I. Language Bindings 425

* Return and reason codes for services functions * SSA00350

K = = = = m e e e e e oo eeeeem—meoo-o---o---- * SSA00360
SPACE 1 SSA00370

* SSA00380
* return codes SSA00390
SS_ENR_RC_SUCCESS EQU 0 SSA00400
SS_ENR_RC_WARNING EQU 4 SSA00410
SS_ENR_RC_ERROR EQU 8 SSA00420
SS_ENR_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_ENR_RE_SUCCESS EQU 0 SSA00460
SS_ENR_RE_DB_NOT_FOUND EQU 1001 SSAQ0470
SS_ENR_RE_REC_NOT_FOUND EQU 1002 SSA00480
SS_ENR_RE_TRUNCATED EQU 1003 SSA00490
SS_ENR_RE_DIRTY EQU 1004 SSA00500
SS_ENR_RE_REC_EXISTS EQU 1005 SSA00510
SS_ENR_RE_BAD_LENGTH EQU 1006 SSA00520
SS_ENR_RE_BAD_DROPTYPE EQU 1007 SSA00530
SS_ENR_RE_NO_STORAGE EQU 1008 SSA00540
SS_ENR_RE_CLOSE_FAIL EQU 1009 SSA00550
SS_ENR_RE_WRITE_FAIL EQU 1010 SSA00560
SS_ENR_RE_BAD_METHOD EQU 1011 SSA00570
SS_ENR_RE_OPEN_FAIL EQU 1012 SSA00580
SS_ENR_RE_GWU_FAIL EQU 1013 SSA00590
SS_ENR_RE_POINT_FAIL EQU 1014 SSA00600
SS_ENR_RE_EXIST_FAIL EQU 1015 SSA00610
SS_ENR_RE_NOT_SFS EQU 1016 SSA00620
SS_ENR_RE_NOT_V EQU 1017 SSAQ0630
SS_ENR_RE_DSCR_FAIL EQU 1018 SSA00640
SS_ENR_RE_READ_FAIL EQU 1019 SSAQ0650
SS_ENR_RE_DB_EXISTS EQU 1020 SSAQE660
SS_ENR_RE_COMM_FAIL EQU 1021 SSAQ0670
SS_ENR_RE_NOT_DISK EQU 1022 SSA00680
SS_ENR_RE_BAD_KIND EQU 1023 SSA00690
SS_ENR_RE_NEW_FILE EQU 1024 SSAQO700
SS_ENR_RE_NO_SETS EQU 1025 SSA00710
SS_ENR_RE_SET_EMPTY EQU 1026 SSA00720
SPACE 1 SSA00730

* SSA00740
* API maxima SSABGO750
SS_ENR_INDEX_WIDTH EQU 64 SSA00760
SS_ENR_MAX_DATA EQU 65450 SSAQ0770
SPACE 1 SSA00780

* SSA00790
* KIND types SSABB800
SS_ENR_KIND_MEMORY EQU 0 SSA00810
SS_ENR_KIND_DISK EQU 1 SSA00820
SPACE 1 SSA00830

* SSAQ0840
* INSERT types SSA00850
SS_ENR_INSERT_NEW EQU 0 SSA0Q0860
SS_ENR_INSERT_REPLACE EQU 1 SSA00870
SPACE 1 SSA00880

* SSA00890
* DROP types SSABE900
SS_ENR_DROP_COMMIT EQU 0 SSA00910
SS_ENR_DROP_ROLLBACK EQU 1 SSA00920
SPACE 1 SSAB0930
e T T T * SSA00940
* Definitions for enrollment services * SSA00950
K = = = = m e e e e e eeeeem—eeoo-o---o---- * SSA00960
SPACE 1 SSA00970

* SSA00980
* load enrollment data base SSA00990
* SSAQ1000
SPACE 1 SSA01010

&$XXTRN BKWJILO SSA01020
SSENROLLLOAD EQU BKWJILO SSA01030
SPACE 1 SSA01040
BKWJLO_PLIST DSECT SSA01050
BKWJILO_PLIST_RC DS A * return code SSA01060
BKWJLO_PLIST_RE DS A * reason code SSAG1070
BKWJLO_PLIST_DBASE DS A * dbase name SSA01080
BKWJILO_PLIST_DS_KIND DS A * DS kind SSA01090
BKWJLO_PLIST_DS_SIZE DS A % DS size SSA01100
BKWJILO_PLIST_FN DS A * filename SSA01110
BKWJILO_PLIST_FNL DS A * filename length SSA01120
BKWJLO_PLIST_LENGTH EQU *-BKWJLO_PLIST SSA01130
VMASMMAX SSA01140

SPACE 1 SSA01150

* SSA01160

426 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

* drop enrollment data base

SPACE 1
&$XXTRN BKWJIDP
SSENROLLDROP EQU
SPACE 1
BKWJDP_PLIST DSECT
BKWJIDP_PLIST_RC DS
BKWJIDP_PLIST_RE DS
BKWJDP_PLIST_DBASE DS
BKWJIDP_PLIST_DT DS
BKWJIDP_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* commit enrollment data base
*
SPACE 1
&$XXTRN BKWICM
SSENROLLCOMMIT EQU
SPACE 1
BKWJCM_PLIST DSECT
BKWJCM_PLIST_RC DS
BKWJICM_PLIST_RE DS
BKWJCM_PLIST_DBASE DS
BKWJCM_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* list data bases
*
SPACE 1
&$XXTRN BKWJIDL
SSENROLLLIST EQU
SPACE 1
BKWJIDL_PLIST DSECT
BKWJIDL_PLIST_RC DS
BKWJIDL_PLIST_RE DS
BKWJIDL_PLIST_CB DS
BKWJIDL_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* insert record
*
SPACE 1
&$XXTRN BKWIRI
SSENROLLRECORDINSERT EQU
SPACE 1
BKWJRI_PLIST DSECT
BKWJIRI_PLIST_RC DS
BKWJRI_PLIST_RE DS
BKWJRI_PLIST_DBASE DS
BKWJIRI_PLIST_INDEX DS
BKWJRI_PLIST_DATA DS
BKWJRI_PLIST_DATAL DS
BKWJRI_PLIST_REP DS
BKWJIRI_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* remove record
*
SPACE 1
&$XXTRN BKWIRR
SSENROLLRECORDREMOVE EQU
SPACE 1
BKWJRR_PLIST DSECT
BKWJIRR_PLIST_RC DS
BKWJRR_PLIST_RE DS
BKWJRR_PLIST_DBASE DS
BKWJIRR_PLIST_INDEX DS
BKWIRR_PLIST_LENGTH EQU
VMASMMAX
SPACE 1
*
* list records
*
SPACE 1
&$XXTRN BKWIRL
SSENROLLRECORDLIST EQU
SPACE 1

return code
reason code
dbase name
drop type
-BKWJIDP_PLIST

b I e

BKWJICM

A * return code
A * reason code
A * dbase name
*-BKWJCM_PLIST

BKWJIDL

A * return code
A * reason code
A * C-block
*-BKWJIDL_PLIST

return code

reason code

dbase name

index

data

data length
* replace?

-BKWJIRI_PLIST

* ok Kk ok * *

BKWJIRR

return code
reason code
dbase name
* index
-BKWJIRR_PLIST

* > > > >
* % *

BKWJIRL

SSA01170
SSA01180
SSA01190
SSA01200
SSA01210
SSA01220
SSA01230
SSA01240
SSA01250
SSA01260
SSAQ1270
SSA01280
SSA01290
SSAQ1300
SSA01310
SSA01320
SSA01330
SSA01340
SSA01350
SSA01360
SSA01370
SSA01380
SSA01390
SSA01400
SSA01410
SSA01420
SSA01430
SSA01440
SSA01450
SSA01460
SSA01470
SSA01480
SSA01490
SSA01500
SSA01510
SSA01520
SSA01530
SSA01540
SSA01550
SSA01560
SSAQ1570
SSA01580
SSA01590
SSAQ1600
SSA01610
SSA01620
SSA01630
SSA01640
SSA01650
SSA01660
SSA01670
SSA01680
SSA01690
SSA01700
SSA01710
SSAQ1720
SSA01730
SSA01740
SSAQ1750
SSA01760
SSA01770
SSAQ1780
SSA01790
SSA01800
SSA01810
SSA01820
SSA01830
SSA01840
SSA01850
SSA01860
SSAQ1870
SSA01880
SSA01890
SSAQ1900
SSA01910
SSA01920
SSA01930
SSA01940
SSA01950
SSA01960
SSA01970
SSA01980

Appendix I. Language Bindings 427

BKWJIRL_PLIST DSECT SSAB1990

BKWJRL_PLIST_RC DS A * return code SSA02000
BKWJIRL_PLIST_RE DS A * reason code SSA02010
BKWJIRL_PLIST_DBASE DS A * dbase name SSA02020
BKWJRL_PLIST_CB DS A * C-block SSA02030
BKWJIRL_PLIST_LENGTH EQU *-BKWJIRL_PLIST SSA02040
VMASMMAX SSA02050
SPACE 1 SSA02060
* SSA02070
* get record SSA02080
* SSA02090
SPACE 1 SSA02100
&$XXTRN BKWIRG SSA02110
SSENROLLRECORDGET EQU BKWJRG SSAB2120
SPACE 1 SSA02130
BKWJIRG_PLIST DSECT SSA02140
BKWJRG_PLIST_RC DS A * return code SSAB2150
BKWJIRG_PLIST_RE DS A * reason code SSA02160
BKWJIRG_PLIST_DBASE DS A * dbase name SSA02170
BKWJRG_PLIST_INDEX DS A * index SSAG2180
BKWJIRG_PLIST_BUF DS A * buffer SSA02190
BKWJRG_PLIST_BUFS DS A * buffer size SSA02200
BKWJRG_PLIST_AR DS A * amt returned SSAB2210
BKWIRG_PLIST_LENGTH EQU *-BKWJIRG_PLIST SSA02220
VMASMMAX SSA02230
SPACE 1 SSAB2240
R e L L L L L L L L L * SSA02250
* End of declarations * SSA02260
R L L L L LT * SSAB2270
EJECT SSA02280
POP PRINT SSA02290
MEND SSA02300
Memory Bindings (SSASMMEM MACRO)

MACRO SSA00010

SSASMMEM &WEAK= SSA00020
AGO .@ASMME1 SSA0O030
.x Branch around prolog so it is not included in listings * SSAQEE40
L FKK KKK A KA KKK A KKK KKK KK A KK KK A KK A KA KK A KA Ak ek ko ek ok e SSAQ0050
* * SSAD0060
* NAME - Reusable Server Kernel memory bindings * SSAQEO70
* * SSA00080
* FUNCTION - Defines memory constants and dsects * SSA00090
* * SSA00100
* COPYRIGHT - @VR20Z0Z SSAG0110
Lk @VR20Z0Z SSAG0120
Sk 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSA0Q130
* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSAG0140
* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSA00150
* ALL RIGHTS RESERVED @VR20Z0Z SSA00160
* * SSABO170
* STATUS - Version 2 Release 4 @VR20Z0Z SSA00180
* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSAG0200
Lok kok ok kkok ko ok ok ok k ok ko ok ok sk ko ko ok ok ko sk ok ok ok ok ko ok okok ok ok ko ok kok ok ko ok okok ok ko ke ok ok ok ok ok ok ok ok ok SSA00210
.% AGOO0OO-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSA00220
L HKK AR A A KKK A A KA KK KK A KA KA KKK A KK A KA KK A K kKA ek ko ek ok e SSA00230
.@ASMME1 ANOP SSAG0240
PUSH PRINT SSA00250

AIF ('&RM' NE 'SUP').ASMME2 SSA00260
PRINT OFF,NOGEN SSABO270
.ASMME2 ANOP SSA00280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA0O300

AIF ('&WEAK' NE 'YES').ASMME3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMME3 ANOP SSA00330
B G L L e L L L L L L EL L * SSA00340
* Return and reason codes for memory functions * SSAB0350
R e e L e L L L LT * SSA00360
SPACE 1 SSA00370
* SSA00380
* return codes SSAB0390
SS_MEM_RC_SUCCESS EQU 0 SSAQ0400
SS_MEM_RC_WARNING EQU 4 SSA00410
SS_MEM_RC_ERROR EQU 8 SSA00420
SS_MEM_RC_ABEND EQU 12 SSA00430
* SSA00440

428 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

* reason codes SSA00450

SS_MEM_RE_SUCCESS EQU 0 SSA00460
SS_MEM_RE_OUT_OF_STORAGE EQU 801 SSA00470
SS_MEM_RE_BAD_AMOUNT EQU 802 SSA00480
SS_MEM_RE_BAD_ALIGN EQU 803 SSA00490
SS_MEM_RE_NO_SUBPOOL EQU 804 SSA00500
SS_MEM_RE_NOT_ALLOC EQU 805 SSA00510
SS_MEM_RE_SUBPOOL_DELETED EQU 806 SSA00520
SS_MEM_RE_SPD_FAIL EQU 807 SSA00530
SS_MEM_RE_BAD_KEY EQU 808 SSA00540
SS_MEM_RE_SUBPOOL_EXISTS EQU 809 SSA00550
SS_MEM_RE_SPCC_FAIL EQU 810 SSA00560
SS_MEM_RE_SPLA_FAIL EQU 811 SSA00570
* SSA00580
e L e SGGEL L * SSA00590
* Constants for memory functions * SSAB0600
e e L L L L L e L e L L e L LT * SSA00610
SPACE 1 SSA00620

* SSA00630
* Alignment attributes SSA00640
* SSA0O650
SS_MEM_ALIGN_NORM EQU 0 SSA00660
SS_MEM_ALIGN_PAGE EQU 1 SSA00670
SPACE 1 SSA00680

EeIe e I e e e e S S S S * SSA00690
* Definitions for memory functions * SSABQ700
e R e G GEE L ELE L L * SSA00710
* SSA00720
* create a data space SSAB0730
* SSA0O740
SPACE 1 SSA0O750

&$XXTRN BKWMCR SSA0O760
SSMEMORYCREATEDS EQU BKWMCR SSA0O770
SPACE 1 SSA00O780
BKWMCR_PLIST DSECT SSA0O790
BKWMCR_PLIST_RC DS A % return code SSA0O800
BKWMCR_PLIST_RE DS A * reason code SSAG0810
BKWMCR_PLIST_SUBPOOL DS A * subpool name SSA00820
BKWMCR_PLIST_SIZE DS A % DS size (pages) SSA00830
BKWMCR_PLIST_KEY DS A * storage key SSA00840
BKWMCR_PLIST_OCOUNT DS A * option count SSA00850
BKWMCR_PLIST_OARRAY DS A % option array SSA00O860
BKWMCR_PLIST_ASIT DS A * DS ASIT SSA00870
BKWMCR_PLIST_ALET DS A * DS ALET SSA00880
BKWMCR_PLIST_LENGTH EQU *-BKWMCR_PLIST SSA00890
VMASMMAX SSA00900

SPACE 1 SSA00910

* SSA00920
* allocate memory SSAB0930
* SSA00940
SPACE 1 SSA00950

&$XXTRN BKWMAL SSA00960
SSMEMORYALLOCATE EQU BKWMAL SSABE970
SPACE 1 SSA00980
BKWMAL_PLIST DSECT SSA00990
BKWMAL_PLIST_RC DS A * return code SSAQ1000
BKWMAL_PLIST_RE DS A % reason code SSA01010
BKWMAL_PLIST_LB DS A * lower bound SSA01020
BKWMAL_PLIST_UB DS A * upper bound SSA01030
BKWMAL_PLIST_SUBPOOL DS A % subpool name SSA01040
BKWMAL_PLIST_ALIGN DS A * align type SSA01050
BKWMAL_PLIST_BA DS A * buffer address SSA01060
BKWMAL_PLIST_BG DS A % bytes gotten SSA01070
BKWMAL_PLIST_LENGTH EQU *-BKWMAL_PLIST SSA01080
VMASMMAX SSA01090

SPACE 1 SSA01100

* SSA01110
* release memory SSAG1120
* SSA01130
SPACE 1 SSA01140

&$XXTRN BKWMRE SSA01150
SSMEMORYRELEASE EQU BKWMRE SSA01160
SPACE 1 SSA01170
BKWMRE_PLIST DSECT SSA01180
BKWMRE_PLIST_RC DS A % return code SSA01190
BKWMRE_PLIST_RE DS A * reason code SSA01200
BKWMRE_PLIST_BR DS A * bytes released SSA01210
BKWMRE_PLIST_SUBPOOL DS A % subpool name SSA01220
BKWMRE_PLIST_BA DS A * buffer address SSA01230
BKWMRE_PLIST_LENGTH EQU *-BKWMRE_PLIST SSA01240
VMASMMAX SSA01250

SPACE 1 SSA01260

Appendix I. Language Bindings 429

430 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSA01270

* delete subpool SSA01280
* SSA01290
SPACE 1 SSAQ1300
&$XXTRN BKWMDE SSAQ1310
SSMEMORYDELETE EQU BKWMDE SSA01320
SPACE 1 SSA01330
BKWMDE_PLIST DSECT SSAQ1340
BKWMDE_PLIST_RC DS A % return code SSA01350
BKWMDE_PLIST_RE DS A * reason code SSA01360
BKWMDE_PLIST_SUBPOOL DS A * subpool name SSAQ1370
BKWMDE_PLIST_LENGTH EQU *-BKWMDE_PLIST SSA01380
VMASMMAX SSA01390
SPACE 1 SSA01400
R e L L L L L L L L L * SSA01410
* End of declarations * SSA01420
T T * SSA01430
EJECT SSA01440
POP PRINT SSA01450
MEND SSA01460
Storage Group Bindings (SSASMSGP MACRO)

MACRO SSA00010

SSASMSGP &WEAK= SSA00020
AGO .@ASMSG1 SSA0O030
.* Branch around prolog so it is not included in listings * SSAQE040
"" SSAQ0050
* * SSAD0060
* NAME - Reusable Server Kernel storage group bindings * SSAQEO70
* * SSA00080
* FUNCTION - Defines the storage group constants and dsects * SSA00090
* * SSA00100
* COPYRIGHT - @VR20Z0Z SSAG0110
L* @VR20Z0Z SSAG0120
Lk 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSA00130
* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSAG0140
* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSAG0150
* ALL RIGHTS RESERVED @VR20Z0Z SSA00160
* * SSABO170
* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z SSA00180
* * SSA00190
* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSAG0200
"" SSA00210
* AQOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR2LMVM SSA00220
L FK KKK KKK KA KA KKK A A KA KK A KKK A KA KK A KA KK Ak & ok ko ek ok e SSA00230
.@ASMSG1 ANOP SSA00240
PUSH PRINT SSA00250

AIF ('&SYSPARM' 'SUP') .ASMSG2 SSA00260
PRINT OFF,NOGEN SSABO270
.ASMSG2 ANOP SSA00280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA0O300

AIF ('&WEAK' NE 'YES').ASMSG3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSG3 ANOP SSA00330
A GG L e e L L L L L L L * SSA00340
* Return and reason codes for storage group functions * SSAB0350
R R L LT * SSA00360
SPACE 1 SSA00370
* return codes SSAB0380
SS_SGP_RC_SUCCESS EQU 0 SSA00390
SS_SGP_RC_WARNING EQU 4 SSAQ0400
SS_SGP_RC_ERROR EQU 8 SSA00410
SS_SGP_RC_ABEND EQU 12 SSA00420
* SSA00430
* reason codes SSA00440
SS_SGP_RE_SUCCESS EQU 0 SSA00450
SS_SGP_RE_TOO_MANY EQU 601 SSA00460
SS_SGP_RE_NOT_FOUND EQU 602 SSAQ0470
SS_SGP_RE_OUT_OF_STORAGE EQU 603 SSA00480
SS_SGP_RE_MX_FAIL EQU 604 SSA00490
SS_SGP_RE_INIT_DONE EQU 605 SSAQ0500
SS_SGP_RE_EXISTS EQU 607 SSA00510
SS_SGP_RE_VDQ_FAIL EQU 608 SSA00520
SS_SGP_RE_ONLINE EQU 609 SSA00530
SS_SGP_RE_OFFLINE EQU 610 SSA00540
SS_SGP_RE_Q_FAIL EQU 611 SSA00550
SS_SGP_RE_CV_FAIL EQU 612 SSA00560

SS_SGP_RE_E_FAIL EQU 613 SSA00570
SS_SGP_RE_MAINT EQU 614 SSA00580
SS_SGP_RE_DS_FAIL EQU 615 SSA00590
SS_SGP_RE_POOL_FAIL EQU 616 SSAQ0600
SS_SGP_RE_MAP_FAIL EQU 617 SSA00610
SS_SGP_RE_BAD_ATTRIB EQU 618 SSA00620
SS_SGP_RE_REWRITE_FAIL EQU 619 SSA00630
SS_SGP_RE_READ_ONLY EQU 620 SSA00640
SS_SGP_RE_OUT_OF_RANGE EQU 622 SSA00650
SS_SGP_RE_WRONG_MODE EQU 623 SSA00660
SS_SGP_RE_IO_FAIL EQU 624 SSA00670
SS_SGP_RE_DIAG_250_FAIL EQU 625 SSA00680
SS_SGP_RE_TOO0_BIG EQU 626 SSA00690
SS_SGP_RE_BAD_NAME EQU 628 SSAQE700
SS_SGP_RE_NAME_IN_USE EQU 629 SSA00710
SPACE 1 SSA00720

