
z/VM
7.4

CMS Application Development Guide
for Assembler

IBM

SC24-6257-74

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
503.

This edition applies to version 7, release 4 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2024-09-18
© Copyright International Business Machines Corporation 1990, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xiii

Tables..xvii

About This Document..xxi
Intended Audience.. xxi
Where to Find More Information...xxi

Links to Other Documents and Websites.. xxi

How to provide feedback to IBM.. xxiii

Summary of Changes for z/VM: CMS Application Development Guide for
Assembler..xxv
SC24-6257-74, z/VM 7.4 (September 2024)..xxv
SC24-6257-73, z/VM 7.3 (December 2023)... xxv
SC24-6257-73, z/VM 7.3 (September 2022)..xxv
SC24-6257-02, z/VM 7.2 (March 2021)..xxv
SC24-6257-01, z/VM 7.2 (September 2020)..xxv

Part 1. Introduction.. 1

Chapter 1. The CMS Programming Interface.. 3
Overview of the CMS Programming Interface... 3

CMS Virtual Machine Environments... 3
CMS Programming Interface Groups... 4
CMS Preferred Interface...6

CMS Preferred Macros.. 6
CMS Preferred Routines..9
CMS Preferred Functions.. 10

CMS Compatibility Interface.. 10
CMS Compatibility Macros and Suggested Replacements.. 10
CMS Compatibility Functions and Suggested Replacements..11
Simulated OS/MVS Macros...11

Chapter 2. CMS Operating Characteristics..15
Overview of CMS Operating Characteristics..15
CMS Command Search Order...15
CMS Runs in Supervisor State..16
How CMS Command Processing Works...16

Explicitly Releasing Resources...16
The CMS Command Loop..17
SVC Levels... 17
Abend Processing... 18

Determining When CMS Reclaims Resources... 18
Saving Resources across Boundaries.. 20
Using Macro Libraries...21

Coding CMS Macros.. 21
How CMS Macros Work...22
CMS Macro Formats..22

 iii

Chapter 3. Architecture... 23
ESA/390, ESA/XC, z/Architecture, and z/XC Architecture.. 23
ESA/390, ESA/XC, z/Architecture, z/XC, and System/370 PSWs... 23
31 Bit Addressing... 24

Conventions for 31-Bit Programs...24
Bimodal Addressing..24
I/O Considerations..28
CMS Preferred Interface I/O Support...29
Using Diagnose Codes for I/O...29
I/O Instructions.. 29

Assembler Instructions That Work Differently..31
Instructions That Are Sensitive to Addressing Mode.. 31

Part 2. Using CMS Services..33

Chapter 4. Program Invocation - Direct Branch Linkage.. 35
Overview of Direct Branch Linkage.. 35
Using BAL/BALR with AMODE ANY Programs... 35
Switching the Addressing Mode...35

AMODESW Formats.. 36
Using AMODESW - Examples... 36

Chapter 5. Program Invocation - Supervisor Assisted Linkage.. 39
Overview of CMS Supervisor Assisted Linkage..39
Supervisor Assisted Linkage — An Overview... 39
Setting Up a Parameter List... 41

Using the SCAN Macro.. 41
Making the Call..43
Call Charts... 45

Receiving Control..46
Register Usage.. 47
USERSAVE Control Block..49
SVC 202 Call Type Values... 49
Return Codes...50

Returning To a Program..51
Example 1 — A Simple Return.. 51
Example 2 — Setting a Return Code... 51
Example 3 — Returning Register Contents...52

Chapter 6. Using Free Storage...53
Overview of Free Storage... 53
CMSSTOR and SUBPOOL Macros...53

CMS Storage Layout..53
Obtaining Free Storage...55

Where CMSSTOR Gets Storage...55
Creating Subpools.. 57

Types of Subpools...57
Releasing Free Storage.. 59

Examples of Releasing Free Storage..59
Determining How Much Free Storage Is Available.. 60

Using the STORMAP Command.. 60
Using the SUBPMAP Command..62

Debugging Storage Problems...62
Using the STORMAP Command.. 62
Using the SUBPMAP Command..66
Using the STDEBUG Command.. 66

iv

Obtaining and Releasing Storage above 2 GB... 73

Chapter 7. Using Saved Segments.. 75
Physical and Logical Saved Segments... 75
Using the SEGMENT Macro.. 75

Loading a Saved Segment...76
Finding the Starting and Ending Address of a Saved Segment..76
Purging a Saved Segment... 77
How CMS Locates Saved Segments... 77
How CMS Handles Objects in Logical Saved Segments...78

Using the SEGMENT Command... 78
Reserving Storage Space for Saved Segments.. 78
Releasing Segment Storage Spaces...79
Assigning Logical Saved Segments to Physical Saved Segments... 79

Displaying Information about Saved Segments.. 79

Chapter 8. Console and Terminal I/O..83
Performing 3270 Full-Screen I/O Operations... 83

CONSOLE Macro Functions...83
Opening a Path to a Console...83
Modifying Parameters of a CONSOLE OPEN.. 85
Writing to and Reading from a Console..86
Obtaining Information about a Console Path...87
Disconnecting and Reconnecting... 88
Writing Your Own Channel Programs... 88
Closing a Console Path... 89
A Sample Program.. 90

APPLMSG.. 92
Example of a Message Repository..92

LINERD and LINEWRT Macros... 94
Example.. 94
Reading and Writing Multiple Lines.. 94
Example of Creating a Panel...99

Considerations for Writing Applications in Full-Screen CMS.. 104

Chapter 9. CMS File System.. 107
Overview of the CMS File System.. 107

What Is a CMS File?.. 107
What is a BFS File?..108
What File Information Does CMS Maintain?.. 108
Manipulating CMS Files.. 113
Manipulating BFS Files in CMS... 116
Application Interfaces.. 117
Committing Changes.. 125
Mixing CSL and Non-CSL Statements.. 126
Using XEDIT to Access Files in Storage... 128
Example.. 130

Chapter 10. Using the File System Macros... 131
File I/O Using FS Macros — A Typical Scenario... 131
Creating a File System Control Block.. 132

Contents of the File System Control Block.. 133
Mapping the File System Control Block... 134
Modifying Fields in the File System Control Block...135
Using the File System Control Block.. 135

Opening CMS Files... 136
Reading and Writing CMS Files.. 137

Single Reads and Writes...137

 v

Multiple Reads and Writes to a Fixed File..137
Variable Length Records...137

Closing Files and Committing Changes... 139
Note For EXEC Writers..139

Erasing Files... 139
Sample Programs... 139

Nonreentrant.. 139
Reentrant.. 141

Chapter 11. Unit Record Devices and Tapes...147
Printing... 147

Determining How Many Bytes You Can Print... 147
Using PRINTL..148

Punching...150
Reading...150

Using the CMS Internal I/O Buffer... 150
Tape Handling Macros..151
Tape Labels in CMS.. 151

Limitations.. 151
Initiating Label Processing... 151
Label Processing in OS Simulation...152
Label Processing in CMS/DOS.. 164
Label Processing Using CMS Macros and Commands... 166
Error Processing..170

Using Tape Library Dataservers under CMS OS Simulation.. 170

Chapter 12. Interrupt Handling...173
Manipulating the PSW Interrupt Mask...173

Converting from the SSM Instruction to ENABLE.. 173
External Interrupt Handling...174

External Interrupt Handling Overview... 174
The CMS Default External Interrupt Handler...176
Handling Specific External Interrupts..176
Creating Your Own Default Handler... 179
Deleting an External Interrupt Handler... 179

Handling I/O Interrupts... 179
I/O Interrupt Handling — An Overview.. 180
First-Level I/O Interrupt Processing.. 180
Second-Level I/O Interrupt Processing... 181
Defining an I/O Interrupt Handling Procedure.. 181
Second-Level Handler Returns to First-Level.. 185

SVC Interrupts..186
Creating SVC Handlers... 186
Deleting SVC Handlers..187

Machine Check Interrupts... 188
Data Space Machine Checks.. 188

Program Interrupt Handling...188
CMS First-Level Program Interrupt Processing... 189
Defining Program Interrupt Handlers.. 189

Chapter 13. Nucleus Extensions and Commands.. 191
Nucleus Extensions..191

The NUCEXT Macro...191
Should Your Program Be a Nucleus Extension?...191
Defining Nucleus Extensions..191
Other Parameters You Can Specify on NUCEXT.. 192
Defining Nucleus Extensions in Logical Saved Segments... 193
Obtaining the Anchor Point of the SCBLOCK List...194

vi

Deleting Nucleus Extensions..194
Obtaining Information about Nucleus Extensions...194
Renaming Nucleus Extensions...194

ANCHOR Words..195
The ANCHOR Macro..195
What Types of Programs Should Use the ANCHOR Macro?.. 195
Using ANCHOR..196

Subcommand Environments..197
SUBCOM Macro...197
Defining Subcommands... 197
Defining Subcommands in Logical Saved Segments... 199
Deleting Subcommand Processors.. 199
Determining if a Subcommand Processor Is Defined..199
Obtaining the Anchor Point of the SCBLOCK List...199

Immediate Commands.. 200
Creating Immediate Commands.. 200

Using NUCEXT to Create Immediate Commands... 200
Using the IMMCMD Macro to Create Immediate Commands... 200
Entry Conditions... 200
Defining Immediate Commands in Logical Saved Segments..201
Deleting Immediate Commands.. 202
Obtaining Information about Immediate Commands... 202

Chapter 14. Abend Processing..203
Overview of CMS Abend Processing.. 203

Macros That Define Abend Exit Routines...203
Abend Exit Routine Search Order...203
What You Can Save Across a CMS Abend.. 204

Creating Abend Exit Routines.. 204
Creating Abend Exits.. 204
Deleting Abend Exits.. 205

Abending a Program (DMSABN Macro)... 205
Examples.. 206

Part 3. Managing CMS Programs.. 209

Chapter 15. Program Packaging..211
Program Packaging Considerations...211
Program Packaging Overview.. 211

Program Packaging — A Simple Scenario.. 212
Program Life - Determining How Long Your Program Stays in Storage.. 212
Addressing and Residency Modes...214

When You Can Set Addressing and Residency Modes...215

Chapter 16. Assembling, Loading, and Executing Programs..217
Assembling Programs.. 217

Example 1... 217
Example 2... 218

Identifying Files..218
Default File Definitions... 218
Determining What File Definitions Are in Effect.. 219
Identifying Libraries..220
Macro Libraries... 220
Loading and Executing Text Files... 221
File Loading Techniques... 221
Loading Text Files into Storage.. 222
Other LOAD and INCLUDE Options.. 224

 vii

Executing TEXT Files.. 224
Example — Loading and Starting a Program.. 224
Example — Starting a Program at a Specific Entry Point... 224
Example — Passing a Parameter List on the START Command...225
Resolving External References...225
Loader Control Statements.. 226
Text File Libraries (TXTLIBs).. 227

Generating and Executing Modules...227
Relocatable Modules.. 227
Creating a Module to Run in the Transient Program Area... 228
Specifying Addressing and Residency Modes for a Module.. 228
Restricting a Module to a Specific Virtual Machine Mode... 228
Saving History Information for Modules.. 229
Loading Modules...229
Loading a MODULE into a Saved Segment... 229

Displaying Information about Programs in Storage.. 229
The NUCXMAP Command...229

Chapter 17. Creating and Using a Callable Services Library.. 233
CSL Routines.. 233
Writing CSL Routines..234

Using Macros When Writing CSL Routines... 234
Rules for Coding CSL Routines... 236
Types of Data Supported.. 236
Creating Template Files..237
Defining Parameters with Scalar Data Types...240
Specifying Parameter Lengths... 241
Declaring Multi-Value Data Types in Template Files... 241
Defining Return Parameters for OPENVM Routines.. 245
Creating a Callable Services Library...245
Invoking CSL Routines..263

CSL Summary and Example...264
CALC: Example CSL Assembler Routine #1...264

Chapter 18. Using Auxiliary Directories.. 273
Overview of an Auxiliary Directory...273
Adding an Auxiliary Directory.. 273

Generating the Auxiliary Directory...273
Initializing the Auxiliary Directory..273
Establishing the Proper Linkage...273

Creating an Auxiliary Directory.. 274

Part 4. Connectivity Programming in CMS.. 277

Chapter 19. CMS Support of IUCV.. 279
Using IUCV in CMS to Communicate Between Two Virtual Machines..280
Understanding Exit Routines... 282
Guidelines for Using the CMS Support of IUCV... 283

Chapter 20. APPC/VM Assembler Interface... 287
Overview of APPC/VM Assembler Interface... 287
Basics of APPC/VM...287

APPC/VM Paths...287
APPC/VM States... 288
APPC/VM Interrupts... 288

Invoking APPC/VM Communication Functions... 290
Using Basic APPC/VM Functions... 291

viii

Starting a Conversation.. 291
Sending and Receiving Data on the Conversation... 291
Ending a Conversation..291

Using the CMS Interface to APPC/VM... 292
Errors and Interrupts for APPC/VM in CMS..293
Guidelines for Using the CMS Interface to APPC/VM.. 294

Managing a Resource... 295
Revoking a Resource.. 295
Scenario 1: Request for Global Resource..295
Scenario 2: Request for Private Resource... 299

Virtual Machine Preparations... 300
Program Functions..300

How APPC/VM Relates to General IUCV... 303
CMS Support of APPC/VM.. 304

Summary of APPC/VM Assembler Macro Functions... 305

Chapter 21. Using Advanced APPC/VM Functions... 307
Requesting Confirmation... 307
Signaling an Error... 307
Requesting to Send.. 307
Sending and Receiving Early Information... 308
Using Synchronous Functions..308
Synchronizing Updates to Multiple Resources..309

Determining When a Sever Requires a Rollback..310
Scenario 3: Coordinating Resources.. 311

Part 5. OS/MVS Simulation.. 315

Chapter 22. Developing OS/MVS Programs under CMS... 317
OS/MVS Simulation History... 317

How CMS Performs OS/MVS Simulation.. 317
Using OS/MVS Macros in CMS Programs — Some Considerations... 318

OS/MVS Macro Libraries... 319
OS/MVS Macros That CMS Simulates.. 319

MVS/XA Data Management Macros... 320
OS/MVS Macros for Assembly Only... 337
OS/MVS Resource Management.. 338

Cleaning Up GETMAIN Storage.. 338
Using CMS Libraries... 342

OS/MVS Module Libraries and CMS LOADLIBS..342
The LKED Command...344

OS/MVS and CMS Terminology.. 347

Chapter 23. Using OS/MVS Simulated Data Sets in CMS... 349
Overview of OS/MVS Simulated Data Sets.. 349
Data Set Organization.. 349
Record Formats in OS Simulation.. 350

Fixed-Length Records...350
Variable-Length Records.. 352
Variable-Length ANSI Records...353
Variable Spanned Records... 354
Variable Spanned ANSI Records.. 355

Identifying I/O Files and Devices to OS Simulation.. 357
Specifying the ddname...358
Specifying the Device Type...358
Entering File Identifications... 359
Specifying CMS Tape Label Processing..360

 ix

Specifying Options..361
Using OS/MVS Simulated Data Sets in CMS.. 363

Storing OS/MVS Data in CMS Format DASD Files.. 364
Storing OS/MVS Data in OS/MVS Simulated DASD Files... 365
Considerations for Files in Shared File System Directories...367

Using OS/MVS Data Sets in CMS..368
CMS Commands You Can Use with OS/MVS Data Sets... 368
Accessing OS/MVS Data Sets... 369

Using OS Format Disks on CMS..369
Listing Information about OS Disks with the LISTDS Command...369
Using the GLOBAL Command with OS Files...370
Using XEDIT with OS Files..370
Creating CMS Files from OS/MVS Data Sets.. 370
Copying Sequential Data Sets from Disk..371
Copying Partitioned Data Sets from Disk... 371
Summary...372

Accessing Data through OS/MVS Simulation.. 373
Accessing Data with OS/MVS Macros.. 373
BDAM Restrictions..375

Using the OS/MVS Simulated Buffering Techniques... 375
Obtaining I/O Buffers..375
Determining the Minimum Buffer Size... 375
Segment Interface..376
Logical Record Interface.. 376

Opening Data Sets..378
Specifying an Input Data File... 378

Reading Data.. 382
Reading OS/MVS Simulated Data Sets...382
Reading OS/MVS Data Sets.. 384
Restrictions for Reading OS/MVS Data Sets.. 384

Writing OS/MVS Simulated Data Sets..386
Using the WRITE Macro..386

Closing Data Files...387
Exit Routines.. 387

End-of-Data-Set Exit Routine (EODAD)... 388
Synchronous Error Routine Exit (SYNAD).. 388
Exit List (EXLST)..388
DCB Abend Exit (DCB EXLST Entry Code X'11')...390

End-of-Volume Processing.. 394
Forced End-of-Volume Support... 394
Error Handling during FEOV Processing...396
OS/MVS Tape Volume Switching.. 397
Passing Information to the DMSTVI Routine... 399

Part 6. DOS/VSE, Access Method Services, and VSAM.. 401

Chapter 24. Developing VSE Programs under CMS.. 403
Overview of CMS/DOS..403
Entering the CMS/DOS Environment... 403

DL/I in the CMS/DOS Environment.. 406
Using DOS Files on DOS Disks... 406

Reading DOS Files...407
Creating CMS Files from DOS Libraries.. 407

The ASSGN Command... 408
Assigning System Logical Units..409
Compiler I/O Assignments... 410
Manipulating Device Assignments... 410

x

Listing I/O Assignments... 410
Virtual Machine Assignments...411

The DLBL Command...411
Entering File Identifications... 412
Clearing and Displaying File Definitions...413

Using DOS Libraries in CMS/DOS... 413
The SSERV Command...413
The RSERV Command...414
The PSERV Command...414
The ESERV Command...415
The DSERV Command.. 415
The DOSLKED Command..416
DOS Core Image Libraries.. 416

Using Macro Libraries...416
Creating CMS MACLIBs...416

VSE Assembler Language Macros Supported... 417
Assembling Source Programs..420
Link-Editing Programs in CMS/DOS... 420

Linkage Editor Input... 421
Linkage Editor Output: CMS DOSLIBs.. 422

Executing Programs in CMS/DOS...423
Executing DOS Phases..423
Search Order for Executable Phases..424
Making I/O Device Assignments.. 424
Specifying a Virtual Partition Size.. 425
Setting the UPSI Byte... 425
Debugging Programs in CMS/DOS..425
Using Exec Procedures in CMS/DOS.. 426

Hardware Devices Supported.. 426
VSE Supervisor and I/O Macros Supported by CMS/DOS... 427

Supervisor Macros.. 427
Declarative Macros (Sequential Access Method I/O Macros)... 434
Imperative Macros (Sequential Access Method I/O Macros)..441

EXCP Support in CMS/DOS.. 441
CMS/DOS User Considerations and Responsibilities.. 442

VSE System Generation and Updating Considerations... 442
z/VM Directory Entries..442
When the VSE System Must Be Online...442
Execution Considerations and Restrictions... 443

Chapter 25. Using Access Method Services and VSAM..445
Overview of VSAM under CMS... 445
Executing VSAM Programs under CMS..446
The AMSERV Command... 446

AMSERV Output Listings...447
Controlling AMSERV Command Listings.. 448
Calling AMS from an Application Program... 448

Manipulating OS and DOS Disks for Use with AMSERV...449
Data and Master Catalog Sharing...449
Disk Compatibility...450
Allocating Space... 450
Using Minidisks... 450
The LISTDS Command..451
Using Temporary Disks... 452

Defining DOS Input and Output Files.. 453
Using VSAM Catalogs..454
Using Job Catalogs... 456
Catalog Passwords... 456

 xi

Verifying a Catalog Structure..457
Defining and Allocating Space for VSAM files..457
Using Tape Input and Output... 459

Defining OS Input and Output Files...460
Allocating Extents on OS Disks and Minidisks... 461
Using VSAM Catalogs..461
Using a Job Catalog.. 463
Catalog Passwords... 464
Verifying a Catalog Structure..464
Defining and Allocating Space for VSAM files..464
Using Tape Input and Output... 466

Using AMSERV under CMS... 466
The DEFINE and DELETE Functions...467
Using Data Compression Services..468
The REPRO, IMPORT, and EXPORT Functions... 470
Writing Execs for AMSERV and VSAM.. 471

VSE/VSAM Functions Not Supported in CMS.. 472
Access Method Services Not Supported in CMS... 472
ISAM Interface Program (IIP)..474
VSE/VSAM Macros Supported... 474

VSE Supervisor Macros and Logical Transients Support... 475
OS/VSAM Macros Supported in CMS... 475
VSAM Macro Options Not Supported in CMS.. 475

OS/VSAM Error Codes.. 476
Hardware Devices Supported.. 480
Interface to an Alternate VSAM Emulator... 480

Appendix A. Sample Terminal Session for OS Programmers................................ 483

Appendix B. Sample Terminal Session for DOS Programmers.............................. 487

Appendix C. Sample Terminal Session Using Access Method Services................. 493

Appendix D. TSO Macros Simulated in CMS...501

Notices..503
Programming Interface Information...504
Trademarks.. 504
Terms and Conditions for Product Documentation.. 504
IBM Online Privacy Statement.. 505

Bibliography.. 507
Where to Get z/VM Information.. 507
z/VM Base Library..507
z/VM Facilities and Features... 508
Prerequisite Products.. 510
Related Products... 510

Index.. 511

xii

Figures

1. CMS Boundary Relationships..20

2. How CMS Macros Work... 22

3. How CMS Interprets the AMODE Attribute...25

4. How RMODE Affects Where CMS Loads Programs...26

5. CMSCALL for AMODE ANY/AMODE 31 Programs... 40

6. CMSCALL for AMODE 24 Programs...40

7. SCAN Macro Parameter List Format... 41

8. Determining Storage for PLISTs..42

9. Determining Storage for PLISTs..42

10. SCAN Macro Example... 43

11. USERSAVE DSECT... 49

12. Storage Configuration for a Virtual Machine Less Than 15 MB..54

13. Storage Configuration for a Virtual Machine Equal to 20 MB...54

14. Storage Configuration for a Virtual Machine Greater than 20 MB... 55

15. Sample Repository - RUBUME REPOS..92

16. Sample Program — JEWEL ASSEMBLE...93

17. A Sample Program That Reads and Writes One Line of Data...94

18. Chain of Output Descriptors... 95

19. Format of Information Returned by LINERD Macro...96

20. LINERD Descriptor Mapping... 99

21. Using the XEDIT Interface to Access Files in Storage... 130

22. Valid ASA Control Characters... 148

23. Basic Tape Layout for ANSI and IBM Standard Labels.. 152

 xiii

24. Basic Tape Layout... 153

25. Positioning for BLP..160

26. CSLCNTRL File Example... 254

27. LIBMAP MYLIB..254

28. SEGMAP MYLIB...255

29. MYLIB CSLCNTRL Expanded.. 255

30. LIBMAP MYLIB..256

31. SEGMAP MYLIB...256

32. CSLCNTRL Example.. 257

33. LIBMAP Omitting NOAUTO... 257

34. CSLCNTRL with INCLUDE Statements..258

35. LIBMAP with NOAUTO and INCLUDE... 258

36. LOAD Sequence When NOAUTO is Not Used... 258

37. LOAD Sequence When NOAUTO is Used..259

38. LOAD Sequence When FILETYPE TXT is Used... 259

39. LIBMAP with FILETYPE TXT... 259

40. CSLCNTRL Example with File Types Specified...260

41. LOAD Sequence File Types in the Control File Are Used... 260

42. LIBMAP with FILETYPE TXT... 260

43. CSLCNTRL..261

44. LIBMAP with NOAUTO.. 261

45. CSLCNTRL with INCLUDE Statements..261

46. Example of Template Library (TEST TEMPLATE)... 263

47. A FORTRAN Program Called APPL1... 271

48. A FORTRAN Program Called APPL2... 272

xiv

49. Sample Run of APPL1... 272

50. Sample Run of APPL2... 272

51. Sequence of Instructions in Virtual Machine to Virtual Machine Communication................................281

52. Updating Three SFS Files Using Coordinated Resource Recovery.. 311

53. OS/MVS Exit Availability and Clean-Up Behavior...341

54. Fixed-Length Records...350

55. Fixed-Length ANSI Records... 351

56. Nonspanned, Format-V Records.. 352

57. Nonspanned, Format-D Records for ANSI Tapes...353

58. Variable Spanned Records..355

59. Variable Spanned ANSI Records.. 356

60. OS Simulated Block vs. CMS Record.. 366

61. Using the BUILDRCD Macro and the Logical Record Interface... 376

62. DCB Abend Exit (X'11') Parameter List.. 390

63. FEOV LEAVE Positioning for ANSI and IBM Standard Labels.. 395

64. TVSPARMS Field Default values... 398

65. DOSTEST ASSEMBLE.. 487

66. GETMACS ESERV, an ESERV file you need to assemble.. 487

 xv

xvi

Tables

1. Comparison of CMS Virtual Machine Architectures..4

2. CMS Preferred Macros...6

3. CMS Preferred Functions.. 10

4. CMS Compatibility Macros and Suggested Replacements.. 10

5. CMS Functions and Suggested Replacements... 11

6. Simulated OS/MVS Macros... 12

7. CMS Preferred Interface I/O Macros.. 29

8. I/O Commands of several architectures...30

9. Program Invocation Call Type Options... 44

10. CMSCALL Call Chart.. 45

11. SVC 202 Call Chart.. 46

12. Register Contents When Called Routine Starts..48

13. Settings When A Called Routine Starts.. 48

14. USECTYP Values..49

15. Types of Subpools... 57

16. How CMS Releases Free Storage..59

17. Return Codes for SEGMENT LOAD Macro...76

18. Return Codes for SEGMENT FIND Macro... 77

19. Return Codes for SEGMENT PURGE Macro.. 77

20. Maximum Data Bytes You Can Print... 147

21. Parameter List Layout... 161

22. Replacing SSM Instructions with ENABLE Macros.. 173

23. Macros and the Resource the SYSTEM Parameter Saves..204

 xvii

24. Program Attribute Default Values...215

25. Where CMS Loads Programs...222

26. Contents of registers...283

27. Summary of APPC/VM Assembler Macro Functions..305

28. MVS/XA Data Management Macros That CMS Simulates..320

29. MVS/XA Supervisor Macros That CMS Simulates.. 328

30. TSO Macros That CMS Simulates... 335

31. Simulated OS/MVS Supervisor Calls.. 335

32. SET STORECLR Command Setting..338

33. SET GETMAIN Storage Setting... 339

34. OS/MVS Terms and CMS Equivalents... 347

35. Segment Control Code for SDW..354

36. CMS Commands that Recognize OS/MVS Data Sets on OS/MVS Disks...368

37. Input File... 372

38. Input File... 372

39. Default Values for the Record Area.. 377

40. Positioning of Files Opened and Closed with RDBACK..379

41. Determining BLKSIZE and LRECL on CMS DASD when either LRECL or BLKSIZE, or both, are
specified... 380

42. Determining BLKSIZE and LRECL on CMS DASD when neither LRECL nor BLKSIZE is specified........ 381

43. OS/MVS Exit Routines Simulated in CMS... 387

44. Format and Contents of an Exit List... 388

45. CMS/DOS Commands and CMS Commands with Special Operands...404

46. VSE Macros Supported by CMS.. 418

47. Physical IOCS Macros Supported by CMS/DOS... 427

48. SVC Support Routines and Their Operation... 428

xviii

49. CMS/DOS Support of DTFCD Macro..434

50. CMS/DOS Support of DTFCN macro... 435

51. CMS/DOS Support of DTFDI Macro.. 436

52. CMS/DOS Support of DTFMT Macro... 437

53. CMS/DOS Support of DTFPR Macro..438

54. CMS/DOS Support of DTFSD Macro..439

55. OS Access Method Service Operands NOT Supported in CMS..473

56. VSE Macros Normally Used with VSAM Macros... 474

57. Unsupported Options of OS/VSAM Macros..475

58. VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors... 477

59. VSE/VSAM to OS/VSAM Error and Return Code Mapping for CLOSE Errors..479

60. DATA Management Request Error Return Code Mapping..480

 xix

xx

About This Document

This document describes how you can use the facilities of the IBM® z/VM® Conversational Monitor System
(z/VM CMS) to develop and manage assembler application programs.

Intended Audience
This information is for assembler language application and system programmers who want to develop
programs in the ESA/390™, ESA/XC, z/Architecture®, or z/XC environment.

This information assumes that the reader has experience writing and running assembler language
programs and that the reader is familiar with z/VM CMS.

It also assumes that the reader is somewhat familiar with ESA/390™, ESA/XC, z/Architecture, or z/XC
architectures.

• ESA/390 architecture is defined in IBM Enterprise Systems Architecture/390 Principles of Operation,
SA22-7201.

• ESA/XC architecture is defined in z/VM: ESA/XC Principles of Operation.
• z/Architecture is defined in IBM z/Architecture Principles of Operation, SA22-7832.
• z/XC architecture is defined in z/VM: z/Architecture Extended Configuration (z/XC) Principles of

Operation.

It also assumes the reader is somewhat familiar with ESA/XC architecture, which is defined in z/VM:
ESA/XC Principles of Operation, and z/XC architecture, which is defined in z/VM: z/Architecture Extended
Configuration (z/XC) Principles of Operation.

Where to Find More Information
For information about related publications, see the “Bibliography” on page 507.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1990, 2024 xxi

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4

xxii z/VM: 7.4 CMS Application Development Guide for Assembler

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1990, 2024 xxiii

https://www.ibm.com/docs/zvm/7.4?topic=how-send-feedback

xxiv z/VM: 7.4 CMS Application Development Guide for Assembler

Summary of Changes for z/VM: CMS Application
Development Guide for Assembler

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6257-74, z/VM 7.4 (September 2024)
This edition supports the general availability of z/VM 7.4. Note that the publication number suffix (-74)
indicates the z/VM release to which this edition applies.

SC24-6257-73, z/VM 7.3 (December 2023)
This edition includes terminology, maintenance, and editorial changes.

SC24-6257-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6257-02, z/VM 7.2 (March 2021)

[VM66201, VM66425] z/Architecture Extended Configuration (z/XC) support
With the PTFs for APARs VM66201 (CP) and VM66425 (CMS), z/Architecture Extended Configuration
(z/XC) support is added. CMS applications that run in z/Architecture can use multiple address spaces.
A z/XC guest can use VM data spaces with z/Architecture in the same way that an ESA/XC guest can
use VM data spaces with Enterprise Systems Architecture. z/Architecture CMS (z/CMS) can use VM data
spaces to access Shared File System (SFS) Directory Control (DIRCONTROL) directories. Programs can
use z/Architecture instructions and registers (within the limits of z/CMS support) and can use VM data
spaces in the same CMS session. For more information, see z/VM: z/Architecture Extended Configuration
(z/XC) Principles of Operation.

Information in the following topics is updated:

• Part 1, “ Introduction,” on page 1 and subtopics, including several in Chapter 3, “Architecture,” on
page 23

SC24-6257-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

Updates reflect the removal of KANJI language files from base z/VM components. The only currently
supported languages are American English and uppercase English.

© Copyright IBM Corp. 1990, 2024 xxv

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4

xxvi z/VM: 7.4 CMS Application Development Guide for Assembler

Part 1. Introduction

This part of the document introduces the CMS programming environment. Part 1, “ Introduction,” on page
1 includes the following chapters:

• Chapter 1, “The CMS Programming Interface,” on page 3 provides an overview of the CMS
programming interface. The following topics are discussed:

– The three interface groups
– The purpose of each group
– The actual macros, functions, and services that each group provides

• Chapter 2, “CMS Operating Characteristics,” on page 15 summarizes how CMS works and how the
behavior characteristics of CMS can influence the way you design your application programs.

• Chapter 3, “Architecture,” on page 23 describes how your assembler language application programs
are affected by the differences between System/370™ architecture and later architectures. The
differences in storage addressing, PSWs, I/O handling, and assembler language instructions are
described.

© Copyright IBM Corp. 1990, 2024 1

2 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 1. The CMS Programming Interface

This chapter:

• Introduces and defines the CMS programming interface.
• Describes the different interface groups, the intent of each group, and the facilities that make up the

group.

Overview of the CMS Programming Interface
The CMS programming interface is a way for you to get CMS to do work for you. It is made up of three
groups: the CMS preferred interface group, the CMS compatibility group, and the OS/MVS and DOS/VSE
group. To understand the concept of the CMS programming interface groups, you should first understand
the virtual machine environments that CMS runs in.

CMS Virtual Machine Environments
z/VM provides two versions of CMS:
ESA/390 CMS (generally referred to simply as CMS)

CMS runs in the following virtual machine architectures:
ESA/390 (ESA or XA virtual machine)

An ESA virtual machine simulates IBM Enterprise Systems Architecture/390 (ESA/390), which is
a superset of IBM Enterprise Systems Architecture/370 (ESA/370), which is a superset of IBM
System/370 Extended Architecture (370-XA). The XA virtual machine designation is supported for
compatibility; an XA virtual machine is functionally equivalent to an ESA virtual machine.

ESA/XC (XC virtual machine)
An XC virtual machine processes according to IBM Enterprise Systems Architecture/Extended
Configuration (ESA/XC), which is an architecture unique to virtual machines. Although XC virtual
machines run with dynamic address translation off, they can take advantage of a subset of
dynamic address translation architectural features, and in particular, data spaces.

z/Architecture CMS (z/CMS)
z/CMS runs in the following virtual machine architectures:
z/Architecture (ESA or XA virtual machine)

z/Architecture uses 31-bit addressing mode in an ESA, XA, or Z virtual machine. CMS programs
can use z/Architecture instructions, including those that operate on 64-bit registers, while
permitting existing ESA/390 architecture CMS programs to continue to function without change.

When z/CMS is IPLed in an ESA/390 (ESA or XA) virtual machine, z/CMS switches the virtual
machine to z/Architecture mode and thereafter executes in z/Architecture mode.

z/XC (XC virtual machine)
A z/XC guest uses VM Data Spaces with z/Architecture in the same way that an ESA/XC guest uses
VM Data Spaces with Enterprise Systems Architecture. CMS applications that run in z/Architecture
can use multiple address spaces. z/CMS can use VM Data Spaces for accessing Shared File
System (SFS) Directory Control (DIRCONTROL) directories. z/XC supports programs that employ
z/Architecture instructions and registers (within the limits of z/CMS support) and programs that
exploit data spaces in the same CMS session.

When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC mode
and thereafter executes in z/XC mode.

Unless otherwise indicated, "CMS" means either version, and descriptions of CMS functions apply to both
CMS and z/CMS. For information on the differences between z/CMS and CMS and how to use z/CMS, see
z/VM: CMS Planning and Administration.

CMS Programming Interface

© Copyright IBM Corp. 1990, 2024 3

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd1_v7r4.pdf#nameddest=dmsd1_v7r4

The virtual machine mode is defined by using the MACHINE or GLOBALOPTS directory statement, the CP
SET MACHINE command, or the Systems Management application programming interfaces.

Note: CP does not support System/370 architecture (370 mode) virtual machines. However, the 370
Accommodation Facility allows many CMS applications written for System/370 virtual machines to
run in ESA/390 and ESA/XC virtual machines. The CP level of the 370 Accommodation Facility is
activated with the CP SET 370ACCOM command. The CMS level of the 370 Accommodation Facility is
activated with the CMS SET CMS370AC command. In addition, although the 370 option of the GENMOD
command is not supported, modules generated with the 370 option can be run in an ESA/390 or ESA/XC
virtual machine by issuing the CMS SET GEN370 OFF command. For more information about the 370
Accommodation Facility, see z/VM: CP Programming Services. See z/VM: CP Commands and Utilities
Reference for information on the SET 370ACCOM command and see z/VM: CMS Commands and Utilities
Reference for information on the SET CMS370AC and SET GEN370 commands.

The relationships between virtual machines and processor architectures are summarized in Table 1 on
page 4.

Table 1. Comparison of CMS Virtual Machine Architectures

CMS
Version

Virtual Machine
Architecture
Mode1

Virtual Machine
Architecture

Addressing
Scheme

Addressable
Primary Storage

Addressable Data
Space2

CMS ESA, XA3 ESA/390 31-bit 2047 MB 2 GB per data
space4

CMS XC ESA/XC 31-bit and access
registers

2047 MB 2 GB per data
space

z/CMS ESA, XA3, Z z/Architecture5 31-bit6 2047 MB7 2 GB per data
space4

z/CMS XC z/XC8 31-bit6 and access
registers

2047 MB7 2 GB per data
space

Notes:

1. Architecture mode is set by using the SET MACHINE command and the MACHINE statement of the directory
entry.

2. Multiple data spaces are possible.
3. The XA designation is supported for compatibility. An XA virtual machine is functionally equivalent to an ESA

virtual machine.
4. Data spaces can be read but cannot be modified. Data spaces can be modified only in virtual machines that

run in XC architectur mode.
5. When z/CMS is IPLed in an ESA/390 virtual machine, z/CMS switches the virtual machine to z/Architecture

and thereafter executes in z/Architecture mode.
6. Although z/CMS does not exploit or explicitly support 64-bit addressing mode, programs running on z/CMS

can enter 64-bit addressing mode.
7. Although z/CMS does not directly exploit storage above 2047 MB, z/CMS can be IPLed in a virtual machine

with more than 2 GB of storage and allows programs to use storage above 2 GB.
8. When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC and thereafter

executes in z/XC mode.

CMS Programming Interface Groups
Understanding the content and purpose of each group within the programming interface can help you
select the CMS facility that is most appropriate for your program.

CMS Programming Interface

4 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

CMS preferred interface group
These macros, routines, and functions make up the heart of the CMS programming interface. They
provide you with a means of making program calls, managing storage, performing I/O, handling
interrupts, and processing abends. They run in ESA, XA, and XC virtual machines and they support1

24-bit and 31-bit addressing. They help you avoid architecture-constrained facilities like I/O
instructions, they reduce your need to reference CMS internal data areas and control blocks, and
they make it easier for you to develop programs that are portable across architectures.

IBM encourages you to use the preferred interface when writing your CMS application programs.
“CMS Preferred Interface” on page 6 lists the macros, functions, and routines that make up
the preferred interface and summarizes the services they perform. For detailed information on the
preferred macros and functions, see the z/VM: CMS Macros and Functions Reference. For more
information on the preferred routines, see “CMS Preferred Routines” on page 9.

CMS compatibility group
These are macros, functions, and services that CMS maintains for compatibility with previous
releases. Existing programs that use interfaces in the compatibility group can run in 24-bit addressing
mode in ESA, XA, and XC virtual machines. Compatibility group interfaces may cause unpredictable
results in 31-bit addressing mode. Calling macros from this interface group in access register mode in
an XC virtual machine causes an abend with a CMS abend code ofX'1CD'.

For new programs, IBM recommends that you use interfaces in the preferred group rather
than interfaces in the compatibility group. “CMS Compatibility Interface” on page 10 lists the
compatibility group interfaces and their suggested replacements. For detailed information on the
macros and functions that make up the compatibility group, see the z/VM: CMS Macros and Functions
Reference.

OS/MVS and DOS/VSE group
These are macros also provided by the OS/MVS and DOS/VSE operating systems. CMS supports these
macros to make it easier to run on CMS programs developed for OS/MVS or DOS/VSE. The OS/MVS
and DOS/VSE group consists of the following sub-groups:

1. Simulated OS/MVS macros — CMS simulates the function of the OS/MVS macros so you can use
them in your programs. While these macros provide some portability between VM and OS/MVS
systems, the CMS simulation of these macros is not necessarily the same as the current MVS
support. CMS simulates only a selected subset of OS/MVS macros and, because of operational
differences between VM and MVS, macros that are supported may work differently between the
two systems. Chapter 22, “Developing OS/MVS Programs under CMS,” on page 317 summarizes
some of the differences between the CMS and OS/MVS support of OS/MVS macros. For complete
information on how to use OS/MVS macros, you may need to refer to OS/MVS publications.

For CMS application programs, IBM recommends that you use macros in the preferred group
rather than OS/MVS macros. “Simulated OS/MVS Macros” on page 11 lists the simulated
OS/MVS macros.

2. Nonsimulated OS/MVS macros — You can use these macros to develop and compile programs for
execution on MVS systems; however, because CMS does not simulate these macros, programs that
use them will not run on CMS. For a list of these macros, see “OS/MVS Macros for Assembly Only”
on page 337.

3. DOS/VSE macros — These are DOS/VSE macros that CMS simulates. Note that the CMS simulation
of these macros is not necessarily the same as the current DOS/VSE support. For CMS application
programs, IBM recommends that you use macros in the preferred group rather than DOS/VSE
macros.

For information on these macros see Chapter 24, “Developing VSE Programs under CMS,” on page
403.

Note: CMS macros, control blocks, and functions that are not part of the defined programming interface
are considered internal to CMS. They should not be used by programs other than CMS.

1 Only CMS levels prior to CMS Level 12 can run in a 370 virtual machine.

CMS Programming Interface

Chapter 1. The CMS Programming Interface 5

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

CMS Preferred Interface
This section describes the macros, routines, and functions that make up the CMS preferred interface
group.

CMS Preferred Macros
The following table defines the assembler macros in the CMS preferred interface. It lists the macros that
are part of the preferred interface and describes what function the macro provides. All of the macros
in the preferred interface run in ESA, XA, and XC virtual machines; in XC and XA virtual machines they
support 24-bit and 31-bit addressing.

The preferred macros are described in this book and in the z/VM: CMS Macros and Functions Reference.

Note: OpenExtensions macros are also considered part of the preferred interface. These macros, which
provide mapping for OpenExtensions callable services, are not listed in Table 2 on page 6 or described
in this book. For more information, see the z/VM: OpenExtensions Callable Services Reference.

Table 2. CMS Preferred Macros

Macro Function

ABNEXIT Sets or clears abend exit routines.

AMODESW Switches or sets a program's addressing mode (AMODE) and provides an
architecture-independent replacement to assembler language linkage instructions
(BAL, BALR, BSM, BASSM, BAS, BASR).

ANCHOR Allows setting, querying, and clearing a fullword that can be used to save the
address of a program's data between calls.

APPLMSG Accesses and displays messages from a message repository file.

BATLIMIT Is a table of processor, punch, and printer limits for CMS batch jobs.

CMSCALL Calls other programs. Use it as a replacement for SVC 202.

CMSCVT Communications vector table.

CMSDEV Places information about device characteristics in a user-provided buffer.

CMSECVT Extended communications vector table.

CMSIUCV For IUCV: establish or end IUCV communications with another program or with
CP. For APPC/VM: establish or end an APPC/VM conversation, resolve a symbolic
destination name, or query a workunit associated with a conversation.

CMSLEVEL Maps the value of the feature or licensed program returned by the QUERY
CMSLEVEL command.

Note: You can also use the DMSQEFL CSL routine to return information about the
level of CMS to a program.

CMSRET Program return mechanism. Use it with CMSCALL.

CMSSTACK Places data on the program stack. Use it as a replacement for the ATTN function.

CMSSTOR Obtains and releases free storage. Use it as a replacement for the DMSFREE and
DMSFRET macros.

COMPSWT Sets the compiler switch on or off.

CONSOLE Performs full-screen I/O services.

CQYSECT Maps console path and device information to the buffer a user specifies on the
CONSOLE OPEN or CONSOLE QUERY macro.

CMS Programming Interface

6 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4

Table 2. CMS Preferred Macros (continued)

Macro Function

CSFCB Maps the data referenced by the fourth word in the Extended Plist for the CMS
subcommand interface when inhibiting implicit recursion of execs.

CSLENTRY Provides the entry logic for a callable services library (CSL) routine.

CSLEXIT Provides the exit logic for a CSL routine.

CSLFPI Allows an application to invoke a CSL routine using a fast path.

CSLGETP Allows a CSL routine to get information about passed parameters.

CSRCMPSC Calls Data Compression Services to compress and expand data.

CSRYCMPD Maps compression and expansion dictionary entries.

CSRYCMPS Maps the CBLOCK parameter list for calls to Data Compression Services.

DIRBUFF Maps the records returned by a Get Directory request.

DMSABEXP Used with the DCB abend exit to map the parameter list.

DMSABN Abends a virtual machine.

DMSFST Maps the file status table for a given file.

DMSJNEPL Maps the parameter list used by the DMSJNE exit routine.

DMSSDWA Maps the area pointed to by register 1 upon entry to an ABNEXIT routine.

DMSSTATE Conditions preferred-group macros so that access-register mode toleration code is
expanded at assembly time.

ENABLE Enables and disables the PSW interrupt mask.

EPLIST Maps the extended parameter list passed in register 0.

EXITBUFF Generates a DSECT for the general data buffer that SFS provides for the File Space
Usage and User Storage Group Full exits.

EXSBUFF Maps the records returned by an Exist request for a file or a directory.

EXTUAREA Contains external interrupt status information.

EXTXCTL Resumes execution of code that was suspended by a X'2603' external interrupt
after this interrupt occurred.

FPERROR Maps the file pool extended error information returned in the wuerror parameter of
CSL routines.

FSCB Sets up a file system control block.

FSCBD Maps the file system control block.

FSCLOSE Closes a file.

FSERASE Erases a file.

FSOPEN Opens a file.

FSPOINT Resets the write and/or read pointers for a file.

FSREAD Reads a record from a file.

FSSTATE Checks for an existing file.

FSTD Maps the FST area.

CMS Programming Interface

Chapter 1. The CMS Programming Interface 7

Table 2. CMS Preferred Macros (continued)

Macro Function

FSWRITE Writes a record into a disk file.

GETSID Stores a device's subchannel identification number (SID) in register 1. GETSID is
required in XC and XA mode only.

HNDEXT Defines handler routines for external interrupts.

HNDINT Defines handler routines for I/O interrupts.

HNDIO Defines handler routines for I/O interrupts and returns device-related information.

HNDIUCV Initializes or ends a program's IUCV or APPC/VM environment.

HNDSVC Defines handler routines for SVCs.

HSVCSAVE Maps the save area passed to interrupt handlers defined by HNDSVC.

IMMBLOK Maps the immediate command name block.

IMMCMD Declares, clears, and queries immediate commands.

INTBLOK Maps the I/O information that the HNDIO macro returns.

LABSECT Maps control block for tape label processing.

LANGBLK Generates a language control block for an application.

LINERD Reads a line of input from the terminal.

LINEWRT Writes a line of output to the terminal.

LRDD Used with the LINERD macro to map the LINERD descriptors for multiple inputs.

LWRD Used with the LINEWRT macro to map the LINEWRT descriptors for multiple
outputs.

NUCEXT Declares, clears, and queries nucleus extensions.

NUCON Generates a mapping of the ACMSCVT, ADEVTAB, AEXEC, NUCXFRES, and
USERLVL fields of the NUCON macro.

Note: These are the only fields in NUCON that are supported as programming
interfaces.

PARSECMD Parses command arguments.

PARSERCB Generates a parser control block DSECT.

PARSERUF Generates a mapping for the user token validation parameter function control
block.

PRINTL Prints one or more lines on the printer.

PUNCHC Punches a card.

PVCENTRY Maps the parser validation code table.

RDCARD Reads a card from the reader.

RDTAPE Reads a record from tape.

REGEQU Generates symbolic register equates.

REXEXIT Invokes and maintains a list of user specified global exits for REXX programs.

CMS Programming Interface

8 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 2. CMS Preferred Macros (continued)

Macro Function

RXITDEF Assigns correct values to the symbols used for the exit routine function and
subfunction codes.

RXITPARM Maps the parameter list used to pass information between the language processor
and an exit routine.

SCAN Creates tokenized and extended parameter lists from input data.

SCBLOCK Maps the subcommand block.

SEGMENT Manages saved segments and segment spaces.

SGMTEXIT Maps the SGMTEXIT control block.

SHVBLOCK Maps the shared variable block.

SUBCOM Defines, clears, and queries subcommand environments.

SUBPOOL Manages free storage subpools.

TAPECTL Positions a tape.

TAPESL Processes standard HDR1 and EOF1 tape labels.

TRANTBL Generates a DSECT mapping of system translation tables.

TVISECT Generates a DSECT mapping for a nucleus extension module named DMSTVI.

USERSAVE Maps control block for call status information.

USERSECT An 18-fullword scratch area for user-defined purposes.

VOLSECT Maps control block for tape label processing - used when more than 16 volume
IDs are specified by the user.

WAITD Suspends program execution until the next interrupt occurs for the specified
device.

WAITECB Suspends program execution until the specified event or events occur.

WAITT Suspends program execution until all pending terminal I/O has completed.

WRTAPE Writes a record to tape.

WUERROR Maps the work unit extended error information returned in the wuerror parameter
of CSL routines.

CMS Preferred Routines
The routines in the CMS preferred interface group are documented in the following books:

• z/VM: CMS Callable Services Reference describes routines that perform various general programming
tasks, such as:

– File pool and minidisk file I/O
– File pool administration
– Accessing REXX variables
– Extract/Replace
– Manipulating the CMS program stack
– Resource recovery
– Using VM data spaces

CMS Programming Interface

Chapter 1. The CMS Programming Interface 9

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4

– Error checking and debugging.
• z/VM: CMS Application Multitasking describes routines that perform multitasking and related

programming tasks.
• z/VM: OpenExtensions Callable Services Reference describes routines that manipulate Byte File System

(BFS) data.
• z/VM: OpenExtensions Advanced Application Programming Tools describes routines that provide

application program portability across UNIX® operating system platforms.

See the z/VM: CMS Macros and Functions Reference for more information on the macros and functions in
the CMS preferred interface.

CMS Preferred Functions
The following table defines the CMS functions in the CMS preferred interface group. All of the functions
in the preferred interface run in ESA, XA, and XC virtual machines; in XC and XA virtual machines they
support 24-bit and 31-bit addressing. For more information on these functions, see z/VM: CMS Macros
and Functions Reference.

Table 3. CMS Preferred Functions

Function Description

DISKID Obtains information on the physical organization of a reserved minidisk.

DMSSEQ Counts the number of logical lines in the terminal input buffer.

LANGADD Adds a LANGBLK to the language block chain.

LANGFIND Gets the address of an application's language control block.

CMS Compatibility Interface
Table 4 on page 10 and Table 5 on page 11 list the macros and functions that CMS supports for
compatibility only and suggests replacements when applicable. Existing programs can continue to use
compatibility interfaces in programs that do not support 31-bit addressing.

Note:

1. The SVC 202 instruction is also considered part of the compatibility group. The CMSCALL macro is its
suggested replacement.

2. The DMSEXS and DMSKEY macros allow users to modify CMS internal data areas; their use is not
encouraged.

CMS Compatibility Macros and Suggested Replacements
The compatibility macros are listed with suggested replacements; for a full description of them see the
z/VM: CMS Macros and Functions Reference.

The table below lists the macros that z/VM CMS supports for compatibility only and suggests
replacements when applicable. See the z/VM: CMS Macros and Functions Reference for further
information.

Table 4. CMS Compatibility Macros and Suggested Replacements

Macro Suggested Replacement

DISPW Use the CONSOLE macro to perform full-screen I/O and the LINEWRT and LINERD
macros to perform line mode I/O.

DMSEXS None—its use is not encouraged.

DMSFREE CMSSTOR macro

CMS Programming Interface

10 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp4_v7r4.pdf#nameddest=dmsp4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Table 4. CMS Compatibility Macros and Suggested Replacements (continued)

Macro Suggested Replacement

DMSFRES No replacement required; CMS performs the function internally.

DMSFRET CMSSTOR macro

DMSKEY None—its use is not encouraged.

LINEDIT APPLMSG macro

RDTERM LINERD macro

SCAN system service SCAN macro

STRINIT By default, CMS treats the STRINIT macro as a no-op. In VM/SP Release 5 and
earlier releases, CMS released GETMAIN storage at command end and respected
the STRINIT macro. This change should not affect your programs unless they
depend on the ability to invoke a program through an SVC 202 or CMSCALL, have
the program obtain free storage (through GETMAIN), and then return the storage
to the original invoker. If necessary, you can use the SET STORECLR command to
retain GETMAIN storage until end-of-command and enable STRINIT. If possible,
new programs should use the CMSSTOR macro rather than GETMAIN to obtain free
storage.

TEOVEXIT None.

WRTERM LINEWRT macro. Unlike WRTERM, the LINEWRT macro does not allow you to
specify text on the macro call itself (you have to specify the text in a buffer). You
can use the APPLMSG macro to specify text on the macro call and display it at a
terminal.

CMS Compatibility Functions and Suggested Replacements
The compatibility functions are listed with suggested replacements; for a full description of them see the
z/VM: CMS Macros and Functions Reference.

Table 5. CMS Functions and Suggested Replacements

Function Suggested Replacement

ATTN CMSSTACK macro, or StackWrite routine

NUCEXT NUCEXT macro

SUBCOM SUBCOM macro

TODACCNT None

WAITRD LINERD macro, or StackRead routine

Simulated OS/MVS Macros
For a list of supported parameters for each macro, see “OS/MVS Macros That CMS Simulates” on page
319.

The table below lists the Simulated OS/MVS macros. For further information, see the z/VM: CMS Macros
and Functions Reference and the z/VM: CMS Application Development Guide for Assembler.

2 The DEVTYPE interface will not return valid track or cylinder details that can be used for DASD space
calculations. It is intended only to give access to default device characteristics. If detailed real DASD device
characteristics are needed, see CP DIAGNOSE code X'210' in z/VM: CP Programming Services or the CMS
DEVTYPE command in z/VM: CMS Commands and Utilities Reference.

CMS Programming Interface

Chapter 1. The CMS Programming Interface 11

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Table 6. Simulated OS/MVS Macros

Macro Function

ABEND Terminates processing with user-specified completion and reason codes.

ATTACH Passes control to another program at a new task level.

BLDL Builds a directory list for a partitioned data set.

BSP Backs up a record on a tape or disk.

BUILDRCD Causes a buffer pool and a record area to be constructed.

CALL Transfers control to a control section at a specified entry.

CHAP No-op.

CHECK Verifies READ/WRITE completion.

CHKPT No-op.

CLOSE Completes and secures I/O processing on a DCB.

CLOSE TYPE=T Temporarily closes and deactivates the file.

CNTRL No-op.

DCB Constructs a data control block.

DCBD Generates a DSECT for a data control block.

DELETE Deletes a loaded program.

DEQ No-op.

DETACH No-op.

DEVTYPE2 Obtains device-type physical characteristics.

ENQ No-op.

ESPIE Sets up handlers for program interrupts. The caller can be in either 24-bit or 31-bit
addressing mode.

ESTAE Sets up abend exit routines.

EXCP Executes a channel program for graphic access method (GAM).

EXTRACT No-op.

FEOV Forces an EOV condition on a tape or DASD file.

FIND Locates a member of a partitioned data set.

FREEBUF Returns a buffer to the DCB buffer pool.

FREEDBUF Releases a simulated BDAM buffer.

FREEMAIN Releases user-acquired storage.

FREEPOOL Releases the DCB buffer pool.

GET Reads system-blocked data (QSAM).

GETBUF Acquires DCB buffer storage.

GETMAIN Acquires user storage.

GETPOOL Constructs a buffer pool for a DCB.

IDENTIFY Adds an entry name to a loaded program.

CMS Programming Interface

12 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 6. Simulated OS/MVS Macros (continued)

Macro Function

IHAEPIE EPIE work area mapping macro.

IHASDWA Mapping macro for the system diagnostic work area used in ESTAE.

IHAVRA Mapping macro for the system diagnostic work area variable recording area.

LINK Passes control to another program at the same task level and returns to the calling
program.

LOAD Reads a program into storage.

NOTE Manages data set positioning.

OPEN Prepares a DCB for I/O processing.

OPEN TYPE=J Prepares a DCB for I/O processing after an RDJFCB has been issued.

PGLOAD No-op.

PGOUT No-op.

PGRLSE No-op.

PGSER No-op.

POINT Manages data set positioning.

POST Signals event completion.

PUT Writes system-blocked data (QSAM).

PUTX Returns the updated record to the data set from which it was read.

RDJFCB Obtains information from FILEDEF command about an OS/MVS data set.

READ Reads a physical input record (BSAM, BDAM, BPAM).

RELSE No-op.

RETURN Returns from a called program.

SAVE Saves program registers.

SETRP Makes requests for recovery from an ESTAE/ESTAI exit.

SNAP Dumps specified areas of storage.

SPIE Sets up an exit to be given control under user selected program interrupts. The
caller must be in 24-bit addressing mode.

SPLEVEL Sets System/370 or 370-XA macro expansion.

STAE Sets up an abend exit routine in a 370 virtual machine.

STAX Sets or cancels user exit for terminal attention interrupts.

STIMER Sets the timer interval and the timer exit routine.

STIMERM Sets, tests, or cancels multiple timer intervals and the timer exit routines.

STOW Updates partitioned dataset directories.

SYNADAF Provides SYNAD analysis function.

SYNADRLS Releases SYNADAF message and save areas.

CMS Programming Interface

Chapter 1. The CMS Programming Interface 13

Table 6. Simulated OS/MVS Macros (continued)

Macro Function

SYSSTATE Conditions preferred-group macros so that access-register mode toleration code is
expanded at assembly time.

TCLEARQ Clears terminal input queue.

TGET/TPUT Reads or writes a terminal line.

TIME Gets the time of day.

TTIMER Tests or cancels the timer.

WAIT Waits for one or more events.

WRITE Writes a physical record (BSAM, BDAM, BPAM).

WTO/WTOR Writes a message to the operator's terminal.

XCTL Passes control to another program at the same task level and does not return to
the calling program.

XDAP Reads or writes direct access volumes.

CMS Programming Interface

14 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 2. CMS Operating Characteristics

This chapter provides an overview of:

• CMS command search order
• CMS command processing
• Program boundaries
• CMS macro libraries.

Overview of CMS Operating Characteristics
CMS is a command-driven system; for example, you enter a command and CMS executes it. The command
you enter can be a CP command, a CMS command (a command that is part of the CMS system), or it
can be the name of a user-written application program (a program written by you, your local system
programmer, your favorite software house, and so on).

User-written programs are generally in the form of modules or execs. Modules are programs written in
and compiled (translated) into assembler language. Execs are programs written in either the REXX, EXEC
2, or EXEC language.

CMS also contains assembler language macros. These macros provide a means to dynamically access
CMS services. CMS macros are contained in two macro libraries: DMSGPI MACLIB and DMSOM MACLIB.
For more information on these libraries, see “Using Macro Libraries” on page 21.

CMS Command Search Order
When you enter a command in the CMS environment, CMS uses the search order described below to
locate it. When the command is found, CMS stops its search and executes the command. The search order
is:

1. Search for an exec with the specified command name:

a. Search for an exec in storage. If an exec with this name is found, CMS determines whether the
exec has a USER, SYSTEM, or SHARED attribute. If the exec has the USER or SYSTEM attribute, it is
executed.

If the exec has the SHARED attribute, the INSTSEG setting of the SET command is checked. When
INSTSEG is ON, all accessed directories and minidisks are searched for an exec with that name. (To
find a file in a directory, read authority is required on both the file and the directory.) If an exec is
found, the file mode is compared to the file mode of the CMS installation saved segment. If the file
mode of the saved segment is equal to or higher (closer to A) than the file mode of the directory
or minidisk, then the exec on the saved segment is executed. Otherwise, the exec in the directory
or on the minidisk is executed. However, if the exec is in a directory and the file is locked, the
execution will fail with an error message.

b. Search the table of active (open files for a file with the specified command name and a file type of
EXEC. If more than one open file is found, the one opened first is used.

c. Search for a file with the specified command name and a filetype of EXEC on any currently accessed
disk or directory, using the standard CMS search order (A through Z).

To find a file in a directory, read authority is required for both the file and the directory. If the file is
in a directory and the file is locked, the processing fails with an error message.

2. Search for a translation or synonym of the specified command name. If found, search for an exec with
the valid translation or synonym by repeating Step 1.

3. Search for a module with the specified command name:

CMS Operating Characteristics

© Copyright IBM Corp. 1990, 2024 15

a. Search for a nucleus extension module.
b. Search for a module in the transient area.
c. Search for a nucleus-resident module.
d. Search the table of active (open) files for a file with the specified command name and a file type of

MODULE. If more than one open file is found, the one opened first is used.
e. Search for a file with the specified command name and a file type of MODULE on any currently

accessed disk or directory, using the standard CMS search order (A through Z).

To find a file in a directory, read authority is required for both the file and the directory. If the file is
in a directory and the file is locked, the processing fails with an error message.

4. Search for a translation or synonym of the specified command name. If found, search for a module
with the valid translation or synonym by repeating Step 3.

If the command is not known to CMS (that is, all of the above fails), it is passed to CP.

When CMS searches for a translation or synonym (as in steps 2 and 4), the translation and synonym tables
are searched in the following order:

1. User National Language Translation Table
2. System National Language Translation Table
3. User National Language Translation Synonym Table
4. System National Language Translation Synonym Table
5. CMS User Synonym Table
6. CMS System Synonym Table.

See the SET TRANSLATE command for information on the tables in steps 1 to 4. See the SYNONYM
command for information on the tables in steps 5 and 6. For information on the preferred file types, see
the z/VM: CMS Application Development Guide.

CMS Runs in Supervisor State
CMS executes in virtual supervisor state; so do applications you run under CMS. At the same time, CP is
running in real problem state. This means that your virtual machine and the programs you run under CMS,
can issue input/output and other privileged instructions. CP intercepts these instructions and simulates
the functions of them for your virtual machine. For more information on the privileged instruction set, see
z/VM: CPI Communications User's Guide.

How CMS Command Processing Works
The purpose of writing an application program is to perform some piece of work. To perform work, an
application program acquires and manages various resources. When the application program is complete,
the resources need to be cleaned up. While this is a very simplistic definition of application programming,
there is an important point to be made: to write an application program for CMS, you have to understand
how and when program resources are cleaned up.

Explicitly Releasing Resources
It is considered good programming practice for a program to explicitly clean up resources it creates. To
acquire resources from CMS, you can use the CMS macro interface. For nearly all resources you can use a
CMS macro to acquire, a CMS macro also exists that lets you explicitly release the resource. For example,
to acquire free storage, you can use CMSSTOR OBTAIN. To release free storage, you can use CMSSTOR
RELEASE. To create an interrupt handler, you can use HNDIO SET. To delete the interrupt handler, you can
use HNDIO CLR.

CMS Operating Characteristics

16 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb5_v7r4.pdf#nameddest=hcpb5_v7r4

Letting CMS Clean Up After You
For various reasons, not all programs clean up after themselves. To understand how and when CMS
releases various resources that you do not explicitly release, it helps to understand the relationship
between the CMS command loop, SVC levels, and abend processing. These topics are discussed in the
following sections. (See “Saving Resources across Boundaries” on page 20 for a list of reasons for not
explicitly releasing resources.)

When you use the CMS GENMOD command to create a MODULE file, you can indicate whether you want
a module to be cleaned from storage. Use the CLEAN option if you want a module to be cleaned from
storage at the end of SVC processing. Specify NOCLEAN if you want a module to remain in storage until
end-of-command (Ready;).

When a relocatable module is continually executed from within a command cycle, your virtual machine
storage can be exhausted. To prevent exhaustion of storage, only those relocatable modules that must
remain until end-of-command should be created with the NOCLEAN option. A nonrelocatable module
remains in storage until another nonrelocatable module replaces it or until end-of-command.

The CMS Command Loop
When CMS is ready for you to enter a command, it is in what is called a command loop. To invoke a
command, type the name of the command, module, or exec and press enter. CMS calls the CMS routines
that locate and transfer control to the module or exec representing the command. When the command
completes, CMS returns control to the command loop and displays a ready message (Ready;). The point
where CMS returns control is called end-of-command. The command loop cycle continues as long as you
enter commands.

SVC Levels
While a command is running, it can call upon services from CMS, CP, program products, or other modules
and execs. When one program calls another program, it can use an SVC 202 instruction or CMSCALL
macro to pass control. In turn, whatever was called by the command may call other services. Each
program called by an SVC 202 instruction or CMSCALL macro is said to be at a different SVC level.

For example, assume you enter PROGA (the name of a user-written module), PROGA calls a program
named PROGB, and PROGB calls a program named PROGC. SVC 202 or CMSCALL can be issued to call
each successive program.

User enters command
 |
 SVC level1
 |
 PROGA
 |
 SVC level2
 |
 PROGB
 |
 SVC level3
 |
 PROGC

As each successive program completes, CMS returns to the program that called it. This point is called
end-of-SVC or SVC 202/CMSCALL termination. When PROGC completes CMS returns to PROGB, when
PROGB completes CMS returns to PROGA, and when PROGA completes CMS returns to the command
loop.

 End-of-command (Ready;) CMS waits for another command.
 |
 SVC level1
 |
 PROGA
 |
 SVC level2
 |
 PROGB

CMS Operating Characteristics

Chapter 2. CMS Operating Characteristics 17

 |
 SVC level3
 |
 PROGC

Note: To request supervisor assisted linkage, you should issue the CMSCALL macro. The SVC 202
instruction continues to work but only from below the 16MB line. It is also worth noting that in addition to
CMSCALL or SVC 202 calls, your programs can make direct branches to other programs and CMS services.
For more information, see Chapter 4, “Program Invocation - Direct Branch Linkage,” on page 35 and
Chapter 5, “Program Invocation - Supervisor Assisted Linkage,” on page 39.

Abend Processing
CMS abnormally terminates a program when the program issues the CMS DMSABN macro or the
AbnormalEnd CSL call, when a program issues the OS/MVS ABEND macro, or when it (CMS) detects a
condition that might degrade the system or destroy data. You can use CMS facilities to define exit routines
to try to recover from abends. If no user exit routines exist or if your user exit routine cannot recover,
CMS terminates the exit routine and begins abend processing. During abend processing, CMS reclaims
resources allocated while the program was running, terminates the various SVC levels, and returns control
back to the command loop. At this point you can issue another command.

Determining When CMS Reclaims Resources
To summarize, there are five ways that programs implicitly release resources:

1. At module creation — When you use the CMS GENMOD command to create a MODULE file, you can
use the CLEAN/NOCLEAN option to indicate whether you want a module to be cleaned from storage.
CLEAN is the default for relocatable modules. NOCLEAN is the default for nonrelocatable modules.

2. At SVC 202/CMSCALL termination — By default, CMS reclaims resources at SVC 202/CMSCALL
termination (end-of-SVC), the point when CMS returns control from the called routine to the caller.

3. At end-of-command — If CMS does not reclaim resources at SVC 202/CMSCALL termination, it
reclaims them at end-of-command (Ready;).

4. Abend processing — When a program terminates abnormally, CMS reclaims resources allocated while
the program was running, terminates the various SVC levels, and returns control back to the command
loop.

5. At logoff — when a user issues the LOGOFF command, all resources associated with the virtual
machine are released.

SVC 202/CMSCALL termination and end-of-command can be thought of as program boundaries. Programs
on one side of the boundary need not worry about resources created by programs on the other side.

If the program is a multitasking program, it is run in a new process. At end-of-SVC, the process is deleted
and process-affiliated resources are cleaned up.

Figure 1 on page 20 illustrates the boundary relationship CMS environment3. The numbers in the
drawing indicate the sequence of events:
Step 1

User begins a z/VM session by logging on.
Step 2

Command cycle begins when cmd 1 is issued.
Step 3

The cmd 1 calls a program and starts SVC level 1.
Step 4

The program called in Step 3 calls a program, starting SVC level 2.

3 If you are from an MVS background, a VM session (LOGON to LOGOFF) is comparable to an MVS JOB, a CMS
command cycle is comparable to an MVS JOB STEP, and a CMS SVC level is comparable to an MVS task or
RB level.

CMS Operating Characteristics

18 z/VM: 7.4 CMS Application Development Guide for Assembler

Step 5
The program called in Step 4 calls a program, starting SVC level 3.

Step 6
End-of-SVC level 3 cycle, CMS reclaims resources.

Step 7
End-of-SVC level 2 cycle, CMS reclaims resources.

Step 8
Program at SVC level 1 calls another program.

Step 9
End-of-SVC level 2 cycle, CMS reclaims resources.

Step 10
End-of-SVC level 1 cycle, CMS reclaims resources.

Step 11
End command cycle for cmd 1. If CMS does not reclaim resources at end-of-SVC, it reclaims them at
end-of-command.

Step 12
A new command is issued, cmd 2.

Step 13
A program is called by cmd 2.

Step 14
End-of-SVC level 1 cycle.

Step 15
End command cycle for cmd 2.

Step 16
Logging off ends the VM session. All resources associated with the virtual machine are released.

CMS Operating Characteristics

Chapter 2. CMS Operating Characteristics 19

Figure 1. CMS Boundary Relationships

Saving Resources across Boundaries
As mentioned earlier, there are several reasons why you might want to save a resource across a boundary.
For example,

CMS Operating Characteristics

20 z/VM: 7.4 CMS Application Development Guide for Assembler

• Existing programs may rely on the ability to save resources (such as GETMAIN free storage) across a
boundary. If so, you can issue SET STORECLR ENDCMD. (See “Cleaning Up GETMAIN Storage” on page
338 for details.)

• You may want to save interrupt handlers across end-of-command. If so, specify the KEEP parameter
when you define the interrupt handler. (See Chapter 12, “Interrupt Handling,” on page 173.)

• You may want to save various resources across an abend. If so, see “What You Can Save Across a CMS
Abend” on page 204.

Using Macro Libraries
Most CMS interfaces are available as CMS macros or callable services. All CMS macros that are supported
as programming interfaces are organized into the following CMS macro libraries:

• DMSGPI contains most of the CMS programming interface macros. In prior releases, these macros were
in DMSSP MACLIB and CMSLIB MACLIB, which no longer exist.

• DMSOM contains mostly CMS internal macros. The TEOVEXIT, IO, CMSCB, and DMSJNEPL macros are
the only macros in DMSOM MACLIB that you can use as a programming interface. All other macros in
DMSOM are designed for CMS internal use and should not be used as programming interfaces.

See the z/VM: CMS Macros and Functions Reference for a list of CMS macros that can be used by
customers for programming interfaces.

To assemble a program that uses the CMS programming interface macros, you must issue the GLOBAL
command specifying MACLIB DMSGPI. This macro library is usually located on the system disk. If you use
any of the four CMS programming interface macros located in DMSOM, you must also specify DMSOM on
the GLOBAL command.

CP macros that are supported as programming interfaces are located on the HCPGPI and HCPPSI CP
macro libraries. The IUCV macro and the APPCVM macro reside on HCPGPI.

To assemble a program that uses the CP programming interface macros, you must issue the GLOBAL
command specifying one or both of these macro libraries. HCPGPI MACLIB is usually located on the
system disk.

See the z/VM: CP Programming Services for a list of CP macros that can be used by customers for
programming interfaces.

Refer to “OS/MVS Macro Libraries” on page 319 for information on OS/MVS macro libraries.

Coding CMS Macros
Coding conventions for CMS macros are the same as those for all assembler language macros. If a
macro statement overflows to a second line, you must use a continuation character in column 72. The
continuation line must begin in column 16. No blanks may appear between operands. Incorrect coding of
any macro results in assembler errors and MNOTEs.

The z/VM: CMS Macros and Functions Reference contains a list of the possible error conditions that may
occur during the execution of CMS macros, and the associated return codes. These return codes are
always placed in register 15.

The macros that produce these return codes have ERROR= operands, which allow you to specify the
address of an error handling routine so that you can check for particular errors during macro processing.
If an error occurs during macro processing (with the exception of CMSSTOR macro processing) and no
error address is provided, execution continues at the next sequential instruction following the macro.
(If an error occurs during CMSSTOR macro processing and no error address is provided, the program
abends.)

CMS Operating Characteristics

Chapter 2. CMS Operating Characteristics 21

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

How CMS Macros Work
Briefly, CMS macros provide a means to dynamically access CMS services. You issue a macro, the macro
generates code to call a CMS routine, the routine performs the required function and then returns to your
program. The following figure illustrates this process.

Figure 2. How CMS Macros Work

CMS Macro Formats
For many of the macros in the preferred interface group, CMS provides four macro formats:

• Standard
• List
• Complex list
• Execute.

For more information on these macro formats, see the z/VM: CMS Macros and Functions Reference.

CMS Operating Characteristics

22 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Chapter 3. Architecture

The differences among ESA/390, ESA/XC, z/Architecture, and z/XC architectures that might affect
application programs are described, including differences among the following elements:

• PSWs
• Registers
• Storage addressing
• I/O handling
• Assembler language instructions

Architectures are defined in other publications:

• ESA/390 architecture is defined in IBM Enterprise Systems Architecture/390 Principles of Operation,
SA22-7201.

• ESA/XC architecture is defined in z/VM: ESA/XC Principles of Operation.
• z/Architecture is defined in IBM z/Architecture Principles of Operation, SA22-7832.
• z/XC architecture is defined in z/VM: z/Architecture Extended Configuration (z/XC) Principles of

Operation.

ESA/390, ESA/XC, z/Architecture, and z/XC Architecture
CMS provides a programming interface to ESA/XC, ESA/XA, z/Architecture, and 370-XA architecture.
To take advantage of ESA/XC or z/XC architecture, run your program in an XC virtual machine. To use
ESA/390 architecture or z/Architecture, you can run your program in an ESA virtual machine. Most CMS
applications that run in a 370 virtual machine can run in an ESA or ESA/XC virtual machine if you use one
of the following commands:

• CP SET 370ACCOM ON
• CMS SET CMS370AC ON

In addition, modules that are generated with the 370 option of the GENMOD command can run in an ESA
or ESA/XC virtual machine by issuing the CMS SET GEN370 OFF command.

For more information, see Chapter 1, “The CMS Programming Interface,” on page 3.

ESA/390, ESA/XC, z/Architecture, z/XC, and System/370 PSWs
Application programs that you run under CMS operate differently in an ESA, XC, or Z virtual machine
than they do in a 370 virtual machine. One reason for operational differences is the difference between
the ESA, XC, or Z PSW and the System/370 PSW. The PSWs among the different architectures have the
following differences:

• In the ESA/390 and ESA/XC PSWs, bit 32 specifies whether the current program runs in 24-bit or 31-bit
addressing mode.

– 24-bit addressing is indicated when bit 32 is set to 0.
– 31-bit addressing is indicated when bit 32 is set to 1.

• In the z/Architecture and z/XC architecture PSW, bits 31 and 32 specify whether the current program
runs in 24-bit, 31-bit, or 64-bit addressing mode:

– A value of 00 indicates 24-bit addressing mode.
– A value of 01 indicates 31-bit addressing mode.
– A value of 11 indicates 64-bit addressing mode.

Architecture

© Copyright IBM Corp. 1990, 2024 23

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4

• The setting of bit 12 determines the format of the PSW:

– Bit 12 is set to 1 for ESA/390 and ESA/XC PSWs.
– Bit 12 is set to 0 for System/370 PSWs.
– Bit 12 is set to 0 for z/Architecture and z/XC PSWs.

• In ESA/390, ESA/XC, z/Architecture, and z/XC, bit 6 of the PSW and control register 6 are used to
mask I/O interrupts. Note that you can use the architecture-independent ENABLE macro to enable and
disable your virtual machine for various types of interrupts. For more information, see “Manipulating the
PSW Interrupt Mask” on page 173.

Note: z/VM supports the BC-mode, or Basic Control mode, PSW for System/370. The EC-mode, or
Extended Control mode, PSW is not supported.

For more information about PSW definitions, see the following publications:

• IBM Enterprise Systems Architecture/390 Principles of Operation, SA22-7201
• z/VM: ESA/XC Principles of Operation
• IBM z/Architecture Principles of Operation, SA22-7832
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation

31 Bit Addressing
ESA and ESA/XC use 31 bit addressing. You can address up to 2 GB of storage. In practice, the amount
of real storage you have is limited by the processor unit that you use. The amount of virtual storage you
can address is limited by controls in the CP directory. CMS supports ESA, XC, and XA virtual machine
storage sizes of up to 2047 MB. z/CMS supports virtual machine storage sizes of up to 128 GB. XC virtual
machines provide even more storage by using multiple address spaces.

Conventions for 31-Bit Programs
Programs that run in ESA XC or XA virtual machines must follow these conventions:

• Any data passed to a 24-bit addressing mode program must reside in low storage, at an address that is
less than 16 MB.

• Any data that is passed to a 31-bit addressing-mode program must reside in low storage, at an address
that is less than 2 GB.

• A program must return control to a caller in the same addressing mode in which it received control. The
CMSCALL, CMSRET, and AMODESW macros can handle address mode switching automatically.

• Programs must expect 31-bit addresses from 31-bit addressing mode programs and 24-bit addresses
from 24-bit addressing mode programs.

• A 31-bit program must zero the high-order byte of any address it receives from a 24-bit program. Zero
in the high-order byte indicates 24-bit addressing capability.

• A 64-bit program must zero the high-order word of any address it receives from a 31-bit program or the
high-order 5 bytes of any address it receives from a 24-bit program.

Bimodal Addressing
CMS supports bimodal addressing. Bimodal addressing allows programs that run in an ESA XC or XA
virtual machine to execute in 24-bit addressing mode, 31-bit addressing mode, or a combination of
both addressing modes. Programs that have addressing sensitivities (that is, they are limited to 24-bit
addressing) can run in an XC or XA virtual machine without being converted to 31-bit addressing.

To support bimodal addressing, CMS recognizes two program attributes: addressing mode (AMODE) and
residency mode (RMODE).

Restriction: CMS does not support AMODE 64 or RMODE 64.

Architecture

24 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4

Addressing Mode (AMODE)
Addressing mode refers to the type of address (31-bit or 24-bit) a program expects to handle when it
receives control. A program's AMODE attribute determines its addressing mode:
AMODE 24

means a program can handle 24-bit mode addresses only. An AMODE 24 program must reside below
the 16MB line.

AMODE 31
means a program can handle 31-bit mode addresses. An AMODE 31 program can reside above or
below the 16MB line.

AMODE ANY
means you are deferring the decision to assign the program an addressing mode. There are several
points in the program cycle when you can assign an AMODE or override an existing AMODE. You can
also use AMODE ANY to let the program's addressing mode default to the value of the program that
called it.

Figure 3. How CMS Interprets the AMODE Attribute

Residency Mode (RMODE)
Residency mode refers to where a program resides when CMS loads it (above or below the 16MB line). A
program's RMODE attribute determines its residency mode:
RMODE 24

means that CMS loads the program below the 16MB line.
RMODE ANY

means that CMS loads the program above 16MB unless insufficient storage is available above the
16MB line.

Architecture

Chapter 3. Architecture 25

Figure 4. How RMODE Affects Where CMS Loads Programs

Setting the Addressing and Residency Modes
There are several ways you can set a program's addressing and residency modes:

Default values
If you do not specify addressing mode or residency mode, the default values are:

Specified Default Value

Neither AMODE 24, RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

Note:

1. The combination AMODE 24 and RMODE ANY is invalid.
2. The CMSCALL macro calls AMODE ANY programs in the addressing mode of the caller. The CMSCALL

macro can handle address mode switching automatically.
3. If in an ESA XC or XA virtual machine you start an AMODE ANY module from the command line or from

an EXEC, the module is called as AMODE 31.
4. CMS does not support AMODE 64 or RMODE 64.

Architecture

26 z/VM: 7.4 CMS Application Development Guide for Assembler

AMODE and RMODE instructions
Coding the Assembler H or High Level Assembler AMODE and RMODE instructions in your assembler
programs associates addressing mode and residency mode values with text files.

For example, to define a CSECT named PGMA as an AMODE 31/RMODE ANY program, you could use the
AMODE and RMODE pseudo-ops as follows:

PGMA CSECT
PGMA RMODE ANY
PGMA AMODE 31
 .
 .
 .

You can override these values when you use the LOAD command to load the text files into storage or
when you use the GENMOD command to generate relocatable module files. Both of these commands are
discussed in detail in the z/VM: CMS Commands and Utilities Reference. The assembler invoked by the
CMS ASSEMBLE command does not support AMODE and RMODE instructions.

The format of the AMODE instruction is:

Name Operation Operand

Any symbol or blank AMODE 24/31/ANY

The name field of the AMODE instruction associates an addressing mode with a CSECT in an object
module. If there is a symbol in the name field of an AMODE statement, that symbol must also appear in
the name field of a START, CSECT, or COM statement in the assembly.

Similarly, the name field of the RMODE statement associates the residency mode with a control section.
The format of the RMODE instruction is:

Name Operation Operand

Any symbol or blank RMODE 24/ANY

The RMODE and AMODE instructions can appear anywhere in the assembly. Their appearance does not
initiate an unnamed CSECT. While an assembly can have more than one RMODE (or AMODE) instruction,
each instruction must have a different name field.

LOAD command
You can use the AMODE, RMODE, and ORIGIN options to set the addressing mode and residency mode
of the text file you load. Addressing mode and residency mode values specified on the LOAD command
override any values set at assembly time. Also, note that ORIGIN and RMODE are mutually exclusive
parameters; you cannot specify both on the same LOAD command.

The AMODE option lets you specify an addressing mode (24, 31, or ANY) to the program you load. The
RMODE option specifies the residency mode (24 or ANY).

The ORIGIN option lets you specify an address where CMS is to load a program and, therefore, sets the
residency mode implicitly. If you specify an ORIGIN address 16MB or greater, the program is assigned
a residency mode of ANY. If you specify an ORIGIN address less than 16MB, the program is assigned a
residency mode of 24.

GENMOD command
The AMODE and RMODE options of the GENMOD command allow you to specify AMODE and RMODE
values for modules you generate.

For example, to generate a module named 31BITGUY with an addressing mode of 31 and a residency
mode of ANY, enter:

Architecture

Chapter 3. Architecture 27

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

genmod 31bitguy (amode 31 rmode any

To generate a module named 24BITGUY with an addressing mode of 24 and a residency mode of 24,
enter:

genmod 24bitguy (amode 24 rmode 24

The AMODE option overrides any values specified at assembly time or on the LOAD command. The
RMODE option also overrides any values specified at assembly time or on the LOAD command. For
nonrelocatable modules, the RMODE option of the GENMOD command is ignored and the module load
address is determined by the location of the text file when GENMOD is issued.

SUBCOM and NUCEXT macros
You can use the SUBCOM macro to define subcommand processors and the NUCEXT macro to define
nucleus extensions. Both macros let you specify an addressing mode for the programs.

The MVS/XA Linkage Editor
If you use the MVS/XA linkage editor, the AMODE and RMODE attributes are modified at link-edit time
by default values, or by values set in the PARM field of the LKED command or the linkage editor MODE
control statement. By default, the linkage editor checks each CSECT of the entire load module, and sets
the RMODE to the lowest mode encountered (in other words, if the linkage editor finds any RMODE 24
CSECTs, it assigns the entire module the value RMODE 24). The linkage editor sets the module AMODE to
the AMODE of the entry point unless an AMODE is explicitly specified.

Note: For more information on addressing mode, residency mode, and the program packaging process in
general, see Chapter 15, “Program Packaging,” on page 211.

Calling Other Programs
CMS provides two macros, CMSCALL and AMODESW, that you can use to call other programs and, if
necessary, switch addressing modes:

• Use CMSCALL to request supervisor assisted linkage to other programs; CMSCALL automatically
calls the program in the correct mode. For more information on CMSCALL, see Chapter 5, “Program
Invocation - Supervisor Assisted Linkage,” on page 39.

• Use AMODESW as an architecture-independent replacement for direct branch instructions such as BAL,
BALR, BAS, BASR, BSM, and BASSM. For more information on AMODESW, see Chapter 4, “Program
Invocation - Direct Branch Linkage,” on page 35.

For more information on AMODESW and CMSCALL, see the z/VM: CMS Macros and Functions Reference.

I/O Considerations
One of the major differences between ESA/390 architecture, z/Architecture, and System/370 architecture
is in the way that I/O is handled. Each architecture has a unique instruction set and a unique method
of handling I/O to and from devices. Your CMS applications can complete I/O by using the CMS macro
interface, DIAGNOSE instructions, or the actual ESA/390 or z/Architecture instructions.

The following sections describe the various levels of support in more detail. The level that you choose
depends on the requirements of your application.

Information about the channel subsystem that is used by ESA and z/Architecture and how System/370
I/O handling differs from channel subsystem I/O handling is available in architecture publications:

• ESA/390 architecture is defined in IBM Enterprise Systems Architecture/390 Principles of Operation,
SA22-7201.

• ESA/XC architecture is defined in z/VM: ESA/XC Principles of Operation.
• z/Architecture is defined in IBM z/Architecture Principles of Operation, SA22-7832.

Architecture

28 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4

• z/XC architecture is defined in z/VM: z/Architecture Extended Configuration (z/XC) Principles of
Operation.

CMS Preferred Interface I/O Support
If you run your program in an XC or XA virtual machine, you need to issue channel subsystem I/O
instructions.

The best way to handle I/O to and from devices is to use the I/O macros in the CMS preferred interface.

The following table summarizes the macros CMS provides to help you write I/O code that works in an ESA
XC or XA virtual machine:

Table 7. CMS Preferred Interface I/O Macros

Function Macros Reference

File management FSCB
FSCBD
FSCLOSE
FSERASE
FSOPEN
FSPOINT
FSREAD
FSSTATE
FSWRITE

Chapter 9, “CMS File System,” on page
107

Console I/O CONSOLE
APPLMSG
LINERD
LINEWRT

Chapter 8, “Console and Terminal I/O,”
on page 83

Unit Record I/O PRINTL
PUNCHC
RDCARD

Chapter 11, “Unit Record Devices and
Tapes,” on page 147

Tape I/O TAPESL
TAPCTL
RDTAPE
WRTAPE

“Tape Handling Macros” on page 151

I/O Interrupt Handling HNDIO
WAITD
WAITT

Chapter 12, “Interrupt Handling,” on
page 173

Using Diagnose Codes for I/O
If you cannot use the CMS macro interface and it does not matter whether your application's I/O
processing is synchronous or asynchronous, you should use the DIAGNOSE code X'A4' and DIAGNOSE
code X'A8' instructions. The DIAGNOSE code X'A4' and DIAGNOSE code X'A8' instructions work in ESA, Z,
or XC virtual machines, but not in 64-bit addressing mode.

I/O Instructions
As mentioned earlier, ESA/390, ESA/XC, z/Architecture, and z/XC architectures and System/370
architecture support different sets of I/O instructions. When you use I/O instructions in your program,

Architecture

Chapter 3. Architecture 29

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4

you must make sure you use the I/O instructions appropriate for the mode of virtual machine in which
the program is to run. An operation exception occurs in your program if it issues the wrong mode of I/O
instruction (a System/370 I/O instruction in an ESA, XC, or XA virtual machine). Most CMS applications
that are written by using System/370 I/O instructions can run in an ESA, XA, or ESA/XC (but not z/XC)
virtual machine. You must use the CP SET 370ACCOM ON command or the CMS SET CMS370AC ON
command.

Information on the CP SET 370ACCOM command is available in another publication. See the z/VM: CP
Commands and Utilities Reference.

Information on how to run your 370-only CMS applications in an ESA XA or XC virtual machine is available
in another publication. See the z/VM: CP Programming Services.

Information on the CMS SET CMS370AC ON command is available in another publication. See the z/VM:
CMS Commands and Utilities Reference.

ESA/XC and ESA/390 architectures maintain compatibility to System/370 in the areas of CCWs, IDAWs,
and channel programs. However, you must be careful when you replace System/370 I/O instructions
with the ESA/XC or ESA/390 counterparts; System/370 and ESA/390 or ESA/XC condition codes do not
necessarily mean the same thing. (For example, TIO condition codes need to be handled differently than
TSCH condition codes.)

Table 8 on page 30 lists the I/O instructions in each architecture.

Table 8. I/O Commands of several architectures

ESA/390, ESA/XC, z/
Architecture, and z/XC I/O
Instructions Mnemonic System/370 I/O Instructions Mnemonic

CLEAR SUBCHANNEL CSCH CLEAR CHANNEL CLRCH

HALT SUBCHANNEL HSCH CLEAR I/O CLRIO

MODIFY SUBCHANNEL MSCH HALT DEVICE HDV

RESET CHANNEL PATH RCHP HALT I/O HIO

RESUME SUBCHANNEL RSCH RESUME I/O RIO

SET ADDRESS LIMIT SAL START I/O SIO

SET CHANNEL MONITOR SCHM START I/O FAST RELEASE SIOF

START SUBCHANNEL SSCH STORE CHANNEL ID STIDC

STORE CHANNEL PATH STATUS STCPS TEST CHANNEL TCH

STORE CHANNEL REPORT WORD STCRW TEST I/O TIO

STORE SUBCHANNEL STSCH

TEST PENDING INTERRUPTION TPI

TEST SUBCHANNEL TSCH

Complete information on these and other assembler language instructions are available in another
publication. See z/VM: ESA/XC Principles of Operation.

The GETSID Macro
The ESA/390, ESA/XC, z/Architecture, and z/XC I/O operations require that the device subchannel-
identification word (SID) is in register 1. Use the GETSID macro to find the SID of a specific device
name or device address and to store it in register 1.

Note: The GETSID macro is needed in ESA XC or XA virtual machines.

Architecture

30 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4

Example
The following sequence of instructions starts I/O to device TAP1.

GETSID DEVNAME='TAP1' * Get SID of TAP1 in R1
SSCH CCWS * Start I/O using the CCWs
 at location CCWS.

Assembler Instructions That Work Differently
Because of architectural differences (for example, 31-bit versus 24-bit addressing capabilities) the
ESA/390, ESA/XC, z/Architecture, and z/XC assembler language instruction sets are different from the
System/370 assembler language instruction set. Some System/370 instructions do not work in ESA, XC,
Z, or XA virtual machines. In addition, a few ESA/XC and z/XC instructions (for example, SAC) do not work
in an ESA or XA virtual machine that run CMS.

Most CMS applications that are written by using System/370 specific instructions can run in an ESA, XA,
or XC virtual machine. You must use the CP SET 370ACCOM ON command or the CMS SET CMS370AC ON
command.

Information on the CP SET 370ACCOM command is available in another publication. See the z/VM: CP
Commands and Utilities Reference.

Information on how to run your 370-only CMS applications in an ESA XA or XC virtual machine is available
in another publication. See the z/VM: CP Programming Services.

Information on the CMS SET CMS370AC ON command is available in another publication. See the z/VM:
CMS Commands and Utilities Reference.

Instructions That Are Sensitive to Addressing Mode
Certain assembler instructions (those that use or develop addresses) operate differently according to the
current addressing mode. (See z/VM: ESA/XC Principles of Operation for details of all ESA/XC assembler
instructions.)

• BAL, BALR — In 24-bit addressing mode, BAL and BALR work the same way as they did in a 370
virtual machine. Before branching, they put link information into the high-order byte of the first operand
register and put the return address into the remaining 3 bytes.

In 31-bit addressing mode, BAL and BALR put the return address in bits 1-31 of the first operand
register and set the high-order bit to 1 to indicate a 31-bit address. To save the program mask and
condition code, use the 370-XA instruction IPM (INSERT PROGRAM MASK).

• LA — In 24-bit addressing mode, the LA instruction loads a 24-bit address and clears the high-order
byte. In 31-bit addressing mode, LA loads a 31-bit address and clears the high-order bit.

Other instructions that have been changed to handle two types of addresses include: COMPARE LOGICAL
LONG, EDIT AND MARK, MOVE LONG, and TRANSLATE AND TEST. In the decimal instruction set, EDIT
AND MARK places the address in register 1 according to the addressing mode in effect at the time of
execution.

Instructions That Are Not Supported
ESA/390 and ESA/XC architectures do not support the following instructions:

• INSERT STORAGE KEY
• RESET REFERENCE BIT
• SET STORAGE KEY

Using any of these instructions in an ESA, XC, or XA virtual machine causes operation exceptions in
your programs. However, if you issue the CP SET 370ACCOM ON command, then ISK, RRB, and SSK are
supported.

Architecture

Chapter 3. Architecture 31

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4

The instructions that are supported in each architecture are documented in architecture publications:

• ESA/390 architecture is defined in IBM Enterprise Systems Architecture/390 Principles of Operation,
SA22-7201.

• ESA/XC architecture is defined in z/VM: ESA/XC Principles of Operation.
• z/Architecture is defined in IBM z/Architecture Principles of Operation, SA22-7832.
• z/XC architecture is defined in z/VM: z/Architecture Extended Configuration (z/XC) Principles of

Operation.

Architecture

32 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4

Part 2. Using CMS Services

This part of the document describes how to use the CMS preferred interfaces from within your programs
to dynamically access CMS services. Part 2, “ Using CMS Services,” on page 33 includes the following
chapters:

• Chapter 4, “Program Invocation - Direct Branch Linkage,” on page 35 describes how to link to other
programs using direct branch linkage.

• Chapter 5, “Program Invocation - Supervisor Assisted Linkage,” on page 39 describes how to link to
other programs using CMS supervisor assisted linkage.

• Chapter 6, “Using Free Storage,” on page 53 describes how to allocate, manage, and release free
storage and free storage subpools.

• Chapter 7, “Using Saved Segments,” on page 75 describes how to use physical and logical saved
segments.

• Chapter 8, “Console and Terminal I/O,” on page 83 describes how to use macros to do terminal and
console I/O.

• Chapter 9, “CMS File System,” on page 107 describes how CMS manages files.
• Chapter 10, “Using the File System Macros,” on page 131 describes CMS macros you can use to

manipulate CMS files.
• Chapter 11, “Unit Record Devices and Tapes,” on page 147 describes how to use CMS macros to

perform unit record I/O and to manage tapes.
• Chapter 12, “Interrupt Handling,” on page 173 discusses how CMS interrupt handling routines can

make it easier for application programs to handle interrupts.
• Chapter 13, “Nucleus Extensions and Commands,” on page 191 describes how to use the NUCEXT,

ANCHOR, SUBCOM, and IMMCMD macros.
• Chapter 14, “Abend Processing,” on page 203 discusses CMS abend processing and abend exit routines.

© Copyright IBM Corp. 1990, 2024 33

34 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 4. Program Invocation - Direct Branch
Linkage

This chapter:

• Provides an overview of direct branch linkage.
• Describes considerations for using BAL/BALR for AMODE ANY programs.
• Describes how to pass control from one program to another using the AMODESW macro. Note that

AMODESW is an architecture-independent alternative for the BAL, BALR, BAS, BASR, BSM, and BASSM
instructions.

Overview of Direct Branch Linkage
While your program executes, it can call other routines within the same program or it can call other
programs. One method for calling, or linking, to other programs is called direct branch linkage. A direct
branch generates fewer instructions and is faster than supervisor assisted linkage. On the other hand, you
can only use a direct branch to call programs that already reside in storage (supervisor assisted linkage
can locate and load a program for you).

One way to make a direct branch is to use assembler instructions such as BAL/BALR, BAS/BASR, or BSM/
BASSM. BSM and BASSM are 370-XA (and ESA/XC) instructions. Developing AMODE ANY programs using
BAL/BALR for program linkage is one way to develop programs that can be independent of assembler
instruction mode-sensitive behavior.

Another way to perform direct branch linkage is to use the AMODESW macro. This macro can work in a XA
or XC virtual machine.

Using BAL/BALR with AMODE ANY Programs
Programs can be designed to be insensitive to the addressing mode in which they receive control. These
programs are referred to as AMODE ANY programs and are designed to execute in the AMODE of the
caller. You can use the BALR/BAL and BR instructions to pass control to and from AMODE ANY programs.

In developing AMODE ANY programs, you should be aware of the following considerations:

• Certain machine instructions (BAL, BALR, LA, TRT, EDMK) execute differently depending on the
addressing mode in effect when they are invoked. AMODE ANY programs must not have any
dependency on the mode-dependent manner in which these instructions execute. For example, the
BAL and BALR instructions save the instruction length code, the condition code, and the program mask
in bits 0 - 7 of the link register in 24-bit addressing mode but not in 31-bit addressing mode. If this
information is required by the application, you can use the IPM (Insert Program Mask) instruction
instead because it operates identically in 24-bit and 31-bit addressing modes.

For more information on the mode-sensitive behavior of these instructions, please see z/VM: ESA/XC
Principles of Operation.

• Programs designed to operate in this manner need to consider proper program residency (RMODE)
requirements. In particular, a program executing in 24-bit addressing mode cannot branch to an AMODE
ANY program which resides above the 16MB line.

Switching the Addressing Mode
Use the AMODESW macro to:

• To branch to other subroutines within a module. Programs can use the AMODESW macro as an
architecture-independent alternative for the BALR or BASSM instructions.

Direct Branch Linkage

© Copyright IBM Corp. 1990, 2024 35

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4

• Switch a program's current addressing mode to 24-bit or 31-bit.
• Save the current addressing mode when switching to a new addressing mode. This is useful when (a) a

program does not know the current mode, (b) wants to switch to a particular mode, and (c) eventually
wants to return to the original mode.

• Determine the current addressing mode.

AMODESW Formats
The general formats of the AMODESW macro are:

• AMODESW SET — To switch addressing modes.
• AMODESW CALL — To make a subroutine call with an appropriate mode switch.
• AMODESW RETURN — To return from a subroutine.
• AMODESW QUERY — To determine the current addressing mode.

See the z/VM: CMS Macros and Functions Reference for the complete syntax of AMODESW.

Using AMODESW - Examples

Example 1 - Switch Addressing Mode Inline
To switch addressing mode inline, use the SET function of the AMODESW macro as follows:

AMODESW SET,AMODE=31 Switch to 31-bit addressing
 .
 .
 .
AMODESW SET,AMODE=24 Return to 24-bit addressing mode

Example 2 - Branch to a Subroutine in 31-Bit Addressing Mode
To call the subroutine named MYSUB in 31-bit addressing mode, code the AMODESW macro as follows:

 AMODESW CALL,AMODE=31,ADDRESS=MYSUB
 .
 .
 .
MYSUB EQU *
 .
 .
 .
 AMODESW RETURN

Example 3 - Save and Restore Addressing Mode
The following example shows how to use the SAVE parameter of AMODESW. It allows MYSUB to return to
a routine without being sensitive to the addressing mode that the called routine uses.

MYSUB CSECT
 .
 .
 .
* Save return register, set new mode, save caller's mode
 LR R10,R14
 AMODESW SET,AMODE=31,SAVE=(R10)
 .
 .
 .
* Return to caller, restore addressing mode
 AMODESW RETURN,REG=(R10)

Direct Branch Linkage

36 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Example 4 - Using AMODESW as an Alternative for BALR
You can use the AMODESW CALL and RETURN mechanism wherever a BALR and BR are currently used.

To replace a BALR call where registers other than 14 and 15 are used for the linkage, use the REGS
parameter on AMODESW CALL and the REG parameter on AMODESW RETURN, as in the following
example:

 AMODESW CALL,AMODE=31,ADDRESS=MYSUB,REGS=(R9,R10)
 .
 .
 .
MYSUB EQU *
 .
 .
 .
 AMODESW RETURN,REG=(R9)

Note: Because the instructions BSM and BASSM are not available in the 370 virtual machine, AMODESW
generates dual-path code (code that works in either addressing mode). If your application will be
executed only in XA or XC virtual machines, you can specify the MODE=NO370 parameter. The dual-path
code needed to execute in a 370 virtual machine will not be generated.

Example 5 - Set Addressing Mode According to a VCON
The following example shows how you can use AMODESW to branch to a VCON address; AMODESW can
automatically set the addressing mode according to the addressing mode associated with the VCON. This
technique lets you keep the calling mechanism constant and assure a proper transfer of control even if
the program you call changes its AMODE definition.

When the CMS loader resolves the address of a VCON, it also sets the high-order bit of the address to
reflect the AMODE of the entry point. If the entry point is AMODE 31 or AMODE ANY, the high-order bit of
the VCON address is set to 1. If the entry point is AMODE 24, the high-order bit of the VCON address is
set to 0. This means the address to which you want to transfer control also contains the addressing mode.
Note that EXTRN/ADCON specifications are not resolved by the CMS loader to reflect the addressing
mode.

PGM1 CSECT
PGM1 RMODE 24 Define PGM1 residency mode.
PGM1 AMODE 24 Define PGM1 addressing mode.
 .
 .
 L R15,PGM2AD Get the entry address of PGM2.
 AMODESW CALL Transfer control to PGM2 in the AMODE
 * defined for its CSECT. By default,
 * R14 is the return register, AMODESW
 * CALL saves the addressing mode in the
 * high-order bit.
 .
 PGM2AD DC V(PGM2) When loader resolves external ref,
 * it sets high-order bit according to
 * the AMODE defined for its CSECT.

 --

 PGM2 CSECT
 PGM2 RMODE ANY Define PGM2 residency mode
 PGM2 AMODE 31 Define PGM2 addressing mode
 .
 .
 AMODESW RETURN When PGM2 completes, control returns
 * to PGM1 according to the AMODE in R14
 * (saved by AMODESW CALL).

Note: The above example only works when you use the HOBSET option of the CMS LOAD or INCLUDE
commands. This support is available only with the CMS Loader and not with the HCPLDR or LKED
commands.

Direct Branch Linkage

Chapter 4. Program Invocation - Direct Branch Linkage 37

Example 6 - Set Addressing Mode According to an ADCON
The technique used above may also be applied to routines using EXTRNs and ADCONs. The following
example defines the AMODE of the routine by setting on or off the high-order bit of the ADCON.

RTN1 CSECT
 EXTRN RTN2AD
 EXTRN RTN3AD
 .
 .
 L R15,=A(RTN2AD) Load address of RTN2.
 L R15,0(R15)
 AMODESW CALL Go to RTN2 using AMODESW. By default,
 * R14 is the return register and AMODESW
 * CALL saves the addressing mode in the
 * high-order bit.
 .
 .
 L R15,=A(RTN3AD) Load address of RTN3.
 L R15,0(R15)
 AMODESW CALL Go to RTN3 using AMODESW. By default,
 * R14 is the return register and AMODESW
 * CALL saves the addressing mode in the
 * high-order bit.

 RTN2 CSECT
 RTN2 AMODE 24
 ENTRY RTN2AD

 AMODESW RETURN Return to caller in caller's mode
 * according to AMODE stored in R14 by
 * AMODESW call.
 RTN2AD DC A(RTN2) When used as an address indicates
 * AMODE 24 because bit 0 is 0.

 RTN3 CSECT
 RTN3 AMODE 31
 ENTRY RTN3AD

 AMODESW RETURN Return to caller in caller's mode
 * according to AMODE stored in R14 by
 * AMODESW call.
 RTN3AD DC A(X'80000000'+RTN3) When used as an address indicates
 * AMODE 31 because bit 0 is 1.

Direct Branch Linkage

38 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 5. Program Invocation - Supervisor Assisted
Linkage

This chapter:

• Provides an overview of CMS supervisor assisted linkage.
• Describes how to pass control from one program to another using the CMSCALL and CMSRET macros.

The SVC 202 instruction can also be used to pass control but will only work below the 16MB line.
• Describes how to use the SCAN macro to help you construct tokenized and extended parameter lists.

Overview of CMS Supervisor Assisted Linkage
Supervisor assisted linkage, as its name implies, means that CMS helps you link to a program. When you
identify the program you want to call, CMS (a) locates the program, (b) loads the program and performs
other preparation as required, and (c) transfers control to the program.

To request supervisor assisted linkage, you can use the CMSCALL macro, an SVC 202 instruction, or
the OS/MVS ATTACH, LINK, or XCTL macros. CMSCALL is the preferred method: it is a CMS service (as
opposed to the OS/MVS macros which CMS simulates) and it works from anywhere in your program (SVC
202 works only from below the 16MB line). Also, CMSCALL:

• Always loads a new copy of the program (except for nucleus extensions), thus protecting you from
obtaining an unusable copy.

• Calls programs in the correct addressing mode
• Saves the caller's registers to help assure a proper return when the called program completes.
• Provides a save area which the called program can use.
• Provides the capability of copying parameter lists from above the 16MB line to below it (this capability is

used when a program above the 16MB line calls a program below it).
• Lets you specify an optional routine to handle errors that occur during macro processing.

Supervisor Assisted Linkage — An Overview
In general, a program call works as follows:

1. The calling program sets up the parameter list(s) that the called program expects. There are two basic
formats of parameter lists: the tokenized parameter list and the extended parameter list. You can use
the SCAN macro to instruct CMS to build correctly formatted parameter lists from data you specify.

2. The calling program issues the CMSCALL macro. (Programs that run under 16MB can use SVC 202;
CMSCALL, however, is the recommended method for new programs).

3. CMS allocates a user save area. The user save area is a register save area (or work area) used by
the routine that is being called. When you use CMSCALL, the user save area also contains information
about the type of call being made, user flags, and some miscellaneous flags (see “USERSAVE Control
Block” on page 49 for details).

4. CMS passes control to the specified program. “Register Usage” on page 47 describes how CMS sets
up the registers for the called program.

5. The called program returns to the calling program. To return to its caller, a program can issue the
CMSRET macro or branch to the address contained in register 14. CMS releases the save areas and
restores the registers (you can use CMSRET to specify that CMS pass unchanged the contents of
certain registers back to the calling program).

Figure 5 on page 40 and Figure 6 on page 40 illustrate CMSCALL register and save area usage.

Supervisor Assisted Linkage

© Copyright IBM Corp. 1990, 2024 39

Figure 5. CMSCALL for AMODE ANY/AMODE 31 Programs

Figure 6. CMSCALL for AMODE 24 Programs

Supervisor Assisted Linkage

40 z/VM: 7.4 CMS Application Development Guide for Assembler

Setting Up a Parameter List
The SCAN macro provides a simple method to create tokenized and extended parameter lists from
input data. SCAN also stores the address of the extended parameter list in register 0 and the tokenized
parameter list in register 1; this helps you set up to use the CMSCALL macro.

Using the SCAN Macro
Before invoking the SCAN macro, your program must provide an area where CMS can construct the
tokenized and extended parameter lists. The length of the area you provide depends on the number of
arguments in the input data. (The input data is a string of arguments delimited by one or more blanks or a
left or right parenthesis.)

Parameter List Format
The standard form of the extended and tokenized parameter lists that the SCAN macro creates is as
follows:

.
 extended parameter list
.
DC A(CMNDNAME) Command name
DC A(BEGARG) Beginning of argument list
DC A(ENDARG) End of argument list
DC F'0' User word
DC 4F'0' Reserved for future use
.
 tokenized parameter list
.
DC CL8' ' Space for tokens (arguments) as required
DC CL8' ' Space for tokens (arguments) as required
DC 8X'FF' Fence

Figure 7. SCAN Macro Parameter List Format

The Extended Parameter List
The extended parameter list, the first four fullwords of the list shown in Figure 7 on page 41, contains the
following information:

• The first fullword, DC A(CMNDNAME), points to the beginning of the input data, which SCAN assumes is
the name of the program being invoked.

• The second fullword, DC A(BEGARG), points to the beginning of the argument string (the first nonblank
character following the command name).

• The third fullword, DC A(ENDARG), points to the first byte following the end of the input data.
• The fourth fullword, DC F'0', is a user word that the SCAN macro sets to zero before returning control to

the invoking program. Users can store information in this fullword before calling the program pointed to
by the first word of the extended parameter list.

CMS stores the address of the extended parameter list in register 0 before control returns to the invoking
program.

The Tokenized Parameter List
To create a tokenized parameter list, CMS truncates or pads each argument in the input data to 8 bytes.
The first token must be the name of the program you call. In addition, CMS treats each parenthesis
as an argument and it appends an 8-byte "fence" (delimiter) of X'FF' to mark the end of the tokenized
parameter list.

SCAN stores a pointer to the tokenized parameter list in general register 1.

Supervisor Assisted Linkage

Chapter 5. Program Invocation - Supervisor Assisted Linkage 41

Determining Storage Needed for Parameter Lists
The storage area you provide for the SCAN macro to build its parameter lists must consist of 40 bytes plus
8 bytes for each argument or parenthesis in the input data. Therefore, if your input data consists of only
one argument, you must provide a 48-byte storage area. For example, if you have the following input data,

test

the SCAN macro would need 48 bytes to build parameter lists, as shown below.

CMNDNAME DC A(CMDTKN) CMDTKN is the address of the name of the
* program being invoked, in this case, 'test'
BEGARG DC A(CMDTKN+4) Beginning of argument list
ENDARG DC A(CMDTKN+4) End of argument list
 DC F'0' User word
 DC A(0) Address of function argument list
 DC A(0) Address for return of function data
 DC 2F'0' Padding
 DC CL8'test ' Space for tokens (arguments) as required
 DC 8X'FF' Fence

Figure 8. Determining Storage for PLISTs

If you supply the following argument list,

test(file1 file2)

the SCAN macro would need 80 bytes to build a parameter list, as shown below.

CMNDNAME DC A(CMDTKN) CMDTKN is the address of the name of the
* program being invoked, in this case, 'test'
BEGARG DC A(CMDTKN+4) Beginning of argument list
ENDARG DC A(CMDTKN+17) End of argument list
 DC F'0' User word
 DC A(0) Address of function argument list
 DC A(0) Address for return of function data
 DC 2F'0' Padding
 DC CL8'file2 ' Space for tokens (arguments) as required
 DC CL8') ' Space for tokens (arguments) as required
 DC 8X'FF' Fence

Figure 9. Determining Storage for PLISTs

Note: If your buffer area is too small to contain the tokenized parameter list, CMS truncates the
parameter list and returns an error code of 4 in register 15.

Determining the Number of Arguments
If you use the TEXT operand of the SCAN macro to specify the input data, you will know how many
arguments it includes. If you get the data from somewhere else, you need to count the number of
arguments. (An alternative is to provide storage for the maximum number of arguments you might
receive).

Translation Values
Optionally, you can use the TRANS parameter of the SCAN macro to translate input data according to user
defined translation values. (The SET INPUT and SET OUTPUT commands can define alternate translation
values.)

When a program requests translation and a user has not defined any alternate translations, the SCAN
macro translates to uppercase using the default table.

Defining Translation Values
To use translation values with SCAN, you must first use the SET INPUT command to identify the data
(character or hex) you want to translate. For each character or hex value you want to translate you must

Supervisor Assisted Linkage

42 z/VM: 7.4 CMS Application Development Guide for Assembler

enter a separate SET INPUT command (you can enter SET INPUT from an exec, from the command line,
or by using CMSCALL to invoke it from a program).

For example, to translate the character ‘f’ to X'40', you could specify:

SET INPUT f 40

To translate X'17' to X'07', specify:

SET INPUT 17 07

Example
The following example shows how the SCAN macro works (assume that EXSETI issues the two SET INPUT
commands):

SCANXMP CSECT
 USING SCANXMP,12
 ST 14,SAVER14 Save return code
 LA 1,EXSETI
 CMSCALL Call front-end exec to issue set input cmds
 SCAN TEXT=(INPUT,INPLEN),BUFFER=(PLSTAREA,),TRANS=YES
 CMSCALL COMBO must be a relocatable module
* or must not overlay SCANXMP
 L 14,SAVER14
 BR 14
 DS 0F
INPUT DC C'COMBO 14f65f32f65f' PLIST that will be translated
 DC X'225C175C86' and sent to program COMBO
INPLEN EQU *-INPUT
SAVER14 DS F
 DS 0D
PLSTAREA DS CL80 Area where SCAN builds PLIST
 DS 0F
EXSETI DS 0F
 DC CL8'EXEC'
 DC CL8'SETI'
 DC 8X'FF'
 END

When COMBO is called, register 1 points to the address of the tokenized
parameter list, whose contents will be as follows:

 .
 .
 DS 0F
PLISTIN DC CL8'COMBO' Name of program to be called
 DC CL8'14' Char parm
 DC CL8'65' Char parm
 DC CL8'32' Char parm
 DC CL8'65' Char parm
 DC XL8'225E075E86404040' Hex parm
 DC 8X'FF' Fence to show end of list

Figure 10. SCAN Macro Example

Making the Call
After you have set up the appropriate parameter list, you can use the CMSCALL macro to invoke a CMS
command, CMS function, nucleus extension, nucleus resident routine, or user module. CMSCALL works
from above or below the 16MB line and automatically calls the program you specify in the appropriate
addressing mode.

The following sections describe how and when you can use some of the options of the CMSCALL macro.

Specifying a Call Type
Use the CALLTYP parameter of CMSCALL to specify the type of call you are making. CMSCALL stores
this value in the USECTYP field of the user save area and, for 24-bit programs, in the high-order byte of
register 1.

Supervisor Assisted Linkage

Chapter 5. Program Invocation - Supervisor Assisted Linkage 43

Table 9 on page 44 shows how you can specify CALLTYP and the values that get stored. (You can
also specify your own call-type value.) For more information on the CMSCALL macro, see the z/VM: CMS
Macros and Functions Reference.

Table 9. Program Invocation Call Type Options

Option Hex Value Description

CALLTYP=PROGRAM X'00'
Passes a tokenized parameter list. This is the
default value if you do not specify the EPLIST
parameter.

CALLTYP=EPLIST X'01'

Passes a tokenized parameter list and an extended
parameter list. This call type acts as if it were
invoked using ADDRESS COMMAND from REXX.
This is the default value if you specify the EPLIST
parameter.

CALLTYP=SUBCOM X'02' Uses the SUBCOM interface to make the call.

CALLTYP=NONUCXE X'03'
Passes an extended parameter list and then,
during the command search, bypasses the search
of the list of nucleus extensions.

CALLTYP=NONUCXT X'04'
Passes a tokenized parameter list and then, during
the command search, bypasses the search of the
list of nucleus extensions.

CALLTYP=FUNCTION X'05' Calls a REXX/VM interpreter function or subroutine.

CALLTYP=CMS X'0B'
Simulates invocation from a console and passes
a tokenized parameter list and an extended
parameter list.

Specifying a Parameter List
If you use the SCAN macro, the addresses of a tokenized and extended parameter list are automatically
stored in the appropriate registers. (Register 1 for the tokenized parameter list, register 0 for the extended
parameter list.) Register 1 must contain the address of a tokenized parameter list. If you do not use SCAN
to store the address of the tokenized parameter list in register 1, you can use the PLIST parameter of
CMSCALL.

Specifying an Extended Parameter List
Whether you need to pass an extended parameter list to a program depends on the type of program
you call. If you do need one, specify the EPLIST parameter of CMSCALL. The address of the extended
parameter list should be in register 0 (the SCAN macro can do this automatically). Also, specifying EPLIST
sets to one a bit (USEPLIST) in the user save area (USERSAVE).

Copying and Modifying Parameter Lists
If an AMODE 31 program calls an AMODE 24 program and the address of the parameter lists are above
the 16MB line, CMS copies the contents of those lists to a location below the 16MB line. This allows an
AMODE 31 program from above the 16MB line to call an AMODE 24 program below the 16MB line without
worrying about the location of the parameter lists.

The COPY parameter of CMSCALL specifies whether CMS copies the parameter list. Because COPY=YES is
the default value, you do not need to worry about the COPY parameter unless you specifically do not want
CMS to copy the parameter lists.

Supervisor Assisted Linkage

44 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

When to Specify COPY=NO
Specifying COPY=NO may reduce the number of operations CMS performs if your AMODE 31 bit program
frequently calls AMODE 24 programs. Here are two examples of when your program might want to specify
COPY=NO:

• Your program allocates storage from below the 16MB line and stores the parameter lists there itself.
• Your program has no parameters to pass (you may just pass information in registers, or with a return

code, or using the UFLAGS parameter).

Modifying Parameter Lists
If an AMODE 31 program residing above the 16MB line expects to call an AMODE 24 program which, in
turn, might modify the parameter list, the AMODE 31 program can specify MODIFY=YES on the CMSCALL
macro. If MODIFY=YES is specified and the AMODE 24 program modifies the parameter list, CMS copies
those modifications back to the parameter list of the AMODE 31 program.

Other CMSCALL Options
The other parameters of CMSCALL are:

• UFLAGS — this is an optional one byte parameter to be stored in the USEUFLG byte of the user save area
(USERSAVE). You can use UFLAGS to specify anything you like.

• FENCE — the FENCE parameter indicates whether the last token in the tokenized parameter list is
the standard fence, which has a doubleword value of X'FF'. If FENCE=NO, CMSCALL copies the 68
doublewords beginning at the address of the tokenized parameter list.

If FENCE=YES (the default), CMSCALL copies everything up to and including the fence in the tokenized
parameter list. If you default to FENCE=YES then you must have a fence in your tokenized parameter
list.

• ERROR — the ERROR parameter lets you specify the address where control is passed if an error occurs
during CMSCALL processing.

For the complete syntax of the CMSCALL macro, see z/VM: CMS Macros and Functions Reference.

Call Charts
You can pass information about the type of call being made two ways:

• In the high-order byte of register 1
• In the user save area. See “USERSAVE Control Block” on page 49 for more information.

Table 10 on page 45 and Table 11 on page 46 show how CMS handles the parameter list for the
CMSCALL macro and for the SVC 202 instructions.

Table 10. CMSCALL Call Chart

Parameter List Location AMODE of Program
Being Called

Action to Parameter List

Below 16MB 24

CMS copies the information specified on the
CALLTYP parameter of CMSCALL into the high-
order byte of general register 1. This allows
CMSCALL to call a routine that has not been
changed (that is, a routine that expects information
about the call in the high-order byte of register 1
instead of in the user save area).

Supervisor Assisted Linkage

Chapter 5. Program Invocation - Supervisor Assisted Linkage 45

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Table 10. CMSCALL Call Chart (continued)

Parameter List Location AMODE of Program
Being Called

Action to Parameter List

Above 16MB 24

Unless you code the COPY=NO parameter on the
CMSCALL macro, CMS copies the parameter below
the 16MB line. If you do code the COPY=NO
parameter on the CMSCALL macro, the program
terminates with an abend code of X'1CC'. If you do
not specify COPY=NO, CMS copies the information
specified on the CALLTYP parameter of CMSCALL
into the high-order byte of general register 1.

Anywhere 31, ANY

Leave intact. If the caller is AMODE 24 and the
callee is AMODE ANY, CMS copies the information
specified on the CALLTYP parameter of CMSCALL
into the high-order byte of general register 1.

Note:

1. For the CMSCALL macro, CMS always treats the address of the tokenized parameter list as a 31-bit
address.

2. CMS passes register 0, which may contain the address of the extended parameter list, intact to the
caller. It does not check to determine what type of address you pass unless you specify the COPY
parameter on the CMSCALL macro.

Table 11. SVC 202 Call Chart

Callers Location AMODE of Program
Being Called

Action to Parameter List

Below 16MB 24 Leave intact.

Above 16MB 24, 31, ANY Abend code X'1CA' — SVC 202 does not work from
above 16MB.

Below 16MB 31, ANY CMS stores zeros in the high-order byte of general
register 1 in order to pass a 31-bit address.

Note: For SVC 202, CMS always treats the address of the tokenized parameter list as a 24-bit address.

Receiving Control
When a program receives control by CMSCALL or SVC 202, there are several ways it can obtain
information.

• Parameter lists — register 1 contains the address of the tokenized parameter list. Register 0 contains
the address of the extended parameter list, if one was specified.

• Register contents — see “Register Usage” on page 47 for a discussion of what the called program's
registers contain.

• By interrogating the user save area — CMSCALL stores information about the call type in the user save
area. For more information, see “USERSAVE Control Block” on page 49.

For SVC 202, a program had to store call type information in the high-order byte of register 1. See “SVC
202 Call Type Values” on page 49 if you need an explanation of the various SVC 202 call type codes.

• By checking the return code — see “Return Codes” on page 50 for a list of return codes.

Supervisor Assisted Linkage

46 z/VM: 7.4 CMS Application Development Guide for Assembler

Register Usage
When a command or routine is called by SVC 202 or CMSCALL, the registers contain the following
information:
Register

Contents
0

Points to an extended parameter list (EPLIST) if the command is called from the terminal, a REXX
program, or an EXEC2 exec.

1
Points to a tokenized parameter list. If the called program is an AMODE 24 program, the high-order
byte contains call-type information. If the called program is an AMODE 31 or AMODE ANY program,
the high-order byte is part of the address.

Note: The user save area also contains call type information, regardless of the calling program's
addressing mode (AMODE).

2
Contains a pointer to the SCBLOCK if the called program is a nucleus extension or subcommand
processor; otherwise, the content of register 2 is not defined.

3-11
Content is not defined.

12
Contains the entry point address of the called program. The called program can use this address to
establish addressability. Also, the high-order bit (bit 32 of the PSW) is automatically set to 0 or 1
according to the current addressing mode. Bit 32 is set to 1 for 31-bit addressing and set to 0 for
24-bit addressing.

13
Contains a pointer to a user save area that you can use to save the calling program's registers. Note,
however, that saving the caller's registers is optional because CMS does it automatically.

Also note that when you use CMSCALL, the user area contains the call type flag, a user specified flag,
information related to the addressing mode of the caller at the time of the CMSCALL macro, and a flag
indicating whether the program linkage was done with SVC 202 or CMSCALL. The user area can be
mapped using the USERSAVE macro.

14
Contains the address of the CMS program linkage routines. Your program must return control to
this address when it terminates. (If you use the CMSRET macro, you can branch to this address
automatically.)

15
Contains the entry point address of the called program. The called program can use this address to
establish addressability. Also, the high-order bit (bit 32 of the PSW) is automatically set to 0 or 1
according to the current addressing mode. Bit 32 is set to 1 for 31-bit addressing and set to 0 for
24-bit addressing.

On return from a CMS routine, register 15 contains:
Return Code

Meaning
0

No error occurred
<0

Called routine not found
>0

Error occurred
If a CMS routine is called by an SVC 202, CMS saves and restores registers 0 through 14.

Supervisor Assisted Linkage

Chapter 5. Program Invocation - Supervisor Assisted Linkage 47

Table 12 on page 48 shows how registers are set up when a called routine is entered.

Table 12. Register Contents When Called Routine Starts

Register CMSCALL SVC 202 Other SVCs

0–1 Same as caller Same as caller Same as caller

2 See note See note Same as caller

3–11 Not defined Not defined Same as caller

12 Address of called routine Address of called routine Address of called routine

13 Address of user save area Address of user save area Address of user save area

14 Return address Return address Return address

15 Address of called routine Address of called routine Same as caller

Note: If the called routine is a nucleus extension or subcommand processor, then register 2 has the
address of the SCBLOCK and the bit USESCBLK in USERSAVE is set to 1.

Interrupt Mask and Storage Key Settings
Table 13 on page 48 shows how interrupts are masked and storage keys are set up when a called routine
starts.

Table 13. Settings When A Called Routine Starts

Call
Mechanism

Target Program Interrupt
Masking

Storage Key Settings

CMSCALL Nucleus resident Disabled System

CMSCALL Nucleus extension module
Defined by
NUCEXT macro Defined by NUCEXT macro

CMSCALL Transient area module Disabled
Defined by GENMOD or SET
PROTECT command

CMSCALL User area module Enabled
Defined by GENMOD or SET
PROTECT command

SVC 202 Nucleus resident Disabled System

SVC 202 Nucleus extension module
Defined by
NUCEXT macro Defined by NUCEXT macro

SVC 202 Transient area module Disabled
Defined by GENMOD or SET
PROTECT command

SVC 202 User Area Module Enabled
Defined by GENMOD or SET
PROTECT command

User-defined Disabled User

OS-VSE Nucleus resident Disabled System

OS-VSE Transient area module Disabled System

Note: When a user defined SVC interrupt handler is invoked, the interrupt mask is disabled.

Supervisor Assisted Linkage

48 z/VM: 7.4 CMS Application Development Guide for Assembler

USERSAVE Control Block
The USERSAVE mapping macro maps the area that register 13 points to when a program uses an SVC 202
or CMSCALL to call another program. Figure 11 on page 49 shows the structure of USERSAVE.

Note: You can use the EPLIST macro to map the USECTYP field in USERSAVE.

 USERSAVE
USERSAVE DSECT
 DS 12D Reserved for the user.
USERSIZE EQU *-USERSAVE Size of area reserved for user.
USERINFO DS D Information passed to user.
 ORG USERINFO
USECTYP DS X Contains CALLTYP value.
USEUFLG DS X Contains UFLAGS value.
 DS 2X Reserved for IBM use.
USEMFLG DS X Miscellaneous bits.
USECMS EQU X'80' Invoked by CMSCALL.
USEA31 EQU X'40' Caller's AMODE is 31.
USESCBLK EQU X'20' SCBLOCK is available in R2.
USEPLIST EQU X'10' Extended PLIST available in R0,
* only valid if invoked by CMSCALL.
 DS 3X Reserved for IBM use.
USERSAVL EQU (*-USERSAVE+7)/8 BLOCK LENGTH (DOUBLEWORD)

Figure 11. USERSAVE DSECT

SVC 202 Call Type Values
When a program called with SVC 202 gets control, it can check the USECTYP field of the user save area
to determine what environment (EXEC, command line, and so forth) it was called from and if an extended
parameter list is available4.

The following values can be found in USECTYP:

Table 14. USECTYP Values

Value Meaning Extended PLIST Pointer in
Register 0?

X'00' The call did not originate from an EXEC file or a command
typed at the terminal. (The SVC handler translates the value
X'04' to X'00' before entering the called program). May be the
result of CMSCALL with CALLTYP=PROGRAM.

No

X'01' Either the call is from an EXEC 2 exec or a REXX exec when
ADDRESS COMMAND is specified, or the call is an Enhanced
Connectivity Facilities call (see SENDREQ in the z/VM: CMS
Macros and Functions Reference). You can tell by checking
the form of the extended parameter list, see “The Extended
Parameter List” on page 41. (The SVC handler translates the
value X'03' to X'01' before entering the called program). May
be the result of CMSCALL with CALLTYPE=EPLIST.

Yes

X'02' Used by SUBCOM interface. May be the result of CMSCALL
with CALLTYPE=SUBCOM.

Yes5

X'03' The call originated from a program and instructs CMS to
bypass the list of nucleus extensions during the command
search. An extended parameter list is passed. May be the
result of CMSCALL with CALLTYPE=NONUCXE.

Yes

4 For AMODE 24 programs, the call-type value is also contained in the high-order byte of register 1.

Supervisor Assisted Linkage

Chapter 5. Program Invocation - Supervisor Assisted Linkage 49

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Table 14. USECTYP Values (continued)

Value Meaning Extended PLIST Pointer in
Register 0?

X'04' The call originated from a program and instructs CMS to
bypass the list of nucleus extensions during the command
search. A tokenized parameter list is passed. May be the result
of CMSCALL with CALLTYPE=NONUCXT.

Yes

X'05' Used by the REXX/VM interpreter for external function calls.
May be the result of CMSCALL with CALLTYPE=FUNCTION.

Yes

X'06' The command was invoked as an immediate command. This
setting should never occur with SVC 202.

Yes

X'0B' The command was called as a result of its name being
typed at the terminal, by the CMDCALL command to invoke
the command from EXEC 2, or from a REXX exec when
ADDRESS CMS is specified. May be the result of CMSCALL with
CALLTYPE=CMS.

Yes

X'0C' The call is the result of a command invoked from a CMS EXEC
file with &CONTROL set to something other than NOMSG or
MSG.

No

X'0D' The call is the result of a command invoked from a CMS EXEC
file with &CONTROL MSG in effect (indicates that messages
are to be displayed at the terminal).

No

X'0E' The call is the result of a command invoked from a CMS EXEC
file with &CONTROL NOMSG in effect.

No

X'10' The call is the result of a command invoked by BPX1EXC.
The plist passed in R1 is of the exec() type. See the z/VM:
OpenExtensions Callable Services Reference for details.

No

X'FE' This is an end-of-command call from the CMS console
command handler (DMSINT). See the NUCEXT function in the
z/VM: CMS Macros and Functions Reference for details.

No

X'FF' This is a service call from abend (DMSABN) or from
NUCXDROP. See the NUCEXT function in the z/VM: CMS
Macros and Functions Reference for details.

No

Return Codes
On return from SVC 202 or CMSCALL processing, register 15 contains one of the following return codes:
0

No errors occurred.
-1

A CP command with this name was not found.
-2

An attempt was made to execute a CMS command while in CMS subset mode. This would have caused
the module to be loaded in the user area.

5 There are a few SUBCOM interfaces that do not require an extended PLIST.

Supervisor Assisted Linkage

50 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

-3
A CMS command issued from EXEC was not found with this name, or an invalid function occurred
when the SET or QUERY command was issued from EXEC with IMPCP active.

-4
The LOADMOD failed.

-5
A LOADMOD was issued in the wrong environment (for example, the module was generated by the
GENMOD command with the OS option, and LOADMOD was attempted with DOS=ON specified).

-6
An attempt was made to invoke a CMS function or macro from the command line, an EXEC 2 exec
with &PRESUME &SUBCOMMAND, or from a REXX exec when ADDRESS CMS is specified. The function
should be invoked from a program with SVC 202 or CMSCALL with the proper parameter list.

Returning To a Program
Use the CMSRET macro to return to the caller from a program that was invoked by SVC 202, or CMSCALL.
CMSRET should not be used in user defined exits or immediate commands because CMS transfers control
to exits and immediate commands differently than for command invoked modules.

Consider a nucleus extension called PROG1 set up as an immediate command and you interrupt an exec
with it. The immediate command exit is not considered to be a new SVC level, so if you issue a CMSRET
rather than a BR 14 from PROG1, you cause the current SVC level to be removed. Because of this, the
exec is terminated, along with the immediate command, since the exec was the last thing on the SSAVE
chain; that is, CMS acts as though the CMSRET was from the exec.

If you have a nucleus extension that can be invoked as both a command and an immediate command, use
just the BR 14, or dual path the code to test how you were entered, and proceed accordingly:

 .
 .
 .
 TM USECTYP,EPLFIMMD Entered as an Immediate Command?
 BZ RETOUT No, CMSRET is safe
 LM R0,R14,0(R13) Restore Caller's Registers
 BR R14 and return to IMMCMD caller
 SPACE 1
RETOUT EQU * Invoked as a nucleus extension
 CMSRET Return to command caller

This applies to:

• Immediate commands
• HNDIO
• HNDEXT
• HNDSVC
• HNDIUCV
• ABNEXIT.

The rule of thumb is if it is an EXIT, do not invoke CMSRET.

Example 1 — A Simple Return
To make a simple return, you can code the CMSRET macro with no parameters, as follows:

CMSRET

Example 2 — Setting a Return Code
By default, CMSRET returns the contents of register 15 unchanged. Therefore, you can use register 15 to
send a return code to the calling program. One way to do this is to store the value you want returned in

Supervisor Assisted Linkage

Chapter 5. Program Invocation - Supervisor Assisted Linkage 51

register 15 before you issue CMSRET. Another way to send a return code is to use the RC parameter of the
CMSRET macro. For example, to specify a return code of 34, you could code:

 CMSRET RCODE
 .
 .
 .
 DS 0F
RCODE DS F'34'

Example 3 — Returning Register Contents
By default, CMSRET clears all registers (except register 15) before it returns control to the calling
program. To specify that CMSRET return unchanged the contents of certain registers, use the GR and
FPR parameters. For example, to return the contents of general registers 0, 3, and 5 through 8, code:

CMSRET GR=(0,3,5-8)

Supervisor Assisted Linkage

52 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 6. Using Free Storage

This chapter describes how to:

• Use the CMSSTOR and SUBPOOL macros
• Manage free storage and storage subpools
• Determine how much free storage is available
• Use the STORMAP, SUBPMAP, and STDEBUG commands
• Obtain and release storage above 2 GB

Overview of Free Storage
Free storage is storage your application can allocate to dynamically create variable-sized buffers, tables,
and data areas. Allocating storage while your program is running uses storage more efficiently—you can
allocate storage only when you need it so your modules can be smaller.

The amount of free storage available to your applications depends on the storage size of your virtual
machine, the amount of storage used by CMS, and the amount of storage used by other applications you
run.

CMSSTOR and SUBPOOL Macros
CMS provides two macros, CMSSTOR and SUBPOOL, to help you allocate, manage, and release free
storage and free storage subpools. CMSSTOR and SUBPOOL macros are designed to work together.
Programs must issue CMSSTOR explicitly to obtain and release storage; subpool management works
whether programs specify the SUBPOOL macro or not.

Use the CMSSTOR macro to allocate and release free storage. The basic variations of CMSSTOR are:

• CMSSTOR OBTAIN — Allocates free storage.
• CMSSTOR RELEASE — Releases free storage.

The basic variations of the SUBPOOL macro are:

• SUBPOOL CREATE — Creates a free storage subpool.
• SUBPOOL DELETE — Deletes the subpool from the list of active subpools and releases the subpool's

storage.
• SUBPOOL RELEASE — Releases the subpool's storage but does not delete the subpool from the list of

available subpools.

CMSSTOR and SUBPOOL are recommended for use in new programs or programs that you convert to
exploit 31-bit addressing. Other storage macros include the CMS macros DMSFREE, DMSFRES, and
DMSFRET and the OS/MVS macros GETMAIN and FREEMAIN. DMSFRES is treated as a no-op. with
existing programs. You can continue to use them but only from below 16 MB. GETMAIN and FREEMAIN
are OS/MVS macros that CMS simulates. Using CMSSTOR and SUBPOOL in your programs is more
efficient. Also note that there are differences in the way different releases of CMS handle GETMAIN
storage.

CMS Storage Layout
Storage layout is determined by the size of the virtual machine relative to the top of the nucleus, which
is typically at 20 MB. The location and size of the page allocation table vary according to the size of the
virtual machine. In virtual machines larger than 20 MB, the page allocation table is built at the top of
virtual storage. In virtual machines smaller than or equal to 20 MB, the page allocation table extends
down from whichever is less: the bottom of the nucleus or the top of virtual storage.

Using Free Storage

© Copyright IBM Corp. 1990, 2024 53

Figure 12 on page 54 and Figure 13 on page 54 show sample CMS storage layouts for virtual machines
whose sizes are less than or equal to the top of the nucleus.

Figure 14 on page 55 shows a sample CMS storage layout for a virtual machine that extends beyond the
top of the nucleus. Free storage starts above the transient program area and extends up to the limit of the
virtual machine size (excluding any storage used by CMS).

For more information on the size and location of the page allocation table, see the z/VM: CMS Planning
and Administration.

Figure 12. Storage Configuration for a Virtual Machine Less Than 15 MB

Figure 13. Storage Configuration for a Virtual Machine Equal to 20 MB

Using Free Storage

54 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd1_v7r4.pdf#nameddest=dmsd1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd1_v7r4.pdf#nameddest=dmsd1_v7r4

Figure 14. Storage Configuration for a Virtual Machine Greater than 20 MB

Obtaining Free Storage
Use CMSSTOR OBTAIN to allocate free storage. Although CMSSTOR OBTAIN provides a great deal of
flexibility, the only thing you must specify when obtaining storage below 2 GB is the amount of storage
you want. For example, to request 100 doublewords of storage, code:

CMSSTOR OBTAIN,DWORDS=100

or, to specify that register 2 contains the number of doublewords of storage you require, code:

CMSSTOR OBTAIN,DWORDS=(R2)

On return from CMSSTOR, register 0 contains the amount of storage allocated and register 1 contains the
address of the storage allocated.

Where CMSSTOR Gets Storage
By default, CMSSTOR allocates storage based on the program's addressing mode:

1. For an AMODE 24 program, CMSSTOR allocates storage from the highest free storage location
available below 16 MB.

2. For an AMODE 31 program, CMSSTOR allocates storage from the highest free storage location
available. If an AMODE 31 program must obtain storage from below 16 MB (and the program is running
in a virtual machine greater than 16 MB), it must explicitly specify so on the CMSSTOR macro. (You can
use the LOC or ADDR parameters to specify an address below 16 MB.)

CMSSTOR Error Processing
It is also worth noting that, by default, your program abends if CMSSTOR encounters an error. If you do
not want the program to abend, you can use the ERROR parameter to specify the address of an instruction

Using Free Storage

Chapter 6. Using Free Storage 55

where, following an error, execution continues. For example, to specify that the instruction at STORERR
receive control, code:

CMSSTOR OBTAIN,DWORDS=(R2),ERROR=STORERR

The following section provides examples of how you can use the CMSSTOR parameters to tailor your
free storage requests. For information on how to use CMSSTOR and SUBPOOL to manage free storage
subpools, see “Creating Subpools” on page 57.

Where You Can Allocate Free Storage
For all of the following examples, assume that your program (a) has already stored in register 2 the
number of doublewords of storage it requires and (b) has some error handling code defined at STORERR.

Example 1 — Specific Address
To allocate storage from the location specified in register 3, code:

CMSSTOR OBTAIN,DWORDS=(R2),ADDR=(R3),ERROR=STORERR

Note: You cannot allocate storage from an area in use or not contained within your virtual machine size.

Example 2 — Below 16 MB
To allocate storage from below 16 MB, code:

CMSSTOR OBTAIN,DWORDS=(R2),LOC=BELOW,ERROR=STORERR

Example 3 — Above 16 MB
To allocate storage from above 16 MB, code:

CMSSTOR OBTAIN,DWORDS=(R2),LOC=ABOVE,ERROR=STORERR

Note: Because an AMODE 24 program cannot address storage locations above 16 MB, they must not
attempt to allocate storage from above 16 MB.

Example 4 — On a Page Boundary
By default, storage that CMS allocates is aligned on doubleword boundaries. To specify that the storage
be aligned on a page boundary, code:

CMSSTOR OBTAIN,DWORDS=(R2),BNDRY=PAGE,ERROR=STORERR

Other Things You Can Specify on CMSSTOR
The following list describes the other parameters you can use with the CMSSTOR macros:

• TYPCALL — If the routine requesting storage is nucleus resident, specify TYPCALL=BRANCH on the
CMSSTOR macro.

• MSG — If you do not want CMS to display a message when it encounters an error, specify MSG=NO on
the CMSSTOR macro.

• MF — The MF parameter lets you specify various macro formats.

For more details on these parameters, see z/VM: CMS Macros and Functions Reference. In addition, the
CMSSTOR macro includes a SUBPOOL parameter, which lets you allocate storage from a specific subpool.
Subpools are described in the following sections.

Using Free Storage

56 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Creating Subpools
By default, CMS organizes storage below 2 GB into two subpools named NUCLEUS and USER. You can
obtain storage from these subpools or you can use the CMSSTOR and SUBPOOL macros to create your
own subpools. The SUBPOOL and CMSSTOR macros allow you to:

• Manipulate subpools of storage as a single entity.
• Create storage subpools that are private to a program or global across SVC levels.
• Release an entire free storage subpool. (If a program does not explicitly delete a PRIVATE or SHARED

subpool, CMS automatically deletes it when the program that created it terminates. This ensures that
unused storage is released and maintains the integrity of free storage.)

To the application or system programmer, subpooling can be transparent. You do not have to use the
SUBPOOL macro or the SUBPOOL parameter on the CMSSTOR macro. CMS can automatically satisfy free
storage requests from the USER subpool.

Types of Subpools
There are three types of subpools you can create:

Table 15. Types of Subpools

Subpool Description Exists until:

PRIVATE Satisfy only the subpool creator's requests for
free storage. A program can do any manipulations
it wants to a PRIVATE subpool without affecting
other programs.

Only one PRIVATE subpool with the same name
can be active at a time; therefore, a single program
can create several subpools with the same name.
When CMS activates a new PRIVATE subpool
with the same name as an existing subpool, it
pushes the previous subpools back on the LIFO
stack. When CMS deletes the current subpool,
the previous one is popped from the stack and
becomes active again.

• The program that created it
explicitly deletes it,

• SVC 202/CMSCALL termination,
or

• CMS performs abend recovery.

SHARED Allow you to share free storage or data with other
programs. Unlike PRIVATE subpools, SHARED
subpools can be used by any program that the
subpool creator calls, or that the called program
calls, and so on. For example, assume PROGA
creates a SUBPOOL named MINE. PROGA calls
PROGB, PROGB calls PROGC, and PROGC calls
PROGD. All of the programs in the calling chain
(PROGA, PROGB, PROGC, and PROGD) can request
free storage from MINE.

• Any program on the calling
chain explicitly deletes it,

• SVC 202/CMSCALL termination
of the program that obtained
the storage, or

• CMS performs abend recovery.

Using Free Storage

Chapter 6. Using Free Storage 57

Table 15. Types of Subpools (continued)

Subpool Description Exists until:

GLOBAL Allow you to organize storage by its intended
function (any program running in the virtual
machine can use a global subpool) and to
save data across program invocations (GLOBAL
subpools still exist after SVC 202/CMSCALL
termination).

To retain GLOBAL subpools during abend recovery,
specify SYSTEM=YES on the SUBPOOL macro.
Using storage from GLOBAL subpools is useful
when you create nucleus extensions that must
retain data across invocations or abend processing.

• A program issues the SUBPOOL
DELETE macro, or

• CMS performs abend recovery
if SYSTEM=NO is specified on
the SUBPOOL macro.

Naming Subpools
There are no restrictions on the characters you can use for subpool names; however, the subpool names
DMSxxxxx are reserved for system use and the names USER, USERG, and NUCLEUS are for reserved
system subpools.

Subpool Examples
For all of the following examples, assume that the program has some error handling code defined at
STORERR. For examples that use CMSSTOR, assume your program has already stored in register 2 the
number of doublewords of storage it requires. For a description of the parameters not described in the
following examples, see the z/VM: CMS Macros and Functions Reference.

Example 1 — Creating a Private Subpool
To create a private subpool named ALLMINE, code:

SUBPOOL CREATE,NAME='ALLMINE',ERROR=STORERR

You could also use the CMSSTOR macro to create a private subpool named ALLMINE and obtain storage
from it:

CMSSTOR OBTAIN,DWORDS=(R2),SUBPOOL='ALLMINE',ERROR=STORERR

The difference between using CMSSTOR and SUBPOOL to create subpools is:

• CMSSTOR only creates subpools when it cannot find one with the name and type you specify.
• SUBPOOL creates a new subpool regardless of whether one with the same name exists. Because CMS

keeps subpools on a stack, the new subpool is pushed on the stack on top of existing subpools with the
same name.

Example 2 — Creating a Shared Subpool
To create a shared or global subpool, you must specify the name and type of the subpool. For example, to
create a shared subpool named ALLMINE, code:

SUBPOOL CREATE,NAME='ALLMINE',TYPE=SHARED,ERROR=STORERR

Note: You cannot use CMSSTOR to create shared subpools.

Example 3 — Creating a Global Subpool
To create a GLOBAL subpool named ALLOURS, code:

Using Free Storage

58 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

SUBPOOL CREATE,NAME='ALLOURS',TYPE=GLOBAL,ERROR=STORERR

Or, to create a global subpool named ALLOURS and obtain storage from it:

CMSSTOR OBTAIN,DWORDS=(R2),SUBPOOL=('ALLOURS',GLOBAL)

Example 4 — Creating a Subpool in Nucleus Storage
By default, CMS allocates storage for your subpools from the USER subpool. To specify that CMS allocate
storage for a private subpool named ALLMINE and that storage be in nucleus key, code:

SUBPOOL CREATE,NAME='ALLMINE',KEY=NUCLEUS,ERROR=STORERR

You cannot use the CMSSTOR macro to create named subpools in nucleus storage.

Example 5 — Saving Global Subpools Across Abends
During CMS abend processing, CMS, by default, releases all subpools and free storage that were not
allocated from the NUCLEUS subpool. The SYSTEM parameter of the SUBPOOL macro lets you designate
global subpools that you want to survive abend processing. For example, to specify that ALLOURS survive
abend processing, code:

SUBPOOL CREATE,NAME='ALLOURS',TYPE=GLOBAL,SYSTEM=YES,ERROR=STORERR

If you do not specify TYPE=GLOBAL and SYSTEM=YES, CMS releases the storage when an abend occurs.

Releasing Free Storage
To release storage below 2 GB, you can (a) use CMSSTOR RELEASE to release specific blocks of storage
allocated by CMSSTOR OBTAIN, (b) use SUBPOOL RELEASE to release storage associated with subpools
created by CMSSTOR OBTAIN or SUBPOOL CREATE, or (c) use SUBPOOL DELETE to release the storage
associated with subpools and delete the subpool off the chain. If you do not explicitly release storage,
CMS does it automatically as shown in Table 16 on page 59.

Table 16. How CMS Releases Free Storage

Action USER or
USERG
Subpool

NUCLEUS
Subpool

Named
Subpool

GLOBAL
Subpool
SYSTEM=
YES

GLOBAL
Subpool
SYSTEM= NO

SVC 202 or CMSCALL
Termination

retain retain delete retain retain

Abend Recovery release retain delete retain delete

• SYSTEM=YES — as specified on the SUBPOOL macro, the GLOBAL subpool is to survive abend
processing.

• SYSTEM=NO — as specified on the SUBPOOL macro, the GLOBAL subpool is not to survive abend
processing.

• retain — the subpool is not affected by the action.
• release — the subpool is released (the storage associated with the subpool is returned although the

subpool name remains on the queue of subpool names).
• delete — the subpool is deleted (the storage associated with the subpool is returned and the subpool

name is deleted from the queue of subpool names).

Examples of Releasing Free Storage

Using Free Storage

Chapter 6. Using Free Storage 59

Example 1 — Releasing a Specific Storage Block
For the first two examples, assume that your program has already (a) stored in register 2 the amount of
storage to be released, (b) stored in register 3 the address of the storage, and (c) defined at location
RELERR some code to handle errors that might occur during CMSSTOR processing. To release this
storage, code:

CMSSTOR RELEASE,DWORDS=(R2),ADDR=(R3),ERROR=RELERR

Note: If CMSSTOR RELEASE is successful, it stores a 0 return code in register 15 and leaves in register 0
the amount of storage released.

Example 2 — Subpool Integrity Checking
To request that CMS make sure that the block of storage you release is owned by the subpool you specify
(in this case, the global subpool named LARGE), code:

CMSSTOR RELEASE,DWORDS=(R2),ADDR=(R3),SUBPOOL=('LARGE',GLOBAL),
 ERROR=RELERR

If LARGE does not own the block of storage, CMS issues an error (RC=10) and does not release the
storage.

Example 3 — Releasing or Deleting a Specific Private Subpool
To release the storage contained in the private subpool named ALLMINE, code:

SUBPOOL RELEASE,NAME='ALLMINE',ERROR=RELERR

To release the storage contained in the private subpool named ALLMINE and delete ALLMINE from the list
of currently active subpools, code:

SUBPOOL DELETE,NAME='ALLMINE',ERROR=RELERR

Example 4 — Releasing or Deleting a Specific Shared or Global Subpool
To release or delete a shared or global subpool, specify the name and type of subpool. For example, to
release the storage contained in a shared subpool named ALLMINE, code:

SUBPOOL RELEASE,NAME='ALLMINE',TYPE=SHARED,ERROR=RELERR

To release the storage contained in a global subpool named LARGE and delete ALLMINE from the list of
currently active subpools, code:

SUBPOOL DELETE,NAME='LARGE',TYPE=GLOBAL,ERROR=RELERR

For more details on these parameters, see z/VM: CMS Macros and Functions Reference.

Determining How Much Free Storage Is Available
You may want to determine the amount of free storage available in your virtual machine, how this storage
is allocated, or the current amount of free storage allocated to a subpool. The STORMAP and SUBPMAP
commands provide you with this information for storage below 2 GB. These commands will not display
storage or subpool information for virtual machine storage above 2 GB.

Using the STORMAP Command
The STORMAP command lets you determine the current utilization of free storage in your virtual machine.
STORMAP provides you with information about the amount of allocated and unallocated free storage
within your virtual machine as well as the size of the largest contiguous block of storage both above and
below 16 MB, up to 2 GB.

Using Free Storage

60 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

See the z/VM: CMS Commands and Utilities Reference for details on the STORMAP command.

Example - Determining If a Piece of Contiguous Free Storage Exists
Before calling your application, you can execute the following REXX exec to determine if a 128K piece of
contiguous free storage exists below 16 MB:

/* Determine if a 128K piece of contiguous storage exists */
/* below 16MB. */
/* Return "1" if it is available and "0" if it is not. */

required = 128 * 1024 /* 128K in bytes */

call 'STORMAP (STEM DATA.' /* Get the STORMAP Data */

if result <> 0 /* Clean call? */
 then /* No, then call our */
 call Error_Rtn /* Error handler... */

if X2D(DATA.LGLT16MB) < required /* Sufficient storage? */
 then /* No, not enough... */
 do
 say 'There is not a 128K piece of free storage below 16MB'
 flag = 0
 end
 else
 flag = 1

return flag

Note: This value is an approximation because the REXX processor uses storage during execution.

Example - Determining the Total Amount of Unallocated Storage on a Subpool
If your application uses a subpool for its storage requests, you can execute the following REXX exec to
determine the total amount of unallocated storage on that specific subpool:

/* Return the amount of storage available for allocation */
/* on the NUCLEUS subpool. The value is in hex. */

call 'STORMAP (ALL STEM DATA.' /* Get the STORMAP Data */

if result <> 0 /* Clean call? */
 then /* No, then call our */
 call Error_Rtn /* Error handler... */

return D2X(X2D(Data.TOTLUNAL) + X2D(Part_Sum('NUCLEUS')))
 Part_Sum:

procedure expose data.

parse arg spname . /* Get the subpool name */
spname = left(spname,8) /* Make it 8 bytes long */
total = 0 /* Our summation var */

do cnt = 1 to data.0 /* Process the stem */
 parse var data.cnt tstname 9 . . bytes . . attributes
 attributes = strip(attributes)

 if tstname ¬== spname
 then
 iterate /* Not our subpool */

 if attributes = 'UNALLOC' /* Unallocated piece? */
 then /* Yes, and our subpool */
 total = total + X2D(bytes) /* Add in the bytes */
end

return D2X(total) /* Total partial storage */

Note: Again, this is only an approximation because of the storage utilization by the REXX processor during
execution.

Using Free Storage

Chapter 6. Using Free Storage 61

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Using the SUBPMAP Command
The SUBPMAP command lets you determine the current allocation of pages to storage subpools defined
in your virtual machine. SUBPMAP provides you with information concerning the number of fully and
partially allocated pages of storage for all subpools in your virtual machine or a specific list of subpools.
The SUBPMAP command will not provide storage information for pages allocated above 2 GB.

See the z/VM: CMS Commands and Utilities Reference for details on the SUBPMAP command.

Example - Determining How Many Pages of Storage are Allocated to a
Subpool
The following REXX exec determines if a particular subpool exists, and if the subpool does exist, this exec
displays the number of pages of storage allocated to it:

/* Determine if a subpool exists and how many pages of storage */
/* are allocated to it. */

parse upper arg spname . /* Get the name of the subpool */
spname = left(spname,8) /* Make it 8 bytes long */

call 'SUBPMAP' spname '(STEM DATA.' /* Get our data from SUBPMAP */

select
 when result = 10 /* Was the subpool found? */
 then /* No, tell the caller */
 say spname 'does not exist'
 when result <> 0 /* Some other error? */
 then /* Yes, call the error handler */
 call Error_Rtn
 otherwise /* Add partial and full pages */
 do
 parse var data.1 . . . part full .
 total = part + full
 say spname 'has' total 'pages allocated to it'
 End
 End

return 0

Debugging Storage Problems
Your application may require debugging because of storage problems. You can use the STORMAP,
SUBPMAP, and STDEBUG commands to help you determine the cause of the storage problem, for storage
obtained and released below 2 GB.

The STORMAP and SUBPMAP commands provide you with information about the storage in your virtual
machine and the pages of storage for subpools in your virtual machine. The information may include the
name of the subpool that owns the storage, the address of the subpool descriptor block, the start address
of the piece of storage being mapped, the end address of the piece of storage being mapped, the number
of bytes being mapped, the number of pages being mapped, the storage protection key of the page, and
the storage attributes. This information is displayed on your console or written to a file.

The STDEBUG command traces the obtain and release requests made by your application. The trace
information includes the number of bytes obtained or released, the address of storage obtained or
released, the name of the subpool that owns the storage, and the address of the caller to storage
management. This information is displayed on your console or written to a unit record device.

See the z/VM: CMS Commands and Utilities Reference for details on the STORMAP, SUBPMAP, and
STDEBUG commands.

Using the STORMAP Command
The STORMAP command lets you control the specific storage address range or subpool to be mapped,
when you want the storage mapped, and the type of storage to be mapped, such as allocated storage,

Using Free Storage

62 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

unallocated storage, partial pages of storage, and full pages of storage. Therefore, you can generate the
data only needed to perform the debugging operation.

See the z/VM: CMS Commands and Utilities Reference for details on the STORMAP command.

Example - Using STORMAP with the EXTSET Option
Suppose you want to generate storage information whenever you execute a specific BALR instruction.
You can use the STORMAP command with the EXTSET option and the CP TRACE command, in addition to
other commands, to produce information about the amount of free storage available each time the BALR
instruction is executed.

The following example shows you how this debugging works:

stormap (extset 250
Ready;
loadmod sttest
Ready;
progmap
Name Entry Origin Bytes Attributes
STTEST 013E6DB0 013E6DB0 00000250 Amode 31 Reloc
Ready;
d i13e6db0.10
R013E6DB0 LR 18CF LA 41500005 L 58F0C244 E6
R013E6DBA BALR 05EF BCT 4650C006
Ready;
trace inst pswa 13e6dba run cmd ext 250
Ready;
start
DMSLIO740I Execution begins...
 -> 013E6DBA BALR 05EF -> 013E6FBA CC 1
 Storage Map
 ------- ---
 VMSIZE NUCALPHA NUCSIGMA NUCOMEGA NUCPHI NUCCHI
01400000 00F00000 00F52A00 01300000 01000000 012CF5C8
 Unallocated Free Storage Queue
 ----------- ---- ------- -----
 <16MB >16MB
Total Largest Total Largest Total Unallocated
00D2B000 00D1E000 003E1000 003DB000 0110C000
 -> 013E6DBA BALR 05EF -> 013E6FBA CC 2
 Storage Map
 ------- ---
 VMSIZE NUCALPHA NUCSIGMA NUCOMEGA NUCPHI NUCCHI
01400000 00F00000 00F52A00 01300000 01000000 012CF5C8

Using Free Storage

Chapter 6. Using Free Storage 63

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

 Unallocated Free Storage Queue
 ----------- ---- ------- -----
 <16MB >16MB
Total Largest Total Largest Total Unallocated
00D2B000 00D1E000 003DF000 003DB000 0110A000
 -> 013E6DBA BALR 05EF -> 013E6FBA CC 2
 Storage Map
 ------- ---
VMSIZE NUCALPHA NUCSIGMA NUCOMEGA NUCPHI NUCCHI
01400000 00F00000 00F52A00 01300000 01000000 012CF5C8
 Unallocated Free Storage Queue
 ----------- ---- ------- -----
 <16MB >16MB
Total Largest Total Largest Total Unallocated
00D2B000 00D1E000 003DD000 003DB000 01108000
 -> 013E6DBA BALR 05EF -> 013E6FBA CC 2
 Storage Map
 ------- ---
 VMSIZE NUCALPHA NUCSIGMA NUCOMEGA NUCPHI NUCCHI
01400000 00F00000 00F52A00 01300000 01000000 012CF5C8
 Unallocated Free Storage Queue
 ----------- ---- ------- -----
 <16MB >16MB
Total Largest Total Largest Total Unallocated
00D2B000 00D1E000 003DB000 003D9000 01106000
 -> 013E6DBA BALR 05EF -> 013E6FBA CC 2
 Storage Map
 ------- ---
 VMSIZE NUCALPHA NUCSIGMA NUCOMEGA NUCPHI NUCCHI
01400000 00F00000 00F52A00 01300000 01000000 012CF5C8
 Unallocated Free Storage Queue
 ----------- ---- ------- -----
 <16MB >16MB
Total Largest Total Largest Total Unallocated
00D2B000 00D1E000 003D9000 003D7000 01104000 Ready;

The following steps describe the procedure illustrated in the previous example:

• The STORMAP command generates summary information whenever an external interrupt X'250' is
reflected to the virtual machine. This external interrupt corresponds to CMD EXT 250 set in the TRACE
instruction issued later.

• The LOADMOD command loads your STTEST program.
• The PROGMAP command determines where in storage STTEST is loaded.
• After you know the load point, 013E6DB0, the CP DISPLAY I command locates the BALR instruction.

This is the instruction you want to trace.
• Then, the CP TRACE command sets a trace for the BALR instruction. The RUN option causes execution

to continue when the BALR is executed. The CMD EXT X'250' generates an external interruptX'250'
when the BALR is executed. This external interrupt corresponds to the EXTSET 250 option set on the
STORMAP command issued earlier.

• The START command starts execution of STTEST. The result is that each time the BALR is executed, an
external interrupt X'250' is generated which in turn displays the storage information.

The data shows that the total amount of unallocated storage above 16 MB is reduced by two pages on
each BALR call. You now have to determine if this loss of two pages is a normal condition on that call.

After you know the meaning of the fields in the summary report, you can reduce the amount of data
displayed by using the NOHEAD option on the STORMAP command. For example:

Using Free Storage

64 z/VM: 7.4 CMS Application Development Guide for Assembler

stormap (nohead extset 255
Ready;
d i13e6910.10
R013E6910 LR 18CF LA 41500005 L 58F0C244 E6
R013E691A BALR 05EF BCT 4650C006
Ready;
trace inst pswa 13e691a run cmd ext 255
Ready;
start
DMSLIO740I Execution begins...
 -> 013E691A BALR 05EF -> 013E6B1A CC 1
01400000 00E00000 00FEB158 01000000
00D2B000 00D1E000 003CD000 003CB000 010F8000
 -> 013E691A BALR 05EF -> 013E6B1A CC 2
01400000 00E00000 00FEB158 01000000
00D2B000 00D1E000 003CB000 003C9000 010F6000
 -> 013E691A BALR 05EF -> 013E6B1A CC 2
01400000 00E00000 00FEB158 01000000
00D2B000 00D1E000 003C9000 003C7000 010F4000
 -> 013E691A BALR 05EF -> 013E6B1A CC 2
01400000 00E00000 00FEB158 01000000
00D2B000 00D1E000 003C7000 003C5000 010F2000
 -> 013E691A BALR 05EF -> 013E6B1A CC 2
01400000 00E00000 00FEB158 01000000
00D2B000 00D1E000 003C5000 003C3000 010F0000
Ready;

The third token of the second line of data after each BALR is reduced by two pages. From our previous
example, you know this field is for unallocated storage above 16 MB.

Note: Remember, you can also use the FILE APPEND option to write the data to the

STORMAP DATA A file rather than to the console.

Example - Using STORMAP to Determine if Storage Fragmentation Exists
Suppose there is a large amount of free storage available on your virtual machine, but there is not one
piece of storage large enough to satisfy an obtain request. This situation may occur because of storage
fragmentation. Storage fragmentation generally occurs when the pattern of storage obtain and release
requests leaves many small pieces of unallocated storage interleaved with allocated pieces. You can use
the STORMAP command to determine if storage fragmentation exists.

In this example, the following STORMAP command reveals a storage fragmentation condition in the
TSTPOOL subpool:

stormap (subpool TSTPOOL
 Storage Map
 ------- ---

Address Range: 00000000 - 00FFFFFF

Subpool Start End Bytes Pages Key Attributes
TSTPOOL 00D72000 00D724BF 000004C0 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D724C0 00D724FF 00000040 p E0 UNALLOC
TSTPOOL 00D72500 00D72FFF 00000B00 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D73000 00D734BF 000004C0 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D734C0 00D734FF 00000040 p E0 UNALLOC
TSTPOOL 00D73500 00D73FFF 00000B00 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D74000 00D744BF 000004C0 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D744C0 00D744FF 00000040 p E0 UNALLOC
TSTPOOL 00D74500 00D74FFF 00000B00 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D75000 00D754BF 000004C0 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D754C0 00D754FF 00000040 p E0 UNALLOC
TSTPOOL 00D75500 00D75FFF 00000B00 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D76000 00D764BF 000004C0 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D764C0 00D764FF 00000040 p E0 UNALLOC
TSTPOOL 00D76500 00D76FFF 00000B00 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D77000 00D774BF 000004C0 p E0 ALLOC GLOBAL SYSTEM
TSTPOOL 00D774C0 00D774FF 00000040 p E0 UNALLOC
TSTPOOL 00D77500 00D77FFF 00000B00 p E0 ALLOC GLOBAL SYSTEM

Each page on the TSTPOOL subpool has a X'40' byte piece of unallocated storage. Two different sizes of
storage are requested on TSTPOOL—one piece is X'4C0' bytes and the other piece is X'B00' bytes. On a

Using Free Storage

Chapter 6. Using Free Storage 65

page of X'1000' bytes, this leaves X'40' bytes remaining. You may not be able to change this situation;
however, you can examine the application and determine if any pieces of free storage obtained on some
other subpool would fit into these X'40' byte pieces of unallocated storage. In some situations, it is
desirable to split storage requests onto two different subpools. See “Storage Fragmentation” on page 69
for an example of two different subpools.

Using the SUBPMAP Command
During application debugging, you can use the SUBPMAP command to determine if specific subpools have
allocated storage at a given point in time. You can also use SUBPMAP as a check at end of command to
determine if any storage remains on subpools that were supposed to be cleaned up during application
termination. When you use the EXTSET option, the status of storage allocation on subpools are displayed
during CP TRACE operations, provided the application is enabled for external interrupts.

See the z/VM: CMS Commands and Utilities Reference for details on the SUBPMAP command.

Example - Using SUBPMAP
The following program, when loaded as a nucleus extension with the ENDCMD option, displays a single
line at end of command processing. This line contains allocated storage information about the USER
subpool when each command or program terminates.

SUBEND CSECT
 USING SUBEND,R12
 LR R12,R15
 CMSCALL PLIST=PLIST,EPLIST=EPLIST
 BR R14
 SPACE 1
PLIST DC CL8'SUBPMAP'
 DC XL4'FFFFFFFF'
 SPACE 1
EPLIST DC A(PLIST)
 DC A(SUSER)
 DC A(EUSER)
 DC A(0)
 SPACE 1
SUSER DC C'USER (NOHEAD'
EUSER DS X
 LTORG
 REGEQU
 END

The output from SUBEND is similar to the following:

nucxload subend (endcmd
USER E0 013FFC2C 0 1 GLOBAL
Ready;
testprog
USER E0 013FFC2C 2 3 GLOBAL
Ready;

According to this output, after executing TESTPROG, the address of the USER subpool descriptor block
is 013FFC2C, there are 2 full pages of allocated storage and 3 partial pages of allocated storage on the
USER subpool, and the USER subpool is a GLOBAL subpool.

Using the STDEBUG Command
You can use the STDEBUG command to trace calls to storage management to determine what caused a
storage problem, such as an out of storage condition, storage fragmentation, or storage overlays. With
the trace enabled, you can trap CMSSTOR, DMSFREE, DMSFRET, FREEMAIN, and GETMAIN requests
providing you with the following information:

• Amount of storage obtained or released
• Address of the storage obtained or released
• Address of the caller to storage management

Using Free Storage

66 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

• Name of the subpool the storage is allocated on.

See the z/VM: CMS Commands and Utilities Reference for details on the STDEBUG command.

The STDEBUG command also lets you control the caller address range to be traced, the storage address
range (the area where storage is being obtained or released from) to be traced, and the list of subpools to
be traced. Therefore, you can generate the data only needed to perform the debugging operation.

For example, when a program in a known storage location requires debugging, it is not necessary to trace
all the calls to storage management within the CMS nucleus. You can limit the trace to only the calls made
within a specific storage address range.

Another example is when a repeatable error condition, such as a program exception, occurs when you
run your application after an abend or IPL. This can happen because data (such as a branch address)
is retrieved from a storage location that is no longer allocated. By limiting the trace to only the address
range of the storage that is supposed to contain valid data, you can easily identify who obtained and
released the storage.

Out of Storage Conditions
Out of storage conditions occur when either a request has been made for storage and no available block
of unallocated storage is large enough to satisfy the request, or when a request has been made for
storage at a specific address and all or a portion of it is already allocated. An out of storage condition may
occur because of one of the following:

• Programming error causing storage to never be released
• Storage fragmentation
• Insufficient virtual machine size to satisfy the number of free storage requests.

Determining Causes for Storage Not Being Released
You can use the following methods to determine the cause for storage not being released:

• Use the MSG option on the STDEBUG command. The MSG option causes storage management error
messages to be issued even though the caller to storage management specified MSG=NO.

• Use the OBTAIN and RELEASE options on the STDEBUG command. The OBTAIN and RELEASE options
enable storage tracing for obtain and release requests. When the application has completed and the
generated data is displayed, find the corresponding RELEASE for each OBTAIN. If an OBTAIN is found
that does not have a matching RELEASE, it is possible that this storage has never been cleaned up,
therefore, causing your out of storage condition.