* SSA00730
* attributes SSA00740
SS_SGP_ATTRIB_DS EQU 0 SSAQ0750
SS_SGP_ATTRIB_NO_DS EQU 1 SSA0O760
SS_SGP_ATTRIB_BLOCK_RW EQU 2 SSA0O770
SS_SGP_ATTRIB_BLOCK_RO EQU 3 SSA00O780
SS_SGP_ATTRIB_OFFLINE EQU 7 SSAQB790
SPACE 1 SSA0O800

EeIe e e e s e S e S S * SSA00810
* Definitions for storage group functions * SSAQ0820
R et e Ll * SSA00830
SPACE 1 SSA00840

* SSA00850
* storage group create SSA00860
* SSA00870
SPACE 1 SSA00880

&$XXTRN BKWSGC SSA00890
SSSGPCREATE EQU BKWSGC SSA00900
SPACE 1 SSA00910
BKWSGC_PLIST DSECT SSA00920
BKWSGC_PLIST_RC DS A % return code SSA00930
BKWSGC_PLIST_RE DS A * reason code SSA00940
BKWSGC_PLIST_SGN DS A % sgp number SSA00950
BKWSGC_PLIST_VDC DS A * vdev count SSA00960
BKWSGC_PLIST_VDA DS A * vdev array SSA00970
BKWSGC_PLIST_AC DS A * attrib count SSA00980
BKWSGC_PLIST_AA DS A * attrib array SSA00990
BKWSGC_PLIST_LENGTH EQU *-BKWSGC_PLIST SSA01000
VMASMMAX SSA01010

SPACE 1 SSA01020

* SSA01030
* storage group delete SSAQ1040
* SSA01050
SPACE 1 SSA01060

&$XXTRN BKWSGD SSA01070
SSSGPDELETE EQU BKWSGD SSA01080
SPACE 1 SSA01090
BKWSGD_PLIST DSECT SSA01100
BKWSGD_PLIST_RC DS A * return code SSA01110
BKWSGD_PLIST_RE DS A * reason code SSA01120
BKWSGD_PLIST_SGN DS A % sgp number SSA01130
BKWSGD_PLIST_LENGTH EQU *-BKWSGD_PLIST SSA01140
VMASMMAX SSA01150

SPACE 1 SSA01160

* SSA01170
* storage group find SSAQ1180
* SSA01190
SPACE 1 SSA01200

&$XXTRN BKWSGF SSA01210
SSSGPFIND EQU BKWSGF SSA01220
SPACE 1 SSA01230
BKWSGF_PLIST DSECT SSA01240
BKWSGF_PLIST_RC DS A % return code SSA01250
BKWSGF_PLIST_RE DS A * reason code SSA01260
BKWSGF_PLIST_SGNAME DS A * sg name SSA01270
BKWSGF_PLIST_SGN DS A % sgp number SSA01280
BKWSGF_PLIST_IOMODE DS A * I/0 mode SSA01290
BKWSGF_PLIST_TOTAL DS A * total blocks SSA01300
BKWSGF_PLIST_LENGTH EQU *-BKWSGF_PLIST SSA01310
VMASMMAX SSA01320

SPACE 1 SSA01330

* SSA01340
* storage group list (what's defined?) SSA01350
* SSA01360
SPACE 1 SSA01370

&$XXTRN BKWSGL SSA01380

Appendix I. Language Bindings 431

SSSGPLIST EQU BKWSGL SSA01390

SPACE 1 SSA01400
BKWSGL_PLIST DSECT SSAQ1410
BKWSGL_PLIST_RC DS A * return code SSA01420
BKWSGL_PLIST_RE DS A * reason code SSA01430
BKWSGL_PLIST_NX DS A * number expected SSA01440
BKWSGL_PLIST_NF DS A * number filled SSA01450
BKWSGL_PLIST_SGNA DS A * sgp number array SSAQ1460
BKWSGL_PLIST_LENGTH EQU *-BKWSGL_PLIST SSAQ1470

VMASMMAX SSA01480

SPACE 1 SSA01490
* SSAQ1500
* storage group query SSA01510
* SSA01520

SPACE 1 SSAQ1530

&$XXTRN BKWSGQ SSA01540
SSSGPQUERY EQU BKWSGQ SSA01550

SPACE 1 SSAQ1560
BKWSGQ_PLIST DSECT SSAG1570
BKWSGQ_PLIST_RC DS A * return code SSAQ1580
BKWSGQ_PLIST_RE DS A *x reason code SSAQ1590
BKWSGQ_PLIST_SGN DS A * sgp number SSA01600
BKWSGQ_PLIST_SGNAME DS A * sg name SSAQ1610
BKWSGQ_PLIST_IOMODE DS A % I/0 mode SSAQ1620
BKWSGQ_PLIST_TOTAL DS A % total blocks SSA01630
BKWSGQ_PLIST_STATUS DS A * status word SSAQ1640
BKWSGQ_PLIST_AX DS A *x attributes expected SSAQ1650
BKWSGQ_PLIST_AF DS A % attributes filled in SSA01660
BKWSGQ_PLIST_AA DS A * attribute array SSAQ1670
BKWSGQ_PLIST_VX DS A * vdevs expected SSA01680
BKWSGQ_PLIST_VF DS A % vdevs filled in SSA01690
BKWSGQ_PLIST_VA DS A * vdev array SSAQ1700
BKWSGQ_PLIST_BA DS A x blocks array SSAQ1710
BKWSGQ_PLIST_LENGTH EQU %-BKWSGQ_PLIST SSA01720

VMASMMAX SSA01730

SPACE 1 SSAQ1740
* SSAQ1750
* storage group read SSAQ1760
* SSAQ1770

SPACE 1 SSAQ1780

&$XXTRN BKWSGR SSAQ1790
SSSGPREAD EQU BKWSGR SSAQ1800

SPACE 1 SSA01810
BKWSGR_PLIST DSECT SSAQ1820
BKWSGR_PLIST_RC DS A *x return code SSAQ1830
BKWSGR_PLIST_RE DS A * reason code SSA01840
BKWSGR_PLIST_SGN DS A * sgp number SSAQ1850
BKWSGR_PLIST_PN DS A % page number SSAQ1860
BKWSGR_PLIST_PC DS A *x number of pages SSAQ1870
BKWSGR_PLIST_ALET DS A * buffer ALET SSAQ1880
BKWSGR_PLIST_BUF DS A % buffer SSAQ1890
BKWSGR_PLIST_LENGTH EQU %-BKWSGR_PLIST SSA01900

VMASMMAX SSAQ1910

SPACE 1 SSAQ1920
* SSA01930
* storage group start (like a mount) SSA01940
* SSAQ1950

SPACE 1 SSA01960

&$XXTRN BKWSGS SSAQ1970
SSSGPSTART EQU BKWSGS SSAQ1980

SPACE 1 SSA01990
BKWSGS_PLIST DSECT SSAG2000
BKWSGS_PLIST_RC DS A *x return code SSAQ2010
BKWSGS_PLIST_RE DS A * reason code SSA02020
BKWSGS_PLIST_SGN DS A * sgp number SSAG2030
BKWSGS_PLIST_SGNAME DS A x sgp name SSAQ2040
BKWSGS_PLIST_AC DS A * attribute count SSAG2050
BKWSGS_PLIST_AA DS A * attribute array SSAB2060
BKWSGS_PLIST_LENGTH EQU *-BKWSGS_PLIST SSAQ2070

VMASMMAX SSA02080

SPACE 1 SSA02090
* SSA02100
* storage group stop (like a dismount) SSA02110
* SSA02120

SPACE 1 SSA02130

&$XXTRN BKWSGT SSAG2140
SSSGPSTOP EQU BKWSGT SSA02150

SPACE 1 SSAQ2160
BKWSGT_PLIST DSECT SSAG2170
BKWSGT_PLIST_RC DS A * return code SSAG2180
BKWSGT_PLIST_RE DS A *x reason code SSA02190
BKWSGT_PLIST_SGN DS A % sgp number SSA02200

432 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

BKWSGT_PLIST_AC DS A * attribute count SSA02210
BKWSGT_PLIST_AA DS A * attribute array SSAB2220
BKWSGT_PLIST_LENGTH EQU *-BKWSGT_PLIST SSA02230
VMASMMAX SSA02240
SPACE 1 SSA02250
* SSA02260
* storage group write SSA02270
* SSA02280
SPACE 1 SSA02290
&$SXXTRN BKWSGW SSA02300
SSSGPWRITE EQU BKWSGW SSAB2310
SPACE 1 SSA02320
BKWSGW_PLIST DSECT SSA02330
BKWSGW_PLIST_RC DS A * return code SSAB2340
BKWSGW_PLIST_RE DS A % reason code SSA02350
BKWSGW_PLIST_SGN DS A *x sgp number SSAB2360
BKWSGW_PLIST_PN DS A * page number SSAB2370
BKWSGW_PLIST_PC DS A x page count SSA02380
BKWSGW_PLIST_ALET DS A * buffer ALET SSA02390
BKWSGW_PLIST_BUF DS A * buffer SSAB2400
BKWSGW_PLIST_LENGTH EQU *-BKWSGW_PLIST SSA02410
VMASMMAX SSA02420
SPACE 1 SSA02430
R R L L L L L L L L * SSA02440
* End of storage group declarations * SSA02450
K = = = = e e e e e e e e * SSA02460
EJECT SSA02470
POP PRINT SSA02480
MEND SSAB2490
Services Bindings (SSASMSRV MACRO)

MACRO SSA00010

SSASMSRV &WEAK= SSA00020
AGO .@ASMSR1 SSA00030
.x Branch around prolog so it is not included in listings * SSAQEO40
""""""""""""""""""""""""""""""""""""""" SSAQ0050
* * SSAD0060
* NAME - Reusable Server Kernel services bindings * SSAQEO70
* * SSA00080
* FUNCTION - Defines the services constants and dsects * SSABBO90
* * SSA00100
* COPYRIGHT - @VR20Z0Z SSAG0110
Lk @VR20Z0Z SSAG0120
L 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z SSA0Q130
* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z SSAG0140
* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z SSA00150
* ALL RIGHTS RESERVED @VR20Z0Z SSA00160
* * SSABO170
* STATUS - Version 2 Release 4 @VR20Z0Z SSA00180
* * SSA00190
* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSAG0200
""""""""""""""""""""""""""""""""""""""" SSA00210
* AQOOOOO-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSA00220
L FKK KA A A KA KA KK A A A KA KKK A KK KK A KK A KA KK Ak A ok ek ko ek ok e SSA00230
.@ASMSR1 ANOP SSAB0240
PUSH PRINT SSA00250

AIF ('&SYSPARM' 'SUP") .ASMSR2 SSA00260
PRINT OFF,NOGEN SSABO270
.ASMSR2 ANOP SSA00280
LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA0O300

AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
A G L L L L L L L L EL L * SSA00340
* Return and reason codes for services functions * SSAB0350
R e L e L LR * SSA00360
SPACE 1 SSA00370
* return codes SSAB0380
SS_SRV_RC_SUCCESS EQU 0 SSA00390
SS_SRV_RC_WARNING EQU 4 SSAQ0400
SS_SRV_RC_ERROR EQU 8 SSA00410
SS_SRV_RC_ABEND EQU 12 SSABE420
* SSA00430
* reason codes SSA00440
SS_SRV_RE_SUCCESS EQU 0 SSA00450
SS_SRV_RE_BAD_TYPE EQU 701 SSA00460
SS_SRV_RE_NOT_FOUND EQU 702 SSAQ0470

Appendix I. Language Bindings 433

SS_SRV_RE_OUT_OF_RANGE EQU 703 SSA00480

SS_SRV_RE_OUT_OF_STORAGE EQU 706 SSA00490
SS_SRV_RE_EXISTS EQU 709 SSA00500
* SSA00510
* types of messages SSA00520
SS_SRV_MSGTYPE_INSTANCE EQU 0 SSA00530
SS_SRV_MSGTYPE_LINEDRIVER EQU 1 SSA00540
* SSA00550
* types of services SSA00560
SS_SRV_SRVTYPE_NORMAL EQU 0 SSA00570
SS_SRV_SRVTYPE_LD EQU 1 SSA00580
SS_SRV_SRVTYPE_LDSS EQU 2 SSA00590
* SSA00600
* values of various msg bits... these have to line SSA00610
* up with the message structures below... be careful SSABB620
SS_SRV_IBIT_CCLOSE EQU 32768 SSA00630
SS_SRV_IBIT_ACLOSE EQU 16384 SSA00640
SS_SRV_IBIT_CDONE EQU 8192 SSA00650
SS_SRV_IBIT_LDSTOP EQU 4096 SSAQ0660
SS_SRV_IBIT_NEWDATA EQU 2048 SSABE670
SS_SRV_LBIT_STOPACK EQU 32768 SSA00680
SS_SRV_LBIT_NEWDATA EQU 16384 SSA00690
* SSA0O700
* length of keys SSAQ0710
SS_SRV_KEYLENGTH EQU 32 SSA00720
SPACE 1 SSA00730

e e e L L L L L L LI L * SSA0O740
* Stuctures * SSA00750
e e e L L L L L e L e L L e L LT * SSA0O760
SPACE 1 SSAGO770

* SSA00O780
* S-block SSA00790
* SSA0O800
VMSS_SBLOCK DSECT SSA00810
SBL_NEXT DS A * next service SSA00820
SBL_PREV DS A * prev service SSA00830
SBL_SN DS CL8 * its name SSA00840
SBL_SNL DS F * name length SSABE850
SBL_INITADDR DS A % init addr SSA00860
SBL_AGTADDR DS A * agent addr SSA00870
SBL_CMPLADDR DS A * cmpltn addr SSA00880
SBL_TYPE DS F * service type SSABGO890
SBL_LOCKWORD DS F % lock word SSA00900
SBL_STARTCOUNT DS F * start count SSAGE910
SBL_MONPTR DS F % MON BUF PTR SSA00920
VMSS_SBLOCK_LEN EQU *-VMSS_SBLOCK SSA00930
SPACE 1 SSA00940

* SSA00950
* C-block SSA00960
* SSA00970
VMSS_CBLOCK DSECT SSA00980
VC_SBLOCK DS A SSA00990
VC_LDNAME DS CL8 SSAQ1000
VC_STATBITS DS XL4 SSA01010
ORG VC_STATBITS SSA01020

DS XL1 SSA01030

VC_B_RECORD EQU X'80' SSA01040
DS XL3 SSA01050

VC_QH DS F SSA01060
VC_SID DS E SSA01070
VC_INSTANCE DS F SSA01080
VC_THREADID DS F SSAG1090
VC_IKEY DS CL32 SSA01100
VC_LKEY DS CL32 SSA01110
VC_USERID DS CL64 SSA01120
VC_BYTESIN DS E SSA01130
VC_BYTESOUT DS F SSA01140
VC_IBW DS F SSA01150
VC_LDBW DS E SSA01160
VC_STARTSTCK DS CL8 SSA01170
VC_STOPSTCK DS CL8 SSA01180
VC_RESERVED DS CL128 SSA01190
VC_LDDATA DS oC SSA01200
VMSS_CBLOCK_LEN EQU *-VMSS_CBLOCK SSA01210
SPACE 1 SSA01220

* SSA01230
* msg to instance SSAQ1240
* SSA01250
VMSS_IMSG DSECT SSA01260
VI_IKEY DS CL32 SSAQ1270
VI_TYPE DS E SSA01280
VI_CBITS DS XL2 SSA01290

434 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ORG VI_CBITS SSA01300

DS XL1 SSA01310

VI_B_CCLOSE EQU X'80' SSA01320
VI_B_ACLOSE EQU X'40" SSA01330
VI_B_CDONE EQU X'20' SSA01340
VI_B_LDSTOP EQU X'10' SSA01350
VI_B_NEWDATA EQU X'08" SSA01360
DS XL1 SSA01370

VMSS_IMSG_LEN EQU *-VMSS_IMSG SSA01380
SPACE 1 SSA01390

* SSA01400
* msg to line driver SSAQ1410
* SSA01420
VMSS_LMSG DSECT SSA01430
VL_LKEY DS CL32 SSA01440
VL_TYPE DS F SSA01450
VL_IKEY DS CL32 SSA01460
VL_IBITS DS XL2 SSA01470
ORG VL_IBITS SSA01480

DS XL1 SSA01490

VL_B_STOPACK EQU X'80' SSA01500
VL_B_NEWDATA EQU X'40" SSA01510
DS XL1 SSA01520

VMSS_LMSG_LEN EQU *-\VMSS_LMSG SSA01530
SPACE 1 SSA01540

K = = = = m e e e e e eeeeememeoo-—---o---- * SSA01550
* Definitions for services function * SSA01560
e e e e e O e O e * SSA01570
SPACE 1 SSA01580

* SSA01590
* bind service to addresses SSA01600
* SSA01610
SPACE 1 SSA01620

&$XXTRN BKWVBN SSA01630
SSSERVICEBIND EQU BKWVBN SSA01640
SPACE 1 SSA01650
BKWVBN_PLIST DSECT SSAQ1660
BKWVBN_PLIST_RC DS A * return code SSA01670
BKWVBN_PLIST_RE DS A % reason code SSA01680
BKWVBN_PLIST_SN DS A * service name SSA01690
BKWVBN_PLIST_SNL DS A * its length SSA01700
BKWVBN_PLIST_IA DS A x init addr SSA01710
BKWVBN_PLIST_SA DS A * service addr SSA01720
BKWVBN_PLIST_TA DS A * completion addr SSA01730
BKWVBN_PLIST_ST DS A *x service type SSA01740
BKWVBN_PLIST_LENGTH EQU *-BKWVBN_PLIST SSAQ1750
VMASMMAX SSAQ1760

SPACE 1 SSAQ1770

* SSA01780
* find service block SSAQ1790
* SSA01800
SPACE 1 SSA01810

&$XXTRN BKWVFN SSA01820
SSSERVICEFIND EQU BKWVFN SSA01830
SPACE 1 SSA01840
BKWVFN_PLIST DSECT SSAQ1850
BKWVFN_PLIST_RC DS A % return code SSA01860
BKWVFN_PLIST_RE DS A * reason code SSA01870
BKWVFN_PLIST_SN DS A * service name SSAQ1880
BKWVFN_PLIST_SNL DS A x its length SSA01890
BKWVFN_PLIST_SBLK DS A * S-blk address SSAG1900
BKWVFN_PLIST_LENGTH EQU *-BKWVFN_PLIST SSA01910
VMASMMAX SSA01920

SPACE 1 SSA01930

* SSA01940
* start the server SSA01950
* SSA01960
SPACE 1 SSA01970

&$XXTRN BKWVRN SSA01980
SSSERVERRUN EQU BKWVRN SSAB1990
SPACE 1 SSA02000
BKWVRN_PLIST DSECT SSA02010
BKWVRN_PLIST_RC DS A * return code SSAG2020
BKWVRN_PLIST_RE DS A * reason code SSAG2030
BKWVRN_PLIST_EPLIST DS A x ADDR OF EPLIST SSA02040
BKWVRN_PLIST_LENGTH EQU *-BKWVRN_PLIST SSAG2050
VMASMMAX SSA02060

SPACE 1 SSA02070

* SSA02080
* stop the server SSABG2090
* SSA02100
SPACE 1 SSA02110

Appendix I. Language Bindings 435

&$XXTRN BKWVSP SSA02120

SSSERVERSTOP EQU BKWVSP SSA02130
SPACE 1 SSA02140
BKWVSP_PLIST DSECT SSA02150
BKWVSP_PLIST_RC DS A * return code SSA02160
BKWVSP_PLIST_RE DS A * reason code SSA02170
BKWVSP_PLIST_LENGTH EQU *-BKWVSP_PLIST SSA02180
VMASMMAX SSA02190

SPACE 1 SSA02200

R L L LT LT * SSA02210
* End of declarations * SSA02220
e * SSA02230
EJECT SSA02240

POP PRINT SSA02250

MEND SSA02260

Trie Bindings (SSASMTRI MACRO)

MACRO SSA00010

SSASMTRI &WEAK= SSA00020
AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSAQ0040
L Sk kh ke ke ek h ke ke ek ok ke ok ke ek ok ke ok ke ek k ke ok ke ek ke ke ok ke e ke ok ok ke ek ke ke ok ke ke ko ke ok ke ek ke ok ok ok ok SSA00050
* * SSAQ0060
* NAME - Reusable Server Kernel services bindings * SSAQOO70
* * SSA00080
* FUNCTION - Language bindings for trie API * SSAQEE90
* * SSA00100
* * SSA00110
* COPYRIGHT - * SSA00120
L * SSA00130
Lk THIS MODULE IS "RESTRICTED MATERIALS OF IBM" * SSA00140
* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 * SSA00150
* LICENSED MATERIALS - PROPERTY OF IBM * SSA00160
* ALL RIGHTS RESERVED. * SSA00170
* * SSA00180
* STATUS - VM/ESA Version 2, Release 4.0 * SSAGO190
* * SSA00200
.% CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4.0 * SSA00210
+ hk e ek koke ok e e ek ke ok ke e sk oke ok ok ke ek ke ke ok ke e sk ok ok ok ke s sk oke ok ok ke e sk ok ke ok ke e kok ok ok ke e skok ke ok ke ke sk ok ok ok ok SSA00220
. % AOOOOOO-999999 New for VM/ESA Version 2 Release 4.0 @VR74PVM SSA00230
LKk kkkkkkkkkkkhkhkhkkhkhhhkhkkkhkhhkhkhkhkhkhhkhkhkhkhkhhkhkkkhkkhkhkhkhkkkkhkhkkkkkkrkrkkkk SSA00240
.@ASMSR1 ANOP SSA00250
PUSH PRINT SSA00260

AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00270
PRINT OFF,NOGEN SSA00280
.ASMSR2 ANOP SSA00290
LCLC &$XXTRN SSA0O300
&$XXTRN SETC 'EXTRN' SSA00310

AIF ('&WEAK' NE 'YES').ASMSR3 SSA00320
&$XXTRN SETC 'WXTRN' SSA00330
.ASMSR3 ANOP SSA00340
K = = = e e e e e e e e eeeoem—meoo-—---o---- * SSA00350
* return and reason codes, and other constants * SSA00360
e e e L E LT * SSA00370
SPACE 1 SSA00380
* SSA00390
* return codes SSA00400
SS_TRI_RC_SUCCESS EQU 0 SSA00410
SS_TRI_RC_WARNING EQU 4 SSA00420
SS_TRI_RC_ERROR EQU 8 SSA00430
SS_TRI_RC_ABEND EQU 12 SSA00440
* SSA00450
* reason codes SSA00460
SS_TRI_RE_SUCCESS EQU 0 SSA00470
SS_TRI_RE_BAD_SIZE EQU 1701 SSA00480
SS_TRI_RE_TRIE_EXISTS EQU 1702 SSA00490
SS_TRI_RE_OUT_OF_STORAGE EQU 1703 SSA00500
SS_TRI_RE_DSCR_FAIL EQU 1704 SSA00510
SS_TRI_RE_TRIE_NOT_FOUND EQU 1705 SSA00520
SS_TRI_RE_TRIE_BUSY EQU 1706 SSA00530
SS_TRI_RE_BAD_INDEX_LEN EQU 1707 SSA00540
SS_TRI_RE_BAD_CAPACITY EQU 1708 SSA00550
SS_TRI_RE_OUT_OF_DS_STORAGE EQU 1709 SSA00560
* SSA00570
SPACE 1 SSA00580
K = = = e e e e e e e eeeeem—eeoo-o---o---- * SSA00590
* entry point definitions * SSAQ0600
o * SSAG0610

436 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SPACE 1 SSAB0620

* SSAB0630
* routine to create a trie SSA00640
* SSARB650
SPACE 1 SSAB0660

&$XXTRN BKWYCR SSABB670
SSTRIECREATE EQU BKWYCR SSABO680
SPACE 1 SSAB0690
BKWYCR_PLIST DSECT SSABO700
BKWYCR_PLIST_RC DS A * return code SSAGO710
BKWYCR_PLIST_RE DS A * reason code SSA00720
BKWYCR_PLIST_NAME DS A *x trie name SSABO730
BKWYCR_PLIST_DS_SIZE DS A % DS size SSA00740
BKWYCR_PLIST_ASIT DS A * DS ASIT SSA0Q750
BKWYCR_PLIST_ALET DS A x DS ALET SSABO760
BKWYCR_PLIST_LENGTH EQU *-BKWYCR_PLIST SSAGQ770
VMASMMAX SSAB0780

SPACE 1 SSABO790

* SSAQE800
* routine to delete a trie SSA00810
* SSA00820
SPACE 1 SSAQE830

&$XXTRN BKWYDE SSA00840
SSTRIEDELETE EQU BKWYDE SSAQE850
SPACE 1 SSAQE860
BKWYDE_PLIST DSECT SSA00870
BKWYDE_PLIST_RC DS A *x return code SSALQE880
BKWYDE_PLIST_RE DS A * reason code SSAGO890
BKWYDE_PLIST_NAME DS A * trie name SSA00900
BKWYDE_PLIST_LENGTH EQU *-BKWYDE_PLIST SSAB0910
SPACE 1 SSAB0920

* SSAB0930
* routine to insert a record number SSA00940
* SSABE950
SPACE 1 SSAB0960

&$XXTRN BKWYRI SSABE970
SSTRIERECORDINSERT EQU BKWYRI SSABGE980
SPACE 1 SSABG0990
BKWYRI_PLIST DSECT SSAQ1000
BKWYRI_PLIST_RC DS A * return code SSA01010
BKWYRI_PLIST_RE DS A * reason code SSA01020
BKWYRI_PLIST_NAME DS A x trie name SSA01030
BKWYRI_PLIST_ALET DS A * DS ALET SSA01040
BKWYRI_PLIST_RECNUM DS A * record number SSA01050
BKWYRI_PLIST_IX_BUFFER DS A x index buffer SSAQ1060
BKWYRI_PLIST_IX_LENGTH DS A * index length SSAG1070
BKWYRI_PLIST_LENGTH EQU * WYRI_PLIST SSA01080
VMASMMAX SSAQ1090

SPACE 1 SSA01100

* SSA01110
* routine to list all record numbers matching proposed key SSA01120
* SSA01130
SPACE 1 SSA01140

&$XXTRN BKWYRL SSA01150
SSTRIERECORDLIST EQU BKWYRL SSA01160
SPACE 1 SSA01170
BKWYRL_PLIST DSECT SSA01180
BKWYRL_PLIST_RC DS A * return code SSAG1190
BKWYRL_PLIST_RE DS A * reason code SSA01200
BKWYRL_PLIST_NAME DS A x trie name SSA01210
BKWYRL_PLIST_ALET DS A * DS ALET SSA01220
BKWYRL_PLIST_IX_BUFFER DS A * index buffer SSA01230
BKWYRL_PLIST_IX_LENGTH DS A % index length SSA01240
BKWYRL_PLIST_RECNUM_ARRAY DS A * recnum array SSA01250
BKWYRL_PLIST_RECNUM_ARRAY_CAP DS A * array capacity SSA01260
BKWYRL_PLIST_RECNUMS_FOUND DS A x recnums found SSA01270
BKWYRL_PLIST_LENGTH EQU *-BKWYRL_PLIST SSA01280
VMASMMAX SSA01290

SPACE 1 SSA01300

e e e O e eSS S * SSA01310
* End of declarations * SSA01320
e e e * SSA01330
EJECT SSA01340

POP PRINT SSA01350

MEND SSA01360

Appendix I. Language Bindings 437

User ID Bindings (SSASMUID MACRO)

MACRO
SSASMUID &WEAK=
AGO .@ASMSR1
.* Branch around prolog so it is not included in listings

SSA0OO10

SSAB0020

NAME - Reusable Server Kernel services bindings
FUNCTION - Language bindings for userid service
COPYRIGHT -

5684-112 (C) COPYRIGHT IBM CORP.1991, 1992
LICENSED MATERIALS - PROPERTY OF IBM

SEE COPYRIGHT INSTRUCTIONS, G120-2083

ALL RIGHTS RESERVED

STATUS - Version 2 Release 4

% % Ok k% ok k F kX ok F F o*

*

CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4

@VR20Z0Z
@vR2020z
@vR2020z
@VR20Z0Z
@vR2020z
@vR2020z
*
@vR2020z
*

*

Chkkkkkkkkkkkkhkkkkhkhkkhkhkkhkkkhkkkk

.* AOOOOOO-999999 New for VM/ESA Version 2 Release 4

@VR24PVM

.@ASMSR1 ANOP
PUSH PRINT
AIF ('&SYSPARM' NE 'SUP').ASMSR2
PRINT OFF,NOGEN
.ASMSR2 ANOP
LCLC &$XXTRN
&$XXTRN SETC 'EXTRN'
AIF ('&WEAK' NE 'YES').ASMSR3
&EXXTRN SETC 'WXTRN'
.ASMSR3 ANOP

* return and reason codes for userid service
D
SPACE 1
*
* return codes
SS_UID_RC_SUCCESS EQU 0
SS_UID_RC_WARNING EQU 4
SS_UID_RC_ERROR EQU 8
SS_UID_RC_ABEND EQU 12
*
* reason codes
SS_UID_RE_SUCCESS EQU 0
SS_UID_RE_NOT_FOUND EQU 101
*
* config constants
SS_UID_INDEX_WIDTH EQU 64
SPACE 1
D
* definitions for userid service
D
SPACE 1
*
* routine to map user IDs
*
SPACE 1
&$XXTRN BKWBMU
SSUSERIDMAP EQU BKWBMU
SPACE 1
BKWBMU_PLIST DSECT
BKWBMU_PLIST_RC DS A * return code
BKWBMU_PLIST_RE DS A * reason code
BKWBMU_PLIST_IC DS A * input conn
BKWBMU_PLIST_ICL DS A * its length
BKWBMU_PLIST_IN DS A * input node
BKWBMU_PLIST_INL DS A * its length
BKWBMU_PLIST_IU DS A * input user
BKWBMU_PLIST_TIUL DS A * its length
BKWBMU_PLIST_OU DS A * output user
BKWBMU_PLIST_OUL DS A * its length
BKWBMU_PLIST_LENGTH EQU *-BKWBMU_PLIST
VMASMMAX
SPACE 1
K==memecmmmccccmmmccmmememcssmmemesm-msmsmemmssmmem-smmssmcmssmmeeem—e.—————-—a
* End of declarations

438 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSA0OO30
SSAOO040
SSA0OO50
SSAOOO60
SSAOOO70
SSA0O080
SSAOOO90
SSA00100
SSA00110
SSA00120
SSA00130
SSA00140
SSA00150
SSA00160
SSAB0170
SSA00180
SSA00190
SSAB0200
SSA00210
SSA00220
SSAB0230
SSA00240
SSA00250

SSAB0260

SSA00270
SSA00280
SSAB0290
SSA0O300

SSA00310

SSAB0320
SSA00330
SSA00340
SSA00350
SSA0O360
SSA0O370
SSA00380
SSA0O390
SSA00400
SSA00410
SSA00420
SSA00430
SSAQ0440
SSA00450
SSA00460
SSAQ0470
SSA00480
SSA00490
SSA00500
SSA00510
SSA00520
SSA00530
SSA00540
SSA0O550
SSA00560
SSA0O570
SSA0O580
SSAB0590
SSA0O600
SSA00610
SSAB0620
SSA00630
SSA00640
SSA00650
SSA0O660
SSADO670
SSA00680
SSA00690
SSAOO700
SSAB0710
SSA0O720
SSA0O730
SSAB0740
SSA0O750
SSAOO760
SSABQ770
SSA0O780

T T LT TP EP PP * SSA00790

MACRO
SSASMWRK &WEAK=
AGO .@ASMSR1

Worker Bindings (SSASMWRK MACRO)

.%* Branch around prolog so it is not included in listings
LRk kkkkkkkkkkkhkhkkkhkhhhhkkkhhhhkhkhkkhkhhkhkhkhkhkhhkhkkkkkkhkhkrkkkkkhkhkkkkkkkhkkkk SSAQOO50

*

ALL RIGHTS RESERVED.

Ok K ok % ok Ok ok X ok F Ok ok X o *

NAME - Reusable Server Kernel services bindings
FUNCTION - Language bindings for worker API
COPYRIGHT -

THIS MODULE IS "RESTRICTED MATERIALS OF IBM"
5654-030 (C) COPYRIGHT IBM CORP.
LICENSED MATERIALS - PROPERTY OF IBM

- 1998, 1999

STATUS - VM/ESA Version 2, Release 4.0

CHANGE ACTIVITY - New for VM/ESA Version 2 Release 3.0
@SI124VM - alternate userid

SSA0O800
SSA00810
SSA00820

SSAQ0010
SSA00020

SSAOOO30
* SSAQ0040

* SSABOO60
SSAQBO70
SSAOOO80
SSAOOO90
SSAQ0100
SSA00110
SSA00120
SSA00130
SSA00140
SSA00150
SSA00160
SSA00170
SSA00180
SSAB0190
SSA00200
SSA00210
SSAB0220
SSA00230

ok Ok ok % ok Ok ok X ok F Ok ok X o *

R R s SSAB0240

. % AOOOOOO-999999 New for VM/ESA Version 2 Release 3.0
LKk kkkkkkkkkkkhkhkhkkkkhkhkkkkkhhkhkhkkhkhhkhkhkhkhkhhkhkhkkhkhhkhkhkhkkkkhkhkkkkkkrkrkkkk SSAQB260

@VR74PVM SSA00250

.@ASMSR1 ANOP SSAB0270
PUSH PRINT SSA00280
AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSAB0290
PRINT OFF,NOGEN SSA00300
.ASMSR2 ANOP SSA00310
LCLC &$XXTRN SSAB0320
&$XXTRN SETC 'EXTRN' SSA00330
AIF ('&WEAK' NE 'YES').ASMSR3 SSA00340
&$XXTRN SETC 'WXTRN' SSABO350
.ASMSR3 ANOP SSABB360
e e e e e * SSABE370
* return and reason codes for userid service * SSA00380
e e * SSABB390
SPACE 1 SSAQ0400
* SSAQ0410
* return codes SSA00420
SS_WRK_RC_SUCCESS EQU 0 SSA00430
SS_WRK_RC_WARNING EQU 4 SSAQ0440
SS_WRK_RC_ERROR EQU 8 SSAQ0450
SS_WRK_RC_ABEND EQU 12 SSAQE460
* SSAQE470
* reason codes SSA00480
SS_WRK_RE_SUCCESS EQU 0 SSA0G0490
SS_WRK_RE_OUT_OF_STORAGE EQU 1601 SSABO500
SS_WRK_RE_BAD_COUNT EQU 1602 SSA00510
SS_WRK_RE_BAD_FLAG_NAME EQU 1603 SSA00520
SS_WRK_RE_BAD_FLAG_VALUE EQU 1604 SSABB530
SS_WRK_RE_NO_CLASS EQU 1605 SSA00540
SS_WRK_RE_NO_SUBORDINATES EQU 1606 SSA00550
SS_WRK_RE_ALGTRIES_EXCEEDED EQU 1607 SSABB560
SS_WRK_RE_AUTOLOG_FAIL EQU 1608 SSA00570
SS_WRK_RE_TIMER_FAIL EQU 1609 SSA00580
SS_WRK_RE_IUCVCON_FAIL EQU 1610 SSABRB590
SS_WRK_RE_FORCE_FAIL EQU 1611 SSAQ0600
SS_WRK_RE_FORCE_TIMEOUT EQU 1612 SSA00610
SS_WRK_RE_OPER_DELETE EQU 1613 SSAB0620
* SSAB0630
* option flag names SSA00640
SS_WRK_OFN_PREFER_EMPTY EQU 0] SSABB650
SS_WRK_OFN_RETRY_COUNT EQU 1 SSAQ0660
SS_WRK_OFN_ALT_USERID EQU 2 @SI124VM SSALO670
SS_WRK_OFN_ALT_SECLABEL EQU 3 @SI124VM SSAQE680
* SSABB690
* option value names SSA00700
SS_WRK_OFV_NO EQU 0] SSABO710
SS_WRK_OFV_YES EQU 1 SSA00720

Appendix I. Language Bindings 439

440 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SPACE 1 SSAB0730
T x SSA00740
* definitions for worker API * SSA0O750
e * SSABQ760

SPACE 1 SSAB0770
* SSABO780
* routine to allocate a worker connection SSA00790
* SSAQE800

SPACE 1 SSA00810

&$XXTRN BKWCAL SSA00820
SSWORKERALLOCATE EQU BKWCAL SSA00830

SPACE 1 SSAQ0840
BKWCAL_PLIST DSECT SSA00850
BKWCAL_PLIST_RC DS A * return code SSA00860
BKWCAL_PLIST_RE DS A * reason code SSAQE870
BKWCAL_PLIST_ICBLOCK DS A * instance C-block ptr SSA00880
BKWCAL_PLIST_CLASSNAME DS A * class name SSA00890
BKWCAL_PLIST_OCOUNT DS A *x option count SSABRE900
BKWCAL_PLIST_ONAMES DS A * option names SSA00910
BKWCAL_PLIST_OVALUES DS A * option values SSA00920
BKWCAL_PLIST_WCBLOCK DS A x worker C-block ptr SSAB0930
BKWCAL_PLIST_CONNID DS A * connection ID SSA00940
BKWCAL_PLIST_LENGTH EQU *-BKWCAL_PLIST SSA00950

VMASMMAX SSABE960

SPACE 1 SSABB970
e e e * SSAB0980
* End of declarations * SSA00990
e e e T * SSAQ1000

EJECT SSA01010

POP PRINT SSA01020

MEND SSAQ1030

PL/X Language Bindings

Anchor Bindings (SSPLXANC COPY)
*COPY SSPLXANC SSPOOO10O
SSPEO0O20
[FrFhkFh kIR R I IR KT IR I AR I IR I AR I AR I AR KRR KK AR I AR KRR KRR KRR K KA KK X ****x**x**%x/ SSPOOO30O
/* */ SSPOOO40
/* NAME - Reusable Server Kernel PL/X bindings */ SSPOOO50
/* */ SSPOOO6O
/* FUNCTION - Language bindings for anchor services. */ SSPEOO70
/* */ SSPOOO8O
/* COPYRIGHT - @VR20Z0Z */ SSPOOO90O
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z */ SSP0O100
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z */ SSPGO110
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */ SSP00120
/* ALL RIGHTS RESERVED @VR20Z0Z */ SSPGO130
/* */ SSP00140
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z */ SSPOO150
/* */ SSP0O160
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSPOO170
[KrFhkrh kIR A I IR KT IR I AR I AR I AR I AR KRR F KA I AR I AR KRR KRR KRR KK XK KXk ***x***x*%*%x/ SSPOO180O
SSPEO190
Declare SSP00200
SSP00210
/* constants */ SSP00220
SSP00230
/* return codes */ SSP00240
SS_anc_rc_success fixed(31) constant(0), SSP0O0O250
ss_anc_rc_warning fixed(31) constant(4), SSP00O260
SS_anc_rc_error fixed(31) constant(8), SSP00270
ss_anc_rc_abend fixed(31) constant(12), SSP00280
SSP00290
/* reason codes *x/ SSPEO300
SS_anc_re_success fixed(31) constant(0), SSP0OO310
SSP00320
/* entry points *x/ SSPO0O330
SSP0O340
/* set anchor */ SSPEO350
ssAnchorSet entry SSPO0O360
SSPEO370
fixed(31), /* return code =*/ SSPOO380
fixed(31), /* reason code */ SSPEO390
pointer(31) /* anchor value */ SSPOO400
) SSP00410

external as ('BKWAST'), SSPOO420

SSPOO430
/* get anchor x/ SSPO0440
ssAnchorGet entry SSPEO450
(SSPOO460
fixed(31), /* return code */ SSPOE470
fixed(31), /* reason code */ SSP0O480
pointer(31), /* anchor value */ SSP0O0490
pointer(31), /* monitor buf «/ SSPOO500
fixed(31) /* monitor len =/ SSPOO510
) SSP00520
external as ('BKWAGT'); SSPOO530
SSPOO540

Authorization Bindings (SSPLXAUT COPY)
*COPY SSPLXAUT SSPOO010
SSPO00O20
Y S e e e e e e e e / SSPOOO30
/* */ SSPOOO40
/* NAME - Reusable Server Kernel PL/X Bindings */ SSPOOO50
/% */ SSPOOO6O
/* FUNCTION - Language bindings for authorization services. */ SSPEOO70
/* */ SSPOOO8O
/* COPYRIGHT - @VR20Z0Z */ SSPOOO90O
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z */ SSPOO1O0O
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z */ SSP0O110
/% SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */ SSP0O120
/* ALL RIGHTS RESERVED @VR20Z0Z */ SSPOO130
/* */ SSP00140
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z %/ SSPOO150
/* */ SSP0O160
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSPOO170
Y e e e e e e e / SSP001860
SSP0O190
[kxFkkkkhkkkhkkkhkkhkkhhkkhhkxhhkdhkkhkkhkkkkxkkxkkxkkkkkkkkk*** / SSPOO20600O
/* CONSTANTS */ SSP00210
R S S e S / SSP00220
SSP00230
Declare SSP00240
SSP0O250
/* return codes */ SSP00260
ss_aut_rc_success fixed(31) constant(0), SSP00270
ss_aut_rc_warning fixed(31) constant(4), SSP00280
ss_aut_rc_error fixed(31) constant(8), SSP00290
ss_aut_rc_abend fixed(31) constant(12), SSPOO300
SSP0O310
/* reason codes */ SSP00320
ss_aut_re_success fixed(31) constant(0), SSPOO330
ss_aut_re_bad_count fixed(31) constant(300+1), SSP00340
ss_aut_re_bad_user_length fixed(31) constant(300+2), SSPOO350
ss_aut_re_bad_obj_length fixed(31) constant(300+3), SSPOO360
ss_aut_re_bad_option fixed(31) constant(300+4), SSP0O370
ss_aut_re_bad_qual fixed(31) constant(300+5), SSPOO380
ss_aut_re_bad_use fixed(31) constant(300+6), SSPOO390
ss_aut_re_exists fixed(31) constant(300+7), SSPOO400
ss_aut_re_no_class fixed(31) constant(300+8), SSPO0410
ss_aut_re_no_object fixed(31) constant(300+9), SSPOO420
ss_aut_re_maq_fail fixed(31) constant(300+10), SSP00430
ss_aut_re_cvw_fail fixed(31) constant(300+11), SSP00440
ss_aut_re_cvs_fail fixed(31) constant(300+12), SSP0O450
ss_aut_re_mr_fail fixed(31) constant(300+13), SSP00460
ss_aut_re_too_many fixed(31) constant(300+14), SSPO0O470
ss_aut_re_out_of_storage fixed(31) constant(300+15), SSP0O480
ss_aut_re_no_user fixed(31) constant(300+16), SSP00490
ss_aut_re_prev_io_error fixed(31) constant(300+17), SSPOO500
ss_aut_re_prev_sync_error fixed(31) constant(300+18), SSP0O510
ss_aut_re_read_fail fixed(31) constant(300+19), SSP00520
ss_aut_re_write_fail fixed(31) constant(300+20), SSPO0O530
ss_aut_re_trunc fixed(31) constant(300+21), SSP0O540
ss_aut_re_gwu_fail fixed(31) constant(300+22), SSPOO550
ss_aut_re_open_fail fixed(31) constant(300+23), SSPO0O560
ss_aut_re_bad_cache fixed(31) constant(300+24), SSPOO570
ss_aut_re_bad_free fixed(31) constant(300+25), SSPOO580
ss_aut_re_bad_op fixed(31) constant(300+26), SSPO0O590
SSPOO60O0O
/* other constants %/ SSPOO610
SSP00620
/* return values from ssAuthTestOperations x/ SSPOO630