Example - Using the MSG Option on STDEBUG
Suppose your application contains the following subroutine to release free storage:

**
* Input:
*
* R0 = Number of bytes to release
* R2 = Address of storage to be released
* R14 = Return address
**
 SPACE 1
RELSTORE EQU *
 CMSSTOR RELEASE,BYTES=(0),ADDR=(2),MSG=NO,ERROR=*
 BR R14

If an error occurs on the CMSSTOR RELEASE, a message is not issued because MSG=NO is specified. In
addition, this routine is not checking the return code for an error.

Now, suppose an error existed in the calling program so an invalid address was passed to this subroutine
on each invocation. This may be caused by improper addressability to a control block. The result is that
the actual pieces of free storage are never released and an out of storage condition may occur.

Using Free Storage

Chapter 6. Using Free Storage 67

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

The following example shows how you can use the MSG option on the STDEBUG command to detect this
situation:

Ready;
msgtest
Ready;
stdebug (msg
Ready;
msgtest
DMSFRR161E Invalid free storage release call from 013E803E, error code 6
DMSFRR161E Invalid free storage release call from 013E803E, error code 6
DMSFRR161E Invalid free storage release call from 013E803E, error code 6
DMSFRR161E Invalid free storage release call from 013E803E, error code 6
DMSFRR161E Invalid free storage release call from 013E803E, error code 6
Ready;

Issuing the STDEBUG command with the MSG option before executing your application, MSGTEST, reveals
the error in CMSSTOR RELEASE that would normally be suppressed.

Example - Using the OBTAIN and RELEASE Options on STDEBUG and Pairing Obtain
and Release Requests
Your application may encounter an out of storage condition because storage was obtained but never
released. This can occur in cooperative applications where one application obtains storage and it is the
responsibility for another application to release it.

Consider the following execution of TEST1 with a storage trace enabled for all obtain and release
requests:

Ready;
stdebug (ob re punch d
Ready;
test1
Ready;
stdebug (end
Ready;
close pun to * rdr name pun log
RDR FILE 0108 SENT FROM FRODO PUN WAS 0108 RECS 0047 CPY 001 A NOHOLD NOKEEP
Ready;

The resulting punch file appears as follows:

15:09:03 OBTAINED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E1BB06
15:09:03 RELEASED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E0E792
15:09:03 OBTAINED BYTES=000000E0 ADDR=00D17878 SUBPL=USER CALLER=00E35CB6
15:09:03 RELEASED BYTES=000000E0 ADDR=00D17878 SUBPL=USER CALLER=00E35F72
15:09:08 OBTAINED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E1BB06
15:09:08 RELEASED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E0E792
15:09:08 OBTAINED BYTES=00000800 ADDR=013EA6C8 SUBPL=DMSBLOKN CALLER=00E2B404
15:09:08 OBTAINED BYTES=00000050 ADDR=013EA678 SUBPL=DMSBLOKN CALLER=00E45182
15:09:08 OBTAINED BYTES=000000A8 ADDR=013E8000 SUBPL=DMSUSRM CALLER=00E45644
15:09:08 RELEASED BYTES=00000050 ADDR=013EA678 SUBPL=DMSBLOKN CALLER=00E4638C
15:09:08 RELEASED BYTES=00000800 ADDR=013EA6C8 SUBPL=DMSBLOKN CALLER=00E29404
15:09:08 OBTAINED BYTES=00000020 ADDR=013E6000 SUBPL=DMSBLOKU CALLER=00E4675A
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5E00 SUBPL=USER CALLER=013E803E
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DF0 SUBPL=USER CALLER=013E803E
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DE0 SUBPL=USER CALLER=013E803E
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DD0 SUBPL=USER CALLER=013E803E
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DC0 SUBPL=USER CALLER=013E803E
15:09:08 RELEASED BYTES=00000010 ADDR=013E5E00 SUBPL=USER CALLER=013E808A
15:09:08 RELEASED BYTES=00000010 ADDR=013E5DF0 SUBPL=USER CALLER=013E808A
15:09:08 RELEASED BYTES=00000010 ADDR=013E5DE0 SUBPL=USER CALLER=013E808A
15:09:08 RELEASED BYTES=00000010 ADDR=013E5DD0 SUBPL=USER CALLER=013E808A
15:09:08 RELEASED BYTES=000000A8 ADDR=013E8000 SUBPL=DMSUSRM CALLER=00E46BFC
15:09:08 RELEASED BYTES=00000020 ADDR=013E6000 SUBPL=DMSBLOKU CALLER=00E46CD0
15:09:12 OBTAINED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E1BB06
15:09:12 RELEASED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E0E792

If you pair this data by the address of storage, the size, and the time stamp, you can identify the following
paired and unpaired storage requests:

Using Free Storage

68 z/VM: 7.4 CMS Application Development Guide for Assembler

15:09:03 OBTAINED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E1BB06
15:09:03 RELEASED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E0E792
15:09:03 OBTAINED BYTES=000000E0 ADDR=00D17878 SUBPL=USER CALLER=00E35CB6
15:09:03 RELEASED BYTES=000000E0 ADDR=00D17878 SUBPL=USER CALLER=00E35F72
15:09:08 OBTAINED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E1BB06
15:09:08 RELEASED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E0E792
15:09:08 OBTAINED BYTES=00000800 ADDR=013EA6C8 SUBPL=DMSBLOKN CALLER=00E2B404
15:09:08 RELEASED BYTES=00000800 ADDR=013EA6C8 SUBPL=DMSBLOKN CALLER=00E29404
15:09:08 OBTAINED BYTES=00000050 ADDR=013EA678 SUBPL=DMSBLOKN CALLER=00E45182
15:09:08 RELEASED BYTES=00000050 ADDR=013EA678 SUBPL=DMSBLOKN CALLER=00E4638C
15:09:08 OBTAINED BYTES=000000A8 ADDR=013E8000 SUBPL=DMSUSRM CALLER=00E45644
15:09:08 RELEASED BYTES=000000A8 ADDR=013E8000 SUBPL=DMSUSRM CALLER=00E46BFC
15:09:08 OBTAINED BYTES=00000020 ADDR=013E6000 SUBPL=DMSBLOKU CALLER=00E4675A
15:09:08 RELEASED BYTES=00000020 ADDR=013E6000 SUBPL=DMSBLOKU CALLER=00E46CD0
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5E00 SUBPL=USER CALLER=013E803E
15:09:08 RELEASED BYTES=00000010 ADDR=013E5E00 SUBPL=USER CALLER=013E808A
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DF0 SUBPL=USER CALLER=013E803E
15:09:08 RELEASED BYTES=00000010 ADDR=013E5DF0 SUBPL=USER CALLER=013E808A
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DE0 SUBPL=USER CALLER=013E803E
15:09:08 RELEASED BYTES=00000010 ADDR=013E5DE0 SUBPL=USER CALLER=013E808A
15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DD0 SUBPL=USER CALLER=013E803E
15:09:08 RELEASED BYTES=00000010 ADDR=013E5DD0 SUBPL=USER CALLER=013E808A
15:09:12 OBTAINED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E1BB06
15:09:12 RELEASED BYTES=00000130 ADDR=00CC8518 SUBPL=NUCLEUS CALLER=00E0E792

15:09:08 OBTAINED BYTES=00000010 ADDR=013E5DC0 SUBPL=USER CALLER=013E803E

One X'10' byte piece of storage was not released. Each invocation of TEST1 results in an additional X'10'
byte piece of storage that is not released. After hours of execution, invoking this application, an out of
storage condition may occur.

Example - Using the OBTAIN and RELEASE Options on STDEBUG and Pairing Obtain
and Release Requests
An out of storage condition can also occur when only part of the storage obtained is actually released. In
this situation, the residual amount of storage not being released can accumulate until storage becomes
exhausted.

To detect this problem, you can use the STDEBUG command to enable tracing for obtain and release
requests. After you execute your program, suppose the following data is displayed:

07:53:15 * MSG FROM FRODO : OBTAINED 00000050 00CA3230 NUCLEUS 013E859C
07:53:15 * MSG FROM FRODO : RELEASED 0000004D 00CA3230 NUCLEUS 013E83D2
07:53:30 * MSG FROM FRODO : OBTAINED 00000130 00CA3150 NUCLEUS 013E8B06
07:53:30 * MSG FROM FRODO : RELEASED 00000128 00CA3150 NUCLEUS 013E8792

Then, you can pair the obtain and release requests to find the problem area. Two pieces of storage have
been obtained and released. The size on the RELEASE for both pairs does not match the size on the
OBTAIN. For the pair at address X'00CA3230', this is not important. It is not important because the size
on the RELEASE, X'4D', when rounded up to a multiple of eight, is X'50', which is the size on the OBTAIN.
(CMS storage management always rounds sizes that are not a multiple of eight to the next doubleword
value.)

There is a potential problem for the pair at address X'00CA3150'. The size of the storage obtained was
X'130' bytes; however, the size of the storage released was X'128' bytes. This leaves X'8' bytes of storage
not accounted for. If this application is used repetitively, an out of storage condition can occur as the
unclaimed storage accumulates.

Storage Fragmentation
Storage fragmentation generally occurs when the pattern of storage obtain and release requests leaves
many small pieces of unallocated storage interleaved with allocated pieces. A large amount of free
storage may be available in the virtual machine; however, no single piece is large enough to satisfy a large
request. This can cause an out of storage condition.

You can use the STDEBUG command to detect when storage fragmentation is occurring.

Using Free Storage

Chapter 6. Using Free Storage 69

Example - Using STDEBUG to Detect Storage Fragmentation
Suppose your application, SUBTEST, uses the subpool, MYSUB, for all its storage requests. The following
data is generated after enabling the tracing of the obtain and release requests on the MYSUB subpool and
invoking SUBTEST:

stdebug MYSUB (ob re
Ready;
subtest
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DD6000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DD6BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DD5000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DD5BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DD4000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DD4BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DD3000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DD3BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DD1000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DD1BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DCA000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DCABF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DC9000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DC9BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : OBTAINED 00000800 00DC8000 MYSUB 00DDC03E
09:05:08 * MSG FROM FRODO : OBTAINED 00000408 00DC8BF8 MYSUB 00DDC072
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DD6BF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DD5BF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DD4BF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DD3BF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DD1BF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DCABF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DC9BF8 MYSUB 00DDC0BE
09:05:08 * MSG FROM FRODO : RELEASED 00000408 00DC8BF8 MYSUB 00DDC0BE
Ready;
subpmap MYSUB
 Subpool Map
 ------- ---

Subpool Key SUBBK Full Part Attributes
MYSUB E0 00DFFE5C 0 8 GLOBAL
Ready;

The data generated by the STDEBUG command reveals the following pattern occurring:

• X'800' byte piece of storage and a X'408' byte piece of storage are obtained on each page.
• X'3F8' bytes of storage are left on each page.

When the application completes execution, all the X'408' bytes of storage are released and the X'800'
byte pieces persist—they are used later. This results in 8 pages of storage remaining on the MYSUB
subpool, each containing one X'800' byte piece of storage. The SUBPMAP verifies these results.

Now, rework the application, SUBTEST, so it uses two subpools for its storage requests. One subpool,
MYSUB1, can be used for the X'800' byte pieces of storage. The second subpool, MYSUB2, can be used
for the X'408' bytes pieces of storage.

The following data is generated after enabling storing tracing for obtain and release requests on the
MYSUB1 and MYSUB2 subpools and invoking SUBTEST:

Using Free Storage

70 z/VM: 7.4 CMS Application Development Guide for Assembler

stdebug MYSUB1 MYSUB2 (ob re
Ready;
subtest
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00DC6000 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00DC5000 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00DC6800 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00DC5BF8 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00DC4000 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00DC57F0 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00DC4800 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00DC3000 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00D38000 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00DC3BF8 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00D38800 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00DC37F0 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00D37000 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00D1F000 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : OBTAINED 00000800 00D37800 MYSUB1 00DDA03E
08:58:54 * MSG FROM FRODO : OBTAINED 00000408 00D1FBF8 MYSUB2 00DDA072
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00DC5000 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00DC5BF8 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00DC57F0 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00DC3000 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00DC3BF8 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00DC37F0 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00D1F000 MYSUB2 00DDA0BE
08:58:54 * MSG FROM FRODO : RELEASED 00000408 00D1FBF8 MYSUB2 00DDA0BE
Ready;
subpmap MYSUB1 MYSUB2
 Subpool Map
 ------- ---

Subpool Key SUBBK Full Part Attributes
MYSUB1 E0 00DFFE84 4 0 GLOBAL
MYSUB2 E0 00DFFEAC 0 0 GLOBAL
Ready;

This data reveals:

• Two X'800' byte pieces of storage are obtained for each page on the MYSUB1 subpool.
• Three X'408' byte pieces of storage are obtained for each page on the MYSUB2 subpool.

When the application completes executing, all the X'408' byte pieces of storage are released. A total
number of four pages are left. Again, the SUBPMAP command verifies these results.

By using two subpools for storage requests, you reduced the amount of persistent storage used by this
application by 50%. You were able to detect this fragmentation problem using the STDEBUG command.

Insufficient Virtual Machine Storage Size
You can also encounter an out of storage condition if your virtual machine storage size is not large
enough to satisfy the number of free storage requests. If this occurs, you can increase your virtual
machine storage size using the CP DEFINE STORAGE command. See the z/VM: CP Commands and Utilities
Reference for details on the DEFINE STORAGE command.

Storage Overlays
Suppose you received the following messages after executing your application, OVTEST1:

Ready;
ovtest1
DMSFRO163E User key pointers have been destroyed (internal error code 85)
DMSFRM165I Chain header at address: 013FF610, Page address: 013E9000
DMSFRM817I Subpool name: ZORCH Subbk address: 013FFD44

To determine what caused this problem, you can trap each call for storage on the ZORCH subpool to
determine where the application is storing into unallocated free storage. This is based on the assumption
that a piece of free storage is obtained on the ZORCH subpool and the application is storing beyond
the size of the obtained storage. By storing beyond the obtained storage, the application is overwriting
a storage pointer used to keep track of unallocated storage within a partially allocated page. Storage
management has a pointer within the page for every piece of unallocated storage on the page.

Using Free Storage

Chapter 6. Using Free Storage 71

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

You can use the following STDEBUG and the CP TRACE commands to help you determine where in your
application the user key pointers are being overlaid:

stdebug ZORCH (ob re stop
Ready;
ovtest1
14:45:54 * MSG FROM FRODO : OBTAINED 00000008 013E5000 ZORCH 013E8036
TRACE STORE INTO 13E5008.8 CMD D 13E5008.8
B
 -> 00E125EA ST 5040A004 >> 013E500C CC 2
R013E5008 00000000 00000FE8 E6
B
14:46:33 * MSG FROM FRODO : OBTAINED 00000010 013E5FF0 ZORCH 013E806E
TRACE STORE INTO 13E6000.8 CMD D 13E6000.8
B
 -> 00E125EA ST 5040A004 >> 013E500C CC 2
R013E5008 00000000 00000FC8 E6
B
14:47:21 * MSG FROM FRODO : OBTAINED 00000020 013E5FD0 ZORCH 013E80A6
TRACE STORE INTO 13E5FF0.8 CMD D 13E5FF0.8
B
 -> 013E80A8 XC D70F60006000 >> 013E5FF0 013E5FF0 CC 0
R013E5FF8 00000000 00000000 E6
B
 013E80AE XC D70750005000 >> 013E5008 013E5008 CC 0
R013E5008 00000000 00000000 E6
B
DMSFRO163E User key pointers have been destroyed (internal error code 85)
DMSFRM165I Chain header at address: 013FF5D0, Page address: 013E5000
DMSFRM817I Subpool name: ZORCH Subbk address: 013FFE34

To trap each call for storage on the ZORCH subpool, use the STOP option on the STDEBUG command.
The STOP option places you into CP READ each time a call is made to obtain or release storage from
the ZORCH subpool. When you enter CP READ, you set a CP TRACE STORE INTO for the 8-byte piece of
storage that is immediately adjacent to the piece you just obtained. This 8-byte piece of storage is the
storage management pointer.

The storage management pointer is the first 8 bytes of any unallocated piece of storage within the page.
This storage management pointer contains the address of the next storage management pointer and the
size of the unallocated piece of storage in which it is residing.

When one of the storage management pointers becomes corrupted, the User key pointers have
been destroyed message is issued.

Analysis of the results shows us the following:

• A piece of free storage is obtained at X'13E5000' and isX'8' bytes in size. The trace is set at X'13E5008'
for 8 bytes to trap a store in the storage pointer located there.

The ST assembler instruction, trapped by the CP TRACE command, stores information into X'13E500C'.
The address of the instruction storing into this field isX'E125EA'. This is storage management updating
the size field in the storage pointer. This is a correct operation.

• A piece of free storage is obtained at X'13E5FF0' and isX'10' bytes in size. The trace is set at
X'13E6000' for 8 bytes to trap a store into the piece of free storage beyond the piece obtained. Note
that this address is in the page adjacent to the page where the storage is obtained. This page may even
be on a different subpool. Stores into this location may not be in error as this may be valid piece of
allocated storage.

The ST assembler instruction, trapped by the CP TRACE command, stores information into the storage
pointer at X'13E500C'. Again, by examining the address of the instruction, the store into this storage
pointer is made by storage management updating the size field.

• A piece of free storage is obtained at X'13E5FD0' and isX'20' bytes in size. The trace is set at
X'13E5FF0' for 8 bytes to trap a store into the piece of free storage beyond the piece obtained. Note
that this is the address of the piece of free storage obtained previously. As long as that storage is still
allocated, a store into it is a normal condition. If it does become unallocated, you are notified because
you specified the RELEASE and the OBTAIN option on the STDEBUG command.

Using Free Storage

72 z/VM: 7.4 CMS Application Development Guide for Assembler

The XC assembler instruction, trapped by the CP TRACE command, stores information into allocated
storage X'13E5FF0'. This was the application updating storage that was obtained. This is a correct
operation.

• Finally, the following XC instruction attempts to store information at X'13E5008', which is a storage
pointer:

 013E80AE XC D70750005000 >> 013E5008 013E5008 CC 0

This XC instruction, which is not part of the CMS nucleus, has zeroed the storage pointer. You know this
is unallocated storage because there never was an STDEBUG trace message issued for this address. It is
most likely that the application using the piece of storage obtained at X'13E5000' for 8 bytes contains a
bug. It is attempting to store beyond the piece of free storage it obtained.

By combining the STDEBUG and CP TRACE commands, you were able to locate the exact instruction that
destroyed the free storage pointers.

Redirecting Console Messages Using the STDEBUG Command
You can use the USERID option on the STDEBUG command to direct the console messages to a user
ID different from the user ID executing the application being traced. This can be useful when you have
a second user ID and console. You can direct the messages to the second user ID and view them on
console of that user ID. This leaves the console of the primary user ID, running the application, free for
interaction. A STDEBUG trace can generate hundreds of messages when numerous calls are being made
to storage management while the trace is active. When these messages become outstanding, waiting to
be displayed on the console, it is often difficult to use PA1 or #CP to interrupt the program.

You can also use the USERID option to debug an application in a disconnected server machine. You can
enable the storage management trace in the server machine using STDEBUG. The server machine can
then direct the messages to an interactive user ID that can view the trace messages issued by the server.

Obtaining and Releasing Storage above 2 GB
CMS does not directly exploit storage above 2 GB. However, you can IPL z/Architecture CMS (z/CMS) in
a virtual machine with more than 2 GB of storage, and programs running on z/CMS can use CMSSTOR
OBTAIN and CMSSTOR RELEASE to allocate and return storage above 2 GB. Before assembling a program
that uses storage above 2 GB, you must issue the GLOBAL MACLIB command to specify the DMSZGPI
macro library ahead of the DMSGPI library. For example:

global maclib dmszgpi dmsgpi

To allocate storage above 2 GB, you must use SUBPOOL='USERG'. The number of pages of storage to
be allocated is specified using the BYTES= parameter of CMSSTOR OBTAIN. For example, the following
statement will allocate 1 page of storage above 2 GB:

CMSSTOR OBTAIN,BYTES=1,SUBPOOL='USERG'

The 64-bit address of the allocated storage is returned in general-purpose register 1. All storage allocated
above 2 GB is aligned on a page boundary.

To release storage above 2 GB when z/CMS is running, you must specify SUBPOOL='USERG'. The ADDR=
parameter must contain the 64-bit address of the storage to be released and the BYTES= parameter must
contain the number of pages to be released. For example, the following statement will release 1 page of
storage at the 64-bit address specified in register 10:

CMSSTOR RELEASE,BYTES=1,ADDR=(R10),SUBPOOL='USERG'

Using Free Storage

Chapter 6. Using Free Storage 73

Using Free Storage

74 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 7. Using Saved Segments

This chapter describes:

• What physical and logical saved segments are.
• How to use the SEGMENT macro to load, purge, and find the starting and ending address of a saved

segment.
• How to use the SEGMENT command to reserve and release storage and to assign logical saved

segments.
• How to use the QUERY SEGMENT command to display information about saved segments and segment

storage spaces.

Physical and Logical Saved Segments
A saved segment is an area of virtual storage that is assigned a name, loaded with data or programs, then
saved in a system data file in spool space. A saved segment can be attached to and detached from a
virtual machine. Using saved segments is a way of using storage that is not yours.

Segment spaces, member saved segments, and discontiguous saved segments (DCSSs) reside on CP-
owned volumes and must be defined to CP before being used. A segment space, which begins and ends
on a megabyte boundary, contains one or more member saved segments, which begin and end on page
boundaries. A DCSS also begins and ends on a megabyte boundary, but does not contain members.

Defining frequently-used data or programs as saved segments provides several advantages:

• Many users can access the same saved segment, which helps you use real storage more efficiently.
• Saved segments need not be in the address range of a virtual machine (this can also help you use

storage more efficiently).
• Space for saved segments can be reserved within a virtual machine's address space, which helps you

make sure that the saved segment is always available.

A physical saved segment is a member saved segment or DCSS that may contain one or more logical
saved segments that CMS recognizes. Defining logical saved segments provides further advantages:

• Each logical saved segment can contain different types of program objects, such as modules, text files,
execs, callable services libraries, language information, and user-defined objects, or a single minidisk
file directory. You can use logical saved segments to package your entire application. For example,
you may want to create a logical segment definition file that defines the parts of your application. You
could then send it to the system administrator, who will create the logical saved segment and make it
available for others to use.

• You can use physical saved segments more efficiently by defining many different logical saved
segments in a single physical saved segment.

• Users can access specific logical saved segments rather than all the contents of a physical saved
segment.

For information about defining saved segments, see z/VM: Saved Segments Planning and Administration.

Using the SEGMENT Macro
You can use the SEGMENT macro to:

• Load a saved segment into storage
• Find the start and end address of a saved segment
• Purge a saved segment.

Using Saved Segments

© Copyright IBM Corp. 1990, 2024 75

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4

Loading a Saved Segment
Use the SEGMENT LOAD macro to load a saved segment. SEGMENT LOAD reserves a storage space, if one
is not already reserved, and loads the saved segment into it.

Example 1
To load a shared copy of a saved segment named MYSEG that survives abend processing, code:

SEGMENT LOAD,NAME=MYSEG,SYSTEM=YES,SHARE=YES

Note that SHARE=YES is a default value and can be omitted.

Example 2
To load a private copy of a saved segment named MYSEG that does not survive abend processing, code:

SEGMENT LOAD,NAME=MYSEG,SYSTEM=NO,SHARE=NO

Note that SYSTEM=NO is a default value and can be omitted.

Table 17 on page 76 describes some of the return codes stored in register 15 when the SEGMENT LOAD
macro completes. For a complete list, see the z/VM: CMS Macros and Functions Reference.

Table 17. Return Codes for SEGMENT LOAD Macro

Contents Meaning

0 The saved segment was loaded successfully; register 1 contains the beginning
address of the loaded saved segment and register 0 contains the highest
address of the loaded saved segment.

12 The saved segment was already loaded.

41 The storage required to load the saved segment is already in use.

44 The saved segment does not exist.

256 An error occurred while processing the contents of a logical saved segment.

For any nonzero return code other than 12, registers 0 and 1 are set to zero.

Determining the SHARE Attribute
The SHARE attribute of a physical saved segment that contains logical saved segments is determined by
the first logical saved segment that you load. When you load subsequent logical saved segments defined
in the same physical saved segment, you must specify (or default to) the same attribute.

For example, suppose physical saved segment USERSEG contains logical saved segment MYSEG. If you
specify SHARE=NO when you load MYSEG, you must specify SHARE=NO when you load any other logical
saved segments in USERSEG. If the SHARE parameter does not match the SHARE attribute of the physical
saved segment, the saved segment is not loaded and register 15 contains a return code of 36.

See “How CMS Handles Objects in Logical Saved Segments” on page 78 for information regarding the
way which CMS handles objects in logical saved segments.

Finding the Starting and Ending Address of a Saved Segment
Use the SEGMENT FIND macro to find the starting and ending address of a saved segment. For example,
to find the starting and ending address of MYSUB, code:

SEGMENT FIND,NAME='MYSUB'

Using Saved Segments

76 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

If the saved segment exists, its starting address is stored in register 1; its ending address is stored in
register 0.

Table 18 on page 77 describes some of the return codes stored in register 15 when the SEGMENT FIND
macro completes. For a complete list, see the z/VM: CMS Macros and Functions Reference.

Table 18. Return Codes for SEGMENT FIND Macro

Contents Meaning

0 The saved segment has not been loaded.

12 Indicates the saved segment has already been loaded.

44 The saved segment does not exist.

Purging a Saved Segment
Use the SEGMENT PURGE macro to detach a saved segment from your virtual machine. For example, to
remove MYSUB, code:

SEGMENT PURGE,NAME='MYSUB'

Purging a logical saved segment removes the objects in the saved segment from use by CMS. If MYSUB
is a logical saved segment and is the only loaded or reserved logical saved segment within the physical
saved segment, then the physical saved segment is detached from the virtual machine. If the physical
saved segment is a member of a CP segment space and is the only loaded or reserved member in that
segment space, then the segment space is detached from the virtual machine. The reserved segment
storage space is also released unless it was explicitly reserved using the SEGMENT RESERVE command.

When you use SEGMENT PURGE to purge a saved segment, the saved segment must have been loaded
using SEGMENT LOAD. If the saved segment was loaded using the DIAGNOSE code X'64' LOADSYS
function, you must use the DIAGNOSE code X'64' PURGESYS function to purge the saved segment. You
cannot use SEGMENT PURGE and the DIAGNOSE code X'64' PURGESYS function interchangeably.

Table 19 on page 77 describes some of the return codes stored in register 15 when the SEGMENT
PURGE macro completes. For a complete list, see the z/VM: CMS Macros and Functions Reference.

Table 19. Return Codes for SEGMENT PURGE Macro

Contents Meaning

0 The saved segment was successfully purged.

40 The saved segment was not loaded.

44 The saved segment does not exist.

256 An error occurred while processing the contents of a logical saved segment.

How CMS Locates Saved Segments
CMS uses the following process to locate a saved segment to be loaded:

1. CMS searches the list of logical saved segments for one with the name specified on the SEGMENT
LOAD macro. If a logical saved segment is found, a storage space for the associated physical saved
segment is reserved (if not already reserved). If the physical saved segment is a DCSS, the storage
space is reserved for the DCSS. If the physical saved segment is a member of a CP segment space,
the storage space is reserved for the entire segment space. Then the storage space is loaded (if not
already loaded), and the contents of the logical saved segment are processed.

2. If a logical saved segment with the specified name is not found, CMS searches the list of storage
spaces previously reserved with the SEGMENT RESERVE command to determine if a space has been
reserved for a saved segment with the requested name. If one is found, the storage space is loaded (if
not already loaded).

Using Saved Segments

Chapter 7. Using Saved Segments 77

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

3. If no reserved storage space exists, CMS determines whether the requested saved segment has been
defined in CP. If so, CMS issues a SEGMENT RESERVE command to create a reserved storage space,
then loads the saved segment. If the saved segment is a member of a CP segment space, CMS
reserves storage for and loads the entire segment space.

4. If the requested saved segment is none of the above, the appropriate return code (RC=44) is returned
to the calling program.

CMS uses the same search order to find or purge a saved segment.

How CMS Handles Objects in Logical Saved Segments
When a logical saved segment is loaded, the MODULE or TEXT files contained within it are established
as nucleus extensions or subcommand processors, execs are established as EXECs-in-storage, callable
services libraries are available for the GLOBAL CSLLIB and RTNLOAD commands, application language
information is activated, and user object load routines are called.

All application language information whose languages match the current system language is added to the
active set of applications. Thus, the application does not need to issue a SET LANGUAGE command with
the ADD option. When a SET LANGUAGE command is issued that changes the current system language,
all application language information for the old language is dropped, and any language information that
matches the new system language and is in a currently loaded logical saved segment is automatically
added.

Logical saved segments and the objects in them are loaded last-in-first-out (LIFO). Nucleus extensions,
subcommand processors, and execs (all of which are in a saved segment that has been loaded) override
previous definitions with the same name. To reactivate previous definitions, you can drop saved segment-
resident nucleus extensions (using NUCXDROP) or execs (using EXECDROP), or purge the saved segment.
After an object in a saved segment has been dropped, the saved segment must be purged and reloaded to
reactivate the object.

Objects in other logical saved segments within the physical saved segment are not processed.

Using the SEGMENT Command
You can use the SEGMENT command to perform the following additional functions not provided in the
SEGMENT macro:

• Reserve storage space for a saved segment
• Release the storage that was reserved
• Assign a logical saved segment to a physical saved segment.

Reserving Storage Space for Saved Segments
In CMS, saved segments can be located within your virtual machine's address space. For saved segments
that are not loaded immediately after IPL, you should consider reserving storage space for the saved
segment. If you do not reserve space for the saved segment, other programs can use the storage. If the
required storage is occupied when you try to load a saved segment, the load fails.

You can use the SEGMENT RESERVE command to reserve space for saved segments. Reserving space
for saved segments (a) allows you to ensure that your applications can load the saved segments in the
storage they specify and (b) eliminates the possibility of saved segments overlaying or being overlaid by
portions of CMS. For example, to reserve space for a saved segment named MYSEG, enter:

segment reserve myseg (system

The SYSTEM option specifies that the space reserved will not be released if abend processing occurs.

Using Saved Segments

78 z/VM: 7.4 CMS Application Development Guide for Assembler

Releasing Segment Storage Spaces
The SEGMENT RELEASE command releases the storage that has been reserved for a saved segment or
reclaims storage where saved segments have been loaded.

For example, to release storage for MYSEG, enter:

segment release myseg

SEGMENT RELEASE uses the following process to release storage:

1. If the specified saved segment is a logical saved segment, it is removed from the list of reserved
logical saved segments. If the physical saved segment that contains the logical saved segment no
longer has any logical saved segments loaded or reserved, the physical saved segment is detached
from your virtual machine and the reserved storage is returned to CMS (that is, the physical saved
segment is released). If the physical saved segment is a member of a CP segment space, and the
segment space no longer has any members loaded or reserved, the segment space is released and the
storage is returned to CMS.

2. If the specified saved segment is a physical saved segment, all the loaded or reserved logical saved
segments within the physical saved segment are released first, then the physical saved segment is
released, then (if applicable) the CP segment space is released and the storage is returned to CMS.

3. If the specified saved segment is a CP segment space, and if any members of the segment space are
physical saved segments that contain logical saved segments, all the loaded or reserved logical saved
segments are released first, then the members of the segment space are released, then the segment
space is released and the storage is returned to CMS.

Assigning Logical Saved Segments to Physical Saved Segments
Use the SEGMENT ASSIGN command to assign or associate a logical saved segment with a physical saved
segment. When the name of a logical saved segment is associated with two physical saved segments, the
default logical saved segment is the last one in the system segment identification file (SYSTEM SEGID S2).
You can change the default association by using the SEGMENT ASSIGN command. Do not use any other
method to modify this file.

To associate a logical saved segment named APPLSEG to the physical saved segment named MYSEG,
enter:

segment assign applseg myseg

For more information on the SEGMENT command, see the z/VM: CMS Commands and Utilities Reference.

Displaying Information about Saved Segments
Use the QUERY SEGMENT command to display information about loaded or reserved saved segments and
the storage spaces that contain or are reserved for saved segments. For example,

query segment nlsuceng

might return a response similar to the following:

Space Name Location Length Loaded Attribute
NLSUCENG NLSUCENG 00DA0000 00100000 YES USER

To display information on all the currently loaded or reserved saved segments, enter:

query segment *

In response, CMS returns something similar to the following:

Space Name Location Length Loaded Attribute
NLSUCENG NLSUCENG 00DA0000 00100000 YES USER

Using Saved Segments

Chapter 7. Using Saved Segments 79

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

PSEG2 EXECSEG 02000000 0003F000 NO SYSTEM
PSEG2 MYSEG 02240000 00380000 NO SYSTEM

For a logical saved segment, the Space column displays the name of the physical saved segment in which
it resides, and the Name column displays the name of the logical saved segment. For an explicitly-loaded
or reserved physical saved segment, the Space column displays the name of the storage space in which
it resides, and the Name column displays the name of the physical saved segment. If the physical saved
segment is a DCSS, the storage space is the DCSS. If the physical saved segment is a member of a CP
segment space, the storage space is the CP segment space. The Loaded column indicates whether the
saved segment has been loaded or just reserved.

To display the contents of a logical saved segment, use the CONTENTS option. For example, to display the
contents of the APPLSEG logical saved segment, enter:

query segment applseg contents

The response is in the following form:

Type Location Length Name
NUCEXT 006E0630 00000038 TESTMOD1
SUBCOM 006E0F18 00000038 TESTMOD2
EXEC 006E32D0 00000848 PROF1 EXEC
EXEC 006E0698 00000848 TEST XEDIT
LANGUAGE 006E3030 AMENG OFS
CSL 006E0000 00000610 LIB2
USER 006E3B50 000000FF TESTUSER

To display the contents of the USERDISK logical saved segment that contains a saved minidisk directory,
enter:

query segment userdisk contents

The response is in the following form:

Type Location Length Name
DISK 00DA5000 00010000 LABEL1

Use the ASSIGN option to display the physical saved segment to which a logical saved segment is
currently assigned, as follows:

query segment lseg1 assign

The response is in the following form:

Lsegname Assignment
LSEG1 PSEG1

Use the SPACE option to display information about segment storage spaces. To display information about
all segment storage spaces, enter:

query segment * space

The response is in the following form:

Space Name Location Length Loaded Attribute
NLSUCENG - 00DA0000 00060000 YES -
PSEG2 - 02000000 01000000 NO -

The Space column contains the name of the segment storage space, the Name column always contains a
dash (-), the Location column contains the starting address, and the Length column contains the length of
the storage space.

Note the difference between QUERY SEGMENT * and QUERY SEGMENT * SPACE. QUERY SEGMENT *
lists all the currently loaded or reserved segments, which can include logical saved segments, explicitly-
loaded physical saved segments, or CP segment spaces. On the other hand, QUERY SEGMENT * SPACE
lists all the segment storage spaces that contain or are reserved for saved segments. In the previous

Using Saved Segments

80 z/VM: 7.4 CMS Application Development Guide for Assembler

response to QUERY SEGMENT *, NLSUCENG is a segment space that has been explicitly loaded, and
PSEG2 is a physical saved segment that contains the logical saved segments EXECSEG and MYSEG, each
of which has been reserved but not loaded.

For more information on the QUERY SEGMENT command, see the z/VM: CMS Commands and Utilities
Reference.

Using Saved Segments

Chapter 7. Using Saved Segments 81

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Using Saved Segments

82 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 8. Console and Terminal I/O

This chapter describes how to do terminal and console I/O. In particular, it describes how to use the
following macros:

• CONSOLE — Performs full-screen I/O operations.
• APPLMSG — Retrieves and displays messages.
• LINERD — Reads one or more lines of input.
• LINEWRT — Writes one or more lines of output.

Performing 3270 Full-Screen I/O Operations
The CMS CONSOLE macro provides an assembler language interface to 3270 full-screen I/O operations.
Using the CONSOLE macro allows your applications to become less dependent on low-level system
architecture (in particular, architecture-dependent I/O instructions).

Before the CONSOLE macro existed, an application had to (a) construct data streams, (b) build the
channel command word (CCW), (c) determine the type of device (dedicated devices or virtual console)
and set up for DIAGNOSE code X'58' or a 3270 SSCH instruction, and (d) check the channel status word
(CSW or SCSW) to determine what action should be taken.

Using the CONSOLE macro, your application needs only to build a data stream, issue the appropriate
CONSOLE macro call, and check a return code. The 3270 data stream is made up of a command code,
followed by a combination of WCC, orders, and data or structured fields, depending on the exact nature
of the screen transaction. The command code is defined by the OPTIONS parameter, the rest of the data
stream should be placed in the area defined by the BUFFER parameter. (See the IBM 3270 Information
Display System Data Stream Programmer’s Reference for details of how to construct a data stream.)

CONSOLE Macro Functions
The basic functions of the CONSOLE macro are:

• CONSOLE OPEN — Opens a specific path to a device.
• CONSOLE CLOSE — Closes a specific path to a device.
• CONSOLE MODIFY — Change, delete or add certain parameters of a previous path definition.
• CONSOLE READ — Reads information from the display device.
• CONSOLE WRITE — Writes buffers that have 3270 data streams built by the application.
• CONSOLE WAIT — Waits for an interrupt (for example, an I/O interrupt from the console device).
• CONSOLE QUERY — Gets information about the device attributes or about a specific path and its

associated device (if the path is open). This information is the same as that returned by DIAGNOSE
codeX'24' and DIAGNOSE code X'8C' plus some additional information.

• CONSOLE EXCP — Lets you specify your own channel program to read or write I/O. Note that
CONSOLE EXCP requires you to distinguish between System/370 mode and 370-XA or ESA/XC modes
of operation. It also requires you to distinguish between dedicated devices and the virtual console,
because DIAGNOSE code X'58' CCWs must be provided for I/O to the virtual console.

Note: Only CMS levels prior to CMS Level 12 will execute in a 370 virtual machine.

Opening a Path to a Console
To use the CMS console facility for I/O, you must first open a path to a device. Opening a path associates a
unique path name with your application and the device you want to use.

Console and Terminal I/O

© Copyright IBM Corp. 1990, 2024 83

Use CONSOLE OPEN to define a path to a device. For example, the following CONSOLE macro:

CONSOLE OPEN,PATH='PATH1',EXIT=HANDLER,UWORD=INFO,BUFFER=(BUFF), *
 ERROR=ERROR1

• Opens a path named PATH1 (PATH=‘PATH1’) to the virtual console. (To specify a device other than the
virtual console, for example, a dialed device or a 3270 graphics printer, specify DEVICE=vdev where
vdev is the address of the device.)

• Defines HANDLER as the entry point of the routine that handles unsolicited interrupts from the console
(EXIT=HANDLER). See “Handling Console Interrupts” on page 84 for more information about using the
EXIT parameter to define an interrupt handler.

• Passes in register 0 the contents of the fullword located at INFO to the interrupt handler routine
(UWORD=INFO). You can use UWORD to pass a control block address, a routine address, or anything
else you want to pass to the exit routine.

• Defines (BUFF) as the address of a storage location where CMS stores information about the path and
its associated device (BUFFER=(BUFF)). You can use the CQYSECT macro to map this area. Also note
that you can use the CONSOLE QUERY macro to obtain information about the path and device. You can
use this information later when you build your data stream.

• Defines ERROR1 as the entry point of a routine that gets control if CONSOLE returns a nonzero
return code (ERROR=ERROR1). Your error routine can examine the return code and determine if more
processing can be performed (for example, a return code of 28 specifies that the path is already open).

A parameter not shown in the example above is RESET. Specifying RESET=YES will cause a CP RESET
command to be issued when the path is the last path to a dedicated device and the path is being
deleted. RESET=YES is the default. The RESET parameter is ignored if the device is the virtual console. If
RESET=NO is specified, an application must issue a CP RESET to free up the device.

For a CONSOLE OPEN request when the path already exists, device information will be obtained for the
associated device. The information is updated in the existing device entry if different from the original
device information. A return code of 28 will be set and the device information will be returned in a buffer,
if the application provided one.

For a typewriter-type device (TTY), a console path is not opened and device characteristics are not saved
in a console device entry. However, if the application provides a buffer, device information is returned in
the buffer.

Handling Console Interrupts
Normally, you do not have to do anything special to handle console interrupts. If the interrupt is
solicited (for example, your program issues either a CONSOLE WAIT or a CONSOLE READ with the WAIT
parameter), CMS passes control to the code generated by the CONSOLE macro, which then processes the
interrupt.

Two examples of when you may want to handle unsolicited interrupts include:

• When you need to handle unsolicited attention interrupts; for example, when a user inadvertently
enters more information than the application expects. The application may want to stack the unsolicited
attentions, and then do a CONSOLE READ to clear the interrupts later.

• When an application program works with dedicated 3270 devices. For example, some 3270 devices
receive an unsolicited device end (DE) when the device is powered on. Your exit routine can do a
CONSOLE QUERY to determine that the device has been powered on; it can then post an event control
block (ECB) or issue an EventSignal to notify the main program that the device is ready. Note that exits
cannot enable for interrupts and, therefore, should not do their own I/O to the device.

To handle unsolicited interrupts for a 3270 device, you can use the EXIT parameter of CONSOLE OPEN
to define an exit routine. If you do not define an exit routine, the interrupt is handled by CMS interrupt
handling routines.

Note: To avoid confusion, do not use the CONSOLE macro and the HNDIO, HNDINT, or OS/MVS STAX
macros to define exit routines for the same device. Code generated by the CONSOLE macro handles

Console and Terminal I/O

84 z/VM: 7.4 CMS Application Development Guide for Assembler

solicited console interrupts; however, for unsolicited interrupts, exit routines defined by HNDIO, HNDINT,
or OS/MVS STAX supersede those defined by the CONSOLE macro. (For a discussion of how CMS handles
unsolicited interrupts and a more thorough discussion of CMS interrupt handling in general, see “Handling
I/O Interrupts” on page 179.)

Console Exit Routine Entry Conditions
If you do specify an exit routine, your program must be prepared to handle the interrupt. The exit routine
receives control as an extension of CMS I/O interrupt handling; the PSW is set up with a system storage
key and is disabled for interrupts.

After full-screen mode has been established in your virtual machine using the CONSOLE macro, only
attention interrupts will be passed to exits for the virtual console. Exits defined for dedicated 3270
devices, however, will receive other interrupts as well (such as device ends).

When the screen is put into CP console mode (line mode) with a 3215 SIO issued by CMS to the virtual
console, attention interrupts will be given to the CMS second level interrupt handler (SLIH) instead of
a full-screen CONSOLE exit until full-screen mode is reestablished using the CONSOLE macro. After the
virtual console is back into full-screen mode, the CONSOLE exit can then be given attention interrupts
again.

When your exit routine receives control, the significant registers are set up as follows:

• Register 0 contains a fullword of information that the user can specify on the UWORD parameter.
• Register 13 contains the address of a register save area that the exit routine can use.
• Register 14 contains the return address.
• Register 15 contains the exit routine's entry point address.

The addressing mode (AMODE) of the exit routine is the same as the addressing mode of the program that
issued the CONSOLE OPEN or CONSOLE MODIFY to define the exit routine.

When an attention interrupt is passed to your exit routine and the interrupt is not eventually handled by a
read operation, the virtual console may be delayed.

The BRKKEY parameter of the CONSOLE WRITE function allows a fullscreen application to specify
whether or not the break key interrupt is reflected to the application. If break key handling is requested
and CP posts an attention to the virtual machine, the break key is passed to the application when a
fullscreen read is issued. This replaces the normal break key function of returning the virtual machine to
CP mode. (For more information see the z/VM: CMS Macros and Functions Reference)

To obtain status information about the interrupt or the interrupting device, you can issue CONSOLE QUERY
specifying the PATH parameter and providing a buffer where CMS can store the information. CONSOLE
QUERY returns the CSW/SCSW, the sense data (if any), the last CCW executed, and various device
information.

Modifying Parameters of a CONSOLE OPEN
Use CONSOLE MODIFY to change parts of the definition for a path to a device. You can change or delete
the settings of the EXIT, UWORD or RESET parameters of a previously issued CONSOLE OPEN. This lets
an application dynamically modify these parameters, without having to close and reopen the console path
with new values.

If you have not specified EXIT, UWORD or RESET in a CONSOLE OPEN, you can initially set these
parameters with a CONSOLE MODIFY. As with OPEN, the exit routine will be established in the same
addressing mode (AMODE) as the application issuing the CONSOLE MODIFY call. The UWORD parameter
only has meaning if an exit routine has been established. An application must have already opened a path
before issuing a CONSOLE MODIFY request on it.

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 85

Writing to and Reading from a Console
Use CONSOLE WRITE to write a 3270 data stream and CONSOLE READ to read information from the
screen. For all applications that use the CONSOLE macro, CMS keeps track of which application ‘owns’
(performed the last I/O operation to) each display screen. If one CONSOLE macro application currently
owns the screen and your CONSOLE macro application wants to perform I/O, your application needs to
gain control of the screen by reformatting it with an erase/write (EW), an erase/write alternate (EWA), or a
write structured field (WSF) when a WSF buffer contains structured fields for an EW or EWA operation.

Note: CMS cannot coordinate I/O for applications that modify PSWs in low storage and issue their own
DIAGNOSE code X'58' instructions. Until all applications use the CONSOLE macro instead of DIAGNOSE
code X'58', you may see data from two different applications mixed on the screen. For more information,
see “Notes on the CONSOLE Macro” on page 89.

CONSOLE WRITE Options
You can use the parameters of CONSOLE WRITE to specify what type of a write operation you want to
perform:

• CLEAR — Clears the physical screen before the buffer (if any) is written. To clear the screen, specify
CLEAR without the BUFFER parameter.

• NOCLEAR — Does not clear the screen. The user at the terminal may need to clear the screen before
CMS writes the buffer (similar to the MORE…condition). NOCLEAR is the default value.

• W — Writes the buffer with an ordinary Write command, overlaying the current contents of the display
screen. If you do not specify W, EW, EWA, or WSF, then W is assumed.

• EW — Writes the buffer with the Erase/Write option.
• EWA — Writes the buffer with the Erase/Write Alternate option to establish the alternate screen mode

for the device.
• WSF — Writes the buffer with the Write Structured Field option to provide control information to the

device.
• (reg) – Specifies a register 2-12, whose low-order byte contains the option or options to be used.

Note: You must specify the BUFFER parameter for all options other than CLEAR. For the complete syntax
of the CONSOLE macro, see the z/VM: CMS Macros and Functions Reference.

CONSOLE READ Options
Use CONSOLE READ to read from a display device. The parameters on CONSOLE READ let you specify:

• WAIT — Specifies that if an interrupt has not been received from the device since the last write
operation completed, processing of this request is suspended until such an interrupt occurs. When the
interrupt is received, the READ is performed. This is the default.

• NOWAIT — Specifies that this read request is to be processed immediately. This lets you read the
inbound data stream from the device without waiting for input.

• RDMOD — Processes this request as Read Modified to transmit only the modified fields from the screen.
This is the default.

• RDBUF — Processes this request as Read Buffer to transmit the entire contents of the screen.
• (reg) — Specifies a register 2-12, whose low-order byte contains the option or options to be used.

Waiting for Console Interrupts
To cause your program to wait for console interrupts, you can (1) use the WAIT parameter of the
CONSOLE READ macro, or (2) issue a CONSOLE WAIT macro. For performance reasons, it may be better
to use the WAIT parameter of CONSOLE READ, because it involves fewer SVC calls than if you issue a
CONSOLE READ and a CONSOLE WAIT.

Console and Terminal I/O

86 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

The Console facility loads an enabled wait PSW to receive input that can be read by the application. The
remainder of the Console facility runs disabled for interrupts. Applications that do not want to handle
unsolicited interrupts should be disabled in their routines that perform I/O using the Console facility; or at
least during their CONSOLE macro calls.

If you use CONSOLE WRITE to write data to a display that is disconnected, you receive a return code of 1.
If you receive a return code of 1 and you do want to wait for a response, you must issue CONSOLE WAIT
rather than using the WAIT parameter of CONSOLE READ. CONSOLE READ does not wait for an interrupt
from a disconnected terminal; instead, it returns the error code of 1 to the application.

Example
To use CONSOLE WAIT to wait for an interrupt from the device on PATH1, you could code:

CONSOLE WAIT,PATH='PATH1'

You can use the ERROR parameter of CONSOLE WAIT if you want to define a separate routine to examine
nonzero return codes.

Completing an I/O Operation
When an I/O operation completes, your application can check the return code in register 15 to make sure
it should continue processing. Also, if you are using CONSOLE READ, register 0 will contain the length of
the data read.

Before it passes a return code back to your application, the CONSOLE macro (a) does extensive CSW/
SCSW checking and (b) retries I/O operations when necessary. This status checking should be sufficient
for most programs. If, however, you want more information about the I/O just performed, issue CONSOLE
QUERY specifying the PATH parameter. The CONSOLE QUERY shows the CSW/SCSW after I/O, the sense
data (if any), the last CCW executed, and all the device information from the device entry.

Obtaining Information about a Console Path
As mentioned earlier, if you specify the BUFFER parameter of CONSOLE OPEN, CMS returns to the buffer
information about the path and the device associated with it.

You can also use CONSOLE QUERY to obtain information about a path and its associated device. CONSOLE
QUERY can also return information about virtual devices that do not yet have paths associated with them.

Example 1
To determine if a path named PATH1 exists, code:

CONSOLE QUERY,PATH='PATH1'

If the path does not exist, CMS returns a return code of 28 in register 15.

Example 2
To obtain information about the device associated with PATH1, you could code:

CONSOLE QUERY,PATH='PATH1',BUFFER=(BUFF)

Example 3
To obtain information about device 000A, regardless of whether 000A is associated with a path, you could
code:

CONSOLE QUERY,DEVICE=000A,BUFFER=(BUFF)

Note that if device 000A is not defined, you get a return code of 40 in register 15.

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 87

Using a Buffer
In the previous two examples, BUFFER=(BUFF) specifies the address of a storage area where CMS stores
information. You can use the CQYSECT macro to map this area. If the buffer length is less than the length
of CQYSECT, the data in the buffer is truncated. CONSOLE QUERY stores into register 0 the length of data
it actually moves into the buffer. CQYSECT provides length values you can use to specify the size of the
buffer. For more information on the CQYSECT macro, see z/VM: CMS Macros and Functions Reference.

A CONSOLE OPEN and CONSOLE QUERY DEVICE will obtain new device information and update a device
entry for that device if one already exists. A CONSOLE QUERY, however, will extract whatever information
is in the path and device entries. This will reflect the state of the path and associated device either when
the path was opened or at the time of the last I/O if I/O was performed for that path. This also avoids
the overhead of DIAGNOSE instructions when CONSOLE QUERY PATH is issued from exit routines driven
by the I/O first level interrupt handler. Therefore, when disconnecting and reconnecting to another device,
there is a possibility the original device information will be returned when a CONSOLE QUERY PATH is
done.

Disconnecting and Reconnecting
If the Console Facility has not yet determined if a disconnect and reconnect to another device occurred,
a CONSOLE QUERY PATH may reflect the original device information. A CONSOLE OPEN and QUERY
DEVICE will update a device entry, and I/O error processing may update a device entry. Also, when an I/O
interrupt occurs, a field is checked that CP may have updated if a disconnect and reconnect has occurred.
In this case, as well as when an I/O error occurs, new device information is obtained and the information
is compared to the existing device entry information. If different, the device entry is updated and a return
code 2 is passed back to the application indicating that device characteristics have changed and another
query may be necessary. Depending on the device, CP may or may not give back an I/O error to the
console facility, depending on whether the device can handle the given data stream.

Writing Your Own Channel Programs
If a program needs to build its own CCWs, you can use CONSOLE EXCP to do so. CONSOLE EXCP does not
attempt to validate or convert the channel program. Because CONSOLE EXCP does not check the CCW,
the console facility cannot determine the type of I/O requested and, therefore, cannot coordinate the
screens as effectively as with CONSOLE READ or CONSOLE WRITE functions.

CONSOLE EXCP is not recommended for the virtual console because (a) you must know the internal
implementation of how the I/O is issued and (b) it requires a knowledge of the virtual machine
architecture. You can, however, use CONSOLE EXCP to chain several CCWs. The first CCW in the string
should be an EW, EWA, or WSF to reformat and to gain control of the screen.

Example 1
To use a CCW that your System/370 application has already built, you could code CONSOLE EXCP as
follows:

CONSOLE EXCP,PATH='PATH1',CCW=CCWADDR

PATH=‘PATH1’ specifies the name of the path. CCW=CCWADDR specifies the address of a channel
program, which consists of one or more format-0 CCWs that indicate the operation(s) to be performed.

Example 2
To use a CCW that your XA or XC application has already built, you could code CONSOLE EXCP as follows:

CONSOLE EXCP,PATH='PATH1',ORB=ORBADDR

PATH=‘PATH1’ specifies the name of the path. ORB=ORBADDR specifies the address of an Operation
Request Block (ORB) for a channel program. The ORB can indicate either format-0 or format-1 CCWs
depending on whether you are addressing data above or below the 16MB line. For CCWs below 16MB, you

Console and Terminal I/O

88 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

can use format-0 or format-1. For CCWs above 16MB, you must use format-1. CCWs for data above 16MB.
The ORB must contain a pointer to a channel program for the operation(s) to be performed.

Note:

1. The ORB parameter is invalid for paths to the virtual console and in a 370 virtual machine.
2. Command codes for the DIAGNOSE code X'58' must be provided if you are doing I/O to the virtual

console. Otherwise, command codes defined for the dedicated device should be used in the CCW. For
dedicated devices, a SSCH is issued.

3. Do not specify the ORB and CCW parameters on the same macro call.
4. If you specify the CCW parameter, the Console facility assumes format-0 when setting up the ORB.

Closing a Console Path
Use CONSOLE CLOSE to close a path to a device. CMS automatically closes paths during abend
processing, and when the device is detached by a CP DETACH command or redefined by a CP DEFINE or
CP REDEFINE command.

Example
To close PATH1, you could code:

CONSOLE CLOSE,PATH='PATH1'

Note:

1. If RESET=YES is specified when a path is opened or modified, then a CP RESET command is issued
when you close the last path to the dedicated 3270.

2. A return code of 3 means that the requested path is closed, but other paths remain open to the device.
You can use the ERROR parameter of CONSOLE CLOSE if you want to define a separate routine to
examine nonzero return codes.

Notes on the CONSOLE Macro
1. CMS cannot coordinate I/O for applications that modify PSWs in low storage and issue their own

DIAGNOSE code X'58' instructions. Until all applications use the console facility instead of DIAGNOSE
code X'58', you may see data from two different applications mixed on the screen. If mixed data does
appear on the screen, you can do one of the following (as appropriate):

a. Your application can specify the EW or EWA options of CONSOLE WRITE to gain control of the
screen.

b. You can press the CLEAR key or issue a command that causes an erase/write.
c. For applications running in full-screen CMS, you can write an EXEC to (a) issue a SET FULLSCREEN

SUSPEND command, (b) invoke the full-screen program, and, when processing completes, (c)
resume full-screen CMS by issuing a SET FULLSCREEN RESUME.

d. When you issue CONSOLE WRITE, if CP breaks in and writes a screen or if another application
had previously used the CONSOLE macro to write a screen, you will receive a return code of 32. If
you get return code 32, respecify CONSOLE WRITE using the EW (erase/write) or EWA (erase/write
alternate) options.

Note that if you have issued a CONSOLE READ and CP breaks in and writes a screen (such as a CP
warning message), the read is performed and a channel end/device end is returned to CMS. The
Console facility gives your application a return code of 0. Your application should examine the data
stream attention identification (AID) to determine whether there are any modified fields to process.
An AID byte of X'60' indicates no operation or an unsolicited attention. CP will likely return X'8E'
in the unit status byte of the CSW/SCSW (causing the CONSOLE macro return code 32) on the next
full-screen write.

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 89

2. If you are using the CONSOLE EXCP function or a CONSOLE WRITE with the WSF option, the CONSOLE
facility does not know what operation is being requested because it does not scan the buffer or verify
the CCWs. Because of this, the application may need to do more screen coordination of its own. For
example, a write will be issued regardless of the fact that another path last wrote to the screen. Either
an EW/EWA can be done to ensure a complete erasure of the screen, or, a CONSOLE QUERY PATH can
be issued to check the CQYPLIO field. This will tell if your path was the last path to do I/O using the
CONSOLE macro, and whether you need to do an EW/EWA.

3. Applications that need to coordinate line mode and full-screen I/O should use the WAITT macro
before they issue the CONSOLE macro. WAITT waits for any pending line mode I/O to complete.

4. Many full-screen applications run disabled for interrupts in their I/O routines so they will not receive
unsolicited interrupts at that time. This should also be done in applications using the Console facility
so an interrupt does not come in when CONSOLE is returning to the application, particularly if
the application has not established their own interrupt handling routine. This is important for WSF
operations that generate attention interrupts back to CMS.

A Sample Program
The following program shows how to code a simple full-screen program using the CONSOLE macro. The
user must clear the screen after…MORE appears in the status area and press ENTER after each screen of
output is displayed. A return code of 0 or 3 indicates a normal return.

A Sample Program Using the CONSOLE Macro
SCT CSECT
 LR 12,15
 USING SCT,12
*
* Open path "SCT" to the virtual console
 CONSOLE OPEN,PATH='SCT',ERROR=OPENERR
*
* Set up registers to point to the first buffer
 LA R5,BUFFERS * address of first buffer
 L R7,0(R5) * point to the first
 buffer
 LA R6,LENGTHS * address of 1st buffer
 length
 L R8,0(R6) * point to the 1st buffer
 length
*
* Write first screen (need to do an ERASE WRITE to get control)
 CONSOLE WRITE,PATH='SCT',BUFFER=((R7),(R8)),BRKKEY=NO,
 OPTIONS=(EWA),ERROR=WRITEERR*
*
* R4 stores how many buffers are left to print.
 LA R4,NUMBUFFS * space to store addrs of
 buffs
 SRL R4,2 * divide by four
 (4 byte addr)
 BCTR R4,R0 * subtract 1; first write
 done
*
* Wait for an interrupt before showing the next screen
* and clear the "ENTER" with the READ
WRITE EQU *
 CONSOLE READ,PATH='SCT',OPTIONS=(WAIT),
 BUFFER=(READBUF),ERROR=READERR *
*
* Write the remaining screens by incrementing the registers
* and using the WRITE option (not ERASE/WRITE)
 LA R5,4(R5) * point to the next
 buffer address
 L R7,0(R5) * point to the next buffer
 LA R6,4(R6) * point to next buffer
 length addr
 L R8,0(R6) * point to the next buffer
 length
 CONSOLE WRITE,PATH='SCT',BUFFER=((R7),(R8)), *
 OPTIONS=(W),ERROR=WRITEERR
 BCT R4,WRITE * decrement count and
 branch to next write
*

Console and Terminal I/O

90 z/VM: 7.4 CMS Application Development Guide for Assembler

* Wait for an interrupt after showing the last screen
 CONSOLE READ,PATH='SCT',OPTIONS=(WAIT),
 BUFFER=READBUF, ERROR=READERR*
*
* Close path "SCT"
DONE EQU *
 CONSOLE CLOSE,PATH='SCT'
 CMSRET
* Error Routines
OPENERR EQU *
 LR R9,R15
 APPLMSG TEXT=&apos.OPEN ERROR
 RC=&&1&apos.,APPLID=CMS, *
 SUB=(DEC,((9),4))
 BR R14
WRITEERR EQU *
 LR R9,R15
 APPLMSG TEXT=&apos.WRITE ERROR
 RC=&&1&apos.,APPLID=CMS, *
 SUB=(DEC,((9),4))
 B DONE
READERR EQU *
 LR R9,R15
 APPLMSG TEXT='READ ERROR
 RC=&&1',APPLID=CMS, *
 SUB=(DEC,((9),4))
 B DONE
* Data areas
BUFFERS DS 0D * addresses of buffers
 DC A(OUTBUF1)
 DC A(OUTBUF2)
 DC A(OUTBUF3)
NUMBUFFS EQU *-BUFFERS * space needed to store buffer
 addresses
LENGTHS DS 0D * addresses of buffer lengths
 DC A(OUTBUFL1)
 DC A(OUTBUFL2)
 DC A(OUTBUFL3)
READBUF DC X'000000' * need at least 1 byte for read
 buffer
*
* Output buffers
OUTBUFS DS 0D
*
* SAMPLE
OUTBUF1 DC X'C21140401D60'
 DC C' SSSSS AAAAA MM MM'
 DC C' PPPPPP L EEEEEEE '
 DC C' S A A M M M M'
 DC C' P P L E '
 DC C' SSSSS AAAAAAA M M M'
 DC C' PPPPPP L EEEE '
 DC C' S A A M M'
 DC C' P L E '
 DC C' SSSSS A A M M'
 DC C' P LLLLLLL EEEEEEE '
OUTBUFL1 EQU *-OUTBUF1
*
* CONSOLE
OUTBUF2 DC X'C211C7601D60'
 DC C' CCCCCC OOOOO NN N S'
 DC C'SSSS OOOOO L EEEEEEE '
 DC C' C O O N N N S '
 DC C' O O L E '
 DC C' C O O N N N S'
 DC C'SSSS O O L EEEE '
 DC C' C O O N N N '
 DC C' S O O L E '
 DC C' CCCCCC OOOOO N NN S'
 DC C'SSSS OOOOO LLLLLLL EEEEEEE '
OUTBUFL2 EQU *-OUTBUF2
*
* TEST
OUTBUF3 DC X'C2114F401D60'
 DC C' TTTTTTT EEEEEEE'
 DC C' SSSSS TTTTTTT '
 DC C' T E '
 DC C' S T '
 DC C' T EEEE '
 DC C' SSSSS T '
 DC C' T E '
 DC C' S T '

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 91

 DC C' T EEEEEEE'
 DC C' SSSSS T '
OUTBUFL3 EQU *-OUTBUF3
 REGEQU
 END

APPLMSG
Use the APPLMSG macro to retrieve a message from a message repository and, optionally, to display a
message at your terminal.

APPLMSG is the recommended replacement for the LINEDIT macro in new programs and in programs
being converted to exploit 31-bit addressing. APPLMSG contains most of the functions of the LINEDIT
macro; in addition, you can use it to specify a message number rather than coding the entire message
text. This allows for more flexibility in your programs because:

• It keeps your messages in a central location.
• You can use the same repository for several different programs.
• If you need to change the text of a message, you need to do it in only one place.
• If you need to support more than one language, you can use different repositories.
• You can create your own repository in any language.

For APPLMSG syntax information and examples, see z/VM: CMS Macros and Functions Reference.

Example of a Message Repository
The following example shows an external repository file, RUBUME REPOS, which is stored on a disk. You
can view, edit, and update this message repository.

*
* This is an example of a message repository file made with XEDIT
* and maintains alignment of heading.
* You can code a file similar to this for your application.
*
& 3 Line specifies the substitution
character + no. of digits
02000101 |...+....1....+....2....+....3....+....4....+..
02000101 ..5....+....6....+....7....+....8
03000101 * &2
03000101 *
04000101 Header 1 &2
04000101 Header 2 &2
04000101 Header 3 &2
04000101 Header 4 &2
05000101 Smith &2
05000101 Jones &2
05000101 Johnson &2
05000101 Parker &2
05000201 Bill &2
05000201 John &2
05000201 Mark &2
05000201 Joe &2

Figure 15. Sample Repository - RUBUME REPOS

Here is a line by line description of what this repository contains:
Line Numbers

Explanation
1 - 5

Comment lines.
6

The control line.

The ampersand (&) specifies the substitution character and the 3 specifies the number of message
number digits to display (you should specify 3 or 4 for this value).

Console and Terminal I/O

92 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

7 - 8
The first message is number 0200. This message has only one format and will be displayed as one
line.

9 - 10
The second message is number 0300. This message has only one format and will be displayed as one
line. The substitution character, &2, has a value of null and is used to maintain alignment.

11 - 14
The third message is number 0400. This message has only one format and will be displayed as one
line. The substitution character, &2, has a value of null and is used to maintain alignment.

15 - 22
The fourth message is number 500. This message has two formats; either format will be displayed as
one line. The substitution character, &2, has a value of null and maintains alignment.

For more information on message repositories, see the z/VM: CMS Application Development Guide.

Sample Program Using a Message Repository
Following is a sample program that uses the APPLMSG macro to access messages in RUBUME REPOS.

JEWEL CSECT
 LR R12,R15 Load base register
 USING JEWEL,R12
 *
 *
 LA R5,DUMMY Need a dummy substitution value
 APPLMSG APPLID=RUB,NUM=200,HEADER=NO
 APPLMSG APPLID=RUB,NUM=300,HEADER=NO,COMP=NO,
 SUB=(CHARA,((R5),1))
 APPLMSG APPLID=RUB,NUM=400,HEADER=NO,COMP=NO,
 SUB=(CHARA,((R5),1))
 APPLMSG APPLID=RUB,NUM=500,FMT=2,HEADER=NO,COMP=NO,
 SUB=(CHARA,((R5),1))
 *
 *
 FINI EQU *
 SR R15,R15 Change for Return Code
 BR R14 Return
 SPACE 1
 DS 0D
 DUMMY DC CL2' '
 REGEQU
 END

Figure 16. Sample Program — JEWEL ASSEMBLE

Let's look at how APPLMSG is used in this program. In the fourth call to APPLMSG:
APPLID=RUB

Specifies RUBUME REPOS as the message repository that issues the messages.
NUM=500

Specifies message number 500 will be displayed.
FMT=2

Specifies format 2 of message 500 will be displayed.
HEADER=NO

Specifies no header will be created for the message.
COMP=NO

Specifies not to remove multiple blanks and the SUB parameter must be used in order for substitution
indicators to be replaced. Therefore, the value stored at ‘DUMMY’ (blank) is substituted for all
occurrences of &1 and any other substitution variables have a value of null.

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 93

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

SUB=(CHARA,((R5),1))
Specifies the value with a length of 1 stored at the address in register 5 will be substituted at every
occurrence of &1. (&the specified substitution character in RUBUME repository.) Any subsequent
substitution variable (for example, &2) will have a value of null.

For more information on substitution, see the z/VM: CMS Application Development Guide.

The output of this program will look like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
*
Header One Header Two Header Three Header Four
Bill John Mark Joe

LINERD and LINEWRT Macros
Use the LINERD and LINEWRT macro instructions to read and write lines of input and output from the
terminal. LINERD and LINEWRT work from above or below 16MB and you can use them when CMS runs in
full-screen mode or line mode. For more information, see z/VM: CMS Macros and Functions Reference.

Example
In the following example, LINERD reads one line of data and LINEWRT writes one line of data.

TESTWIR CSECT
 STM R14,R12,12(R13)
 BALR R12,0
 USING *,R12
 ST R13,SAVE13
 LA R15,SAVEAREA
 ST R15,8(R13)
 LR R13,R15
* This program prompts users for their names and then greets
* them accordingly. The name is invisible when typed in
* and an alarm rings when the greeting is complete.
* Depending on the display device, the greeting is typed
* in yellow.
*

 LINERD DATA=(BUFFER,12),PROMPT='WHO ARE YOU?',
 TYPE=INVISIBLE
 LINEWRT DATA=(JUNK,31),COLOR=YELLOW,ALARM=YES
 BR 14
 DS 0D
JUNK DC C'Hello '
BUFFER DC CL12' '
 DC C', nice shoes.'
 REGEQU
SAVEAREA DC 18F'0'
SAVE13 EQU SAVEAREA+4
 END TESTWIR

Figure 17. A Sample Program That Reads and Writes One Line of Data

Reading and Writing Multiple Lines
When you have multiple reads and writes to perform, such as when using input panels, specify the
FORM=MULTIPLE option with the LINERD and LINEWRT macros. This improves performance by reducing
the number of SVC calls required to perform multiple I/O.

LINERD and LINEWRT use the same mechanism for handling multiple I/O. This mechanism is a linked list
data structure composed of descriptors and text buffers. The actual structure of the linked list and the
descriptors used by the LINERD macro is only slightly different from that used by the LINEWRT macro.
This allows efficient updating of a virtual screen by using the input descriptors as output descriptors with
the LINEWRT macro.

Console and Terminal I/O

94 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

The first element of the linked list is a special descriptor (input for LINERD and output for LINEWRT) that
only contains the cursor location (and the key pressed for LINERD) and a pointer to the next descriptor.
The first descriptor can be used alone when:

• FORM=MULTIPLE on LINERD queries the cursor and key pressed.
• FORM=MULTIPLE on LINEWRT positions the cursor.

Each of the following descriptors contains information about the input or output text and a pointer to that
text.

Because a typical use of multiple reads and writes might involve creating input panels, we will discuss
how the LINEWRT macro performs multiple writes and then see how to do multiple reads with the
LINERD macro.

Using the LINEWRT Macro for Multiple Outputs
Specify FORM=MULTIPLE on the LINEWRT macro to designate the multiple output format, which means
that you will provide a chain of output descriptors. You can use the LWRD macro to define each output
descriptor.

Use the DATA parameter to specify the address of the first output descriptor in the chain. The length field
on DATA is ignored, if specified. You must specify only the cursor setting information in the first LWRD. Use
the other LWRDs to completely describe each output to be displayed.

The LWRDs are chained together as follows:

Figure 18. Chain of Output Descriptors

When FORM=MULTIPLE is specified, each output in the chain (including its text and attributes) is placed
in the virtual screen output queue created by VSCREEN DEFINE. To move the text from the queue to
the virtual screen, you can issue the VSCREEN WAITREAD, VSCREEN WAITT, or PSCREEN REFRESH
command. This will move all the outputs in the queue to the virtual screen.

The LINERD macro can also be used to move the text from the output queue to the virtual screen when
the read is satisfied from the terminal rather than the input queue or the stack. The LINEWRT macro
works the same for a single output as it does for multiple outputs.

If you specify FORM=MULTIPLE and omit VNAME or specify VNAME=CMS when CMS is in line mode, then
the outputs are written using WRTERM. This is the same way LINEWRT works for single outputs. Only the
LWRDPRTY flag of the output descriptor is checked to determine whether this is a priority write. If you are
writing the color (using the LWRDCLRF field), extended highlighting (using the LWRDEXHF field), or PSS

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 95

buffer (using the LWRDPSSF field), or to the reserved area of the virtual screen, however, then the output
is ignored in line mode and a WRTERM is not issued.

Using the LINERD Macro for Multiple Inputs
To request the multiple input format, specify FORM=MULTIPLE on the LINERD macro. Use the DATA
parameter to specify the address and length of an application buffer to hold the chain of input descriptors
(called LRDDs) returned by the LINERD macro.

The format of the information returned by LINERD in the application buffer is as follows:

Figure 19. Format of Information Returned by LINERD Macro

The first LRDD in the chain returns the cursor position and the key pressed. The other LRDDs return the
input attributes and the pointer field (LRDDTXTA) that contains the address of the input text read. This
input text immediately follows the descriptor with which it is associated.

Console and Terminal I/O

96 z/VM: 7.4 CMS Application Development Guide for Assembler

If the application buffer was not large enough to hold all of the inputs, a return code of 13 is returned
to the application and the buffer length required for the next input is stored at the full-word specified by
addr2 of NUMRD.

There are two cases to consider when the buffer is not large enough:

1. The cursor and key descriptor would not fit in the buffer. In this case, addr2 returns the length required
for the cursor and key descriptor only.

2. The buffer was large enough for at least the cursor and key descriptor. The value returned in addr2 is
the length required for:

• The cursor and key descriptor
• The next LRDD
• The input text associated with that LRDD.

If you specify FORM=MULTIPLE, but no fields have been modified, the cursor and key descriptor is always
returned, and the full-word location specified by addr1 of NUMRD has the value of 1. You can specify
the addresses for NUMRD as assembler labels or general registers (2-12) enclosed in parentheses. The
NUMRD parameter is optional, and if you do not specify addr1 or addr2 then the number of inputs read or
the length of the next input is not returned.

The LINERD macro reads input from the line mode console, program stack, or full-screen console
according to the option specified on the TYPE parameter and the full-screen/line mode environment.
FORM=MULTIPLE is ignored and only one input is returned in the single input format when:

1. TYPE=STACK is specified (or defaulted to), and the read is satisfied by the program stack.
2. The virtual screen name (VNAME parameter) is not specified or VNAME=CMS and CMS is running in

line mode, and the input is read from the console in a line mode environment.

You must specify FORM=MULTIPLE to receive multiple inputs. The value located at addr1 of the NUMRD
parameter is the number of inputs (including the cursor specified and key in LRDD) in the application
buffer upon completion of the LINERD macro. If FORM=MULTIPLE is ignored or not specified, the input is
returned at addr of the DATA parameter in single input format. A value of 0 at the address addr1 of the
NUMRD parameter upon completion of LINERD indicates that the input has been returned in single input
format.

When FORM=MULTIPLE is specified, the DATA parameter must be specified, and the other parameters are
optional, as is the case for a single input. The LINE, COL, and PAD parameters, if specified, are ignored
when FORM=MULTIPLE is specified.

Descriptor Mappings
The mappings of the descriptors are provided here for easy reference when going through the sample
program. A more complete explanation of the descriptor fields appears in the z/VM: CMS Macros and
Functions Reference with each macro.

LWRD Mapping
You can map the output descriptors (including the cursor descriptor) by using the LWRD macro:

LINEWRT Descriptor Mapping
LWRD DSECT
LWRDNEXT DS A Pointer to next
 LINEWRT descriptor (LWRD)
 D S CL8 Reserved
LWRDLINE DS F Line number
LWRDCOL DS F Column number
LWRDTXTA DS A Text address - for output LWRD
LWRDTXTL DS F Length of text - for output LWRD
LWRDFLDL DS F Output length in vscreen -
 for output LWRD
*
LWRDFLG1 DS XL1 Flag byte #1 - for output LWRD

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 97

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

LWRDNTRF EQU X'80' X... No nulls translation
* EQU X'40' .X.. Reserved
* EQU X'20' ..X. Reserved
* EQU X'10' ...X Reserved
LWRDCSEF EQU X'08' X... MIXED/SBCS attribute
 is specified
LWRDOUTF EQU X'04' X.. Field outlining
 is specified
LWRDPRTY EQU X'02' X. Priority write
LWRDRESO EQU X'01' X Reserved area
 of vscreen
LWRDOUTL DS XL1 Field outlining byte
 - for output LWRD
LWRDCSET DS XL1 MIXED/SBCS attribute
 - for output LWRD
 DS CL6 Reserved
LWRDATTR DS XL1 Attribute byte
 - for output LWRD
LWRDCOLR DS XL1 Color byte
 - for output LWRD
LWRDEXHI DS XL1 Extended highlighting byte
 - for output LWRD
LWRDPSS DS XL1 PSS byte
 - for output LWRD
*
LWRDFLG2 DS XL1 Flag byte #2
 - for output LWRD
LWRDPSSF EQU X'80' X... PSS is specified
LWRDEXHF EQU X'40' .X.. Extended highlight
 is specified
LWRDCLRF EQU X'20' ..X. Color is specified
LWRDDATF EQU X'10' ...X Update data buffer
*
 EQU X'08' X... Reserved
LWRDCRSF EQU X'04' X.. Position cursor
 within field
* EQU X'02' X. Reserved
LWRDPADF EQU X'01' X Padding with blanks
*
ORG LWRDFLG2 Redefine flag byte #2
 - for cursor LWRD
LWRDLCUR DS X
LWRDSETC EQU X'02' X. Position cursor
 using curs LWRD LWRDRESC
EQU X'01' X Reserved area of vscreen
*
LWRDTXT DS X Text writes a field,data,
 color,exthi,pss
**
*** Valid text codes **
**
LWRDFLDV EQU X'00' Define a field with
 default vscreen attr.
LWRDFLDD EQU X'01' Define a field and
 use descriptor attr.
LWRDDATT EQU X'02' Text is data to write
 in predefined field
LWRDCLRT EQU X'03' Text is color codes
LWRDEXHT EQU X'04' Text is extended
 highlighting codes
LWRDPSST EQU X'05' Text is PSS codes
*
LWRDRC DS X Individual return code

*** Valid return codes **

*
LWRDOK EQU 0 Function executed successfully
LWRDINVP EQU 24 User did not specify descriptor
 correctly
LWRDINVL EQU 32 Specified line/column is
 outside vscreen
LWRDNOST EQU 104 Insufficient storage was
 available
*
LWRDLEN EQU *-LWRD Length of LWRD
LWRDDBSZ EQU (LWRDLEN+7)/8 Length in doublewords

Console and Terminal I/O

98 z/VM: 7.4 CMS Application Development Guide for Assembler

LRDD Mapping
You can map the input descriptors (including the cursor and key descriptor) by using the LRDD macro. See
the z/VM: CMS Macros and Functions Reference for more information on the LRDD macro.

LRDD DSECT
LRDDNEXT DS A Pointer to next LINERD
 descriptor (LRDD)
 DS CL8 Reserved
LRDDLINE DS F Line number
LRDDCOL DS F Column number
LRDDTXTA DS A Text address - for input LRDD
LRDDTXTL DS F Length of text following
 this LRDD - for input LRDD
*
 DS CL4 Reserved
*
LRDDFLG1 DS XL1 Flag byte #1 - for input LRDD
LRDDRESI EQU X'01' X Reserved area
 of vscreen
LRDDOUTL DS XL1 Field outlining byte
LRDDCSET DS XL1 MIXED/SBCS field attribute
 DS CL6 Reserved
LRDDATTR DS XL1 Attribute byte - for input LRDD
LRDDCOLR DS XL1 Color byte - for input LRDD
LRDDEXHI DS XL1 Extended highlighting byte
 - for input LRDD
LRDDPSS DS XL1 PSS byte - for input LRDD
*
LRDDFLG2 DS XL1 Flag byte #2 - for cursor LRDD
LRDDRESC EQU X'01' X Reserved area
 of vscreen
*
 DS XL1 Reserved
*
LRDDKEY DS XL1 Holds key pressed
 - for cursor LRDD
LRDDLEN EQU *-LRDD Length of LRDD in bytes
LRDDDBSZ EQU ((LRDDLEN+7)/8) Length of LRDD in doublewords
*

Figure 20. LINERD Descriptor Mapping

Example of Creating a Panel
As an example, let's create a simple input panel to prompt the user to change a file identifier, read any
changes the user makes to the identifier, and then display the new identifier. The panel we have in mind
looks something like this:

Fix filename or filetype and press ENTER:
SAMPLE
ASSEMBLE

After preparing the chain of output descriptors to be used by the macro, we can create this panel with just
one LINEWRT macro call. We will need one descriptor to position the cursor after execution of the macro
(this will be the first LWRD in the chain). Then we will need a LWRD for the prompt sentence, plus another
LWRD to specify the colors for the prompt (because we like it colorful). Finally, we will use one LWRD for
the file name and another for the file type (we will treat them as separate inputs for illustrating multiple
reads as well). Refer to z/VM: CMS Macros and Functions Reference for the format of the descriptors and
an explanation of their fields.

Now that we know what we want the input panel to look like, we can set up the data area to simplify the
coding. The data area (at the end of the program) should include the following fields:

*
* Data area.
*
DS 0D
OUTBUFF DS CL400 output buffer
INBUFF DS CL400 input buffer
FW1 DC F'1' fullword 1
FW2 DC F'2' fullword 2

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 99

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

FW3 DC F'3' fullword 3
FW4 DC F'4' fullword 4
FW5 DC F'5' fullword 5
FW8 DC F'8' fullword 8
FW9 DC F'9' fullword 9
FW39 DC F'39' fullword 39
FW40 DC F'40' fullword 40
NULL DC X'00' null character
BLANK DC X'40' blank character
A0 DC A(0) address 0
OUTLNG DC X'00' no outlining (default)
SBCS DC X'01' specify SBCS char set
PRNH DC X'30' protect/nohigh attribute
NPNH DC X'00' noprotect/nohigh attribute
BLUE DC X'F1' blue color
TURQ DC X'F5' turquoise color
NONE DC X'00' no exthi
NUMFLDS DS F number of modified fields
TEXT2 DC C'Fix filename or filetype and
 press ENTER:' LWRD2 text
TEXT3 DC C'444422222222444422222222444444444333334'
 LWRD3 text
DEFNAME DC CL8'SAMPLE' default filename
DEFTYPE DC CL8'ASSEMBLE' default filetype
FILEID DS CL20 fileid
 ORG FILEID
NAME DS CL8 filename
 DC C' ' blank
TYPE DS CL8 filetype
 DC C' ' blank
MODE DC CL2'*' filemode
HEADER DC C'The new fileid is:' header
 for writing results
LRDD LINERD descriptor DSECT
LWRD LINEWRT descriptor DSECT
REGEQU register equates
END EXAMPLE

The first several fields are self explanatory. Some of the other fields are explained in the following list:

• The OUTLNG and CHARSET (in the example, SBCS) fields, defined about halfway down in the listing, set
the values in LWRDOUTL and LWRDCSET to indicate no field outlining and a single-byte character set.

• The PRNH and NPNH fields are used in the LWRDATTR field of the LWRDs.
• The BLUE and TURQ fields specifies color codes in the LWRDCOLR field.
• NONE is used in the LWRDEXHI field to specify that extended highlighting is not to be used when writing

the prompt. (The attribute, color, extended highlighting, and other codes are listed and described in the
IBM 3270 Information Display System Data Stream Programmer’s Reference*.)

• NUMFLDS will be used to keep track of the number of modified fields read (we will use it as the fullword
of storage for the NUMRD parameter).

• TEXT2 specifies the text of the prompt to be written.
• TEXT3 specifies the colors to be used to write the prompt.

The rest of the fields are self-explanatory. Note that the LWRD and LRDD mapping macros are at the end
of the data area.

Next, we can set up the program:

EXAMPLE CSECT
 LR R12,R15 load base register
 USING EXAMPLE,R12
 LA R2,OUTBUFF point to output buffer
 LA R3,L'OUTBUFF get length of buffer
 ICM R3,B'1000',NULL set pad character to null
 SR R4,R4 set source address to zero
 SR R5,R5 set source length to zero
 MVCL R2,R4 clear out output buffer

Now, we can fill in the required fields of the cursor LWRD:

*
* Fill in the cursor LWRD (LWRD1).
*

Console and Terminal I/O

100 z/VM: 7.4 CMS Application Development Guide for Assembler

 LA R2,OUTBUFF point to output buffer
 USING LWRD,R2
 LA R3,LWRDLEN(R2) calculate address of next LWRD
 ST R3,LWRDNEXT fill in pointer to next LWRD
 MVC LWRDLINE,FW4 fill in line number
 MVC LWRDCOL,FW2 fill in column number
 MVC LWRDFLG2,NULL clear flag byte 2
 OI LWRDFLG2,LWRDSETC set set-cursor flag

This code calculates and stores the address of the next LWRD and specifies where the cursor is to be
positioned upon completion of the LINEWRT macro. Note that the LWRDSETC flag of the LWRDFLG2 field
must be set to indicate that the information in this LWRD should be used to set the cursor. If the flag is
not set, the cursor will be positioned according to the LWRDCRSF flag of LWRD5 (the last descriptor in the
chain defining a field in the data area).

Next, we prepare the output descriptors that provide all of the information necessary for writing the
outputs to the vscreen. The following code describes the prompt to be written:

*
* Fill in LWRD2, which writes a prompt.
*
 LR R2,R3 point to this LWRD
 LA R3,LWRDLEN(R2) calculate address of next LWRD
 ST R3,LWRDNEXT fill in pointer to next LWRD
 MVC LWRDLINE,FW3 fill in line number
 MVC LWRDCOL,FW1 fill in column number
 LA R4,TEXT2 get address of text
 ST R4,LWRDTXTA fill in text address
 LA R4,L'TEXT2 get length of text
 ST R4,LWRDTXTL fill in text length
 MVC LWRDFLDL,FW40 fill in field length
 MVC LWRDFLG1,NULL clear flag byte 1
 MVC LWRDOUTL,OUTLNG specify no outlining
 MVC LWRDCSET,SBCS specify SBCS
 MVC LWRDATTR,PRNH fill in attribute byte
 MVC LWRDCOLR,BLUE fill in color byte
 MVC LWRDEXHI,NONE fill in exhi byte
 MVC LWRDFLG2,NULL clear flag byte 2
 OI LWRDFLG2,LWRDEXHF set exthi-specified flag
 OI LWRDFLG2,LWRDCLRF set color-specified flag
 OI LWRDFLG2,LWRDPADF set pad-with-blanks flag
 MVI LWRDTXT,LWRDFLDD choose "define field" text code
 MVC LWRDRC,NULL clear LWRD return code

A few of the fields warrant a fuller explanation. Approximately in the middle of the code:

• We put a NULL value (X'00') in the LWRDFLG1 field (leaving the flags in this field off) because this is
not a priority write, it is to be written to the scrollable area of the virtual screen, and we want nulls
translation done.

• The LWRDOUTL field specifies that the input field will not be outlined.
• The LWRDCSET field is set to specify single-byte character set.
• The LWRDATTR field is set to a protected, no highlight field so the prompt cannot be modified by the

user.
• Next, we set the LWRDCOLR field for blue color.
• In the LWRDEXHI field we specify not to have extended highlighting.
• Setting the LWRDEXHF flag indicates that the value in the LWRDEXHI field determines the extended

highlighting (in this case, none).
• Setting the LWRDCLRF flag indicates that the color specified in the LWRDCOLR field is used when

writing the prompt.
• Setting the LWRDPADF flag indicates that the data buffer is to be padded with blanks (instead of nulls) if

the output field is longer than the actual text to be written.
• Setting the LWRDTXT field to LWRDFLDD (X'01') indicates that we are defining a field and that we

are using the LWRDATTR field to specify the field attribute rather than using the default vscreen field
attribute.

• Finally, we clear the LWRDRC field so we can be certain about any code returned.

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 101

The next descriptor specifies the colors to be used to write the prompt. Most of the code is basically the
same as that in the preceding section :

*
* Fill in LWRD3, which writes various colors for the prompt. (The
* text starts in column 2 with a length of 39 since the field is
* already defined.)
*
 LR R2,R3 point to this LWRD
 LA R3,LWRDLEN(R2) calculate address of next LWRD
 ST R3,LWRDNEXT fill in pointer to next LWRD
 MVC LWRDLINE,FW3 fill in line number
 MVC LWRDCOL,FW2 fill in column number
 LA R4,TEXT3 get address of text
 ST R4,LWRDTXTA fill in text address
 LA R4,L'TEXT3 get length of text
 ST R4,LWRDTXTL fill in text length
 MVC LWRDFLDL,FW39 fill in field length
 MVC LWRDFLG1,NULL clear flag byte 1
 MVC LWRDFLG2,NULL clear flag byte 2
 MVI LWRDTXT,LWRDCLRT choose "write color" text code
 MVC LWRDRC,NULL clear LWRD return code

As noted in the comment preceding the code, we specify column 2, because the start field was placed in
column 1 when the field was defined. We also need to clear both flag bytes of this descriptor and specify
the LWRDCLRT code for the LWRDTXT field. This indicates that this descriptor specifies the colors to be
used for writing the output.

The next two sections of code fill in two more LWRDs.

*
* Fill in LWRD4, which writes the filename.
*
 LR R2,R3 point to this LWRD
 LA R3,LWRDLEN(R2) calculate address of next LWRD
 ST R3,LWRDNEXT fill in pointer to next LWRD
 MVC LWRDLINE,FW4 fill in line number
 MVC LWRDCOL,FW1 fill in column number
 LA R4,DEFNAME get address of text
 ST R4,LWRDTXTA fill in text address
 LA R4,L'DEFNAME get length of text
 ST R4,LWRDTXTL fill in text length
 MVC LWRDFLDL,FW9 fill in field length
 MVC LWRDFLG1,NULL clear flag byte 1
 MVC LWRDOUTL,OUTLNG specify no outlining
 MVC LWRDCSET,SBCS specify SBCS
 MVC LWRDATTR,NPNH fill in attribute byte
 MVC LWRDCOLR,TURQ fill in color byte
 MVC LWRDFLG2,NULL clear flag byte 2
 OI LWRDFLG2,LWRDCLRF set color-specified flag
 MVI LWRDTXT,LWRDFLDD choose "define field" text code
 MVC LWRDRC,NULL clear LWRD return code
*
* Fill in LWRD5, which writes the filetype.
*
 LR R2,R3 point to this LWRD
 MVC LWRDNEXT,A0 fill in pointer to next LWRD
 MVC LWRDLINE,FW5 fill in line number
 MVC LWRDCOL,FW1 fill in column number
 LA R4,DEFTYPE get address of text
 ST R4,LWRDTXTA fill in text address
 LA R4,L'DEFTYPE get length of text
 ST R4,LWRDTXTL fill in text length
 MVC LWRDFLDL,FW9 fill in field length
 MVC LWRDFLG1,NULL clear flag byte 1
 MVC LWRDOUTL,OUTLNG specify no outlining
 MVC LWRDCSET,SBCS specify SBCS
 MVC LWRDATTR,NPNH fill in attribute byte
 MVC LWRDCOLR,TURQ fill in color byte
 MVC LWRDFLG2,NULL clear flag byte 2
 OI LWRDFLG2,LWRDCLRF set color-specified flag
 MVI LWRDTXT,LWRDFLDD choose "define field" text code
 MVC LWRDRC,NULL clear LWRD return code

Console and Terminal I/O

102 z/VM: 7.4 CMS Application Development Guide for Assembler

At last, we are ready to display the input panel and read any changes the user makes to the file name and
file type:

*
* Write the information and read any changes.
*
 LINEWRT DATA=(OUTBUFF),FORM=MULTIPLE write the panel
 LINERD DATA=(INBUFF,400),FORM=MULTIPLE,WAIT=YES, X
 NUMRD=(NUMFLDS) read the user's changes

The only parameters we need to specify on the LINEWRT macro are DATA (with a pointer to the first LWRD
in the chain) and FORM=MULTIPLE. All the other information required for the writes is specified in the
LWRDs.

To use the LINERD macro for multiple inputs, we need to provide a buffer for the input descriptors
(LRDDs) containing the data read. In addition, we specify NUMRD so we can easily tell how many inputs
are being returned in the buffer. NUMFLDS designates the fullword of storage for the NUMRD value.
If NUMFLDS contains a 0 upon completion of LINERD, the input is returned in single input format.
Otherwise, the inputs are returned in multiple input format. Recall that the number returned in NUMFLDS
indicates the number of modified fields read plus one for the cursor and key descriptor. If no fields were
modified, NUMFLDS contains a 1, and the multiple input format is used to return the cursor and key
descriptor in the buffer. The WAIT=YES option just specifies the status area message to indicate that the
program is waiting for a response from the user.

After the LINERD macro has executed, we need to determine what was read. The following section of
code checks the value in NUMFLDS to see whether more than the cursor LRDD is being returned, in which
case, control will pass to a loop that can process the LRDDs in the buffer.

*
* Fill in NAME and TYPE from the user's response.
*
 MVC NAME,DEFNAME start with default name
 MVC TYPE,DEFTYPE start with default type
 CLC NUMFLDS,FW1 is cursor LRDD the only one?
 BE RESULTS yes, go write the results
 LA R2,INBUFF point to LRDD1 (cursor/key LRDD)
 USING LRDD,R2

In the following code, note that we specify that the LRDD mapping is to be used for the fields used in the
following code. The loop code checks each input read, taking only those fields that have been modified. To
keep the example short, we use LINEWRT in the default (SINGLE) form to display the results.

USING LRDD,R2
LOOPTOP DS 0H
 L R2,LRDDNEXT move to next LRDD
 CLC LRDDLINE,FW4 is this a modified filename?
 BNE CHKTYPE no, go check if it's filetype
 L R6,LRDDTXTA point to text
 L R7,LRDDTXTL get length of text
 ICM R7,B'1000',BLANK set pad character to blank
 LA R8,NAME point to filename
 LA R9,L'NAME get length of filename
 MVCL R8,R6 move response into NAME
 B LOOPEND go to end of loop
CHKTYPE DS 0H
 CLC LRDDLINE,FW5 is this a modified filetype?
 BNE LOOPEND no, go to end of loop
 L R6,LRDDTXTA point to text
 L R7,LRDDTXTL get length of text
 ICM R7,B'1000',BLANK insert pad character
 LA R8,TYPE point to filetype
 LA R9,L'TYPE get length of filetype
 MVCL R8,R6 move response into TYPE

LOOPEND DS 0H
 CLC LRDDNEXT,A0 is pointer zero?
 BNE LOOPTOP no, go through loop again
*
* Write the results and exit.
*
RESULTS DS 0H
 LINEWRT DATA=(HEADER),COLOR=BLUE write a heading

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 103

 LINEWRT DATA=(FILEID),COLOR=BLUE write the new fileid
 BR R14 return to caller

Before running this program, we must SET CHARMODE ON so we will be able to see the character
attributes we defined in LWRD3.

After execution of the program, the screen looks something like this:

Fix filename or filetype and press ENTER:
SAMPLE
ASSEMBLE
The new fileid is:
RAZZLE DAZZLE *

Considerations for Writing Applications in Full-Screen CMS
CMS provides a windowing capability called full-screen CMS that allows you to manage several pieces
of information on the physical screen at the same time. The following considerations apply when writing
applications that will execute when full-screen CMS is active.

• If the CP SLEEP command is entered while full-screen CMS is on, it will appear that your terminal is
hung. Any write to the terminal will unlock the keyboard. (See the CP SLEEP command in the z/VM: CP
Commands and Utilities Reference for more information.)

• Some programs embed the hexadecimal code X'1D' to affect the highlighting and color attributes of
output. In full-screen CMS,X'1D' is a nondisplayable character and does not affect the attributes of data
following it. The VSCREEN DEFINE, SET VSCREEN, and VSCREEN WRITE commands (as well as the
LINEWRT macro) let programs specify attributes for data in full-screen CMS.

• Error messages generated from windowing commands are displayed based on how the command was
executed:

– When called from a program or from an exec procedure with &CONTROL NOMSG, then no message is
displayed and only the return code is set.

– When called from an exec procedure with ADDRESS COMMAND, then the variable message.1 is set to
the message text and message.0 is set to 1 to indicate the number of message variables set.

– In other cases, such as a command entered from the command line or from an EXEC procedure with
ADDRESS CMS, the message is displayed at the terminal. These messages are edited based on the CP
EMSG setting.

• When returning to full-screen CMS from an application that performs its own full-screen management,
your screen can contain mixed data. Press the CLEAR key to scroll forward and refresh the screen.
Alternatively, you can enter the command SET FULLSCREEN SUSPEND before executing the application.

• The following messages are not trapped by the IUCV Message All System Service and are directly sent
to the terminal:

– Asynchronous CPCONIO (including PER/TRACE events)
– EMSGs not generated as part of a DIAG X'08' instruction
– Accounting messages.

• Certain applications must be changed to correctly work in the full-screen CMS environment:

– Programs which issue a 3215 SIO to do a line-mode read
– Programs which issue DIAGNOSE code X'58' to do full-screen I/O.

Line-mode output and prompts written by these applications will not be immediately displayed in
the full-screen CMS environment. Also, messages and warnings from other computer users are not
displayed until you exit these applications. These applications should be changed to use CMS macros:

– Change 3215 SIO to use LINERD macro
– Change DIAGNOSE code X'58' to use CONSOLE macro

Console and Terminal I/O

104 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

Alternatively, to avoid problems viewing output during the execution of such programs, you can
temporarily suspend full-screen CMS (SET FULLSCREEN SUSPEND) before running the application and
then resume your session (SET FULLSCREEN RESUME) upon exiting the application.

• When full-screen CMS is on, most CMS console output is not passed to CP. In addition, applications that
use the IUCV Message System Service (*MSG) and SET VMCONIO IUCV will not trap all CMS output.
Before running such applications, it is recommended to suspend full-screen CMS.

• If an application runs disconnected using the Single Console Image Facility (SCIF) to communicate with
the disconnected user, the primary user must have FULLSCREEN set OFF or SUSPEND. If FULLSCREEN
is ON, message HCPSEC068E will be received instead of the normal response following the second or
third attempt to SEND a command to the primary machine.

• Full-screen CMS initialization issues the CP TERMINAL BRKKEY NONE command. Application
developers may want to reset the CP TERMINAL BRKKEY to PA1 when debugging.

• You can specify the EXIT parameter for the OPEN function of the CONSOLE macroinstruction to handle
unrequested device interrupts.

• If EXIT is specified, do not define an interruption routine using the HNDINT macro for the same device.
Use of the CONSOLE and HNDINT macros is mutually exclusive. CONSOLE OPEN with EXIT supersedes
an HNDINT routine when the interrupt is requested. Therefore, if you want to do I/O to a 3270 device,
use the CONSOLE macro instead of the HNDINT macro.

• When using full-screen CMS, an application which uses the OS/MVS STAX macro or the HNDINT macro
may work differently than when not using full-screen CMS. In line-mode CMS, only the attention
interrupts caused by the ENTER key are passed to the OS/MVS STAX or HNDINT exit. However, in
full-screen CMS, attention interrupts caused by any key may be passed to the exit. If your exit is not
prepared to handle interrupts other than those caused by the ENTER key, then full-screen CMS should
be suspended.

• While in FULLSCREEN CMS, if an application issues a CONSOLE WRITE to a dialed device when there
has been linemode output to the virtual console, the WM window will not be popped to refresh the
screen. Therefore, the linemode output will not be displayed until the application terminates.

Console and Terminal I/O

Chapter 8. Console and Terminal I/O 105

Console and Terminal I/O

106 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 9. CMS File System

This chapter discusses the following topics:

• What are CMS files and how are they maintained by CMS
• What are byte file system (BFS) files and how are they maintained by CMS
• How can applications interface to CMS files and BFS files to perform file input and output
• Using XEDIT to Access Files in Storage.

Overview of the CMS File System
This section gives a high level overview of how CMS manages files. Reviewing these concepts should help
you design your applications to make the best use of CMS files and BFS files. This section discusses the
attributes of CMS files and BFS files, the information CMS maintains about CMS files and BFS files, and the
operations you can perform on CMS files and BFS files.

What Is a CMS File?
If we start from the general user's point of view, we know a virtual disk, or minidisk, is a place where we
can collect files. Files are what we use to collect logically related data or records. CMS manages the data
in files and the files placed on disks using a mapping system. This mapping system is a tree-like structure
of pointers and data, where pointers serve as indexes to pieces of data. The amount of pointers and data
possible is based on the physical DASD block size of the CMS disk.

CMS disks are formatted into blocks that can be 512, 1K-, 2K-, or 4K bytes. The block size used is
determined when a minidisk, or virtual disk, is formatted. Thus, one disk does not contain a mixture of
block sizes. A file consists of data blocks and pointer blocks, which are the same size. The data in a file is
broken up into fixed size portions, which are stored on data blocks. Pointer blocks chain the data blocks
together. Pointer blocks either point to data blocks or to other pointer blocks.

Choosing an appropriate block size to format a disk depends on its intended use. A 4K block size will
optimize the I/O if the disk is to contain large files with no missing records (dense). A block size of 1K
is more appropriate when creating many small files or sparse files. For example, PL/I regional files are
sparse and they may allocate more space on a 4K disk than on a 1K disk; therefore, the smaller block size
is preferable.

The larger the block size of the disk, the greater the amount of storage required for input/output buffers.
Each buffer that the system needs must be a contiguous block of system keyed storage. The size of this
area of storage is the block size of the disk.

Other Architectures
The types of disks and files just discussed (based on 512, 1K, 2K or 4K block sizes) are part of the
Enhanced Disk Format (EDF) architecture. CMS also supports Shared File System (SFS) architecture which
is used for files residing in a CMS file pool.

SFS files are represented in storage in the same way EDF files are. The significant difference is that
SFS files are always formatted with 4K-byte blocks. SFS shares CMS programs and data among users.
SFS supports hierarchical directories and file sharing. Data kept by a file server virtual machine is on
server-owned disk space, which is shared by all owners of files in that file pool. Requests for data from a
CMS user machine are sent across an APPC/VM link to the server machine. Requests can be in the form of
commands, CSL routine calls, or macros.

CMS File System

© Copyright IBM Corp. 1990, 2024 107

What is a BFS File?
OpenExtensions is the implementation of IEEE POSIX standards for system interfaces and threads on
z/VM. Included in OpenExtensions is a POSIX-compliant file system called the Byte File System (BFS).
BFS is a companion to the SFS that provides a byte-stream view of files. That is, BFS files consist of
continuous streams of individual bytes of data. Such files have no record format or other record file
attributes. The interpretation of BFS files is defined by the applications that use them. For example, the
byte stream may include special characters that control the interpretation of the file.

CMS supports the generation of byte file systems as file spaces in CMS file pools. Multiple byte file
systems can be enrolled in the same file pool, and byte file systems can reside in the same file
pool as SFS file spaces. The primary programming interface for manipulating BFS files is the set of
OpenExtensions CSL routines documented in the z/VM: OpenExtensions Callable Services Reference.
However, CMS file pools can support both BFS data and SFS data with common administration tasks
and system-managed storage. To do this, CMS gives BFS files the appearance of having some CMS file
attributes.

What File Information Does CMS Maintain?
Associated with each CMS disk is a file directory, which contains an entry for every CMS file on the disk.
When you access a disk or SFS directory, a file directory is stored in your virtual machine. The entries in
the file directory for each CMS file are called File Status Tables (FST). The FST describes the attributes of
the file. Attributes of a file include:

• File name
• File type
• File mode
• Record format
• Logical record length
• Number of records in the file
• File origin pointer
• Number of data blocks
• Number of pointer block levels
• Date and time of last update.

In addition, CMS maintains extended file attributes:

• File system type (SFS or BFS)
• Recoverability
• Overwrite
• Date of Last Reference
• Creation Date and Time
• Migration indicator
• DFSMS/VM* Related attributes
• Maximum blocks used for the file
• System blocks used for the file
• Date and time of last change

for files stored in file pools. These extended file attributes, described in the following section, are not
maintained in the FSTs. Your programs can retrieve them by using callable services library (CSL) routines.

BFS files have two sets of file attributes associated with them. The first set consists of the path name,
size in bytes, POSIX user ID (UID) and group ID (GID), permission bits, and other attributes associated
with the file in accordance with the IEEE POSIX 1003.1 standard. For a full description, see the z/VM:
OpenExtensions User's Guide. Because BFS files are stored in CMS file pools, they also have a set of CMS

CMS File System

108 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp2_v7r4.pdf#nameddest=dmsp2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp2_v7r4.pdf#nameddest=dmsp2_v7r4

record file system attributes associated with them. For example, BFS files have a system-generated CMS
file name and file type, and are represented to the record file system CSL routines that manipulate them
as fixed-length record-format files with a logical record length of 1.

File Attributes

File Name, File Type, File Mode
When you create a file in CMS, you name it using a file identifier. The file identifier consists of three fields:
file name, file type, and file mode (or directory name for SFS files). The file name and file type can each
be from one to eight characters. Valid characters are A-Z, a-z, 0-9, #, @, +, - (hyphen), : (colon), and _
(underscore). The file mode indicates the file mode letter (A-Z) currently assigned to the SFS directory or
minidisk where you want the file to reside. See the z/VM: CMS User's Guide for a discussion of valid file
names, file types and file modes.

Every CMS file, regardless of whether it resides in a file space or on a minidisk, has a file mode number
associated with it. The file mode number is established when the file is created. Some file mode numbers
have special meanings:

File Mode Number 0

For the minidisk environment, file mode number 0 is used to make files private. For the SFS environment,
file mode number 0 means the same as file mode number 1.

File Mode Number 1

Used for reading and writing files. It is the default file mode number.

File Mode Number 2

Used for reading and writing files. Also used to denote subsets of files.

File Mode Number 3

Files are erased after they are read. You can use file mode number 3 if you do not want to maintain copies
on your minidisks or in your file space.

File Mode Number 4

Files are in OS simulated data set format. These files are created by OS macros in programs running in
CMS.

File Mode Number 5

Used for reading and writing files. Also used to denote subsets of files.

File Mode Number 6

For EDF files, indicates that the update-in-place attribute of a CMS file is in effect. This means that the
existing records of a file are written back to their previous location on the minidisk, rather than in a new
slot.

WARNING: When modifying an existing file mode number 6 file, it is possible to damage the file, or even
the entire minidisk on which it resides. This damage occurs when some of the updates made to the file or
disk by an application are updated in place, but CMS terminates (requiring a re-IPL of CMS) before it can
write all of the data to disk.

For SFS files, this file mode number is treated the same as file mode 1.

Note: If you want your files to have the update-in-place attribute, (where updates to physical blocks of
data are made directly in that block), see the z/VM: CMS Application Development Guide for a description
of the methods you could use to specify this attribute.

CMS File System

Chapter 9. CMS File System 109

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb3_v7r4.pdf#nameddest=dmsb3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

File Mode Numbers 7-9

Reserved for IBM use.

A BFS file is identified in CMS by a system-generated numeric file name and file type. (The BFS file name,
which is the last component of the path name that identifies the file in the OpenExtensions interface,
cannot be used in the CMS record file interface.) This CMS file ID is guaranteed to be unique within a BFS
file space. You can obtain the CMS file IDs for BFS files by using DMSOPDIR CSL routine with an intent of
FILEEXT or by using the OPENVM LISTFILE command with the NAMES option.

The CMS file mode number of the BFS file, when it applies, is always 1.

Record Formats
From the user's point of view, a file consists of from one to 2,147,483,647 (231-1) records, each of which
consists of from one to 231-1 bytes of data (a record in a file with variable-length records is further
restricted to 65,535 bytes of data). This limit is not normally significant. The amount of space available on
the storage medium will usually be the significant limit.

When viewed through the CMS record file system interface, each "record" of a BFS file consists of a single
byte. A BFS file may contain more than 231-1 records (bytes). However, the CMS record file interface
cannot handle a file that large.

A file has one of two record formats:

F-Format

When all records in a file must have the same length, the file is said to be an F-format file and its records
are said to be fixed-length records

V-Format

When the records in a file may have different lengths, the file is said to be a V-format file and its records
are said to be variable-length records.

The record format of a file is determined when the file is created and cannot be changed thereafter. For
an existing file, the record format is taken from the file's attribute information. For a new file, the record
format is determined from the parameters specified on the macros or routines that will open the file.

BFS files are always F-format.

Logical Record Length
The length of each record in a new F-format file is the length of the first record written to the file — this
length cannot be changed by any subsequent write to the file. The logical record length of a new empty
file is determined by the LRECL value specified on the command or CSL routine that creates it. Empty files
created from non-empty files may still retain their old values. The length of each record in a V-format file
is recorded by a two-byte length prefix stored immediately before the record itself. A record must not be
null, that is, have a length of zero. The length of the longest record in the file is stored in the file's directory
entry (in the logical record length field of the FST) when the file is closed. If the file is written to later, a
longer record may be appended to the file, in which case the length stored in the file's directory entry will
be updated when the file is closed.

For BFS files, the logical record length is always 1.

File Origin Pointer, Number of Data Blocks and Pointer Levels
The File Origin Pointer (FOP) identifies the highest level pointer block or data block. The pointer blocks
locate the next lower level of pointer blocks or the data blocks that contain the actual data for the file.
Pointer blocks can go as high as 6 levels (or 6 levels deep on a tree), where level 1 pointer blocks point
directly to the data blocks. The highest number of data blocks per file possible is 231-1. The number of
data blocks depends on how the disk is formatted, on the size of the file, and if the file has sparse blocks.

For BFS files, CMS simulates the pointer blocks. The number of data blocks is equal to the number of
bytes in the file divided by the block size (4096 bytes).

CMS File System

110 z/VM: 7.4 CMS Application Development Guide for Assembler

Record Number and Number of Records
Each record in a file is assigned a number known as its record number or its position number. The first
record in a file has a record number of one and each succeeding record has a record number one greater
than the preceding record. Thus, the number of records in a file is the greatest number of any record
written.

A minidisk file cannot have zero records. SFS files can have zero records; empty files can be created
using the CREATE FILE or XEDIT commands, DMSCRFIL CSL routine, or by specifying the ALLOWEMPTY
parameter on the DMSOPEN CSL routine. You can also make an SFS file empty by using the ERASE
command or DMSERASE CSL routine with the DATAONLY option.

For BFS files, the record number attribute has the same interpretation as for CMS record files. Because
each record in a BFS file consists of a single byte, the number of records in a BFS file is equal to the size of
the file in bytes. A BFS file may be empty.

Date and Time of Last Update
The date and time is stored in 6 bytes (yy mm dd hh mm ss), where each byte holds two decimal digits.
In a flag byte is a bit to indicate the century. A setting of '0' indicates the time frame of 1900 to 1999,
a setting of '1' indicates the time frame of 2000 to 2099. This is the date and time that the accessed
file was last updated. Some CMS commands, such as COPYFILE, that transfer data from one location to
another could copy over the date and time of the existing file. In that case, the date and time would not
actually reflect the last time data was written to the file.

For BFS files, these attributes have the same interpretation in CMS as for CMS record files. However, when
stored in the catalogs these two attributes are translated into a single POSIX attribute called MTIME that
consists of the total number of seconds from January 1, 1970.

Recoverability
The recoverability attribute specifies whether the file is to be recoverable or irrecoverable. This attribute
applies only to files stored in CMS file pools.

When a file is recoverable, uncommitted changes are backed out as the result of an application initiated
rollback. Files are recoverable unless specified otherwise using a CSL routine or the FILEATTR command.

Irrecoverable files are not rolled back if an application initiated the rollback. As many updates as possible
will be committed.

BFS files are recoverable when using the CMS record file interface.

For more information on committing and rolling back changes, see the z/VM: CMS Application
Development Guide.

Overwrite
The overwrite attribute specifies whether updates to a file will be made in place. This attribute applies
only to files stored in CMS file pools.

Most files are not updated in place, unless you specify otherwise using a CSL routine or the FILEATTR
command. These files are to be shadowed when written so that readers see a consistent version of the file
from open to close.

With update-in-place files, updates are to be made in place where possible. Users that have an INPLACE
file open for read would have to re-open the file to see extensions (new blocks or records) that have been
written and committed to the file.

BFS files are always NOTINPLACE.

Date of Last Reference
The date of last reference is the date on which the file was last read or updated. If the file hasn't been
read or updated since it was created, the date of last reference is the date of file creation.

CMS File System

Chapter 9. CMS File System 111

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

The difference between the date of last reference and the date attribute (described above) is that the date
of last reference is updated when a file is read—the date attribute is not.

CMS maintains the date of last reference only for files that reside in CMS file pools. It is stored in the file
pool catalogs—not in the FSTs as basic file attributes are.

The date of last reference is based on Coordinated Universal Time (UTC) at the time of the reference.
The date attribute, on the other hand, is based on the local time. This can cause discrepancies between
the attributes, depending on the geographic location of your processor. This difference is important
to remember when you are coding an application that uses the date of last reference. You might, for
example, want to convert the local date to the UTC date.

For BFS files, this attribute has the same interpretation in CMS as for CMS record files. However, when
stored in the catalogs this attribute is translated into a POSIX attribute called ATIME that consists of the
total number of seconds from January 1, 1970.

You can use CSL routines (such as DMSEXIFI and DMSGETDX) to retrieve the date of last reference for
a file. You can also use CSL routines (DMSFILEC, DMSOPEN, and DMSOPBLK) to inhibit the updating of
the date of last reference. The date of last reference is intended for use by application programs. It is
displayed by the FILELIST and LISTFILE commands through the use of the ALLDATES option.

For more information on how to use CSL routines, see the z/VM: CMS Application Development Guide.

Creation Date
The creation date is the date the file was created. It is based on Coordinated Universal Time.

CMS maintains the creation date only for files that reside in CMS file pools. It is stored in the file pool
catalogs—not in the FSTs as basic file attributes are.

You can specify a creation date of your own choosing when you use CSL routines to create a file. Once the
file is created, you cannot change the creation date.

For BFS files, this attribute has the same interpretation as for CMS record files. However, there is no
equivalent POSIX attribute.

You can use CSL routines such as DMSEXIFI (Exist - File) and DMSGETDX (Get Directory - Extended) to
retrieve the creation date for a file. The creation date is intended for use by application programs. It is
displayed by the FILELIST and LISTFILE commands through the use of the ALLDATES option.

Creation Time
The creation time is the time the file was created. It is based on Coordinated Universal Time.

CMS maintains the creation time only for files that reside in CMS file pools. It is stored in the file pool
catalogs—not in the FSTs as basic file attributes are.

You can specify a creation time of your own choosing when you use CSL routines to create a file. Once the
file is created, you cannot change the creation time.

For BFS files, this attribute has the same interpretation as for CMS record files. However, there is no
equivalent POSIX attribute.

You can use CSL routines such as DMSEXIFI (Exist - File) and DMSGETDX (Get Directory - Extended) to
retrieve the creation time for a file. The creation time is intended for use by application programs. It is
displayed by the FILELIST and LISTFILE commands through the use of the ALLDATES option.

Date and Time of Last Change
The date of last change and time of last change attributes specify when the status or attributes of an
object were changed. The SFS server records these attributes for file spaces, directories, files, aliases,
and external objects. The attributes cannot be controlled by a user or SFS administrator, but administrator
authority is not required to read the attributes.

The following additional rules apply:

CMS File System

112 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

• The date and time of last change are updated when authorizations are granted or revoked.
• The date and time of last change for the top directory are updated when space limits are changed

(storage is added or deleted).
• The date and time of last change are updated by the restore function.
• The date and time of last change are not updated when a file is migrated or recalled using DFSMS/VM.
• The date and time of last change for a parent directory are not updated when an object is added to or

deleted from that directory.
• The date and time of last change for an alias are not updated when the base file is updated. Only Create

Alias (DMSCRALI) sets the date and time of last change for an alias.
• The date and time of last change are not updated when commands are issued that do not alter the

object. For example, granting authority to a user who already has the granted authority does not update
these attributes. Nor does opening and closing a file without writing to the file. However, if existing data
in a file is overwritten with exactly the same data, this is perceived by the server as an update, and the
date and time of last change are updated.

For BFS files, these attributes have the same interpretation as for CMS record files. However, when stored
in the catalogs these two attributes are translated into a single POSIX attribute called CTIME that consists
of the total number of seconds from January 1, 1970.

You can use CSL routines such as DMSEXIST (Exist), DMSEXIDI (Exist - Directory), and DMSEXIFI (Exist
- File) to retrieve the date of last change and time of last change for a file. If you open a directory with
the FILEEXT intent on the DMSOPDIR (Open Directory) routine, you can use routines such as DMSGETDI
(Get Directory) and DMSGETDX (Get Directory - File Extended) to retrieve these attributes. They are also
displayed by the FILELIST and LISTFILE commands through the use of the ALLDATES option.

How CMS Manages Files
CMS manages all files by continually updating various control blocks. Each accessed file mode is
represented in storage by a control block called the Active Disk Table. This control block describes an
accessed minidisk or SFS directory. Each open file is represented in storage by a control block called the
Active File Table. This table contains the read and write pointers to a file, plus other status information
related to the file. The File System Control Block (FSCB) is a user parameter list that holds information
about an operation on a file. Here are some examples:

• The record format, whether it is F-format or V-format, is information maintained in the FSCBRECF field.
The default format, if you do not specify it for an operation, is F-format.

• A record number is maintained in the FSCBAITN field. The record number is the relative number of
the next record to be read or written. The default value for this field is 0 which, when you read a file,
indicates that records are read sequentially. When you write information to an existing file, a 0 indicates
that records are written sequentially following the last record in the file. When you write information to a
new file, a 0 indicates that records are to be written at record 1.

• A buffer address and size is maintained in fields FSCBBUFF and FSCBSIZE, respectively. When reading
or writing records, you need to supply a buffer address where a record is to be read or written. The
buffer needs to be large enough to accommodate the longest record you expect to read or write.

• The number of records to be read or written is maintained in the FSCBANIT field. The default number of
reads or writes for an operation is 1. This number can only be 1 for V-format files.

• The actual number of bytes read is saved in the FSCBNORD field. If you are reading a variable-length
file, you can use this information to determine the size of the record read.

• A read pointer (FSCBRPTR) and a write pointer (FSCBWPTR) are saved after you open a file.

Manipulating CMS Files
In general, if you would like your application to manipulate CMS files, your application will follow these
steps:

CMS File System

Chapter 9. CMS File System 113

1. Open a file, specifying what you intend to do with the file. When you open a file that does not exist,
you will be creating a new one. At this step you need to define the attributes of the file, such as format,
name, and type, and for SFS files, recoverability and overwrite (shadowing) also.

2. If the file did not exist, you can write one or more successive records to an open file from a user
specified buffer. If the file does exist already, you can read records from it and place the records into a
user specified buffer OR you can write records to the file from a buffer or both.

3. Close the file. Closing the file makes the file available for other processing and frees up any resources
you were using for that file.

4. Commit, or save on disk, all updates that were made.

Empty Files
Empty files, that is, files with no records, can be created in an SFS directory. (The directory must be in a
file pool managed by an SFS server at the z/VM Release 1.1 level or higher.) They can be created using any
of the following:

• CREATE FILE command
• ERASE command with the DATAONLY option
• FFILE and SSAVE subcommands of XEDIT
• DMSCRFIL CSL routine
• DMSOPEN CSL routine with the ALLOWEMPTY parameter
• DMSERASE CSL routine with the DATAONLY parameter
• DMSOPDBK CSL routine with the ALLOWEMPTY parameter.

Such empty files retain all aliases, SFS authorizations, and other file attributes they have been assigned.

Logically Sparse Files
A logically sparse file is a file that contains sparse records. For files with fixed-length records, you can
write a record with a position number more than one greater than the number of the last record. For
example, if the last record in the file, DOG DATA, has a position number of 55, you can write a record with
a position number of 60. Records 56, 57, 58, and 59 are called sparse records.

Note: Only files with fixed-length records can contain sparse records.

Sparse records are not written to a file. However, if you open a file that contains sparse records, you can
write to a record that was previously sparse. For example, you could write a record to position number 57
in the file, DOG DATA.

If you try to read a sparse record, it will be retrieved as all X'00' bytes. In fact, reading a sparse record will
appear the same as reading a record that was actually written with X'00'.

Structurally Sparse Files
Structurally sparse files are files that contain sparse blocks. Sparse blocks are not physically stored in a
file. They are data blocks or pointer blocks that contain all binary zeros.

Note: You should not write programs that depend on sparse blocks. The way that the CMS file system
handles sparse blocks may change.

Sparse blocks are created two ways:

• If records are never written to a certain block in a file, then the block will be sparse. This applies to only
F-format files.

• If a block contains all binary zeros, then it will be sparse. This applies to both F-format and V-format
files.

CMS File System

114 z/VM: 7.4 CMS Application Development Guide for Assembler

Replacing Records
In any file, a record may be replaced, by writing over it, so long as its length is not modified. You
cannot replace a F-format record with a different length. However, the system will let you replace an EDF
V-format record with a record of a different length. You can replace a SFS V-format record with a record
of a different length, only when you use the File System macro interface to replace the record. The CSL
routines do not allow it.

Note: The consequence of replacing with a different length is that the rewritten record becomes the last
record of the file: all records after the rewritten record would be deleted from the file.

When a CMS disk is accessed, a copy of the file directory is brought into the user's virtual storage.
Whenever an output file is closed, changes to the file directory are made to the copy in storage. When the
last opened output file is closed on a minidisk or the last opened file is closed on a work unit, the changes
are written to disk.

EDF Data Integrity
When an existing EDF file is updated and the file is not update-in-place, a shadowing method of updating
takes place. Only changed CMS blocks actually get written to disk. Each changed data and pointer block
gets assigned to a new block on disk. Contents of the blocks are thus shadowed somewhere else in
storage. This assists in maintaining some of a file's integrity.

When modifying an existing update-in-place minidisk file (file mode number 6), existing records are
written back to their original location on disk. The updates are not shadowed as with other files. This
saves DASD space that would otherwise be needed temporarily for shadowing, but may compromise data
integrity.

When updating an existing file mode number 6 file, it is possible to damage the file, or even the entire
minidisk on which it resides. This damage occurs when some of the updates made to the file or disk by an
application are updated in place, but CMS terminates (as defined below) before it can write all of the data
to disk.

File damage is possible when some of the data which was written by an application to an existing file
mode number 6 file was not updated on disk because of buffering done within the CMS file system. It is
possible that not all of the records the application wrote will be updated on disk. It is also possible that
some records may be partially updated on disk.

Corruption of the minidisk is possible when an existing file mode number 6 file is extended (as defined
below) and CMS is terminated before all the disk information kept in storage is written to disk. In this
case, inconsistencies can arise between the file structure and the disk structure which would allow the
file to use disk blocks which are not allocated to it. This can lead to additional disk damage, where two
files are temporarily using the same disk block. This type of damage may go undetected for long periods
of time and may surface long after the original damage has taken place. (In fact, the original file mode
number 6 file, which was involved in the damage, may no longer exist.)

Damage is made more likely by applications which leave the updated file mode number 6 file open for
long periods of time, or which delay the commit of the disk by keeping other output files opened on the
same disk. Note that for any update-in-place processing to occur, output must be written directly to the
file as a file mode number 6 file. Many commands, such as COPYFILE with the REPLACE option and XEDIT,
do not perform update-in-place processing because they use a separate work file. However, COPYFILE
with the APPEND option and EXECIO do perform update-in-place processing when the target file is a file
mode number 6 file.

Note that for a file mode number 6 file created by the CMS RESERVE command, minidisk damage as
described above cannot occur because the file cannot be extended (it fills the entire disk). Also, because
the CMS RESERVE command creates the file with a record length equal to the disk block size, individual
records cannot be partially updated. However, some records which were successfully written by an
application may not be updated on disk due to buffering, as mentioned above.

The definitions referred to above are:

CMS File System

Chapter 9. CMS File System 115

CMS Termination
This means any abrupt end of CMS execution which does not allow the CMS file system to complete
processing. This includes:

• A malfunction of the entire system
• A malfunction of CMS in the user's virtual machine which requires CMS to be re-IPLed
• A re-IPL by the user by invoking the CP IPL command while the application is running
• A re-IPL of CMS from within an exec or application which invokes the CP IPL command
• A forced logoff of the user's virtual machine
• A logoff by the user by invoking the CP LOGOFF command while the application is running
• A logoff from within an exec or application which invokes the CP LOGOFF command.

Note that this does not include cases where CMS abend recovery occurs, ending in a READY message.

Extending the File
This means any operation which causes new disk blocks to be added to an existing update-in-place
file, even though the current processing is being treated essentially as update-in-place. This includes:

• Appending records to the end of an existing file. Note that some append operations may only update
the last existing block of the file, but in many cases, the file will need additional blocks allocated as
well.

• Changing the length of records in a V-format file. (This essentially causes truncation of the file to the
record preceding the one being written and then an append to the end of the file.)

• Rewriting existing records to the file which cause previously sparse blocks (all binary zeros) to
be allocated. Sparse blocks may exist either because the record in question was never previously
written to the file or because the records written caused one or more entire disk blocks to contain
binary zeros.

SFS Data Integrity

SFS also maintains new copies of changed blocks. When an existing SFS file is updated and the file's
overwrite attribute is not inplace, each changed data and pointer block gets assigned to a new block on
disk. When you specify an SFS file's overwrite attribute as inplace, changes to the file will be written back
to the original location where possible.

In addition, SFS provides a rollback capability that permits a recoverable file to be restored to a previous
state, even though updates to the file have occurred. If you specify the NORECOVER file attribute, updates
to the file will not be rolled back, and will be committed if possible.

For more information on the overwrite and recoverability attributes, see the z/VM: CMS Application
Development Guide.

Manipulating BFS Files in CMS
To manipulate BFS files, your application will follow these steps:

1. Open a file, specifying what you intend to do with the file. You cannot create new BFS files using this
interface, so you cannot open a file that does not exist.

2. Read records from the file and place them into a user-specified buffer, or write records to the file from
a buffer, or both.

3. Close the file. Closing the file commits the changes, makes the file available for other processing, and
frees up any resources you were using for that file.

For more information about manipulating BFS files in CMS, see the z/VM: CMS Application Development
Guide.

CMS File System

116 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

Empty or Sparse BFS Files
Empty or sparse BFS files may exist. They have the same characteristics as empty or sparse CMS record
files.

Using Multiple Work Units
Using multiple work units for updates to BFS files and directories uses the least amount of CMS file
pool server machine resources and helps keep files and directories available for other users. In addition,
multiple work units are required for doing work on both SFS files and BFS files in the same file pool.
Updates to SFS files and BFS files in the same file pool cannot be included on a single work unit.

BFS Data Integrity
Because BFS files are stored in CMS file pools, the file pool server maintains new copies of changed
blocks for BFS files. All BFS files have an overwrite attribute of NOTINPLACE. When an existing BFS file
is updated, each changed data block gets assigned to a new block on disk. Therefore, a user sees a
consistent version of the file from open to close.

In addition, all BFS files have a recoverability attribute of RECOVER. Changes to an open BFS file can be
rolled back to the previous state. However, when the file is closed the changes are committed. BFS files
do not participate in Coordinated Resource Recovery (CRR).

Application Interfaces
There are three interfaces (sets of routines or macros) that allow applications to create and modify CMS
files and BFS files:

• Record file system CSL routines
• FS macros
• OpenExtensions CSL routines

Additionally, CMS simulates OS and DOS/VSE macros that can be used to manipulate CMS files. See Part
5, “ OS/MVS Simulation,” on page 315, for more information.

Record File System CSL Routines
A program interface which is available for both minidisk and SFS files is a call interface composed of
callable services library routines in VMLIB CSLLIB. The routines can be called from high-level languages
as well as assembler. On the routines, you can specify file names, directory names, file mode letters,
name definitions, length of data for operations, buffer addresses and buffer sizes for I/O, and position in
a file to perform I/O. These routines do not automatically commit changes when you close the SFS file.
All changes to SFS files and directories must be explicitly committed or rolled back. Conversely, changes
to minidisk files are made automatically for both the CSL and FS routines when the last file opened for
output is closed. The CSL routines provide recovery if the system or program abends.

The record file system CSL routines also work, with limitations, on BFS files. This support is primarily
for administration and system-managed storage. When using these routines to manipulate BFS files, you
can specify file names, directory names, and name definitions, but not file mode letters. BFS files and
directories are not accessed.

Note: In the context of manipulating BFS objects in CMS, the term "file" refers only to a BFS regular file.
Other types of BFS files cannot be manipulated by CMS record file system functions. The term "directory"
refers only to the top directory in a BFS file space (that is, the byte file system itself). BFS subdirectories
are not equivalent to SFS subdirectories and cannot be manipulated by CMS record file system functions.

Changes to a BFS file are committed when the file is closed. The file cannot be closed without committing
the changes, and the changes cannot be committed before closing the file. However, changes can be
rolled back before the file is closed.

CMS File System

Chapter 9. CMS File System 117

The record file system CSL interface and examples of its use are described in the z/VM: CMS Application
Development Guide.

FS Macros
FS Macros are available that allow an assembler program to manipulate minidisk and SFS files. FS macros
cannot be used to manipulate BFS files. On the FS Macros, you can specify attributes such as record
format, buffer address and buffer size for performing I/O, the record number to use for the next I/O
operation, and the number of records you will read in the next read operation. The FS macros also accept
a form parameter, which specifies whether an extended format file system control block is to be used6.
You should always use extended format for the greatest efficiency. An extended format FSCB lets you
specify a value up to (231-1) for record number and number of records to be read. If you do not specify
extended format, then the record number values cannot exceed 65535. The FS Macros and examples of
their use are discussed later in this chapter.

OpenExtensions CSL Routines
The primary programming interface for manipulating BFS files and directories is a call interface composed
of a set of CSL routines in the VMMTLIB callable services library. VMMTLIB is included in the CMS nucleus.
The OpenExtensions CSL routines are intended for use by language runtime environments. They can
also be called from assembler and REXX programs. For more information, see the z/VM: OpenExtensions
Callable Services Reference.

Open Intent
The record file system CSL interface and the FS macro interface let you specify the intent of operations
when you explicitly open the file. On FS Macros (FSCB and FSOPEN) you use the OPENTYP= parameter.
On the CSL routines (DMSOPEN) you just specify the intent. Valid intents for SFS files and minidisk files
are NEW, READ, REPLACE and WRITE. Valid intents for BFS files are READ and REPLACE. NEW opens a
file for output (invalid if a file already exists). READ opens a file for input. REPLACE opens a file for output
(valid if a file already exists) and indicates the intent to entirely replace the existing file. WRITE opens a
file for update. If the SFS or minidisk file does not exist, REPLACE and WRITE are treated just like NEW.
For a BFS file, REPLACE is valid only if the file already exists. You cannot create a BFS file using the CMS
record file system interface. Regardless of the open intent, a read operation is always valid after the file
has been opened. However, records that existed before the file was opened cannot be retrieved if the
open intent is REPLACE.

Extended File Attributes
You can also specify the recoverability, overwrite, creation date, and creation time attributes of an SFS file
with DMSOPEN and DMSOPDBK. The creation date and creation time attributes can be specified only if
the file is new. The recoverability attribute specifies whether you want uncommitted changes rolled back
in the event of an application initiated rollback (RECOVER) or you want them committed to DASD where
possible (NORECOVER). The overwrite attribute specifies whether file writes are to be shadowed, so that
the user sees a consistent version of the file from open to close (NOTINPLACE) or the file writes are to
be made in place (INPLACE). Also, you can override the recoverability and overwrite attributes of a file by
specifying the OPENRECOVER parameter on DMSOPEN.

For BFS files, the only recoverability and overwrite attributes allowed (on an intent of REPLACE) are
RECOVER and NOTINPLACE. The create date and create time attributes do not apply to BFS files because
BFS files cannot be created using this interface.

You cannot specify a creation date and time for files created by using FS macros. The system determines
the creation date and time for you. You cannot assign recoverability or overwrite attributes to a specific
file using FS macros, but if you need to, you can control the default attributes for files of a specific

6 When EDF files were introduced, the parameter list used by file system control blocks was enhanced. To
make use of this extended format, you need to specify FORM=E on the FS macros.

CMS File System

118 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4

file mode number using the DMSPUSHA CSL routine. For details, see the z/VM: CMS Callable Services
Reference.

Caching
The CMS record file CSL interface and the FS macro interface have a CACHE option for explicit opens of
files. Use the CACHE option to indicate whether caching of multiple data blocks is to be performed for a
file.

The cache size may be different for SFS and minidisk files. These values may be set at system initialization
time. (The SFS default cache size is 20KB, the minidisk default cache size is 8KB.) Note that the SFS
cache size also applies to BFS files, which are stored in SFS.

Caching could reduce the number of actual I/O operations performed on a file. If improving I/O
performance is not a concern, you should specify CACHE=DEFAULT (on the FS Macros) when explicitly
opening a file. Specifying CACHE=DEFAULT will allow the file system to determine whether to cache
multiple data blocks, based on the file's characteristics and the actual or anticipated accesses to the
file. If you do not specify CACHE, then the system will choose whether caching is appropriate. Not using
the CACHE parameter on a CSL routine is equivalent to CACHE=DEFAULT on an FS Macro. Generally,
you would want to use caching when the probability is high that I/O operations will be sequential. More
specifically, use caching when:

• Reading many small (less than cache size) records one at a time.
• Writing many records one at a time sequentially forward when the total amount of data to be written is
significantly larger than the disk block size.

• Reading or writing is not strictly sequential, but most reads and writes of records are clustered.
• Directly accessing a small (less than cache size) file.
• Accessing records that are close together (no more than the size of the cache apart).

Do not use caching when:

• User’s virtual storage is severely constrained.
• The entire file is being read with a single FSREAD into the user’s buffer.
• Accesses to the records in a large file are neither sequential nor clustered (reads or writes to the file are

usually more than the size of the cache apart).
• The amount of data being transferred on each read or write is more than the cache size.
• The file is being accessed sequentially backward.

Compatibility Issues Between Interfaces
There are several considerations you must make if you use FS macros on files stored in the Shared File
System. This will depend on whether your file is shared or not, whether your program tries to replace an
SFS file, among other things. You may also be using programs that use both FS macros and CSL routines
to access minidisk and SFS file data.

For more information on manipulating files in the Shared File System, see the z/VM: CMS Application
Development Guide.

Using Programs on Non-Shared SFS Files
Programs written for minidisk files can manipulate non-shared Shared File System files without
modification. Your programs will work the same as they did before if:

• The files they use are not concurrently updated by other users.
• There are no aliases associated with the files.
• The files and directories are not locked by another user. They are also not locked by your user ID in

share mode.
• There is no dependence on minidisk addresses, such as 191.

CMS File System

Chapter 9. CMS File System 119

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

• There is no concurrent write sharing to the file space (that is, file pool and user ID) among users.
• All SFS files being updated by your application reside in CMS file pools maintained by file pool servers

that are at Release 2.1 or above. (Note that the files can reside in more than one file space, and in more
than one file pool.)

• They check for non-zero return codes after each file system call (for example, FSOPEN, FSWRITE,
FSCLOSE).

• There is no dependency on internal control blocks or internal routines.
• There are no empty files in your directory.
• There are no external objects in your directory.
• They create and modify SFS files exclusively using:

– FS macros,
– EXECIO, or
– OS Simulation WRITE/PUT.

• They do not explicitly acquire work unit IDs for SFS processing. In other words, your application does
not use the DMSGETWU, DMSPUSWU, or DMSPOPWU CSL routines to manipulate work unit IDs.

• SET RECALL is set ON to insure that implicit file recall will be done if any of the files referenced have
been migrated by DFSMS/VM.

However, because the programs are unaware of directory names, your program can reference files only
by file name, file type, and directories accessed as a file mode. You must issue an ACCESS command
for the directory in which the file resides. After accessing the directory, you can run the program without
modification.

Note: Even when you have not granted authority to another user (you don't want to share), any user
with administrator authority can change any of the files, directories, or your space allocation, which could
cause an application to fail.

Programs that call low level file system routines or reference file system control blocks may require code
changes to work with CMS files in the Shared File System. In certain cases, programs that reference
system control blocks may require reassembly, code changes, or both to work, even for CMS minidisk
files.

Using Programs Written for Minidisks on Shared SFS Files
Programs that use FS macros, OS simulation, DOS simulation, and the EXECIO command will also work
correctly in certain file sharing situations.

SFS directory control directories have sharing characteristics similar to those of minidisks. Programs are
likely to need few modifications (if any) to work correctly on files residing in directory control directories.

SFS file control directories permit more concurrent sharing of files than minidisks. Programs written for
minidisks will work correctly only in certain file sharing situations, such as:

• Reading shared files which are not locked or being updated by other users.
• Updating (but not replacing) shared files that meet ALL of the following criteria:

– The file is not concurrently locked or open for update by other users.
– The file is being referenced through a directory accessed read/write.
– The user is authorized to write to the file.

(For more information about programs that update and replace files, see “Modifying Programs That
Replace Files” on page 123.)

Regardless of whether directory control or file control directories are being used, programs written for
minidisks may act differently in certain file sharing cases, and might require changes to work correctly. For
example, you might need to change your program for:

• New return codes

CMS File System

120 z/VM: 7.4 CMS Application Development Guide for Assembler

• File space usage considerations
• Files shared through aliases
• Other user's directories accessed as read/write
• Reading shared files that are locked by other users
• Replacing shared files
• Update-in-place processing.

The conditions described apply to programs coded in high-level languages as well as programs coded in
assembler language.

New Return Codes
The program could run into an error condition unique to SFS (such as the file pool not being available).
Several new messages and return codes are provided to reflect these errors. You can find a list of the SFS
error messages and file error messages in the "System Messages" chapter of the z/VM: CMS Commands
and Utilities Reference. For a list of return codes that you may encounter using SFS, see z/VM: CMS
Callable Services Reference.

The program may need to check error conditions which did not previously occur. Programs that handle
any nonzero return code should not be impacted.

File Space Usage Considerations:
A CMS program might assume that there is sufficient space available to make all file updates permanent.
When writing to SFS files in CMS file pool servers running at Release 2.1 level or higher using FSWRITE,
EXECIO, or OS Simulation WRITE/PUT, write operations will fail when a file space full condition is
detected. 7 However there is no guarantee that there will be enough space to commit the changes when
the file space is being shared. Your program may detect that there is insufficient space to commit changes
when the last output file is closed. At this point, the system may have rolled back all file updates.

If your program is coded to monitor the SFS file space threshold exceeded indicator, it is more likely to be
able to anticipate a file space full condition in a file sharing environment. (See “Monitoring SFS Filespace
Threshold” on page 138.) However, this is only available when using the FS macro interface.

Files Shared through Aliases
A CMS program might assume that if it can write to a file in a file mode, it can write to any other file in
that file mode. In SFS, that file mode actually represents some directory. If the directory is a file control
directory, it might contain aliases to base files on which you have read-only authorization. A program that
assumes it can write to the alias will receive an error and may fail.

Aliases cannot be created in directory control directories, so there is no problem with aliases referring to
read-only base files. Furthermore, to access a directory control directory in read/write status, you must
have DIRWRITE authority. DIRWRITE authority lets you write to any file in the directory. So, a program can
safely assume that if it can write to a file in a directory control directory, it can write to any other file in
that directory.

Because users can grant individual file authorizations on files in file control directories, programs
operating on those files may require modifications to handle authorization errors. These authorization
errors are typically reflected to your program as return code 28 (which is also returned when a file is not
found).

Other User's Directories Accessed as Read/Write
You can access another user's directory in read/write mode by using the FORCERW option on the ACCESS
command. For directory control directories, DIRWRITE authority is needed for the access to succeed. So,

7 FSWRITE and EXECIO will not fail for a file space full condition when writing to pre-Release 2.1 file pool
servers. For pre-Release 2.1 servers, OS Simulation WRITE/PUT operations will fail when the file space
threshold is exceeded.

CMS File System

Chapter 9. CMS File System 121

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4

if you access another user's directory in read/write mode, you can be sure that you can write to all the
files in the directory, as well as create new ones. This is compatible with the way minidisks work.

For file control directories, however, only READ authority to the directory is needed for the ACCESS to
succeed. WRITE authority is not required. While this lets you issue commands that require a read/write
file mode, it also might cause compatibility problems with your programs. Your program might, for
example, assume that is can create new files on a file mode if it can write to any file in that file mode.
Because only READ authority to the directory is required for a read/write ACCESS, you program may fail
when it tries to create a file.

Because the owner of the file control directory may write to files for which you have WRITE authority, your
program may also encounter sharing conflicts. For information on the ACCESS command, see the z/VM:
CMS Commands and Utilities Reference.

Reading Shared Files That Are Locked
When a program is reading a shared file control directory or a shared file that resides in a file control
directory, another user could have a lock on the object, preventing the program from reading an object
that it knows exists. In this case, message DMS1137E or DMS1138E and return code 31 or 70 are
presented. The program may require modification if it does not handle all nonzero return codes.

This problem does not occur with directory control directories or with the files that reside in directory
control directories. Only UPDATE locks are permitted on directory control directories and files within
directory control directories. After an UPDATE lock is created on a file, only the user who holds the lock
can access the directory in read/write mode and change the file. This prevents problems with programs
designed to work on minidisk files.

When a directory control directory is locked, not even the person who holds the lock can access the
directory read/write.

Replacing Shared Files
When modifying a minidisk file in its entirety, the file is typically erased first and then rewritten
sequentially. Two typical approaches used are:

• When recoverability is desired, the output is placed in a temporary file, the original file is erased, and
the temporary file is renamed to the original file.

• When recoverability is not needed, the output file is simply erased, and then rewritten from beginning to
end.

In either case, erasing the file (using the FSERASE macro or ERASE command) destroys the sharing of the
file:

• If the file was being accessed through an alias, the alias is erased and a new file with the same name as
the base file is created. Note that the original base file is still intact, but bears no connection to the new
output file.

• If the file being replaced was simply a base file, erasing it will result in the loss of all aliases to the file.
If the base file resides in a file control directory, any individual authorizations (other than NEWREAD and
NEWWRITE) granted on that file would also be lost. Even though the file has the same name as the file
it replaced, it is essentially a new file. You must reestablish all the dropped aliases and, for files in file
control directories, grant the authorities lost when the file was erased.

This problem pertains mainly to the DOS simulated access methods, the FS macro interface (FSERASE),
or programs and execs which use the ERASE command. High level language applications which use OS
simulated access methods to open output files would not encounter this problem, because the CMS
simulation of the OPEN macro will not result in an erase of the file when it is an SFS file. The COPYFILE
command with the REPLACE option also retains aliases and authorities.

For the reasons described above, write sharing may not work with existing non CSL programs that operate
on SFS files. Changes may be required either within the programs, or in the manner in which they are used
to properly preserve sharing of output files.

CMS File System

122 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Modifying Programs That Replace Files
Programs that replace files by erasing and rewriting them may be modified in any of several ways to avoid
the previously-mentioned problems:

• For the case where a temporary file is used, change the program to issue a COPYFILE command or the
DMSFILEC routine (both with the REPLACE option) to copy the temporary file to the original file, and
then erase the temporary file. The COPYFILE command and DMSFILEC routine preserve aliases and
authorities of the output file.

• For the simpler erase/rewrite scenario, change the erase to an FSOPEN with OPENTYP=REPLACE
specified. This will work for both minidisk files and SFS files. Alternatively, you may change the program
to use a temporary file and handle it as above, using COPYFILE with REPLACE.

• Use the Shared File System routines for SFS output files, and use the macro interfaces for minidisk
output files.

• Do not use the program directly on shared output files. Copy the output files to temporary, private files.
Run the program against the private files. Finally, copy the output files back to the actual files, using
COPYFILE with REPLACE.

Update-in-Place Processing
If your application uses update-in-place files, and you want to use that application in SFS, you can make
SFS files update-in-place:

• If the output file(s) already exist, you can change the overwrite attribute of the file(s) with the
DMSCATTR (Change Attributes) CSL routine or with the FILEATTR (File Attributes) command.

• If your application creates new files, you can use the DMSPUSHA CSL routine to specify update-in-place
for files with a certain file mode number.

These commands and CSL routines are described in the z/VM: CMS Commands and Utilities Reference and
z/VM: CMS Callable Services Reference.

Using Non-CSL Statements or Macros with SFS Files
There are four ways to access SFS files using non-CSL statements or macros:

1. Using high-level language statements for reading and writing files, such as READ/WRITE in FORTRAN,
or GET/PUT in PL/I

2. Using the CMS FS macros, such as FSOPEN, FSREAD, and FSWRITE
3. Using OS and DOS macros that CMS simulates
4. Using the EXECIO command.

For more information on the EXECIO command, see the z/VM: CMS Commands and Utilities Reference.

Using High-Level Languages with SFS Files
To operate on files stored in file pools using a high-level language such as FORTRAN, COBOL, or PL/I, you
do not need to do anything special. Code your program as you would code it to access a CMS file stored on
a minidisk.

SFS will automatically use the current default work unit ID when processing the file I/O commands. At the
end of the CMS command (when you see the Ready; message), SFS will automatically issue a COMMIT
for the program. (For more information on using work units in application programs, see the z/VM: CMS
Application Development Guide.)

Using FS Macros with SFS Files
Programs coded with FS macros (File System macros) work on non-shared files stored in file pools
without modification. If you want to use these programs on shared files, it may be possible to do so with
minor changes or no changes, while still using the macro interface. See the discussion in “Using Programs
Written for Minidisks on Shared SFS Files” on page 120 for details.

CMS File System

Chapter 9. CMS File System 123

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

SFS will automatically use the current default work unit ID when processing the FS macros that operate
on files stored in file pools. Commit of data occurs either at the end of the CMS command (Ready;
message), or on an FSCLOSE (or FINIS command), provided no other files or directories are opened at the
time the FSCLOSE is issued.

FSOPEN
FSOPEN supports an OPENTYP option which describes the type of input/output activity to be performed:
READ, WRITE, NEW, REPLACE. The OPENTYP option applies to files on minidisks and SFS files.

For SFS files, the OPENTYP option is useful as follows:

• It assures that the file is not already open with the file system macro interface.
• It allows the user to specify the type of operation to be performed on the file. This allows the file system

to properly open and lock the file to safely allow multiple concurrent access to the file, and provide
the user with a consistent image of the file from open to close. Without the OPENTYP parameter, the
FSOPEN macro only performs an existence check (equivalent to FSSTATE), and does not actually open
and lock the file, which could result in a change to the file by another user between the FSOPEN and the
first FSREAD, FSWRITE, or FSPOINT to the file.

• For output files, the OPENTYP=REPLACE option lets the file be replaced without loss of authorities and
aliases. Prior to VM/SP Release 6, a file would typically be erased and rewritten to replace it. For more
information on replacing shared files, see “Replacing Shared Files” on page 122. In the Shared File
System, erasing a file causes all authorities and aliases to the file to be lost. (Note that authorities are
lost only on files in file control directories—authorizations cannot be granted on individual files within
directory control directories.)

• For OPENTYP=READ, it prevents subsequent writes to the file.
• For OPENTYP=NEW, WRITE, or REPLACE, it assures that the file is on a directory accessed R/W.

For minidisk files, the OPENTYP option is useful as follows:

• It assures that the file is not already open.
• For OPENTYP=REPLACE, it erases the file at open time, making it unnecessary for the application

program to do so.
• For OPENTYP=READ, it prevents subsequent writes to the file.
• For OPENTYP=NEW, WRITE, or REPLACE, it assures that the file is on a minidisk accessed R/W.

FSWRITE
An FSWRITE to an alias for which the user is only authorized to read will result in an error.

If SFS files reside in a CMS file pool server at a release level earlier than Release 2.1, FSWRITE allows
you to temporarily write more blocks than are allocated to the file space. File space limits are enforced
when the last active output file is closed. See “Monitoring SFS Filespace Threshold” on page 138 for a
discussion of how you can monitor file space usage using FSWRITE.

In a CMS file pool server that is at a release level of Release 2.1 or later, FSWRITE will fail when it detects
that the file space limit is exceeded.

FSWRITE will truncate a variable-length file in the Shared File System when an existing record has its
length modified. No error codes are returned. If you are using the Shared File System and do not need to
use minidisk files, you should consider using the SFS DMSWRITE routine.

FSCLOSE
You must check the return code in order to verify the disposition of file updates. A non-zero return code
from FSCLOSE may mean that the work unit has been rolled back and file updates have been discarded.

CMS File System

124 z/VM: 7.4 CMS Application Development Guide for Assembler

Using OS and DOS Macros with SFS Files
Internally, OS and DOS macro simulations use the same CMS I/O routines that FS macros do, so the OS
and DOS macros will work on SFS files. The same discussions about compatibility apply, as described in
“Compatibility Issues Between Interfaces” on page 119.

Note that the problem with lost aliases and authorities common to programs which use the FS macro
interface to replace files does not apply to OS access methods, but it does apply to DOS. OS simulated
access methods do not erase SFS output files, rather, they open them with replace intent.

SFS will automatically use the current default work unit ID when processing OS or DOS macros that
operate on files stored in file pools. At the end of the CMS command, SFS will automatically issue a
COMMIT for the program.

OS Simulation Usage Notes

• As long as no read/write sharing is taking place (that is, one user reads a file while another user writes
to it), the version of all data sets is guaranteed to remain constant to the OS application. Only those
changes made by the application itself will be seen. This guarantee does NOT exist for a read/write
sharing environment unless you first create a lock on the directories that have files affected.

• All SFS directories that are used for output by an OS application must be accessed as read/write.
• A program that uses OS simulation may experience unwanted results such as an unexpected view of the
file or a file sharing conflict under the following circumstances:

– The default SFS work unit is changed during the execution of the program, or
– A file used by an OS simulation application is already open at entry to that application and the default

work unit on which the file was opened is different from that used during the application, and the
application closes and then reopens the file. The open prior to entry was performed through FSOPEN,
EXECIO, or a previous OS OPEN.

• If a data set whose FILEDEF specifies a file mode of ‘*’ is opened for output, all read/write file modes
will be searched for the file. If found on any of those file modes, that file will be used. Otherwise, the file
mode will default to A1. This can cause performance problems if large read-write disks or directories
must be searched.

• Each time a CLOSE is issued for a DASD DCB without the TYPE=T parameter, the file represented by that
DCB is closed with the FINIS command.

• When you execute programs with OS macros that write to SFS files, you should ensure that there is an
ample supply of unused blocks in the file space to which you are writing. Otherwise, your program could
abnormally stop when your program tries to close the file. You might also consider limiting write access
to the file space so that other users do not consume the blocks you require for your application.

Using OS/MVS interfaces to write to an SFS file will generally result in a disk full error when the SFS file
space limit is exceeded. However, the disk full condition will be detected when the file space threshold is
exceeded for an SFS server running at release levels prior to Release 2.1.

Using Record File CSL Routines with BFS Files
The CMS record file system CSL routines provide limited support for BFS files, primarily for administration
purposes. For example, the record file CSL interface works only on existing BFS files. For more information
on manipulating BFS files in CMS, see the z/VM: CMS Application Development Guide. Full support for BFS
files is provided by the OpenExtensions CSL interface. See the z/VM: OpenExtensions Callable Services
Reference.

Committing Changes
When operating on files in SFS, all commits are made based on the work unit. Changes can be committed
when the file is open on the same work unit or when the file is closed (using FSCLOSE). Using FSCLOSE on
the last file that was opened within a work unit (or the last output file opened), performs a commit.

CMS File System

Chapter 9. CMS File System 125

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4

Committing your changes while the file is open (using the DMSCOMM routine), enables the writer to see
the new level of changes without closing and re-opening the file. SFS files can be rolled back using the
DMSROLLB routine. This rolls back changes to all recoverable files in the work unit.

Rollback is not supported for minidisks. Minidisk file updates become permanent when the last open
output file on the file mode is closed.

Changes to a BFS file become permanent when the file is closed. You cannot commit changes before the
file is closed, and you cannot close the file without committing the changes. Before the file is closed,
changes can be rolled back using DMSROLLB.

Mixing CSL and Non-CSL Statements
Within a single program you can mix both non-CSL statements (or macros) and CSL routines (callable
services library routines). There are several reasons you might want to do this. The most common are:

1. You have a program written prior to VM/SP Release 6 that is being used to operate only on files in file
pools, and you want to enhance subroutines within the program to take advantage of SFS routines.

2. You want to code a program that has two file I/O routines: one for files stored on minidisks, and
another for SFS files stored in CMS file pools. Many of the CSL routines operate on minidisk files as
well as SFS files. An application may use only CSL routines to operate on both types of files. There will
be occasions though where your application can issue a function only for a minidisk (FORMAT) or to
SFS (CREATE ALIAS). The program would use the DMSQFMOD routine (Query Filemode) or DMSVALDT
(Validate File Name) to determine whether the file was on a minidisk or in a file pool.

3. You want to create or update a file in another user's directory and you want to use CSL routines for
direct file reference rather than access the directory as a file mode.

Once a file is opened using one method, you must continue to use that method to read, write, or close that
image of the file. After the file is closed, you can re-open it using a different method.

You cannot, for example, open a file using FSOPEN, read it using a CSL DMSREAD routine, and then close
it using FSCLOSE. Similarly, you cannot use CSL DMSOPEN and DMSCLOSE routines, and an FSWRITE
macro to write to this image of the file. Mixing methods at that level will cause an execution error in your
program.

You can operate on files simultaneously using both methods. The following describes how each method
can be used for both minidisk and SFS files.

• When using DMSOPEN:

– For an SFS file, you can open the file more than once for input (read) AND only once for output (new,
write, or replace).

– For a minidisk file, you can open the file more than once for input (read) OR once for output (new,
write, or replace).

• When using FSOPEN:

– For both a minidisk and SFS file, the file may only be opened once for either input or output.

Notice that CSL and non-CSL statements use the same default work unit ID. If you want the CSL routines
to execute in a different work unit than the non-CSL statements, you will have to use the DMSGETWU
routine (Get Workunitid).

It is possible to open an SFS file that is already open. It does not matter whether the file is opened using
CSL or non-CSL statements. That is, you can open a file using the FS macros and then open the same file
using CSL routines.

Note that CSL and non-CSL statements handle file space limits differently. You may write past your
file space limits temporarily using CSL routines, but not via FS macros, EXECIO, 8 or OS Simulation

8 You may write past your file space limit temporarily using FSWRITE and EXECIO for SFS files in a in a
pre-Release 2.1 CMS file pool server.

CMS File System

126 z/VM: 7.4 CMS Application Development Guide for Assembler

WRITE/PUT macro operations. If you are writing past your file space limit and mixing interfaces, your
updates may be rolled back.

Which Method Should You Use?
When coding a new program, you will need to decide whether to use CSL routines or not. If you choose
not to use CSL routines, you will have a choice of high-level language statements, FS macros, OS macros,
or DOS/VSE macros that CMS simulates.

Some important points to remember are:

• OS macros, DOS/VSE macros, and FS macros are assembler language macros.

To use assembler language macros directly you must code in assembler language. If you code in a
high-level language such as FORTRAN or PL/I, the interface is generated automatically but with less
control than you would have using the assembler language macros directly.

CSL routines, on the other hand, can be called from any high-level language as well as assembler
programs and REXX execs.

• OS macros, FS macros, and EXECIO may only be used to write to files in a directory accessed as read/
write.

To write to a shared file using these interfaces, one of the following must be true:

1. The file is in your directory, and it is either a base file or an alias of a base file to which you are
authorized to write. DOS macros may only be used to write to files you own; you cannot write to an
alias.

2. The file is in another user's directory and you have used the FORCERW option of the ACCESS
command to access the directory.

For more information on accessing directories, see z/VM: CMS Commands and Utilities Reference.
• Many CSL routines work on both minidisk and SFS files.

Your program may be coded using CSL routines so that it can operate on both minidisk and SFS files.
Using SFS files gives applications a greater range of functions that can be used (workunits, controlled
commits, direct file access) over minidisks. However, many desirable elements from the CSL routines
(use by high level languages, namedefs) may also be used on minidisk files as well.

• Many CSL routines work, to a limited extent, on BFS files. This support is primarily for administrative
purposes. It allows programs that provide system services, such as backup, to operate on all files. FS
macros do not provide any BFS support.

• CSL routines allow you to do more with files than you can do with non-CSL statements or macros. Some
of those benefits are:

– You can use a name definition (namedef) to identify a file or directory externally to your program.
Using namedefs you can write a program to process different files and directories without changing
the code and recompiling the program.

– You can acquire work unit IDs and perform tasks independently of other tasks. Each work unit is
independent of the other. Therefore, you can make changes to SFS files within a work unit and
commit them or roll them back independently of any other work unit.

– You have control over when work is committed when using CSL routines. You can commit changes as
you complete a task. You do not have to close an SFS file or directory to save your changes.

– You have more control over the assignment and use of file attributes specific to SFS files (like
recoverability, overwrite). They can be assigned to a specific file and, in some cases, overridden while
processing a specific application.

– CSL routines provide more detailed error information. If you use CSL routines on files, you will receive
return codes and reason codes that are more specific than those presented by non-CSL interfaces.

– You do not need to access the directory before you can read or write to the file.

CMS File System

Chapter 9. CMS File System 127

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

– CSL routines allow you to temporarily write more file blocks than are allocated to your file space. This
avoids the need for temporary space when your application uses work files that will be deleted prior
to a commit of the work unit.

• SFS files eliminate the need to use temporary files when updates are being made to files. Because
the SFS ensures the integrity of work units (either all changes complete successfully or none of them
do), there is no need to create a temporary file and then rename it when you are sure the changes are
successfully made. This enhances the application's performance.

• You can synchronize SFS file updates. By placing updates to more than one SFS file in a single work
unit, you do not have to make provisions for system failures that might occur while your application
is executing. If a system failure were to occur before all the changes in the work unit were made and
committed, the changes are automatically rolled back the next time SFS is started. You do not need to
worry that perhaps the changes to one file were made, but the corresponding changes in another file
were not.

• You can read and write to SFS files that are remote from the processor that your program is running on.
• You can control which updates to keep and which to discard in the event of an abnormal termination or

rollback by assigning the appropriate value to the recoverability file attribute. If an application abends,
the changes to a recoverable file are rolled back and the changes to a irrecoverable file are committed.

• If an application abends, the changes to a recoverable SFS file are rolled back. You can control which
updates you wish to keep and which to ignore in the event of an abnormal termination or rollback by the
value of the recoverability attribute.

• SFS specific file attributes like recoverability and overwrite may be coded in CSL routines.

Using XEDIT to Access Files in Storage
XEDIT provides a set of SUBCOM interfaces to allow applications to read and write data to a file being
edited. CMS uses the SUBCOM facility to allow a number of CMS commands to use an XEDIT interface to
access files in storage. Applications can read or write specific records without having to go to disk or use
the program stack to transfer the data to or from XEDIT. This improves performance.

CMS uses the XEDIT interface for processing the FILELIST, HELP, MACLIST, PEEK, and SENDFILE
commands. The interface is invoked by specifying the XEDIT option on the LISTFILE, MACLIB, or
NAMEFIND commands. This option can only be specified from the XEDIT environment.

The XEDIT interface is similar in structure to the FS macro interface of the CMS file system. The
application must provide a FORM=E FSCB. The return code is returned in register 15. See the z/VM:
CMS Macros and Functions Reference for descriptions of the FSCB and FST data areas.

Two methods of invocation are available:
CMSCALL macro

This is the preferred method. Specify CALLTYP=SUBCOM and the address of the FSCB for the PLIST
parameter.

SVC 202
Register 1 must point to an FSCB below the 16MB line, and its high-order byte must be X'02' to
indicate SUBCOM invocation.

The routines available, their entry point names, and error return codes are:

• DMSXFLST - This routine returns the characteristics of a file (RECFM, LRECL, and so forth) in an FST
whose address is placed in field FSCBBUFF. It also ensures that the file is in the XEDIT ring. The return
codes are:
0

File is in the XEDIT ring
24

Incomplete file ID specified
28

File is not in the XEDIT ring.

CMS File System

128 z/VM: 7.4 CMS Application Development Guide for Assembler

Note: Return codes are similar to those for ESTATE.
• DMSXFLRD - This routine transfers one record from XEDIT storage to the calling program. If RECFM=F, it

may transfer more than one record. The return codes are:
0

Read performed
1

File is not in the XEDIT ring
2

Invalid buffer address
5

Number of records to read equals zero
7

Record format is not fixed or variable
8

Buffer is too small (records truncated)
11

Number of records to read is not equal to one for V-file
12

End of file.

Note: Return codes are similar to those for FSREAD.
• DMSXFLWR - This routine transfers one record from the calling program to XEDIT storage. If the record

format is fixed, it may transfer more than one record. The return codes are:
0

Write performed
2

User buffer address equals zero
7

Skip over unwritten records
8

Number of bytes is not specified
11

Record format is not fixed or variable
13

No more space is available
14

Number of bytes is not integrally divisible by the number of records
15

Record length is not the same as previous
16

Record format of fixed or variable is not the same as previous
18

Number of records to read is not equal to one for V-file
28

File is not in the XEDIT ring.

Note: Return codes are similar to those for FSWRITE.
• DMSXFLPT - This routine moves the current line pointer to a record the calling program specifies. If you

specify the read and write pointer as all ones (X'FFFFFFFF'), the current line pointer is returned in the
FSCB. The return codes are:

CMS File System

Chapter 9. CMS File System 129

0
Point performed

1
File not found

2
Invalid FSCB

Note: Return codes are similar to those for FSPOINT.

When this interface is used, XEDIT determines if a file is in the XEDIT ring (active in storage) and does the
processing required. The files in the XEDIT ring are always "open". You can add new files to the ring with
the XEDIT subcommand and "close" files in the ring with the FILE or QUIT subcommands.

The current line pointer serves the function of both the read and write pointer of the CMS file system.
If RECNO=0 is specified in a call to DMSXFLRD, the data is transferred to the calling program starting at
the current line pointer. Transfer is stopped when the specified number of lines has been transferred or
when end-of-file is reached. The current line pointer is advanced by one for each record transferred to the
calling program. If the current line pointer was at the end-of-file when DMSXFLRD was called, no data is
transferred and an end-of-file condition is returned.

If RECNO=0 is specified in a call to DMSXFLWR, new records are written starting at the line pointed to
by the current line pointer. These new records replace any existing records or add new records if at the
end-of-file. The current line pointer is advanced to the line following the last line written at the end of the
operation. Note that writing to a record in the middle of a V-format does not result in truncation of the
file from that point as it would in the CMS file system. Truncation (or spilling when SET SPILL ON|WORD)
may occur if the file is in V-format and the LRECL of the file is less than the length of the record(s) being
written. No message is issued and the return code is 0.

Example
The following program is an example of using the XEDIT interface to access files in storage.

XMPXFL START
 USING *,R12
 LR R12,R15 Establish addressability
 ST R14,R14SAVE Save return address

 USING FSCBD,R5 Mapping of FSCB
 LA R5,XFSCB Get FSCB address
 MVC FSCBCOMM,=C'DMSXFLRD' Put routine name in FSCB
 CMSCALL PLIST=(R5), Read a line from XEDIT storage X
 CALLTYP=X'02'
 LTR R15,R15 If RC=0 then read was performed
 BNZ ERRRD If RC¬=0, call an error routine

 ⋮

ERRRD DS 0H Error routine here
 L R14,R14SAVE Get return address back
 BR R14 Return

XFSCB FSCB 'ROCKFRD FILE A', File ID to get info from
 FORM=E, Need extended format FSCB
 BUFFER=MYBUFF, Buffer to return info in
 BSIZE=MYLEN, Length of buffer
 RECNO=1, Access first record in ROCKFRD
 NOREC=1 Read one record in ROCKFRD
MYBUFF DS CL80 Buffer to store info
MYLEN EQU 80 Buffer length

R14SAVE DS A Return address
 LTORG
 EJECT ,
 FSCBD Map FSCB
 REGEQU Define register equates
 END

Figure 21. Using the XEDIT Interface to Access Files in Storage

CMS File System

130 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 10. Using the File System Macros

This chapter describes CMS macros you can use to manipulate CMS files, including:

• How you can use the file system macro for file I/O
• Sample programs that use file management macros.

File I/O Using FS Macros — A Typical Scenario
Here are suggested steps you may need to follow in order to open, read from, write to, and close a file:

1. Reserve space for and initialize a file system control block for the file — Before CMS can read from
or write to a file, the file must have a file system control block (FSCB). You can use the FSCB
macroinstruction to explicitly create a file system control block for files.

If the storage for the FSCB is within the program, then you can specify the parameters on the FSCB
macro to perform initialization of the FSCB. An example of a parameter for initialization would be the
OPENTYP parameter. OPENTYP lets you indicate what type of open will be performed on the file.

If the FSCB is within dynamically allocated storage (coded in a DSECT which maps that storage),
the FSCB macro only reserves space within that DSECT and cannot be used to initialize the FSCB.
Parameters for initialization need to be specified on the executable macros. In this case, the OPENTYP
parameter would need to be specified on the FSOPEN macro.

2. Open a file — Use the FSOPEN macro to get a file ready for I/O. You can use FSOPEN to determine if
the file exists and to check the attributes of the file. If you are opening a new file, you need to define
the attributes of the file (such as file name or record format). If you plan to operate on an existing file,
then information about the file is returned by FSOPEN.

Although it is possible to open a file implicitly with a read or write, it is recommended that you use
FSOPEN to open the file. FSOPEN lets you specify the intent of your operations plus check if the file
has the correct characteristics for your operations.

Note: The FSSTATE macro also lets you determine the status of a file. However, FSSTATE provides
just a snap shot of the file for SFS. The state of the file could actually change before you perform
an operation on it. FSOPEN holds an image of the file that matches the attributes of the file you will
manipulate. FSOPEN places an implicit lock on the file. This lock protects the file from other programs
or users, and retains any authority your program had to the file.

3. Perform the required operation — The FSREAD and FSWRITE macros allow you to perform sequential
or nonsequential I/O to a file. You can implicitly open a file by using the FSREAD or FSWRITE without a
previous FSOPEN. However, it is recommended to use FSOPEN (see note above).

4. Close a file — The FSCLOSE macro lets you close a file. Closing the file signifies that you are done with
the type of operation you specified on the FSOPEN or FSCB macros (or implicitly identified by using
FSREAD or FSWRITE). The file attributes are updated, but not necessarily written to disk. FSCLOSE
releases the storage and resources that the file was using.

Closing a file makes it available for other types of processing. For example, a file could be renamed or
opened again for another operation. Closing the file does not necessarily commit any changes to disk
or directory.