Appendix I. Language Bindings 441

/* and ssAuthPermitUser x/

ss_aut_op_permitted
ss_aut_op_not_permitted
ss_aut_op_not_defined
ss_aut_no_change

fixed(31) constant(0),
fixed(31) constant(1),
fixed(31) constant(2),
fixed(31) constant(3),

/* qualifiers for ssAuthPermitUser =/

ss_aut_add_operation
ss_aut_remove_operation

fixed(31) constant(0),
fixed(31) constant(1),

/* use arrays in ssAuthPermitUser? x/

ss_aut_use_arrays
ss_aut_delete_all
ss_aut_add_all

fixed(31) constant(0),
fixed(31) constant(1),
fixed(31) constant(2),

/* qualifiers for ssAuthDeleteObject */

ss_aut_rules_only
ss_aut_rules_and_object

fixed(31) constant(0),
fixed(31) constant(1),

/* qualifiers for ssAuthDeleteUser x/

ss_aut_specific_class
ss_aut_all_classes

fixed(31) constant(0),
fixed(31) constant(1),

/* qualifiers for ssAuthDeleteClass x/

ss_aut_objects_only

ss_aut_objects_and_class

fixed(31) constant(0),
fixed(31) constant(1);

/
/* ENTRY POINTS

/**/

Declare

/* operations on classes
/**/

/* create class */

ssAuthCreateClass entzry

fixed(31),
fixed(31),
character(8),
fixed(31),
character(4)

)
external as ('BKWUCC'),

/* modify class x/

ssAuthModifyClass entry

(
fixed(31),
fixed(31),
character(8),
fixed(31),
character(4)

external as ('BKWUMC'),

/* list classes *x/
ssAuthListClasses entry

fixed(31),
fixed(31),
char (%),

fixed(31),
fixed(31),
char (%),

fixed(31)

)
external as ('BKWULC'),

/* delete class */
ssAuthDeleteClass entry
(

fixed(31),
fixed(31),
character(8),
fixed(31),
fixed(31)

)
external as ('BKWUDC'),

/* return code */
/* reason code */
/* class identifier =*/
/* operation count */
/* operation array %/

/* return code */
/* reason code */
/* class identifier «/
/* operation count */
/* operation array */

/* return code */
/* reason code */
/* match key */

/* match key length x/
/* number expected */
/* output buffer */
/* number returned */

/* return code */
/* reason code */
/* class identifier «/
/* options count */
/* options array */

442 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSPO0640
SSPO0O650
SSPO0O660
SSPO0670
SSPO0O680O
SSPO0O690
SSPOO700
SSP00710
SSPOO720
SSPOO730
SSP00740
SSPOO750
SSPOO760
SSPO0O770
SSPOO780
SSPOO790
SSPOO8OO
SSP00810
SSPO0820
SSPOO830
SSPO0O840
SSPOO850
SSPOO860O
SSPOO870
SSPOO88O
SSPOO890
SSPOO900O
SSP00910
SSP00920
SSPO0930
SSPO0940
SSPOO950
SSPO0O960
SSPOO970
SSPOO980
SSPO0O990
SSPO10006
SSP01010
SSP01020
SSP01030
SSP01040
SSP01050
SSP01060
SSP01070
SSP01080
SSP01090
SSP01100
SSP011106
SSP01120
SSP01130
SSP01140
SSP01150
SSP01160
SSP01170
SSP01180
SSP01190
SSP01200
SSP01210
SSP01220
SSP01230
SSP01240
SSP01250
SSP01260
SSP01270
SSP01280
SSP01290
SSP01300
SSP01310
SSP01320
SSP01330
SSP01340
SSP01350
SSP01360
SSP01370
SSP01380
SSP01390
SSP01400
SSP01410
SSP01420
SSP01430
SSP01440
SSP01450

|| /
/* operations on objects */
|| /
/* create object %/
ssAuthCreateObject entry
(
fixed(31), /* return code */
fixed(31), /* reason code */
character(x), /* object name */
fixed(31), /* its length */
character(8) /* object class */
)
external as ('BKWUCO'),
/* list objects in class x/
ssAuthListObjects entry
(
fixed(31), /* return code */
fixed(31), /* reason code */
char(8), /* class name */
char(x), /> match key */
fixed(31), /* match key length x/
fixed(31), /* number expected */
pointer(31), /* buffer pointers */
fixed(31), /* buffer sizes */
fixed(31), /* returned lengths */
fixed(31) /* number returned */
external as ('BKWULO'),
/* query an object %/
ssAuthQueryObject entry
(
fixed(31), /* return code */
fixed(31), /* reason code */
character (%), /* object name */
fixed(31), /* its length */
character(8), /* class name */
fixed(31), /* userids expected */
pointer(31), /* userid ptrs */
fixed(31), /* userid buf sizes =%/
fixed(31), /* userid lengths */
fixed(31) /* userids returned «/
)
external as ('BKWUQO'),
/* delete object %/
ssAuthDeleteObject entry
(
fixed(31), /* return code */
fixed(31), /* reason code */
character (%), /* object name */
fixed(31), /* its length */
fixed(31), /* options count */
fixed(31) /* options array */
)
external as ('BKWUDO'),
KA AR AR AR SRS SRR RERER AR AR AR S RS /
/* operations on users */

/**/

/* permit user *x/
ssAuthPermitUser entry

fixed(31),
fixed(31),
character (%),
fixed(31),
character (%),
fixed(31),
fixed(31),
fixed(31),
character(4),
fixed(31),
fixed(31)

)
external as ('BKWUPU'),

/* query specific rule x/

return code
reason code
user name

its length
object name

its length

use arrays?
operation count
operation array
op qualifiers
op results

SSP01460
SSP01470
SSP01480
SSP01490
SSP01500
SSP01510
SSP01520
SSP01530
SSP01540
SSP01550
SSP01560
SSP01570
SSP01580
SSP01590
SSP01600
SSP01610
SSP01620
SSP01630
SSP01640
SSP01650
SSP01660
SSP01670
SSP01680
SSP01690
SSP0O1700
SSP01710
SSP01720
SSP0O1730
SSP01740
SSP0O1750
SSP0O1760
SSP01770
SSP01780
SSP0O1790
SSP01800
SSP01810
SSP01820
SSP01830
SSP01840
SSP01850
SSP01860
SSP01870
SSP01880
SSP01890
SSP01900
SSP01910
SSP01920
SSP01930
SSP01940
SSP01950
SSP01960
SSP01970
SSP01980
SSP01990
SSP02000
SSP02010
SSP02020
SSP02030
SSP02040
SSP02050
SSP02060
SSP02070
SSP02080
SSP02090
SSP02100
SSP02110
SSP02120
SSP02130
SSP02140
SSP02150
SSP02160
SSP02170
SSP02180
SSP02190
SSP02200
SSP02210
SSP02220
SSP02230
SSP02240
SSP02250
SSP02260
SSP02270

Appendix I. Language Bindings 443

ssAuthQueryRule entry

(

fixed(31), /* return code */
fixed(31), /* reason code */
character(x), /* user name */
fixed(31), /* its length */
character (%), /* object name */
fixed(31), /* its length */
fixed(31), /* ops expected */
character(4), /* operation array */
fixed(31) /* ops returned */

external as ('BKWUQR'),

/* test operations %/

ssAuthTestOperations entry

fixed(31), /* return code */
fixed(31), /* reason code */
character(x), /* user name */
fixed(31), /* its length */
character (%), /* object name */
fixed(31), /* its length */
fixed(31), /* operation count %/
character(4), /* desired ops */
fixed(31) /* test results */
)
external as ('BKWUTO'),
/* delete user x/
ssAuthDeleteUser entry

(

fixed(31), /* return code */
fixed(31), /* reason code */
character(x), /* user name */
fixed(31), /* its length */
character(8), /* class name */
fixed(31), /* options count */
fixed(31) /* options array */
)
external as ('BKWUDU'),

skl daiaieiailalaidaiaiaiaiaiaiaaiaiaiaiaiaiaiiaialadalaiaieiaiakaiialalaieiels /
/> utility functions */
/**/
/* try to reset access to data files x/
ssAuthReload entzry

(

fixed(31), /* return code */
fixed(31) /* reason code %/

)
external as ('BKWURL');

Cache Bindings (SSPLXCAC COPY)

*COPY SSPLXCAC
/**/
/* */
/* NAME - Reusable Server Kernel PL/X bindings */
/* */
/* FUNCTION - Language bindings for file cache. */
/* */
/* COPYRIGHT - @VR20Z0Z =/
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z =/
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z =/
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */
/* ALL RIGHTS RESERVED @VR20Z0Z =/
/* */
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z */
/* */
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */
/**/

|| /
/* CONSTANTS */
|| /

444 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSP02280
SSP02290
SSP02300
SSP02310
SSP02320
SSP02330
SSP02340
SSP02350
SSP02360
SSP02370
SSP02380
SSP02390
SSP02400
SSP02410
SSP02420
SSP02430
SSP02440
SSP02450
SSP02460
SSP02470
SSP02480
SSP02490
SSP02500
SSP02510
SSP02520
SSP02530
SSP02540
SSP02550
SSP02560
SSP02570
SSP02580
SSP02590
SSP02600
SSP02610
SSP02620
SSP02630
SSP02640
SSP02650
SSP02660
SSP02670
SSP02680
SSP02690
SSP0O2700
SSP02710
SSP02720
SSP02730
SSP02740
SSP0O2750
SSP0O2760
SSP02770
SSP02780
SSP02790
SSP02800
SSP02810

SSPO0OO10
SSPO0020
SSPOOO30
SSPOOO40
SSPOOO50
SSPOOO60O
SSPOOO70
SSPOOO8O
SSPOOO90O
SSP00106
SSP00110
SSP00120
SSP00130
SSP00140
SSP00150
SSP00160
SSP00170
SSP00180
SSP00190
SSP00200
SSP00210
SSP00220

Declare

/* return codes %/

SS_cac_rc_success fixed(31) constant(0),
ss_cac_rc_warning fixed(31) constant(4),
SS_cac_rc_error fixed(31) constant(8),
ss_cac_rc_abend fixed(31) constant(12),

/* reason codes */

SS_cac_re_success fixed(31) constant(0),
ss_cac_re_out_of_storage fixed(31) constant(1501),
ss_cac_re_table_replaced fixed(31) constant(1502),
ss_cac_re_cache_not_found fixed(31) constant(1503),
ss_cac_re_dscr_fail fixed(31) constant(1504),
ss_cac_re_cache_exists fixed(31) constant(1505),
ss_cac_re_bad_size fixed(31) constant(1506),
ss_cac_re_bad_token fixed(31) constant(1511),
ss_cac_re_bad_length fixed(31) constant(1512),
ss_cac_re_bad_count fixed(31) constant(1513),
ss_cac_re_bad_esmdl fixed(31) constant(1514),
ss_cac_re_bad_fname fixed(31) constant(1515),
ss_cac_re_bad_fval fixed(31) constant(1516),
ss_cac_re_exist_fail fixed(31) constant(1517),
ss_cac_re_file_not_found fixed(31) constant(1518),
ss_cac_re_delete_in_progress fixed(31) constant(1519),
ss_cac_re_bad_offset fixed(31) constant(1520),
ss_cac_re_bad_table_id fixed(31) constant(1521),
ss_cac_re_table_not_found fixed(31) constant(1522),
ss_cac_re_open_fail fixed(31) constant(1523),
ss_cac_re_bad_recfm fixed(31) constant(1524),
ss_cac_re_bad_lrecl fixed(31) constant(1525),
ss_cac_re_out_of_storage_ds fixed(31) constant(1526),
ss_cac_re_read_fail fixed(31) constant(1527),
ss_cac_re_bad_data_stream fixed(31) constant(1528),

/* open flag names x/
ss_cac_ofn_xlate
ss_cac_ofn_preserve_dolr
ss_cac_ofn_bfs
ss_cac_ofn_recmethod_1fs
ss_cac_ofn_recmethod_cache

/* open flag values x/

fixed(31) co
fixed(31) co
fixed(31) co
fixed(31) co
fixed(31) co

nstant(0),
nstant(1),
nstant(2),
nstant(3),
nstant(4),

ss_cac_ofv_no fixed(31) constant(0),
ss_cac_ofv_yes fixed(31) constant(1);

/**/

/* STRUCTURES */
AR AR AR AR AR AR AR AR A A /
RS AE AR IR AR /
/* FUNCTIONS */

/**/

Declare

/* cache creation and deletion
/**/

/* create a cache x/
ssCacheCreate entry

fixed(31), /* return code */
fixed(31), /* reason code */
char(8), /* cache name */
fixed(31), /* pages rqstd */
fixed(31) /* ALET */
)
external as ('BKWOCC'),

/* delete a cache %/
ssCacheDelete entry

fixed(31), /* return code */
fixed(31), /* reason code */
char(8) /* cache name */
)
external as ('BKWOCD'),

[HRERERAR AR AR ARSI SRR RARAR AR AR AR /

SSP00230
SSP00240
SSP00250
SSP00260
SSP00270
SSP00280
SSP00290
SSPOO300
SSP00310
SSP00320
SSP0O330
SSP00340
SSPOO350
SSPO0O360
SSP00370
SSPOO380
SSPO0390
SSPO0O400
SSPO0410
SSP00420
SSP00430
SSP00440
SSP00450
SSPO0O460
SSPO0470
SSP00480
SSP00490
SSPOO500
SSP00510
SSP00520
SSPOO530
SSP00540
SSPOO550
SSPOO560
SSPOO570
SSPO0O580
SSPOO590
SSPOO600O
SSPO0610
SSPO0620
SSPO0630
SSPO0640
SSPO0O650
SSPO0O660
SSPO0O670
SSPO0O680O
SSPO0690
SSPOO700
SSPOO710
SSP00720
SSPOO730
SSPOO740
SSPOO750
SSPOO760
SSPOO770
SSPOO780
SSPOO790
SSPOO8OO
SSP00810
SSP00820
SSPOO830
SSP00840
SSPOO850
SSPOO860O
SSPOO870
SSPOO880O
SSPOO890
SSPOO900
SSP00910
SSP00920
SSP00930
SSP00940
SSPO0O950
SSP00960
SSPO0O970
SSPO0O980O
SSP00990
SSP01000
SSP010106
SSP01020
SSP01030
SSP01040

Appendix I. Language Bindings 445

/* utility functions

/* queries cache utilitizatio
ssCacheQuery entry

fixed(31), /*
fixed(31), /*
char(8), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31) /*

)
external as ('BKWOCQ'),

/* sets translation table %/
ssCacheX1TabSet entry

n *x/

return code */
reason code %/

cache name */
files cached =%/
cache size */
amt in use */
open count */
hit count */

(

fixed(31), /* return code */
fixed(31), /* reason code */
fixed(31), /* table ID */
char(256) /* table */
)
external as ('BKWOTS'),

skl aiaieiaiaiaioiaialaiaiaiaiaialaiiaiddoiniaiaiaiaiaiaiaalaiaiaiaiaio /
/> file management primitives */
/**/

/* begin using cached file x/
ssCacheFileOpen entry

(

fixed(31), /*
fixed(31), /*
char(8), /*
char (%), /*
fixed(31), /*
char (%), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
char(8), /*
fixed(31), /*
pointer(31), /*
fixed(31), /*
char(32) /*

)
external as ('BKWOFO0'),

/* read cached file x/
ssCacheFileRead entry

fixed(31), /*
fixed(31), /*
char(8), /*
char(8), /*
fixed(31), /*
fixed(31), /*
char (%), /*
fixed(31) /*

)
external as ('BKWOFR'),

/* done using cached file x/
ssCacheFileClose entry

fixed(31), /*
fixed(31), /*
char(8), /*
char(8) /*

)
external as ('BKWOFC');

446 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

return code
reason code
cache name

file spec

its length

ESM data

its length

flag count

flag name array
flag value array
file token

ALET

address

length

last update date

return code */
reason code */
cache name */
file token */
byte offset */
num of bytes */
output buffer =*/
bytes returned %/

return code
reason code
cache name
file token

x/

SSP01050
SSP01060
SSP01070
SSP01080
SSP01090
SSP01100
SSP011106
SSP01120
SSP01130
SSP01140
SSP01150
SSP01160
SSP01170
SSP01180
SSP01190
SSP012006
SSP01210
SSP01220
SSP01230
SSP01240
SSP01250
SSP01260
SSP01270
SSP01280
SSP01290
SSP01300
SSP01310
SSP01320
SSP01330
SSP01340
SSP01350
SSP01360
SSP01370
SSP01380
SSP01390
SSP01400
SSP01410
SSP01420
SSP01430
SSP01440
SSP01450
SSP01460
SSP01470
SSP01480
SSP01490
SSP01500
SSP01510
SSP01520
SSP01530
SSP01540
SSP01550
SSP01560
SSP01570
SSP01580
SSP01590
SSP01600
SSP01610
SSP01620
SSP01630
SSP01640
SSP01650
SSP01660
SSP01670
SSP01680
SSP01690
SSP0O1700
SSP01710
SSP01720
SSP01730
SSP01740
SSP01750
SSP01760
SSP0O1770
SSP01780
SSP01790
SSP0O18006

Client Bindings (SSPLXCLI COPY)

*COPY SSPLXCLI SSPO00O10
SSPE00O20

[kxFkkkkhkkhhkkkhhkkhhkkhhkkkhkkhhkkhhkhhhkkhkkhkxkkxkkxkkkkkrkkkxkkxxk*kx**kx**xx/ SSPOOO30
/* */ SSPOO04O
/* NAME - Reusable Server Kernel PL/X bindings */ SSPOOO50
/* */ SSPOOO6O
/* FUNCTION - Language bindings for client services */ SSPOOO70
/* */ SSPOOO8O
/* COPYRIGHT - @VR20Z0Z */ SSPOEO90O
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z %/ SSPGO100
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z */ SSPOO110
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */ SSP00120
/* ALL RIGHTS RESERVED @VR20Z0Z %/ SSPGO130
/* */ SSP0O140
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z */ SSPGO150
/* */ SSP0O160
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSPRO170
[*xFkkkkhkkhhkkkhhkkhhkkhhkkhhkkhhkkkhkkhkkhkkkkkkkxkkxkkrkkkrkkkrkkkxxk*kx**kx**xx/ SSPOOL8O
SSP0O190

R S S / SSP00200
/* constants */ SSP00210
[ek e ek hoke ok e ek ke ok ke e sk keok ok e s kok ke ok e e ek ke ok ke ke sk ok ok ok ke e ok ke ok ke ke sk ke ok ok ok ok / SSP00220
SSP00230

Declare SSP00240
SSP00O250

/* return codes */ SSP00260
ss_cli_rc_success fixed(31) constant(0), SSP0O0O270
ss_cli_rc_warning fixed(31) constant(4), SSP00280
ss_cli_rc_error fixed(31) constant(8), SSP00290
ss_cli_rc_abend fixed(31) constant(12), SSPOO300
SSP00310

/* reason codes */ SSP00320
ss_cli_re_success fixed(31) constant(0), SSPOO330
ss_cli_re_out_of_range fixed(31) constant(900+1), SSP0O340
ss_cli_re_out_of_storage fixed(31) constant(900+2), SSP0O350
ss_cli_re_bad_iam fixed(31) constant(900+3), SSPO0O360
ss_cli_re_bad_method fixed(31) constant(900+4), SSPOO370
ss_cli_re_semc_fail fixed(31) constant(900+5), SSPOO380
SSP0O390

/* who i am %/ SSPOO400
ss_cli_diam_instance fixed(31) constant(0), SSP00410
ss_cli_iam_linedriver fixed(31) constant(1), SSPO0O420
SSPO0430

/* ways to get data %/ SSP00440
ss_cli_method_read fixed(31) constant(0), SSPO0O450
ss_cli_method_peek fixed(31) constant(1), SSPOO460
ss_cli_method_discard fixed(31) constant(2); SSPO0O470
SSP00480

[ek e ek hoke ke e e ek ke ok ke e ek keok ok ke sk k ok ok e e sk ke ok ke ke sk ok ok ok ke e ok ok ok ke ke ko ok ok ok / SSP0O0490
/* structures */ SSPOO500
[k xFkkkkhkkkhkkkhkkhkkhkkhhkkhhkhhkkhkkhkkhkxkkxkkxkkkkkkkkxx** / SSPOO510
SSP00520

R S S e / SSPO0530
/* entry points */ SSPOO540
[ek ke e e khoke ok e ek ke ok ke e ek keok ke ke sk ke ok ok e e ek ke ok ke ke ek ok ok ok ke e ok ke ok ke ke ke ke ok ok ok ok / SSPOO550
SSPOO560