Note: An error closing an SFS file may cause all updates on the work unit to be rolled back.
5. Commit changes made to file — For minidisk files, a commit is made when the last file opened for write

is closed (using FSCLOSE) for that particular minidisk. For SFS files, a commit is made based on a work
unit. The FS interface uses the default work unit that was current when the file was opened. When you
use FSCLOSE on the last opened output file within a work unit, then FSCLOSE performs a coordinated
commit on the work unit.

File System Macros

© Copyright IBM Corp. 1990, 2024 131

Note: An error during commit may cause all updates on the work unit to be rolled back.
6. Erasing CMS files — For minidisk or SFS files accessed as read/write, you can use FSERASE to delete a

file.

Creating a File System Control Block
The file system control block (FSCB) is a PLIST that contains information about a CMS file. A
recommended practice is to create or establish an FSCB for each file you wish to process. IBM
recommends that you do not use the same FSCB to reference several different files. You can use multiple
FSCBs to reference the same file. For example, you may want one FSCB for writing and a different FSCB
for reading the file. File characteristics are inherent to the file and not to the FSCB.

If your application will be reentrant or run in a shared segment, then you will have to specify the address
of an FSCB on each FS macro you invoke. The FSCB will need to be defined in a writeable storage area.
Coding the FSCB macro only reserves storage, it does not initialize the FSCB. You can use the FSCBD
macro to map to the FSCB and extract any information you need.

If your application will not be reentrant, you should still use an FSCB. It may suit your needs to have the
FSCB be within your program. In this case, the FSCB is generated and initialized at compile time. In-line
FSCBs make programs more efficient. You do not specify parameters (such as record number) on the
operations (such as FSREAD or FSWRITE). You specify attributes of the operation with the FSCB macro.
For example, the following macro placed in your program, creates and initializes a file system control
block for the file INPUT TEST A1:

INFILE FSCB 'INPUT TEST A1',OPENTYP=READ,FORM=E,BUFFER=BUFF, *
 BSIZE=80,CACHE=YES

If you were to open a file specifying FSCB=INFILE on an FSOPEN, you do not need to specify the
OPENTYP or CACHE parameters. These parameters would be already initialized by the FSCB macro.
Likewise, by using FSCB=INFILE on an FSREAD, you would not need the BUFFER or BSIZE parameters
on the FSREAD. Here is an example showing FSCB specified on executable macros. This coding method
tends to use less space and can make programs efficient.

READ FSREAD FSCB=INFILE,FORM=E,ERROR=INERR
 FSWRITE FSCB=OUTFILE,FORM=E,ERROR=OUTERR
 B READ
 .
 .
 .
CLOSE FSCLOSE FSCB=INFILE,ERROR=CLERR
 FSCLOSE FSCB=OUTFILE,ERROR=CLERR
 .
 .
 .
INFILE FSCB 'INPUT FILE A1',BUFFER=SHARE,BSIZE=80,FORM=E
OUTFILE FSCB 'OUTPUT FILE A1',BUFFER=SHARE,BSIZE=80,FORM=E
SHARE DS CL80

As a convenience, it is not necessary to specify FSCB on your executable FS macros. The FS macros
will generate an in-line parameter list (FSCB) for that particular invocation. This technique can be less
cumbersome and self-documenting, because you do not need to look at a corresponding FSCB macro to
see which options are in effect. However, this method tends to require more space and tends to be less
efficient than specifying FSCB on executable macros. Here is how the previous example would be coded
without specifying the FSCB parameter:

READ FSREAD 'INPUT FILE A1',BUFFER=BUFF,BSIZE=80, *
 ERROR=RDERR,FORM=E
 FSWRITE 'OUTPUT FILE A1',BUFFER=BUFF,BSIZE=80, *
 ERROR=WRTERR,FORM=E
 B READ
 .
 .
 .
CLOSE FSCLOSE 'INPUT FILE A1',ERROR=CLERR

File System Macros

132 z/VM: 7.4 CMS Application Development Guide for Assembler

 FSCLOSE 'OUTPUT FILE A1',ERROR=CLERR
BUFF DS CL80

Note that neither of these examples generate reentrant code. For an example of using FSCB macro in
reentrant code, see the sample programs at the end of this chapter.

Contents of the File System Control Block
You can use the labels generated by the FSCBD DSECT to reference areas in the file system control block.
The preferred practice though, is to use the FS macros to set these values. The FS macros provide for
some error checking and handle any difference between extended and nonextended FSCB formats.

Note: You should not use explicit displacements to reference fields within the file system control block.

The FSCBD macro maps the file system control block as follows:

FSCBD DSECT Format:
*
 FSCBD
FSCBD DSECT
FSCBCOMM DS CL8 File system command (e.g. RDBUF)
FSCBFILE DS CL18 File ID (name, type, and mode)
 ORG FSCBFILE
FSCBFNFT DS CL16 File name and file type
 ORG FSCBFNFT
FSCBFN DS CL8 File name
FSCBFT DS CL8 File type
FSCBFM DS CL2 File mode (letter and number)
 ORG FSCBFM
FSCBFML DS CL1 File mode letter
FSCBFMN DS CL1 File mode number
FSCBITNO DS H Relative record number to be
 accessed on FSREAD and FSWRITE
 (applies only to the nonextended
 FSCB)
FSCBBUFF DS A Address of the input/output buffer
 for FSREAD and FSWRITE (also used
 on calls to DMSSTT for the FST
 address)
FSCBSIZE DS F Length (in bytes) of the input/output
 buffer (also used to return the record
 length on FSOPEN)
FSCBFV DS CL2 Record format and first flag byte
 ORG FSCBFV
FSCBRECF DS CL1 Record format - F or V
FSCBFLG DS XL1 First flag byte
*
* 'FSCBFLG' flag byte definition
*
FSCBTHEX EQU X'80' Space threshold exceeded (SFS only)
FSCBITAV EQU X'40' Item available (no longer used)
FSCBEPL EQU X'20' Extended PLIST (FORM=E)
FSCBMSG EQU X'10' MSG=YES on FSSTATE or FSOPEN
FSCBSTW EQU X'08' STATEW specified on FSSTATE
FSCBCACY EQU X'04' CACHE=YES specified
FSCBCACN EQU X'02' CACHE=NO specified
FSCBRCAV EQU X'01' Previous record null (no longer used)
FSCBNOIT DS H Number of records to be accessed on
 FSREAD and FSWRITE (applies only to the
 nonextended FSCB)
 ORG FSCBNOIT Extended format fields defined
 over nonextended FSCBNOIT
FSCBFLG2 DS XL1 Second flag byte
*
* 'FSCBFLG2' flag byte definition (FORM=E only)
*
FSCBNMAC EQU X'80' NOMSG=ACTIVE specified on FSOPEN
FSCBNMNF EQU X'40' NOMSG=NOTFOUND specified on FSOPEN
FSCBNMOS EQU X'20' NOMSG=OSDOS specified on FSOPEN
FSCBOTYP DS CL1 OPENTYP value
*
* 'FSCBOTYP' Values (FORM=E only)
*
FSCBTNON EQU X'00' OPENTYP=NONE specified
FSCBTRD EQU C'R' OPENTYP=READ specified

File System Macros

Chapter 10. Using the File System Macros 133

FSCBTWR EQU C'W' OPENTYP=WRITE specified
FSCBTNEW EQU C'N' OPENTYP=NEW specified
FSCBTREP EQU C'X' OPENTYP=REPLACE specified
FSCBNORD DS F Number of bytes actually
 read on FSREAD
 ORG FSCBNORD
*
* 'FSCBFST' is returned on FSOPEN. Its value
* is based on the OPENTYP specified and whether or not
* the file exists. Note that a nonextended format FSCB
* (FORM=E not specified) implies OPENTYP=NONE. The values
* are as follows:
*
* File doesn't exist FSCBFST=A(0)
*
* File exists:
* Not FORM=E FSCBFST=A(Copy of 40 byte FST)
* OPENTYP=NONE FSCBFST=A(Copy of 64 byte FST)
* OPENTYP=READ FSCBFST=A(Copy of 64 byte FST)
* OPENTYP=WRITE FSCBFST=A(Copy of 64 byte FST)
* OPENTYP=REPLACE FSCBFST=A(-1)
* OPENTYP=NEW Error, FSCBFST is unchanged
*
FSCBFST DS A Address of a copy of the FST
 returned on FSOPEN
*
* The following fields apply only to the extended form FSCB
* (i.e., FORM=E was specified).
*
FSCBAITN DS F Relative record number to be
 accessed on FSREAD and FSWRITE
 (also referred to as
 the "alternate item number")
FSCBANIT DS F Number of records to be accessed
 on RSREAD and FSWRITE (also
 referred to as the "alternate
 number of items")
FSCBWPTR DS F Extended write pointer (input
 on FSPOINT FORM=E, output on
 FSOPEN)
FSCBRPTR DS F Extended read pointer (input
 on FSPOINT FORM=E, output on
 FSOPEN)
FSCBLNBY EQU *-FSCBD Length (in bytes) of the extended
 FSCB

The FSCBAITN, FSCBANIT, FSCBWPTR, and FSCBRPTR fields are generated in the FSCB only when the
extended format (FORM=E) is specified. If FORM=E is specified, the FSCBITNO and FSCBNOIT fields are
reserved for other purposes.

Mapping the File System Control Block
Regardless of whether you use the FSCB macro to create an FSCB explicitly, or you use the FSREAD or
FSWRITE macros to create an FSCB implicitly, use the FSCBD macro to map the file system control block.

Using FSCBD DSECT Labels
You can also use the labels generated by the FSCBD DSECT to reference, examine, and change fields in
the file system control block explicitly.

For example, the following code opens a file and checks the record length and record format of the file:

 LA R5,INFSCB
 USING FSCBD,R5
 FSOPEN FSCB=(R5),FORM=E
 CLC FSCBSIZE,=AL4(L'BUFF)
 BNE BADRECL
 CLI FSCBRECF,C'F'
 BNE NOTFIXED
 .
 .
 INFSCB FSCB 'INPUT TEST A1',
 BUFFER=BUFF,
 BSIZE=80,
 OPENTYP=READ,

File System Macros

134 z/VM: 7.4 CMS Application Development Guide for Assembler

 FORM=E,
 RECFM=Ffile system control block:

The following code changes the file name in a file system control block:

 LA R5,INFSCB
 USING FSCBD,R5
 .
 .
 MVC FSCBFN,NEWNAME
 .
 .
 INFSCB FSCB 'INPUT TEST A1',FORM=E
 NEWNAME DC CL8'OUTPUT'
 FSCBD

Modifying Fields in the File System Control Block
There are several options you can specify on the FSCB, FSREAD, FSWRITE, and FSOPEN macros that
allow you to specify or change the values in the file system control block.

The options you can specify include:

• RECFM — Whether the file record format is fixed or variable.
• BUFFER — The address of a buffer from which records are to be read or written. You must specify a

BUFFER value before you perform a read or write operation.
• FORM — Whether an extended format file system control block is to be generated. An extended format
file system control block allows you to specify a value (up to 231-1) for RECNO and NOREC. If you do
not specify FORM=E, the RECNO and NOREC values cannot exceed 65535. Users should always code
FORM=E on the FSCB, FSOPEN, FSREAD, FSWRITE, FSPOINT, and FSSTATE.

Whenever you use the FSCB parameter on any of the executable FS macros, the FORM parameter must
be the same on the executable macro and the FSCB it references.

• BSIZE — The number of bytes to be read or written for each read or write request.
• RECNO — The record number of the next record to be accessed, relative to the beginning of the file,

record 1. The value 0 indicates that records are to be accessed sequentially.
• NOREC — The number of records to be accessed in the next operation. This value must be 1 for

V-format files.

Using the File System Control Block
The following example shows you how to code an FSCB macroinstruction to define various file and buffer
characteristics and how to use the same file system control block to refer to different files:

 FSREAD 'INPUT FILE A1',FSCB=COMMON,FORM=E
 FSWRITE 'OUTPUT FILE A1',FSCB=COMMON,FORM=E
 .
 .
 .
COMMON FSCB BUFFER=SHARE,RECFM=V,BSIZE=200,FORM=E
SHARE DS CL200

In the above example, the fileid specifications on the FSREAD and FSWRITE macroinstructions modify the
file system control block at the label COMMON each time a read or write operation is performed .

IBM recommends however, that you do not use the same FSCB to reference several different files. If
you must, you can override the fileid and any of the other options on the FSOPEN, FSWRITE, or FSREAD
macroinstructions when you reference a file by way of its FSCB. If, however, you use the FSOPEN macro
to open an existing file, CMS resets the BSIZE and RECFM fields in the FSCB to reflect actual file
characteristics, not necessarily the characteristics you specify on FSOPEN.

When you use the same FSCB for multiple files, care must be taken to specify the appropriate FSCB
options on any other macros that reference the FSCB, particularly when the options differ from file to
file. Each time these options are specified on another macro (FSOPEN, FSREAD, FSWRITE) the FSCB is

File System Macros

Chapter 10. Using the File System Macros 135

modified. This may lead to an error if a subsequent operation for a different file is issued which allows an
option to default to the value present in the FSCB.

For example:

 FSWRITE 'NEW FILE A1',FSCB=OUTFSCB,RECFM=F,FORM=E
 FSWRITE 'OLD FILE A1',FSCB=OUTFSCB,FORM=E
 .
 .
 .
OUTFSCB FSCB RECFM=V,BUFFER=RECAREA,BSIZE=80,FORM=E

Even though OUTFSCB has RECFM=V specified, the FSWRITE to ‘NEW FILE A1’ with RECFM=F will change
OUTFSCB to contain RECFM=F. The second FSWRITE to ‘OLD FILE A1’ will assume RECFM=F (not V)
because that is the value that is now in the FSCB. Thus, if the file ‘OLD FILE A1’ on disk is actually
RECFM=V, an error will occur on the second FSWRITE, even though the FSCB had specified RECFM=V. To
avoid this problem, the preferable approach is to code a separate FSCB for each file which is being used.
Otherwise, you must specify the option (in this example, RECFM) on each FSWRITE, FSREAD, and so on,
which references the same FSCB.

Opening CMS Files
Use the FSOPEN macro to establish a logical connection to a file for subsequent reads or writes or both.
The FSOPEN macro allows you to open a file and specify the intent, or the type of operation that you will
be performing, and the type of I/O that you want performed.

You can indicate the intent by specifying one of the following values for the OPENTYP parameter:

READ means that the file will only be read. You cannot open a file for READ if it does not exist.

WRITE indicates that the file may be written to or read from. All changed and added records are written.
The other records you do not modify will remain unchanged. If the file does not exist, it is created.

NEW indicates that the file does not exist and it will be created. It may then be read from or written to. If
the file already exists, it is an error and the file is not opened.

REPLACE means that the file is replaced with only the subsequently written records. If the file does
not exist, it is created. You can only read records that you have written (otherwise you will receive
an end-of-file condition). If you close the file without writing any records, the contents of the file are
unchanged.

NONE indicates that you do not intend to open the file at this time. This is essentially equivalent to an
FSSTATE, and differs from an FSSTATE in that it may be used to create an FSCB for the file.

Note that you must specify FORM=E to use the OPENTYP parameter.

When you open a file, CMS will update the fields of the file system control block and for existing files
will return the address of a copy of the file's FST. Fields in the FSCB and FST will reflect the actual
characteristics of the file. Information returned in the FSCB and FST together include the number of
records in the file, record length, record format, read and write pointers, and date and time the file was
last modified. You can use the FSCBD macro to access fields within the FSCB. You can use the FSTD
macro to access fields in the copy of the FST.

If an existing F-format file is opened with an intent of WRITE, the length of each record is determined
at open from the file's directory entry and cannot be changed by the first write to the file. If an existing
F-format file is opened with an intent of REPLACE, the length of each record is the length of the first
record written to the file, just as it would be if the file did not exist.

You can also use the FSOPEN (and consequently the FSCB) macro to indicate whether caching of multiple
data blocks is to be performed for this file. To use the CACHE parameter, FORM=E must also be specified.
If FORM=E is not specified, or the file is not explicitly opened, then CACHE=DEFAULT is assumed when
the file is opened by way of the first FSREAD, FSWRITE, or FSPOINT. See “Caching” on page 119 for some
suggestions on caching.

File System Macros

136 z/VM: 7.4 CMS Application Development Guide for Assembler

Reading and Writing CMS Files
This section contains several examples that illustrate how to use the FSREAD and FSWRITE macros to
read and write files.

Single Reads and Writes
By default, FSREAD and FSWRITE access files sequentially. When you read files with the FSREAD
macroinstruction, reading begins with record number 1. When you write records to an existing file with the
FSWRITE macro, writing begins following the last record in the file.

The following example shows how to use FSREAD and FSWRITE to read records from one file and write
them into another:

 FSREAD FSCB=INFILE,FORM=E,ERROR=INERR
 FSWRITE FSCB=OUTFILE,FORM=E,ERROR=OUTERR
 .
 .
 .
INFILE FSCB 'INPUT FILE A1',BUFFER=SHARE,BSIZE=80,FORM=E
OUTFILE FSCB 'OUTPUT FILE A1',BUFFER=SHARE,BSIZE=80,FORM=E
SHARE DS CL80

Multiple Reads and Writes to a Fixed File
By default, FSREAD and FSWRITE operate on one record at a time. The following example shows how you
can use the NOREC parameter to read and write more than one fixed-length record at a time:

 FSREAD FSCB=INFILE,NOREC=10,FORM=E,ERROR=INERR
 FSWRITE FSCB=OUTFILE,NOREC=10,FORM=E,ERROR=OUTERR
 .
 .
 .
INFILE FSCB 'INPUT FILE A1',BUFFER=SHARE,BSIZE=10*80,FORM=E
OUTFILE FSCB 'OUTPUT FILE A1',BUFFER=SHARE,BSIZE=10*80,FORM=E
SHARE DS CL(10*80)

Records in a file with variable-length records can ONLY be read or written one at a time.

Variable Length Records
When you write variable-length records, you must specify RECFM=V either in the file system control block
for the file or on the FSWRITE or FSREAD macroinstruction. The read/write buffer should be large enough
to accommodate the largest record you read or write.

When you write variable-length records, use the BSIZE= parameter on the FSWRITE macroinstruction to
indicate the record length for each record you write.

The following example shows how you could read and write a variable-length file. Note, on return from
FSREAD, register 0 contains the actual number of bytes read.

READ FSREAD 'DATA CHECK A1',BUFFER=SHARE,BSIZE=130, *
 ERROR=OUT,FORM=E
 FSWRITE 'COPY DATA A1',BUFFER=SHARE,BSIZE=(R0), *
 RECFM=V,FORM=E
 B READ
 .
 .
 .
SHARE DS CL130

Note: When you update files of variable-length records, the replacement record must be the same length
as the original record. An attempt to write a record longer or shorter than the original record results in
truncation of the file at the specified record number. No error return code is given.

File System Macros

Chapter 10. Using the File System Macros 137

Reading Specific Records
CMS uses pointers to keep track of which records were last written and read. To read or write a specific
record, you can specify the RECNO parameter of the FSREAD or FSWRITE macros. You can also use the
FSPOINT macro to reset these pointers. For example, the following code illustrates how you could read
the 10th and then the 25th records in a file:

 FSREAD FSCB=RFSCB,RECNO=10,FORM=E
 .
 .
 .
 FSREAD FSCB=RFSCB,RECNO=25,FORM=E
 .
 .
 .
RFSCB FSCB 'INPUT FILE A1',BUFFER=COMMON,BSIZE=120, *
 FORM=E,RECFM=F
COMMON DS CL120

The following code illustrates how you could read 5 records, skip to record 10, and read 5 more records.

 .
 .
 .
 LA R5,5
READLP1 FSREAD FSCB=RFSCB,FORM=E
 .
 .
 .
 BCT R5,READLP1
*
 FSPOINT FSCB=RFSCB,RDPNT=10,FORM=E
*
 LA R5,5
READLP2 FSREAD FSCB=RFSCB,FORM=E
 .
 .
 .
 BCT R5,READLP2
 .
 .
 .
RFSCB FSCB 'INPUT FILE A1',BUFFER=COMMON,BSIZE=120, *
 FORM=E,RECFM=F
COMMON DC CL120

End-of-File Checking
When CMS reaches the end of a file, it returns in register 15 a return code of 12. You can use the ERROR=
operand of the FSREAD macro to specify an error handling routine to check for end of file.

End-of-file occurs on the first read where RECNO is beyond the end of a file. When RECNO=0 or records
are being read sequentially, end-of-file occurs when the read pointer is greater than the last record
number of file.

Monitoring SFS Filespace Threshold
The FSCBTHEX (X'80') indicator bit of the FSCBFLG byte indicates when you have reached your SFS
filespace threshold. Because the CMS portion of the file system does buffering, you will only see the
indicator when it is necessary to write the buffers to the file pool. This can occur during a read, write, or
close. For small files, the indicator might not be returned until the close.

If your application is using non-shared SFS files, (see “Using Programs on Non-Shared SFS Files” on page
119), the file system will return a return code of 13 in register 15 when you have reached your file space
limit. If your application is sharing files, you must examine the threshold indicator to determine whether
you have enough blocks available to continue writing to the file space.

File System Macros

138 z/VM: 7.4 CMS Application Development Guide for Assembler

Closing Files and Committing Changes
When a program completes (end-of-command), CMS closes all files that have been left open and
implicitly commits any changes. However, it is recommended that you close (with FSCLOSE) all files
you have opened (with FSOPEN, FSREAD, FSWRITE or FSPOINT). You need to close all output files on a
minidisk to commit any changes. Note that the CMS FINIS command is equivalent to FSCLOSE.

Closing a file makes it available for other types of processing. For example, a file could be renamed or
opened again for another operation. Closing the file does not necessarily commit any changes to disk.
However, all files accessed with the FS interface need to be closed before any commit can take place.

For minidisk files, a commit is made when the last file opened for write is closed (using FSCLOSE) for
that particular minidisk. For SFS files, a commit is made based on a work unit. The FS interface uses the
default work unit that was current when the file was opened. When you use FSCLOSE on the last file that
was opened (or the last output file opened) within a work unit, then FSCLOSE performs a coordinated
commit.

Note: An error closing an SFS file may cause all updates on the work unit to be rolled back.

Note For EXEC Writers
Suppose, you call three programs, one after another, from within an exec, and the programs do not
commit work. The end of command is after all three programs execute and the exec ends, not after each
program ends. In this case, changes are not committed until all three programs successfully run and the
exec ends.

The problem is that you cannot always predict how users will use your program. While you may want it to
run stand-alone, there is no guarantee that a user would not put it in an exec with other programs, or call
it using some other mechanism.

Erasing Files
Use the FSERASE macroinstruction to delete a CMS disk file. For example, to delete the file GETRID
OFITNOW A1, code

 FSERASE FSCB=TEMP
 .
 .
 .
TEMP FSCB 'GETRID OFITNOW A1',FORM=E

Note: To use FSERASE on a minidisk file, the user must have accessed the minidisk read/write. To erase a
shared file, the user must have accessed the directory read/write and have read/write authority to the file.
If the file is an SFS alias, only the alias is erased. The base file remains intact. When the file is an SFS base
file, all authorities and aliases to that file are dropped.

Sample Programs
The following programs illustrate the use of the CMS file management macros. The first program
illustrates the nonreentrant coding technique. The second program illustrates the reentrant coding
technique.

Nonreentrant
This program illustrates the nonreentrant coding technique. Nonreentrant means that the program either
modifies its external program parameters or its own instructions/storage areas during execution.

File System Macros

Chapter 10. Using the File System Macros 139

A SAMPLE FILE MANAGEMENT PROGRAM - NONREENTRANT
* Function:
* This program makes a copy of an existing file under another
* name; if a file of that name already exists, it is replaced
* by the copy. The existing file must have fixed-length
* 80-byte records.
* Example invocation:
* COPYF80 INPUT FILE A OUTPUT FILE A
* Input:
* Tokenized PLIST in R1
* Output:
* Either the expected copy of the file or an error message.
* The return code is zero if the copy was successful and
* nonzero otherwise.
* Note:
* This version illustrates the nonreentrant coding technique.
COPYF80 CSECT
 LR R12,R15 establish code addressability
 USING COPYF80,R12 using the entry point address
 USING PLIST,R1 passed in R15
 R1 -> tokenized PLIST
* The address of the parameter list is in register 1. It
* contains seven doubleword fields: the first field contains
* the name of the command that invokes this program; the
* remaining six fields contain the file names, file types,
* and file modes of the input and output files. The file
* ID of the input file starts 8 bytes from register 1, the
* file ID of the output file starts 32 bytes away.
*
 LA R2,INFILE R2 = address of input file ID
 in PLIST
 LA R3,OUTFILE R3 = address of output file ID
 in PLIST
 DROP R1
* Open the input file. Specifying the file id in a register
* will cause it to be copied into the FSCB by the FSOPEN macro
* expansion. Let FSOPEN handle any errors:
*
 FSOPEN (R2), input file ID *
 FSCB=INFSCB, FSCB for input file *
 OPENTYP=READ, opening for READ *
 MSG=YES, let FSOPEN issue error
 messages *
 ERROR=INERR, where to go on an error *
 FORM=E extended format FSCB
* Verify that the input file has fixed 80-byte records.
 LA R10,INVFILE set error return code
 USING FSCBD,R1
 CLI FSCBRECF,C'F' input file have fixed-length
 records?
 BE CHKLRECL branch if yes
 APPLMSG APPLID=CMS, tell user if no *
 TEXT='Input file does not have fixed-length
 records'
 B CLOSEIN close the open input file and
 exit
CHKLRECL DS 0H
 CLC FSCBSIZE,=F'80' input file record length = 80?
 BE OPENOUT branch if yes
 APPLMSG APPLID=CMS, tell user if no *
 TEXT='Input file does not have 80-byte records'
 B CLOSEIN close the open input file and exit
 DROP R1
* Open the output file. Let FSOPEN handle any errors:
OPENOUT DS 0H
 FSOPEN (R3), output file ID *
 FSCB=OUTFSCB, FSCB for output file *
 OPENTYP=REPLACE, opening for REPLACE *
 MSG=YES, let FSOPEN issue error messages *
 ERROR=CLOSEIN, close input file and exit *
 FORM=E extended format FSCB
* Both files are now open. Read a record from the input file
* and write the record on the output file.
READLOOP DS 0H read in and write out a record
 FSREAD FSCB=INFSCB, input file FSCB updated by FSOPEN *
 ERROR=EOF, where to go on a read error *
 FORM=E extended format FSCB
 FSWRITE FSCB=OUTFSCB, output file FSCB *
 ERROR=WRITERR, where to go on a write error *
 FORM=E extended format FSCB

File System Macros

140 z/VM: 7.4 CMS Application Development Guide for Assembler

 B READLOOP loop back for next record
* Come here when a read of the input file failed.
EOF DS 0H
 C R15,=A(ENDFILE) is failure end-of-file?
 BNE READERR error if not end-of-file
 SR R10,R10 otherwise, normal completion
 APPLMSG APPLID=CMS, tell user *
 TEXT='Copying is complete'
 B CLOSEOUT close files and exit
*
* Error routine if an error occurred while writing a file:
WRITERR DS 0H
 LR R10,R15 save return code in R10
 APPLMSG APPLID=CMS, tell user *
 TEXT='Error code &&1 writing file', *
 SUB=(DEC,(R10))
 C R10,=A(ROLLBACK)
 BE EXIT
 B CLOSEOUT close files and exit

* Control reaches this point if the input file failed to open.
INERR DS 0H
 LR R10,R15 save FSOPEN return code in R10
 B EXIT exit to the caller
* Control reaches this point if a read error was not end of file.
READERR DS 0H
 LR R10,R15 save return code in R10
 APPLMSG APPLID=CMS, tell user *
 TEXT='Error code &&1 reading file',*
 SUB=(DEC,(R10))
 C R10,=A(ROLLBACK)
 BE EXIT
CLOSEOUT DS 0H
 FSCLOSE FSCB=OUTFSCB close the output file
 LTR R15,R15 successful?
 BZ CLOSEIN yes - go close input
 LR R10,R15 no - save return code
 C R15,=A(ROLLBACK) did an SFS rollback occur?
 BE EXIT yes - no need to close input
 file
CLOSEIN DS 0H
 FSCLOSE FSCB=INFSCB close the input file
 LTR R15,R15 successful?
 BZ EXIT yes - cleanup and exit
 LR R10,R15 no - save return code
* Exit
EXIT DS 0H
 CMSRET RC=(R10) return to caller
*
* Working storage:
INFSCB FSCB BUFFER=BUFF,BSIZE=80,FORM=E,CACHE=YES
OUTFSCB FSCB BUFFER=BUFF,BSIZE=80,FORM=E,CACHE=YES
BUFF DS CL80 buffer for records
* Return codes:
INVFILE EQU 24 invalid file return code
ENDFILE EQU 12 end-of-file return code
ROLLBACK EQU 31 SFS rollback return code
* DSECT to define the tokenized input PLIST:
PLIST DSECT input tokenized PLIST
 DS CL8 command used to invoke the
 program
INFILE DS 3CL8 file name, type, mode of input
 file
OUTFILE DS 3CL8 file name, type, mode of output
 file
 REGEQU register equates
 FSCBD FSCB mapping
 END

Reentrant
This program illustrates the reentrant coding technique. This program can be entered repeatedly and can
be entered before prior executions are complete. For reentrant programs, neither their external program
parameters nor instructions can be modified during execution.

File System Macros

Chapter 10. Using the File System Macros 141

A SAMPLE FILE MANAGEMENT PROGRAM - REENTRANT
* Function:
* This program makes a copy of an existing file under another
* name; if a file of that name already exists, it is replaced
* by the copy.
* The existing file must have fixed-length 80-byte records.
* Example invocation:
* COPYF80 INPUT FILE A OUTPUT FILE A
* Input:
* Tokenized PLIST in R1
* Output:
* Either the expected copy of the file or an error message.
* The return code is zero if the copy was successful and
* nonzero otherwise.
* Note:
* This version illustrates the reentrant coding technique.
*
*
COPYF80 CSECT
 LR R12,R15 establish code addressability using
 USING COPYF80,R12 the entry point address passed
 in R15
 USING PLIST,R1 R1 -> tokenized PLIST
* The address of the parameter list is in register 1. It
* contains seven doubleword fields: the first field contains
* the name of the command that invokes this program; the
* remaining six fields contain the file names, file types,
* and file modes of the input and output files. The file ID
* of the input file starts 8 bytes from register 1, the file ID
* of the output file starts 32 bytes away.
 LA R2,INFILE R2 = address of input file ID in
 PLIST
 LA R3,OUTFILE R3 = address of output file ID in
 PLIST
 DROP R1
* Get local working storage; abend with a message if no
* storage is available.
 LA R0,WKGSTGSZ specify size needed
 CMSSTOR OBTAIN, request the storage *
 BYTES=(R0), *
 ERROR='ABEND', *
 MSG=YES
 LR R13,R1 copy obtained storage address
 to R13
 USING WKGSTG,R13 make working storage addressable

* To initialize the FSCB efficiently,we copy an FSCB from within
* the module which was initialized at assemble time with all the
* parameters we want that can be specified on the FSCB. Thus,
* OPENTYP, RECNO, NOREC, CACHE are all specified on the static,
* unmodified FSCB. When this FSCB is copied to the one in the
* working storage, the target FSCB will thus be initialized.
* The parameters mentioned above will not need to be specified
* on the executable macros, such as FSOPEN and FSREAD, and the
* macros will generate more efficient code since they will not be
* filling in these constant values in the FSCB.
*
 MVC INFSCB,INFSCBI Initialize the FSCB in working
 storage
*
* Open the input file. Specifying the file id in a register
* will cause it to be copied into the FSCB by the FSOPEN
* macro expansion. The BUFFER parameter is specified here
* once (instead of on each read) for efficiency, since it
* does not change on the reads; FSOPEN will set BSIZE and
* RECFM to the record length and format of the existing
* file. Let FSOPEN handle any errors.
*
 LA R4,BUFF get address of record buffer
 FSOPEN (R2), input file ID *
 FSCB=INFSCB, FSCB for input file *
 ERROR=INERR, where to go on an error *
 MSG=YES, let FSOPEN issue error messages *
 BUFFER=(R4), where to read the records into *
 FORM=E extended format FSCB
*
* Verify that the input file has fixed eighty-byte records.
*
 LA R10,INVFILE set error return code
 USING FSCBD,R1

File System Macros

142 z/VM: 7.4 CMS Application Development Guide for Assembler

 CLI FSCBRECF,C'F' input file have fixed-length
 records?
 BE CHKLRECL branch if yes
 APPLMSG APPLID=CMS, tell user if no *
 TEXT='Input file does not have fixed-length
 records'
 B CLOSEIN close the open input file and
 exit
CHKLRECL DS 0H
 CLC FSCBSIZE,=F'80' input file record length = 80?
 BE OPENOUT branch if yes
 APPLMSG APPLID=CMS, tell user if no *
 TEXT=&apos.Input file does not have 80-byte
 records&apos.'
 B CLOSEIN close the open input file and
 exit
 DROP R1

* Open the output file. The BUFFER, BSIZE, RECNO, and NOREC
* parameters are specified here once (instead of on each write)
* for efficiency, since they do not change on the writes. To
* ensure OUTFSCB gets properly initialized, we first clear it to
* all binary zeros, then specify all FSOPEN parameters. Since
* specifying FSCB on FSOPEN means there are no default values for
* those parameters which are available on the FSCB macro, we must
* specify them here so that the fields within the FSCB get
* initialized; otherwise, fields like RECFM might contain
* invalid values.
* * (Note: This does not produce as efficient code as the
* technique used to initialize and open INFSCB, but is
* perhaps more understandable, since the reader can
* clearly see all the parameters in effect on this
* FSOPEN without having to look at the FSCB).
OPENOUT DS 0H
 XC OUTFSCB,OUTFSCB clear the FSCB in working
 torage
 FSOPEN (R3), output file ID *
 FSCB=OUTFSCB, FSCB for output file *
 OPENTYP=REPLACE, REPLACE existing file or make
 new one *
 CACHE=YES, use multiple file system buffers *
 MSG=YES, let FSOPEN issue error messages *
 NOMSG=, no special error message
 suppression *
 ERROR=CLOSEIN, where to go on an error *
 RECFM=F, format of the records
 to be written *
 BSIZE=80, length of the records
 to be written *
 BUFFER=(R4), where to write the records from *
 RECNO=0, use strictly sequential access *
 NOREC=1, number of records to write
 per FSWRITE *
 FORM=E extended format FSCB
*
* Both files are now open. Read a record from the input
* file and write the record on the output file.
*
READLOOP DS 0H read in and write
 out a record
 FSREAD FSCB=INFSCB, input file FSCB updated
 by FSOPEN *
 ERROR=EOF, where to go on a read error *
 FORM=E extended format FSCB
 FSWRITE FSCB=OUTFSCB, output file FSCB *
 ERROR=WRITERR, where to go on a write error *
 FORM=E extended format FSCB
 B READLOOP loop back for next record

* Come here when a read of the input file failed.
EOF DS 0H
 C R15,=A(ENDFILE) is failure end-of-file?
 BNE READERR error if not end-of-file
 SR R10,R10 otherwise, normal completion
 APPLMSG APPLID=CMS, tell user *
 TEXT='Copying is complete'
 B CLOSEOUT close files and exit
*
* Error routine if an error occurred while writing a file:
WRITERR DS 0H
 LR R10,R15 save return code in R10
 APPLMSG APPLID=CMS, tell user *

File System Macros

Chapter 10. Using the File System Macros 143

 TEXT='Error code &&1 writing file', *
 SUB=(DEC,(R10))
 C R10,=A(ROLLBACK)
 BE EXIT
 B CLOSEOUT close files and exit
*
* Control reaches this point if the input file failed to open.
INERR DS 0H
 LR R10,R15 save FSOPEN return code in R10
 B EXIT exit to the caller
*
* Control reaches this point if a read error was
not end of file.
READERR DS 0H
 LR R10,R15 save return code in R10
 APPLMSG APPLID=CMS, tell user *
 TEXT='Error code &&1 reading file', *
 SUB=(DEC,(R10))
 C R10,=A(ROLLBACK)
 BE EXIT
CLOSEOUT DS 0H
 FSCLOSE FSCB=OUTFSCB close the output file
 LTR R15,R15 successful?
 BZ CLOSEIN yes - go close input
 LR R10,R15 no - save return code
 C R15,=A(ROLLBACK) did an SFS rollback occur?
 BE EXIT yes - no need to close
 input file
CLOSEIN DS 0H
 FSCLOSE FSCB=INFSCB close the input file
 LTR R15,R15 successful?
 BZ EXIT yes - cleanup and exit
 LR R10,R15 no - save return code

* Release the working storage and return to the caller.
EXIT DS 0H
 LA R0,WKGSTGSZ get size of storage
 to release
 LR R2,R13 copy address of storage
 to release
 CMSSTOR RELEASE, release the storage *
 ADDR=(R2), location of the storage
 to release *
 BYTES=(R0) size of the storage
 to release
 CMSRET RC=(R10) return to caller
*
* Constants: *
* INFSCBI is an FSCB used only as a skeleton to
* initialize INFSCB. It cannot be used directly on
* executable FS macros, since they modify the FSCB;
* since INFSCBI resid es within this program, it
* must not be modified since this module is re-entrant.
*
INFSCBI FSCB FORM=E, extended format FSCB *
 OPENTYP=READ, provide READ access only *
 CACHE=YES, use multiple file system buffers *
 RECNO=0, use strictly sequential access *
 NOREC=1 number of records to read
 per FSREAD
*
*Return codes:
INVFILE EQU 24 invalid file return code
ENDFILE EQU 12 end-of-file return code
ROLLBACK EQU 31 SFS rollback return code
*
* Working storage:
WKGSTG DSECT INFSCB
 FSCB FORM=E input FSCB
OUTFSCB FSCB FORM=E output FSCB
BUFF DS CL80 buffer for records
 DS 0D align to doubleword boundary
WKGSTGSZ EQU *-WKGSTG working storage size
*
* DSECT to define the tokenized input PLIST:
PLIST
 DSECT input tokenized PLIST
 DS CL8 command used to invoke the program
INFILE DS 3CL8 file name, type, mode of input file
OUTFILE DS 3CL8 file name, type, mode of output file
 REGEQU register equates

File System Macros

144 z/VM: 7.4 CMS Application Development Guide for Assembler

 FSCBD FSCB mapping
 END

File System Macros

Chapter 10. Using the File System Macros 145

File System Macros

146 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 11. Unit Record Devices and Tapes

This chapter describes:

• How to use CMS macros to perform unit record I/O (print on printers, punch on punches, and read from
readers). This includes descriptions of the following macros:

– PRINTL — Prints a line on the printer
– CMSDEV — Provides device information for PRINTL
– PUNCHC — Punches a card
– RDCARD — Reads a record from the reader.

• The macros you can use to manage tapes.
• How to process tape labels in CMS.
• How to use Tape Library Dataservers under CMS OS Simulation.

Printing
Use the PRINTL macroinstruction to write a line or multiple lines to the virtual printer at virtual address
X'000E'. PRINTL lets you specify:

• The data to be printed (this can be actual text, the address of the text, the address of a buffer (for
fixed-length records), or the address of a list that contains addresses of lines to be printed.

• Carriage control characters to specify how many lines should be skipped before the next line is printed.
• Table reference character (TRC) bytes to select the 3800 translate table to be used.
• The address of a 12-byte storage area to contain the device characteristics provided by the CMSDEV

macro.
• The address of an error routine and various macro formats.

For the complete syntax of the PRINTL macro see z/VM: CMS Macros and Functions Reference.

Determining How Many Bytes You Can Print
The following table lists the maximum number of data bytes you can print for the various printers:

Table 20. Maximum Data Bytes You Can Print

Virtual Printer Type Maximum Data Bytes

1403 132

3203 132

3800 204

4248 168

VAFP (Virtual Advanced Function Printer) 32767

To determine the line length, add the following to your bytes of data:

• One byte for the carriage control character if CC=YES is specified,
• One byte for the TRC byte if TRC=YES is specified.

If you do not specify the length, it defaults to 133 characters, unless ‘linetext’ is specified. In this case,
the length is taken from the length of the line text.

Unit Record Devices and Tapes

© Copyright IBM Corp. 1990, 2024 147

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Lines which are greater than the carriage size will not be printed and a return code of 1 will be issued.
However, lines with a carriage control character of X'5A' may have lengths up to 32767 bytes. If you use
quoted data with a X'5A' carriage control, the line length must not be greater than 256 bytes.

Using PRINTL
Before you use PRINTL, you need to know that PRINTL does not print lines on a real printer—PRINTL
prints lines in a file, called a spool file, which is kept in a queue, called a spool file queue, that is
associated with a real device. Because you can assign device attributes to the spool file queue or, for that
matter, to specific spool files, you are said to have a virtual printer.

Without going into detail about the concept of virtual unit record devices it is important to note that
you can use CP and CMS commands to control your virtual printer. For example, you can use the CP
LOADVFCB and SPOOL commands to define the forms control buffer image to be used; you can use the
CMS SETPRT command if you use a virtual 3800; and you must use the CP CLOSE command to close your
printer file before CMS transfers it to CP for printing on a real device.

For more information on unit record devices, see the z/VM: CMS User's Guide.

Carriage Control Characters
Carriage control characters let you control the vertical spacing when you print. You can use the CC
parameter of the PRINTL macro to specify a carriage control character. If you do not specify one, CMS
spaces one line before printing the next line.

The carriage control character may be either ASA (ANSI) or machine code. The valid ASA control
characters are:

Character Hex Code Meaning

 blank 40 Space 1 line before printing
 0 F0 Space 2 lines before printing
 - 60 Space 3 lines before printing
 + 4E Suppress space before printing
 1 F1 Skip to channel 1
 2 F2 Skip to channel 2
 3 F3 Skip to channel 3
 4 F4 Skip to channel 4
 5 F5 Skip to channel 5
 6 F6 Skip to channel 6
 7 F7 Skip to channel 7
 8 F8 Skip to channel 8

 9 F9 Skip to channel 9
 A C1 Skip to channel 10
 B C2 Skip to channel 11
 C C3 Skip to channel 12

Figure 22. Valid ASA Control Characters

Hex codes X'C1' and X'C3' are used in both machine code and ASA code. CMS recognizes these codes as
ASA control characters, not as machine control characters.

Hex code X'5A' is recognized as only a machine code character. This code is used with a composed page
data stream record.

Obtaining Device Information
Use the CMSDEV macro in conjunction with the PRINTL macro to obtain the device characteristics of the
virtual printer. When the CMSDEV macro completes, the defined 12-byte storage area contains the device
characteristics.

If the virtual device exists, the first four bytes contain:
Bytes

Virtual Device Information

Unit Record Devices and Tapes

148 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb3_v7r4.pdf#nameddest=dmsb3_v7r4

0
Type class

1
Type

2
Status

3
Flags

If the virtual device is associated with a local real device, bytes four through seven contain:
Bytes

Local Real Device Information
4

Type class
5

Type
6

Model number
7

Current device line length for a virtual console, or the device feature code for other devices.

If the virtual device is associated with a remote real device, bytes four through seven contain:
Bytes

Remote Real Device Information
4

Type class
5

Type for a remote 3270 console
6

Model number for a remote 3270 console
7

Current device line length for a remote virtual console.

If the virtual device is a local virtual console or a remote 3270 virtual console with an unknown address
(device specified as CONS), bytes eight through eleven contain:
Byte

Information
8

The terminal code bits defining the type of virtual console and the translate table the console is using.
9

Reserved
10-11

Virtual device number

For virtual devices other than CONS, bytes eight through eleven contain:
Bytes

Information
8

Reserved
9

Reserved

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 149

10-11
Virtual device number

For more information on device codes, see Appendix C in the z/VM: CP Programming Services.

Punching
Use the PUNCHC macroinstruction to write a line to the virtual punch at address X'000D'. Note that you
must issue the CP CLOSE command to close the virtual punch file. Issue the CLOSE command either from
your program (using CMSCALL) or from the CMS environment when your program completes execution.
The punch is closed automatically when you log off or when you use the CMS PUNCH command.

The following example shows how to use (a) the PUNCHC macro to punch two lines and (b) the CMSCALL
macro to invoke the CLOSE PUNCH command:

 PUNCHC LINE1
 PUNCHC LINE2
 CMSCALL PLIST=QPLIST
 .
 .
 .
 DS 0F
LINE1 DC CL80'PUNCH THIS LINE FIRST'
LINE2 DC CL80'PUNCH THIS LINE LAST'
QPLIST DC CL8'CLOSE'
 DC CL8'000D'
 DC 2F'-1'

Note: No stacker selecting is allowed. The line length must be 80 characters.

Reading
Use the RDCARD macroinstruction to read a line from the virtual reader at address X'000C'.

Using the CMS Internal I/O Buffer
If you specify RDAHEAD=YES, CMS reads as many lines as it can into an internal buffer. As you issue
RDCARD macros (starting with the first), CMS moves data from its internal buffer into the buffer area
specified by your program. When the internal buffer is empty, CMS fills it up. This process continues as
long as your program issues read requests or end-of-file is reached.

Note: If you process RDCARD with RDAHEAD=YES and the virtual card reader is closed before an
error condition is detected (other than wrong-length record, RC=5), lines may still remain in the buffer.
Subsequent RDCARD calls return the next available lines from the internal buffer until it is empty.
Changes in the status of the virtual card reader are not recognized until the buffer is empty and the
next physical read is performed. For most applications that read to end-of-file, RDAHEAD=YES should be
specified.

To insure that the internal I/O buffer is released and that the next RDCARD request will read from the
virtual reader, not the internal buffer, issue RDCARD with RDAHEAD=CANCEL and a length of zero.

RDAHEAD=NO is forced if the logical record length is greater than 2028, or if there is insufficient storage
to allocate the internal I/O buffer.

Usage Notes
1. When the macro completes, register 0 contains the length of the card that was read.
2. No stacker selecting is allowed.
3. You may not use the RDCARD macro in jobs that run under the CMS batch machine.
4. If the reader file being processed contains carriage control characters, the RDCARD macro returns the

records with the carriage control characters stripped off.

Unit Record Devices and Tapes

150 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

Tape Handling Macros
CMS provides several macros to help you use tape drives, including:

• TAPECTL — Positions the specified tape.
• TAPESL — Processes IBM standard HDR1 and EOF1 labels.
• RDTAPE — Reads a record from the specified tape drive.
• WRTAPE — Writes a record on the specified tape drive.
• TEOVEXIT — Sets up and clears a CMS end-of-volume tape exit.

For more information on these macros, see z/VM: CMS Macros and Functions Reference.

Tape Labels in CMS
CMS provides tape label processing for both ANSI and IBM standard labeled tapes in OS simulation. This
support includes:

• For ANSI labels (AL) and ANSI user labels (AUL), translate input labels from ASCII to EBCDIC and
translate output labels from EBCDIC to ASCII.

• Check IBM standard labels (SL) or ANSI labels on input tapes to ensure that the correct volume is
mounted, as well as identify, describe, and protect the data being processed. For AL and AUL, input
tapes are also checked to make sure that the labels are Version 3 ANSI9 level.

• Check the existing SL, SUL, AL, or AUL, labels on output tapes to ensure that the correct volume is
mounted and prevent overwriting of vital data.

• Create and write new SL, SUL, AL, or AUL labels on output tapes. For AL and AUL labels, only Version 3
ANSI9 labels are written on output tapes.

• Specify exits for processing tapes with nonstandard labels during execution of CMS macro simulations
and some CMS tape operation commands. CMS processes all tape labels.

Limitations
For CMS tape label processing:

• Processing of multivolume files on tapes is supported only under OS QSAM and BSAM simulation for
ANSI and IBM standard labels. With the DISP MOD option, processing is only valid for the IBM standard
labeled tape currently mounted.

• Label processing is not included for any of the TAPE command functions except for DVOL1 and WVOL1
which process VOL1 labels.

Initiating Label Processing
You must start all your own tape label processing. The commands you use to do this depends on the type
of environment your program is running in.

• For programs running in the OS simulated environment:

– You can specify that you have a labeled tape to process using FILEDEF.
– You can define ANSI or IBM standard labels to be written or checked using LABELDEF.

• For programs running in the DOS simulated environment:

– You can specify that you have a labeled tape to process using DOS DTFMT.
– You can define IBM standard labels to be written or checked using LABELDEF. This command must be

used to define the tape label you will be processing.
• For programs running in the CMS environment:

9 Support for Version 3 ANSI refers to the code set defined by ANSI X3.27-1978, level 4.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 151

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

– You can specify that you have an IBM standard labeled tape to process using the TAPESL macro.
– You can define ANSI and IBM standard labels using LABELDEF. This command must be used to define

the tape label you will be processing.
– You can write or check ANSI and IBM standard labels using the TAPE command.

After label processing is requested, it automatically occurs and there is no interaction between you and
CMS unless an error occurs. See “Error Processing” on page 170 for a discussion of error processing.

Label Processing in OS Simulation
The following table illustrates the basic tape layout for ANSI and IBM standard labels and a description of
each label identifier.

VOL1 HDR1 HDR2 UHL1 UHL2 TM DATA TM E0F1 E0F2 UTL1 UTL2 TM TM

SET

Label Identifier
Label Descriptor

VOL1
Volume label

HDR1 and HDR2
Data set header labels

EOV1 and EOV2
Data set trailer labels (end-of-volume - not shown)

EOF1 and EOF2
Data set trailer labels (end-of-file)

UHL1 through UHL8
User header labels (optional)

UTL1 through UTL8
User trailer labels (optional)

Figure 23. Basic Tape Layout for ANSI and IBM Standard Labels

For more information about the contents of these labels, see the MVS/XA Magnetic Tape Labels and File
Structure Administration.

Types of Label Processing
If you are running an OS simulation program and using OPEN and CLOSE macros, specify the type of
label processing you want in a FILEDEF command for a given file. Detailed information about the FILEDEF
command is found in the z/VM: CMS Commands and Utilities Reference. The types of processing you can
specify with FILEDEF TAPn command are:
SL

Indicates you are using IBM standard labels.
SUL

Indicates you are using IBM standard user labels.
AL

Indicates that you are using ANSI labels.
AUL

Indicates that you are using ANSI user labels.
NL

Indicates that your tape has no ANSI or IBM standard labels. (A file will not be opened if you specify
this for a tape with a VOL1 label.)

Unit Record Devices and Tapes

152 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

BLP
This tells CMS not to process the tape label, however, position the tape at the specified file before
processing the data records in the file.

LABOFF
This is the default and indicates that there is no CMS tape label processing for this tape file.

NSL
Indicates you are using a nonstandard label process. You must have already written a routine to
process nonstandard labels. The name of this routine must be specified with the NSL option on
FILEDEF. An example of the nonstandard label processing is given in “Nonstandard Label (NSL)
Processing” on page 160.

Examples of NL, BLP, and LABOFF processing are given in “Nonstandard Label (NSL) Processing” on page
160, “Bypass Label (BLP) Processing” on page 159, and “Label Off (LABOFF) Processing” on page 160.

IBM Standard Label Processing
Use the FILEDEF command to specify label processing for IBM standard labels (SL) or IBM standard user
labels (SUL). For example,

FILEDEF PINTO TAP1 SL

defines PINTO as an IBM standard label tape file at the virtual address, 181 (specified with TAP1), to be
positioned at the first data file (see number 1 in Figure 24 on page 153).

VOL1 Header TM Data TM Trailer TM Header TM Data

Labels Set 1 Labels Labels Set 2

2 31

Figure 24. Basic Tape Layout

To specify an SUL tape, use the command,

FILEDEF PINTO TAP1 SUL

Note: Any option specified on the FILEDEF command has the same results for both SL and SUL tapes.

Writing VOL1 Tape Information
You can write VOL1 label information using the TAPE command. For example,

TAPE WVOL1 CATS (TAP1 SL

will write the volume serial number, CATS, to the tape located at virtual address, 181.

Displaying VOL1 Tape Information
Use the TAPE DVOL1 command to display information about a tape label. If you want to display the VOL1
information for the tape in the previous example, use the command

TAPE DVOL1 (TAP1 SL

and the following will be displayed:

VOL1CATS

Checking the Volume Serial Number
To make sure that the tape volume you requested is mounted, check the volume serial number (volid)
using the FILEDEF or LABELDEF command. When the file is opened the volid specified is compared to

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 153

the volume serial number in the VOL1 label. If they are the same, any read or write will be allowed. For
example,

FILEDEF SIAMESE TAP1 SL VOLID CATS

When the file associated with the ddname, SIAMESE, is opened, the tape mounted at TAP1 will be
checked for a volid of CATS.

Positioning Your Tape
To position your tape at data sets other than the first, use the n parameter on FILEDEF to specify the
position of the file you want. For example, to position the tape at the second data set (number 2 in Figure
24 on page 153), use the command,

FILEDEF MUSTANG TAP1 SL 2

The DISP MOD option can also be used to position your tape. This option is only valid for the tape
currently mounted; no volume switching is done. Following is an example of positioning a tape with DISP
MOD.

FILEDEF PARROT A TAP1 SL 2 (DISP MOD

will position the tape at the end of the second file (number 3 in Figure 24 on page 153), ready to add new
records.

You can also use the FILEDEF LEAVE command to position your tape.

Note: If you specify a file position number (n) that exceeds the number of files on the tape, the results are
unpredictable.

Writing HDR1 Information on Output
HDR1 labels contain information about the data set immediately following it. To write information to the
HDR1 label, use the LABELDEF command. For example,

FILEDEF SHEPARD TAP1 SL 3 VOLID DOGS
LABELDEF SHEPARD FID GERSHEP EXDTE 8906 SEC 1

When the file associated with the ddname, SHEPARD, is opened for output, the tape will be positioned to
the third data set file. The values specified with LABELDEF (including the file identifier, expiration date,
security level, and so on) will be written to the HDR1 label for the third data set file. See “LABELDEF
Command” on page 169 for information on the default values written to the HDR1 label.

Checking HDR1 Information on Input
You can specify fields in HDR1 labels to be checked on input by using the LABELDEF command. This lets
you check to see if you are positioned at the correct data file, have the correct security value, and so on.
For example,

FILEDEF SIAMESE TAP1 SL 3 VOLID CATS
LABELDEF SIAMESE FID SIAM SEC 1

When the file associated with the ddname, SIAMESE, is opened for input, the tape volume at TAP1 is
checked for the volid, CATS, and the tape is positioned to the third data set. The values specified on the
LABELDEF command are checked for the third data set to make sure the file identifier is SIAM and its
security access level is 1.

For more information on LABELDEF, see “LABELDEF Command” on page 169. For more information on
security values, see the MVS/XA Magnetic Tape Labels and File Structure Administration.

Unit Record Devices and Tapes

154 z/VM: 7.4 CMS Application Development Guide for Assembler

Specifying Multiple Tapes
If you want to read an SL file that is contained on two tapes, you can use the FILEDEF command with the
ALT option. ALT specifies an alternate tape drive to be used when an EOV condition occurs on the primary
tape drive. (See “End-of-Volume and End-of-File Label Processing for OS” on page 157 for information on
the EOV condition.) For example,

FILEDEF PIG TAP1 SL 3 VOLID ANIMALS (ALT TAP2

specifies that the file with a ddname of PIG is the third file on the tape located on TAP1. This is considered
the primary tape drive. When an EOV condition is encountered on TAP1, the rest of the file, PIG, can be
found on the tape located on TAP2.

You can also specify multiple tapes using the LABELDEF command. For example, if you issue the
command,

LABELDEF POLLY VOLID ?

you receive the response:

DMSLBD441R Enter VOLID information

Now you can enter all the volids that must be used in order to process the file, POLLY. Following the last
volid, enter a null line. If you enter the values:

BIRD1
BIRD2
null line

it will indicate that the file, POLLY is located on 2 tapes with the volids of BIRD1 and BIRD2. You can enter
up to 8 volids on one line.

ANSI Label Processing
CMS can process both Version 310 ANSI labels and ANSI user labels. Except for the translation between
ASCII and EBCDIC code, ANSI label processing is the same support provided for IBM standard labels and
standard user labels. See “IBM Standard Label Processing” on page 153 for information in IBM standard
label processing.

Use the FILEDEF command to specify label processing for ANSI labels or ANSI user labels. For example,
use:

FILEDEF QUARTER TAP1 AL

to specify ANSI labeled tapes, and for ANSI user labeled tapes use:

FILEDEF QUARTER TAP1 AUL

ANSI tapes are recorded in 7-bit ASCII code (according to ANSI Version 310). As part of the label
processing, CMS translates data from ASCII to EBCDIC format when files are read from an ANSI tape.
Files are translated from EBCDIC to ASCII format when written to an ANSI tape. This translation is
supported for:

1. AL, AUL, LABOFF, BLP, and NL tape label processing
2. Record formats of F, FB, FS, FBS, D, DB, DS DBS.

For more information on ANSI label tape processing, see the MVS/XA Magnetic Tape Labels and File
Structure Administration.

10 Support for Version 3 ANSI refers to the code set defined by ANSI X3.27-1978, level 4.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 155

Translating Between ASCII and EBCDIC Code
Use the OPTCD Q option of the FILEDEF command to indicate translation between ASCII and EBCDIC
code. For example,

FILEDEF WELSH TAP3 NL (OPTCD Q

specifies that a nonlabeled tape on tape drive TAP3 will be processed. The OPTCD Q indicates that the
information on the tape will be translated from ASCII to EBCDIC on input and from EBCDIC to ASCII
on output. If a tape is specified as ANSI label or ANSI user label, then the OPTCD Q is automatically
assumed.

For more information on reading and writing records, see “Reading and Writing CMS Files” on page 137.

Writing, Displaying, Checking ANSI Tape Labels
See “IBM Standard Label Processing” on page 153 for information on writing, displaying and checking
tape labels. The support provided for IBM standard labels is the same for ANSI labels.

Protecting Data
Use the LABELDEF SEC command to read and write security values of a tape label. In addition to the 0, 1,
and 3 security levels, ANSI labels may also contain security levels of A to Z (uppercase).

If you are reading a tape, CMS will compare the SEC value specified in the LABELDEF command to the SEC
value written in the label; if the two values are equal, you will be allowed access. To write a security value
to a tape, you could use the command:

LABELDEF VOLID HUNTER SEC A

This will write a security value of ‘A’ to the tape with a VOLID of HUNTER.

Note: To specify ANSI security values A-Z, or a VOLID with ANSI special characters, LABELDEF must be
issued after the FILEDEF command. If a FILEDEF command has not been issued before the LABELDEF,
the tape is assumed to be an IBM standard labeled tape.

Considerations for Standard Label Processing
When processing ANSI or IBM standard labeled tapes in OS simulation, the following applies:

• Multivolume tape processing does not occur if you enter the TEOVEXIT macro. TEOVEXIT is ignored for
AL tapes.

• Multivolume tape processing only applies to CMS OS QSAM and BSAM simulation.
• During end-of-volume processing, the NOEOV operand of the FILEDEF command is ignored.
• The VOLSEQ operand of the LABELDEF command is ignored.
• Existing VOL1 labels are automatically rewritten for density incompatibility. However, VOL2 - VOLn and

user header labels are not rewritten.

Considerations for User Label Processing
To process ANSI or IBM standard user labels in OS simulation, you must do the following:

1. Specify the file as AUL or SUL in a FILEDEF command.
2. Provide routines to process the user standard labels in your program.
3. Specify the address of the user label routines using the EXLST parameter in the DCB for the file. See

the MVS/XA Data Administration Guide for information on how to establish a DCB EXLST and the exact
linkage for communication between user label routines and the operating system. This exact linkage
should be used under CMS with the following exceptions:

a. There is no support for code X'06' EOV EXIT routine.

Unit Record Devices and Tapes

156 z/VM: 7.4 CMS Application Development Guide for Assembler

b. For input labels, return codes 8 and 12 from the user routine are not supported. If an input return
code is not 0, it is treated as if it were 4.

4. Note that your standard user label routines do not perform any I/O. They set up an output label for
writing, but the CMS tape label processing routines actually write out the label. For input, the CMS
label processing routines read in your user standard label but then give control to your routine to check
the label.

Volume Label and Header Label Processing for OS
After you have set up your descriptive information for an ANSI or IBM standard labeled tape file, you can
run a regular OS simulation program under CMS. Unless an error occurs, label processing will continue
without any interaction with you. The following steps describe how tape volume labels (VOL1) and header
labels are processed under OS simulation.

For Input Files on ANSI or IBM Standard Labeled Tapes:
1. If you have specified a VOLID parameter on your FILEDEF or LABELDEF command for a file, the VOL1

label on the tape is checked whenever the file on that tape is opened. This is to ensure that the correct
volume has been mounted. If the volume ID is specified on both LABELDEF and FILEDEF, the more
recent specification is used. If no volume ID is specified, the VOL1 label is not checked.

2. After checking the volid, the tape is positioned according to the positional parameters specified on the
FILEDEF command. The positional parameters include n, DISP MOD, and LEAVE; the default is the first
file on the tape.

3. HDR1 labels are checked at open time. This includes checking the file identifier (FID) or any other
information specified in your LABELDEF command to make sure the correct file is accessed. If you do
not explicitly specify a field for input, the field is not checked.

4. HDR2 labels are processed, if they exist, to determine certain data set characteristics of the file such
as record format and block length.

5. If specified, user header labels (UHLn) are processed. You must provide a routine to do this.
6. For read backward processing, data management uses the data set trailer labels (EOF1 and EOF2) as

header labels and vice versa. EOF1 labels are processed before EOF2 labels.

For Output Files on ANSI or IBM Standard Labeled Tapes:
1. If you have specified a VOLID parameter on your FILEDEF or LABELDEF command for a file, the VOL1

label on the tape is checked whenever the file on that tape is opened. This is to ensure that the correct
volume has been mounted. If the volume ID is specified on both LABELDEF and FILEDEF, the more
recent specification is used. If no volume ID is specified, the VOL1 label is not checked.

2. The tape is then positioned according to the positional parameters specified on the FILEDEF
command. The positional parameters include n, DISP MOD, and LEAVE; the default is the first file
on the tape.

3. The existing HDR1 and HDR2 labels are checked at open time and new header labels are written. If the
HDR2 label is missing or has a different density then the VOL1 label is rewritten along with the HDR1
and HDR2 labels.

4. If specified, user header labels (UHLn) are written. You must provide a routine to do this.

End-of-Volume and End-of-File Label Processing for OS
An end-of-volume or end-of-file condition occurs when:

• A tape mark is read.
• The physical end of a tape is reached.
• The FEOV (forced end of volume) macro is issued.

Following is a description of the end-of-volume (EOV1 and EOV2) and end-of-file (EOF1 and EOF2) label
processing.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 157

For Input Files on ANSI or IBM Standard Labeled Tapes:
1. For end-of-file condition, the EOF1 labels are processed. Among other things, this processing ensures

that the file was read correctly. After EOF1 processing, the exit routine specified in the DCB gets
control.

2. For end-of-volume condition, the EOV1 labels are processed for the current tape volume and tape
volume switching occurs.

3. EOF2 and EOV2 labels are bypassed.
4. If specified, user trailer labels are processed. You must provide a routine to do this.

For Output Files on ANSI or IBM Standard Labeled Tapes:
1. For IBM standard and ANSI labeled tape, if you are at the end of the file, an EOF1 label, an EOF2 label,

and a tape mark are written. The tape is rewound.
2. If you are at the end of a tape and you need another tape to finish writing, an EOV1 label, an EOV2

label, and a tape mark are written at the end of the first tape. The tape is rewound, unloaded, and a
message is issued indicating that an EOV label was written. Tape volume switching then occurs.

3. If you specified nonstandard labels, instead of writing the EOV label, a tape mark is written. Then the
nonstandard label routine specified on the FILEDEF command is given control.

4. For BLP or NL files, only the ending tape mark is written.
5. OS simulation programs that contain a BSAM CHECK macro cause an abend when end-of-tape is

detected, with code 001 after an error message. A BSAM program that does not use a CHECK macro
has no way of detecting the end-of-tape condition. Such a program continues to try to write on the
tape after it is rewound and unloaded. The program enters a wait state rather than continue running
to a normal or abnormal completion. Therefore, you should always include a BSAM CHECK macro after
the WRITE macro if you expect your program to reach end-of-tape. OS simulation BSAM users are also
responsible for completing processing on a new tape with the same or a new job after an end-of-tape
condition is detected.

End-of-Tape Processing

End-of-tape (EOT) processing occurs if the record after a tape mark is an EOV label. For EOT processing, if
the tape is SL or AL, volume switching occurs. If the next tape has already been mounted on an alternate
drive, processing continues. (See “Specifying Multiple Tapes” on page 155 for information on specifying
alternate tape drives.)

If an alternate drive has not been specified, the system notifies the operator to mount the next tape and
you will get a notice that volume switching is about to begin. For example, if you are reading a file with the
following attributes:

• A ddname of DUKE
• On a tape volume with a volid of DOG002
• The tape is located at virtual address 182

you will receive the following message:

Attempting to change tape volume for ddname DUKE
To cancel the tape volume switch, type CANCEL

You can stop the tape volume switch at anytime by typing CANCEL. This notifies the tape operator that
you do not want the tape mounted, and terminates any further execution. Otherwise, the system waits for
the tape operator to mount the requested tape volume and issues the following messages at five minute
intervals until the volume is mounted:

Message sent to userid OPERATOR:
Mount tape volume DOG002 on virtual 182 without a write ring;
Request number 1

Unit Record Devices and Tapes

158 z/VM: 7.4 CMS Application Development Guide for Assembler

(five minute interval)
Message sent to userid OPERATOR:
Mount tape volume DOG002 on virtual 182 without a write ring;
Request number 2
(five minute interval)
Message sent to userid OPERATOR:
Mount tape volume DOG002 on virtual 182 without a write ring;
Request number 3
(five minute interval)
Wait time for tape volume switch has almost expired; to
continue waiting, type EXTEND

Note: Your system programmer can extend the wait time to longer than five minutes by using the
TVSPARMS macro. Refer to “OS/MVS Tape Volume Switching” on page 397 for more information on the
TVSPARMS macro.

At this point you can give the tape operator more time to mount the tape by typing ‘EXTEND’. The
operator receives the tape mount prompts once again, beginning with request number one. Otherwise,
the following message is displayed at your terminal:

Message sent to userid OPERATOR:
Mount tape volume DOG002 on virtual 182 without a write ring;
Request number 4
(five minute interval; type EXTEND if you need more time)
Wait time for tape volume switch has expired; tape volume
switch for volume DOG002 on virtual 182 canceled

The allotted time for the tape volume switch is over and the read program is terminated. If you still want
to process the data, you must begin again by reentering the initial FILEDEF and LABELDEF commands.

Note:

1. For SL tapes, if you enter the TEOVEXIT macro, multivolume tape processing will not occur. For a
description of the TEOVEXIT macro, see the z/VM: CMS Macros and Functions Reference.

2. Your system support personnel can replace the OS simulation multivolume support with the DMSTVI
interface routine or some other tape management system. If the multivolume support appears to be
different on your system, see your system administrator.

Note: If you are an OS simulation user and the NOEOV option was specified on your FILEDEF command,
it is ignored at the end-of-volume processing. However, the program causes an abend if you use QSAM or
include a BSAM CHECK macro after your WRITE macro. Without a CHECK macro, a BSAM program runs
the tape off the reel when EOT is sensed and NOEOV is specified.

No Label (NL) Processing
You should specify NL in the FILEDEF command when you expect a tape does not contain any IBM
standard tape labels. CMS reads your tape at the time a file is opened and does not open the file if the
tape contains a VOL1 label as its first record. If the tape does not contain a VOL1 label, a file is opened
and the tape is positioned by using the position parameter (n). For example, if you specify

filedef fileq tap1 nl 2

FILEQ is not opened if the tape on TAP1 (181) has a VOL1 label. If the tape does not have a VOL1 label,
FILEQ is opened and the tape is positioned at the second file. If you do not specify a position parameter,
the tape is positioned at the first file, (that is, the load point).

Bypass Label (BLP) Processing
You should specify BLP in the FILEDEF command to bypass tape label processing. CMS does not check
your tape for an IBM standard tape label. It uses the position parameter you specified to position the tape
during open processing. If you do not specify a position parameter, the default is 1. For example

filedef fileabc tap1 blp 2

positions the tape at the second file when it opens FILEABC.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 159

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Because CMS does not know whether files on the tape are label files or data files, the tape is positioned
at what is physically the second file, regardless of file content. Any label files on the tape are included in
counting files. Therefore, the FILEDEF command in the last example would position the tape at data set 1.
(See number 1 in Figure 25 on page 160.)

1

Figure 25. Positioning for BLP

For bypass processing, the header labels would be considered the first file and the data set the second
file.

Label Off (LABOFF) Processing
You should specify LABOFF in the FILEDEF command if you want no positioning or label processing to
occur during open processing. The position parameter (n) is not valid for LABOFF. If you specify LABOFF,
and your tape is positioned at record 6 in the third file before you issue an OPEN macro, the tape is
positioned at exactly the same record after open processing (record 6 in the third file); the tape is not
moved. The following FILEDEF command does not move TAP2 (182) before processing the data in FILEB:

filedef fileb tap2 laboff

Nonstandard Label (NSL) Processing
To process nonstandard labels, you must write your own routine to read, write, and check the labels. If
you have such a routine as a CMS TEXT or MODULE file, specify it after the NSL keyword. For example,

filedef DOGS TAP3 NSL CANINE

where CANINE is the name of a MODULE or TEXT file. If both a MODULE and a TEXT file exist with the file
name specified in FILEDEF, the MODULE file is used.

The file name must be the name of the first CSECT in the program. It is to this point that control is
transferred when the NSL routine gets control. If you do not have a TEXT or MODULE file with the NSL file
name you specify, you get an error message.

Both OPEN and CLOSE load your routine if it is not already in storage and pass control to it at the time
they are opening or closing the file. Your routine is then responsible for processing the tape labels. Your
nonstandard label routine must do the actual reading and writing of tape labels as well as checking and
setting up the label.

Note: This is one of several ways nonstandard label processing is different from standard user label
processing. Because the CMS label processing routines do not know the size or format of your
nonstandard labels, they cannot read or write the labels.

If you use a nonrelocatable MODULE file for an NSL routine, it is important that you create the MODULE
file so that it starts at an address that will not let it overlay the program or command you are executing
at the time the NSL routine is run. The reason for this restriction is that the nonrelocatable NSL routine
is dynamically loaded while your program is running and your routine could overlay part of the program
executing.

For the TAPEMAC and TAPPDS commands, starting the NSL routine at an address above X'21000'
prevents such an overlay. If the NSL routine is run from your own program that is running in the user
area, you must determine how big your program is and where the NSL MODULE file should be located to
prevent overlay.

Note: You do not have to worry about overlaying other programs for NSL routines that are TEXT files. The
CMS loader loads such files for you at an address that does not cause an overlay.

Unit Record Devices and Tapes

160 z/VM: 7.4 CMS Application Development Guide for Assembler

To ensure proper communication with the CMS system routines, you must use the linkage described in the
following table when you write nonstandard label routines.

When an NSL tape label processing routine gets control, register 1 points to a 16-byte parameter list with
the following format:

Table 21. Parameter List Layout

Disp Len Content

0 1 Type call

1 1 Caller ID

2 1 Tape MODESET

3 1 Reserved

4 4 TAPID

8 4 FCBSECT address

12 4 DCB address

The Type call field is a code telling the type of label processing being done:

x'00' is OPEN input
x'04' is OPEN output
x'08' is CLOSE input
x'0C' is CLOSE output
x'10' is End Of Tape output

The Caller ID is a 1-byte code which is one of the following:

x'80' Call by OS simulation
x'20' Call by CMS TAPEMAC or TAPPDS commands

Tape MODESET byte communicates with the CMS tape I/O routines. It is a 1-byte hexadecimal code that
depends on the type of tape (7, 9, or 18 track), tape density, and so forth. (You will probably pass this
byte to the CMS tape controlling module to read and write your tape labels.) For more information on
MODESET, see the TAPE command in the z/VM: CMS Commands and Utilities Reference.

DCB address is the address of the DCB for the tape file you are processing.

FCBSECT address is the address of the CMSCB (FCBSECT) for the tape file you are processing.

The following FCB fields might be of interest to an NSL tape user exit when the tape is opened or closed:
FCBDD

Data Definition Name as specified on the FILEDEF command.
FCBITEM

Item Count. This is a binary count of the number of data items read or written at this time.
FCBRFMT

Tape Device Recording Format. Below is a list of the complete TAPEIO recording format code values:

FDEFAULT EQU X'00' Any recording format at all
F9TRK EQU X'01' Any 9 track recording format
FCOMP EQU X'02' Any compacted recording format
FNOCOMP EQU X'03' Any noncompacted recording format
FNRZI EQU B'11001011' 9T NRZI (9TRACK DEN(800))
FPE EQU B'11000011' PE (9TRACK DEN(1600))
FGCR EQU B'11010011' GCR (9TRACK DEN(6250))
F3480B EQU X'10' 3480 Basic (18TRACK DEN(38K)
F3480BB EQU X'DB' Alternate 3480 fmt code, used by
 old programs only
F3490B EQU X'20' 3490 Basic format
F3490C EQU X'30' 3490 Compacted format
F9346 EQU X'50' 9346 format
F3480C EQU X'60' 3480 Compacted format

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 161

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

F3590B EQU X'40' 3590 Basic format
F3590C EQU X'70' 3590 Compacted format

FCBRECFM
Data Record Format as specified on the FILEDEF command.

FCBBLKSI
Tape Data Block Size as specified on the FILEDEF command.

FCBLRECL
Tape Data Logical Record Length as specified on the FILEDEF command.

FCBIOSW
Bit Flags Concerning I/O. The flags which are applicable to this exit are: FCBCLOSE, FCBCLEAV,
FCBIOWR, and FCBIORD.

FCBIOSW2
Bit Flags Concerning I/O. The flags which are applicable to this exit are: FCBWRTSW and FCBTCLOS.

FCBTAPID
Tape Identifier. This field is TAPn as specified on the FILEDEF command.

FCBLABT
Tape Label Type. This field will always have bit FCBNSL set when the user gets control. FCBNSLMD
may also be set if the user exit routine is a relocatable module.

FCBTPSW
Tape Bit Flags for Positioning as specified on the FILEDEF or FEOV macro.

FCBNSLNM
NSL Routine Name.

FCBLABPT
Address Pointer to LABSECT when a LABELDEF command is issued. For more information on
LABSECT, see the z/VM: CMS Macros and Functions Reference. For more information on the LABELDEF
command, see the z/VM: CMS Commands and Utilities Reference.

FCBBLKCT
Block Count for Tape File. This is a binary count of the number of unique blocks of data record items
existing on the tape. This number is stored in the trailer labels after the data and corresponds to the
total FCBITEM count.

For more information about the FCB, see the CMSCB MACRO in the z/VM: CMS Macros and Functions
Reference.

Note: For the TAPEMAC and TAPPDS commands, the same interface is used, except that instead of the
FCBSECT and DCB address fields, the eight character identifier specified in the ID=identifier field in the
command is passed. This identifier lets you identify which file you are processing because the TAPEMAC
and TAPPDS commands do not work with CMSCBs or DCBs.

Control is passed to your NSL routine by a BALR 14,15 instruction so register 15 contains the address of
your routine when you receive control. Register 14 contains the address you should return to when you
are finished processing the nonstandard labels. You can return with a BR 14 instruction. When you receive
control, register 13 points to a save area in which to store the callers register. The save area linkage is
standard OS/VS linkage. You receive control with a PSW key of X'E' that lets you modify only user storage.
When you are finished processing, place a code in register 15 to the CMS label processing routine that
called your routine. Place the value 0 (zero) in register 15 if there have been no errors and you want
processing to continue normally and the data set to be opened. If you return a nonzero value in register
15, a message is issued to your terminal and the data set is not opened.

If you write the following FILEDEF statement

filedef tapfl tapl nsl readlab

and have a program called READLAB as a MODULE or TEXT file, your program receives control when the
data set called tapfl is opened. When your program gets control, register 1 contains the address of the
parameter list that is described in the preceding example. Using the data in this parameter list, you can

Unit Record Devices and Tapes

162 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

read or write your own tape header labels. When the same data set is closed, your program again receives
control and you can read or write your own trailer labels. Your program can test whether it is getting
control for OPEN or CLOSE by examining the type call byte in the parameter list passed to you. If the type
call byte is X'10', your NSL routine is run while you are writing an output data set and you have reached
the reflective mark that indicates end of tape. You may wish to do special processing in this case. See
“End-of-Tape Processing” on page 158 for more information on end-of-tape processing.

Tape Label Processing Differences
There are a some differences in the way CMS OS simulation processes tapes and the way OS/MVS
processes them:

• If you are using OS/MVS and you do not specify any label parameter on your JCL statement, the
default is SL or standard labels. When you use OS simulation under CMS and do not specify any label
information on a FILEDEF statement, the default is LABOFF. LABOFF turns off label processing and
nothing is done to position the tape or process labels. Thus, if you specify no label information on
FILEDEF, the system processes your tape files exactly the same way they are processed on a CMS
system that has no tape label processing facilities.

• You must specify CLOSE to process all trailer labels. No automatic CLOSE occurs at end of data or after
reading a tape mark. There is no EOV monitor to process labels before a data set is closed. If an input
tape is positioned at an EOF1 or EOV1 record when CLOSE is entered, the label is processed. If a tape
file is closed before all data records are read, the trailer label is not processed. EOF labels are written
onto tapes only at close time.

• There is no deferred label processing under OS simulation in CMS.
• When you have not specified a block count routine in your DCB EXIT list under OS/VS, the program

abends when a block count error occurs. Under CMS, this condition produces a message that asks
whether to abend the operation.

• Certain fields in HDR1 and EOF1 labels default to values different from those under OS/VS. These
values can always be specified in a LABELDEF command if you do not like the default values. For
example, the default for data set name in an output label under OS simulation is DDNAME and not
DSNAME. The default data set sequence number is always one even when the data set is not the first
data set on the tape. The default volume sequence number is always one. Read “LABELDEF Command”
on page 169 to learn what the default values are under CMS. You can find what default values are in
OS/MVS by reading the MVS/XA Magnetic Tape Labels and File Structure Administration.

Note: You can always get exactly what you want written on a tape label by explicitly specifying the field
on a LABELDEF command. For example, you can specify DSNAME as FID on such a command and have
it written in the label instead of DDNAME.

• Default volume IDs (when you do not specify a volume ID in a LABELDEF or FILEDEF statement) in
output HDR1 and EOF1 records under CMS will be CMS001 and will not be the actual volume serial
in the VOL1 record already on the tape, unless you are processing SL tapes, in which case it will be
the actual volume serial already on the tape. You should always specify the volume ID in FILEDEF or
LABELDEF to be sure the information written is correct.

• Expiration date specification is always done in absolute form rather than by retention period. You can
use either the 5-digit form (yyddd) or the 6-digit form (cyyddd), where yy is the year (00-99) and ddd is
the day (001-366). In the 6-digit form, c is the century (9=1900s, 0=2000s, 1=2100s). CMS does not
handle expiration dates specified by retention periods.

• When CMS reads a HDR1 label and finds an unexpired file, it always issues a message letting you enter
ERROR or IGNORE. ERROR prevents opening the file in OS simulation. When the DISP MOD option of the
FILEDEF command is specified for SL tapes, IGNORE lets you have the tape positioned at the end of the
file, ready to add new records. Otherwise, IGNORE causes the existing record to be overwritten.

• The NSL routine linkage is quite different under CMS than in OS. (See “Nonstandard Label (NSL)
Processing” on page 160 for more information.)

• Volume serial number verification occurs every time a file on a tape is opened under OS simulation
unless the FILEDEF LEAVE option is used for multifile tapes.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 163

• Existing VOL1 labels are automatically rewritten for density incompatibility in CMS as they are in OS/VS.
However, VOL2 - VOLn and user header labels are not rewritten.

• The information from the HDR2 label is checked and merged with the FCB information and then with the
DCB information. The merged information does not overlay existing data. Only the empty fields are filled
with the information from the HDR2 label or the FCB.

• To maintain OS compatibility in the EOV2/EOF2 label, you must specify LRECL in the output FILEDEF.
• Multivolume tape processing only applies to OS QSAM and BSAM simulation for SL and AL tapes.
• Blank tapes used for output in CMS cause the tape to run off the reel if you define the tape file as SL, AL,

or NL. The tape label processing routines try to read an existing VOL1 or HDR1 label before writing on
the tape. Therefore, you should always use the TAPE command to write at least one tape mark (for NL
tapes) or a VOL1 label (for SL, SUL, AL, or AUL tapes) before using the tape to write an output data set.

• If you specify a position parameter that is too big (that is, there are not that many files on the tape), the
tape runs off the reel in CMS.

For SL and AL tapes, positioning will occur across volumes. Positioning always uses the tape that is
mounted at open time as the first volume of a multivolume group. File sequence values in labels are not
used in positioning; positioning is based on the physical placement of the files on the tape.

• There are no user exits for user standard labels for EOV label processing in CMS.
• CMS does not support user return codes of 8 and 12 for input standard user labels. If the return code

from a user routine is not zero after input label processing, CMS treats it as if the return code was 4.
(See the MVS/XA Data Administration Guide for more information.)

• No count is kept of user standard labels read or bypassed in CMS. If more than eight such labels exist,
the fact is not detected.

• User label processing routines do not receive control under CMS when an abend or a permanent I/O
error occurs.

• If a CMS output tape is not positioned at a HDR1 label or a tape mark when label processing begins,
error message 422 is issued. Under OS/MVS such conditions cause an abend.

• TCLOSE with the REREAD option causes a tape to be rewound under CMS and then forward spaced one
file if the tape has standard labels. Under OS/VS, the tape is backspaced four files and forward spaced
one file. REREAD for unlabeled tapes in CMS always causes a rewind.

For details on end-of-tape processing under CMS, see “End-of-Tape Processing” on page 158.

Label Processing in CMS/DOS
You specify the type of label processing you want in CMS/DOS on a DTFMT macro in exactly the same
way you specify it when you want to run your program under VSE. See the “DTFMT Macro — Defines the
File for a Magnetic Tape” on page 437 for details on CMS support for the DTFMT macro. beled tapes are
only supported if you use the DTFMT macro. There is no support for labeled tapes in CMS/DOS for any
other type. If you try to read labeled tapes with a DTFCP or DTFDI macro, input standard IBM header
labels are skipped, but no other input labels are processed. Output tapes with standard labels have these
labels overwritten with a tape mark. All tape work files are treated as output unlabeled files in CMS/DOS
although they are defined by a DTFMT. Tapes used for such files have a tape mark written as the first
record when the file is opened.