Declare SSPOO570
SSPOO580

/* initialize client data queues */ SSPOO590
ssClientDataInit entry SSPOO600O
(SSPO0610
fixed(31), /* return code */ SSP00620
fixed(31), /* reason code */ SSPOO630
pointer(31), /* C-block addr */ SSPOO640
char(8) /* subpool name %/ SSPO0O650
SSPO0660

external as ('BKWIIN'), SSPOO670
SSP0O680O

/* terminate client data queues */ SSPOO690
ssClientDataTerm entry SSPO0O700
(SSPOO710
fixed(31), /* return code */ SSPO0O720
fixed(31), /* reason code */ SSPOO730
pointer(31) /* C-block addr */ SSP0O740
SSPOO750

external as ('BKWITM'), SSPOO760
SSPOO770

/* get input from client C-block x/ SSPOO780

Appendix I. Language Bindings 447

/***/

Declare

/* API maxima x/
ss_enr_index_width
ss_enr_max_data

/* return codes */
SS_enr_rc_success
ss_enr_rc_warning
SS_enr_rc_error
ss_enr_xrc_abend

/* reason codes *x/
SS_enr_re_success
ss_enr_re_db_not_found
ss_enr_re_rec_not_found
ss_enr_re_truncated
ss_enr_re_dirty
ss_enr_re_rec_exists
ss_enr_re_bad_length
ss_enr_re_bad_droptype
ss_enr_re_no_storage
ss_enr_re_close_fail
ss_enr_re_write_fail

fixed(31)
fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)

constant(64),
constant(65450),

constant(0),
constant(4),
constant(8),
constant(12),

constant(0),

constant (1000+1),
constant (1000+2),
constant (1000+3),
constant (1000+4),
constant(1000+5),
constant (1000+6),
constant (1000+7),
constant(1000+8),
constant(1000+9),
constant (1000+10),

448 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

ssClientDataGet entry

(

fixed(31), /* return code */

fixed(31), /* reason code */

fixed(31), /* instance or 1d? x/

pointer(31), /* C-block pointer =/

fixed(31), /* get method */

fixed(31), /* ALET to use */

char (%), /* buffer */

fixed(31), /* amt wanted */

fixed(31), /* amt given */

fixed(31) /* amt left */

external as ('BKWIDG'),

/* put output onto client C-block */

ssClientDataPut entry

(

fixed(31), /* return code */

fixed(31), /* reason code */

fixed(31), /* instance or 1d? =/

pointer(31), /* C-block pointer =/

fixed(31), /* ALET to use */

char (%), /* buffer */

fixed(31), /* amt to put */

fixed(31) /* new amount */

)

external as ('BKWIDP');

Enrollment Bindings (SSPLXENR COPY)
*COPY SSPLXENR

[HRER AR AR AR SR SRS SRR R AR AR AR SRS S SRR AR AR AR SRS /
/* */
/* NAME - Reusable Server Kernel PL/X bindings */
/* */
/* FUNCTION - Language bindings for enrollment services. */
[*/
/* COPYRIGHT - @VR20Z0Z =/
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z =/
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z =/
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z =/
/* ALL RIGHTS RESERVED @VR20Z0Z =/
/* */
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z =/
/* */
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */
s /
[HRHEEE AR SRS SR IR RERARAFAR AR SRS S R R R AR AR AR /
/* CONSTANTS */

SSPOO790
SSPOO8OO
SSP00810
SSPO0820
SSPOO830
SSPO0O840
SSPOO850
SSPOO860O
SSPOO870
SSPOO88O
SSPOO890
SSPOO900O
SSP00910
SSP00920
SSPO0O930
SSP00940
SSPOO950
SSPO0O960
SSPO0970
SSPOO980
SSPO0O990
SSP01000
SSP01010
SSP01020
SSP01030
SSP01040
SSP01050
SSP01060
SSP01070

SSPO0OO10
SSPO0O020
SSPOOO30
SSPOO040
SSPOOO50
SSPOOO60O
SSPOOO70
SSPOOO8O
SSPOOO90
SSP001006
SSP001106
SSP00120
SSP00130
SSP00140
SSP00150
SSP00160
SSP0O0170
SSP00180
SSP00190
SSP00200
SSP00210
SSP00220
SSP00230
SSP00240
SSP00250
SSP00260
SSP00270
SSP00280
SSP00290
SSPOO300
SSP00310
SSP00320
SSP0O330
SSP00340
SSPOO350
SSP0O360
SSPOO370
SSPOO380
SSP00390
SSPO0O400
SSP00410
SSP00420
SSP00430
SSP00440
SSP00450
SSPO0O460
SSPO0470

ss_enr_re_bad_method fixed(31) constant(1000+11), SSPOO480

ss_enr_re_open_fail fixed(31) constant(1000+12), SSP0O0490
ss_enr_re_gwu_fail fixed(31) constant(1000+13), SSPOO500
ss_enr_re_point_fail fixed(31) constant(1000+14), SSPOO510
ss_enr_re_exist_fail fixed(31) constant(1000+15), SSP00520
ss_enr_re_not_sfs fixed(31) constant(1000+16), SSPOO530
ss_enr_re_not_v fixed(31) constant(1000+17), SSPOO540
ss_enr_re_dscr_fail fixed(31) constant(1000+18), SSPOO550
ss_enr_re_read_fail fixed(31) constant(1000+19), SSPO0O560
ss_enr_re_db_exists fixed(31) constant(1000+20), SSPOO570
ss_enr_re_comm_fail fixed(31) constant(1000+21), SSPOO580
ss_enr_re_not_disk fixed(31) constant(1000+22), SSPOO590
ss_enr_re_bad_kind fixed(31) constant(1000+23), SSPOO600O
ss_enr_re_new_file fixed(31) constant(1000+24), SSPO0610
ss_enr_re_no_sets fixed(31) constant(1000+25), SSP00620
ss_enr_re_set_empty fixed(31) constant(1000+26), SSPO0630
SSPO0640

/* KIND types =/ SSPOO650
ss_enr_kind_memory fixed(31) constant(0), SSPOO660
ss_enr_kind_disk fixed(31) constant(1), SSPO0O670
SSPO0680O

/* INSERT types %/ SSP00690
ss_enr_insert_new fixed(31) constant(0), SSPOO700
ss_enr_insert_replace fixed(31) constant(1), SSPOO710
SSP00O720

/* DROP types */ SSPOO730
ss_enr_drop_commit fixed(31) constant(0), SSPO0O740
ss_enr_drop_rollback fixed(31) constant(1); SSPOO750
SSPOO760

[*xFkkkkhkkkhkkkhkkhhkkhhkkkhkkkhkkhkkhkkkhkxkkxkkxkkkkkkkkxx/ SSPOO770
/* ENTRY POINTS */ SSPOO780
YR S S e / SSPOO790
SSPOO8O0

Declare SSP0O08106
SSP00820

/* commit enrollment data base %/ SSPOO830
ssEnrollCommit entry SSPEO840
(SSPOO850
fixed(31), /* return code */ SSPOO860
fixed(31), /* reason code */ SSPOO870
char(8) /* dbase name */ SSPOO880O
) SSPOO890
external as ('BKWJCM'), SSPOO9G0O
SSP00910

/* drop enrollment data base %/ SSP00920
ssEnrollDrop entry SSP0O930
(SSP00940
fixed(31), /* return code */ SSPEO950
fixed(31), /* reason code */ SSP0O960
char(8), /* dbase name */ SSPEE970
fixed(31) /* drop type */ SSPEO980
) SSP0O990
external as ('BKWJDP'), SSPO1000
SSP01010

/* list data bases =%/ SSP01020
ssEnrolllList entry SSP01030
(SSP01040
fixed(31), /* return code */ SSP01050
fixed(31), /* reason code */ SSP01060
pointer(31) /* C-block */ SSPE1070
SSP01080

external as ('BKWJDL'), SSP01090
SSP01100

/* load enrollment data base =%/ SSP01110
ssEnrolllLoad entry SSP01120
(SSP01130
fixed(31), /* return code =/ SSP01140
fixed(31), /* reason code */ SSP01150
char(8), /* dbase name */ SSP01160
fixed(31), /* DS kind */ SSP01170
fixed(31), /* DS size */ SSP01180
char (%), /* filename */ SSP01190
fixed(31) /* length of */ SSP01200
SSP01216

external as ('BKWJLO'), SSP01220
SSP01230

/* get record x/ SSP01240
ssEnrollRecordGet entry SSPO1250
(SSP01260
fixed(31), /* return code */ SSPO1270
fixed(31), /* reason code */ SSP01280
char(8), /* dbase name */ SSP01290

Appendix I. Language Bindings 449

Declare

/* return and reason codes */

SS_mem_rc_success
ss_mem_rc_warning
SS_mem_rc_error
ss_mem_xc_abend

SS_mem_re_success
ss_mem_re_out_of_storage
ss_mem_re_bad_amount
ss_mem_re_bad_align
ss_mem_re_no_subpool
ss_mem_re_not_alloc
ss_mem_re_subpool_deleted
ss_mem_re_spd_fail
ss_mem_re_bad_key

fixed(31)
fixed(31)
fixed(31)
fixed(31)

fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)
fixed(31)

constant(0),
constant(4),
constant(8),
constant(12),

constant(0),

constant(800+1),
constant(800+2),
constant(800+3),
constant(800+4),
constant(800+5),
constant(800+6),
constant(800+7),
constant (800+8),

450 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

char(ss_enr_index_width), /* index */

char (%), /* buffer */

fixed(31), /* buf size */

fixed(31) /* amt returned =x/

)

external as ('BKWJIRG'),

/* insert record =x/

ssEnrollRecordInsert entry

fixed(31), /* return code */

fixed(31), /* reason code */

char(8), /* dbase name */

char(ss_enr_index_width), /* index */

char (%), /* data */

fixed(31), /* length */

fixed(31) /* replace? */

)

external as ('BKWJRI'),

/* list records =/

ssEnrollRecordlList entry

fixed(31), /* return code */

fixed(31), /* reason code */

char(8), /* dbase name */

pointer(31) /* C-block */

external as ('BKWJRL'),

/* remove record x/

ssEnrollRecordRemove entry

(

fixed(31), /* return code */

fixed(31), /* reason code */

char(8), /* dbase name */

char(ss_enr_index_width) /* index */

)

external as ('BKWJIRR');

Memory Bindings (SSPLXMEM COPY)
*COPY SSPLXMEM

[FFK I KK I KK I KK I KK I KK I I FFKFFKF KK IR F KK I KK F KK I I KKK I KK F Kk KKk KKk F Kk Kk /
/* */
/* NAME - Reusable Server Kernel PL/X bindings */
/* */
/* FUNCTION - Language bindings for memory services. */
/* */
/* COPYRIGHT - @VR20Z0Z =/
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z =/
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z =/
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z =/
/* ALL RIGHTS RESERVED @VR20Z0Z =/
/* */
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z =/
/* */
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */
[HRHRERER IR AR SRS ISR RERAFARER RS S SRR RARERAR AR AR SRS S /

SSP01300
SSP01310
SSP01320
SSP01330
SSP01340
SSP01350
SSP01360
SSP01370
SSP01380
SSP01390
SSP01400
SSP01410
SSP01420
SSP01430
SSP01440
SSP01450
SSP01460
SSP01470
SSP01480
SSP01490
SSP01500
SSP01510
SSP01520
SSP01530
SSP01540
SSP01550
SSP01560
SSP0O1570
SSP01580
SSP01590
SSP01600
SSP01610
SSP01620
SSP01630
SSP01640
SSP01650
SSP01660
SSP01670
SSP01680
SSP01690

SSPO0010
SSPO0020
SSPOOO30
SSPO0040
SSPOOO50
SSPOOO60O
SSPOO0O70
SSPOOO8O
SSPOOO90O
SSP00100
SSP001106
SSP00120
SSP00130
SSP00140
SSPO0150
SSP00160
SSP00170
SSP00180
SSP00190
SSP00200
SSP00210
SSP00220
SSP00230
SSP00240
SSP00250
SSP00260
SSP00270
SSP00280
SSP00290
SSPOO3006
SSP00310
SSP00320
SSPOO330
SSP00340
SSP0OO350
SSPOO360

ss_mem_re_subpool_exists fixed(31) constant(800+9), SSPOO370

ss_mem_re_spcc_fail fixed(31) constant(800+10), SSPOO380
ss_mem_re_spla_fail fixed(31) constant(800+11), SSP0O0O390
SSPOO400

/* alignment attributes */ SSP00410
ss_mem_align_noxrm fixed(31) constant(0), SSPO0O420
ss_mem_align_page fixed(31) constant(1), SSPOO430
SSP00440

/* create a data space we can manage *x/ SSPOO450
ssMemoryCreateDS entry SSP00460
(SSPO0470
fixed(31), /* return code */ SSPOO480

fixed(31), /* reason code */ SSPOO490

char(8), /* subpool name */ SSPOO500

fixed(31), /* size (pages) */ SSPOO510

fixed(31), /* storage key */ SSP0O520

fixed(31), /* option count */ SSPOO530

fixed(31), /* option array «/ SSPOO540

char(8), /* ASIT */ SSPOO550

fixed(31) /* ALET */ SSPOO560

SSPOO570

external as ('BKWMCR'), SSPOO580
SSPOO590

/* allocate memory x/ SSPOO60OO
ssMemoryAllocate entry SSPE0610
(SSP00620
fixed(31), /* return code */ SSPOO630

fixed(31), /* reason code */ SSPOO640

fixed(31), /* lower bound */ SSPO0650

fixed(31), /* upper bound */ SSPOO660O

character(8), /* subpool name *x/ SSPRO670

fixed(31), /* alignment rqt %/ SSP00680

pointer(31), /* addr of block %/ SSPOO690

fixed(31) /* amount gotten x/ SSPOO700

SSPOO710

external as ('BKWMAL'), SSPEO720
SSP0O730

/* release memory */ SSP0O740
ssMemoryRelease entry SSPOO750
(SSPOO760
fixed(31), /* return code */ SSPOO770

fixed(31), /* reason code */ SSPOO780

fixed(31), /* bytes released x/ SSPOO790

character(8), /* subpool name */ SSPOO80O

pointer(31) /* addr of block =*/ SSP00810

SSP00820

external as ('BKWMRE'), SSP0O830
SSP0O840

/* delete subpool x/ SSPOO850
ssMemoryDelete entry SSPO0860
(SSPOE870
fixed(31), /* return code */ SSPOO880O

fixed(31), /* reason code */ SSPEE890

character(8) /* subpool name %/ SSPOO900

) SSP00910
external as ('BKWMDE'); SSP00920
SSP0E930

Storage Group Bindings (SSPLXSGP COPY)

*COPY SSPLXSGP SSPOO0O10
SSPO0020

[*xFkkkkhkkhhkkkhkkhkkhhkkhhkkhhkhhhkkhkkhkkkkxkkxkkxkkkkhkrkkkxkkxxk*kx**kx**xx/ SSPOOO30
/* */ SSPOO040
/* NAME - Reusable Server Kernel PL/X bindings */ SSPOOO50
/* */ SSPOO0O6O
/* FUNCTION - Language bindings for storage group services. */ SSPEOO70
/* */ SSPOOO8O
/* COPYRIGHT - @VR20Z0Z */ SSPGOO90O
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z */ SSPGO100O
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z */ SSP00110
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z =/ SSP00120
/* ALL RIGHTS RESERVED @VR20Z0Z */ SSPGO130
/* */ SSPEO140
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z */ SSP0OO150
/* */ SSPOO160
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSPRO170
[kxFkkkkhkkhhkkkhhkkhkkhhkkhhkkhhkkhhkkhkkhkkkkxkkxkkxkhkkkkrkkkrkkkxx**kx**kx**xx/ SSPOOL8O
SSP00O190

Appendix I. Language Bindings 451

A EH SRR AR AR R AR AR /

/* CONSTANTS */
/**/
Declare

/* return codes %/

SS_sgp_rc_success fixed(31) constant(0),
ss_sgp_rc_warning fixed(31) constant(4),
SS_sgp_rc_error fixed(31) constant(8),
ss_sgp_rc_abend fixed(31) constant(12),

/* reason codes */

SS_sgp_re_success fixed(31) constant(0),
ss_sgp_re_too_many fixed(31) constant(600+1),
ss_sgp_re_not_found fixed(31) constant(600+2),
ss_sgp_re_out_of_storage fixed(31) constant(600+3),
ss_sgp_re_mx_fail fixed(31) constant(600+4),
ss_sgp_re_init_done fixed(31) constant(600+5),
ss_sgp_re_exists fixed(31) constant(600+7),
ss_sgp_re_vdq_fail fixed(31) constant(600+8),
ss_sgp_re_online fixed(31) constant(600+9),
ss_sgp_re_offline fixed(31) constant(600+10),
ss_sgp_re_q_=fail fixed(31) constant(600+11),
ss_sgp_re_cv_fail fixed(31) constant(600+12),
ss_sgp_re_e_fail fixed(31) constant(600+13),
ss_sgp_re_maint fixed(31) constant(600+14),
ss_sgp_re_ds_fail fixed(31) constant(600+15),
ss_sgp_re_pool_fail fixed(31) constant(600+16),
ss_sgp_re_map_fail fixed(31) constant(600+17),
ss_sgp_re_bad_attrib fixed(31) constant(600+18),
ss_sgp_re_rewrite_fail fixed(31) constant(600+19),
ss_sgp_re_read_only fixed(31) constant(600+20),
ss_sgp_re_out_of_range fixed(31) constant(600+22),
ss_sgp_re_wrong_mode fixed(31) constant(600+23),
ss_sgp_re_io_fail fixed(31) constant(600+24),
ss_sgp_re_diag_250_fail fixed(31) constant(600+25),
ss_sgp_re_too_big fixed(31) constant(600+26),
ss_sgp_re_bad_name fixed(31) constant(600+28),
Ss_sgp_re_name_in_use fixed(31) constant(600+29),
/* attributes %/

ss_sgp_attrib_ds fixed(31) constant(0),
ss_sgp_attrib_no_ds fixed(31) constant(1),

ss_sgp_attrib_block_xw fixed(31) constant(2),

ss_sgp_attrib_block_ro fixed(31) constant(3),
ss_sgp_attrib_offline fixed(31) constant(7);
[HRERER AR AR AR SRS SRR RERAF AR AR RS S SRR R RERAR AR RS SRS /
/* FUNCTIONS */

/**/
Declare

/* storage group create x/

ssSgpCreate entry

(

fixed(31), /* return code */
fixed(31), /* reason code */
fixed(31), /* sg number */
fixed(31), /* num of vdevs */
fixed(31), /* vdev array */
fixed(31), /* attrib count */
fixed(31) /* attrib array */

)
external as ('BKWSGC'),

/* storage group delete */

ssSgpDelete entry

(

fixed(31), /* return code */
fixed(31), /* reason code */
fixed(31) /* sg number */

)
external as ('BKWSGD'),

/* storage group find *x/

ssSgpFind entry

(

fixed(31), /* return code */
fixed(31), /* reason code %/
char(8), /* sg name */

452 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSP00200
SSP00210
SSP00220
SSP00230
SSP00240
SSP00250
SSP00260
SSP00270
SSP00280
SSP00290
SSPOO300
SSP00310
SSP00320
SSP0O330
SSP00340
SSPOO350
SSPOO360
SSPO0370
SSPOO380
SSP00390
SSPO0O400
SSPO0410
SSP00420
SSP00430
SSP00440
SSP00450
SSPO0O460
SSPO0470
SSP00480
SSP00490
SSPOO500
SSP00510
SSP00520
SSPOO530
SSP00540
SSPOO550
SSPOO560
SSPOO570
SSPO0O580
SSPOO590
SSPOO600O
SSPO0610
SSPO0620
SSPO0630
SSPO0640
SSPO0O650
SSPO0O660
SSPO0O670
SSPO0O680O
SSPO0690
SSPOO700
SSPOO710
SSP00720
SSPOO730
SSPOO740
SSPOO750
SSPOO760
SSPOO770
SSPOO780
SSPOO790
SSPOO8OO
SSP00810
SSP00820
SSPOO830
SSP00840
SSPOO850
SSPOO860O
SSPOO870
SSPOO880O
SSPOO890
SSPOO900
SSP00910
SSP00920
SSP00930
SSP00940
SSPO0O950
SSP00960
SSPO0O970
SSPO0O980O
SSP00990
SSP01000
SSP010106

fixed(31), /*
fixed(31), /*
fixed(32) /*

)
external as ('BKWSGF'),

sgp id */
I/0 mode */
total blks */

/* storage group list (what's defined?) =/

ssSgpList entry
(

fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*

fixed(31) /*

)
external as ('BKWSGL'),

/* storage group query (details on particular sg) */

ssSgpQuery entry
(

fixed(31), /*
fixed(31), /*
fixed(31), /*
char(8), /*
fixed(31), /*
fixed(32), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31) /*

external as ('BKWSGQ'),

/* storage group read */
ssSgpRead entry
(

fixed(31),
fixed(31),
fixed(31),
fixed(32),
fixed(32),
fixed(31),
character(x)

external as ('BKWSGR'),

return code
reason code

num expected
number filled in
array for IDs

return code
reason code

sgp id

sg name

i/o mode

total blocks
status wozxd
attrib expected
attrib filled in
attrib array
vdevs expected
vdevs filled in
vdev array

blks array

/* return code
/* reason code
/* sgp ID

/* page number
/* num of pgs
/* buffer ALET
/* buffer

/* storage group start (like a mount) =/

ssSgpStart entry
(

fixed(31), /*
fixed(31), /*
fixed(31), /*
char(8), /*
fixed(31), /*

fixed(31) /*

)
external as ('BKWSGS'),

return code
reason code
sgp id

sgp name
attrib count
attrib array

/* storage group stop (like a dismount) x/

ssSgpStop entry
(

fixed(31), /*
fixed(31), /*
fixed(31), /*
fixed(31), /*

fixed(31) /*
external as ('BKWSGT'),

/* storage group write x/
ssSgpWrite entry
(

fixed(31),
fixed(31),
fixed(31),
fixed(32),
fixed(32),
fixed(31),

return code
reason code
sgp ID

attrib count
attrib array

/* return code
/* reason code
/* sgp ID

/* page number
/* num of pgs
/* buffer ALET

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

SSP01020
SSP01030
SSP01040
SSP01050
SSP01060
SSP01070
SSP01080
SSP01090
SSP01100
SSP011106
SSP01120
SSP01130
SSP01140
SSP01150
SSP01160
SSP01170
SSP01180
SSP01190
SSP01200
SSP01210
SSP01220
SSP01230
SSP01240
SSP01250
SSP01260
SSP01270
SSP01280
SSP01290
SSP01300
SSP01310
SSP01320
SSP01330
SSP01340
SSP01350
SSP01360
SSP01370
SSP01380
SSP01390
SSP01400
SSP01410
SSP01420
SSP01430
SSP01440
SSP01450
SSP01460
SSP01470
SSP01480
SSP01490
SSP0O1500
SSP01510
SSP01520
SSP01530
SSP01540
SSP01550
SSP01560
SSP01570
SSP01580
SSP01590
SSP01600
SSP01610
SSP01620
SSP01630
SSP01640
SSP01650
SSP01660
SSP01670
SSP01680
SSP01690
SSP0O1700
SSP01710
SSP01720
SSP01730
SSP01740
SSP01750
SSP01760
SSP0O1770
SSP01780
SSP01790
SSP0O18006
SSP01810
SSP01820
SSP01830

Appendix I. Language Bindings 453

character () /* buffer */

external as ('BKWSGW');

Services Bindings (SSPLXSRV COPY)

*COPY SSPLXSRV

[FFKFF I KK I KK KKK FFKFFKFFKF KK IR F KK IR F KK I IR I KK I KK I KK I KK F Kk KKk KKk KKk H K /
/* */
/* NAME - Reusable Server Kernel PL/X bindings */
/* */
/* FUNCTION - Language bindings for service services. */
/* */
/* COPYRIGHT - @VR20Z0Z =/
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z */
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z =/
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z =/
/* ALL RIGHTS RESERVED @VR20Z0Z =/
/* */
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z =/
/* */
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */
[HRERER AR AR ARSI R RERHRAFAR RS S SRR R RS S RS /
/**/
/* constants */
|| /
Declare

/* return codes */

SS_SIV_TrC_success fixed(31) constant(0),
SS_srv_rc_warning fixed(31) constant(4),

SS_STV_IC_error fixed(31) constant(8),

ss_srv_rc_abend fixed(31) constant(12),

/* reason codes */

SS_SIV_re_success fixed(31) constant(0),
ss_srv_re_bad_type fixed(31) constant(700+1),
ss_srv_re_not_found fixed(31) constant(700+2),
ss_srv_re_out_of_range fixed(31) constant(700+3),
ss_srv_re_out_of_storage fixed(31) constant(700+6),
Ss_srv_re_exists fixed(31) constant(700+9),

/* types of messages */

ss_srv_msgtype_instance fixed(31) constant(0),
ss_srv_msgtype_linedriver fixed(31) constant(1),

/* types of services x/

ss_srv_srvtype_normal fixed(31) constant(0),
ss_srv_srvtype_ld fixed(31) constant(1),
ss_srv_srvtype_ldss fixed(31) constant(2),

/* values of various msg bits... these have to line x/

/* up with the message structures below... be careful x/
ss_srv_ibit_cclose fixed(16) constant(32768),
ss_srv_ibit_aclose fixed(16) constant(16384),
ss_srv_ibit_cdone fixed(16) constant(8192),
ss_srv_ibit_ldstop fixed(16) constant(4096),
ss_srv_ibit_newdata fixed(16) constant(2048),
ss_srv_lbit_stopack fixed(16) constant(32768),
ss_srv_lbit_newdata fixed(16) constant(16384),

/* length of keys x/

ss_srv_keylength fixed(31) constant(32);
[HREFERARER AR AR SRS SRR RERHRAR AR AR SRS SRR R AR /
/* structures */
/**/
Declare

/* S-block x/

1 vmss_sblock Boundary (Word) Based,

5 sbl_next pointer(31), /* next service x/
5 sbl_prev pointer(31), /* prev service x/

454 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSP01840
SSP01850
SSP01860
SSP01870

SSPO0010
SSPO0O020
SSPOOO30
SSPO0040
SSPOOO50
SSPOOO60O
SSPOO0O70
SSPOOO8O
SSPOOO90O
SSP00100
SSP00110
SSP00120
SSP00130
SSP00140
SSPO0150
SSP00160
SSP00170
SSP00180
SSP00190
SSP00200
SSP002106
SSP00220
SSP00230
SSP00240
SSP00250
SSP00260
SSP00270
SSP00280
SSP00290
SSPOO300
SSP00310
SSP00320
SSP0OO330
SSP00340
SSP0OO350
SSPO0O360
SSPO0O370
SSPO0O380
SSPOO390
SSPO0400
SSP00410
SSPO0420
SSP00430
SSP00440
SSPO0O450
SSPO0460
SSP00470
SSPO0O480
SSP00490
SSPOO500
SSPO0510
SSP00520
SSP0O0530
SSPO0540
SSPOO550
SSPOO560
SSPOO570
SSPOO580
SSPO0O590
SSPOO60O
SSP00610
SSP00620
SSPO0630
SSP00640
SSPO0O650
SSPO0O660O
SSPO0670
SSPO0O680O
SSPO0O690
SSPOO700
SSPOO710
SSPOO720

5 sbl_sn character(8), /* its name */ SSPOO730

5 shl_snl fixed(31), /* name length */ SSPOO740

5 sbl_initaddr pointer(31), /* init addr */ SSPOO750

5 sbl_agtaddr pointer(31), /* agent addr */ SSPOO760

5 sbl_cmpladdr pointer(31), /* cmpltn addr %/ SSPOO770

5 shl_type fixed(31), /* service type */ SSPEO780

5 sbl_lockword fixed(31), /* lock word */ SSPOO790

5 sbl_startcount fixed(31), /* start count */ SSPOO8OO

5 sbl_monptr fixed(31), /* mon buf ptr %/ SSPEE810
SSP00820

/* C-block */ SSPOO830
1 vmss_cblock boundary (word) based, SSPO0840
5 vc_sblock pointer(31), SSPOO850

5 vc_ldname character(8), SSPOO860

5 vc_statbits bit(32), SSPOE870

10 vc_b_record bit (1), SSPOO880O

5 wvc_gh fixed(31), SSPOO890

5 vc_sid fixed(31), SSPOO900

5 vc_instance fixed(31), SSP0O910

5 vc_threadid fixed(31), SSP00920

5 vc_ikey character(ss_srv_keylength), SSPOO930

5 vc_lkey character(ss_srv_keylength), SSP00940

5 vc_userid character(64), SSPOO950

5 vc_bytesin fixed(31), SSPO0O960

5 vc_bytesout fixed(31), SSPOO970

5 vc_ibw fixed(31), SSPOO980O

5 vc_ldbw fixed(31), SSPOO990

5 vc_startstck char(8), SSPO1060

5 vc_stopstck char(8), SSPO1010

5 vc_reserved char(128), SSPO1020

5 vc_lddata char(0), SSP01030
SSP01040

/* msg to instance */ SSP0O1050
1 vmss_imsg boundary (word) based, SSP01060
5 vi_ikey character(ss_srv_keylength), SSP01070

5 vi_type fixed(31), SSP01080

5 vi_chits bit(16), SSP01090

10 vi_b_cclose bit(1), SSP01100

10 vi_b_aclose bit(1), SSPO1110

10 vi_b_cdone bit (1), SSP01120

10 vi_b_ldstop bit(1), SSP01130

10 vi_b_newdata bit(1), SSPO1140
SSP01150

/* msg to line driver =/ SSP01160
1 vmss_lmsg boundary (word) based, SSPO1170
5 vl_lkey character(ss_srv_keylength), SSP01180

5 vl_type fixed(31), SSP01190

5 vl_ikey character(ss_srv_keylength), SSPO1200

5 vl_ibits bit(16), SSP01210

10 vl_b_stopack bit(1), SSP01220

10 vl_b_newdata bit(1); SSPO1230
SSP01240

R S / SSP01250
/* entry points */ SSP01260
"""""""""""""""""""""""""""""""" / SSP01270
SSP01280

Declare SSP0O1290
SSP01300

/* bind service to addresses */ SSP01310
ssServiceBind entry SSP0O1320
(SSP01330
fixed(31), /* return code */ SSP01340
fixed(31), /* reason code */ SSP01350
character (%), /* service name */ SSP01360
fixed(31), /* its length */ SSP01370
pointer(31), /* init addr */ SSP01380
pointer(31), /* service addr */ SSP01390
pointer(31), /* completion addr =/ SSP01400
fixed(31) /* service type */ SSP01410
) SSP01420
external as ('BKWVBN'), SSP01430
SSP01440

/* find service block =%/ SSP01450
ssServiceFind entry SSP01460
SSP01470

fixed(31), /* return code */ SSP01480
fixed(31), /* reason code */ SSP01490
character (%), /* service name */ SSPO1500
fixed(31), /* its length */ SSP01510
pointer(31) /* S-blk address */ SSP01520
SSP01530

external as ('BKWVFN'), SSP01540

Appendix I. Language Bindings 455

SSP01550

/* start the server */ SSPO1560
ssServerRun entry SSPO1570
(SSPO1580
fixed(31), /* return code */ SSP01590
fixed(31) /* reason code */ SSPO1600
) SSPO1610
external as ('BKWVRN'), SSP01620

SSPO1630
/* stop the server x/ SSP01640
ssServerStop entry SSP01650
(SSP0O1660
fixed(31), /* return code */ SSP01670
fixed(31) /* reason code */ SSP01680
) SSP0O1690
external as ('BKWVSP'); SSPO1700

SSPE1710

Trie Bindings (SSPLXTRI COPY)

*COPY SSPLXTRI SSPO00O10
SSPO0020

R S e S / SSPOO0O30
/* */ SSPO0040
/* external bindings for trie routines */ SSPOOO50
/* */ SSPO0060
/* */ SSPOOO70
/* Brian Wade April 1999 */ SSPOOO80O
/* */ SSPOOO90O
[*xFkkkkhkkhkkkhkkhhkkhhkkkhkkhkkhkkkhkkkkxkkxkkkkkxkkxx/ SSPOO1O0O
SSP001106

SSP00O120

[*xFkkkkhkkkhkkhkkhhkkhhkkhhkhhhkkhkkhkkhkxkkxkhkkkhkxkkx*/ SSPO0O130
/* constants */ SSP0O140
YR S e S / SSPOO150
SSPO0O160

Declare SSP0OO170
SSP0O180

/* ssTrie return codes */ SSP0O190
ss_tri_rc_success fixed(31) constant(0), SSP0O200
ss_tri_rc_warning fixed(31) constant(4), SSP00210
ss_tri_rc_error fixed(31) constant(8), SSP00220
ss_tri_rc_abend fixed(31) constant(12), SSP00230
SSP00240

/* ssTrie reason codes */ SSP0O250
ss_tri_re_success fixed(31) constant(0), SSP00260
ss_tri_re_bad_size fixed(31) constant(1700+1), SSP00270
ss_tri_re_trie_exists fixed(31) constant(1700+2), SSP00280
ss_tri_re_out_of_storage fixed(31) constant (1700+3), SSP00290
ss_tri_re_dscr_fail fixed(31) constant(1700+4), SSPOO300
ss_tri_re_trie _not_found fixed(31) constant(1700+5), SSPOO310
ss_tri_re_trie_busy fixed(31) constant(1700+6), SSP00320
ss_tri_re_bad_index_len fixed(31) constant(1700+7), SSP0O330
ss_tri_re_bad_capacity fixed(31) constant(1700+8), SSP00340
ss_tri_re_out_of_ds_storage fixed(31) constant(1700+9) ; SSP0OO350
SSP00360

SSP0OO370

[ek e e e koke ok e e ek ke ok ke e sk okeok ok e e ok ke ok ok e e koke ok ok ke e skok ke ok ke ke sk oke / SSP0OO380
/* Entry points */ SSPOO390
[*xFkkkkhkkkhkkkhkkhhkkhhkkhhkkhkkhkkkhkkhkxkkxkkkkkxkkx*/ SSPOO400
SSP00410

Declare SSP00420
SSP0O0430

/* ssTrieCreate %/ SSP0O440
ssTrieCreate entry SSPO0450
(SSP0O0460
fixed(31), /* return code */ SSPOO470
fixed(31), /* reason code */ SSPOO480
char(8), /* trie name */ SSP00490
fixed(31), /* DS size (pgs) =*/ SSPOO500
char(8), /* ASIT */ SSPOO510
fixed(31) /* ALET */ SSP00520

) SSPOO530
external as ('BKWYCR'), SSPOO540
SSPOO550

/* ssTrieDelete %/ SSPOO560
ssTrieDelete entry SSP0O0O570
(SSPOO580
fixed(31), /* return code */ SSPOO590

456 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

fixed(31), /* reason code */ SSPOO600O

char(8) /* trie name */ SSPO0610

SSP00620

external as ('BKWYDE'), SSPOO630
SSPO0640

/* ssTrieRecordInsert =/ SSPOO650
ssTrieRecordInsert entry SSPEO660
(SSPOO670
fixed(31), /* return code */ SSPOO680O

fixed(31), /* reason code */ SSPOO690

char(8), /* trie name */ SSPOO700

fixed(31), /* trie ALET */ SSPOO710

fixed(31), /* record number */ SSP0O720

char (%), /* index buffer */ SSP0O0O730

fixed(31) /* index length %/ SSPOO740

) SSPOO750
external as ('BKWYRI'), SSPOO760
SSPOO770

/* ssTrieRecordList x/ SSPOO780
ssTrieRecordList entry SSPOO790
(SSPOO8OO
fixed(31), /* return code */ SSPOO810

fixed(31), /* reason code */ SSP00820

char(8), /* trie name */ SSPOO830

fixed(31), /* trie ALET */ SSP0O840

char (%), /* index buffer */ SSPO0O850

fixed(31), /* index length %/ SSPOO860O

fixed(31), /* recnum array */ SSPOO870

fixed(31), /* array capacity x*/ SSPOO880O

fixed(31) /* recs found */ SSPOO890

) SSPRO900
external as ('BKWYRL'); SSPO0910
SSP00920

User ID Bindings (SSPLXUID COPY)

*COPY SSPLXUID SSPOO0O10
SSPO0020

[kxFkkkkhkkhhkkkhhkkhkkhhkkhhkkhhkkdhhkkhhkkhkkhkkkkxkkxkkkkkrkkkrkkkxx**kx**kx**xx/ SSPOOO30
/* */ SSPOOO40
/* NAME - Reusable Server Kernel PL/X bindings */ SSPOOO50
/* */ SSPOOO60O
/* FUNCTION - Language bindings for userid services */ SSPOOO70
/* */ SSPOOO8O
/* COPYRIGHT - @VR20Z0Z */ SSPGOO90O
/* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR20Z0Z =/ SSP0O100
/* LICENSED MATERIALS - PROPERTY OF IBM @VR20Z0Z */ SSP00110
/* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR20Z0Z */ SSP00120
/* ALL RIGHTS RESERVED @VR20Z0Z =/ SSP0O130
/* */ SSPEO140
/* STATUS - VM/ESA Version 2 Release 4 @VR20Z0Z */ SSP0OO150
/* */ SSPOO160
/* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSPRO170
[*xFkkkkhkkkhkkkhkkhkkhhkkhhkkkhkkhhkkhkkhkkkkxkkxkkxkkkkkrkkkrkkkxx**kx**kx**xx/ SSPOOL8O
SSP00190

[F*KkFkkkokokkkok ok kok ok kkok ok ok ok sk kok ok kok ok sk kok ok kok ok ko ok ok ok ok ok sk ok ok ook ok ok ok ok ok / SSP00200
/* CONSTANTS */ SSP00210
[ke ke kkeok ok o e ke ok keok ok o ek ok kok ok o ke ok kok ok o ke ok ok ko ok e ke ok okok ok ok ok ok ok ok ok ok ke ok ook ok / SSP00220
SSP00230

Declare SSP00240
SSP00250

/* config constants */ SSP00260
ss_uid_index_width fixed(31) constant(64), SSP00O270
SSP00280

/* return and reason codes */ SSP00290
ss_uid_rc_success fixed(31) constant(0), SSPOO300
ss_uid_rc_warning fixed(31) constant(4), SSP0O310
ss_uid_rc_error fixed(31) constant(8), SSP00320
ss_uid_rc_abend fixed(31) constant(12), SSPOO330
SSP00340

ss_uid_re_success fixed(31) constant(0), SSPOO350
ss_uid_re_not_found fixed(31) constant(100+1); SSPOO360
SSPBO370

[FKKkFkkkokokkkok ok kok ok kkok ok kok ok sk kok ok kok ok sk ok ok kok ok ko ok ok ok ok ok sk kok ok kok ok ok ok ok ok / SSP00380
/* STRUCTURES */ SSP0O390
[ke ke kkeok ok ok e ke ok kok ok ok ek ok kok ok o ke ok ok kok ok o ke ok ok okok ok ko kok ok ok ok ok ook ok ok ok ook / SSPOO400
SSP00410

[*xFkkkkhkkhhkkkhkkhkkhhkkhhkkkhkkdhkkhkkhkkkkxkkxkkxkhkkkkkkkxk*/ SSPO0420
/* FUNCTIONS */ SSP00430

Appendix I. Language Bindings 457

[FFrF KK F KKK KKK I KK I KK F KK I KK F KK F KKK F KK F KK KKK Kk KKk F Kk F KA /
Declare

/* routine to map user IDs x/

ssUseridMap entzry

(

fixed(31), /* return code */

fixed(31), /* reason code */

character (%), /* input conn */

fixed(31), /* its length */

character (%), /* input node */

fixed(31), /* its length */

character (%), /* input user */

fixed(31), /* its length */

character(ss_uid_index_width), /* output user */

fixed(31) /* its length */

)

external as ('BKWBMU');

Worker Bindings (SSPLXWRK COPY)
*COPY SSPLXWRK

[HREF AR AR ARSI SRS ISR AR RS IS SRR AR AT AR SRS /
/* */
/* NAME - Reusable Server Kernel PL/X bindings */
/* */
/* FUNCTION - Language bindings for worker services */
/* */
/* COPYRIGHT - */
/* */
/* THIS MODULE IS "RESTRICTED MATERIALS OF IBM" */
/* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* ALL RIGHTS RESERVED. */
/* */
/* STATUS - VM/ESA Version 2, Release 4.0 */
/* */
/* CHANGE ACTIVITY - New for VM/ESA Version X Release Y */
/* @SI124VM - alternate userid support in worker API */
s /
/***/
/* CONSTANTS */
||| /
Declare

/* return and reason codes */

ss_wrk_rc_success fixed(31) constant(0),

ss_wrk_rc_warning fixed(31) constant(4),

ss_wrk_rc_error fixed(31) constant(8),

ss_wrk_rc_abend fixed(31) constant(12),

ss_wrk_re_success fixed(31) constant(0),
ss_wrk_re_out_of_storage fixed(31) constant (1600+1),
ss_wrk_re_bad_count fixed(31) constant(1600+2),
ss_wrk_re_bad_flag_name fixed(31) constant(1600+3),
ss_wrk_re_bad_flag_value fixed(31) constant (1600+4),
ss_wrk_re_no_class fixed(31) constant(1600+5),
ss_wrk_re_no_subordinates fixed(31) constant(1600+6),
ss_wrk_re_algtries_exceeded fixed(31) constant (1600+7),
ss_wrk_re_autolog_fail fixed(31) constant(1600+8),
ss_wrk_re_timer_fail fixed(31) constant(1600+9),
ss_wrk_re_iucvcon_fail fixed(31) constant (1600+10),
ss_wrk_re_force_fail fixed(31) constant(1600+11),
ss_wrk_re_force_timeout fixed(31) constant(1600+12),
ss_wrk_re_oper_delete fixed(31) constant (1600+13),

/* option flag names x/

ss_wrk_ofn_prefer_empty fixed(31) constant(0),
ss_wrk_ofn_retry_count fixed(31) constant(1),
ss_wrk_ofn_alt_userid fixed(31) constant(2), /*@SI124VM*/
ss_wrk_ofn_alt_seclabel fixed(31) constant(3), /*@SI124VM*/

/* option flag values x/
ss_wrk_ofv_no fixed(31) constant(0),

458 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

SSPO0440
SSP00450
SSPO0O460
SSPO0470
SSP00480
SSPO0490
SSPOO500
SSP00510
SSP00520
SSPOO530
SSP00540
SSPOO550
SSPOO560
SSPOO570
SSPO0O580
SSPOO590
SSPOO600O
SSPO0610
SSPO0620
SSPO0630

SSPO0OO10
SSPO0O020
SSPOOO30
SSPOO040
SSPOOO50
SSPOOO60O
SSPOOO70
SSPOOO8O
SSPOOO90
SSP001006
SSP001106
SSP00120
SSP00130
SSP00140
SSP00150
SSP00160
SSP0O0170
SSP00180
SSP00190
SSP00200
SSP00210
SSP00220
SSP00230
SSP00240
SSP00250
SSP00260
SSP00270
SSP00280
SSP00290
SSPOO300
SSP00310
SSP00320
SSP0OO330
SSP00340
SSPOO350
SSPOO360
SSPOO370
SSPOO380
SSP00390
SSPO0O400
SSP00410
SSP00420
SSP00430
SSP00440
SSP00450
SSPO0O460
SSPO0470
SSP00480
SSPO0O490
SSPOO500
SSP00510
SSP00520
SSPO0O530
SSP00540
SSPOO550
SSPOO560

ss_wrk_ofv_yes fixed(31) constant(1);

/***/

/* STRUCTURES */
R AR AR R AR AR AR AR A A A A /
AR AR AR AR AR A /
/* FUNCTIONS */

/***/
Declare

/* allocate a worker machine =%/
ssWorkerAllocate entry

(

fixed(31), /* return code */
fixed(31), /* reason code */
pointer(31), /* instance C-block */
char(8), /* class name */
fixed(31), /* option count */
fixed(31), /* option names */
fixed(31), /* option values */
pointer(31), /* worker C-block */
fixed(31) /* connection ID */

)
external as ('BKWCAL');

SSPOO570
SSPOO580
SSPO0O590
SSPOO600O
SSP00610
SSP00620
SSPO0630
SSP00640
SSPO0O650
SSPO0O660O
SSPO0670
SSPO0O680O
SSPO0O690
SSPOO700
SSPOO710
SSPOO720
SSPO0730
SSPO0O740
SSPOO750
SSPO0760
SSPOO770
SSPOO780
SSPOO790
SSPOO8OO
SSPO0810
SSP00820
SSPOO830

Appendix I. Language Bindings 459

460 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Appendix J. What's Changed Since the Beta

The reusable server kernel was available for several months before it became generally available. There
are some differences between the beta level and the GA level. The following table summarizes the
differences and describes the actions you must take to convert your program to run on the GA level.