Unlabeled and Nonstandard Labeled Tapes
You define an unlabeled tape with the DTFMT parameter FILABL=NO. The tape file is processed as having
no labels.

You define a nonstandard labeled tape with the DTFMT parameter FILABL=NSTD. You must also provide a
routine to process your nonstandard labels in the LABADDR=parameter of the DTFMT. Tape processing in
CMS for these files is the same as it is under VSE.

Unit Record Devices and Tapes

164 z/VM: 7.4 CMS Application Development Guide for Assembler

Standard Labeled Tapes
You define a standard label tape with the DTFMT parameter FILABL=STD. You also must supply a
LABELDEF command to specify label description information. This command replaces the VSE TLBL card
and is required for standard label processing under CMS/DOS. See “LABELDEF Command” on page 169.

To connect the LABELDEF command for a file with the DTFMT for the same file, you must use the same
name to label your DTFMT as you use for a filename in your LABELDEF command. If you code a DTFMT
macro in your program as

MT1 DTFMT ...FILABL=STD

you must then supply the following type of LABELDEF command:

labeldef mt1 fid yourfile fseq...

You can put any description parameters you want on your LABELDEF command but the filename for it
must be MT1 if you coded MT1 as the label on the DTFMT.

After you have set up your DTFMT and LABELDEF, you execute your CMS/DOS program. HDR1 labels are
checked or written when an OPEN macro is run. A VOL1 label volume serial number is checked only if
the tape is positioned at load point when the label processing begins and if you have specified a VOLID
parameter on a LABELDEF statement for the file. Note, if NOREWIND is not specified in the DTFMT macro
for the file, the tape is rewound so it is positioned at load point for label processing.

If you want to process user standard labels as well as standard labels in CMS/DOS, you specify
FILABL=STD and also supply a LABADDR parameter in the DTFMT for the file. Control is then transferred
to your label processing routines after standard labels are processed. The linkage to user standard label
routines is exactly the same as in VSE.

End-of-Volume and End-of-Tape Processing in CMS/DOS
The following steps are taken when the end of volume is reached on a tape processed in CMS/DOS
simulation.

For Input Files
• CLOSE processing checks EOF1 labels.
• If CLOSE or TAPESL processing reads an EOV1 label when it is expecting an EOF1 label, it issues a

message. The EOV1 label is then processed exactly as if it were an EOF1 label. You must request that
the operator mount a new tape and reopen a file if you want to continue processing the data.

For Output Files
1. If you specify that you have an IBM standard labeled tape file, a single tape mark is written to end your

data. This occurs when end-of-tape is sensed on output while you are using regular access method
macros to write the file. The tape mark is written immediately after the record that caused the EOT to
be sensed.

2. Following this tape mark, CMS writes an EOV1 label and a single tape mark. It then rewinds and
unloads your tape. A message is issued indicating that an EOV1 label was written.

3. CMS/DOS jobs are always canceled after an EOT condition is detected on output. To continue
processing the tape, you must have a new tape mounted, run the same job over again or run a new job
and reopen the file.

4. If you are a CMS/DOS user you always get the automatic output end-of-tape processing described
above.

Tape Label Processing Differences
There are some differences in the way tapes are processed by CMS/DOS and the way they are processed
by VSE:

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 165

• The tape error messages are CMS error messages and not VSE error messages. In some cases VSE
lets the system operator reply NEWTAP to an error message. The system then waits for the operator to
mount a new tape and continues processing with this new tape. Such a reply is never possible under
CMS/DOS. In CMS/DOS, you usually can reply IGNORE to ignore a tape label error condition or CANCEL
to cancel a job. NEWTAP is never allowed. In a few cases, CMS/DOS allows an IGNORE reply where VSE
does not.

• You must specify CLOSE to process all trailer labels. No automatic CLOSE occurs at end of data or after
reading a tape mark. If an input tape is positioned at an EOF1 or EOV1 record when CLOSE is run,
the label is processed. If a tape file is closed before all data records are read, the trailer label is not
processed. Output tapes have EOF records written only at CLOSE time. For nonstandard labeled tapes,
your own routines do not receive control on input when a tape mark is read. You must enter a CLOSE
macro in your EOFADDR routine to have the trailer labels processed.

• Certain fields in HDR1 and EOF1 labels default to values different from those in VSE. For example, the
default volume serial number written in a HDR1 label is CMS001 and not the actual volume ID (volid) in
the VOL1 label already on the tape. The default file sequence and volume sequence numbers are always
one even when the file is not the first file on the tape. You should read “LABELDEF Command” on page
169 to learn what the default values are in CMS/DOS. You also can read VSE/AF Tape Labels to find what
the default values are for VSE. If you do not like the default values, you can always specify the exact
values you want in label fields in a LABELDEF command.

• Expiration date specification is always done in absolute form rather than by retention period. You can
use either the 5-digit form (yyddd) or the 6-digit form (cyyddd), where yy is the year (00-99) and ddd is
the day (001-366). In the 6-digit form, c is the century (9=1900s, 0=2000s, 1=2100s). CMS does not
handle expiration dates specified by retention periods.

• VOL1 labels written in the wrong density are not automatically rewritten by CMS/DOS as they are by
VSE.

• Blank tapes should not be used for tape files specified as FILABL=STD in CMS/DOS; they will run off the
reel. Use the TAPE command to write a VOL1 label or a tape mark on a blank tape before using it for a
STD file.

• Not all tape movement and label checking that occurs in VSE occurs under CMS. For example, when
opening an output file, a VSE system expects the tape to be positioned at a HDR1 label or a tape
mark. It then backspaces the tape to read the last EOF1 label on the tape. If it does not find the label
it expects, it displays an error message. This check is not performed by CMS/DOS. If the tape is not
positioned at a HDR1 label or a tape mark when output open processing begins, error message 422 is
issued.

• After an EOV1 label is written (see “End-of-Tape Processing” on page 158), the tape is always rewound
and unloaded under CMS/DOS. VSE lets a DTFMT parameter control if the tape is rewound.

• User label processing routines do not receive control when an I/O error occurs under CMS/DOS.
• Control is not passed to user standard label routines in CMS/DOS when EOT has been sensed on output

and an EOV1 label has been written by the system routines.
• Work tapes are not checked for an expiration date when they contain standard labels under CMS/DOS.

If a tape is to be opened as a work tape, CMS/DOS tests to see if it contains a VOL1 label. If it does,
a dummy HDR1 label and a tape mark are immediately written on the tape after the VOL1 label. If the
tape does not contain a VOL1 label, a tape mark is written at the beginning of the tape. VSE checks
expiration dates on previously labeled tapes used as work tapes and gives the operator a chance to
reject the tapes if the expiration date has not expired.

For more information on VSE and CMS/DOS tape label processing, see the VSE/AF Tape Labels and
VSE/AF Macro User's Guide.

Label Processing Using CMS Macros and Commands
Several CMS macros and commands can be used for label processing in the CMS environment. These
include, the TAPESL macro and the TAPEMAC, TAPPDS, TAPE, MOVEFILE, and LABELDEF commands.

Unit Record Devices and Tapes

166 z/VM: 7.4 CMS Application Development Guide for Assembler

TAPESL Macro
Use the TAPESL macro to process IBM standard HDR1 and EOF1 labels without using DOS or OS OPEN
and CLOSE macros. You will probably use TAPESL with the RDTAPE, WRTAPE, and TAPECTL macros.

TAPESL processes only HDR1 and EOF1 labels. It does not perform any functions of opening a tape
file other than label checking or writing. It is used both to check and to write tape labels. A LABELDEF
command must be entered before running the program that contains this macro. The LABID parameter of
the TAPESL macro specifies the name of the LABELDEF to be used. For example, if you use the macro

TAPESL HOUT,181,LABID=GOODLAB

in your assembler language program, you must supply a LABELDEF command for GOODLAB:

labeldef goodlab fid file10 fseq 4 exdte 002235

The tape must be correctly positioned (at the label to be checked or at the place where the label is to be
written), before you run the macro. The TAPECTL macro can be used to position the tape. TAPESL reads
or writes only one tape record unless you specify SPACE=YES for input. Then it spaces the tape to beyond
the tape mark that ends the label file. TAPESL reads and checks a tape VOL1 label provided the tape is
positioned at load point and you have specified a volume ID in your LABELDEF command.

TAPEMAC and TAPPDS Commands
TAPEMAC and TAPPDS have operands where you can indicate the type of label processing you want. The
tape must be properly positioned (at the data file or label file you want) before you enter the command.
The TAPE command can be used for positioning. A separate LABELDEF command is required for these
commands if IBM standard label checking is desired. If SL label type is specified without a labeldefid,
standard header labels are displayed on the terminal but not checked by the CMS label processing
routines. The command

tapemac macfile SL (tap2

displays any standard labels that exist on your terminal while the series of commands:

labeldef maclab fid macro volseq 2 crdte 998102
tapemac macfile sl maclab (tap2

runs the CMS tape label processing routines. These routines check to see that your tape has a HDR1 label
that has a file identifier of macro, a volume sequence number 2, and a creation date of 998102 (day 102
of year 1998). VOL1 labels are not checked during label processing by TAPEMAC and TAPPDS unless the
tape is positioned at load point and you have specified a volume ID on your LABELDEF command. The
DVOL1 function of the TAPE command can be used for volume verification before positioning the tape
if the user does not want to start at the first file. These commands process only HDR1 labels; they skip
HDR2, UHL, and all trailer labels without processing them.

To process nonstandard tape labels with TAPEMAC and TAPPDS, you use the same interface described
in “Nonstandard Label (NSL) Processing” on page 160. The only difference is that instead of putting the
CMSCB and DCB addresses in the parameter list, the ID parameter you placed in the command line is
passed to your NSL routine.

tappds pdsfile cmsut1 * nsl superck id XYZ12345

passes the EBCDIC identifier XYZ12345 to your nonstandard label checking routine called SUPERCK. This
identifier may be up to eight characters long and is left justified in bytes 8 to 15 of the parameter list. You
can use the identifier to inform your NSL routine of what file you are processing.

TAPE Command
Use the DVOL1 function of the TAPE command to display the VOL1 label of a tape on your terminal. You
can use this command to ensure the system operator has mounted the correct tape before you begin

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 167

processing the tape. If the tape does not have a VOL1 label and you enter the TAPE command, you are
informed that the VOL1 label is missing.

Do not use TAPE DVOL1 if you have a blank tape. If TAPE DVOL1 is entered and a blank tape is used, CMS
will search the entire tape to find the label record; because the tape is void of any records, the tape will
run off the end of the reel in a reel tape, or you will get an error message with a cartridge tape.

Use the WVOL1 function on the TAPE command to write a VOL1 label on a tape. You can specify a
one-to-six character volume ID (volid) through this command and also a one-to-eight character owner
field.

Examples of DVOL1 and WVOL1
You can display or write VOL1 labels for ANSI and IBM standard labeled tapes. If you want to display the
VOL1 label from an IBM standard labeled tape, you can use the following command:

TAPE DVOL1 (TAP3 SL

This will display the VOL1 label of the tape located at the virtual address, 183.

If you want to write a VOL1 label for an ANSI labeled tape, you could use the command:

TAPE WVOL1 PERSIAN (TAP3 AL

This would write the volume serial number, PERSIAN, to the ANSI labeled tape located at virtual address,
183.

MOVEFILE Command

Moving Labeled Tape Files
You can use the MOVEFILE command to move labeled tape files if these files are defined as labeled
by the FILEDEF command. The MOVEFILE command supports only SL, AL, NSL, BLP, NL, and LABOFF
processing. SUL files are processed as SL files and AUL files are processed as AL files; and no user exits
are taken.

You can also use the MOVEFILE command to display tape labels on your terminal if you want to see what
these labels look like. The following sequence displays the VOL1 and first HDR1 labels on TAP4 if the tape
has standard labels:

filedef in tap4
filedef out term
tape rew (tap4
move in out

Copying Sequential Files into CMS Files
The MOVEFILE command can also copy sequential tape files into CMS files (minidisk files or files that
reside in an SFS directory), or sequential CMS files onto tape. It can be particularly useful when you need
to copy a file from a tape and you do not know the format of the tape.

To use the MOVEFILE command, you must first define the input and output files using the FILEDEF
command. For example, to copy a file from a tape attached to your virtual machine at virtual address 181
to a CMS minidisk, you would enter:

filedef input tap1
filedef output disk tape file a
movefile input output

This sequence of commands creates a file named TAPE FILE A1. Then use CMS commands to manipulate
and examine the contents of the file.

Unit Record Devices and Tapes

168 z/VM: 7.4 CMS Application Development Guide for Assembler

LABELDEF Command
LABELDEF can be used to write or check label information on both ANSI and IBM standard label tapes.
The LABELDEF command specifies the exact data you want written in certain fields of a HDR1 or EOF1
tape label for output. If you do not explicitly specify a field for output, a default value is used.

LABELDEF can also be used to specify fields in the same labels that you want checked on input. Even if
you do not specify a value for the file identifier field, it is checked to make sure it is not zeros or blanks.

The following LABEDEF command could be used for either an input or output file.

labeldef abc fid master volseq 1 exdte 005364

If used for output, MASTER is written to the HDR1 label in the file identifier field, 1 is written in the volume
sequence number field and 005364 (day 364 of year 2005) is written in the expiration date field. Default
values are written in the HDR1 fields that are not specified.

If the same command is used for input, CMS checks the file identifier, volume sequence number, and
expiration date in an input HDR1 label. No other fields in the label are checked.

Default values for HDR1 labels are as follows:

FID
For OS simulation, the ddname is specified in the FILEDEF command for the file.

For CMS/DOS, FID is the DTFMT symbolic name.

For TAPESL macro, FID is the labeldefid specified in the LABID parameter.

VOLID
is CMS001.

For OS simulation, the actual volid from the tape mounted is used if processing an SL or AL tape file.

In multi-volume processing, for subsequent volumes, the actual volid from the tape mounted is used
in the volume serial number field in the volume label (VOL1), and the volid of the first volume is written
to the data set serial number field in the HDR1 label.

VOLSEQ
is 0001.

FSEQ
is 0001.

GENN
is blanks.

GENV
is blanks.

CRDTE
is the date when the label is written.

EXDTE
is the date when the label is written.

SEC
is 0 for IBM standard labeled tapes and blank for ANSI labeled tapes. (If a 0 is specified for an ANSI
labeled tape, the SEC code will be set to blank, however, a blank cannot be specified with the SEC
option.)

The filename on the LABELDEF command connects your label definition to a file defined elsewhere. This is
why you specify different data for filename depending on the type of tape label processing you are doing.
Filename is ddname for OS simulation, DTFMT symbolic name for CMS/DOS and labeldefid for TAPESL.

The LABELDEF command takes the place of the VSE TLBL statement for CMS/DOS.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 169

Error Processing
When the standard label processing routines find errors or discrepancies on tape labels, they send a
message to the CMS terminal user who is processing the tape. After an error message is issued, you can
ask the system operator to mount a new tape, use the TAPE command to position the tape at a different
file, or specify your label description information again. If you are a terminal user and want another tape
mounted, you send the system operator a message telling him or her what tape to mount.

Some errors cause program termination and others do not. The effect of tape label processing errors
depends on both the type of error and the type of program (that is, CMS/DOS, OS simulation, CMS
command, and so forth) that runs the label processing. The following are general guidelines on error
handling:

• Messages identifying the error are always issued.
• Under OS simulation, tape label errors result in open errors. These errors prevent a tape file from being

opened. They do not necessarily end a job. Errors in trailer labels (except block count errors) have no
effect on processing.

• In CMS/DOS, the terminal user is generally given two choices: ignore the error or cancel the job. The
new-tape option is not allowed.

• The CMS commands TAPEMAC and TAPPDS terminate with a nonzero return code after a tape label
error.

• Certain error situations such as unexpired files and block count errors for OS simulation let you ignore
the error and do not cause open errors. In these cases, you enter your decision at the terminal after you
are notified of the error.

• Errors that occur during the loading of an NSL routine cause an abend (code 155 or 15A). A block count
abend gives an error code of 500.

In all cases, after an error has been detected and diagnosed, you must decide what to do. You may wish
to have a new tape mounted and then reenter the command or you may want to respecify your LABELDEF
description if it was incorrect. You can also use the TAPE command to space the tape to a new file if it was
incorrectly positioned.

Using Tape Library Dataservers under CMS OS Simulation
Tape Library Dataserver machines (such as the 3494, 3495, and 3595) use a robotic tape operator to
automatically select, mount, and demount tapes in a mechanically controlled tape library. This library
and its attached tape cartridge drives (such as the 3480, 3490, and 3590) are under the control of
the Removable Media Services (RMS) system. z/VM provides an interface to the RMS system through
DFSMS/VM.

If tapes are to be used under CMS OS simulation on a Tape Library Dataserver, z/VM requires that:

• DFSMS/VM and RMS must be installed.
• The RMS CSL library (FSMPPSI CSLLIB) must be accessed. In addition, the following command must be

issued to make the RMS CSL routines available to CMS:

rtnload * (from fsmppsi

• The RMS system administrator must select one of the 16 SCRATCHx (where x is 0-F) library categories
as the default SCRATCH processing category pool.

• The user should make sure that the default SCRATCH pool of tapes has enough physical tapes currently
assigned to it to meet any application program needs.

• If unique VOLIDs are specified on a LABELDEF or FILEDEF statement, these VOLIDs must reside within
the tape library to enable the Dataserver to mount the tapes.

• If the user premounts a tape on a Dataserver device with the DFSMS/VM MOUNT command, and the
tape is to be used for any type of output, the Target Category should be set to VOLspecific in the MOUNT

Unit Record Devices and Tapes

170 z/VM: 7.4 CMS Application Development Guide for Assembler

command parameters. This corresponds to the automatic system Target Category setting for output
tape mounts.

CMS provides the following interfaces:

• If the LIBSRV option is specified on the FILEDEF command to indicate that tape mounts should be
done on a Tape Library Dataserver machine, OS simulation calls the RMS interface to mount the tapes
automatically for the user. It is suggested that this option be used whenever a Tape Library Dataserver is
being used, to allow the system to mount all the tapes automatically for the user.

• If the tape drive currently in use is found to be under the control of a Tape Library Dataserver, or the
FILEDEF command has been issued with the LIBSRV option, OS simulation attempts to get subsequent
multivolume tapes mounted automatically for the user through the native DMSTVS mounting service
and the CMS native rewind and unload tape processing functions by calling the RMS FSMRMDMT
(Demount) and FSMRMMNT (Mount) CSL routines.

• RUN (rewind and unload) function processing for the CMS TAPE or VMFPLC2 command or the TAPECTL
macro calls the RMS FSMRMDMT (Demount) CSL routine if a Tape Library Dataserver is found to be
controlling the tape drive that the RUN was issued against.

• Input tapes remain in the same category on demount, but output tapes are moved to the VOLspecific
category to prevent accidental tape overwrite on the next scratch tape mount from the default SCRATCH
tape pool.

Unit Record Devices and Tapes

Chapter 11. Unit Record Devices and Tapes 171

Unit Record Devices and Tapes

172 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 12. Interrupt Handling

CMS interrupt handling routines can be used in an XC, XA, or 370 virtual machine. These routines make
it easier for application programs to handle interrupts (or easier for programmers to code interrupt
handlers). This chapter discusses:

• Manipulating the PSW Interrupt Mask
• External interrupt handling
• I/O interrupt handling
• SVC interrupt handling
• Machine-check interrupt handling
• Program interrupt handling.

Note: Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.

Manipulating the PSW Interrupt Mask
Because of PSW format differences between System/370 architecture and ESA/XC and 370-XA
architecture, the SSM (SET SYSTEM MASK) assembler instruction produces undesirable results in an XC
or XA virtual machine. The ENABLE macro provides an architecture-independent way to set the interrupt
mask in the PSW. The macro expansion includes logic to (a) check for the type of virtual machine, (b) build
the appropriate interrupt mask, and (c) issue instructions appropriate to the architecture. If you specify
MODE=NO370 on the ENABLE macro, then those instructions needed only for the 370 virtual machine are
not generated.

Converting from the SSM Instruction to ENABLE
To make migration easier and to exploit the ENABLE macro's dual-path code, replace SSM instructions
with the appropriate ENABLE macro. The following table suggests replacements.

Table 22. Replacing SSM Instructions with ENABLE Macros

SSM ENABLE

=X'00' INTTYPE=NONE

=X'FF' INTTYPE=ALL

=X'01' INTTYPE=EXTERNAL

=X'FE' INTTYPE=IO

=X'80' INTTYPE=CONSOLE

=X'7E' INTTYPE=NONCONIO

=X'81' INTTYPE=(CONSOLE,EXTERNAL)

=X'7F' INTTYPE=(NONCONIO,EXTERNAL)

Examples

Example 1
To disable I/O and external interrupts, code the ENABLE macro as follows:

ENABLE INTTYPE=NONE

Interrupt Handling

© Copyright IBM Corp. 1990, 2024 173

Example 2
To enable all I/O and external interrupts, code the ENABLE macro as follows:

ENABLE INTTYPE=ALL

Example 3
To generate reentrant code, use a combination of MF parameters such as

ENABLE INTTYPE=ALL,MF=(L,(reg))

to identify the mask settings, and

ENABLE MF=(E,(reg))

to execute the instructions to set the interrupt masks. The specified register should contain the address
of a two fullword work area. Such a work area should not be within the program that is to be reentrant. It
might be in a save area, or it could be obtained with the CMSSTOR macro.

Note: Issuing the CP SET 370ACCOM ON command will allow SSM to produce results consistent with
a 370 virtual machine. See z/VM: CP Programming Services for more information on how to run your 370-
only CMS applications in an XA or XC virtual machine. See z/VM: CP Commands and Utilities Reference for
information on the CP SET 370ACCOM command.

External Interrupt Handling
CMS external interrupt facilities provide:

• Complete interrupt status information in a common format.
• Notification of the occurrence of the interrupt according to the programmer's need (notification can be

immediate or synchronized using event control blocks (ECBs)).
• A default external interrupt handler that allows you to abend a program or continue processing.
• A macro interface (the HNDEXT macro) that allows you to define external interrupt handling routines.

You can use HNDEXT to define handlers for specific interrupt codes or to define your own default
external interrupt handler to process external interrupts that do not have a specific handler.

In addition, the HNDEXT macro provides parameters that allow you to specify whether the interrupt
handler is to be cleared at end-of-command (the KEEP parameter), specify whether the handler
survives abend processing (the SYSTEM parameter), specify an error return address (the ERROR
parameter) and specify various macro formats (the MF parameter).

Note: If you specify SYSTEM=YES and KEEP=YES for an interrupt handler, you should place the entry
address of the routine (rtnaddr) in a nucleus extension or unpredictable results will occur.

External Interrupt Handling Overview
External interrupts provide a means for your virtual machine to respond to various signals originating
from either inside or outside its configuration. For example, all of the following architected sources can
generate external interrupts:

• Interrupt key
• Malfunction alert
• Emergency signal
• External call
• TOD-clock sync check
• Clock comparator
• CPU timer

Interrupt Handling

174 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

• Service signal.

Note that many of these interrupts do not apply to CMS. For example, emergency signals, malfunction
alerts, service signals, and external calls apply to multiprocessing, which CMS does not support.

Other External Interrupt Sources
In addition to the architected sources, external interrupts are generated by APPC/VM, IUCV, VMCF, the
CP EXTERNAL command, and by CP for events related to data space support (interrupt codeX'2603'). The
X'2603' interrupt code can indicate either a page-fault notification or the completion of an asynchronous
save operation. The X'2004' interrupt code notifies CMS of a time zone change that has been initiated by
a privileged user entering the CP SET TIMEZONE command. For information about the CP SET TIMEZONE
command, see z/VM: CP Commands and Utilities Reference.

Enabling and Disabling External Interrupts
To enable or disable your virtual machine for all external interrupts, you can use the ENABLE macro
(see “Manipulating the PSW Interrupt Mask” on page 173). To enable or disable your virtual machine for
specific external interrupts, set the appropriate mask in control register 0.

How External Interrupt Handling Works
To understand how to use CMS facilities to handle your own interrupts, it helps to understand how
external interrupt processing works—here is an overview (if you need more information, see z/VM: ESA/XC
Principles of Operation.

1. The CMS external FLIH saves status information — When an external interrupt is reflected by CP to a
virtual machine, the CMS external first-level interrupt handler (also called the external FLIH) performs
the following processing:

a. Saves information about the state of the interrupted program (for example, register contents).
b. Captures the interrupt status information and stores it in an area mapped by the EXTUAREA

mapping macro. (See “Entry and Exit Linkage” on page 177 for information on the format and
location of this area.)

2. The FLIH calls a SLIH — After the first-level interrupt handler (FLIH) saves status information, it looks
for the appropriate second-level interrupt handler (also called a SLIH). There are three types of SLIHs
(code-specific handlers, a user-defined default handler, and the CMS default handler), and the FLIH
looks for them as follows:

a. A code-specific handler — First, the FLIH looks for a handler that was defined for the specific
interrupt code.

i) If a dummy handler is defined, the FLIH posts the ECB and returns control to the program that
was interrupted first. If the program had issued the WAITECB macro, the wait state is cleared
and processing can resume.

ii) If a code-specific handler routine is defined, the FLIH invokes it in the addressing mode that was
in effect at the time the HNDEXT macro that created the handler was issued. Upon return, the
FLIH checks the return code in register 15.

• If the return code is 8, the FLIH passes control to a user-defined default handler, which also
receives the same interrupt information. If there is no user-defined default handler, the FLIH
passes control to the CMS default handler.

• If the return code is 4 or something other than 0 or 8, no ECB posting is required, and control
is returned to the interrupted program.

• If the return code is 0, the FLIH posts an ECB as specified by the handler routine (OS or
VSE format). Control is returned to the program that was interrupted first. If the program had
issued the WAITECB macro, the wait state is cleared and processing can resume.

b. The user-defined default handler — If the user has not defined a handler for the specific code, or if
the specific handler issues a return code of 8, the FLIH looks for a user-defined default handler.

Interrupt Handling

Chapter 12. Interrupt Handling 175

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4

Upon return from the user-defined default handler, the FLIH again checks the return code in
register 15.

• If the return code is 8, the FLIH passes control to the CMS default handler.
• If the return code is 4 or something other than 0 or 8, no ECB posting is required, and control is

returned to the interrupted program.
• If the return code is 0, the FLIH posts an ECB as specified by the handler routine (OS or VSE

format). Control is returned to the program that was interrupted first. If the program had issued
the WAITECB macro, the wait state is cleared and processing can resume.

c. The CMS default handler — If the FLIH cannot find a user-defined default handler, or if the
user-defined handler issues a return code of 8, the FLIH calls the CMS default external interrupt
handler.

The CMS Default External Interrupt Handler
CMS has a default interrupt handler that processes external interrupts that do not have specific handlers.
The CMS default handler returns the interrupt code and issues a message to your terminal that asks if it
should (a) ignore the interrupt and resume processing or (b) pass control to the CMS abend processing
routines.

By contrast, previous releases of CMS used to place the virtual machine into the DEBUG environment
when no interrupt handler was defined.

Handling Specific External Interrupts
Using HNDEXT, you can create a specific routine for handling external interrupts or you can create a
‘dummy’ handler to specify that the first-level interrupt handler post an ECB for specific interrupts.

In addition to any processing your handler does, it must store a return code in register 15. A return code
of:

• 0 specifies normal completion. If the ECB parameter was specified, the first-level handler posts it.
• 4 instructs the first-level interrupt handler to not post an ECB.
• 8 instructs the first-level interrupt handler to call the user-defined default handler if one exists, or the

CMS default handler.

Note: The HNDEXT SET function cannot define handlers for codes that already have handlers. To define a
new handler for an interrupt code, you must clear the existing one and then define a new one.

Defining a Dummy Handler
To specify that the first-level external interrupt handler post an OS-type ECB and not pass control to a
second-level handling routine, code the HNDEXT macro as follows:

HNDEXT SET,'DUMMY',CODE=extcode,ECB=(ecbaddr,OS)

When the external interrupt first-level handler detects the interrupt specified by CODE=extcode, it will
post the ECB specified by the ECB parameter. Use the WAITECB macro, at the point in your program
where you want to be notified of the external interrupt. See “Using the WAITECB Macro” on page 178 for
more information on the WAITECB macro.

Defining a Specific Interrupt Handler

Interrupt Handling

176 z/VM: 7.4 CMS Application Development Guide for Assembler

Example — No ECB Processing
To specify that the first-level external interrupt handler pass control to a second-level handling routine at
address rtnaddr, code the HNDEXT macro as follows:

HNDEXT SET,rtnaddr,CODE=extcode

The CODE parameter of HNDEXT specifies the external interrupt code you wish to handle. Codes may be
specified in betweenX'0001' to X'FFFE'.

Note: If you specify an external interrupt code of X'0000', a default handler is created to handle all
external interrupts that do not have specific interrupt handlers. Also note that CMS uses the X'4000'
external interrupt code to process IUCV interrupts.

Example — Optional ECB Posting
To specify that a first-level external interrupt handler can optionally post an ECB and pass control to a
second-level handling routine at address rtnaddr, code the HNDEXT macro as follows:

HNDEXT SET,rtnaddr,CODE=extcode,ECB=ecbaddr

When the routine terminates it can issue a return code of 0 in register 15 to indicate posting of the ECB
specified by the ECB parameter. A return code of 4 in register 15 would omit posting of the ECB.

Entry and Exit Linkage
You are responsible for providing the proper entry and exit linkage for your interrupt handling routine.
When your program receives control, the register contents are as follows:
Register

Contents
0

Address of the user word specified on the HNDEXT macro.
1

Address of the area containing the state of the machine at the time of interrupt. The EXTUAREA
DSECT maps this area; for more detailed information, see the z/VM: CMS Macros and Functions
Reference.

2-11
Unspecified

12
Handling routine entry address

13
A pointer to the user save area (label UAREA) within the EXTUAREA

14
Return address

15
Handling routine entry address.

Your routine must return control to the address in register 14, and must store one of the following return
codes in register 15.

• Zero (0) — Indicates the second-level handler is through handling the interruption and the first-level
handler should post the ECB (if one was specified).

• Four (4) — Indicates the second-level handler has completed, and the first-level handler should not
post the ECB.

• Eight (8) — Indicates that the interrupt is passed to a user-specified default handler, if one is defined. If
a user-specified default handler does not exist, then the system default handler is invoked to handle the
interrupt.

Interrupt Handling

Chapter 12. Interrupt Handling 177

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Address Translation Mode Consideration
In an XC virtual machine, all interrupt handlers always receive control in primary space (address
translation) mode and always must return control to CMS in primary space mode.

Using the WAITECB Macro
ECBs, event control blocks, are standard mechanisms used to synchronize multiple events. The process
of turning on the event complete bit is referred to as posting the ECB. The WAITECB macro suspends
processing until a specific ECB or the ECBs in a list have been posted (this is called waiting on an ECB).

ECBs are fullwords and have the following OS or VSE format:

OS Format

 bit 0 WAIT bit
 bit 1 Event completed bit
 bit 2-31 Completion code

VSE Format

byte 0-1 Reserved
byte 2
 bit 0 Traffic bit
 bit 1-7 Reserved
byte 3 Reserved

Example 1
To wait on an OS format (the bit tested for "event completed" is byte 0 bit 1) ECB at address ECB1, code:

 WAITECB ECB=ECB1

Example 2
To wait on four VSE format ECBs at addresses ECB1, ECB2, ECB3, and ECB4, (the bit tested for event
complete is byte 2 bit 0), code:

 WAITECB 4,ECBLIST=LISTADDR,FORMAT=VSE
.
.
LISTADDR DS 0F
 DC A(ECB1)
 DC A(ECB2)
 DC A(ECB3)
 DC A(ECB4)
FENCE DC X'FF'
.
.
ECB1 DC F'0'
ECB2 DC F'0'
ECB3 DC F'0'
ECB4 DC F'0'

Note that if FORMAT=VSE is specified:

• With ECBLIST, the byte following the last fullword of the list must be nonzero.
• The ECBs must reside below 16MB.

Example 3
To wait on two OS format ECBs at addresses ECB1 and ECB2, code:

 WAITECB 2,ECBLIST=LISTADDR
.
.

Interrupt Handling

178 z/VM: 7.4 CMS Application Development Guide for Assembler

LISTADDR DS 0F
 DC A(ECB1)
 DC A(ECB2+X'80000000')
.
.
ECB1 DC F'0'
ECB2 DC F'0'

Note: If FORMAT=OS is specified (or defaulted) with ECBLIST, the high-order bit (bit 0) in the last fullword
of the list must be set to 1.

Attention: If you specify a count larger than the number of ECBs in the ECBLIST, execution of this
macro results in a permanent wait.

Creating Your Own Default Handler
To use the HNDEXT macro to create your own default external interrupt handler, omit the CODE
parameter (or specify code asX'0000').

Example
To define your own default handler at address MYDEF, code the HNDEXT macro as follows:

HNDEXT SET,MYDEF

Deleting an External Interrupt Handler
Use HNDEXT CLR to delete an external interrupt handler.

Example 1
To delete a handler for a specific code (for example, X'40'), code:

HNDEXT CLR,40

Example 2
To delete handlers for the interrupt codes specified at CLRADDR, code:

 HNDEXT CLR,CLRLIST=CLRADDR
 .
 .
 .
 DS 0F
CLRADDR DC CL4'0040'
 DC CL4'0050'
 DC CL4'0060'
 DC 8X'FF'

Notes:

1. The list of external interrupt codes you want to clear should end with an 8-byte fence of X'FF'.
2. Interrupt handling routines should not issue HNDEXT CLR.
3. If no codes are entered to be cleared, then the user-defined default handler is cleared.

Handling I/O Interrupts
I/O interrupts provide a means for your virtual machine to communicate with I/O devices. CMS has its
own interrupt handling routines for all of the I/O devices it supports. Unless your program has special
needs (for example, it does I/O to a device that CMS does not support) CMS default handlers should be
sufficient.

Interrupt Handling

Chapter 12. Interrupt Handling 179

If you do need to define your own interrupt handling routines, CMS provides a macro interface to help
you. Use the CONSOLE macro to create exit routines for 3270 display devices (see “Handling Console
Interrupts” on page 84 for details) and use HNDIO for other devices.

I/O Interrupt Handling — An Overview
After a program issues an I/O operation to a specific device, an interrupt is returned from the device
indicating the status of the I/O operation. CP processes the interrupt first: it converts the results into
a format your virtual machine can understand, and then calls the CMS I/O first-level interrupt handler
(FLIH). The FLIH gets control in primary space mode and returns control in the same mode as when the
interrupt occurred.

The CMS I/O FLIH saves information about (a) the state of the program that was running at the time the
interrupt occurred and (b) the interrupt itself. The FLIH then looks for a second-level handler (SLIH) to
process the interrupt. If a SLIH exists, the FLIH calls it. The SLIH processes the interrupt and returns
control back to the FLIH, which will then return control to the program that was running when the
interrupt occurred.

When you define your interrupt handler, you can specify that interrupts be handled in an alternate way.
The FLIH will mark the interrupt as having occurred and will return. The SLIH will not be called until a
later time determined by your program.

The following sections describe FLIHs and SLIHs in more detail and also describe how you can define
your own interrupt processing routines.

Note: I/O operations initiated by some forms of the DIAGNOSE instruction do not produce I/O
interruptions and are not trapped by HNDIO or HNDINT. If the I/O operation initiated by DIAGNOSE does
produce I/O interrupts, then HNDIO will trap the interrupts if the device has been specified for HNDIO.

Enabling and Disabling I/O Interrupts
To enable or disable your virtual machine for all I/O interrupts, you can use the ENABLE macro (see
“Manipulating the PSW Interrupt Mask” on page 173). To enable or disable your virtual machine for
specific I/O interrupts, set the appropriate mask in control register 6.

First-Level I/O Interrupt Processing
As just mentioned, the first-level I/O interrupt handler (FLIH) processes reflected interrupts from
CP, saves information about the state of the interrupted program, and captures the interrupt status
information relative to a XA or XC virtual machine. After the FLIH saves information about the interrupt, it
looks for a second-level handler (SLIH) for the device that caused the interrupt. In general, the FLIH looks
for a SLIH as follows:

1. The FLIH determines if a device path defined by the CONSOLE macro is waiting for the interrupt. If one
is, the FLIH resets the appropriate wait bits and restarts the program (in this case, the console facility).

2. If a defined console path was not waiting for an interrupt, the FLIH looks for handler routines in the
following order:

a. Interrupt handling routines defined by HNDIO or HNDINT.
b. OS/MVS STAX exit routines (for attention interrupts only).
c. Exit routines defined by the CONSOLE macro. If the last path that performed I/O defined an exit

routine, that exit routine gets control. If no path did I/O, the FLIH determines if the last path
opened specified an exit routine. If it did, the FLIH passes control to it.

Once fullscreen mode has been established using the CONSOLE macro, only attention interrupts will
be passed to exits for the virtual console. Other interrupts (such as unsolicited device ends) may be
passed to exits defined for dedicated 3270 devices.

3. If the interrupt is for the virtual console and no handler is found by the FLIH, then CMS performs
standard processing for the virtual console.

Interrupt Handling

180 z/VM: 7.4 CMS Application Development Guide for Assembler

4. Finally, if the FLIH still cannot find a handler, the interrupt is ignored and control is returned to the
routine that was executing when the interrupt occurred.

Second-Level I/O Interrupt Processing
CMS provides its own interrupt handling facilities for all devices it supports. Unless your program has
special needs (for example, it performs its own I/O operations) or is using a device that CMS does not
support, CMS interrupt handling facilities should be adequate. If you need to define your own interrupt
handlers, you can use the HNDINT and HNDIO macros to do so or, use the CONSOLE macro exits for
the virtual console or dedicated 3270 devices. Some applications still use the OS/MVS STAX macro
for defining an exit routine to handle attention interrupts for the virtual console, but this is not a CMS
preferred interface.

Note: The CONSOLE macro provides its own facilities for handling console interrupts. You should not
define a CONSOLE exit and an HNDIO handler for the same device; however, if for some reason there
is a CONSOLE exit and an HNDIO handler routine for the same device, the HNDIO routine overrides the
CONSOLE exit unless the interrupt is expected. If an OS/MVS STAX routine is still in effect and there is a
CONSOLE exit for the same device, the CONSOLE exit will not get control for unsolicited interrupts until
the STAX routine is cleared.

While existing programs can continue to use the HNDINT macro, new programs should use HNDIO.
HNDIO provides the same functions as HNDINT, in addition, it allows a programmer to:

• Obtain complete I/O status for XC and XA virtual machines (the INTBLOK parameter)
• Specify whether the interrupt handler is to be cleared at end-of-command (the KEEP parameter)
• Specify whether the handler survives abend processing (the SYSTEM parameter)
• Specify whether the handler survives machine check processing for the detaching or redefining of the

device (the PERSIST parameter)
• Specify an error return address (the ERROR parameter)
• Specify various macro formats (the MF parameter).

Defining an I/O Interrupt Handling Procedure
If you need to define an interrupt handler for any device other than a display device, use the HNDIO
macro. (Use the CONSOLE macro to define handlers for 3270 displays doing full-screen I/O.) Here are
some things to consider when you use HNDIO to define your own interrupt handlers:

• Is the handler for a program that runs in a 370 virtual machine or in an XC or XA virtual machine?

The format of the interrupt information you receive varies according to the mode of the virtual machine.
To receive complete I/O status in an XC or XA virtual machine, you must specify the INTBLOK parameter
and provide a storage area where the CMS I/O first-level handler can store information. You can use the
INTBLOK mapping macro to map this area.

Because having an INTBLOK area has no adverse effects on programs running in a 370 virtual machine
all of the examples in the next section define one.

Note: Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.
• Should the handler survive end-of-command and abend processing?

By default, CMS clears user-defined interrupt handlers at end-of-command or when it (CMS) performs
abend processing. The SYSTEM and KEEP parameters of the HNDIO macro let you save interrupt
handlers across end-of-command and abend processing.

Note: If you specify SYSTEM=YES and KEEP=YES for an interrupt handler, you must make sure that
the interrupt handler itself survives abend and end-of-command processing. To make sure the handler
survives, you can place the entry address of the routine (rtnaddr) in a nucleus extension, or you can
allocate the storage for the handler from a global subpool for which you have specified SYSTEM=YES.

• Are there times other than the ones mentioned above, when handlers will be cleared?

Interrupt Handling

Chapter 12. Interrupt Handling 181

In an XC or XA virtual machine, if a machine check interrupt is received because of a device being
detached or redefined, then the normal system action is to clear all user defined I/O interrupt handlers
associated with that device. However, this action can be overridden if the interrupt handler has been
specified with PERSIST=YES, which allows the exit clearing to be ignored when the machine check
interrupt is processed.

• When should the handler be notified of the interrupt?

You have two options:

1. You can instruct CMS to call your interrupt handler when the interrupt comes in (this is the default,
NOTIFY=ASAP).

2. You can instruct CMS to call your interrupt handler only when you want it to (to do this specify the
WAITD macro at the point in your program where you want to be notified and specify NOTIFY=WAIT
on the HNDIO macro).

Handling Interrupts — Examples
For all of the following examples, assume that you are creating a handler for the device named DEVO
(DEVNAME=DEVO), that the device number of DEVO is 990 (DEVICE=990), and that the exit routine
begins at label ZEESLIH (EXIT=ZEESLIH). Also note that all of the following examples define an INTBLOK,
the storage for which you must provide.

Immediate Notification
The NOTIFY parameter specifies whether you want notification and handling of the interrupt to be
immediate (when the interrupt comes in) or synchronous (only when your program issues a WAITD
macro). NOTIFY=ASAP (immediate notification) is the default value.

To define a handler that gets notified immediately, code:

HNDDEVO HNDIO SET,DEVNAME=DEVO,EXIT=ZEESLIH,DEVICE=990,
 NOTIFY=ASAP,INTBLOK=((R8),INBLKSZ)

Whenever it receives an interrupt from DEVO, CMS immediately calls the handler at ZEESLIH.

Synchronizing Interrupt Processing
To instruct CMS to delay notification until your program is ready, specify NOTIFY=WAIT on the HNDIO
macro:

HNDDEVO HNDIO SET,DEVNAME=DEVO,EXIT=ZEESLIH,DEVICE=990,
 NOTIFY=WAIT,INTBLOK=((R8),INBLKSZ)

To define the point in your program where you want to be notified of the interrupt, code the WAITD macro.
If the interrupt has already come in, CMS calls your handler immediately. If the interrupt has not come
in, CMS suspends the execution of your program until it does. When your handler finishes, CMS returns
control to the instruction following the WAITD macro.

Saving the Handler Across Abend and End-of-Command Processing
Use the KEEP and SYSTEM parameters to specify that a handler is to survive end-of-command and abend
processing. Note, however, that if you specify either KEEP=YES or SYSTEM=YES, you must also make sure
that the storage that contains the handler survives.

The following example creates a global subpool that survives abend processing and then uses the storage
to create an interrupt handler.

Interrupt Handling

182 z/VM: 7.4 CMS Application Development Guide for Assembler

 .
 .
 .
 SUBPOOL CREATE,NAME='SLIPOOL',TYPE=GLOBAL,SYSTEM=YES, X
 KEY=NUCLEUS
*
 LA R3,HNDLRLEN Length of interrupt handler
 CMSSTOR OBTAIN,BYTES=(R3),SUBPOOL=('SLIPOOL',GLOBAL)
*
 LR R4,R1 Save for exit definition
 LR R2,R1 Where to put the Handler
 LR R3,R0 Size of the handler
 LA R0,MYHNDLR Addr of the handler in this program
 LR R1,R3 Size of the handler
 MVCL R2,R0 Copy into global storage
*
 LA R3,INBLKSZ Length of our INTBLK
 CMSSTOR OBTAIN,BYTES=(R3),SUBPOOL=('SLIPOOL',GLOBAL)
 LR R5,R1 Save INTBLK Address
*
 HNDIO SET,DEVNAME=DEV0,EXIT=(R4),DEVICE=990,NOTIFY=ASAP, X
 INTBLOK=((R5),(R3)),KEEP=YES,SYSTEM=YES
 .
 .
 .
MYHNDLR EQU * Start of interrupt handler to survive abend
* processing and end-of-command. It must have NO
* relocatable addressing constants when moved
* into free storage.
 .
 .
 BR R14
*
HNDLRLEN EQU *-MYHNDLR Size of the above interrupt handler

Using a Dummy Handler — Ignoring Interrupts
A ‘dummy’ handler is one that has no interrupt handling code defined. For example, to ignore interrupts
from device 990 you could code:

HNDDEVO HNDIO SET,DEVNAME=DEVO,EXIT=0,DEVICE=990,NOTIFY=ASAP

or, because EXIT=0 and NOTIFY=ASAP are defaults

HNDDEVO HNDIO SET,DEVNAME=DEVO,DEVICE=990

Using a Dummy Handler — Notification Only
If you do not want to process interrupts from device 990 but you do want to know when they come in, you
could code:

HNDDEVO HNDIO SET,DEVNAME=DEVO,DEVICE=990,NOTIFY=WAIT

At the point in your program where you want to receive notification, issue the WAITD macro.

Waiting For Unsolicited Interrupts
There may be times when you want to use the WAITD macro without defining an interrupt handler. For
example, assume you wanted a program that would handle unsolicited interrupts from your reader, but
remained in a wait state otherwise. Your program could issue WAITD RDR; when an interrupt from your
reader comes in, it will ‘wake up’ your program, which can then process the interrupt. When your program
finishes handling the interrupt, it can re-issue the WAITD RDR thus returning to a wait state.

Interrupt Handler Conventions
When your interrupt handler routine receives control, all I/O interruptions and external interruptions are
disabled. Your interrupt handler should not enable I/O or external interrupts, perform any I/O operations,
or issue a HNDIO CLR for the device associated with the handling routine.

Interrupt Handling

Chapter 12. Interrupt Handling 183

You must provide the proper entry and exit linkage for your interrupt handlers. CMS calls second-level
interrupt handlers in the same addressing mode as the program that issues the HNDINT or HNDIO macro.

Address Translation Mode Consideration
In an XC virtual machine, all interrupt handlers always receive control in primary space (address
translation) mode and always must return control to CMS in primary space mode.

Linkage Entry Conventions
For the most part, HNDIO, HNDINT, and the second-level routines they define use the same linkage
conventions. The only exception is that second-level routines defined by HNDIO use register 5 to point
to the INTBLOK and register 6 to contain the UWORD (if one was specified). For second-level interrupt
handlers created by HNDINT, CMS zeros out registers 5 and 6.
Register

Contents
0-1

Contains the I/O old PSW. For an XA or XC virtual machine, registers 0-1 contain a re-constructed PSW
in BC format. XA or XC mode programs can extract the real I/O old PSW from the INTBLOK.

2-3
Contains the Channel Status Word (CSW). For an XA or XC virtual machine, registers 2-3 contain a
re-constructed CSW. The XA or XC mode program can extract the real I/O status from the INTBLOK's
IRB content.

4
Contains the address of the device that caused the interrupt. For an XA or XC virtual machine, this
address is extracted from the I/O interrupt code at location X'B8'. The XA or XC mode program may
extract more complete device information from the INTBLOK.

5
Points to the INTBLOK that the HNDIO macro specifies. For an XA or XC virtual machine, the INTBLOK
contains 370-XA interrupt information, such as the I/O old PSW, the I/O interrupt code, and the IRB.
For 370 virtual machines, the INTBLOK contains CSW information in the appropriate IRB fields. If you
do not specify the INTBLOK parameter, the contents of R5 are 0.

6
Contains the user word specified on the UWORD parameter of the HNDIO macro. If the UWORD
parameter was not specified, then register 6 is set to zero.

7-11
Unspecified.

12
Contains the entry address of the interrupt handling routine.

13
Points to a 24-word save area provided by the first-level I/O interrupt handler.

14
Contains the return address.

15
Contains the entry address of the interrupt handling routine.

See z/VM: CMS Macros and Functions Reference for an expansion of the INTBLOK macroinstruction
(INTBLOK DSECT).

Note: To obtain interrupt information in an XA or XC virtual machine, the FLIH issues a TSCH (test
subchannel) instruction. If the TSCH fails, the INTSTAT field of the INTBLOK control block is set to X'FF's
and the related IRB information is invalid for this interrupt.

Interrupt Handling

184 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Linkage Exit Conventions
Interrupt handling routines must return control to the address in register 14. They must also store a
return code in register 15 to indicate whether processing is complete. A zero (0) in register 15 indicates
the second-level handler is through handling the interruption; a nonzero return code indicates that the
second-level handler expects another interrupt before processing completes. (For information on the
CONSOLE exit routine entry conditions, see Chapter 8, “Console and Terminal I/O,” on page 83.)

Clearing an Interrupt Handler
To delete an interrupt handler, use HNDIO CLR.

Note: Do not issue HNDIO CLR from within an interrupt handler.

Example — Clearing a Specific Interrupt Handler
The following example shows how to use the HNDIO CLR to clear the interrupt handler for DSK0:

HNDIO CLR,DSK0

Example — Clearing Interrupt Handlers for a List of Devices
Use the CLRLIST parameter to clear interrupt handlers for a list of devices. Specify each device in the list
as a four-character symbolic name. To make sure that only the specified device interrupt handlers are
cleared, end the list with a fence (8X'FF').

If your routine attempts to clear a handler for an unspecified device, the invalid device name is returned in
register 1. Handlers for devices prior to the invalid device are cleared; handlers for devices following the
invalid device are not.

The following example shows how to use the CLRLIST parameter to clear handling routines for DSK1,
DSK2, DSK3, and DSK4:

 HNDIO CLR,CLRLIST=LISTADDR
 .
 .
 .
LISTADDR DS 0H
 DC CL4'DSK1'
 DC CL4'DSK2'
 DC CL4'DSK3'
 DC CL4'DSK4'
 DC 8X'FF'

Second-Level Handler Returns to First-Level
After a handler routine processes an interrupt, control is returned to the FLIH. The FLIH then examines
the I/O wait bit in the I/O old PSW to determine if a program was waiting for the interrupt. (Programs can
issue the WAITD macro to set the I/O wait bit on and thus halt execution until the interrupt arrives.)

1. If the I/O wait bit is off, the FLIH determines if the program intended to wait for the interrupt but
had not yet issued the WAITD macro. (In other words, if the handler routine for the device specified
NOTIFY=WAIT and the I/O wait bit is off, then the interrupt arrived before the program had a chance
to issue a WAITD macro.)

a. If the handler routine did not specify NOTIFY=WAIT, the FLIH restarts the program that was
executing when the I/O interrupt occurred.

b. If the handler routine specified NOTIFY=WAIT, the FLIH saves information about the interrupt;
when the program issues the WAITD, the handler routine is immediately invoked. After saving the
status information, the FLIH then restarts the program that was executing when the I/O interrupt
occurred.

2. If the I/O wait bit is on, the FLIH determines if a WAITD had been issued for the device that caused the
interrupt.

Interrupt Handling

Chapter 12. Interrupt Handling 185

a. If a program did issue a WAITD for the device that caused the interrupt, the FLIH resets the WAITD
indicator and the wait bit in the I/O old PSW and restarts the interrupt process: this returns control
to the issuer of the WAITD.

b. If no WAITD was issued for the device that caused the interrupt, then the user is waiting for an
interrupt from another device. The FLIH does not restart the program; rather, the program remains
in a wait state until the anticipated interruption occurs.

SVC Interrupts
Use the HNDSVC macro to set or clear routines that trap interrupts caused by specific supervisor call
(SVC) instructions.

Creating SVC Handlers
Use HNDSVC SET to create SVC handlers.

Example 1
To define an SVC handler for SVC 10 that begins at ADDR10, code the following:

HNDSVC SET,(10,ADDR10)

Example 2
To define (a) an SVC handler for SVC 10 that begins at ADDR10 and (b) an SVC handler for SVC 11 that
begins at ADDR11, code the following:

HNDSVC SET,(10,ADDR10),(11,ADDR11)

Example 3
To define (a) an SVC handler for SVC 10 that begins at ADDR10, (b) an SVC handler for SVC 11 that begins
at ADDR11, and specify that (c) CMS keep both of the user SVC handler definitions past end-of-command
processing, code the following:

HNDSVC SET,(10,ADDR10),(11,ADDR11),KEEP=YES

Example 4
To define (a) an SVC handler for SVC 10 that begins at ADDR10, (b) an SVC handler for SVC 11 that begins
at ADDR11, and specify that (c) CMS keep both of the user SVC handler definitions past end-of-command
processing and (d) both handlers survive beyond abend processing, code the following:

HNDSVC SET,(10,ADDR10),(11,ADDR11),KEEP=YES,SYSTEM=YES

Note: The SYSTEM parameter, like KEEP, applies to all trap routines defined on an HNDSVC SET macro,
not to individual trap routines.

Example 5
The UWORD parameter, unlike KEEP and SYSTEM can be specified for any individual SVC handler on a
single HNDSVC SET macro invocation. For example, to define (a) an SVC handler for SVC 6 that begins
at ADDR6 and passes the fullword contained at UWD6 and (b) an SVC handler for SVC 7 that begins at
ADDR7, code the following:

HNDSVC SET,(6,ADDR6,UWORD=UWD6),(7,ADDR7)

Interrupt Handling

186 z/VM: 7.4 CMS Application Development Guide for Assembler

HNDSVC Entry and Exit Linkage
You must provide the proper entry and exit linkage for your SVC handling routine. When your program
receives control, the register contents are as follows:
Register

Contents
0-11

Remain the same as when the SVC was issued.
12

If the current addressing mode is AMODE 24, register 12 contains the SVC number in the high-order
byte and a 3 byte address of the routine. If the addressing mode is AMODE 31, register 12 contains
only the address of the SVC trap routine. For both addressing modes, the address of the SVC trap
routine will always be in register 12 and the UWORD and SVC number can always be found in the
HSVCSAVE pointed to by register 13.

13
The address of an HSVCSAVE save area.

14
The return address to the SVC handler.

15
Remains the same as when the SVC was issued.

When complete, your routine must return control to the address in register 14. You do not need to restore
any registers. The registers are restored to the contents they held at the time the SVC was issued.

Address Translation Mode Consideration
In an XC virtual machine, all interrupt handlers always receive control in primary space (address
translation) mode and always must return control to CMS in primary space mode.

Controlling the Addressing Mode of SVC Trap Routines
SVC trap routines receive control in the addressing mode of the program that issues the HNDSVC macro,
not in the addressing mode of the program that issues the trapped SVC. The HNDSVC macro does not
have an addressing mode parameter that allows the user to dynamically set the AMODE. Therefore, to
change or set the addressing mode of an SVC trap routine, issue the AMODESW macro.

Deleting SVC Handlers
Use HNDSVC CLR to delete SVC handlers.

Example 1
To delete the handler for SVC 10, code

HNDSVC CLR,10

Example 2
To delete the handlers for SVC 10 and SVC 11, code

HNDSVC CLR,10,11

Note: SVC numbers 0 through 200 and 206 through 255 are valid.

Interrupt Handling

Chapter 12. Interrupt Handling 187

Machine Check Interrupts
Machine-check interrupts provide a means of reporting equipment malfunctions. CP reflects machine
checks to a virtual machine when it detects events that affect a virtual machine or to notify the virtual
machine of damage it (CP) has detected. For example, CP presents a host paging error to a virtual
machine as a storage-error machine-check since the virtual machine's storage is effectively damaged.

The CMS machine-check handler takes control when it receives a machine-check interrupt from CP. If
possible, CMS responds to machine checks by returning control to the program that's running. Otherwise,
CMS loads a disabled wait state PSW. To continue, you must re-IPL CMS.

One of the common causes of a machine check is a change in the I/O configuration of an XA or XC virtual
machine. The CMS machine check handler will record the change, and if the change in I/O configuration
causes a device to be detached or redefined at a new address (using a CP DETACH, CP DEFINE, or CP
REDEFINE command), then I/O exits associated with that device will be cleared.

Data Space Machine Checks
An application can receive storage errors and I/O errors on a reference to data contained in an address
space other than its own primary address space. This can be another user's virtual machine primary
address space or a data space.

Storage Errors
When an uncorrected storage error is detected by CP, a machine check is reflected to the XC virtual
machine. This type of error is typically caused by:

• Real error main storage
• Paging error on page-in of a page.

In these cases, the data that was in the page is lost. CMS checks the ASIT supplied with the machine
check interrupt to determine if the storage error was in a data space. If it was, CMS issues a system abend
with a CMS abend code of X'1F4'.

I/O Errors

When an I/O error is detected by CP while trying to do a page-out of a mapped page to its respective
DASD slot, a machine check is reflected to the owning virtual machine. In this case, the data in storage is
still valid. CMS issues a system abend with a CMS abend code of X'1F5'.

For more information on these machine checks, see the "Storage Error Notification for Access Register-
Specified References" section of the "Using Data Spaces" chapter of the z/VM: CMS Application
Development Guide.

Program Interrupt Handling
Program interrupts report exceptions and events that occur during execution of a program. When CP
detects a program interrupt, it reflects that interrupt to CMS. CMS, in turn, stores information about the
interrupt, and abends the program.

The information CMS stores depends on the mode of the virtual machine (370, XA, or XC). For 370 virtual
machines, the interrupt code field and ILC field of the PSW contain interrupt information. XA and XC
virtual machines have this information returned at assigned storage locations. In addition to the interrupt
code and ILC information, XA and XC virtual machines also receive information about what caused the
interrupt.

Note: Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.

Interrupt Handling

188 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

CMS First-Level Program Interrupt Processing
When the CMS first-level program interrupt handler (FLIH), receives control, it saves information about
the program that was interrupted, it saves information about the program interrupt itself, and it abends
the program.

The FLIH saves information about the program interrupt in a data area called the Extended Program
Interruption Element (EPIE). This EPIE contains the interrupt information as required by a SPIE/ESPIE
exit routine.

After saving information, CMS abends the program. As part of the abend process, CMS searches for user
exits in the following order:

1. Exit routines defined by the OS/MVS SPIE or ESPIE macros.
2. Exit routines defined by the OS/MVS STAE or ESTAE macros. If a STAE/ESTAE is defined, the FLIH does

some preparatory work and issues an MVS SVC 13 (ABEND) to invoke the MVS simulation routines that
process the STAE/ESTAE exits. Control does not return to the FLIH.

Note: Changes in OS simulation affects the way CMS manages OS/MVS resources. For more
information on OS/MVS resource management, see “OS/MVS Resource Management” on page 338.

3. Exit routines defined by the CMS ABNEXIT macro (see “Creating Abend Exit Routines” on page 204 for
more information about ABNEXIT).

Address Translation Mode Consideration
In an XC virtual machine, all interrupt handlers always receive control in primary space (address
translation) mode and always must return control to CMS in primary space mode.

If a CMS system program was running when the interrupt occurred, CMS does not look for user-defined
exits.

Defining Program Interrupt Handlers
Use the OS/MVS SPIE and ESPIE macros to define handler routines for specific interrupt codes. For more
information on these macros, see the MVS/XA Supervisor Services and Macro Instructions.

Interrupt Handling

Chapter 12. Interrupt Handling 189

Interrupt Handling

190 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 13. Nucleus Extensions and Commands

This chapter describes how to use the following macros:

• NUCEXT — declares, clears, renames, and queries nucleus extensions.
• ANCHOR — retrieves, declares, and deletes an anchor word.
• SUBCOM — defines, clears, and queries subcommand environments.
• IMMCMD — declares, clears, and queries immediate commands.

For information on how to use CMS commands to manage programs, see Chapter 15, “Program
Packaging,” on page 211.

Nucleus Extensions
A nucleus extension is a program in free storage that CMS treats as if it were a nucleus command. This
means that, once loaded, the nucleus extension remains in storage; when the nucleus extension is called,
CMS does not have to read it into storage from a disk.

The NUCEXT Macro
The NUCEXT macro defines, clears, and queries a nucleus extension and is independent of the PSW
format.

The basic formats of NUCEXT are:

• NUCEXT SET — to declare a nucleus extension
• NUCEXT ANCHOR — to get the anchor pointer for the SCBLOCKs that describe the list of nucleus

extension programs
• NUCEXT CLR — to delete a nucleus extension from the list of SCBLOCKs
• NUCEXT QUERY — to determine whether a nucleus extension is currently defined
• NUCEXT RENAME — to change a nucleus extension name.

Should Your Program Be a Nucleus Extension?
Defining a frequently used program as a nucleus extension improves the performance of the program —
CMS does not need to continuously read the program in from disk. Programs that you might consider
defining as nucleus extensions include:

• Programs that gather statistics.
• Programs that filter CMS commands.
• Programs to be invoked during CMS end-of-command processing or abend processing.
• Interrupt handlers.

Note: Interrupt handlers that are loaded as nucleus extensions are not allowed to request OS/MVS
services.

Defining Nucleus Extensions
Use the NUCEXT SET macro to declare a nucleus extension.

Example 1
To declare a nucleus extension named MYNUC at entry point address PROGADDR, code the NUCEXT
macro as follows

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

© Copyright IBM Corp. 1990, 2024 191

NUCEXT SET,NAME='MYNUC',ENTRY=PROGADDR

Unless AMODE is specified on the NUCEXT macro, the addressing mode of the nucleus extension is the
same as the addressing mode of the program that creates it.

Example 2 — Specifying an Addressing Mode
To specify that MYNUC run in 31-bit mode, code the NUCEXT macro as follows:

NUCEXT SET,NAME='MYNUC',ENTRY=PROGADDR,AMODE=31

Note that MYNUC runs in 31-bit mode in an XA or XC virtual machine, but runs in 24-bit addressing mode
in a 370 virtual machine.

Example 3 — End-of-Command Nucleus Extensions
To specify that MYNUC receive control during CMS end-of-command processing, code the NUCEXT macro
as follows:

NUCEXT SET,NAME='MYNUC',ENTRY=PROGADDR,ENDCMD=YES

Example 4 — Immediate Command Nucleus Extensions
To define MYNUC as an immediate command, code the NUCEXT macro as follows:

NUCEXT SET,NAME='MYNUC',ENTRY=PROGADDR,IMMCMD=YES

Example 5 — Service Call Nucleus Extensions
To specify that MYNUC receive control during abend processing or when the NUCXDROP command is
issued, code the NUCEXT macro as follows:

NUCEXT SET,NAME='MYNUC',ENTRY=PROGADDR,SERVICE=YES

Specifying Values at Execution Time
The values of the SYSTEM, SERVICE, ENDCMD, IMMCMD and KEY parameters may be determined at
execution time by using the (reg) or (addr,mask) forms. For example, the sequence:

L R2,SERVOP Get value of service parameter
NUCEXT SET,MF=(L,NUCEXTP),SERVICE=(R2)

tests the value of register 2 to determine the value of the SERVICE parameter. If register 2 contains zero,
then SERVICE=NO is set. Otherwise, SERVICE=YES is set.

The (addr,mask) form allows a bit flag in storage to be used for setting these parameters. The macro call

NUCEXT SET,MF=(L,NUCEXTP),SERVICE=(FLAGS,SERVFLAG)

will cause the bit in the byte at address FLAGS (at the offset determined by SERVFLAG) to be tested
(using the instruction TM FLAGS,SERVFLAG). If this bit is zero, then SERVICE=NO is used, otherwise
SERVICE=YES is used.

Other Parameters You Can Specify on NUCEXT
The following list briefly describes some of the other parameters of the NUCEXT macro you can use (for
complete details about the NUCEXT macro, see the z/VM: CMS Macros and Functions Reference):

• UWORD — specifies an optional user word stored in the SCBWKWRD of the SCBLOCK.
• UFLAGS — specifies an optional one byte parameter in the SCBLOCK.

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

192 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

• AMODE — specifies the addressing mode in which the nucleus extension is entered.
• INTTYPE — specifies the PSW interrupt mask the CMS SVC interrupt handler uses when invoking the

nucleus extension.
• ORIGIN — specifies the location and length (in bytes) of the program in virtual storage.
• KEY — specifies the storage key (NUCLEUS or USER).
• SYSTEM — specifies whether the nucleus extension survives CMS abend processing.

Defining Nucleus Extensions in Logical Saved Segments
You can also define nucleus extensions by loading the module or text files in a logical saved segment.
When the logical saved segment containing the nucleus extension is loaded, the nucleus extension is
activated. If a nucleus extension with the same name already exists, it is overridden in a stack-like
manner.

Example 1
To create a nucleus extension named MYNUC, add the following record in the logical segment definition
file for the MYSEG logical saved segment:

MODULE MYNUC * (SYSTEM)

MYNUC is entered in key zero and disabled for interrupts. The addressing mode is determined by the way
you code the program and the location in the virtual machine where the logical saved segment is loaded.
To save MYNUC across an abend, you must specify the SYSTEM option on the SEGMENT LOAD command
or code the SYSTEM parameter on the SEGMENT LOAD macro when you load the logical saved segment

Example 2 — End-of-Command Nucleus Extensions
To specify that MYNUC receives control during CMS end-of-command processing, add the following
record in the MYSEG logical segment definition file:

MODULE MYNUC * (ENDCMD)

Example 3 — Immediate Command Nucleus Extensions
To define MYNUC as an immediate command, add the following record in the MYSEG logical segment
definition file:

MODULE MYNUC * (IMMCMD)

Example 4 — Service Call Nucleus Extensions
To specify that MYNUC receive control during abend processing or when the NUCXDROP command is
issued, add the following record in the MYSEG logical segment definition file:

MODULE MYNUC * (SERVICE)

For more information on creating nucleus extensions in logical saved segments, see z/VM: Saved
Segments Planning and Administration.

Nucleus Extension Entry Conditions
When CMS calls a nucleus extension, the register contents are:
Register

Contents
R0

Address of extended parameter list (if one was provided by the caller).

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

Chapter 13. Nucleus Extensions and Commands 193

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4

R1
Address of the command name (and the tokenized parameter list).

R2
Address of an SCBLOCK that contains information about the nucleus extension.

R12
Entry point address.

R13
User save area mapped by the USERSAVE macro. Note that the USECTYP field of the user save
area contains call type information. For 24-bit applications, this information is also found in the
high-order byte of register 1. If the nucleus extension is called during end-of-command processing
(ENDCMD=YES), the call type is X'FE'. If the nucleus extension is called during abend processing
(SERVICE=YES), the call type is X'FF'.

R14
Return address.

R15
Entry point address.

This is the standard entry point convention except that R2 points to the SCBLOCK.

Obtaining the Anchor Point of the SCBLOCK List
Use NUCEXT ANCHOR to obtain the anchor pointer for the list of SCBLOCKs that describe the list of
current nucleus extension programs. The pointer to the first entry in the NUCEXT list of SCBLOCKs is
returned in register 1.

For example, to obtain the anchor pointer for nucleus extensions, code

NUCEXT ANCHOR

Note: The ANCHOR option requires a read/write parameter list; therefore, use the Execute form of the
macro (MF=(E,addr)) if you require reentrant code.

Deleting Nucleus Extensions
Use NUCEXT CLR to delete a nucleus extension from the list of SCBLOCKs that describe the current list of
nucleus extension programs. For example, to clear the nucleus extension named MYNUC, code

NUCEXT CLR,NAME='MYNUC'

Obtaining Information about Nucleus Extensions
Use NUCEXT QUERY to query whether a nucleus extension is currently defined. If the nucleus extension
you specify is defined, NUCEXT stores in register 1 the address of the SCBLOCK. If the nucleus extension
is not defined, NUCEXT stores in register 15 a return code of 1. For example, to determine if the nucleus
extension named MYNUC is defined, code

NUCEXT QUERY,NAME='MYNUC'

Note: The QUERY option requires a read/write parameter list; therefore, use the Execute form of the
macro (MF=(E,addr)) if you require reentrant code.

Renaming Nucleus Extensions
Use NUCEXT RENAME to change a nucleus extension name. NUCEXT RENAME changes the name field of
an SCBLOCK for a nucleus extension. For example, to rename the nucleus extension MYNUC to TESTNUC,
code

NUCEXT RENAME,NAME='MYNUC',NEW='TESTNUC'

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

194 z/VM: 7.4 CMS Application Development Guide for Assembler

If the nucleus extension is not defined, NUCEXT stores a return code of 28 in register 15.

ANCHOR Words
ANCHOR provides quick access to an anchor word, which is a fullword that points to one or more control
blocks allocated in free storage by a program. This avoids the overhead of obtaining dynamic storage each
time the program is invoked. This anchor word persists between calls to the program and persists after an
abend occurs.

Before using ANCHOR, you must request an anchor identifier from IBM. This is necessary to ensure that
your identifier is unique among all programs using the anchor facility.

To request your anchor identifier, complete the ANCHOR Identifier Registration Form included at the end of
this book, and mail it to IBM. IBM will assign you an anchor identifier and notify you by mail.

The ANCHOR Macro
The ANCHOR macro sets, queries, and clears a fullword that can be used by a program to save the
address of its data between invocations.

The basic formats of ANCHOR are:

• ANCHOR QUERY — to retrieve the contents of a previously set anchor word.
• ANCHOR SET — to declare an anchor word.
• ANCHOR CLEAR — to delete an anchor word.

What Types of Programs Should Use the ANCHOR Macro?
Only programs with critical performance needs, such as programs called multiple times per second,
should use the ANCHOR macro. The Anchor facility keeps a list of 16 anchor words and their associated
anchor identifiers. The number of anchor slots is limited to 16 for two reasons: (1) to reduce the time to
search the list and (2) because it is unlikely that more than 16 performance-critical applications would be
competing for execution at the same time during a CMS session.

Programs that do not have critical performance needs should use a nucleus extension to keep their
anchor word.

Defining ANCHOR Words
Use the QUERY parameter to retrieve the contents of a previously set anchor word.

Example 1— To query an Anchor word named ABC, code the ANCHOR macro as

ANCHOR QUERY,IDENT=ABC,ERROR=(R2)

In this example, QUERY checks to see if an anchor slot has been assigned for ABC. If it has, QUERY
returns the anchor word in register 1. If ABC is not found, the routine specified in the ERROR parameter is
run.

Use the SET parameter to declare an Anchor word.

Example 2— To declare an Anchor word named ABC, code the ANCHOR macro as

ANCHOR SET,IDENT=ABC,ERROR=(R2),VALUE=(R7)

In this example, SET initializes the anchor word to the value specified in register 7. If VALUE is omitted,
the anchor word is set to zero.

Use the CLEAR parameter to delete an anchor word from the list of anchor slots.

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

Chapter 13. Nucleus Extensions and Commands 195

Example 3— To clear an anchor word named ABC, code the ANCHOR macro as

ANCHOR CLEAR,IDENT=ABC,ERROR=(R2)

In this example, CLEAR checks to see if an anchor slot has been assigned for ABC. If it has, CLEAR sets
the anchor identifier and the anchor word to binary zeros. If ABC is not found, the routine specified in the
ERROR parameter is executed.

Anchor Entry Conditions
When your program calls the anchor facility, the register contents are:
Register

Contents
R0

Your 3-character anchor identifier and a blank.
R1

During an ANCHOR SET, this register contains the anchor word data.
R14

Return address.
R15

Entry point address.

Note: Anchor support is not access register mode capable. Applications executing in an XC virtual
machine must be sure to call ANCHOR only in primary space mode.

Using ANCHOR
The following is an example of ANCHOR usage. ANCHOR QUERY is usually the first invocation of the
Anchor facility from an application program. If the anchor word has already been set, the program can
simply continue with its processing. If the anchor word has not been set, then the program must initialize
before processing can continue.

*
* Set up program linkage
*
 …
*
* Check to see if we already have our data area.
*
 ANCHOR QUERY,IDENT=XYZ,ERROR=INIT
*
* Reg 1 now points to our data area.
*
 B CONTINUE Begin execution of the main code
INIT EQU * First-time initialization
*
* Obtain storage for our data area and initialize it here
*

 …
*
* Initialize our anchor word.
* R2 contains the address of our data area.
*
 ANCHOR SET,IDENT=XYZ,VALUE=(R2),ERROR=NOANCHOR
 LR R1,R2 Set up the base for our data area
CONTINUE EQU * Main code starts here
 …
 BR R14 Return to caller
*
* There was no room for an anchor word.
* Issue an error message and exit
*
NOANCHOR EQU * Come here if no room for anchors
 …
 BR R14 Return to caller

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

196 z/VM: 7.4 CMS Application Development Guide for Assembler

ANCHOR CLEAR will usually be invoked during cleanup after an abend. If the storage that the anchor word
points to was allocated in a separate subpool, the cleanup routine could return the entire subpool at one
time.

*
* Set up program linkage and check to see if we need to clean up.
*
 …
*
* Clear the anchor to our data area.
* If no anchor was set, we do not need to clear it.
*
 ANCHOR CLEAR,IDENT=XYZ,ERROR=RETURN
RETURN EQU *
 BR R14

Subcommand Environments
A subcommand environment is one where a program defines to CMS a number of routines, or
subcommands, that CMS can then recognize and invoke by name. For example, you can create a program
named COLOR that, in turn, defines a number of subcommands named RED, YELLOW, and BLUE. While
you run the COLOR program, CMS recognizes RED, YELLOW, and BLUE as subcommand names; when you
enter a subcommand name, CMS calls the appropriate entry point in your program.

SUBCOM Macro
You can use the SUBCOM macro to define, clear, and obtain information about a subcommand
environment. The SUBCOM macro supports 31-bit addressing and provides an interface to the SUBCOM
function.

The basic formats of the SUBCOM macro are:

• SUBCOM SET — to indicate the start of a subcommand routine
• SUBCOM CLR — to delete a subcommand environment from a list of currently active subcommand

environments
• SUBCOM QUERY — to determine whether a subcommand environment is currently defined
• SUBCOM ANCHOR — to obtain the anchor pointer for the list of SCBLOCKs that describe currently active

subcommand environments.

Defining Subcommands
Use SUBCOM SET to declare a subcommand.

Example 1
To create a subcommand processor entry point named BLUE at address BLUEADDR, code the SUBCOM
macro as follows:

SUBCOM SET,NAME='BLUE',ENTRY=BLUEADDR

Unless AMODE is specified on the SUBCOM macro, the addressing mode of the subcommand processor is
the same as the addressing mode of the program that creates it.

Example 2
To specify that BLUE runs in 31-bit mode, code the SUBCOM macro as follows:

SUBCOM SET,NAME='BLUE',ENTRY=BLUEADDR,AMODE=31

Note that BLUE runs in 31-bit mode in an XA or XC virtual machine, but runs in 24-bit addressing mode in
a 370 virtual machine.

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

Chapter 13. Nucleus Extensions and Commands 197

Example 3 — Saving a Subcommand Processor Across an Abend
To specify that BLUE survive an abend, code:

SUBCOM SET,NAME='BLUE',ENTRY=BLUEADDR,SYSTEM=YES

Note that to survive an abend, a subcommand processor must reside in storage that will not be reclaimed
during abend processing. (You can use the SUBPOOL macro to create storage subpools that survive abend
processing, see “Example 5 — Saving Global Subpools Across Abends” on page 59 for details.)

You can also determine the value of the SYSTEM parameter at execution time by using SYSTEM=(reg) or
SYSTEM=(addr,mask). For example, the sequence:

L R2,SYSTOP Get value of system parameter
SUBCOM SET,MF=(L,SUBCOMP),SYSTEM=(R2)

tests the value of register 2 to determine the value of the SYSTEM parameter. If register 2 contains zero,
then SYSTEM=NO is set. Otherwise, SYSTEM=YES is set. The (addr,mask) form allows a bit flag in storage
to be used for setting these parameters. The macro call

SUBCOM SET,MF=(L,SUBCOMP),SYSTEM=(FLAGS,SYSFLAG)

will cause the bit in the byte at address FLAGS (at the offset determined by SYSFLAG) to be tested (using
the instruction TM FLAGS,SYSFLAG). If this bit is zero, then SYSTEM=NO is used, otherwise SYSTEM=YES
is used.

Subcommand Processor Entry Conditions
When CMS calls a subcommand processor, the register contents are:
Register

Contents
R0

Same as caller.
R1

Same as caller.
R2

Address of the SCBLOCK that contains subcommand processor information.
R12

Entry point address.
R13

24-word save area address.
R14

Return address.
R15

Entry point address.

Note: This is the standard entry point convention except that R2 points to the SCBLOCK.

Other Parameters You Can Specify on SUBCOM
The following list briefly describes some of the other parameters of the SUBCOM macro you can use (for
complete details about the SUBCOM macro, see z/VM: CMS Macros and Functions Reference):

• UWORD — specifies an optional user word stored in the SCBWKWRD of the SCBLOCK.
• UFLAGS — specifies an optional one byte parameter in the SCBLOCK.
• INTTYPE — specifies the status of the interrupt mask.
• KEY — specifies the storage key (NUCLEUS or USER).

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

198 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Defining Subcommands in Logical Saved Segments
You can also define subcommand processors by loading the module or text files in a logical saved
segment. If a subcommand processor with the same name already exists, it is overridden in a stack-like
manner.

Example
To create a subcommand processor named BLUE for the COLOR program, create a module and add the
following record in the logical segment definition file for the MYSEG logical saved segment:

MODULE BLUE * (SUBCOM) BLUE is a subcommand processor for the COLOR program

BLUE is entered in key zero and disabled for interrupts. The addressing mode for BLUE is determined by
the way you code the program and the location in the virtual machine where the logical saved segment
is loaded. To save BLUE across an abend, you must specify the SYSTEM option on the SEGMENT LOAD
command or code the SYSTEM parameter on the SEGMENT LOAD macro when you load the logical
saved segment. Note that subcommand processors in logical saved segments are not removed during
end-of-command processing.

For more information on creating subcommand processors in logical saved segments, see z/VM: Saved
Segments Planning and Administration.

Deleting Subcommand Processors
Use SUBCOM CLR to delete a subcommand processor from the list of SCBLOCKs that describe the current
list of subcommand processor programs. For example, to clear the subcommand processor named BLUE,
code

SUBCOM CLR,NAME='BLUE'

Determining if a Subcommand Processor Is Defined
Use SUBCOM QUERY to determine if a particular subcommand processor is currently defined. If it is,
SUBCOM returns to register 1 the address of the SCBLOCK. If it isn't, SUBCOM stores in register 15 a
return code of 1. If SUBCOM returns an address of FX'0', there are no SCBLOCKs on the SCBLOCK list (no
subcommand processors are currently defined).

For example, to determine if the subcommand processor named BLUE is defined, code

SUBCOM QUERY,NAME='BLUE'

Note: The QUERY option requires a read/write parameter list, therefore, use the Execute form
(MF=(E,addr)) of the macro if you require reentrant code.

Obtaining the Anchor Point of the SCBLOCK List
Use SUBCOM ANCHOR to obtain the anchor pointer for the list of SCBLOCKs that describe the current list
of subcommand processor programs. The pointer to the first entry in the SUBCOM list of SCBLOCKs is
returned in register 1.

For example, to obtain the anchor pointer, code

SUBCOM ANCHOR

Note: The ANCHOR option requires a read/write parameter list, therefore, use the Execute form
(MF=(E,addr)) of the macro if you require reentrant code.

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

Chapter 13. Nucleus Extensions and Commands 199

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4

Immediate Commands
An immediate command is a CMS command that, when issued after an attention interrupt (for example,
pressing ENTER), causes CMS to suspend program execution until it (CMS) processes the immediate
command.

CMS has many built-in immediate commands, including HT (Halt Typing), HX (Halt eXecution), HI (Halt
Interpretation), HB (Halt Batch), SO (Suspend SVCTRACE), RO (Resume SVCTRACE), and RT (Resume
Typing). See the z/VM: CMS Commands and Utilities Reference for more information.

You can use the facilities of CMS to create your own immediate commands, for example, to override
existing CMS immediate commands or to provide a way for a user to quit or query a program you create.

Creating Immediate Commands
There are four ways you can create immediate commands: (1) you can use the NUCEXT macro, (2) you
can use the IMMCMD macro, (3) you can use the IMMCMD command from within an exec (see the z/VM:
CMS Commands and Utilities Reference for details), or (4) you can load the module or text files in a logical
saved segment.

Using NUCEXT to Create Immediate Commands
The IMMCMD parameter of the NUCEXT macro defines a nucleus extension as an immediate command.
Using NUCEXT to define immediate commands has several advantages:

• Nucleus extensions can be created in free storage.
• Nucleus extensions can survive abend processing and end-of-command processing.
• Nucleus extensions can be invoked as exits during abend (SERVICE parameter) and end-of-command

(ENDCMD parameter) processing.

Nucleus extensions established as immediate commands can be invoked explicitly (enter the command
at the terminal or from an exec) or as part of normal CMSCALL or SVC 202 processing. See “Nucleus
Extensions” on page 191 for details.

Using the IMMCMD Macro to Create Immediate Commands
Use IMMCMD SET to create an immediate command. If an immediate command with the same name
already exists, it is overridden in a stack-like manner.

Example 1
To define an immediate command named DOIT at entry point DOITADDR, code

IMMCMD SET,NAME='DOIT',EXIT=DOITADDR

Entry Conditions
When the routine you create to process the immediate command receives control, it is disabled for
interrupts and the PSW key is 0. The exit routine must not perform any I/O operations or issue any SVCs
that result in I/O operations. In addition, the exit routine must not enable itself for interrupts. DIAGNOSE
instructions can be used within the exit, but the exit routine must not enable itself for interruptions that
may be caused by the DIAGNOSE (for example, DIAGNOSE code X'58'). On entry, the exit routine is
passed the following information:
Register

Contents
R0

Address of immediate command line in extended PLIST format.

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

200 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

R1
Address of immediate command line in standard parameter list format. For a 31-bit mode program,
register 1 contains only the address. For a program running in 24-bit mode in an XA or XC virtual
machine, the high-order byte of register 1 is set to X'06' to indicate that this routine was invoked as a
result of an immediate command.

R2
Address of the IMMBLOK. The IMMBLOK contains the user word and other relevant information. The
format of the IMMBLOK is as follows:
Bytes

Information
0-3

Address of next IMMBLOK
4-7

User word
8-15

Command name
16-19

Reserved
20-23

Entry point address
R12

Entry address
R13

A thirteen doubleword save area mapped by the USERSAVE macro. The USECTYP field of USERSAVE is
set to X'06' to indicate that the routine was invoked as an immediate command.