Table 58. Differences Between Beta and GA Levels

Topic

Beta

GA

Action

Name of your
mainline

VSSMAIN

RSKMAIN

Edit and recompile or
reassemble your mainline.

Profile file name

PROFILE VMSS

PROFILE RSK

Change the name of your
profile.

Subcom name VMSS RSK Change your EXECs to use
ADDRESS RSK.
Entry point names VSSxxx BKWx XX Recompile or reassemble

your program.

Names of CMS-
or CP-managed
objects the
server kernel
creates (mutexes,
semaphores,
condition
variables, queues,
subpools,
HNDIUCV exit
names, data
spaces, and so on)

Often started with SS or VSS

All start with BKW or DMS

Avoid prefixes BKW and DMS.

IPC message keys,
event keys, timer
userwords

Often started with SS or VSS

All start with BKW

Avoid prefix BKW.

Macro library

VSSGPI MACLIB

DMSGPI MACLIB

Change the control file you

containing use for assemblies.
SSASMxxx

bindings

Macro library VSSPLX MACLIB DMSRP MACLIB Change the control file you
containing use for compilations.
SSPLXXXX

bindings

The reusable VSS TXTLIB BKWLIB TXTLIB Change your GLOBAL
server kernel text TXTLIB command.
library

Supplementary PSL TXTLIB DMSPSLK TXTLIB Change your GLOBAL

text library
shipped with the
beta

TXTLIB command.

© Copyright IBM Corp. 1999, 2024

461

Table 58. Differences Between Beta and GA Levels (continued)

Topic

Beta

GA

Action

Default names for
authorization data
files

CMS filetypes started with

VSS

CMS filetypes start with RSK

Rename your files or adjust
PROFILE RSK.

Default name for
storage group
configuration file

DEFAULT VSSSGP A

DEFAULT RSKSGP A

Rename your file or adjust
PROFILE RSK.

Default name for
user ID mapping
file

DEFAULT VSSUMAP x

DEFAULT RSKUMAP =*

Rename your file or adjust
PROFILE RSK.

Exit name a
worker control
program should
use when it issues
HNDIUCV SET

VSSWORK

RSKWORK

Default filetype
for request files
arriving for the
SPOOL line driver

VSSRQST

RSKRQST

Change your client or
PROFILE RSK appropriately.

Default filetype
for response files
generated the
SPOOL line driver

VSSRESP

RSKRESP

Change your client or
PROFILE RSK appropriately.

Message
repository file

VSSUME TEXT

BKWUME TEXT

Change the SET LANGUAGE
command your server issues
when it starts.

Runtime
environment
manager module

VSSRTE MODULE

BKWRTE MODULE

The old module is
incompatible and must be
replaced with the new one.

Message numbers

VSScccnnnns

BKWccecnnnns

Probably nothing.

462 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 1999, 2024 463

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information

This publication primarily documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of z/VM.

This publication also documents information that is NOT intended to be used as Programming Interfaces
of z/VM. This information is identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

NOT-PI

<...NOT Programming Interface information...>

NOT-PI end

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world-wide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

464 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Terms and Conditions for Product Documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use

You may reproduce, distribute and display these publications solely within your enterprise provided

that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS

ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,

to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

« The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)

« Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 465

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

466 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information

The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview

« z/VM: License Information, GI113-4377
« z/VM: General Information, GC24-6286

Installation, Migration, and Service

« z/VM: Installation Guide, GC24-6292

e z/VM: Migration Guide, GC24-6294

« z/VM: Service Guide, GC24-6325

« z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration

= z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
« z/VM: CMS Planning and Administration, SC24-6264

« z/VM: Connectivity, SC24-6267

= z/VM: CP Planning and Administration, SC24-6271

« z/VM: Getting Started with Linux on IBM Z, SC24-6287

« z/VM: Group Control System, SC24-6289

= z/VM: I/O Configuration, SC24-6291

« z/VM: Running Guest Operating Systems, SC24-6321

« z/VM: Saved Segments Planning and Administration, SC24-6322

z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning

« z/VM: CP Exit Customization, SC24-6269
» z/VM: Performance, SC24-6301

Operation and Use

« z/VM: CMS Commands and Utilities Reference, SC24-6260
e z/VM: CMS Primer, SC24-6265

« z/VM: CMS User's Guide, SC24-6266

« z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1999, 2024 467

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/i1343773.pdf#nameddest=i1343773
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa2_v7r4.pdf#nameddest=hcpa2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpf2_v7r4.pdf#nameddest=hcpf2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa3_v7r4.pdf#nameddest=hcpa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd1_v7r4.pdf#nameddest=dmsd1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl0_v7r4.pdf#nameddest=hcpl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe2_v7r4.pdf#nameddest=hcpe2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa7_v7r4.pdf#nameddest=hcpa7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcps0_v7r4.pdf#nameddest=hcps0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe9_v7r4.pdf#nameddest=hcpe9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb2_v7r4.pdf#nameddest=dmsb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb3_v7r4.pdf#nameddest=dmsb3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

z/VM: System Operation, SC24-6326

« z/VM: Virtual Machine Operation, SC24-6334

z/VM: XEDIT Commands and Macros Reference, SC24-6337
z/VM: XEDIT User's Guide, SC24-6338

Application Programming

- z/VM: CMS Application Development Guide, SC24-6256

« z/VM: CMS Application Development Guide for Assembler, SC24-6257

= z/VM: CMS Application Multitasking, SC24-6258

« z/VM: CMS Callable Services Reference, SC24-6259

« z/VM: CMS Macros and Functions Reference, SC24-6262

« z/VM: CMS Pipelines User's Guide and Reference, SC24-6252

 z/VM: CP Programming Services, SC24-6272

« z/VM: CPI Communications User's Guide, SC24-6273

« z/VM: ESA/XC Principles of Operation, SC24-6285

« z/VM: Language Environment User's Guide, SC24-6293

« z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
« z/VM: OpenExtensions Callable Services Reference, SC24-6296

« z/VM: OpenExtensions Commands Reference, SC24-6297

» z/VM: OpenExtensions POSIX Conformance Document, GC24-6298

« z/VM: OpenExtensions User's Guide, SC24-6299

« z/VM: Program Management Binder for CMS, SC24-6304

« z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
« z/VM: REXX/VM Reference, SC24-6314

« z/VM: REXX/VM User's Guide, SC24-6315

- z/VM: Systems Management Application Programming, SC24-6327

 z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis

e z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
z/VM: CP Messages and Codes, GC24-6270

z/VM: Diagnosis Guide, GC24-6280

z/VM: Dump Viewing Facility, GC24-6284

z/VM: Other Components Messages and Codes, GC24-6300
z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM

« z/VVM: DFSMS/VM Customization, SC24-6274

« z/VM: DFSMS/VM Diagnosis Guide, GC24-6275

« z/VM: DFSMS/VM Messages and Codes, GC24-6276
e z/VM: DFSMS/VM Planning Guide, SC24-6277

468 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb1_v7r4.pdf#nameddest=hcpb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb6_v7r4.pdf#nameddest=dmsb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb5_v7r4.pdf#nameddest=dmsb5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb5_v7r4.pdf#nameddest=hcpb5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ceeb7_v7r4.pdf#nameddest=ceeb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp4_v7r4.pdf#nameddest=dmsp4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp3_v7r4.pdf#nameddest=dmsp3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp0_v7r4.pdf#nameddest=dmsp0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp2_v7r4.pdf#nameddest=dmsp2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsl0_v7r4.pdf#nameddest=dmsl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsk7_v7r4.pdf#nameddest=dmsk7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb1_v7r4.pdf#nameddest=dmsb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb0_v7r4.pdf#nameddest=dmsb0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmse6_v7r4.pdf#nameddest=dmse6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc1_v7r4.pdf#nameddest=hcpc1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt1_v7r4.pdf#nameddest=hcpt1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt5_v7r4.pdf#nameddest=hcpt5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt2_v7r4.pdf#nameddest=hcpt2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt0_v7r4.pdf#nameddest=hcpt0_v7r4

« z/VM: DFSMS/VM Removable Media Services, SC24-6278
« z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM

« z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
= z/VM: Directory Maintenance Facility Messages, GC24-6282
 z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
« Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/
docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580

« Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?
topic=0sa-icc-3215-support), SA23-2247

« Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/
SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003

« Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/
SSLTBW_2.3.0/pdf/ica2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM

 z/VM: Performance Toolkit Guide, SC24-6302
« z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

» z/VM: Performance, SC24-6301. See z/VVM Performance Data Pump.
= z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF® Security Server for z/VM

« z/VM: RACF Security Server Auditor's Guide, SC24-6305

« z/VM: RACF Security Server Command Language Reference, SC24-6306
« z/VM: RACF Security Server Diagnosis Guide, GC24-6307

« z/VM: RACF Security Server General User's Guide, SC24-6308

» z/VM: RACF Security Server Macros and Interfaces, SC24-6309

« z/VM: RACF Security Server Messages and Codes, GC24-6310

« z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
= z/VM: RACF Security Server System Programmer's Guide, SC24-6312
 z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM

« z/VM: RSCS Networking Diagnosis, GC24-6316

z/VM: RSCS Networking Exit Customization, SC24-6317

z/VM: RSCS Networking Messages and Codes, GC24-6318
z/VM: RSCS Networking Operation and Use, SC24-6319

z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 469

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt3_v7r4.pdf#nameddest=hcpt3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt4_v7r4.pdf#nameddest=hcpt4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk4_v7r4.pdf#nameddest=hcpk4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk2_v7r4.pdf#nameddest=hcpk2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk3_v7r4.pdf#nameddest=hcpk3_v7r4
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl8_v7r4.pdf#nameddest=hcpl8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl7_v7r4.pdf#nameddest=hcpl7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha8_v7r4.pdf#nameddest=icha8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha4_v7r4.pdf#nameddest=icha4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ichb2_v7r4.pdf#nameddest=ichb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha1_v7r4.pdf#nameddest=icha1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha3_v7r4.pdf#nameddest=icha3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha6_v7r4.pdf#nameddest=icha6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha7_v7r4.pdf#nameddest=icha7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha2_v7r4.pdf#nameddest=icha2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ichc6_v7r4.pdf#nameddest=ichc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta7_v7r4.pdf#nameddest=dmta7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta4_v7r4.pdf#nameddest=dmta4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta3_v7r4.pdf#nameddest=dmta3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta2_v7r4.pdf#nameddest=dmta2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta1_v7r4.pdf#nameddest=dmta1_v7r4

TCP/IP for z/VM

« z/VM: TCP/IP Diagnosis Guide, GC24-6328

z/VM: TCP/IP LDAP Administration Guide, SC24-6329
z/VM: TCP/IP Messages and Codes, GC24-6330

z/VM: TCP/IP Planning and Customization, SC24-6331
z/VM: TCP/IP Programmer's Reference, SC24-6332
z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities

« Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/
SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Related Products

XL C++ for z/VM

e XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
« XL C/C++ for z/VM: User's Guide, SC09-7625

z/0S

IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

470 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kdpl0_v7r4.pdf#nameddest=kdpl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kldl0_v7r4.pdf#nameddest=kldl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kinl0_v7r4.pdf#nameddest=kinl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kill0_v7r4.pdf#nameddest=kill0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kiml0_v7r4.pdf#nameddest=kiml0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kijl0_v7r4.pdf#nameddest=kijl0_v7r4
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/edclv_v7r4.pdf#nameddest=edclv_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/vmcug_v7r4.pdf#nameddest=vmcug_v7r4
https://www.ibm.com/docs/en/zos

Index

A

allocate connection to worker machine 322

allocate memory 280
anchor function
ssAnchorGet 214
ssAnchorSet 216
anchor word
setting and querying value 49
API Details 55
APPC service commands
APPC LIST 81
APPC QUERY 83
APPC REPORT 84
APPC START 85
APPC STOP 87
APPC/VM
using for connectivity 18
AUTH service commands
AUTH CRECLASS 88
AUTH CREOBJECT 89
AUTH DELCLASS 90
AUTH DELOBJECT 91
AUTH DELUSER 92
AUTH LISTCLASS 93
AUTH LISTOBJECT 94
AUTH MODCLASS 95
AUTH PERMIT 96
AUTH QOBJECT 97
AUTH RELOAD 98
authorization
activating 40
administrative commands 40
database
initialize 37
storage 37
entry points 35
group 36
naming conventions 36
on minidisks 37
other services 40
overview 35
stopping and starting service 24
authorization files
on CMS minidisks 37
on Shared File System (SFS) 38
authorization function
ssAuthCreateClass 217
ssAuthCreateObject 219
ssAuthDeleteClass 221
ssAuthDeleteObject 223
ssAuthDeleteUser 225
ssAuthListClasses 227
ssAuthListObjects 229
ssAuthModifyClass 231
ssAuthPermitUser 233
ssAuthQueryObject 236

authorization function (continued)
ssAuthQueryRule 238
ssAuthTestOperations 242

basic concepts

reusable server kernel 1
bind service name to entry points 289
bindings, language 415
bring a storage group online 306
building a server module 9

C

CACHE service commands
CACHE CREATE 100
CACHE DELETE 101
CACHE LIST 102

calling
entry points 7

client function
ssClientDataGet 258
ssClientDatalInit 260
ssClientDataPut 261
ssClientDataTerm 263

close cached file 247

CMS minidisks
using 37

CMS service commands
CMS 103

CMS Shared File System (SFS)
using 38

CMSSTOR facility
storage management 51

commands
APPC LIST 81
APPC QUERY 83
APPC REPORT 84
APPC START 85
APPC STOP 87
AUTH CRECLASS 88
AUTH CREOBJECT 89
AUTH DELCLASS 90
AUTH DELOBJECT 91
AUTH DELUSER 92
AUTH LISTCLASS 93
AUTH LISTOBJECT 94
AUTH MODCLASS 95
AUTH PERMIT 96
AUTH QOBJECT 97
AUTH RELOAD 98
BKWENRCP 99
CACHE CREATE 100
CACHE DELETE 101
CACHE LIST 102
CMS 103

Index 471

commands (continued)

CONFIG AUT_CACHE 104

CONFIG AUT_DATA_1 105
CONFIG AUT_DATA_2 106
CONFIG AUT_FREE 107

CONFIG AUT_INDEX_1 108
CONFIG AUT_INDEX_2 109
CONFIG AUT_LOCATION 110
CONFIG AUT_LOG 111

CONFIG AUTHCHECK_AUTH 112
CONFIG AUTHCHECK_CACHE 113
CONFIG AUTHCHECK_CMS 114
CONFIG AUTHCHECK_CONFIG 115
CONFIG AUTHCHECK_CP 116
CONFIG AUTHCHECK_ENROLL 117
CONFIG AUTHCHECK_LD 118
CONFIG AUTHCHECK_MONITOR 119
CONFIG AUTHCHECK_SERVER 120
CONFIG AUTHCHECK_SGP 121
CONFIG AUTHCHECK_TRIE 122
CONFIG AUTHCHECK_USERID 123
CONFIG AUTHCHECK_WORKER 124
CONFIG MEM_MAXFREE 125
CONFIG MON_KERNEL_ROWS 126
CONFIG MON_PRODUCT_ID 127
CONFIG MON_USER_SIZE 128
CONFIG MSG_NOHDR 129
CONFIG NOMAP_APPC 130
CONFIG NOMAP_IUCV 131
CONFIG NOMAP_MSG 132
CONFIG NOMAP_SPOOL 133
CONFIG NOMAP_TCP 134

CONFIG NOMAP_UDP 135

CONFIG RSCS_USERID 136
CONFIG SGP_FILE 137

CONFIG SPL_CATCHER 138
CONFIG SPL_INPUT_FT 139
CONFIG SPL_OUTPUT_FT 140
CONFIG SRV_THREADS 141
CONFIG UMAP_FILE 142

CONFIG VM_CONSOLE 143
CONFIG VM_MSG 144

CONFIG VM_SPOOL 145

CONFIG VM_SUBCOM 146
CONSOLE LIST 147

CONSOLE QUERY 148

CONSOLE START 149

CONSOLE STOP 150

CP151

ENROLL COMMIT 152

ENROLL DROP 153

ENROLL GET 154

ENROLL INSERT 155

ENROLL LIST 156

ENROLL LOAD 157

ENROLL RECLIST 158

ENROLL REMOVE 159

issuing to line drivers 22

IUCV LIST 160

IUCV QUERY 161

IUCV REPORT 162

IUCV START 163

IUCV STOP 164

MONITOR DISPLAY 165

commands (continued)

MONITOR USER 166
MSG LIST 167

MSG QUERY 168

MSG START 169

MSG STOP 170
SERVER MONITOR 172
SERVER SERVICES 171
SERVER STOP 173
SGP CREATE 174

SGP DELETE 175

SGP LIST 176

SGP MDLIST 178

SGP START 179

SGP STOP 180

SPOOL LIST 181
SPOOL QUERY 182
SPOOL START 183
SPOOL STOP 184
SUBCOM LIST 185
SUBCOM QUERY 186
SUBCOM START 187
SUBCOM STOP 188
TCP LIST 189

TCP QUERY 190

TCP REPORT 191

TCP START 192

TCP STOP 194

TRIE LIST 195

UDP LIST 196

UDP QUERY 197

UDP REPORT 198

UDP START 199

UDP STOP 200
USERID MAP 201
USERID RELOAD 202
WORKER ADD 203
WORKER CLASSES 204
WORKER DELCLASS 205
WORKER DELETE 206
WORKER DISTRIBUTE 207
WORKER MACHINES 208
WORKER RESET 210
WORKER STATUS 211

commit enrollment set 264
CONFIG service commands

CONFIG AUT_CACHE 104

CONFIG AUT_DATA_1 105

CONFIG AUT_DATA_2 106

CONFIG AUT_FREE 107

CONFIG AUT_INDEX_1 108
CONFIG AUT_INDEX_2 109
CONFIG AUT_LOCATION 110
CONFIG AUT_LOG 111

CONFIG AUTHCHECK_AUTH 112
CONFIG AUTHCHECK_CACHE 113
CONFIG AUTHCHECK_CMS 114
CONFIG AUTHCHECK_CONFIG 115
CONFIG AUTHCHECK_CP 116
CONFIG AUTHCHECK_ENROLL 117
CONFIG AUTHCHECK_LD 118
CONFIG AUTHCHECK_MONITOR 119
CONFIG AUTHCHECK_SERVER 120
CONFIG AUTHCHECK_SGP 121

472 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

CONFIG service commands (continued)
CONFIG AUTHCHECK_TRIE 122
CONFIG AUTHCHECK_USERID 123
CONFIG AUTHCHECK_WORKER 124
CONFIG MEM_MAXFREE 125
CONFIG MON_KERNEL_ROWS 126
CONFIG MON_PRODUCT_ID 127
CONFIG MON_USER_SIZE 128
CONFIG MSG_NOHDR 129
CONFIG NOMAP_APPC 130
CONFIG NOMAP_IUCV 131
CONFIG NOMAP_MSG 132
CONFIG NOMAP_SPOOL 133
CONFIG NOMAP_TCP 134
CONFIG NOMAP_UDP 135
CONFIG RSCS_USERID 136
CONFIG SGP_FILE 137
CONFIG SPL_CATCHER 138
CONFIG SPL_INPUT_FT 139
CONFIG SPL_OUTPUT_FT 140
CONFIG SRV_THREADS 141
CONFIG UMAP_FILE 142
CONFIG VM_CONSOLE 143
CONFIG VM_MSG 144
CONFIG VM_SPOOL 145
CONFIG VM_SUBCOM 146

configuation parameters 65

configuation variables 66

configuring the server 63

connectivity
APPC/VM 18
IUCV 18
line driver 11
MSG/SMSG commands
20
spool file 19
subcom 21
TCP/IP 16
UDP/IP 17
virtual console 21

console line driver 23

CONSOLE service commands
CONSOLE LIST 147
CONSOLE QUERY 148
CONSOLE START 149
CONSOLE STOP 150

CP service commands 151

create a storage group 293

create a trie 313

create cache 244

create data space 282

create object 219

create object class 217

D

delete
aclass 221
a storage group 295
auser225
an object 223
cache 246
subpool 284

delete a trie 315

Distributing Worker Machines 54
drop enrollment set 266

E

ENROLL service commands
BKWENRCP 99
ENROLL COMMIT 152
ENROLL DROP 153
ENROLL GET 154
ENROLL INSERT 155
ENROLL LIST 156
ENROLL LOAD 157
ENROLL RECLIST 158
ENROLL REMOVE 159

enrollment function
ssEnrollCommit 264
ssEnrollDrop 266
ssEnrollList 268
ssEnrollLoad 270
ssEnrollRecordGet 272
ssEnrollRecordInsert 274
ssEnrollRecordList 276
ssEnrollRecordRemove 278

entry point
authorization 35
calling 7
initialization 6
RSKMAIN 63
service 6

F

find a storage group 297

find service by name 291

flow of control, reusable server kernel 63

Functional Overview 53

functions
ssAnchorGet 214
ssAnchorSet 216
ssAuthCreateClass 217
ssAuthCreateObject 219
ssAuthDeleteClass 221
ssAuthDeleteObject 223
ssAuthDeleteUser 225
ssAuthListClasses 227
ssAuthListObjects 229
ssAuthModifyClass 231
ssAuthPermitUser 233
ssAuthQueryObject 236
ssAuthQueryRule 238
ssAuthReload 240
ssAuthTestOperations 242
ssCacheCreate 244
ssCacheDelete 246
ssCacheFileClose 247
ssCacheFileOpen 248
ssCacheFileRead 252
ssCacheQuery 254
ssCacheXlTabSet 256
ssClientDataGet 258
ssClientDatalInit 260
ssClientDataPut 261

Index 473

functions (continued)
ssClientDataTerm 263
ssEnrollCommit 264
ssEnrollDrop 266
ssEnrollList 268
ssEnrollLoad 270
ssEnrollRecordGet 272
ssEnrollRecordInsert 274
ssEnrollRecordList 276
ssEnrollRecordRemove 278
ssMemoryAllocate 280
ssMemoryCreateDS 282
ssMemoryDelete 284
ssMemoryRelease 285
ssServerRun 287
ssServerStop 288
ssServiceBind 289
ssServiceFind 291
ssSgpCreate 293
ssSgpDelete 295
ssSgpFind 297
ssSgplist 299
ssSgpQuery 301
ssSgpRead 304
ssSgpStart 306
ssSgpStop 309
ssSgpWrite 311
ssTrieCreate 313
ssTrieDelete 315
ssTrieRecordInsert 316
ssTrieRecordList 318
ssUseridMap 320
ssWorkerAllocate 322

G

get data from client buffers 258
get enrollment record 272
get value of anchor word 214
group

authorization 36

I

indexes
example 47
lookup by prefix 47
sharing 47
indexing 47
initialization entry point 6
initialize client buffers 260
initializing
the server 63
insert enrollment record 274
insert record into trie 316
IUCV
using for connectivity 18
IUCV service commands
IUCV LIST 160
IUCV QUERY 161
IUCV REPORT 162
IUCV START 163
IUCV STOP 164

L

language bindings
assembler
anchor 415
authorization 416
cache 421
client 423
enrollment 425
memory 428
services 433
storage group 430
trie 436
user ID 438
worker 439
PL/X
anchor 440
authorization 441
cache 444
client 447
enrollment 448
memory 450
services 454
storage group 451
trie 456
user ID 457
worker 458
line driver
connectivity 11
console 23
control block 12
organization 11
routing data 22
self-sourced 23
TCP/IP 22
writing your own 23
list all storage groups 299
list classes 227
list enrollment sets 268
list matching records 318
list objects in class 229
list records in enrollment set 276
list tries 195
load enrollment set 270

M

mapping file, user ID 69

memory function
ssMemoryAllocate 280
ssMemoryCreateDS 282
ssMemoryDelete 284
ssMemoryRelease 285

message examples, notation used in 80

migrate
between repositories 38
minidisks
using 37
modify object class 231
MONITOR service commands
MONITOR DISPLAY 165
MONITOR USER 166
MSG/SMSG commands
connectivity 20

474 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

MSG/SMSG commands (continued)

console line driver 23

TCP/IP line driver 22
MSG/SMSG service

commands

MSG LIST 167

MSG QUERY 168

MSG START 169

MSG STOP 170

N

naming convention
authorization 36
notation used in message and response examples 80

o

open cached file 248
Operator Commands 56

P

parameters, configuration 65
permit a user 233
PLXSOCK 330
preface xix
procedure
entry
assembler 61
conventions 61
PL/X 61
register content 60
exit
assembler 61
conventions 61
PL/X 61
produce a mapped user ID 320
PROFILE RSK exec 63, 65
put data to client buffers 261

Q

query a specific storage group 301
query a user's authorizations 238
query an object 236

query cache 254

R

read blocks from a storage group 304
read cached file 252
release memory 285
remove enrollment record 278
repository

migrating authorization data 38
reserved names 375
reset internal authorization engine 240
response examples, notation used in 80
reusable server kernel

basic concepts 1

configuring 63

execution 63

reusable server kernel (continued)
functions 327
initializing 63
line driver 22
programming with sockets
data structures 330
querying value
of anchor word 49
restrictions 329
setting value
of anchor word 49
storage group 69
RSKMAIN 63
run the server 287
run-time anchor block (RAB) 59

S

self-sourced line driver 23
server
initialization 5
mainline 4
program 4
Server Configuration Considerations 54
server function
ssServerRun 287
ssServerStop 288
server module
building 9
SERVER service commands
SERVER MONITOR 172
SERVER SERVICES 171
SERVER STOP 173
service
authorization 24
console line driver 23
starting and stopping 22
service entry point 6
service function
ssServiceBind 289
ssServiceFind 291
set translation table 256
set value of anchor word 216
SGP service commands
SGP CREATE 174
SGP DELETE 175
SGP LIST 176
SGP MDLIST 178
SGP START 179
SGP STOP 180
Shared File System (SFS)
using 38
socket calls
PS_accept 331
PS_applinit 332
PS_applterm 333
PS_async_read 334
PS_async_recv 336
PS_async_sendto 337
PS_async_write 339
PS_bind 340
PS_cancel 341
PS_close 342
PS_connect 343

Index 475

socket calls (continued)
PS_gethostid 344
PS_getpeername 345
PS_getsockname 345
PS_getsockopt 346
PS_ioctl 347
PS_libinit 349
PS_libterm 350
PS_listen 351
PS_read 352
PS_recvfrom 352
PS_select 354
PS_sendto 355
PS_setsockopt 357
PS_shutdown 358
PS_socket 358
PS_write 359
sockets
functions 327
spool file
using for connectivity 19
SPOOL service commands
SPOOL LIST 181
SPOOL QUERY 182
SPOOL START 183
SPOOL STOP 184
starting and stopping service 22
stop the server 288
storage function
ssSgpCreate 293
ssSgpDelete 295
ssSgpFind 297
ssSgplist 299
ssSgpQuery 301
ssSgpRead 304
ssSgpStart 306
ssSgpStop 309
ssSgpWrite 311
storage group
reusable server kernel 69
storage management
using CMSSTOR facility 51
subcom
connectivity 21
SUBCOM service commands
SUBCOM LIST 185
SUBCOM QUERY 186
SUBCOM START 187
SUBCOM STOP 188
syntax diagrams, how to read 78

T

take a storage group offline 309
TCP service commands

TCP LIST 189

TCP QUERY 190

TCP REPORT 191

TCP START 192

TCP STOP 194
TCP/IP

using for connectivity 16
terminate client buffers 263
test a user's access rights 242

The Worker C-Block 55
trademarks 464
trie function
ssTrieCreate 313
ssTrieDelete 315
ssTrieRecordInsert 316
ssTrieRecordList 318
TRIE service commands
TRIE LIST 195

U

UDP service commands
UDP LIST 196
UDP QUERY 197
UDP REPORT 198
UDP START 199
UDP STOP 200
UDP/IP
using for connectivity 17
user ID mapping file 69
USERID service commands
USERID MAP 201
USERID RELOAD 202

\'}

variables, configuration 66
virtual console
connectivity 21

w

What's Changed Since the Beta 461

Worker Machines 53

WORKER service commands
WORKER ADD 203
WORKER CLASSES 204
WORKER DELCLASS 205
WORKER DELETE 206
WORKER DISTRIBUTE 207
WORKER MACHINES 208
WORKER RESET 210
WORKER STATUS 211

write blocks to a storage group 311

Writing a Worker Machine Program 57

476 z/VM: 7.4 Reusable Server Kernel Programmer's Guide and Reference

Product Number: 5741-A09

Printed in USA

SC24-6313-74

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information

	How to provide feedback to IBM
	Summary of Changes for z/VM: Reusable Server Kernel Programmer's Guide and Reference
	SC24-6313-74, z/VM 7.4 (September 2024)
	SC24-6313-73, z/VM 7.3 (September 2023)
	SC24-6313-73, z/VM 7.3 (September 2022)
	SC24-6313-01, z/VM 7.2 (September 2020)

	Chapter 1. Basic Concepts
	Motivation
	Overall Server Organization
	Jobs of the Mainline
	More About Services
	Anything Else?
	Calling The Entry Points
	DMSGPI Macros
	DMSRP Macros

	Building a Server Module
	Setup At A Glance
	Other Considerations

	Chapter 2. Connectivity and Line Drivers
	The Service Instance's View
	The Client Block, or C-Block
	From Line Driver to Instance
	From Instance to Line Driver

	TCP/IP Considerations
	UDP/IP Considerations
	IUCV Considerations
	APPC/VM Considerations
	Spool Considerations
	MSG/SMSG Considerations
	Virtual Console Considerations
	Subcom Considerations
	Line Driver Commands
	More Detail on Line Drivers
	Line Drivers as Services
	Self-Sourced Line Drivers
	Writing Your Own Line Driver

	Authorization

	Chapter 3. DASD Management
	DASD Subsystem Overview
	Limits
	Modes of Operation
	Programming Interfaces
	Administrator and Operator Considerations
	Creating a Storage Group
	Changing the Minidisks in A Storage Group
	Deleting A Storage Group

	Chapter 4. File Caching
	Managing the Set of Caches
	File Operations
	Transformations
	Example
	Stale Data
	Cache Utilization
	Constraints

	Chapter 5. Authorization
	Overview
	Entry Points
	Naming Conventions and Other Limits
	Group Authorization Considerations
	Persistent Storage of Authorization Data
	Using CMS Minidisks
	Using the CMS Shared File System
	Migrating Among Repositories

	Parallelism
	Administrative Commands
	Other Services' Use of Authorization
	Overview
	Activation

	Chapter 6. Enrollment
	Programming Interfaces
	Operator Commands

	Chapter 7. Indexing by Prefixes
	Overview
	Example
	Index Sharing
	No Record Deletion?
	Commands

	Chapter 8. Anchors
	Chapter 9. Memory Management
	Chapter 10. Worker Machines
	Functional Overview
	Server Configuration Considerations
	Distributing Worker Machines
	API Details
	The Worker C-Block
	Operator Commands
	Writing a Worker Machine Program

	Chapter 11. Run-Time Environment
	Chapter 12. Initialization and Profiles
	Flow of Control
	Execution Conditions within RSKMAIN
	PROFILE RSK
	Starting and Stopping
	Configuration Parameters
	Storage Group Definition File
	User ID Mapping Facility

	Chapter 13. Monitor Data
	Monitor Buffer Organization
	Kernel Row
	Service Row
	Line Driver Row
	Authorization Row
	Storage Group Row
	Memory Row
	Enrollment Row
	Cache Row
	Trie Row
	Worker Row

	Chapter 14. Command Descriptions
	Syntax, Message, and Response Conventions
	APPC LIST
	APPC QUERY
	APPC REPORT
	APPC START
	APPC STOP
	AUTH CRECLASS
	AUTH CREOBJECT
	AUTH DELCLASS
	AUTH DELOBJECT
	AUTH DELUSER
	AUTH LISTCLASS
	AUTH LISTOBJECT
	AUTH MODCLASS
	AUTH PERMIT
	AUTH QOBJECT
	AUTH RELOAD
	BKWENRCP
	CACHE CREATE
	CACHE DELETE
	CACHE LIST
	CMS
	CONFIG AUT_CACHE
	CONFIG AUT_DATA_1
	CONFIG AUT_DATA_2
	CONFIG AUT_FREE
	CONFIG AUT_INDEX_1
	CONFIG AUT_INDEX_2
	CONFIG AUT_LOCATION
	CONFIG AUT_LOG
	CONFIG AUTHCHECK_AUTH
	CONFIG AUTHCHECK_CACHE
	CONFIG AUTHCHECK_CMS
	CONFIG AUTHCHECK_CONFIG
	CONFIG AUTHCHECK_CP
	CONFIG AUTHCHECK_ENROLL
	CONFIG AUTHCHECK_LD
	CONFIG AUTHCHECK_MONITOR
	CONFIG AUTHCHECK_SERVER
	CONFIG AUTHCHECK_SGP
	CONFIG AUTHCHECK_TRIE
	CONFIG AUTHCHECK_USERID
	CONFIG AUTHCHECK_WORKER
	CONFIG MEM_MAXFREE
	CONFIG MON_KERNEL_ROWS
	CONFIG MON_PRODUCT_ID
	CONFIG MON_USER_SIZE
	CONFIG MSG_NOHDR
	CONFIG NOMAP_APPC
	CONFIG NOMAP_IUCV
	CONFIG NOMAP_MSG
	CONFIG NOMAP_SPOOL
	CONFIG NOMAP_TCP
	CONFIG NOMAP_UDP
	CONFIG RSCS_USERID
	CONFIG SGP_FILE
	CONFIG SPL_CATCHER
	CONFIG SPL_INPUT_FT
	CONFIG SPL_OUTPUT_FT
	CONFIG SRV_THREADS
	CONFIG UMAP_FILE
	CONFIG VM_CONSOLE
	CONFIG VM_MSG
	CONFIG VM_SPOOL
	CONFIG VM_SUBCOM
	CONSOLE LIST
	CONSOLE QUERY
	CONSOLE START
	CONSOLE STOP
	CP
	ENROLL COMMIT
	ENROLL DROP
	ENROLL GET
	ENROLL INSERT
	ENROLL LIST
	ENROLL LOAD
	ENROLL RECLIST
	ENROLL REMOVE
	IUCV LIST
	IUCV QUERY
	IUCV REPORT
	IUCV START
	IUCV STOP
	MONITOR DISPLAY
	MONITOR USER
	MSG LIST
	MSG QUERY
	MSG START
	MSG STOP
	SERVER SERVICES
	SERVER MONITOR
	SERVER STOP
	SGP CREATE
	SGP DELETE
	SGP LIST
	SGP MDLIST
	SGP START
	SGP STOP
	SPOOL LIST
	SPOOL QUERY
	SPOOL START
	SPOOL STOP
	SUBCOM LIST
	SUBCOM QUERY
	SUBCOM START
	SUBCOM STOP
	TCP LIST
	TCP QUERY
	TCP REPORT
	TCP START
	TCP STOP
	TRIE LIST
	UDP LIST
	UDP QUERY
	UDP REPORT
	UDP START
	UDP STOP
	USERID MAP
	USERID RELOAD
	WORKER ADD
	WORKER CLASSES
	WORKER DELCLASS
	WORKER DELETE
	WORKER DISTRIBUTE
	WORKER MACHINES
	WORKER RESET
	WORKER STATUS

	Chapter 15. Function Descriptions
	ssAnchorGet — Get Anchor Value
	ssAnchorSet — Set Anchor Value
	ssAuthCreateClass — Create an Object Class
	ssAuthCreateObject — Create an Object
	ssAuthDeleteClass — Delete a Class
	ssAuthDeleteObject — Delete an Object
	ssAuthDeleteUser — Delete a User
	ssAuthListClasses — List Classes
	ssAuthListObjects — List Objects in Class
	ssAuthModifyClass — Modify an Object Class
	ssAuthPermitUser — Permit a User
	ssAuthQueryObject — Query an Object
	ssAuthQueryRule — Query a Rule
	ssAuthReload — Reload Authorization Data
	ssAuthTestOperations — Test Operations
	ssCacheCreate — Create Cache
	ssCacheDelete — Delete Cache
	ssCacheFileClose — Close Cached File
	ssCacheFileOpen — Open Cached File
	ssCacheFileRead — Read Cached File
	ssCacheQuery — Query Cache
	ssCacheXlTabSet — Set Translation Table
	ssClientDataGet — Get Client Data
	ssClientDataInit — Initialize Client Data Buffers
	ssClientDataPut — Put Client Data
	ssClientDataTerm — Terminate Client Data Buffers
	ssEnrollCommit — Commit Enrollment Set
	ssEnrollDrop — Drop Enrollment Set
	ssEnrollList — List Enrollment Sets
	ssEnrollLoad — Load Enrollment Set
	ssEnrollRecordGet — Get Enrollment Record
	ssEnrollRecordInsert — Insert Enrollment Record
	ssEnrollRecordList — List Records In Enrollment Set
	ssEnrollRecordRemove — Remove Enrollment Record
	ssMemoryAllocate — Allocate Memory
	ssMemoryCreateDS — Create Data Space
	ssMemoryDelete — Delete Subpool
	ssMemoryRelease — Release Memory
	ssServerRun — Run the Server
	ssServerStop — Stop the Server
	ssServiceBind — Bind A Service
	ssServiceFind — Find A Service
	ssSgpCreate — Create a Storage Group
	ssSgpDelete — Delete a Storage Group
	ssSgpFind — Find a Storage Group
	ssSgpList — List Storage Groups
	ssSgpQuery — Query a Storage Group
	ssSgpRead — Read a Storage Group
	ssSgpStart — Start a Storage Group
	ssSgpStop — Stop a Storage Group
	ssSgpWrite — Write a Storage Group
	ssTrieCreate — Create a Trie
	ssTrieDelete — Delete a Trie
	ssTrieRecordInsert — Insert Record Into Trie
	ssTrieRecordList — List Matching Records
	ssUseridMap — Produce Mapped User ID
	ssWorkerAllocate — Allocate Connection to Worker Machine

	Chapter 16. RSK Sockets
	Prerequisite Knowledge
	Available Functions
	Programming with RSK Sockets
	Restrictions and Limitations
	Data Structures
	Address Structure
	Timeout Structure

	Notes on PLXSOCK COPY
	Constants
	Structures
	Function Prototypes

	Return Codes and ERRNO Values
	RSK Socket Calls
	PS_accept
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_applinit
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_applterm
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_read
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_recv
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_sendto
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_write
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_bind
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_cancel
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_close
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_connect
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_gethostid
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_getpeername
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_getsockname
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_getsockopt
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_ioctl
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_libinit
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_libterm
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_listen
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_read
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_recvfrom
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_select
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_sendto
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_setsockopt
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_shutdown
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_socket
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_write
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	Appendix A. Sample PROFILE RSK
	Appendix B. Sample User ID Mapping File
	Appendix C. Authorization Data File Formats
	Overview
	The Data File
	The Index File
	The Log File

	Appendix D. Enrollment Data File Format
	Appendix E. Storage Group File
	Appendix F. Reserved Names
	Service Names
	Data Spaces
	TCP/IP Subtask Names
	UDP/IP Subtask Names

	Appendix G. More Detail On Reason Codes
	Appendix H. Messages
	Generally Applicable Messages
	CONFIG Service Messages
	Line Driver Messages
	SERVER Service Messages
	USERID Service Messages
	TCP and UDP Line Driver Messages
	SGP Service Messages
	RSK SUBCOM Messages
	AUTH Service Messages
	CP Service Messages
	CMS Service Messages
	MSG Line Driver Messages
	SPOOL Line Driver Messages
	Enrollment API Messages
	MONITOR Service Messages
	CACHE Service Messages
	IUCV Line Driver Messages
	APPC Line Driver Messages
	Worker API Messages
	Trie Messages

	Appendix I. Language Bindings
	Assembler Language Bindings
	Anchor Bindings (SSASMANC MACRO)
	Authorization Bindings (SSASMAUT MACRO)
	Cache Bindings (SSASMCAC MACRO)
	Client Bindings (SSASMCLI MACRO)
	Enrollment Bindings (SSASMENR MACRO)
	Memory Bindings (SSASMMEM MACRO)
	Storage Group Bindings (SSASMSGP MACRO)
	Services Bindings (SSASMSRV MACRO)
	Trie Bindings (SSASMTRI MACRO)
	User ID Bindings (SSASMUID MACRO)
	Worker Bindings (SSASMWRK MACRO)

	PL/X Language Bindings
	Anchor Bindings (SSPLXANC COPY)
	Authorization Bindings (SSPLXAUT COPY)
	Cache Bindings (SSPLXCAC COPY)
	Client Bindings (SSPLXCLI COPY)
	Enrollment Bindings (SSPLXENR COPY)
	Memory Bindings (SSPLXMEM COPY)
	Storage Group Bindings (SSPLXSGP COPY)
	Services Bindings (SSPLXSRV COPY)
	Trie Bindings (SSPLXTRI COPY)
	User ID Bindings (SSPLXUID COPY)
	Worker Bindings (SSPLXWRK COPY)

	Appendix J. What's Changed Since the Beta
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