R14
Return address

R15
Entry address

Other Rules for Creating Immediate Commands

1. Immediate commands can be 1 to 8 characters in length. Synonyms can be set up for immediate
commands just like they can be for regular CMS commands. Immediate commands or their synonyms
must begin with a non-blank character.

2. Immediate commands are delimited by a blank. Any data following the blank is passed to the
immediate command routine as parameters. The capability to pass parameters is not applicable
to immediate commands declared by the IMMCMD command. Immediate commands and their
parameters are subject to translation just as regular CMS commands are.

3. Immediate commands can be set up to override built-in CMS Immediate commands (for example, HX).
However, built-in CMS commands cannot be cleared.

4. Immediate commands with the same name can override each other in a stack-like manner, with the
most recent one declared being the one in effect.

5. The logical line-end character is ignored on immediate command input lines.

Defining Immediate Commands in Logical Saved Segments
You can also define immediate commands by loading the module or text files in a logical saved segment.
When the logical saved segment containing the immediate command is loaded, the nucleus extension is
activated. If an immediate command with the same name already exists, it is overridden in a stack-like
manner.

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

Chapter 13. Nucleus Extensions and Commands 201

Example
To define DOIT as an immediate command, add the following record in the logical segment definition file
for the MYSEG logical saved segment:

MODULE DOIT * (IMMCMD)

For more information on creating immediate commands in logical saved segments, see the z/VM: Saved
Segments Planning and Administration.

Deleting Immediate Commands
Immediate commands created by the IMMCMD macro are automatically deleted when a program returns
to the CMS command environment (except when in CMS subset mode), or when CMS performs abend
recovery. To explicitly delete an immediate command that was created by the IMMCMD macro, use
IMMCMD CLR macro. Any previously overridden immediate command with the same name is reinstated
by this action.

For example, to delete the immediate command named DOIT, code

IMMCMD CLR,NAME='DOIT'

Note: To delete an immediate command that was created by the NUCXLOAD command, the NUCEXT
function, or the NUCEXT macro, use the NUCXDROP command, the NUCEXT CANCEL function, or the
NUCEXT CLR macro. To delete an immediate command that was loaded as part of a logical saved
segment, purge the segment or use the NUCXDROP command, the NUCEXT CANCEL function, or the
NUCEXT CLR macro.

Obtaining Information about Immediate Commands
Use IMMCMD QRY to obtain information about an immediate command.A return code of 44 from QRY
indicates that the immediate command does not exist.

For example, to obtain information about the immediate command named DOIT, code

IMMCMD QRY,NAME='DOIT'

NUCEXT, ANCHOR, SUBCOM, and IMMCMD

202 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4

Chapter 14. Abend Processing

This chapter:

• Provides an overview of CMS abend processing
• Lists the resources you can save across an abend
• Describes how to use the CMS ABNEXIT macro to create, clear, and reset abend exit routines
• Lists the OS/MVS and DOS macros you can use to create abend exit routines.

Overview of CMS Abend Processing
A program abnormally terminates (abends) when CMS detects a program interrupt or when a program
issues either the OS/MVS ABEND or CMS DMSABN macro. When an abend occurs, CMS checks to see if
any user exit routines have been defined for the program.

Unless an abend exit routine specifies otherwise, CMS resets or releases the resources used by the
program. This includes such things as resetting pointers, releasing storage, closing files and virtual
devices, and so on. (Note that your program can instruct CMS to save certain resources, such as interrupt
handlers and nucleus extensions.)

Macros That Define Abend Exit Routines
There are several macros that you can use to define abend exit routines:

• ABNEXIT
• SPIE and ESPIE (OS/MVS macros)
• STAE and ESTAE (OS/MVS macros)
• STXIT PC and STXIT AB (DOS macros).

Error Event Monitors may also be defined as exit routines that get control when an AbnormalEnd CSL call
is issued. The VMERROR and VMERRORCHILD events get signalled. Refer to the z/VM: CMS Application
Multitasking manual for details.

Note that in an XC virtual machine, abend exits get control in primary space mode and if they return
control to CMS abend processing, they must return it in primary space mode.

Abend Exit Routine Search Order
The search order CMS uses to check for abend exit routines depends on what caused the abend. If the:

• DMSABN macro causes the abend, CMS checks for abend exit routines defined by the VMERROR and
VMERRORCHILD events. It then checks for abend exit routines defined by the ABNEXIT macro. If any
exist, DMSABN passes control to the most recent one set. If none are found or if recovery is not
attempted by an ABNEXIT-defined exit, CMS checks for MVS ESTAE-defined exits.

• OS/MVS ABEND macro causes the abend, CMS checks first for exit routines defined by the OS/MVS
STAE or ESTAE macros. It then checks for abend exit routines defined by the VMERROR and
VMERRORCHILD events. If none are found, CMS checks for exit routines defined by ABNEXIT.

• Program interrupt causes the abend, CMS checks first for exit routines defined by the OS/MVS SPIE
or ESPIE macros, next for exit routines defined by the OS/MVS STAE or ESTAE macros, then for exit
routines defined by the VMERROR and VMERRORCHILD events, and last for exit routines defined by
ABNEXIT.

• DOS environment is active, CMS checks first for program check exit routines defined by STXIT PC. If
none are found, CMS checks for a linkage to an abnormal termination routine (created by STXIT AB).
If no PC or AB routine can be given control, control goes to CMS abend processing routines, which can
invoke any exit routines created by ABNEXIT.

Abend Processing

© Copyright IBM Corp. 1990, 2024 203

What You Can Save Across a CMS Abend
Various CMS macros include a SYSTEM parameter; this lets you save resources across an abend. For
example, you can use the SYSTEM parameter of the HNDEXT macro to prevent an external interrupt
handler from being released when an abend occurs. The following table lists the macros that provide the
SYSTEM parameter and the resource you can save:

Table 23. Macros and the Resource the SYSTEM Parameter Saves

Macro Resource the SYSTEM Parameter Saves

ABNEXIT Abend exit routine

HNDEXT External interrupt handler

HNDIO I/O interrupt handler

HNDSVC SVC interrupt handler

NUCEXT Nucleus extension

SEGMENT Saved segment

SUBCOM Subcommand processor

SUBPOOL Global subpool

The following table lists the CSL routine that provides the SYSTEM parameter and the resource you can
save:

Routine Resource the SYSTEM Parameter Saves

DMSSPCC Data space

Creating Abend Exit Routines
As mentioned earlier, there are several facilities you can use to create your own abend exit routines:
the OS/MVS SPIE, ESPIE, STAE, and ESTAE macros, and the CMS ABNEXIT macro. You can use these
routines to try to recover from whatever caused the abend and return control to the program, perform
some type of clean-up action (prior to the clean-up that CMS abend recovery routines perform), save
some information that might help in debugging, or do nothing and pass control to CMS abend recovery.
The ABNEXIT macro lets you create, clear, and reset abend exit routines.

Creating Abend Exits
Use ABNEXIT SET to create an abend exit routine. CMS stacks the abend routines that ABNEXIT SET
creates; the most recent abend exit routine created is the first one that CMS calls.

Note: One abend exit routine cannot create another. Also, if a program check occurs while the exit routine
is processing, CMS passes control to the previous exit in the list. If there are no previous exits, CMS abend
recovery occurs. There are certain differences from OS/MVS in processing abend exit routines. If an abend
occurs in a subtask abend exit, the parent task will get control only when it is packaged in a separate text
deck.

If you want the ABNEXIT abend exit routine to survive abend recovery, you can specify the SYSTEM=YES
option on the ABNEXIT macro. The abend exit routine must reside in storage that is not reclaimed during
abend processing.

Entry Conditions
You must provide the proper entry and exit linkage for your abend exit routine. When your routine receives
control, the register contents are as follows:

Abend Processing

204 z/VM: 7.4 CMS Application Development Guide for Assembler

Register
Contents

R1
Address of an area of storage mapped by the CMSSDWA DSECT. To obtain the CMSSDWA expansion,
call the DMSSDWA macro in the program that contains the ABNEXIT macro.

R13
Address of an 18-fullword save area (for your use).

R14
Return address.

R15
Entry point address of your exit routine.

Exit Options
When your abend exit routine completes, it can do one of two things:

1. Return control to the CMS abend recovery routines — to do this, issue a branch on register 14. CMS will
call any previous abend exits if they exist; if none exist, CMS continues with normal abend recovery.
Note that in an XC virtual machine, control must be returned in primary space mode.

2. Return elsewhere — to do this, load the PSW at time of abend or a modified version of the PSW. Before
you load the PSW, your exit routine should issue an ABNEXIT RESET macro.

Resetting Abend Exits
If an abend exit routine returns control to a program (rather than continuing abend processing),
subsequent abends bypass the exit routine unless, during its initial processing, the abend exit routine
issues ABNEXIT RESET.

Note: When you use ABNEXIT RESET, you must specify the NUCON macro in the program that contains
the abend exit routine.

Deleting Abend Exits
When CMS abend recovery occurs, CMS automatically clears all exit routines known to the system, except
those created with the SYSTEM=YES option. Abend exits are not cleared at CMS end-of-command.

To explicitly clear an abend exit routine created by ABNEXIT, use ABNEXIT CLR. (Note that abend exits
cannot be cleared from within an exit routine.) For example, to clear the abend exit routine at location
ABEND1, code the ABNEXIT macro as follows:

ABNEXIT CLR,ABEND1

Abending a Program (DMSABN Macro)
When a program encounters an unexpected condition, it can do one of two things: it can (1) stop
processing, set a return code, issue a message, and return control to the user or (2) it can issue the
DMSABN macro to end the program.

When you use the DMSABN macro to force an abnormal end, you can use abend exit routines (created by
the ABNEXIT macro or the MVS ESTAE macro) to determine whether you should try to recover or whether
you should allow CMS abend recovery to complete. When a DMSABN-initiated abend occurs, CMS checks
for abend exit routines defined by ABNEXIT and passes control to the one most recently set. If none are
found or if recovery is not attempted by an ABNEXIT-defined exit, CMS checks for MVS ESTAE-defined
exits. Using the DMSABN macro and ABNEXIT allow you to put less error handling code in your main
program; your error handling functions can be part of a program that executes only when there is an error.

Abend Processing

Chapter 14. Abend Processing 205

Examples
The DMSABN macro requires you to specify an abend code (0 through FFF), which appears in the
DMSABE148T system termination message.

Example 1
Routines that do not reside in the nucleus should specify TYPCALL=SVC to generate CMSCALL linkage. For
example, to abend a program and set an abend code of 111, a non-nucleus resident routine could code
the following:

DMSABN 111,TYPCALL=SVC

or, because TYPCALL=SVC is the default value:

DMSABN 111

Example 2
Routines that reside in the nucleus or that are nucleus extensions should specify TYPCALL=BALR so that a
direct branch to DMSABE is generated. For example, to abend a program and set an abend code of 222, a
nucleus resident routine could code the following:

DMSABN 222,TYPCALL=BALR

Note: For DMSABN to gain addressability, you must specify the NUCON mapping macro in the program
that contains the nucleus extension.

A Sample Program
The following program illustrates the use of the ABNEXIT macro.

Abend Processing

206 z/VM: 7.4 CMS Application Development Guide for Assembler

TABNEX1 CSECT
 STM R14,R12,12(R13)
 USING TABNEX1,R12
 ST R13,SAVE+4
 LA R13,SAVE
 XR R3,R3
 ABNEXIT SET,EXIT=EXITSUB,UWORD=WORD,ERROR=ERROR1
 XR R2,R2
 DR R2,R3 IT WILL CAUSE A PROGRAM CHECK DIVIDING BY ZERO.
 XR R2,R2
 WRTERM 'END OF MAIN ROUTINE'
OUT L R13,SAVE+4
 LM R14,R12,12(R13)
 SLR R15,R15
 BR R14
ERROR1 EQU *
 WRTERM ' AN ERROR OCCURED WHEN EXECUTING THE MACRO'
 B OUT
SAVE DS 18F
WORD DS F
******************EXIT ROUTINE*************************************
 DROP R12
EXITSUB EQU *
 LR R11,R15
 USING EXITSUB,R11
 LR R4,R1
 USING CMSSDWA,R4
 USING NUCON,0
 ABNEXIT RESET,MF=(L,LIST,SIZ)
 ABNEXIT MF=(E,LIST)
 APPLMSG TEXT='EXIT ROUTINE ENTERED',APPLID=CMS
OUT2 L R12,SDWREGS+8*6
 LPSW SDWPSW
LIST ABNEXIT MF=L
 PRINT NOGEN
 DMSSDWA
 NUCON
 REGEQU
 END

Abend Processing

Chapter 14. Abend Processing 207

Abend Processing

208 z/VM: 7.4 CMS Application Development Guide for Assembler

Part 3. Managing CMS Programs

This part of the document describes how to use CMS commands to build, load, execute, and update
assembler programs and program packages. Part 3, “ Managing CMS Programs,” on page 209 includes the
following chapters:

• Chapter 15, “Program Packaging,” on page 211 provides an overview of the program packaging process.
• Chapter 16, “Assembling, Loading, and Executing Programs,” on page 217 describes how to assemble

your programs and load them into storage.
• Chapter 17, “Creating and Using a Callable Services Library,” on page 233 describes how to create and

use your own callable services library (CSL).
• Chapter 18, “Using Auxiliary Directories,” on page 273 describes how to add an auxiliary directory to

CMS and create an auxiliary directory.

© Copyright IBM Corp. 1990, 2024 209

210 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 15. Program Packaging

This chapter:

• Lists some program packaging considerations
• Defines the different forms a program can take
• Provides an overview of the program packaging process
• Discusses how program attributes such as program life, addressing mode, residency mode, and

relocatability affect your programs.

For information on how to use CMS macros to create and manage nucleus extensions, subcommands, and
immediate commands, see Chapter 13, “Nucleus Extensions and Commands,” on page 191.

Program Packaging Considerations
CMS provides you with the means to package your programs into several different forms, each of which
has distinct characteristics. These forms include assemble files, text files, modules, nucleus extensions,
subcommands, and immediate commands. Each of these forms has various inherent characteristics that
you cannot change, such as how it can be executed.

In addition to these characteristics, you can assign various attributes to a package. The same program
can be packaged into two different forms and have different attributes associated with it. For example,
say the program, MONEY, takes advantage of bimodal CMS. When you load MONEY as a text file, you may
want to assign an AMODE 24. However, because MONEY can run with 31-bit addressing, it is also possible
to package it as a module and load with an AMODE of 31. Therefore, MONEY can be packaged in two
different forms and each form has different attributes associated with it.

Here are some questions you need to consider for each program or program package you create:

1. How do you want to package the program? As a module? A nucleus extension? Or one of the other
forms?

2. How do you want your program stored? Does it matter when the program is deleted from storage?
3. Will the program run in an XA or XC virtual machine? If so, will the program expect 24-bit addresses

only, 31-bit addresses only, or a combination of both?
4. Will the program reside in the transient area, at a specific address, at the first available free storage

location, or, for XA and XC programs only, above the 16MB line?
5. If the program is a module, will it be relocatable? Do you want to restrict it to an XC virtual machine or

to an XA virtual machine or to a 370 virtual machine?

Note: Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.

Program Packaging Overview
Following is a more detailed list of the various forms a program can take.

Assemble file
The actual assembler language program. It cannot be executed as is.

Text file
The output of the assemble process (the process of compiling, or assembling, an assemble file). To
execute it, you must load it and start it. CMS text files are similar to OBJECT files in MVS.

Module
A program package that consists of one or more text files that have been linked. To execute a module,
you can enter its name from the command line at your terminal.

Program Packaging

© Copyright IBM Corp. 1990, 2024 211

Nucleus extension
A nucleus extension is a program in free storage that CMS treats as if it were a nucleus command.
This means that, once loaded, the nucleus extension remains in storage; when the nucleus extension
is called, CMS does not have to read it into storage from a disk. For more information, see “Nucleus
Extensions” on page 191.

Subcommand
A subcommand environment is one where a program defines to CMS a number of routines, or
subcommands, that CMS can then recognize and invoke by name. For more information, see
“Subcommand Environments” on page 197.

Immediate command
An immediate command is a command that, when issued after an attention interrupt (for example,
pressing ENTER), causes CMS to suspend program execution until it (CMS) processes the immediate
command. For more information, see “Immediate Commands” on page 200.

Program Packaging — A Simple Scenario
To understand the various program packaging options available to you, it helps to understand how the
program packaging process works. For example, assume you are designing and developing an assembler
language program named DOITALL. From development to execution, DOITALL can be in one of three basic
formats, each of which is identified by its file type:

1. An assemble file (DOITALL ASSEMBLE) — This is the file that contains the actual assembler language
program. Before you can run DOITALL, you need to compile (or assemble) it, thus creating a text file.
You can assemble a program using one of the following:

a. With Assembler XF, use the CMS ASSEMBLE command.
b. With Assembler H, use the HASM command.
c. With the high level assembler, use the HLASM command.

For more information on assembling files, see Chapter 16, “Assembling, Loading, and Executing
Programs,” on page 217.

2. A text file (DOITALL TEXT) — This is the output of the assembly process. To execute a text file, you
must load it into storage and start it. There are several ways to load and start text files, see “Loading
and Executing Text Files” on page 221 for details.

3. A module file (DOITALL MODULE) — Module files, or modules, consist of one or more text files that
have been linked to form a single program package. After the required text files are loaded into
storage, you can use the CMS GENMOD to create a module. See “Generating and Executing Modules”
on page 227 for details.

In addition to the three basic forms a program can take (assemble file, text file, and module file), you
can package programs as nucleus extensions, subcommands, or immediate commands. For example, you
could create a nucleus extension, a subcommand, or an immediate command from either DOITALL TEXT
or DOITALL MODULE.

Program Life - Determining How Long Your Program Stays in
Storage

Program life refers to how long a program remains in storage. In CMS, program life is determined by the
program package (text file or module file) and by the method used to load the program.

Knowing how and when the various program types are deleted from storage can help you select the
program package and load method most suitable for your application.

The following list summarizes when programs are deleted according to the method used to load the
program.

Program Packaging

212 z/VM: 7.4 CMS Application Development Guide for Assembler

1. LOAD, INCLUDE — in general, text files loaded with the LOAD and INCLUDE commands remain in
storage until you issue another LOAD or LOADMOD command or until CMS abend recovery occurs.
Some further considerations follow:

a. You can use the PRES option of the LOAD and LOADMOD commands to prevent deletion of
programs previously loaded with LOAD, INCLUDE, or LOADMOD; however, if a program you load
requires storage that is currently held by another program, the other program is deleted regardless
of whether you specify the PRES option or not. (In prior releases, the previously loaded program
would be overlaid but not deleted.)

b. Because CMS deletes programs rather than overlaying them (see the previous note), the SET
LOADAREA command setting can affect the program life of a non-relocatable program. When
LOADAREA=20000, CMS loads text files at storage location X'20000' unless an ORIGIN is
specified. For example, assume that (a) you have two programs, OLDPROG and NEWPROG, (b)
LOADAREA=20000 is in effect, and (c) you issue the following sequence of commands:

load oldprog
load newprog (pres

Because OLDPROG has no ORIGIN specified, CMS loads it atX'20000' Because NEWPROG also
has no ORIGIN specified, CMS loads it at X'20000'. Because OLDPROG resides in storage that
NEWPROG needs, OLDPROG is deleted, even though the PRES option was specified.

On the other hand, when LOADAREA=RESPECT (the default value in XA and XC virtual machines),
CMS loads text files at the largest contiguous area of storage available unless an ORIGIN is
specified.

Therefore, if LOADAREA=RESPECT you issue the following sequence of commands:

load oldprog
load newprog (pres

OLDPROG is not deleted. Both OLDPROG and NEWPROG will reside in the largest contiguous pieces
of storage available at the time they were loaded.

c. If you issue an INCLUDE command with a specified ORIGIN that requires storage currently
occupied by programs that were specified by the LOAD command, unpredictable results may occur
when a START command is issued.

2. LOADMOD — modules loaded with the LOADMOD command remain in storage until you issue a
subsequent LOAD or LOADMOD command, or until CMS abend processing occurs. Some further
consideration follow:

a. You can use the PRES option of the LOAD and LOADMOD commands to prevent deletion of
programs previously loaded with LOAD, INCLUDE, or LOADMOD; however, if a program you load
requires storage that is currently held by another program, the other program is deleted regardless
of whether you specify the PRES option or not. (In prior releases, the previously loaded program
would be overlaid but not deleted.)

b. Because CMS deletes programs rather than overlaying them (see the previous note), the SET
LOADAREA command setting can affect the program life of a non-relocatable program. See “1.b” on
page 213 for a further discussion.

3. Command Invocation — modules that are invoked as commands (invoked by the file name associated
with the MODULE file) remain in storage until the command completes or CMS abend recovery.

Note: Attempting to use the START command to restart a module that has been invoked as a command
can cause unpredictable results.

4. NUCXLOAD — modules that you use the NUCXLOAD command to invoke as nucleus extensions remain
in storage until:

a. You issue the NUCXDROP command to delete the program.
b. CMS abend recovery (unless you issue the SYSTEM option of the NUCXLOAD command). If you

issue the SYSTEM option of NUCXLOAD, the program is not deleted during CMS abend recovery.

Program Packaging

Chapter 15. Program Packaging 213

c. You log off your virtual machine.
5. CMSCALL — if you use the CMSCALL macro to invoke a module, the module remains in storage until it

completes or CMS abend recovery.
6. OS/MVS LOAD Macro — programs invoked with the OS/MVS LOAD macro remain in storage until:

• they complete (for example, end of command)
• they are deleted by the OS/MVS DELETE macro
• they are deleted to provide storage for subsequent programs you load
• CMS abend recovery

Some further considerations follow:

a. If you use the OS/MVS LOAD macro to load a text file that (a) has already been loaded with
the LOAD command and (b) is still identified in the CMS loader tables, CMS does not reload the
text file; rather, it reuses the program currently loaded. The length returned in R1 under these
circumstances is unpredictable.

b. A program loaded using the OS/MVS LOAD macro may be deleted if it resides in storage required by
a non-relocatable program you subsequently load.

c. Programs loaded using the OS/MVS LOAD macro are not automatically deleted if the CMS LOAD or
LOADMOD commands are subsequently issued within the same command cycle.

d. If you use the OS/MVS LOAD macro to bring your program into storage and you issue a LINK macro
for the same program, the copy of the program already in memory will be used.

e. A program which is loaded into memory by the LINK macro will be deleted during ENDSVC
processing.

f. If you use the OS/MVS LOAD macro to load a module from CMS LOADLIB and this module was
marked as nonreusable or nonreentrant, the LOAD macro will always bring in a new copy of the load
module. The previous copy of the load module will be deleted.

Addressing and Residency Modes
As mentioned in “Bimodal Addressing” on page 24, programs that run in XA or XC virtual machines can
use 24-bit addresses, 31-bit addresses, or a combination of both. Programs that use 31-bit addresses
can run anywhere in a virtual machine's addressing space; programs that use 24-bit addresses must run
below the 16MB line. While 31-bit addressing can alleviate program storage restraints, it also requires
you to learn some new terminology.

Addressing mode refers to the type of address (31-bit or 24-bit) a program expects to handle when it
receives control. A program's AMODE attribute determines its addressing mode:

• AMODE 24 — Means a program can handle 24-bit mode addresses only. An AMODE 24 program must
reside below the 16MB line.

• AMODE 31 — Means a program can handle 31-bit mode addresses. An AMODE 31 program can reside
above or below the 16MB line.

• AMODE ANY — Means you are deferring the decision to assign the program an addressing mode. There
are several points in the program cycle when you can assign an AMODE or override an existing AMODE.
You can also use AMODE ANY to let the program's addressing mode default to the value of the program
that called it.

Residency mode refers to where a program resides when CMS loads it (above or below the 16MB line). A
program's RMODE attribute determines its residency mode:

• RMODE 24 indicates that CMS loads the program below the 16MB line.
• RMODE ANY indicates that CMS loads the program above 16MB unless insufficient storage is available

above the 16MB line.

Program Packaging

214 z/VM: 7.4 CMS Application Development Guide for Assembler

When You Can Set Addressing and Residency Modes
You can define, or redefine a program's addressing and residency mode at virtually every point in the
program development cycle. This helps to provide program packaging flexibility: a text file you load can
have different AMODE and RMODE values than the text file created during assembly; a module you create
can have different program attributes than the text file(s) from which you create it.

The following list describes the different times you can set the addressing mode and residency mode for a
program:

• At assembly time — You can code (using Assembler H or the high level assembler) the AMODE and
RMODE instructions in the assemble file to define addressing mode and residency mode values. When
you assemble the program, CMS associates the AMODE and RMODE values you defined with the
resulting text file.

• At loading time — When you load a program, you can use the AMODE, RMODE, and ORIGIN options of
the LOAD command to specify addressing mode and residency mode values. AMODE and RMODE values
set by the LOAD command override any values set at assembly time. (Note that the RMODE and ORIGIN
option on the LOAD command are mutually exclusive.)

For more information on loading programs, see Table 25 on page 222.
• At module generation time — You can use the AMODE and RMODE options of the BIND or GENMOD

command to specify addressing mode and residency mode values for the module you generate. AMODE
and RMODE values set by the BIND command override any values set at assemble time. The AMODE
value set by the GENMOD command overrides the AMODE value set at assembly time or on the LOAD
command. For relocatable modules, the RMODE value set by the GENMOD command overrides the
RMODE value set at assembly time or on the LOAD command. For non-relocatable modules, the RMODE
value specified on the GENMOD command is ignored; and the module is loaded based on the location of
the text file(s) when you issued the GENMOD command.

Note: If you do not specify an RMODE on GENMOD, and the CSECTs in the module have different
RMODEs, CMS assigns an RMODE of 24 to the module.

Program Attribute Default Values
If, during the program packaging process, you do not specify an addressing mode or residency mode for a
program, the default values are:

Table 24. Program Attribute Default Values

Specified Default Value

Neither AMODE 24 RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

Notes:

1. The combination AMODE 24 RMODE ANY is invalid.
2. The CMSCALL macro calls AMODE ANY programs in the addressing mode of the caller.

Switching Addressing Mode from within a Program
Note that there may be times when part of a program needs to run in a different addressing mode
than the rest of the program. To switch addressing modes, you can use the AMODESW macro. For more
information, see Chapter 4, “Program Invocation - Direct Branch Linkage,” on page 35.

Program Packaging

Chapter 15. Program Packaging 215

Program Packaging

216 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 16. Assembling, Loading, and Executing
Programs

How you assemble your programs depends on what assembler you use. If you use Assembler H, use the
HASM command to assemble files. If you use Assembler XF, use the CMS ASSEMBLE command. If you are
using the High Level Assembler, use the HLASM command.

Note: The assembler invoked by the CMS ASSEMBLE command does not recognize AMODE and RMODE
instructions.

This chapter describes how to:

• Assemble programs into text file and load them into storage
• Create modules from text files and load them into storage
• Display information about programs in storage.

Assembling Programs
The ASSEMBLE, HASM, and HLASM commands convert assembler language source programs into text file
format. When you invoke these commands, CMS searches all of your accessed disks, using the standard
search order, until it locates the specified file. The output created by the assembler includes a listing and
text deck. The file name of the listing and text deck is the same as the file name of the input file; the file
types are LISTING and TEXT, respectively. The listing and text deck are written to disk according to the
following priorities:

• If the source file is on a read/write minidisk or directory, the TEXT and LISTING files are written onto
that minidisk or directory.

• If the source file is on a read-only minidisk or directory that is an extension of a read/write minidisk or
directory, the TEXT and LISTING files are written onto the read/write minidisk or directory.

• If the source file is on any other read-only minidisk or directory, the TEXT and LISTING files are written
onto the first read/write minidisk or directory.

• If the source file is on tape or in your virtual reader, the TEXT and LISTING files are written onto the first
read/write minidisk or directory.

• If none of the above choices are available, the command is terminated.

In addition, the assembler creates work files (SYSUT1, SYSUT2, SYSUT3) on the same file mode used
for the TEXT and LISTING files. The assembler erases these files if it runs to completion, but these files
may remain on your disk or directory if execution is interrupted. In either case, the assembly cannot run
unless there is sufficient space available to create the SYSUTx work files.

Example 1
To assemble a source program named MYFILE ASSEMBLE on your A-disk, enter

hasm myfile

or

hlasm myfile

or, if you are using Assembler XF,

assemble myfile

Assembling, Loading, and Executing Programs

© Copyright IBM Corp. 1990, 2024 217

CMS will create two files on your A-disk: MYFILE TEXT and MYFILE LISTING.

Example 2
To assemble MYFILE ASSEMBLE and specify that the listing file (MYFILE LISTING) be printed rather than
kept on your A-disk, enter

hasm myfile (print

or

hlasm myfile (print

or, for Assembler XF, enter

assemble myfile (print

For more information on the HASM command, see the Assembler H Version 2 Application Programming
Guide. For more information on the HLASM command, see the High Level Assembler/MVS & VM & VSE
Programmer's Guide. For more information on the ASSEMBLE command, see z/VM: CMS Commands and
Utilities Reference.

Identifying Files
When you use the ASSEMBLE, HASM, or HLASM command, CMS automatically issues several FILEDEF
commands to set up default file definitions. These file definitions describe the input and output files used
by the assembler. The input and output files used by the assembler are:
ddname

File Description
ASSEMBLE

ddname SYSIN — source; input to the assembler
CMSLIB

ddname SYSLIB — macro libraries; input to the assembler
TEXT

ddname SYSLIN — object; output of the assembler
LISTING

ddname SYSPRINT — assembly listing; output of the assembler
PUNCH

ddname SYSPUNCH — output of the assembler
SYSUT1

SYSUT1 — assembler work file
SYSUT2

SYSUT2 — assembler work file
SYSUT3

SYSUT3 — assembler work file

Default File Definitions
The default FILEDEF commands issued by the CMS ASSEMBLE command for these input and output files
are:

FILEDEF ASSEMBLE DISK fn ASSEMBLE fm (RECFM FB LRECL 80 BLOCK 800
FILEDEF TEXT DISK fn TEXT fm
FILEDEF LISTING DISK fn LISTING fm (RECFM FBA BLOCK 1210
FILEDEF PUNCH PUNCH
FILEDEF CMSLIB DISK DMSGPI MACLIB * (RECFM FB LRECL 80 BLOCK 800
FILEDEF SYSUT1 DISK fn SYSUT1 fm4 (BLOCK 13030 AUXPROC asmproc
FILEDEF SYSUT2 DISK fn SYSUT2 fm4 (BLOCK 13030 AUXPROC asmproc

Assembling, Loading, and Executing Programs

218 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

FILEDEF SYSUT3 DISK fn SYSUT3 fm4 (BLOCK 13030 AUXPROC asmproc
FILEDEF SYSTERM TERMINAL (AUXPROC termproc

Determining What File Definitions Are in Effect
To find out what file definitions are currently in effect, enter

filedef

or

query filedef

Overriding Default File Definitions — Examples
If you issue a FILEDEF command using one of the assembler ddnames before you issue the ASSEMBLE,
HASM, or HLASM commands, it will override the default file definitions. At completion of the ASSEMBLE,
HASM, or HLASM command, all FILEDEFs that do not have the PERM option are erased.

1. The default ddname for the source input file (SYSIN) is ASSEMBLE. To instruct the assembler to read
your input file from your card reader and assign the file name SAMPLE to the output TEXT and LISTING
files, enter:

filedef assemble reader
hasm sample
 or
filedef assemble reader
hlasm sample

or, for Assembler XF, enter:

filedef assemble reader
assemble sample

2. To assemble a source file named OS.SOURCE.FILE directly from an OS/MVS disk and assign it the
name MYFILE ASSEMBLE, enter:

filedef assemble disk myfile assemble b4 dsn os source file
hasm myfile
 or
filedef assemble disk myfile assemble b4 dsn os source file
hlasm myfile

or, for Assembler XF, enter:

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

3. LISTING and TEXT are the ddnames assigned to the SYSPRINT and SYSLIN output of the assembler.
To assemble MYFILE ASSEMBLE and instruct CMS to name the LISTING and TEXT files ASSEMBLE
LISTFILE and ASSEMBLE TEXTFILE (rather than MYFILE LISTING and MYFILE TEXT), enter:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
hasm myfile
 or
filedef listing disk assemble listfile a
filedef text disk assemble textfile a
hlasm myfile

or, for Assembler XF, enter:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble myfile

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 219

Identifying Libraries
When assembling your source program, you may want to include calls to macros, text files, or CSL
routines that reside in CMS libraries. To do this, you must identify the library or libraries containing the
code (using the GLOBAL command) before you invoke the assembler. Otherwise, the assembler will not
find the code and you will receive an assembly error.

To identify the libraries to be searched, use the GLOBAL command. For example, if you have a program
that uses the SEGMENT macro and some of the simulated OS/MVS macros, you would have to issue
following the command:

global maclib dmsgpi osmacro

The libraries you specify on a GLOBAL command line are searched in the order you specify them. So
in the previous example, DMSGPI MACLIB would be searched first and OSMACRO MACLIB second. The
assembler will find the SEGMENT macro in DMSGPI MACLIB and the MVS macros in OSMACRO MACLIB.

A GLOBAL command remains in effect for the remainder of your terminal session, until you issue another
GLOBAL MACLIB command or IPL CMS again. To find out what macro libraries are currently available for
searching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL command. To clear the global list,
issue the GLOBAL command with no file names:

global maclib

Macro Libraries
You can create your own macro libraries or use the macro libraries on the CMS system disk. (For more
information on creating your own macro libraries, see Chapter 17, “Creating and Using a Callable Services
Library,” on page 233.) The macro libraries that are on the system disk contain CMS, OS/MVS, and CP
assembler language macros that you may want to use in your programs.

These MACLIBs are:

• DMSGPI contains the CMS programming interface macros. In prior releases, these macros were in
DMSSP MACLIB and CMSLIB MACLIB, which no longer exist.

• DMSOM contains mostly CMS internal macros. The TEOVEXIT, IO, CMSCB, and DMSJNEPL macros are
the only macros in DMSOM that you can use as a programming interface.

• OSMACRO contains the macros that CMS provides for execution of programs using MVS interfaces in
370, XA, or XC virtual machines.

• MVSXA contains the simulated MVS/XA versions of the OS/MVS macros for the execution of programs
using MVS interfaces in XA or XC virtual machines.

• OSMACRO1 contains the non-simulated versions of OS/MVS macros that are used only for assembly on
CMS.

• OSVSAM contains the subset of OS/VSAM macros which CMS supports.
• HCPGPI contains CP programming interface macros.
• HCPPSI contains CP programming interface macros.

To obtain a list of macros in any of these libraries, use either the MACLIST command or the MACLIB
command with the MAP function. In the MACLIST environment, you can issue CMS commands against the
members directly from the displayed list. For more information on these commands, see the z/VM: CMS
Commands and Utilities Reference.

Note: You should not use OS/MVS macros to create or update CMS macro libraries. OS/MVS partitioned
data sets and CMS MACLIBs have different formats and use certain common fields differently. For
example, OS defines directory size in blocks and CMS MACLIB defines directory size in bytes.

Assembling, Loading, and Executing Programs

220 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

CSL Routines

Failure to load VMLIB can cause unpredictable results. The sample system profile (SYSPROF EXEC) loads
VMLIB. If the call to RTNLOAD has been removed from SYSPROF EXEC, you can still have VMLIB loaded
automatically by adding this line to your PROFILE EXEC:

RTNLOAD * (FROM VMLIB SYSTEM GROUP VMLIB)

VMMTLIB is automatically loaded before the system profile. For more information on the routines in
VMMTLIB, see z/VM: CMS Application Multitasking.

You may also create your own library of CSL routines and make it available to programs. For more
information on how do to this, see Chapter 17, “Creating and Using a Callable Services Library,” on page
233.

Text Libraries and Load Libraries
A text library (TXTLIB file type) contains files with a file type of TEXT. These TEXT file are relocatable
object modules that are created after you compile your program. TXTLIBs are referenced when you
use the CMS LOAD or INCLUDE command to create nonrelocatable modules. Also, certain TXTLIBs are
referenced at run time.

Load libraries (file type LOADLIB) are link-edited programs that make use of certain OS macros such as
LINK, LOAD, ATTACH, and XCTL. These macros require special handling by CMS at execution time, which
is provided by the OSRUN command.

You can create your own TXTLIBs and LOADLIBs and make them available to programs at execution time.
For more information, see the z/VM: CMS Application Development Guide.

Loading and Executing Text Files
The assembly process described in the previous sections creates a text file. To execute the text file, you
need to load it and start it. To load a text file, you can use the LOAD command. To load subsequent text
files, you can use the INCLUDE command. To start a text file, you can use the START command or the
START option of the LOAD command. (If you are unfamiliar with loading text files, make sure to read
“Program Life - Determining How Long Your Program Stays in Storage” on page 212 and “Addressing and
Residency Modes” on page 214.)

The INCLUDE command has much the same format and option list as the LOAD command. The main
difference is that when you issue the INCLUDE command the loader tables are not reset. If you issue two
LOAD commands in succession, the second LOAD command replaces the first.

Conversely, the INCLUDE command, which you must issue when you want to load additional files into
storage, should not be used unless you have just issued a LOAD command. You may specify as many
INCLUDE commands as necessary following a LOAD command to load files into storage.

When the LOAD and INCLUDE commands execute they produce a load map indicating the entry points
loaded, their virtual storage locations, and their AMODE and RMODE values. You may find this load map
useful in debugging your programs.

The load map is written onto your A-disk as LOAD MAP A5. Each time you issue the LOAD command, the
old load map is replaced by a new one. However, if you specify the NOMAP option, the old LOAD MAP file
is erased and a new LOAD MAP file is not created.

File Loading Techniques
To load a text file, you can:

1. Issue the LOAD command (or a combination of LOAD and INCLUDE commands) from your terminal,
from an exec, or with the CMSCALL macro from a program.

2. Issue the OS/MVS LOAD macro from a program.

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 221

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

Loading Text Files into Storage
Loading a text file into storage is simple; you issue the LOAD command specifying the name of a text file
you want to load. Determining where the text file gets loaded can be somewhat more complex. Where
CMS loads programs depends on a number of factors, including:

1. The mode of the virtual machine.
2. Whether the file is transient (as specified by the ORIGIN TRANS option of the LOAD command).
3. The setting of the SET LOADAREA command. In a 370 virtual machine, the default value of the SET

LOADAREA command is LOADAREA=20000. In an XA or XC virtual machine, the default value of the
SET LOADAREA command is LOADAREA=RESPECT.

4. The residency mode of the program (in XA and XC virtual machines only).

Table 25 on page 222 summarizes how the various options determine where a program is loaded.

Table 25. Where CMS Loads Programs

LOAD Command SET LOAD- AREA Setting 370 Mode Result XC or XA Mode Result

LOAD pgma … 20000 CMS loads pgma at
X'20000'

CMS loads pgma at
X'20000' This overrides
the RMODE value (if any)
set in the text file.

LOAD pgma (RMODE 24 20000 CMS loads pgma at
X'20000'

CMS loads pgma at
X'20000' This overrides
the RMODE value (if any)
set in the text file.

LOAD pgma (RMODE ANY 20000 CMS loads pgma at
X'20000.'

CMS loads pgma at
X'20000' This overrides
the RMODE value (if any)
set in the text file.

LOAD pgma (ORIGIN
TRANS

20000 CMS loads pgma at the
start of the transient area.

CMS loads pgma at the
start of the transient area.

LOAD pgma (ORIGIN
hexloc

20000 CMS loads pgma at
hexloc.

CMS loads pgma at
hexloc.

Assembling, Loading, and Executing Programs

222 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 25. Where CMS Loads Programs (continued)

LOAD Command SET LOAD- AREA Setting 370 Mode Result XC or XA Mode Result

LOAD pgma … RESPECT CMS loads pgma at
the largest available
contiguous free storage
area.

CMS loads pgma at
the largest available
contiguous free storage
area according to the first
RMODE setting in the text
file. If RMODE is omitted
or if the first RMODE
setting in the text file is
RMODE 24, CMS loads
the program in the largest
area below 16MB. If the
first RMODE setting in the
text file is RMODE ANY,
CMS loads the program
in the largest area above
16MB. (If CMS encounters
a subsequent setting of
RMODE 24 in the text
file, it stops loading the
program above 16MB,
issues a message, and
starts loading the program
below 16MB.)

LOAD pgma (RMODE 24 RESPECT CMS loads pgma at
the largest available
contiguous free storage
area.

CMS loads pgma at largest
contiguous free storage
area under 16MB.

LOAD pgma (RMODE ANY RESPECT CMS loads pgma at
the largest available
contiguous free storage
area.

CMS loads pgma at largest
contiguous free storage
area above 16MB (if
available).

LOAD pgma (ORIGIN
TRANS

RESPECT CMS loads pgma at the
start of the transient area.

CMS loads pgma at the
start of the transient area.

LOAD pgma (ORIGIN
hexloc

RESPECT CMS loads pgma at
hexloc.

CMS loads pgma at
hexloc.

Note:

1. The combination AMODE 24/RMODE ANY is invalid. Specifying AMODE 24 and an ORIGIN address
greater than 16MB is also invalid.

2. In a 370 virtual machine, RMODE and AMODE have no affect on how CMS loads the program; however,
CMS does pass the values on to the GENMOD process. This lets you develop programs on a 370 virtual
machine for execution on an XA or XC virtual machine.

Only CMS levels prior to CMS Level 12 will execute in a 370 virtual machine.
3. Using the INCLUDE command:

a. If, after you load a program above 16MB, CMS encounters an RMODE 24 in a text file you INCLUDE,
CMS restarts the load process below 16MB. Note that CMS restarts the load in the existing
environment—if you change your virtual machine environment (for example, release disks) between
the time you LOAD a file and the time you INCLUDE a file, unpredictable results may occur.

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 223

b. If you specify an ORIGIN address on the INCLUDE command, that address must be on the same
side of the 16MB line as the program already loaded; otherwise, the INCLUDE command fails. For
example, if you LOAD a program named PIE above 16MB and you attempt to INCLUDE a program
named ASLICE at an ORIGIN below 16MB, the INCLUDE command fails and ASLICE does not get
loaded; when PIE runs it will be missing ASLICE.

c. If you (a) specify an ORIGIN address on the INCLUDE command that requires storage currently
occupied by programs loaded with the LOAD command, and (b) issue the START command,
unpredictable results may occur.

Other LOAD and INCLUDE Options
In addition to the attributes listed above, there are numerous other functions of the LOAD and INCLUDE
commands you might consider using. These functions include:

• Changing the entry point where control is passed when execution begins (RESET option).
• Controlling how CMS resolves references and handles duplicate CSECT names (AUTO, LIBE, and DUP

options).
• Clearing storage to binary zeros before loading files (CLEAR option).
• Saving history information from the text files (HIST and NCHIST options). The HIST option saves history

information (comments). The NCHIST options saves only non-commented history information. If neither
the HIST nor NCHIST is specified on the LOAD or INCLUDE commands, the history information is not
saved for the files being loaded into storage.

• Controlling how the CMS Loader handles the high-order bit in resolving the VCON addresses (HOBSET,
NOHOBSET, and HOBSETSD).

For more information, see z/VM: CMS Commands and Utilities Reference.

Executing TEXT Files
After you load a text file into storage, you can execute it.

Example — Loading and Starting a Program
To load and start the source program ODDJOB ASSEMBLE, enter the following sequence of commands:

load oddjob (options…
start

or

load oddjob (start options…

Using the START option of the LOAD command passes control to the first entry point in your program. The
options… refer to the AMODE, RMODE, ORIGIN, NORLDSAV, NOPRES and other options available on the
LOAD command.

Example — Starting a Program at a Specific Entry Point
To begin execution at an entry point other than the first, you can specify the alternate entry point or
CSECT name on the START command. For example, if ODDJOB has several entry points and you want to
start execution at the one named CLEANUP, enter

start cleanup

Or, you can start execution at a different entry point by specifying the entry point on the LOAD (or
INCLUDE) command with the RESET option.

load oddjob (reset cleanup
start

Assembling, Loading, and Executing Programs

224 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Example — Passing a Parameter List on the START Command
If the program you are going to execute expects a parameter list, you can specify the arguments on the
START command line. If the user arguments are specified, the entry or * operands must be specified;
otherwise, the first argument is taken as the entry point. Arguments are passed to the program in register
1. The entry operand and any arguments become a string of doublewords, one argument per doubleword,
and the address of the list is placed in general register 1.

For example, to pass the argument 007 to the default entry point (the first CSECT) in the ODDJOB
program, enter

start * 007

to pass the argument JIMBOND to the entry point CLEANUP in the ODDJOB program, enter

start cleanup jimbond

If START is issued from the virtual console or from an EXEC 2 EXEC, register 0 points to an extended
parameter list block. The extended parameter list for the START command pointed to by register 0 has the
following structure:

DC A(EPLCMD)
DC A(EPLARGBG)
DC A(EPLARGND)
DC A(0)

where:
START entry any arguments

EPLCMD EPLARGBG EPLARGND

or:
START entry

EPLCMD EPLARGBG

EPLARGND

or:
START

EPLCMD

EPLARGBG

EPLARGND

Resolving External References
When you issue the LOAD or INCLUDE commands to load files into storage, the loader checks for
unresolved references. If there are any, the loader searches your disks for text files with file names
that match the external entry name. When it finds a match, the loader loads the text file into storage. If
it does not find a match, the loader searches any available TXTLIBs for members that match. If there are
still unresolved references, for example, if you load a program that calls routines PRINT and ANALYZE but
the loader cannot locate them, you receive the message:

The following names are undefined:
 PRINT
 ANALYZE

You can issue the INCLUDE command to load additional text files or TXTLIB members into storage so the
loader can resolve any remaining references. For example, if you did not identify the TXTLIB that contains
the routines you want to call, you may enter the GLOBAL command followed by the INCLUDE command:

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 225

global txtlib newlib
include print analyze (start

A failure to resolve external references might occur if you have TEXT files with file names that are
different from either the CSECT names or the entry names. You must explicitly issue LOAD and INCLUDE
commands for these files.

At execution time, if there are still any unresolved references, their addresses are all set to 0 by the
loader; so any attempt to address them in a program may result in a program check.

Loader Control Statements
In addition to the options provided with the LOAD and INCLUDE commands, you can use loader control
statements to control the execution of TEXT files. These can be inserted in TEXT files, using the CMS
editor.

The loader control statements allow you to:

• Set the location counter to specify the address where the next TEXT file is to be loaded (SLC*
statement).

• Modify instructions and constants in a TEXT file, and change the length of the TEXT file to accommodate
modifications (Replace and Include Control Section statements).

• Change the entry point (ENTRY statement).
• Nullify an external reference so that it does not receive control when it is called, and you do not receive

an error message when it is encountered (LIBRARY statement).

Determining Program Entry Points
When you load a single TEXT file or a TXTLIB member into storage for execution, the default entry point
is the first CSECT name in the object file loaded. You can specify an alternate entry point on the LOAD,
INCLUDE, or START commands.

When you load multiple TEXT files (either explicitly or implicitly by allowing the loader to resolve external
references), you also have the option of specifying the entry point on the LOAD, INCLUDE, or START
command lines.

If you do not specifically name an entry point, the loader determines the entry point for you according to
the following hierarchy:

1. An entry point specified on the START command
2. The last entry specified with the RESET option on a LOAD or INCLUDE command
3. The name on the last ENTRY statement that was read
4. The name on the last LDT statement that contained an entry name that was read
5. The name on the first assembler- or compiler-produced END statement that was read
6. The first byte of the first control section loaded.

For example, if you load a series of TEXT files that contain no control statements and do not specify
an entry point on the LOAD, INCLUDE, or START commands, execution begins with the first file that you
loaded. If you want to control the execution of program subroutines, you should be aware of this hierarchy
when you load programs or when you place them in TXTLIBs.

An area of particular concern is when you issue a dynamic load (with the OS/MVS LINK, LOAD, or XCTL
macros) from a program, and you call members of CMS TXTLIBs. The CMS loader determines the entry
point of the called program and returns the entry point to your program. If a TXTLIB member that you load
has a VCON to another TXTLIB member, the LDT card from the second member may be the last LDT card
read by the loader. If this LDT card specifies the name of the second member, CMS may return that entry
point address to your program rather than the address of the first member.

Assembling, Loading, and Executing Programs

226 z/VM: 7.4 CMS Application Development Guide for Assembler

Text File Libraries (TXTLIBs)
You may want to keep your TEXT files in text libraries. These files have a file type of TXTLIB. You can
create a TXTLIB from files with a file type of TEXT. Like MACLIBs, TXTLIBs have a directory and members.
For more information, see the z/VM: CMS Application Development Guide.

Generating and Executing Modules
As mentioned earlier, a module consists of one or more text files that have been linked. One way to
create a module is to load the required files into storage and then issue the CMS GENMOD command. For
example, to create a module from DOITALL TEXT, you could enter:

load doitall (rldsave
genmod

A module can also be created in one step with the BIND command as follows:

bind doitall

Refer to z/VM: Program Management Binder for CMS for more information on using the BIND command.

In response to these commands, CMS generates a relocatable module named DOITALL MODULE for
which all external references are resolved. To execute DOITALL MODULE, enter:

doitall

If DOITALL expects arguments passed to it, you can enter them following the module name. For example,

doitall today

Relocatable Modules
A relocatable module is one that CMS does not need to load at a specific storage location. CMS loads
relocatable modules in a top down direction in the USER free storage area. (By contrast, CMS loads
non-relocatable modules according to the location of the text file when the module was created). Defining
your modules as relocatable helps eliminate the possibility that the storage your module requires is being
used by another program.

For CMS to create a relocatable module, it (CMS) needs to have relocation (RLD) information for the
program. By default, CMS does not save this relocation information for a text file when you use the LOAD
command to create and load a text file into storage.

If you do want to save relocation information, you must specify the RLDSAV option of the LOAD command,
or use the BIND command.

Example — Creating a Module That Is Relocatable
To create a relocatable module named OZ from text files named DORTHY, TINMAN, LION, and TOTOTOO,
issue:

load dorthy tinman lion tototoo (rldsave
genmod oz

You can also use the BIND command as follows:

bind dorthy tinman lion tototoo (sname oz

When you execute OZ MODULE, CMS loads it at the highest available storage range large enough to
contain it.

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 227

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsl0_v7r4.pdf#nameddest=dmsl0_v7r4

Example — Creating a Module That Is Not Relocatable
To create a non-relocatable module named NOTOZ from a text file named WITCH TEXT, issue the LOAD
and GENMOD commands as follows:

load witch (norld
genmod notoz

Or, because NORLD is the default value, you could issue:

load witch
genmod notoz

When you execute NOTOZ MODULE, CMS loads it at the same storage location that WITCH TEXT occupies
when you issue the GENMOD command.

Creating a Module to Run in the Transient Program Area
The CMS transient area, a two-page area of storage located at X'E000', is reserved for the execution of
frequently used programs and commands. Programs that execute in the transient area run disabled for
interrupts.

To generate a module to run in the transient area, use the ORIGIN TRANS option when you load the text
file into storage, then issue the GENMOD command. For example,

load myprog (origin trans
genmod

The two restrictions placed on command modules executing in the transient area are:

1. They may have a maximum size of 8192 bytes (the size of the transient area).
2. They must be serially reusable; that is, if they are called by CMSCALL or SVC 202 and they are already

loaded into the transient area, CMS does not reload them.

The CMS commands that execute in the transient area are identified in the z/VM: CMS Commands and
Utilities Reference.

Specifying Addressing and Residency Modes for a Module
You can use the AMODE and RMODE options of the GENMOD command to specify the addressing and
residency modes of a module. Note that the AMODE and RMODE values you specify on GENMOD override
the values that were previously set. For example, to specify that ODDJOB run as an AMODE 31 RMODE
ANY program, enter

load oddjob
genmod (amode 31 rmode any

Restricting a Module to a Specific Virtual Machine Mode
You can use the 370, XA, and XC options of the GENMOD command to specify that a module run only in a
370 virtual machine or in an XA or XC virtual machine. For example, to specify that ODDJOB run only in an
XA virtual machine, enter

load oddjob
genmod (XA

Note:

1. You can override the 370 option of the GENMOD command by issuing the CMS SET GEN370 OFF
command. This allows a module generated with the 370 option of the GENMOD command to run in an
XA or XC virtual machine. See the z/VM: CMS Commands and Utilities Reference for more information
on the SET GEN370 command.

Assembling, Loading, and Executing Programs

228 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

2. Only CMS levels prior to CMS Level 12 will execute in a 370 virtual machine.

Saving History Information for Modules
You can use the HIST or NCHIST option of the LOAD and INCLUDE commands to create a module
that includes history information from the text file used. The HIST option saves history information
(comments). The NCHIST option saves only non-commented history information. If neither the HIST nor
NCHIST option is specified on the LOAD or INCLUDE commands, the history information is not saved for
the files being loaded into storage. For example:

load progone (hist
include progtwo (hist
genmod

The MODULE file created contains the comments that were in PROGONE TEXT and PROGTWO TEXT.

Loading Modules
To load a module file, you can:

• Issue the LOADMOD command from your terminal, from an exec, or with the CMSCALL macro from
a program. You can use the ORIGIN option on the LOADMOD command to specify the load address;
otherwise, CMS loads the MODULE where storage is available.

• Enter the name of the module from your terminal.
• Issue the NUCXLOAD command from your terminal, from an exec, or with the CMSCALL macro from a

program.
• Issue the CMSCALL macro from a program.
• Issue the OS/MVS LOAD macro from a program.

For information on where a program is loaded, see Table 25 on page 222.

Loading a MODULE into a Saved Segment
You can load a MODULE file into a logical saved segment, a member of a CP segment space, or a
discontiguous saved segment (DCSS). For a brief description of these types of saved segments, see
Chapter 7, “Using Saved Segments,” on page 75. For information about defining and building saved
segments, see z/VM: Saved Segments Planning and Administration.

Note: Building a saved segment requires the CP authority to perform the DEFSEG and SAVESEG
operations.

Displaying Information about Programs in Storage
You can use the NUCXMAP and PROGMAP commands to display information about programs currently
loaded in storage.

The NUCXMAP Command
Use the NUCXMAP command to display or return to a program stack information about currently defined
nucleus extensions. The information NUCXMAP displays (by default) has the following format:

Name Entry Userword Origin Bytes Amode Attributes
ENDEXEC1 003EE370 00000000 003EE370 000002F8 24 SYSTEM ENDCMD
HZ 0001B210 00000000 0001B210 00001508 ANY SYSTEM SERVICE IMMCMD
BIGMOD 00FD2EF0 0000B848 00FD2EF0 01955050 31

Example 1
To display information about a specific nucleus extension, enter:

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 229

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4

NUCXMAP BIGMOD

If more than one nucleus extension named BIGMOD exists, CMS displays information for each.

Example 2
To display information about a specific look-aside nucleus extension entry, for example, one named HZ,
enter:

NUCXMAP HZ (ALL

CMS displays information on the HZ look-aside entry as well as for any nucleus extensions named HZ.

The PROGMAP Command
Use the PROGMAP command to obtain the name, entry point, origin, addressing mode, and relocation
attributes of programs that you use LOAD, INCLUDE, or LOADMOD to load.

If you issue PROGMAP from within a program, use the STACK and operands of PROGMAP to have the
return information placed in the program stack. To display information at your terminal, omit the STACK
and FIFO|LIFO options.

Example 1
To display information about all programs, enter:

PROGMAP

In response, CMS displays something similar to the following:

 Name Entry Origin Bytes Attributes
 PROG1 02000400 02000400 0000066D AMODE 31 RELOC
 PROG2 02000A6D 02000A6D 0000042A AMODE 31 RELOC
 PROGN 00040000 00040000 00000338 AMODE 24 NON-RELOC

Example 2
To display information about all programs and nucleus extensions, enter:

PROGMAP (ALL

In response, CMS displays something similar to the following:

Name Entry Origin Bytes Attributes
PROG1 02000400 02000400 0000066D Amode 31 Reloc
PROG2 02000A6D 02000A6D 0000042A Amode 31 Reloc
PROG3 00040000 00040000 00000338 Amode 24 Non-reloc
Name Entry Userword Origin Bytes Amode Attributes
NUCX1 01000400 00004532 01000400 0000066D ANY SYSTEM SERVICE
NUCX2 01000A6D 00000000 01000A6D 0000042A 24
NUCX3 00020000 0000ABDC 00020000 00000338 31 SYSTEM SERVICE

Example 3
To display information for a program named PROG1, enter:

PROGMAP PROG1

Example 4
To display information about all nucleus extensions, enter:

PROGMAP (NUCX

Assembling, Loading, and Executing Programs

230 z/VM: 7.4 CMS Application Development Guide for Assembler

Example 5
To display information about a nucleus extension named NUCX1, enter:

PROGMAP NUCX1 (NUCX

Assembling, Loading, and Executing Programs

Chapter 16. Assembling, Loading, and Executing Programs 231

Assembling, Loading, and Executing Programs

232 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 17. Creating and Using a Callable Services
Library

This chapter:

• Describes how to create your own callable services library (CSL).
• Describes how to define entry and exit points and obtain information about parameters when creating a

CSL routine.
• Describes how to create a template file.
• Gives an example of a CSL routine written in Assembler.

For more information on how to invoke a CSL routine and how to make it available to users, see the z/VM:
CMS Application Development Guide.

CSL Routines
An application program can access routines that reside in a callable services library (CSL). It is convenient
for a program to call routines stored in a CSL because the calls are not resolved until the call is made
(as opposed to when the module is built). This lets you make changes to a CSL routine without having
to relink the routine to the application program, recompile the program, or modify any of the program's
source statements. People using the application won’t be aware of the CSL.

You can invoke CSL routines from programs written in the following programming languages:

• Ada
• Assembler
• C
• COBOL11

• VS FORTRAN
• VS Pascal
• PL/I
• REXX.

z/VM comes with two callable services libraries, VMLIB and VMMTLIB. VMLIB contains routines that:

• Call file pool and minidisk file I/O functions
• Call file pool administration functions
• Access the current generation of REXX variables
• Issue z/VM commands through a REXX exec
• Call the CMS Extract/Replace facility, which enables application programs to obtain or modify selected

system information without release or VM system dependencies
• Manipulate the CMS program stack
• Use CMS's Coordinated Resource Recovery (CRR) facility to maintain data integrity
• Use VM data spaces
• Call program-to-program communications functions using the Systems Application Architecture (SAA)

Common Programming Interface (CPI) Communications (also known as SAA communications interface)
• Call SAA resource recovery (also known as CPI resource recovery) functions

11 This pertains to the IBM OS/VS COBOL and VS COBOL II Program Products.

Creating and Using a CSL

© Copyright IBM Corp. 1990, 2024 233

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

• Provide CMS file pool exits

VMMTLIB contains routines that:

• Call CMS application multitasking functions
• Call OpenExtensions services
• Get the value set for the workstation display address

The VMLIB routines (except those for CPI Communications and SAA resource recovery) are described
in the z/VM: CMS Callable Services Reference. The VMLIB routines that perform CPI Communications
functions are described in the Common Programming Interface Communications Reference (https://
publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf). The VMLIB routines that perform SAA resource recovery
functions are described in the Common Programming Interface Resource Recovery Reference. The
VMMTLIB routines for CMS application multitasking are described in z/VM: CMS Application Multitasking.
The VMMTLIB routines for OpenExtensions services are described in z/VM: OpenExtensions Callable
Services Reference. The VMMTLIB routine for getting the value set for the workstation display address is
described in the z/VM: CMS Callable Services Reference.

You may also want to make your own routines and build your own library, or even customize some of the
supplied VMLIB or VMMTLIB routines. This chapter describes the steps to:

1. Write individual routines to reside in a CSL
2. Create a CSL
3. Make a CSL available for application programmers to use
4. Invoke CSL routines from application programs.

Writing CSL Routines
You can write your own assembler routines to reside in a callable services library.

Your own CSL routines can work just like the ones supplied with z/VM:

1. An application program calls the routine and passes it some parameter information
2. The CSL routine does some processing using these parameters
3. The CSL routine returns control to the calling application program, passing information back in

parameters.

This section describes how you can use some special macros when writing your own CSL routines, lists
rules you must follow when writing your own CSL routines, and explains how to make template files that
contain parameter information.

Using Macros When Writing CSL Routines
Your CSL routine must start by defining an entry point (using the CSLENTRY macro), and it must finish by
defining an exit point (using the CSLEXIT macro). In the body of the CSL routine, between the entry and
exit points, a CSL routine can access information about the parameters passed by the calling application
program (using the CSLGETP macro). We will look at these three macros in the following sections. See the
z/VM: CMS Macros and Functions Reference for detailed information about these macros.

Defining an Entry Point—CSLENTRY
You must specify the CSLENTRY macro before any executable code or data. Following are some examples
of CSLENTRY macro calls:

Creating and Using a CSL

234 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

1 CALC CSLENTRY
 (RETURN,RESULT,OP1,OP2,DIVISOR)
2 CALC CSLENTRY DIRECT,
 (RETURN,RESULT,OP1,OP2,DIVISOR)
3 CALC CSLENTRY DIRECT(4,1),
 (RETURN,RESULT,OP1,OP2,DIVISOR)
4 CALC CSLENTRY OPENVM(NOCNT),
 (RETURN,RESULT,OP1,OP2,DIVISOR)

In each example the CALC label generates a CSECT for the module. Each CALC CSL routine above expects
a maximum of 5 parameters when it is called.

Each example above does the following:

• Saves the registers of the calling program
• Puts the address of the parameter list in register 1
• Generates the USING statement for register 15

The number of parameters, however, is dealt with in a different manner for each example. CSLENTRY does
the following for each example:
Example 1

Puts the number of parameters in register 0.
Example 2

Puts the number of parameters in register 0 as well.
Example 3

Checks the number of parameters passed with the number of required and optional parameters
specified on the macro. In this example there are 4 required parameters and 1 optional parameter
(DIVISOR). If less than 4 parameters are passed then CSLENTRY will return a return code of -11 to
the caller. If more parameters than the 5 parameters defined are passed then CSLENTRY will return a
return code of -10 to the caller. If the number of parameters passed is acceptable (either 4 or 5 in this
example) then the number will be stored in register 0.

Example 4
CSLENTRY ignores the number of parameters passed. Register 0 will not contain the number of
parameters.

You must define a name for each parameter you expect to be passed to the CSL routine. The special
parameter names RETURN and REASON should be used for a return code and reason code. In a routine
that uses the OPENVM option on CSLENTRY, the special parameter name VALUE should be used if a return
value is included. (In the previous examples, only RETURN is used.)

Getting Information about Passed Parameters—CSLGETP
You must use the CSLGETP macro to get information about the parameters passed by the calling
application program. Following are examples of CSLGETP calls that can be used along with the previous
CSLENTRY call.

CSLGETP PLIST=(R2),PARM=RESULT,ADDRESS=(R6)
CSLGETP PLIST=(R2),PARM=OP1,ADDRESS=(R5)
CSLGETP PLIST=(R2),PARM=OP2,ADDRESS=(R6)
CSLGETP PLIST=(R2),PARM=DIVISOR,ADDRESS=(R6)

In these CSLGETP examples, the address of the parameters passed to the CALC CSL routine is stored in
register 2. Notice in “CALC ASSEMBLE” on page 264 that originally the address of the parameter list is
stored in register 1. Because the CSLGETP macro overwrites the contents of register 1, the parameter
list address must be stored in another register before calling CSLGETP. In this case we stored the plist
address in register 2.

The parameters specified with PARM= correspond to the parameters specified in the CSLENTRY call. You
can store the address of each parameter using ADDRESS=. For example, the address of the DIVISOR
parameter is stored in register 6. The CSLGETP macro has two other parameters not discussed here. They
let you obtain the length and data type of a particular parameter.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 235

Defining an Exit Point—CSLEXIT
You must use the CSLEXIT macro at the end of the CSL routine. An example of a CSLEXIT call is:

CSLEXIT RETURN=(R9),REASON=REASCODE,VALUE=RETVAL

CSLEXIT does the following:

• Restores the calling program's registers from the caller's save area.
• Passes a return code back to your calling program in register 15 and in the RETURN parameter.
• Passes a reason code back to the calling program in register 0 (if you specify the special parameter

name REASON on CSLENTRY, then CSLEXIT also passes the reason code back to the calling program in
that parameter). To get a reason code, you must also request a return code.

• Passes a return value back to the calling program in the first four bytes of the parameter that
corresponds to VALUE. (The VALUE= parameter on CSLEXIT can be used only in a routine that specifies
the OPENVM option on the CSLENTRY macro.)

• Returns to the calling program's address originally passed in register 14.

Rules for Coding CSL Routines
When coding CSL routines:

• Code CSL routines in assembler language, and make them re-entrant.
• Start each CSL routine with the CSLENTRY macro and complete it with the CSLEXIT macro.
• Limit routine names a maximum of 8 characters.
• Design and code CSL routines so that they can be called in either 24-bit or 31-bit addressing mode.
• Ensure that CSL routines that can be called in an XC virtual machine return control in primary space

mode.
• Either specify OPENVM on the CSLENTRY macro or write the CSL routine so that the first parameter it

expects is a return code parameter.

• If you want your CSL routine to be callable from programs written in various programming languages, do
not include code that is applicable to just one particular programming language.

• When writing a CSL routine that will use the direct plist format, the following applies:

– The TYPE and LENGTH operands of the CSLGETP macro cannot be used.
– CSLGETP should be used to access the parameter addresses.
– The parameter list size must be checked by the CSL routine. This can be done automatically by

the CSLENTRY macro. CSLENTRY will return a -10 or -11 as a return code if the req,opt option is
specified and req+opt =< number of parameters passed =<req The number of parameters passed
to the routine is computed and saved for the CSL routine unless the NOCNT option is specified.

– The plist size check done by DMSCSL against the template will, of course, not be performed when the
'DIRECT' keyword appears on the first line of the routine's template file.

See “CSL Summary and Example” on page 264 for examples on coding CSL routines.

Types of Data Supported
The data types you can use for parameters on your CSL routines are:

• Binary integer (signed or unsigned)
• Character string (fixed or variable length)
• Bit string (fixed or variable length).

You can organize these data types in various ways for use as parameters on your routines:

• Single value parameters (scalars)

Creating and Using a CSL

236 z/VM: 7.4 CMS Application Development Guide for Assembler

• Multiple value parameters (vectors or one-dimensional arrays)
• Tabular information (two dimensional arrays: multiple columns and rows with different data types in

different columns).

In addition, you can use a level of indirection (for example, a pointer to the data rather than the data
itself).

Creating Template Files
Each CSL routine must have a template file that contains information about its parameters. This template
file describes how many parameters the routine expects, what data type each parameter must be, how
long each parameter must be, and whether the parameter is for input or output. A template file is
specified in a control file that is used when a CSL is built. (See “Creating CSL Control Files” on page 246
for more information.)

You can create a template file using XEDIT. You can name this template file anything you want, although
you may want to use a convention, such as making the file type TEMPLATE. Each parameter definition in
the template file is referred to here as a template.

The first line of the template file must be in the following format:

DIRECT

OPENVM

numparm reqparm

comment

where:

DIRECT
indicates that the DIRECT option was specified on the CSLENTRY macro. If specified, a 1 will
be displayed under the Interface attribute displayed by CSLMAP and CSLLIST. The information is
available for use by any program building plists using template information. The fastpath interface is
one example of this.

OPENVM
indicates that the OPENVM option was specified on the CSLENTRY macro. If specified, a 2 will be
displayed under the Interface attribute displayed by CSLMAP and CSLLIST.

Using OPENVM specifies that the return code parameter is not required and may appear anywhere in
the parameter list. The positions of the return code, reason code, and return value in the parameter
list are marked using special data types.

Specifying this plist format implies:

• The routine is directly callable.
• The DMSCSL interface cannot be used to call this routine.
• Only the ADDRESS OPENVM interface can be used to call this routine from REXX.
• The first parameter in the parameter list is not assumed to be the return code unless it is marked as

such with the RTNC data type.
• The RTNV, RTNC, and RTNR data types mark the positions in the parameter list of the return value,

return code, and return reason (reason code) parameters.
• The parameter list may contain no return code, return value, or reason code.
• Direct calls to routines that have no return value or return code parameter will result in an ABEND if

a CSL interface error is encountered.

numparm
specifies the total number of parameters described in the file.

reqparm
specifies the number of required parameters

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 237

comment
is optional commentary information.

The remaining lines of the template file define the parameters, no more than one per line. These lines
must be in the following format:

data_type data_length data_direction [comment]

where:

data_type
specifies the template data type of the parameter being defined. The following sections detail how
to describe in the template file the various data types and organizations to be used with your CSL
routines. Valid template data types are:
SBIN

specifies that the parameter is a signed binary integer.
UBIN

specifies that the parameter is an unsigned binary integer.
FCHR

specifies that the parameter is a fixed-length character string.
CHAR

specifies that the parameter is a character string.
BIT

specifies that the parameter is bit data.
PTR

specifies that the parameter is a pointer to the data described by the next template entry.
TABLE

specifies that the parameters defined by this template describe a table with a fixed number of
columns and a fixed or variable number of rows.

LEN
specifies the parameter that contains the length of the preceding parameter.

RTNV
specifies that the parameter contains a return value for an OPENVM routine.

RTNC
specifies that the parameter contains a return code for an OPENVM routine.

RTNR
specifies that the parameter contains a return reason (reason code) for an OPENVM routine.

These data types are discussed in detail in the following sections.

data_length
is the length of the parameter data. Valid values are:
n

specifies a numeric value designating the length of the parameter. Zero is valid only for the FCHR
type and only for compatibility with previous releases of VM. A zero length specification for an
FCHR parameter means that the parameter's length must be specified.

*
specifies that the parameter's length may vary from call to call and that the parameter described
by the following LEN template will contain the length at call time.

NULL
specifies that the parameter is a variable-length string terminated by a null character (X'00'). This
length may be used only with the CHAR data type.

data_direction
defines the direction that the value contained in the variable is to be passed. Valid directions are:

Creating and Using a CSL

238 z/VM: 7.4 CMS Application Development Guide for Assembler

INPUT
indicates that the parameter is used only as input to the CSL routine. In other words, the value is
passed from the caller to the called routine.

OUTPUT
indicates that the parameter is used only as output from the CSL routine. In other words, the value
is returned from the called routine to the caller.

INOUT
indicates that the parameter is used as both input to and output from the CSL routine. One value is
passed from the caller to the called routine and another is returned from the called routine to the
caller.

Note that using the same parameter for both input and output is not recommended except in the
case where part of a parameter is input data and part is output on the same call. An example of
this use would be a bit string where some bit values are input values and different ones are set as
outputs.

Using this specification to declare a parameter that is an input parameter on some calls and an
output parameter on others leads to REXX usability problems, because the caller must initialize
the variable to a proper length before issuing the call even if it is an output parameter for that
particular call.

Using this specification to declare a parameter that will pass an input value that will be modified
by the called routine and returned as an output value is also not recommended. Use two
parameters instead. The caller can specify them both as the same variable to have the input
value replaced by the output value, and this avoids the need to re-initialize the value before each
call.

*
indicates that no checking of column direction is to be done for a table. This specification is valid
only for the TABLE template parameter type.

comment
is optional commentary information.

Note:

1. When OPENVM is not specified on the first line in the template file, the first parameter template should
define a 4-byte return code, for example:

 SBIN 4 OUTPUT

2. The routine name parameter, although passed as the first parameter of the CSL call, is not listed in the
template file. This is because it is not passed as a parameter to the CSL routine.

3. Optional parameters must go at the end of the template file.
4. The same template file can be used for multiple routines.
5. A zero length specification for an FCHR parameter must be specified differently depending on the

method used for calling the CSL routine.

When the CSL routine is called using CALL DMSCSL, the length must be supplied as the parameter
immediately following the FCHR parameter. This extra parameter for the length is not described in the
template file, but is expected to be a signed binary number of four bytes length.

When the CSL routine is called using the CSLFPI macro, the length is not specified with a separate
parameter. The length is specified together with the parameter name in the"PARMS=" keyword list.

Regardless of the method used for calling the CSL routine, the CSL will get the length using the
"LENGTH=" keyword of the CSLGETP macro.

Here is an example template file for a CSL routine that gets a message from a calling program, then
passes back a response and response length to the calling program. This routine has four parameters in
addition to the required return code.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 239

 5 5 5 Templates defined,
 5 parameters required
 SBIN 4 OUTPUT Return code
 CHAR * INPUT Incoming message
 LEN 4 INPUT Length of incoming message
 CHAR 80 OUTPUT Buffer for response
 LEN 4 OUTPUT Length of response

See “CSL Summary and Example” on page 264 for other examples of template files.

Defining Parameters with Scalar Data Types
This section describes how to define the supported scalar data types using the template data types.

Note that REXX supports data only as character strings, requiring an intermediate conversion step
between the call from REXX and the CSL routine. So that you can properly document the call parameters
when your CSL routine is called from REXX, the format for each data type when called from REXX is also
documented.

Binary Integer Parameters
Binary parameters can be either signed or unsigned. To declare a binary integer parameter, specify SBIN
(for signed) or UBIN (for unsigned) as the data_type in the template file:

{SBIN|UBIN} data_length data_direction

Binary parameters are always fixed length (the length cannot be different for different calls). You can
specify the length in the template file as 1, 2, 3, or 4 bytes.

Scientific notation (for example, 3E2 = 3 times 10 to the second power = 300) is not supported.

The data direction for binary integer parameters can be INPUT, OUTPUT, or INOUT. (Recall from the
discussion “Creating Template Files” on page 237 that the INOUT specification is not recommended.)

In REXX the data type is numeric character string. The REXX CSL interface converts the numeric character
string to a binary value on input and back on output.

Character String Parameters
To define a character string parameter, specify CHAR as the data_type in the template file (the FCHR
template data type is for compatibility only):

CHAR data_length data_direction

A character string parameter can be the same length for all calls or it can be a different length for each
call (see “Specifying Parameter Lengths” on page 241 for a discussion on how to do this).

Specify the data length of a character string parameter in bytes. You can specify the data length as any
length greater than zero (limited only by programming language constraints on length). If you specify *,
you also must specify a LEN type parameter (with a direction of INPUT) on the following line to define a
length parameter to follow the CHAR parameter.

The data direction for a character string parameter can be INPUT, OUTPUT, or INOUT. (INOUT is
supported mainly to allow conversion of older CSL routines using the FCHR specification to the new
format. IBM strongly recommends that CSL routines not be designed to use this specification.)

Bit String Parameters
To define a bit string parameter, specify BIT as the data_type in the template file:

 BIT data_length data_direction

A bit string parameter can be the same length for all calls or it can be a different length for each call (see
“Specifying Parameter Lengths” on page 241 for a discussion on how to do this).

Creating and Using a CSL

240 z/VM: 7.4 CMS Application Development Guide for Assembler

Specify the data length of a bit string parameter in bits.

A bit string must start in the first (high order) bit of the first byte of the passed parameter.

The data direction for a bit string parameter can be INPUT, OUTPUT, or INOUT. INOUT can be used for
a bit string parameter in which some of the bits are for input and others are for output. IBM strongly
recommends that CSL routines not be designed with bit string parameters that are inputs for some call
types and outputs for others or parameters in which the same bit is both an input and an output.

For REXX calls, the parameter is a character string of "0"s and "1"s, which is translated by the REXX CSL
interface to or from the bit string, depending on whether it is an input or output type parameter.

Specifying Parameter Lengths
You can define character string and bit string parameters as having either a fixed length for all calls or a
length that varies from call to call.

Specify the length of fixed-length parameters in the data_length field of the template for the parameter,
for example,

 CHAR 20 INPUT

defines a parameter that is always an input character string 20 bytes long.

The length of parameters whose size can vary from one call to the next must be specified explicitly by
the calling or called routine using a length parameter. The data_length field in the template entry for the
parameter itself must be *, indicating that a LEN parameter definition follows. For example,

 CHAR * INPUT
 LEN 4 INPUT

defines a parameter that is an input character string with a separate integer length parameter used to
pass the length of the parameter for a particular call. The length of the LEN parameter is specified in
bytes. It is an unsigned binary integer just like the UBIN template parameter. The * length specification is
not supported for the LEN data type.

Another example is

 BIT * OUTPUT
 LEN 4 INPUT
 LEN 4 OUTPUT

which defines an output bit string parameter. The first LEN parameter contains the length (in bits) of the
buffer passed on the CSL routine call, and the second LEN parameter will be set by the called CSL routine
with the number of bits returned in the buffer.

Only one LEN template parameter can be specified for an INPUT parameter. An OUTPUT parameter can
have one or two LEN parameters. When one is specified, if the data_length field for the parameter itself
is *, the LEN template parameter must be INPUT and it will contain the length of the variable to hold the
output value. A value specified for the data_length field for the parameter itself indicates the length of the
buffer being provided, so the single LEN template parameter must be for OUTPUT. In this case, the LEN
template parameter is being used to return the size of the output value, assuming that it can be less than
the full variable size.

LEN parameters can also be used to specify the number of elements in an array parameter or the number
of rows in a TABLE. See “Declaring Multi-Value Data Types in Template Files” on page 241 for more
information.

Declaring Multi-Value Data Types in Template Files
Multiple value parameters—one- and two-dimensional arrays—use two special constructs in their
definition: the TABLE data type and the "C." prefix to a UBIN, SBIN, CHAR, BIT, LEN, or PTR template
data type specification. (See “Pointer (Indirection)” on page 243 for the definition of the PTR data type.)

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 241

Arrays and Tables
An array is a single parameter that contains multiple occurrences of a single data type and length
arranged contiguously in storage, for instance, a set of five 4-byte binary integers in 20 bytes of storage, or
fifteen 8-byte character strings in 120 bytes of storage. A table is a two-dimensional array, in which each
column is basically an array as defined in this section.

A table is declared using two or more entries in the template file: one to describe the table and one or
more to describe the columns. Each column consists of data of a single type and length, but the type
and length may be different for different columns. For instance, a table with six rows and two columns
could be used to pass employee names and employee numbers for six employees, where the names are
20-byte character strings and the employee numbers are 4-byte unsigned binary integers.

You pass an array as a single parameter. You must pass a table as multiple parameters, one parameter per
column. Define an array in the template file as a single-column table. Define a table in the template file by
specifying (after declaring the TABLE data type) the data type specification for each table column with a
prefix of "C.". For example, the table of employee names and numbers described above would be defined
in the template file as:

 TABLE 6 INPUT
 C.CHAR 20 INPUT
 C.UBIN 4 INPUT

Note that the data_length field of the TABLE template is used to define the number of rows in the table.
You can also specify a LEN parameter following the TABLE entry to allow dynamic specification of the
number of rows at call time. For instance,

 TABLE * INPUT
 LEN 4 INPUT
 C.CHAR 20 INPUT
 C.UBIN 4 INPUT

defines a table with two columns. The number of rows is passed as the first parameter and the next two
are the columns.

If the number of rows is variable, the number of rows for a particular call can be specified using one or
two LEN parameters, depending on whether all of the columns contain only input values or if some of
them contain output values:

• If no columns of the table are to contain output values, you only need to specify a single input LEN
parameter for passing the number of rows in the input table.

• If any column of the table may contain output values, you can define either one or two LEN parameters:

– If you define just one LEN parameter, it can be declared either for INPUT to specify the number of
rows passed or OUTPUT to allow the called routine to return the number of rows used.

– If you define two parameters, one must be declared for INPUT to specify the number of rows passed
and the other must be declared for OUTPUT to allow the called routine to return the number of rows
used.

Valid data directions are *, INPUT, OUTPUT, and INOUT. Specifications other than * are used for
documentation or verification purposes only. The * specification indicates that no checking of column
direction is to be done. The only exception to this is that an OUTPUT table may contain LEN or PTR data
types with INPUT direction.

Specifying Lengths of Column Entries
The length of the elements in the table columns can be:

• Fixed and the same for each element
• Variable from call to call but the same for each element
• Variable from call to call and different for each element.

Creating and Using a CSL

242 z/VM: 7.4 CMS Application Development Guide for Assembler

If the length is fixed and the same for each element, the length is specified with a data_length
descriptor of n, where n is the length.

For example, a call with a single-column table of 4-byte signed binary input values and a variable number
of rows would have the following template file declarations:

 TABLE * INPUT Table declaration
 LEN 4 INPUT # of rows
 C.SBIN 4 INPUT 4-byte signed binary values

This defines two parameters in the parameter list: the first contains the number of rows and the second is
an array of 4-byte signed binary values with the number of entries defined by the first parameter.

If variable from call to call but the same for all elements, a length parameter is required:

 C.BIT * INPUT Bit string
 LEN 4 INPUT Element length

This declaration defines a column of bit strings in which all the elements have the same length, which is
specified in the following length parameter.

If variable and different for each element, the length descriptor can be either * or n, where n is the
maximum length.

Note that, because all elements of a column must have the same maximum size, this case is most useful if
the variable-length elements are indirectly addressed.

A C.LEN parameter is then declared as an array that contains the individual element lengths. This
parameter is either INPUT or OUTPUT, depending on column definition. For example, let's look at a call
with a three-column table with a variable number of rows. The first column will be an array of pointers to
buffers where output values are to be placed. The second column is an array of binary values specifying
the lengths of each individual buffer. The last column will contain the lengths of the values stored in the
individual buffers by the called routine. The parameters would be described in the template file in the
following manner:

 TABLE * INOUT Table declaration
 LEN 4 INPUT Max rows
 LEN 4 OUTPUT Actual rows
 C.PTR 4 INPUT Pointers to buffers
 CHAR * OUTPUT Buffers are character
 C.LEN 4 INPUT Maximum buffer lengths
 C.LEN 4 OUTPUT Actual lengths used

This declaration defines five parameters in the parameter list:

• The number of buffers supplied (maximum rows)
• A variable to be set to the number of buffers used by the called routine
• An array of pointers to buffers
• An array of binary values specifying the individual buffer lengths
• An array of variables to contain the lengths of the values stored in the individual buffers

The associated parameter in REXX is a stemmed variable. If an output LEN parameter is declared for the
associated TABLE definition, its value is stored in the xxx.0 stemmed variable (where xxx is the stemmed
variable name) for any OUTPUT or INOUT type column parameters.

Any conversion required for specific data types is done by the REXX CSL interface (see the individual
template data types for details).

Valid data directions are determined by the data type of the data contained in the array.

Pointer (Indirection)
Indirect data, where a pointer to the data is passed rather than the data itself, is declared using two
entries in the template file. The first entry in the following example specifies a data type of PTR and a

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 243

length of 4 bytes (the parameter type is 31-bit address). The second entry defines the type of the data
pointed to and does not declare an actual parameter in the parameter list.

 PTR 4 INPUT
 CHAR 80 INPUT

Valid data types for indirection are:

• CHAR
• SBIN
• UBIN
• BIT
• LEN

Note that the FCHR, PTR, TABLE, RTNV, RTNC, and RTNR data types are not supported for indirection.

If the direction of the second template entry is INPUT, the direction of the first must also be INPUT. If
the direction of the second is OUTPUT, the first also can be OUTPUT, indicating that the called routine will
set it, or it can be INPUT, indicating that the address of the area for the output value is passed by the
caller. The two entries together specify a single parameter, a 4-byte pointer to a data area of the format
identified by the second declaration.

A LEN data type following a PTR data type does not specify the length of the pointer, but rather the length
of the preceding parameter. For instance, suppose we had a table with 3 columns, the first an array of
pointers to buffers to be filled by the calling routine, the second an array of pointers to 2-byte binary
maximum length values, and the third an array of 4-byte signed binary elements to contain the actual
length of each value placed in the buffer by the called routine. The template file definition would be:

 TABLE * INOUT Table definition
 LEN 4 INPUT Maximum number of rows
 LEN 4 OUTPUT Used number of rows
 C.PTR 4 INPUT Pointers to buffers
 CHAR * OUTPUT Buffers
 C.PTR 4 INPUT Pointers to buffer lengths
 LEN 2 INPUT Maximum lengths
 C.LEN 4 OUTPUT Used lengths for buffers

The call parameters for this template would be:

 maxrows,usedrows,bufaddrs,lenaddrs,lengths

where:

maxrows
indicates the maximum number of buffers usable

usedrows
returns the number used on call completion

bufaddrs
is an array of pointers to buffers with maxrows elements

lenaddrs
is an array of pointers to 2-byte binary values specifying the lengths of the buffers

lengths
is an array with maxrows elements, the first usedrows elements of which will be filled in by the called
routine with the 4-byte binary lengths of the records placed in the corresponding buffers.

REXX does not support pointers. For REXX CSL calls, the actual variable name must be specified in the
parameter list. The REXX CSL interface adds the pointer to the data for input parameters and uses the
pointer to find the value to return in the variable for output parameters.

Creating and Using a CSL

244 z/VM: 7.4 CMS Application Development Guide for Assembler

Defining Return Parameters for OPENVM Routines
This section describes how to define the return parameters used by routines in which OPENVM is
specified on the CSLENTRY macro. Note that these data types are intended to be used when writing
front-end routines for OPENVM CSL routines. The parameter list for OPENVM routines does not conform
to the standard CSL parameter list structure. Use of these data types not only defines the length and
direction of the return parameters, but also marks the location of the return parameters in the parameter
list for later use by CSL.

Return Value Parameter
The return value parameter for an OPENVM routine is a signed binary integer. To declare the return value
parameter, specify RTNV as the data type in the template file:

 RTNV 4 OUTPUT

The return value parameter always has a data length of 4 bytes and a data direction of OUTPUT. You must
specify the length and direction in the template.

In REXX, the data type is numeric character string. The REXX CSL interface converts the binary value on
output back to a numeric character string.

Return Code Parameter
The return code parameter for an OPENVM routine is a signed binary integer. To declare the return code
parameter, specify RTNC as the data type in the template file:

 RTNC 4 OUTPUT

The return code parameter always has a data length of 4 bytes and a data direction of OUTPUT. You must
specify the length and direction in the template.

In REXX, the data type is numeric character string. The REXX CSL interface converts the binary value on
output back to a numeric character string.

Return Reason (Reason Code) Parameter
The return reason parameter for an OPENVM routine is a signed binary integer. To declare the return
reason parameter, specify RTNR as the data type in the template file:

 RTNR 4 OUTPUT

The return reason parameter always has a data length of 4 bytes and a data direction of OUTPUT. You
must specify the length and direction in the template.

In REXX, the data type is numeric character string. The REXX CSL interface converts the binary value on
output back to a numeric character string.

Creating a Callable Services Library
After your routines are coded, you can create a CSL that is formatted for DASD or for a logical saved
segment. The two steps involved are:

1. Building control files to show what routines go in the library
2. Issuing a command, CSLGEN, that uses the control files, text files, and template files to build the

library and format it for storage.

Before building the library, note the following naming restrictions:

• Each routine within a callable services library must have a unique name. This is true whether the library
will reside in a logical saved segment or on disk space.

• Direct call routines must not have the same name as the file name specified for the routine's text file.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 245

• Direct call routines must not have the same name as the file name specified on any text record within
the control file.

• Library names are restricted to a maximum of 8 characters.

Note: Some high-level languages restrict the length allowed for external routine names. For example,
FORTRAN only allows 7 characters for external routine names. The length of a routine name for a direct
call routine should be tailored for the programming languages that may call it.

Creating CSL Control Files
You can create a CSL control file using XEDIT. You can name this control file anything you want, although
you may want to use a convention, such as making the file type CSLCNTRL.

A CSL control file consists of:

1. ROUTINE lines, which specify:

• CSL routine names
• ID of the program code associated with the routine name.
• Template file ID
• Whether the routine will use the direct or indirect CSL interface
• The path used for the direct CSL interface
• Whether the routine, when included in a segment-resident library, should be protected from removal

after RTNLOADing
• A library subgroup name which allows an application to RTNLOAD only a portion of a libraries

routines at a time.
2. INCLUDE lines, which allow you to list text files which are linked along with the routine text file to

complete the CSL routine object code.
3. ALIAS lines, which allow you to specify direct call alias names for use at RTNLOAD time. Defining an

alias name using an ALIAS record allows you to define a path for the alias name, making it possible to
RTNLOAD a direct call alias with a path different from the routine that has the alias name.

4. CSLCNTRL lines, which specify additional control file IDs, one per line.
5. TXTLIB lines, which list text libraries to be made global during the library build. TXTLIB lines can be

used anywhere in the CSLCNTRL file to reorder the library search order.
6. TEXT lines, which list additional text files to be included in the CSL TXTLIB file.
7. Comment lines, denoted by an '*' as the first nonblank character in the line.

Note: The routine and alias names, assigned to routines specifying a path, must be unique within the
CSLCNTRL file. They cannot match the file name specified on any text record or the file name specified for
the text file on the same routine record.

Creating and Using a CSL

246 z/VM: 7.4 CMS Application Development Guide for Assembler

ROUTINE Line Format

ROUTINE rtnname
rtnname rtnname TEMPLATE *

textfn

textfn TEMPLATE *

tmplfn
TEMPLATE *

tmplft
*

dirid

(
1

Options)

Options

PATH path PROtect

NODRop

SUBGroup groupname

2

FILETYPE txtft COPY
3

COPYTYPE cpyft

COPY
COPYTYPE cpyft

MAP

DISABLE A,I,E,M SAME F,D,U,S

PSW Mask Actions

MP

SAME A,I,E,M,F,D,U,S

PSW Mask Actions

CSECT csectname MEMBer tmplname

PSW Mask Actions

ENABLE

,

PSW Mask DISABLE

,

PSW Mask

SAME

,

PSW Mask

Notes:
1 You can enter options in any order between the parentheses.
2 The default is set by CSLGEN based upon the CSLGEN FILETYPE option.
3 The default is set by CSLGEN based upon the CSLGEN COPYTYPE option.

PSW Mask

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 247

5

A
4

I

E

M

F

D

U

S

Notes:

where:

rtnname
is the name assigned to the routine that is to be included in the callable services library by CSLGEN.
Each routine within a library must have a unique name.

If this routine is not directly callable then rtnname does not have to be the same as the TEXT file name
(or TXTLIB member name). For instance, if all your TEXT file names must follow a certain naming
convention, you could name the rtnnames differently so that they are easy to identify.

If this routine is to be directly callable (if it has a path specified) the name must be unique within the
CSLCNTRL file and all CSLCNTRL files appended to it. The routine name cannot match:

• Any other routine name
• Any alias record routine name
• Any file name on a text record
• The textfn described below

textfn
is the name of a TEXT file (or TXTLIB member name) to be included in the callable services library as
the routine identified by rtnname. If omitted, the default is the same as rtnname.

TEXT file names (and TXTLIB member names) are found and resolved by the CMS loader.

tmplfn
is the CMS file name of a CSL template file. If omitted, the default file name of the template file will be
the same as the text file name specified in textfn.

tmplft
is the CMS file type of a CSL template file. If omitted, the default file type of the template file will be
TEMPLATE.

dirid
identifies a directory or file mode where the template file is loaded. If omitted, the dirid of the
template file defaults to *, and the first file in the CMS search order that matches tmplfn tmplft will be
taken.

PATH path
Specifies that the routine uses the direct CSL interface. The routine can also be invoked using the
indirect CSL interface (CALL DMSCSL). The value of path can be expressed as;
p1.p2

specifying the two path tokens making up the path
*

indicating that the path tokens p1 and p2. are to be assigned by CSLGEN.

Possible values for p1 are:

• An integer between 1 and 512 when the path can be shared by more than one routine. IBM reserves
values 481 - 512 for its own use.

Creating and Using a CSL

248 z/VM: 7.4 CMS Application Development Guide for Assembler

• An integer between 513 and 1024 when the path will be unique to rtnname while rtnname is loaded.
IBM reserves values 993 - 1024 for its own use.

Any integer between 1 and 250 can be specified for p2.

When * is specified for path then p1 is set to 1 and p2 is generated based upon rtnname.

PROtect
specifies that after the initial RTNLOAD, subsequent attempts to RTNLOAD or RTNDROP this routine
will not be allowed. Protected routines are removed when the segment they reside in is purged with a
SEGMENT PURGE command. PROTECT is ignored by CSLGEN when creating a DASD CSL library.

NODrop
specifies that the routine cannot be dropped after it is loaded. However, the active version of the
routine can be replaced by using the RTNLOAD command.

SUBGroup groupname
labels the routine as part of a library subgroup. Subgroups can be loaded (using RTNLOAD) and
dropped (using RTNDROP) at one time. This allows you to subset your library into several functional
groups and RTNLOAD only those groups when they are needed.

FILETYPE txtft
specifies a new file type, txtft, to be used when linking textfn together with the text files making up
the CSL routine. When NOAUTO is specified on the CSLGEN command this option overrides the default
file type CSLGEN sets using its own FILETYPE option. It overrides the default filetype only for the
ROUTINE line upon which it appears. IF NOAUTO is not specified on the CSLGEN command then the
FILETYPE option is ignored.

COPY
saves a copy of the call routing code segment for this routine on the disk or directory specified by the
'TO dirid' option of the CSLGEN command. The code segment copy will have, by default, the file name
rtnname and file type TEXT. The file type can be changed using the COPYTYPE option. This option is
ignored if the PATH path is not specified.

COPYTYPE cpyft
specifies that the file type of the call routing code segment, produced for the routine when the COPY
option is specified, will be cpyft. This option overrides the default file type CSLGEN sets using its own
COPYTYPE option. It overrides the default filetype only for the ROUTINE line upon which it appears.
Specifying COPYTYPE cpyft implies the specification of COPY by default.

MAP
Specifies that a load map file is to be created for the routine. This option is ignored if the SEG option is
specified on the CSLGEN command.

When specified the FULLMAP option is specified on the LOAD command used to link together the CSL
routine object code.

The load map file will have the name 'rtnname LOADMAP'.

The map file is saved on the same disk or directory that is specified for the library itself.

MP
specifies that the routine is multiprocessor capable and does not require special call time
preprocessing. This option can only be specified for a directly callable routine. A path, however, is
not required. The MP option should not be specified if your CSL routine uses the CSENTRY macro.
CSLENTRY does not provide multiprocessor support.

PSW_mask_actions
is a list of actions to be performed on the Program Status Word (PSW) by the CSL interface before
entering the CSL routine. After each action are listed the PSW masks to be altered by the action. Any
mask not specified with an action receives the default action for that mask. The actions are:
ENABLE

specifies that the listed masks must be enabled prior to entry of the CSL routine. Mask A (access
register mode) cannot be specified with this action.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 249

DISABLE
specifies that the listed masks must be disabled prior to entry of the CSL routine. This is the
default for masks A, I, E, and M if the MP keyword is not specified.

SAME
specifies that the listed masks are not to be changed prior to entry of the CSL routine. This is the
default for masks F, D, U, and S. This is also the default for masks A, I, E, and M if the MP keyword
is specified.

When the CSL routine is completed, the CSL interface returns the PSW to its original state before
returning to the caller.

PSW_mask
is a system interrupt or system mode that can be specified with a PSW mask action. A mask cannot
be listed with more than one mask action. Any mask not specified with an action receives the default
action for that mask. The masks are:
A

Access register mode. The default action for this mask without the MP keyword is DISABLE. The
default with the MP keyword is SAME. This mask cannot be specified with the ENABLE action.

I
I/O interrupts. The default action for this mask without the MP keyword is DISABLE. The default
with the MP keyword is SAME.

E
External interrupts. The default action for this mask without the MP keyword is DISABLE. The
default with the MP keyword is SAME.

M
Machine check interrupts. The default action for this mask without the MP keyword is DISABLE.
The default with the MP keyword is SAME.

F
Fixed-point overflow program exception. The default action for this mask with or without the MP
keyword is SAME.

D
Decimal overflow program exception. The default action for this mask with or without the MP
keyword is SAME.

U
Exponent underflow program exception. The default action for this mask with or without the MP
keyword is SAME.

S
Significance program exception. The default action for this mask with or without the MP keyword
is SAME.

CSECT csectname
specifies that the CSECT label in the text file textfn is not textfn. The actual CSECT label is specified as
csectname. This option is intended for use where compatibility with existing routine and CSECT names
makes creating a CSL routine which adheres to the existing restriction, that text file name and CSECT
name be identical, impractical. This option should not be used unless it is absolutely necessary.

MEMBer tmplname
specifies that the template file contains a collection of templates. The member of this template library
to be used as the template for this routine is tmplname. This option allows many templates to be
stored in one file.

Creating and Using a CSL

250 z/VM: 7.4 CMS Application Development Guide for Assembler

ALIAS Line Format:
ALIAS rtnalias PATH path

COPY
1

COPYTYPE cpyft

COPY

COPYTYPE cpyft

MP

Notes:
1 The default is set by CSLGEN based upon the CSLGEN COPYTYPE option.

where:

rtnalias
is the alias name to be assigned. Many aliases may be defined for a single rtnname but each rtnalias
must be unique within the library.

The rtnalias cannot be the same as any other routine name, alias name, template file name, or TEXT
file name defined within the CSLCNTRL file.

The rtnalias must be distinct from any TEXT file name (or TXTLIB member name) in the library.
Rtnalias cannot be the same as any other rtnalias, direct call routine name, or text record file name
defined within the CSLCNTRL file or any appended CSLCNTRL file.

PATH path
specifies the path assigned for this alias name at RTNLOAD time. The direct routine RTNLOADed with
this alias will be invoked using this path and the routine's own path definition ignored. The value of
path can be expressed as:
p1.p2

specifying the two tokens making up the path or,
*

indicating that the path tokens p1 and p2 are to be assigned by CSLGEN.

Possible values for p1 are:

• An integer between 1 and 512 when the path can be shared by more than one routine. IBM reserves
values 481 - 512 for its own use.

• An integer between 513 and 1024 when the path will be unique to rtnname while rtnname is loaded.
IBM reserves values 993 - 1024 for its own use.

Any integer between 1 and 250 can be specified for p2.

When * is specified for path then p1 is set to 1 and p2 is generated using rtnalias.

COPY
save a copy of the code routing segment for this alias on the disk or directory specified by the 'TO
dirid' option of the CSLGEN command. The code segment copy will have, by default, the file name
rtnalias and file type TEXT. The file type can be changed using the COPYTYPE option.

MP
specifies that rtnalias will be used for a multiprocessor capable routine. When MP is specified, rtnalias
can only be used to alias routines specifying the MP option. When MP is not specified, rtnalias can
only be used to alias routines not specifying the MP option.

COPYTYPE cpyft
specifies that the file type of the code routing code segment, produced for the routine when the COPY
option is specified, will be cpyft. This option overrides the default filetype set by CSLGEN, based upon

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 251

the CSLGEN COPYTYPE option. It overrides the default filetype only for the ALIAS line upon which it
appears. Specifying COPYTYPE cpyft implies the specification of COPY by default.

CSLCNTRL Line Format

CSLCNTRL fn
CSLCNTRL *

ft
*

dirid

where:

fn
is the file name of another CSL control file.

ft
is the file type of another CSL control file.

CSLCNTRL
specifies that the file type of another CSL control file is the default, CSLCNTRL.

dirid
identifies a directory or file mode where this additional control file resides.

*
specifies that the first file in the CMS file search order that matches the additional control file will be
taken.

If specified, the additional control files may be used to identify additional routines to be included in the
callable services library, and may specify additional CSL control files.

TXTLIB Line Format

TXTLIB
1

libname

Notes:
1 A maximum of 63 repetitions.

where:

libname
is the file name of up to 63 text libraries. The libraries are searched in the order they are named. If no
libnames are specified, the GLOBAL TXTLIB environment is reset. For example, if you enter:

QUERY TXTLIB

The result is:

NONE

The default GLOBAL TXTLIB environment at CSL build time is

libname existing_global_environment CMSSAA

where:

• Libname is the name of the library TXTLIB (if CSLGEN determines that this library needs to be
created).

• Existing_global_environment is the list of TXTLIB names listed as the GLOBAL TXTLIB environment
when the CSLGEN command was issued.

Creating and Using a CSL

252 z/VM: 7.4 CMS Application Development Guide for Assembler

To override this default use a control file containing a TXTLIB record as its first record.

Note: The TXTLIB line may span several lines to hold all the necessary file names. A comma at the end
of a TXTLIB record will indicate that the next record is a continuation of the current TXTLIB record. Each
continuation TXTLIB record must begin with the word TXTLIB, the same as the first TXTLIB record.

TXTLIB and ROUTINE lines are processed in the same order as they are supplied in the CSLCNTRL file. A
TXTLIB line anywhere in the control file sets the search order for loading the ROUTINE lines which follow.

TEXT Line Format:
TEXT fn

1

ft

Notes:
1 The default is set by CSLGEN based upon the CSLGEN FILETYPE option when NOAUTO is specified.
The default is TEXT when NOAUTO is not specified.

where:

fn
is the file name of a TEXT file to be included in the CSL library TXTLIB.

ft
is the file type of the text file.

INCLUDE Line Format:
The INCLUDE line defines a text file that can reside on a disk or in a SFS directory and must be included to
complete a CSL routine. The CSL routine it refers to is the routine defined by the last ROUTINE statement
preceding the INCLUDE line. An INCLUDE line must be preceded by either a ROUTINE line or another
INCLUDE line. As many INCLUDE lines may follow a ROUTINE line as are needed to list all of the text files
to be included.

The line is ignored if NOAUTO is not specified on the CSLGEN command.

INCLUDE fn
1

ft

Notes:
1 The default is set by CSLGEN based upon the CSLGEN FILETYPE option.

where:

fn
is the file name of a TEXT file to be included in the CSL routine.

ft
specifies that the file type of the text file to be included. It overrides the default filetype set by
CSLGEN, based upon its own FILETYPE option. It overrides the default filetype only for the INCLUDE
line it appears on.

Comment Line Format
Comment lines may be included anywhere in the control file. They must begin with an asterisk and be
followed by at least one blank.

Building the Library
You can use the CSLGEN command to build a callable services library (CSL) from control files, text files,
and template files. For more information on this command, see the z/VM: CMS Commands and Utilities
Reference.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 253

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

The LIBMAP and SEGMAP Files
Examples of the LIBMAP and SEGMAP files are shown using the MYLIB library example from the CSL
assembler routine #2 example, found in the summary at the end of this section. The example's CSL
library, MYLIB, is built using the following CSLCNTRL file.

ROUTINE TBSUM TBSUMA TBSUM TEMPLATE A (PATH 513.1 Subgroup TBSUM
*
ALIAS TBSORT Path 513.4
*
ROUTINE TBSORT1 TBSORT1 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT2 TBSORT2 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT3 TBSORT3 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT4 TBSORT4 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT5 TBSORT5 TBSORTO TEMPLATE A (Subgroup TBSUM
*
ROUTINE RTN1 CALC CALC TEMPLATE A (Subgroup TBSUM
*

Figure 26. CSLCNTRL File Example

Entering the command

 CSLGEN DASD MYLIB FROM MYLIB CSLCNTRL (MAP

would create a LIBMAP file similar to the following. The dates and times, of course, would differ.

TBSUM .000001 SD ******** 00000000 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
TBSUMA SD 00010000 00000208 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
 .000002 SD 00010208 00000000 RMODE ANY AMODE 31
 TBSORT TEXT A1 6/15/92 14:31:50
TBSORT SD 00010208 00000040 RMODE ANY AMODE 31
 $$CSL$$ TXTLIB A1 6/15/92 14:31:50

TBSORT1 TBSORT1 SD 00010000 00000108 RMODE ANY AMODE 31
 TBSORT1 TEXT A1 6/14/92 12:39:37

TBSORT2 TBSORT2 SD 00010000 000005A8 RMODE ANY AMODE 31
 TBSORT2 TEXT A1 6/14/92 12:57:29

TBSORT3 TBSORT3 SD 00010000 00000324 RMODE ANY AMODE 31
 TBSORT3 TEXT A1 6/14/92 12:45:30

TBSORT4 TBSORT4 SD 00010000 000010AC RMODE ANY AMODE 31
 TBSORT4 TEXT A1 6/16/92 13:01:25

TBSORT5 TBSORT5 SD 00010000 000010AC RMODE ANY AMODE 31
 TBSORT5 TEXT A1 6/15/92 13:59:25

RTN1 CALC SD 00010000 00000132 RMODE ANY AMODE 31
 CALC TEXT A1 6/13/92 11:10:34

Figure 27. LIBMAP MYLIB

Routine TBSUM includes the direct call stub, TBSORT, which was created as a result of the TBSORT alias
defined in the CSLCNTRL file. This stub is held in the temporary file $$CSL$$ TXTLIB. This file contains all
of the newly created stub files and upon successful completion of the library build replaces the existing
library text file. All GLOBAL TXTLIB commands issued by CSLGEN during processing use the $$CSL$$ in
place of the library TXTLIB file to make sure that the lastest stubs are used in the library build.

The CSECT labels '.000001' and '.000002' were created by the assembler because of the placement of
the REGEQU macro. The assembler, detecting the macro, created the CSECT label just in case executable
code was generated by REGEQU.

Entering the command

 CSLGEN SEG MYLIB FROM MYLIB CSLCNTRL (MAP

Creating and Using a CSL

254 z/VM: 7.4 CMS Application Development Guide for Assembler

would create a SEGMAP file similar to the following:

$$TMP$$ SD 00013000 00000348 RMODE ANY AMODE 31
 $$TMP$$ TEXT A1 11/30/92 09:19:18
.000003 SD 00013348 00000000 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
TBSUM TBSUMA SD 00013348 00000208 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
.000004 SD 00013550 00000000 RMODE ANY AMODE 31
 TBSORT TEXT A1 6/15/92 14:31:50
TBSORT SD 00013550 00000040 RMODE ANY AMODE 31
 $$CSL$$ TXTLIB A1 6/15/92 14:31:50
TBSORT1 TBSORT1 SD 00013590 00000108 RMODE ANY AMODE 31
 TBSORT1 TEXT A1 6/14/92 12:39:37
TBSORT2 TBSORT2 SD 00013698 000005A8 RMODE ANY AMODE 31
 TBSORT2 TEXT A1 6/14/92 12:57:29
TBSORT3 TBSORT3 SD 00013C40 00000324 RMODE ANY AMODE 31
 TBSORT3 TEXT A1 6/14/92 12:45:30
TBSORT4 TBSORT4 SD 00013F64 000010AC RMODE ANY AMODE 31
 TBSORT4 TEXT A1 6/16/92 13:01:25
TBSORT5 TBSORT5 SD 00015010 000010AC RMODE ANY AMODE 31
 TBSORT5 TEXT A1 6/15/92 13:59:25
RTN1 CALC SD 000160BC 00000132 RMODE ANY AMODE 31
 CALC TEXT A1 6/13/92 11:10:34
$$CSL$$ SD 00013000 00000348 RMODE ANY AMODE 31
 $$CSL$$ TEXT A1 11/30/92 09:19:18

Figure 28. SEGMAP MYLIB

Some libraries have two or more CSL routines which use the same text file and CSECT label. For example
we can expand MYLIB as shown:

ROUTINE TBSUM TBSUMA TBSUM TEMPLATE A (PATH 513.1 Subgroup TBSUM
*
ALIAS TBSORT Path 513.4
*
ROUTINE TBSORT1 TBSORT1 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT2 TBSORT2 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT3 TBSORT3 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT4 TBSORT4 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT5 TBSORT5 TBSORTO TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT6 TBSORT1 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT7 TBSORT1 TBSORT TEMPLATE A (Subgroup TBSUM
*
ROUTINE RTN1 CALC CALC TEMPLATE A (Subgroup TBSUM
*

Figure 29. MYLIB CSLCNTRL Expanded

After entering the CSLGEN command again, the LIBMAP file would look like the following example: Note
that routines TBSORT1, TBSORT6, and TBSORT7 use the same text file, TBSORT1. To save file space, the
maps of TBSORT6 and TBSORT7 are not appended to the load map. The names of CSL routines are listed

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 255

in a vertical column preceding the load map. CSL routines which have the same load map are displayed in
this manner.

TBSUM .000016 SD ******** 00000000 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
TBSUMA SD 00010000 00000208 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
.000017 SD 00010208 00000000 RMODE ANY AMODE 31
 TBSORT TEXT A1 6/15/92 14:31:50
TBSORT SD 00010208 00000040 RMODE ANY AMODE 31
 $$CSL$$ TXTLIB A1 6/15/92 14:31:50

TBSORT7
TBSORT6
TBSORT1 TBSORT1 SD 00010000 00000108 RMODE ANY AMODE 31
 TBSORT1 TEXT A1 6/14/92 12:39:37

TBSORT2 TBSORT2 SD 00010000 000005A8 RMODE ANY AMODE 31
 TBSORT2 TEXT A1 6/14/92 12:57:29

TBSORT3 TBSORT3 SD 00010000 00000324 RMODE ANY AMODE 31
 TBSORT3 TEXT A1 6/14/92 12:45:30

TBSORT4 TBSORT4 SD 00010000 000010AC RMODE ANY AMODE 31
 TBSORT4 TEXT A1 6/16/92 13:01:25

TBSORT5 TBSORT5 SD 00010000 000010AC RMODE ANY AMODE 31
 TBSORT5 TEXT A1 6/15/92 13:59:25

RTN1 CALC SD 00010000 00000132 RMODE ANY AMODE 31
 CALC TEXT A1 6/13/92 11:10:34

Figure 30. LIBMAP MYLIB

In the SEGMAP file, multiple CSL routines using the same CSECT label are listed vertically before the
CSECT label in the SEGMAP file.

$$TMP$$ SD 00013000 00000348 RMODE ANY AMODE 31
 $$TMP$$ TEXT A1 11/30/92 09:19:18
.000018 SD 00013348 00000000 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
TBSUM TBSUMA SD 00013348 00000208 RMODE ANY AMODE 31
 TBSUMA TEXT A1 6/14/92 11:41:08
.000019 SD 00013550 00000000 RMODE ANY AMODE 31
 TBSORT TEXT A1 6/15/92 14:31:50
TBSORT SD 00013550 00000040 RMODE ANY AMODE 31
 $$CSL$$ TXTLIB A1 6/15/92 14:31:50
TBSORT7
TBSORT6
TBSORT1 TBSORT1 SD 00013590 00000108 RMODE ANY AMODE 31
 TBSORT1 TEXT A1 6/14/92 12:39:37
TBSORT2 TBSORT2 SD 00013698 000005A8 RMODE ANY AMODE 31
 TBSORT2 TEXT A1 6/14/92 12:57:29
TBSORT3 TBSORT3 SD 00013C40 00000324 RMODE ANY AMODE 31
 TBSORT3 TEXT A1 6/14/92 12:45:30
TBSORT4 TBSORT4 SD 00013F64 000010AC RMODE ANY AMODE 31
 TBSORT4 TEXT A1 6/16/92 13:01:25
TBSORT5 TBSORT5 SD 00015010 000010AC RMODE ANY AMODE 31
 TBSORT5 TEXT A1 6/15/92 13:59:25
RTN1 CALC SD 000160BC 00000132 RMODE ANY AMODE 31
 CALC TEXT A1 6/13/92 11:10:34
$$CSL$$ SD 00013000 00000348 RMODE ANY AMODE 31
 $$CSL$$ TEXT A1 11/30/92 09:19:18

Figure 31. SEGMAP MYLIB

Building a Library Using Alternate TEXT File Types
The way to effectively build CSL libraries using alternate file types is to understand how the NOAUTO
option of the CSLGEN command alters CSLGEN processing. CSL routines are packaged into a DASD CSL
library as individual modules. The segment version of a CSL library is one large MODULE file. To build
these modules, CSLGEN uses the CMS loader to link together the various text files and TXTLIB members

Creating and Using a CSL

256 z/VM: 7.4 CMS Application Development Guide for Assembler

needed to complete the CSL routine object code. The NOAUTO option causes CSLGEN to take greater
control of the LOAD processing.

When NOAUTO is not specified, CSLGEN allows the CMS loader to resolve any unresolved external
references it may have by first searching for a suitable text file (file type TEXT) in accessed DASD and
SFS directories. If a suitable text file is not found, then the loader searches any TXTLIB files currently
globaled. CSLGEN ignores any INCLUDE statements following a ROUTINE statement since it has no
control over what is included by the loader.

When NOAUTO is specified, CSLGEN uses the INCLUDE statements following a ROUTINE statement to
issue a sequence of LOAD and INCLUDE commands to tell the loader to use text files with a defined file
type. Automatic searching to resolve external references is postponed until all of the text files listed with
INCLUDE statements have been included using INCLUDE commands. Automatic searching of DASD and
SFS directory text files is never performed to resolve external references.

The following example uses routines from the VMLIB library and requires that the CMS object disk be
accessed. By default that is MAINTvrm 3B2. Assume that the object disk has been accessed as file mode
H. We'll create a CSLCNTRL file called EXAMPLE CSLCNTRL to hold these two routines.

 TXTLIB VMMTLIB
*
 ROUTINE DMSRENAM DMSJRN DMSJRN TEMPLATE *
*
 ROUTINE CMCFMDZ DMSACD DMSACD (MP PATH 1024.023

Figure 32. CSLCNTRL Example

Entering the command

 CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP

results in the following LIBMAP file.

DMSRENAM DMSJRN SD 01100000 000014E8 RMODE ANY AMODE 31
 DMSJRN TEXT H 1 2/03/93 09:27:57

CMCFMDZ DMSACD SD 01100000 00000738 RMODE ANY AMODE 31
 DMSACD TEXT H 1 2/03/93 09:28:58
DMSACL SD 01100738 00000190 RMODE ANY AMODE 31
 DMSACL TEXT H 1 2/03/93 09:30:31
DMSAID SD 011008C8 000003B0 RMODE ANY AMODE 31
 DMSAID TEXT H 1 2/03/93 09:30:31
DMSAWD SD 01100C78 000001E0 RMODE ANY AMODE 31
 DMSAWD TEXT H 1 2/03/93 09:30:33
VMMUXAC SD 01100E58 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S 2 VMMUXAC 2/03/93 04:29:12
VMMUXRE SD 01100E98 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S 2 VMMUXRE 2/03/93 04:29:12
VMQUESE SD 01100ED8 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXT LIB S 2 VMQUESE 2/03/93 04:29:12

Figure 33. LIBMAP Omitting NOAUTO

Entering the command

CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP NOAUTO REPLACE

results in the following error. No searching of DASD or SFS directories is performed except for those text
files listed in the control file.

 DMSLIO201W The following names are undefined:
 DMSACL DMSAID DMSAWD
 DMSWCG1110E CSLGEN encountered an error executing LOAD, RC=4
 DMSWCG1109I CSLGEN terminated. No library built.

To use the NOAUTO option you must, as a minimum, list all of the text files which you expect to be found
only on DASD or SFS directories. To demonstrate this, see the following modified EXAMPLE CSLCNTRL:

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 257

 TXTLIB VMMTLIB
*
 ROUTINE DMSRENAM DMSJRN DMSJRN TEMPLATE *
*
 ROUTINE CMCFMDZ DMSACD DMSACD (MP PATH 1024.023
 INCLUDE DMSAWD
 INCLUDE DMSAID
 INCLUDE DMSACL

Figure 34. CSLCNTRL with INCLUDE Statements

Again, entering the command

 CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP NOAUTO REPLACE

results in successful completion and the LIBMAP file looks as follows:

DMSRENAM DMSJRN SD 01100000 000014E8 RMODE ANY AMODE 31
 DMSJRN TEXT H1 2/08/93 12:36:25

CMCFMDZ DMSACD SD 01100000 00000738 RMODE ANY AMODE 31
 DMSACD TEXT H1 2/08/93 12:37:40
DMSAWD SD 01100738 000001E0 RMODE ANY AMODE 31
 DMSAWD TEXT H1 2/08/93 12:57:20
DMSAID SD 01100918 000003B0 RMODE ANY AMODE 31
 DMSAID TEXT H1 2/08/93 12:57:49
DMSACL SD 01100CC8 00000190 RMODE ANY AMODE 31
 DMSACL TEXT H1 2/08/93 12:58:19
VMMUXAC SD 01100E58 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMMUXAC 2/06/93 07:55:53
VMMUXRE SD 01100E98 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMMUXRE 2/06/93 07:55:53
VMQUESE SD 01100ED8 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMQUESE 2/06/93 07:55:53

Figure 35. LIBMAP with NOAUTO and INCLUDE

Using the INCLUDE statements you not only were able to include the three text files, DMSAWD, DMSAID,
and DMSACL but you were also able to alter the order in which they were included. The sequence of
INCLUDE commands are issued by CSLGEN in the same order as the INCLUDE list in the control file. Using
the modified CSLCNTRL file for EXAMPLE, let us see what the LOAD and INCLUDE command sequence
issued by CSLGEN is.

If you enter

 CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP

the sequence of load commands are:

LOAD DMSJRN (RLDSAVE NCHIST FULLMAP
 .
 . (Additional processing is performed
 . between these LOAD commands to
 . create a module of DMSRENAM)
 .

LOAD DMSACD (RLDSAVE NCHIST FULLMAP

Figure 36. LOAD Sequence When NOAUTO is Not Used

If you enter the command

 CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP NOAUTO

the sequence of LOAD and INCLUDE commands issued by CSLGEN are:

Creating and Using a CSL

258 z/VM: 7.4 CMS Application Development Guide for Assembler

LOAD DMSJRN (RLDSAVE NCHIST NOAUTO LIBE UNDEF
 FULLMAP FILETYPE TEXT
 .
 . (Additional processing is preformed
 . between these LOAD commands to
 . create a module of DMSRENAM)
 .
.
LOAD DMSACD (RLDSAVE NCHIST NOAUTO NOLIBE NOUNDEF
 FULLMAP FILETYPE TEXT
INCLUDE DMSAWD (NOAUTO NOLIBE NOUNDEF FULLMAP FILETYPE TEXT
INCLUDE DMSAID (NOAUTO NOLIBE NOUNDEF FULLMAP FILETYPE TEXT
INCLUDE DMSACL (NOAUTO LIBE UNDEF FULLMAP FILETYPE TEXT

Figure 37. LOAD Sequence When NOAUTO is Used

You can see from the command sequence of the preceding figure, the FILETYPE option is specified
on each LOAD or INCLUDE command. The FILETYPE options on both the CSLGEN command and the
ROUTINE statement as well as the file type operand on the INCLUDE statement allow you to change what
file type is specified on the CMS LOAD and INCLUDE commands entered.

If you copy all of the text files used in EXAMPLE, giving them file types of TXT, and entering the command

CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP FILETYPE TXT REPLACE

results in the following LOAD and INCLUDE sequences. Note that the use of the FILETYPE option on
CSLGEN also implies NOAUTO.

LOAD DMSJRN (RLDSAVE NCHIST NOAUTO LIBE UNDEF FULLMAP
 FILETYPE TXT
 .
 . (Additional processing is preformed
 . between these LOAD commands to
 . create a module of DMSRENAM)
 .

LOAD DMSACD (RLDSAVE NCHIST NOAUTO NOLIBE NOUNDEF
 FULLMAP FILETYPE TXT
INCLUDE DMSAWD (NOAUTO NOLIBE NOUNDEF FULLMAP FILETYPE TXT
INCLUDE DMSAID (NOAUTO NOLIBE NOUNDEF FULLMAP FILETYPE TXT
INCLUDE DMSACL (NOAUTO LIBE UNDEF FULLMAP FILETYPE TXT

Figure 38. LOAD Sequence When FILETYPE TXT is Used

The following LIBMAP is also produced:

DMSRENAM DMSJRN SD 01100000 000014E8 RMODE ANY AMODE 31
 DMSJRN TXT A1 2/08/93 12:36:25

CMCFMDZ DMSACD SD 01100000 00000738 RMODE ANY AMODE 31
 DMSACD TXT A1 2/08/93 12:37:40
DMSAWD SD 01100738 000001E0 RMODE ANY AMODE 31
 DMSAWD TXT A1 2/08/93 12:57:20
DMSAID SD 01100918 000003B0 RMODE ANY AMODE 31
 DMSAID TXT A1 2/08/93 12:57:49
DMSACL SD 01100CC8 00000190 RMODE ANY AMODE 31
 DMSACL TXT 1 2/08/93 12:58:19
VMMUXAC SD 01100E58 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMMUXAC 2/06/93 07:55:53
VMMUXRE SD 01100E98 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMMUXRE 2/06/93 07:55:53
VMQUESE SD 01100ED8 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMQUESE 2/06/93 07:55:53

Figure 39. LIBMAP with FILETYPE TXT

If you modify EXAMPLE CSLCNTRL with the use of file types you alter the file type used for those selected
text files.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 259

 TXTLIB VMMTLIB
*
 ROUTINE DMSRENAM DMSJRN DMSJRN TEMPLATE *
*
 ROUTINE CMCFMDZ DMSACD DMSACD (MP PATH 1024.023
 FILETYPE TEXT
 INCLUDE DMSAWD
 INCLUDE DMSAID TEXT
 INCLUDE DMSACL

Figure 40. CSLCNTRL Example with File Types Specified

You once again enter the command

 CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP FILETYPE TXT REPLACE

using the modified EXAMPLE control file. The use of file types in the specified ROUTINE and INCLUDE
statements results in the following LOAD and INCLUDE sequences. Note that the use of the file types in
the CSLCNTRL file changes the LOAD and INCLUDE FILETYPE option for the text file specified on the line
containing the file type. No other LOAD or INCLUDE statements are affected.

LOAD DMSJRN (RLDSAVE NCHIST NOAUTO LIBE UNDEF FULLMAP
 FILETYPE TXT
 .
 . (Additional processing is preformed
 . between these LOAD commands to
 . create a module of DMSRENAM)
 .
 .
LOAD DMSACD (RLDSAVE NCHIST NOAUTO NOLIBE NOUNDEF FULLMAP
 FILETYPE TEXT
INCLUDE DMSAWD (NOAUTO NOLIBE NOUNDEF FULLMAP FILETYPE TXT
INCLUDE DMSAID (NOAUTO NOLIBE NOUNDEF FULLMAP FILETYPE TEXT
INCLUDE DMSACL (NOAUTO LIBE UNDEF FULLMAP FILETYPE TXT

Figure 41. LOAD Sequence File Types in the Control File Are Used

The following LIBMAP is also produced.

DMSRENAM DMSJRN SD 01100000 000014E8 RMODE ANY AMODE 31
 DMSJRN TXT A1 2/08/93 12:36:25

CMCFMDZ DMSACD SD 01100000 00000738 RMODE ANY AMODE 31
 DMSACD TEXT H1 2/08/93 12:37:40
DMSAWD SD 01100738 000001E0 RMODE ANY AMODE 31
 DMSAWD TXT A1 2/08/93 12:57:20
DMSAID SD 01100918 000003B0 RMODE ANY AMODE 31
 DMSAID TEXT H1 2/08/93 12:57:49
DMSACL SD 01100CC8 00000190 RMODE ANY AMODE 31
 DMSACL TXT A1 2/08/93 12:58:19
VMMUXAC SD 01100E58 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMMUXAC 2/06/93 07:55:53
VMMUXRE SD 01100E98 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMMUXRE 2/06/93 07:55:53
VMQUESE SD 01100ED8 00000040 RMODE ANY AMODE ANY
 VMMTLIB TXTLIB S2 VMQUESE 2/06/93 07:55:53

Figure 42. LIBMAP with FILETYPE TXT

Using INCLUDE Statements to Substitute TXTLIB Members
In the previous section it was shown that to build a library using the NOAUTO option each ROUTINE
statement must be followed, at a minimum, by INCLUDE statements listing all of the additional linking
text files that reside on DASD or SFS directories. TXTLIB members do not require listing.

However if it is necessary to allow substitution, at build time, of TXTLIB members, an INCLUDE statement
is necessary for each TXTLIB member to be substituted. This is different from the way CSLGEN handles
substitutions when NOAUTO is not specified.

Creating and Using a CSL

260 z/VM: 7.4 CMS Application Development Guide for Assembler

To demonstrate, use the following version of EXAMPLE CSLCNTRL. Also, assume that text files VMMUXAC
TEXT, VMMUXRE TEXT, and VMQUESE TEXT are on file mode 'A' so that text files can be substituted in
place of the TXTLIB members.

TXTLIB VMMTLIB
*
ROUTINE DMSRENAM DMSJRN DMSJRN TEMPLATE *
*
ROUTINE CMCFMDZ DMSACD DMSACD (MP PATH 1024.023

Figure 43. CSLCNTRL

Entering the command

CSLGEN DASD EXAMPLE FROM EXAMPLE (MAP REPLACE

results with the following LIBMAP file. The LIBMAP file shows the substitution of the text files for the
TXTLIB members.

DMSRENAM DMSJRN SD 01100000 000014E8 RMODE ANY AMODE 31
 DMSJRN TEXT H1 2/03/93 09:27:57

CMCFMDZ DMSACD SD 01100000 00000738 RMODE ANY AMODE 31
 DMSACD TEXT H1 2/03/93 09:28:58
DMSACL SD 01100738 00000190 RMODE ANY AMODE 31
 DMSACL TEXT H1 2/03/93 09:30:31
DMSAID SD 011008C8 000003B0 RMODE ANY AMODE 31
 DMSAID TEXT H1 2/03/93 09:30:31
DMSAWD SD 01100C78 000001E0 RMODE ANY AMODE 31
 DMSAWD TEXT H1 2/03/93 09:30:33
VMMUXAC SD 01100E58 00000040 RMODE ANY AMODE ANY
 VMMUXAC TEXT A1 2/03/93 04:29:12
VMMUXRE SD 01100E98 00000040 RMODE ANY AMODE ANY
 VMMUXRE TEXT A1 2/03/93 04:29:12
VMQUESE SD 01100ED8 00000040 RMODE ANY AMODE ANY
 VMQUESE TEXT A1 2/03/93 04:29:12

Figure 44. LIBMAP with NOAUTO

The figure below shows the control file that would be required to obtain the same results using the
NOAUTO option.

TXTLIB VMMTLIB
*
 ROUTINE DMSRENAM DMSJRN DMSJRN TEMPLATE *
*
 ROUTINE CMCFMDZ DMSACD DMSACD (MP PATH 1024.023
 INCLUDE DMSACL
 INCLUDE DMSAID
 INCLUDE DMSAWD
 INCLUDE VMMUXAC
 INCLUDE VMMUXRE
 INCLUDE VMQUESE

Figure 45. CSLCNTRL with INCLUDE Statements

Determining when to use INCLUDE statements is important since each additional INCLUDE statement
requires additional CSLGEN processing as well as the execution of the INCLUDE command. For large
libraries with many text files (for example, VMLIB) the use of INCLUDE statements to list all text files for
all library routines may cause a serious degradation in CSLGEN performance.

Protecting Routines
The protected routine concept provides the ability to prevent front-ending critical CSL routines.

The protection of a routine is determined at CSLGEN time. When you perform a CSLGEN command to
create a segment resident library, a routine is marked protected if you specify PROTECT on the ROUTINE

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 261

records for the CSLCNTRL file. The protected routine, once loaded will remain unchangeable through
RTNLOAD and RTNDROP until the segment is purged.

A routine can be protected from removal but still be replaced as the active version by specifying NODROP
on the ROUTINE record. A drop-protected routine may be front-ended, whereas a protected routine
cannot. This lock can be applied to routines that reside in DASD-resident or segment-resident libraries.
This lock is most useful when protecting critical front-end routines for OPENVM calls, because some
routines use no return value or return code parameters. If these routines are dropped, subsequent calls to
them will result in ABENDs.

Path Description and Choosing a Path
A path is composed of a pair of positive integers. It directs the call routing code segment in it's traversal of
internal CSL tables to find the proper CSL routine. The syntax of the path is denoted as (p1.p2).

The p1 integer is broken into two groups:

1. 1 - 512 — Paths starting with one of these numbers are termed shared paths. Each path references
a list of routines concurrently sharing that path. These paths provide better performance than the
DMSCSL interface because the list of routines examined is a smaller list than that used by DMSCSL.

The primary advantage of these paths is that a unique path need not be maintained for each routine.
This reduces the need for path assignment coordination to insure that CSL routines do not use the
same unique path at the same time.

IBM reserves values 481 - 512 for its own use.
2. 513 - 1024 — Paths starting with one of these numbers are referred to as unique paths. The path

directly addresses a single routine entry point. The path is locked to the run name specified at
RTNLOAD time. You cannot PUSH a new routine using a unique path on top of the currently active
routine, using the same path, if the run name you specify differs from the run name of the currently
active routine. The user must first RTNDROP all routine versions using the original path and run name
before the new run name may be loaded. These paths provide the best CALL time performance.

IBM reserves values 993 - 1024 for its own use. CMS reserves values 1022, 1023, and 1024 for use by
routines in its VMLIB and VMMTLIB CSL libraries.

Close attention to unique path assignments is critical. An example of a situation which can produce
undesirable effects when unique paths are mismanaged follows:

A CSL routine named 'A', which uses a unique path is loaded. Later a program calls a routine, 'B', which
uses the same path as 'A' while the path is still active for 'A'. The call routing code segment for 'B' will
traverse the same path defined for 'A' resulting in routine 'A' being executed.

There are several ways to arrive at this situation. The result, however, will be the same. The direct call of
'B' will in reality pass control to routine 'A'. Any routine name which uses the same path as 'A' in it's call
routing code segment could be considered an alias of 'A' when using direct calls.

Library Subgroups
The library subgroup is an extension of the existing GROUP option used in RTNLOAD and RTNDROP. A
large library can be subdivided into functionally related subsets using the library subgroup option. Such
groupings can save storage and improve call time performance.

Using Template Libraries in Place of Individual Template Files
To avoid the need to keep many individual template files, you may create a template library that contains
one or more template members. If the MEMBER option is specified on the ROUTINE line in the CSL control
file, CSLGEN accesses the specified member of the template library when building the routine.

Within the template library, template members are separated and identified by an identification line. This
line is a noncomment line having the keyword TEMPLATE as the first nonblank string on the line. Following
the TEMPLATE keyword is a label that identifies the template.

Creating and Using a CSL

262 z/VM: 7.4 CMS Application Development Guide for Assembler

For example, consider the file TEST TEMPLATE, which contains the templates shown in Figure 46 on page
263.

**
TEMPLATE ALPHA
*
* This is template alpha. The individual data type
* definitions have been offset to improve readability.
*
 OPENVM 8 7 7 parameters, all required
 SBIN 4 INPUT File_descriptor
 PTR 4 INPUT Buffer address pointer
 CHAR * INOUT Contents of Buffer
 SBIN 4 INPUT Buffer_ALET
 SBIN 4 INPUT Read_count/Write_count
 RTNV 4 OUTPUT Return_Value
 RTNC 4 OUTPUT Return_Code
 RTNR 4 OUTPUT Reason_Code
*
**
*
TEMPLATE BETA
*
*
 OPENVM 2 2 2 parameter template 2 req parameters
 UBIN 4 INPUT Handle to String (that had left side
 appended)
 UBIN 4 INPUT Handle to String (that had right side
 appened)
*
*
**
*
TEMPLATE beta
*
* Since the template search performed by CSLGEN is case
* sensitive the label 'beta' identifies a different
* member than 'BETA'.
*
 OPENVM 3 3 3 parameter template 3 req parameters
 RTNC 4 OUTPUT Return code
 UBIN 4 INPUT Handle to String
 (that had left side appended)
 UBIN 4 INPUT Handle to String (that had right
 side appened)
*

Figure 46. Example of Template Library (TEST TEMPLATE)

If we want to use the beta template to define the parameter list for a routine called BETA5, we could do
so with the following ROUTINE line.

ROUTINE BETA5 BETA5 TEST TEMPLATE A (MEM beta

CSLGEN would retrieve the beta template from TEST TEMPLATE and use it to build BETA5.

Invoking CSL Routines
Application programs must invoke CSL routines using the proper assembler interface for their respective
languages. Programs invoke CSL routines with a call to DMSCSL. If an application program written in
assembler invokes a CSL routine multiple times, a fast path (CSLFPI macro) is available.

The following example shows an assembler program calling the CSL routine, DMSOPEN.

 .
 .
 .
 CALL DMSCSL,(ROUTINE,RETURN,REASON,PARM1,PARM2,
 PARM3,PARM4,PARM5),VL
 .
 .
 .
ROUTINE DC C'DMSOPEN '
RETURN DC F'0'

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 263

REASON DC F'0'
PARM1 DC C'TESTMC FILE .'
PARM2 DC A(L'PARM1)
PARM3 DC C'READ CACHE'
PARM4 DC A(L'PARM3)
PARM5 DC C' '

For more information about invoking CSL routines, either your own or those supplied in VMLIB, see the
z/VM: CMS Application Development Guide. Included in the description is how to invoke CSL routines
frequently from Assembler programs.

CSL Summary and Example
These steps summarize what you must do to create routines and build callable services libraries from
those routines:

1. Code the CSL routine in assembler language and then assemble it to make a TEXT deck.
2. Create a template file for the routine, using XEDIT, that describes the routine's parameters, or add the

template to a template library.

Note: You must repeat steps “1” on page 264 and “2” on page 264 for every routine that you want to
reside in a callable services library (CSL).

3. Create a control file, using XEDIT, that describes the routines that are to be placed in the CSL.
4. Using the CSLGEN command and the control file created in step “3” on page 264, build a callable

services library that will reside on DASD or in a saved segment.
5. Using the GLOBAL CSLLIB command and RTNLOAD commands, make the library routines accessible to

calls.

The following example illustrates these steps: it shows two example CSL routines coded in assembler
and template files for each, the control file, the commands necessary to build a library and then make it
accessible, and finally invocations from example programs.

CALC: Example CSL Assembler Routine #1
The first example CSL routine is called CALC. It is not a directly callable routine.

CALC ASSEMBLE
**
* *
* Routine name: *
* CALC *
* *
* Function: *
* Adds the first two numbers passed to it. If *
* a third number is passed, divides the result *
* by it. If less than two numbers are passed, *
* DMSCSL will return a return code of -11. If *
* more than three are passed, DMSCSL will *
* return a return code of -10. *
* *
* Parameter list: *
* Return code Fullword *
* Result field Fullword *
* 1st operand Fullword *
* 2nd operand Fullword *
* 3rd operand (optional) Fullword *
* *

**
 SPACE 1
**
* Register Equates
**
 REGEQU
 EJECT
**
* Module Entry Logic

Creating and Using a CSL

264 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

**
 SPACE 1
CALC CSLENTRY (RETURN,RESULT,OP1,OP2,DIVISOR)
 LR R2,R1 Save address of PLIST
 LR R3,R0 Save number of operands
 SPACE 1

**
* Main Program Function Logic
**
 SPACE
FUNCTION DS 0H
 CSLGETP PLIST=(R2), Get 1st operand address X
 PARM=OP1, X
 ADDRESS=(R5)
 CSLGETP PLIST=(R2), Get 2nd operand address X
 PARM=OP2, X
 ADDRESS=(R6)
 SPACE 1

 L R5,0(,R5) Get 1st operand
 A R5,0(,R6) Add 2nd operand
 SPACE 1
 CH R3,=H'4' Optional operand present?
 BNH SETRET No..
 CSLGETP PLIST=(R2), Get divisor address X
 PARM=DIVISOR, X
 ADDRESS=(R6)
 L R6,0(,R6) Get divisor
 SR R4,R4 Divide result by
 DR R4,R6 divisor
 SPACE 1
SETRET DS 0H
 CSLGETP PLIST=(R2), Get result address X
 PARM=RESULT, X
 ADDRESS=(R6)
 ST R5,0(,R6) Return result to caller
 SPACE 2

**
* Return to caller
**
 SPACE 1
 SR R15,R15 RC = 0
 CSLEXIT RETURN=(R15) Return to caller
 EJECT
**
* Constants and Literals
**
 SPACE 1
 LTORG *
 END CALC

Template File for CALC Routine Parameters
The template file describing CALC's parameters is called CALC TEMPLATE, and it looks like this:

5 4
SBIN 4 OUTPUT Return code
SBIN 4 OUTPUT Result
SBIN 4 INPUT Operand 1
SBIN 4 INPUT Operand 2
SBIN 4 INPUT Divisor (optional)

Note the following about the template file:

1. The first line says that CALC has 5 possible parameters, but only four are required.
2. Every parameter is a signed binary integer and is four bytes long.
3. The return code and result fields are outputs, operand 1, operand 2, and the divisor are inputs.
4. Comments are noted in the fourth column.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 265

TBSUM: Example CSL Assembler Routine #2
The second example CSL routine is called TBSUM. It computes the sum of 2 or more columns in a table
and stores the sum for each row in a separate column. It then calls another CSL routine called TBSORT so
that the rows can be sorted using a character string column in the same table

TBSUM will be a direct call routine so the CSECT name of the ASSEMBLE routine cannot be the same as
the CSL routine name. The CSECT name of TBSUMA has been chosen here.

TBSUMA ASSEMBLE

* Routine name :
* TBSUMA
*
* FUNCTION:
* Computes the sum of the column entries for each
* row of an input table. The sum of the column
* elements for each row is stored in a corresponding
* summation column element.
*
* TBSUMA returns;
* -10 when too many parameters are passed
* -11 when too few parameters are passed
* 8 when the number of table rows supplied
* is zero, negative or more than 1000
* Parameters ;
* RETURN - return code
* ROWS - number of rows in table
* INDX - column of row indices. Each element
* has the order of the row in a sorted list
* ID - 8 character row identification string
* SUM - holds the sum of each row's numeric
* columns
* COL1-COL6 - numeric columns which are to be
* summed
*

* Register Equates

 REGEQU
 EJECT

* Module entry logic

TBSUMA AMODE 31
TBSUMA RMODE ANY
TBSUMA CSLENTRY DIRECT(7,4),(RETURN,ROWS,INDX,ID,SUM, X
 COL1,COL2,COL3,COL4,COL5,COL6)
 LR R12,R15 Save base address and
 USING TBSUMA,R12 set up a new base register
 DROP R15
*
 LR R7,R1 Save plist address
 LR R3,R0 Save number of
 parameters
*
 LA R0,WORKLNTH length of workarea
 CMSSTOR OBTAIN,BYTES=(0) obtain storage
 LR R15,R13 establish
 addressability
 LR R13,R1 to work area
 USING WORKAREA,R13
*
 ST R15,SAVEAREA+4 setup and chain
 saveareas
 ST R13,8(,R15)
*

* Main program function

 CSLGETP PLIST=(R7),PARM=ROWS, X
 ADDRESS=(R4)
 L R4,0(R4) get number of rows in table
 C R4,=F'1000' if number of rows > 1000
 BH ERROR

Creating and Using a CSL

266 z/VM: 7.4 CMS Application Development Guide for Assembler

 C R4,=F'0' or number of rows < 1
 BNH ERROR then return with error code 8
*
 LR R6,R4 convert number of rows to the
 BCTR R6,R0 displacement of the last row
 SLL R6,R2 element
*
 S R3,=F'5' compute the number of columns
* passed
*
* Compute sums for each row of table and store sum in SUM
* column
*

LOOPSTRT DS 0H
 SR R8,R8 Zero summation register
*
 CSLGETP PLIST=(R7),PARM=COL1, get address of COL1 X
 ADDRESS=(R9)
 A R8,0(R6,R9) add COL1 to summation
*
 CSLGETP PLIST=(R7),PARM=COL2, get address of COL2 X
 ADDRESS=(R9)
 A R8,0(R6,R9) add COL2 to summation
*
* The remaining columns are optional and therefore their
* existence is verified before the row element of each
* is added in.
*
 C R3,=F'3' was COL3 supplied
 BL LOOPEND if not then summation is
* complete for this row
 CSLGETP PLIST=(R7),PARM=COL3, get address of COL3 X
 ADDRESS=(9)
 A R8,0(R6,R9) add COL3 to summation
*
 C R3,=F'4' was COL4 supplied ?
 BL LOOPEND if not then summation is

* complete for this row
 CSLGETP PLIST=(R7),PARM=COL4, get address of COL4 X
 ADDRESS=(R9)
 A R8,0(R6,R9) add COL4 to summation
*
 C R3,=F'5' was COL5 supplied ?
 BL LOOPEND if not then summation is
* complete for this row
 CSLGETP PLIST=(R7),PARM=COL5, get address of COL5 X
 ADDRESS=(R9)
 A R8,0(R6,R9) add COL5 to summation
*
 C R3,=F'6' was COL6 supplied ?
 BL LOOPEND if not then summation is
* complete for this row
 CSLGETP PLIST=(R7),PARM=COL6, get address of COL6 X
 ADDRESS=(R9)
 A R8,0(R6,R9) add COL6 to summation
*

LOOPEND DS 0H
*
 CSLGETP PLIST=(R7),PARM=SUM, get address of SUM X
 ADDRESS=(R9)
 ST R8,0(R6,R9) store sum in summation entry
* for row
*
 S R6,=F'4' increment displacement to
* next row
 LTR R6,R6 processed all rows?
 BNM LOOPSTRT if not the continue with next
 row
*
* Setup parameter list for call to TBSORT
*
 CSLGETP PLIST=(R7),PARM=RETURN,ADDRESS=(R3)
 CSLGETP PLIST=(R7),PARM=ROWS,ADDRESS=(R4)
 CSLGETP PLIST=(R7),PARM=INDX,ADDRESS=(R5)
 CSLGETP PLIST=(R7),PARM=ID,ADDRESS=(R6)
*
 CALL TBSORT,((R3),(R4),(R5),(R6)),VL,MF=(E,TBSORTPL)
 LR R6,R15 save return code
 B RETURN

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 267

*
ERROR DS 0H
 L R6,=F'8'

**
* Module exit logic
**
RETURN LR 5,13
 L 13,4(13)
 LA R0,WORKLNTH length of workarea
 CMSSTOR RELEASE,BYTES=(0),ADDR=(5)
 CSLEXIT RETURN=(R6) Return to caller
*
 LTORG
**
* WORKING STORAGE
**
 SPACE
WORKAREA DSECT
SAVEAREA DS 18F
TBSORTPL CALL ,(RET,ROW,INDX,STRING),MF=L
RET DS A
ROW DS A
STRING DS A
INDX DS A
WORKLNTH EQU *-WORKAREA
 SPACE
 END TBSUMA

The sorting routine, TBSORT in this example, is a generic name for a family of CSL routines. Each routine
uses the same parameter list, but each is different in the sorting method it uses and the result it
produces. All of the routines leave the result of their sort in the index column of the table. The entry in
the index column relates to the sorted order of the rows. For example, the following list of numbers would
have the corresponding index column if it was run through a routine which sorted it in ascending order:

 List Index Column
 12 3
 7 1
 9 2
 14 4
 18 5

TBSORT1 is an example of one of the TBSUM routine family.

TBSORT1 ASSEMBLE

* Routine name :
* TBSORT1
*
* FUNCTION:
* Sorts a table by the row number.
*
* TBSORT1 returns;
* -10 when too many parameters are passed
* -11 when too few parameters are passed
* 16 when the number of table rows supplied is
* zero, negative or more than 1000
* Parameters ;
* RETURN - return code
* ROWS - number of rows in table
* INDX - column of row indices. Each element
* has the order of the row in a
* sorted list
* STR - 8 character string (not used)
*
**
* Register Equates
**
 REGEQU
 EJECT
**
* Module entry logic
**
TBSORT1 CSLENTRY DIRECT(4,0),(RETURN,ROWS,INDX,STR)
 LR R12,R15 Save base address and

Creating and Using a CSL

268 z/VM: 7.4 CMS Application Development Guide for Assembler

 USING TBSORT1,R12 set up a new base
 register
*
 LR R7,R1 Save plist address
*

**
* Main program function

 CSLGETP PLIST=(R7),PARM=ROWS, get address of ROWS X
 ADDRESS=(R4)
 L R4,0(R4) get number of rows
 in table
 C R4,=F'10000' if number of rows >
 10000
 BH ERROR
 C R4,=F'0' or number of rows
 < 1
 BNH ERROR then return with error
 code 16
*
*
CSLGETP PLIST=(R7),PARM=INDX, get index row address X
 ADDRESS=(R3)
*
 LA R5,1 initialize index
 (row number)
LOOP ST R5,0(R3) store index in index
 column
 LA R5,1(R5) increment index value
 LA R3,4(R3) increment to next row
 BCT R4,LOOP test for end of column
 SR R15,R15 set return code of 0
 B RETURN return to caller
*
ERROR DS 0H
 L R15,=F'16' set return code for
* invalid table size

* Module exit logic

RETURN CSLEXIT RETURN(R15) Return to caller
*
 LTORG
 END TBSORT1

Template Files for TBSUM and TBSORT Routine Parameters
The template file describing TBSUM's parameters is called TBSUM TEMPLATE, and it looks like this:

DIRECT 11 7
SBIN 4 OUTPUT Return code
TABLE 1000 INOUT Maximum number of rows is 1000
 LEN 4 INPUT Current number of rows in table
 C.UBIN 4 OUTPUT Table index column for sorting
 C.CHAR 8 INPUT Character Identification string
 C.SBIN 4 OUTPUT Sum of numeric column entries
 C.SBIN 4 INPUT numeric column 1
 C.SBIN 4 INPUT numeric column 2
 C.SBIN 4 INPUT numeric column 3 (optional)
 C.SBIN 4 INPUT numeric column 4 (optional)
 C.SBIN 4 INPUT numeric column 5 (optional)
 C.SBIN 4 INPUT numeric column 6 (optional)

Note the following about the template file:

1. The first line says that TBSUM has 11 possible parameters, but only 7 are required.
2. The TABLE entry is not a parameter but is used to denote the start of the table structure.
3. The LEN entry following the TABLE entry specifies the number of rows actually existing in the table at

the time of the call.
4. Some of the columns in the table are output directed while others are input directed.
5. Comments are noted in the fourth column.

The template file describing TBSORT's parameters is called TBSORT TEMPLATE, and it looks like this:

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 269

DIRECT 4 4
SBIN 4 OUTPUT Return code
TABLE 1000 INOUT Maximum number of rows is 1000
 LEN 4 INPUT Current number of rows in table
 C.UBIN 4 OUTPUT Table index column for sorting
 C.CHAR 8 INPUT Character Identification string

Note the following about the template file:

1. The first line says that TBSORT expects all 4 parameters.
2. The DIRECT keyword on the first line signifies that the CSL routine using this template file is directly

callable.

Control File for Building the Library
The control file showing the routines to go in the library is called MYLIB CSLCNTRL. When working with
directly callable routines such as TBSUM and TBSORT the control file can be written in a number of
different ways. This is one example.

*
ROUTINE TBSUM TBSUMA TBSUM TEMPLATE A
 (Path 513.1 Subgroup TBSUM
*
ALIAS TBSORT Path 513.4
*
ROUTINE TBSORT1 TBSORT1 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT2 TBSORT2 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT3 TBSORT3 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT4 TBSORT4 TBSORT TEMPLATE A (Subgroup TBSUM
ROUTINE TBSORT5 TBSORT5 TBSORT TEMPLATE A (Subgroup TBSUM
*
ROUTINE RTN1 CALC CALC TEMPLATE A (Subgroup TBSUM
*

The CSLGEN control file is MYLIB CSLCNTRL. The name TBSORT has no text deck associated with it, it is
merely a direct call alias name. One of the five sort routines (TBSORT1 thru TBSORT5) will be assigned to
that alias name at RTNLOAD time. Assume that text files TBSORT2 through TBSORT5 exist and represent
other directly callable CSL routines in the TBSORT family.

Note the following about the control file:

1. TBSORT has a path assigned. It must have a path assigned because TBSUM makes a direct call to
TBSORT.

2. Both TBSUM and TBSORT have been assigned unique paths. They could just as easily have been
shared paths.

3. All of the routines have been assigned a subgroup name of TBSUM. This will make listing the routines
by CSLMAP easier. The routines can also be loaded using the subgroup option.

Command to Build the Library
Assemble the CSL routines to get TEXT files. Then issue the following command to build a library called
MYLIB CSLLIB, formatted for DASD, using the specified control file.

CSLGEN DASD MYLIB FROM MYLIB CSLCNTRL

Commands to Make the Library Accessible
The first command specifies that MYLIB should be searched first, followed by VMLIB:

GLOBAL CSLLIB MYLIB

RTNLOAD rtn1 tbsum
RTNLOAD tbsort1 tbsort (alias

Creating and Using a CSL

270 z/VM: 7.4 CMS Application Development Guide for Assembler

will properly load all of the CSL routines in MYLIB to execute example #2, TBSUM. The subgroup option,
specified in the CSLCNTRL file, lets you easily find your routines after they are loaded.

RTNLOAD rtn1 tbsum tbsort1 tbsort (alias

is a one-line alternative to the previous example.

CSLMAP * (group TBSUM)

will locate routines TBSUM and TBSORT after loading.

APPL1: Application Program #1
The following example VS FORTRAN program, called APPL1, invokes the CALC CSL routine several times.
The CALC routine was loaded in MYLIB with the name RTN1.

C Sample VS FORTRAN program to invoke the 'CALC' CSL routine
 PROGRAM APPL1
C Declare DMSCSL as external file
 EXTERNAL DMSCSL
 EXTERNAL CALC
C Declare variables
 CHARACTER*8 ROUTIN
 INTEGER RC
 INTEGER TOTAL
 INTEGER N1, N2, N3
C Initialize Variables
 ROUTIN = 'RTN1 '
 N1 = 1
 N2 = 2
 N3 = 3
C Call the routine with no operands and display
 return code parameter
C upon return. Use the DMSCSL interface.
 CALL DMSCSL(ROUTIN,RC)
 WRITE (6,30) 'RC = ', RC
C Call the routine directly with one operand and
 display return code and total
C parameters upon return.
 CALL CALC(RC,TOTAL,N1)
 WRITE (6,30) 'RC = ', RC
 WRITE (6,30) 'TOTAL = ', TOTAL
C Call the routine directly with three operands and
 display return code and total
C parameters upon return.
 CALL CALC(RC,TOTAL,N1,N2,N3)
 WRITE (6,30) 'RC = ', RC
 WRITE (6,30) 'TOTAL = ', TOTAL
 30 FORMAT (A9,I4)
 END

Figure 47. A FORTRAN Program Called APPL1

APPL2: Example Application Program #2
The following example VS FORTRAN program, called APPL2, invokes the TBSUM CSL routine. The TBSUM
routine was loaded in MYLIB with the name TBSUM.

Creating and Using a CSL

Chapter 17. Creating and Using a Callable Services Library 271

C Sample VS FORTRAN program to invoke the 'TBSUM' CSL routine
 PROGRAM APPL2
*
C Declare TBSUM as external file
 EXTERNAL TBSUM
*
C Declare variables
 INTEGER RC
 INTEGER LENGTH
 CHARACTER STRING(5)*8
 INTEGER ROWSUM(5)
 INTEGER INDEX(5)
 INTEGER COL1(5),COL2(5),COL3(5)
*
C Initialize variables
 DO 10 J = 1,5
 INDEX(J) = J
 ROWSUM(J) = 0
 COL1(J) = J
 COL2(J) = J
 COL3(J) = J
10 CONTINUE
 STRING(1) = 'E'
 STRING(2) = 'D'
 STRING(3) = 'C'
 STRING(4) = 'B'
 STRING(5) = 'A'
 LENGTH = 5
*
C Call the routine
 CALL TBSUM(RC,LENGTH,INDEX,STRING,ROWSUM,COL1,COL2,COL3)
 DO 20 J=1,5
 I = INDEX(J)
 PRINT *,INDEX(I), STRING(I), ROWSUM(I), COL1(I),
 COL2(I), COL3(I)
20 CONTINUE
 END

Figure 48. A FORTRAN Program Called APPL2

Here are sample runs of the two programs, APPL1 and APPL2:

Ready;
rtnload rtn1 (from mylib
Ready;
global csllib mylib
Ready;
load appl1 (start
Execution begins…
RC = -11
RC = -11
TOTAL = 0
RC = 0
TOTAL = 1
Ready;

Figure 49. Sample Run of APPL1

Ready;
* the second example…
*
global txtlib vsf2fort mylib
RTNLOAD rtn1 tbsum
RTNLOAD tbsort1 tbsort (alias
global txtlib mylib
load appl2 (start
Execution begins…
 1 E 3 1 1 1
 2 D 6 2 2 2
 3 C 9 3 3 3
 4 B 12 4 4 4
 5 A 15 5 5 5
Ready;

Figure 50. Sample Run of APPL2

Creating and Using a CSL

272 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 18. Using Auxiliary Directories

This chapter describes how to:

• Add an auxiliary directory to CMS
• Create an auxiliary directory.

Overview of an Auxiliary Directory
When a disk is accessed, each module that fits the description specified on the ACCESS command is
included in the resident directory. An auxiliary directory is an extension of the resident directory and
contains the name and location of certain CMS modules that are not included in the resident directory.
These modules, if added to the resident directory, would significantly increase its size, thus increasing
storage requirements. An auxiliary directory can reference modules that reside on the S-disk; or, if the
proper linkage is provided, reference modules that reside on any other read-only CMS disk. This chapter
discusses how to add and create auxiliary directories.

To take advantage of the saving in storage, modules that are referenced with an auxiliary directory should
never be in the resident directory. The disk where these modules reside should be accessed in a way that
excludes these modules.

Adding an Auxiliary Directory
To add an auxiliary directory to a CMS minidisk, the system programmer must generate the directory,
initialize it, and establish the proper linkage. Only when all three tasks are completed, can a module
described in an auxiliary directory be properly located.

Generating the Auxiliary Directory
An auxiliary directory TEXT deck is generated by assembling a set of DMSFST macros, one for each
module name. For more information on the DMSFST macro, see z/VM: CMS Macros and Functions
Reference.

Initializing the Auxiliary Directory
After the auxiliary directory is generated with the DMSFST macro, it must be initialized. The CMS GENDIRT
command initializes the auxiliary directory with the name and location of the modules to reside in an
auxiliary directory. By using the GENDIRT command, the file entries for a given module are loaded only
when the module is invoked.

Note: Do not load the modules into the transient area before issuing the GENDIRT command.

For more information on the GENDIRT command, see z/VM: CMS Commands and Utilities Reference.

Establishing the Proper Linkage
The CMS function, DMSLADAD, must be called by a user program or interface to initialize the directory
search order. The subroutine, DMSLADAD, can be called with an SVC 202 or CMSCALL, with register 1
pointing to the appropriate PLIST. The disk containing the modules listed in the auxiliary directory must
be accessed as the mode specified, or implied, by the GENDIRT command before the call is issued. If the
GENDIRT command has not been used, the user receives the message: File not found or Error reading file.

The coding necessary for the call is:

 CMSCALL PLIST=PLIST,MODIFY=YES

This call must be executed before the call to any module to be located with an auxiliary directory.

Auxiliary Directories

© Copyright IBM Corp. 1990, 2024 273

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

The PLIST should be:

PLIST DS 0F
 DC CL8'DMSLADAD'
 DC V(directoryname)
 DC F'0'
 DC 8X'FF'

The address pointing to directoryname has to be below 16MB, because the PLIST will be using 24-bit
addressing.

The auxiliary directory is copied into nucleus free storage. The directory information for the target mode
expressed or implied by the GENDIRT command is found and its file directory address chain is modified to
include the nucleus copy of the auxiliary directory.

The address of the nucleus copy of the auxiliary directory is saved in the third parameter of the input
PLIST and the high-order byte of the third parameter is set to X'80' to indicate that the directory search
chain was modified and that the next call to DMSLADAD is a clear request.

To reset the directory search chain, a second call is made to DMSLADAD using the modified PLIST.
DMSLADAD removes the nucleus copy of the auxiliary directory from the chain and frees it. This call to
DMSLADAD removes all auxiliary blocks from the directory chain; there is no linkage to delete selective
auxiliary directory blocks from the chain. DMSLADAD does not, however, restore the caller's PLIST to its
initial state.

Error Handling and Return Codes
An error handling routine should be coded to handle nonzero return codes from DMSLADAD in register 15.
The following errors (with condition code = 2) may occur on a call to DMSLADAD:

Description DMSLADAD Request Type Return Code

The auxiliary directory address is not specified in the
PLIST. initialize, clear 1

The target mode specified at GENDIRT time is not
accessed. initialize 1

The target mode specified at GENDIRT time accesses an
OS or DOS disk. initialize 1

The address of the nucleus copy of the auxiliary directory
is not specified in the third parameter of the PLIST. clear 2

No auxiliary directory has been initialized on the given
disk. clear 2

The target mode specified at GENDIRT time is accessed in
shared storage. initialize 3

Creating an Auxiliary Directory
In this example, consider an application called PAYROLL consisting of several modules. It is possible to
put these modules in an auxiliary directory rather than in the resident directory. It is further possible to
put the auxiliary directory on a disk other than the system disk. In this example, the auxiliary directory is
placed on the Y-disk.

First, generate the auxiliary directory TEXT deck for the payroll application using the DMSFST macro:

Auxiliary Directories

274 z/VM: 7.4 CMS Application Development Guide for Assembler

PAYDIRT START 0
 DC F'40' LENGTH OF FST ENTRY:fnref refid=forme.
 DC A(DIRTEND-DIRTBEG) SIZE OF DIRECTORY
DIRTBEG EQU *
 DMSFST PAYROLL1
 DMSFST PAYROLL2
 DMSFST PAYROLL3
 DMSFST PAYFICA
 DMSFST PAYFEDTX
 DMSFST PAYSTATE
 DMSFST PAYCITY
 DMSFST PAYCREDU
 DMSFST PAYOVERT
 DMSFST PAYSICK
 DMSFST PAYSHIFT
 DC 2A(0) POINTER TO NEXT FST BLOCK
DIRTEND EQU *
 END

In this example, the payroll control program (PAYROLL), the payroll auxiliary directory (PAYDIRT), and all
the payroll modules reside on the 194 disk.

In the payroll control module (PAYROLL), the subroutine DMSLADAD must be called to establish the
linkage to the auxiliary directory. This call must be executed before any call is made to a payroll module
that is in the PAYDIRT auxiliary directory.

 LA R1, PLIST
 SVC 202
 DC AL4(ERRTN)

PLIST DS 0F
 DC CL8'DMSLADAD'
 DC V(PAYDIRT)
 DC F'0'

Next, all payroll modules must have their absolute core-image files generated and the payroll auxiliary
directory must be initialized. In the example, the payroll control module (PAYROLL) is given a mode
number of 2 while the other payroll modules are given a mode number of 1. When the PAYROLL program
is finally executed, only the files on the 194 disk with a mode number of 2 are accessed. This means only
the PAYROLL control program (which includes the payroll auxiliary directory) will be referenced from the
resident directory. All the other payroll modules, because they have mode numbers of 1, are referenced
with the payroll auxiliary directory.

The following sequence of commands create the absolute core-image files for the payroll modules and
initialize the payroll auxiliary directory.

ACCESS 194 A
LOAD PAYROLL PAYDIRT
GENMOD PAYROLL (now the auxiliary directory is included
 in the payroll control module, but it is
 not yet initialized.)
LOADMOD PAYROLL
INCLUDE PAYROLL1
GENMOD PAYROLL1 (this sequence of three commands is
 . repeated for each payroll module called
 . by PAYROLL to establish the proper
 . address where the module would be loaded.)
LOADMOD PAYROLL
INCLUDE PAYSHIFT
GENMOD PAYSHIFT

LOADMOD PAYROLL
GENDIRT PAYDIRT Y
GENMOD PAYROLL MODULE A2

When it is time to execute the PAYROLL program, the 194 disk must be accessed as the Y-disk (the same
mode letter as specified on the GENDIRT command). Also, the 194 disk is accessed in a way that includes

12 F‘64’ should be used if FORM=E is specified on DMSFST macro.

Auxiliary Directories

Chapter 18. Using Auxiliary Directories 275

the PAYROLL control program in the resident directory but not the other payroll modules. This is done by
specifying a mode number of 2 on the ACCESS command.

ACCESS 194 Y/S * * Y2

Now, a request for a payroll module, such as PAYOVERT, can be successfully fulfilled. The auxiliary
directory will be searched and PAYOVERT will be found on the Y-disk.

Note:

1. A disk referred to by an auxiliary directory must be accessed as a read-only disk, and it cannot be
accessed in shared storage. (For details on the ACCESS command, see the z/VM: CMS Commands and
Utilities Reference.)

2. You cannot issue the GENDIRT command against an auxiliary directory included in a transient module,
since the GENDIRT command is also a transient module. In the example above, if you issue:

ACCESS 194 A
LOAD PAYROLL PAYDIRT (ORIGIN TRANS
⋮
LOADMOD PAYROLL
GENDIRT PAYDIRT Y

the GENDIRT module overlays the PAYROLL module in the transient area before initializing the
PAYDIRT auxiliary directory, and hence, would fail.

Auxiliary Directories

276 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Part 4. Connectivity Programming in CMS

Connectivity is the ability of one program to communicate with another program. System Network
Architecture (SNA) defines various sets of rules for data to be transmitted in a network. Application
programs communicate with each other using a layer of SNA called Advanced Program-to-Program
Communication (APPC). APPC is also known as LU 6.2. VM implements the base set of APPC with
APPC/VM.

Part 4, “ Connectivity Programming in CMS,” on page 277 includes the following chapters:

• Chapter 19, “CMS Support of IUCV,” on page 279 describes IUCV connectivity between virtual machines
and between virtual machine and CP system services.

• Chapter 20, “APPC/VM Assembler Interface,” on page 287 describes the assembler programming
interface for APPC/VM, which allows communications between application programs that are written in
assembler language.

• Chapter 21, “Using Advanced APPC/VM Functions,” on page 307 describes more advanced APPC/VM
functions that you can use in your programs.

© Copyright IBM Corp. 1990, 2024 277

278 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 19. CMS Support of IUCV

This chapter describes the CMS support for the Inter-User Communications Vehicle (IUCV). IUCV is
a communications facility that enables a program running in a virtual machine to communicate with
programs in other virtual machines, with a CP system service, and with itself. Before continuing with this
chapter, you should become familiar with the concepts and information about IUCV as described in z/VM:
CP Programming Services. That book contains complete information on IUCV in z/VM. Assuming you are
now familiar with IUCV, let us continue.

The CMS support for IUCV makes it easier for multiple programs operating within the same virtual
machine to use IUCV functions without interfering with each others' use of IUCV. Because CMS manages
IUCV interrupts in a virtual machine, CMS will route IUCV interrupts to the appropriately defined IUCV
interrupt handler exit routines. IUCV interrupt handler exit routines are defined by programs to CMS
and are identified by a name. Each name must be unique within a virtual machine, therefore, allowing
programs to handle their own IUCV interrupts and paths; also keeping other programs from IUCV
interrupts and paths that they don't own.

In CMS, you can invoke IUCV functions through the CMS macros called HNDIUCV and CMSIUCV. The
HNDIUCV macro provides the functions necessary to establish, change and end a program's IUCV
environment. The CMSIUCV macro provides the functions necessary to start or end IUCV communications
with a partner. The following table summarizes the functions provided by the HNDIUCV and CMSIUCV
macros which are useful for IUCV. For detailed information about these functions see z/VM: CMS Macros
and Functions Reference.

Macro Function Description

CMSIUCV ACCEPT Accept a connection request from another virtual machine in the
same system.

CMSIUCV CONNECT Begin communications with another virtual machine in the same
system or with a CP system service.

CMSIUCV SEVER Terminate communications with another virtual machine in the same
system or with a CP system service.

HNDIUCV CLR Terminate a program's IUCV environment

HNDIUCV REP Replace currently-defined fields for a particular IUCV program in
CMS.

HNDIUCV SET Initialize a program's IUCV environment

Note that the CMSIUCV and HNDIUCV macros do not provide interfaces to all of the IUCV capability
provided in CP. Therefore, the CP IUCV macro must be executed to CP to get this function. Note also that
the CMSIUCV and HNDIUCV macros provide functions intended to be used only by the CMS support
of Advanced Program-to-Program Communications/VM (APPC/VM). The CMSIUCV macro functions,
QCMSWID and RESOLVE, are intended only for APPC/VM. Although the HNDIUCV functions, HLD (HOLD)
and RES (RESUME) are intended to control the handling of APPC/VM private resource connection pending
interrupts, they also affect the handling of IUCV interrupts. An HNDIUCV SET name on hold will cause any
IUCV connection pending interrupts to be immediately severed by CMS. HNDIUCV HLD puts a name on
hold and HNDIUCV RES clears the on hold condition for a name. For more detail about using APPC/VM in
CMS refer to Chapter 20, “APPC/VM Assembler Interface,” on page 287. APPC/VM enables a program to
communicate with a resource manager program that resides in the same z/VM system, within the same
TSAF or CS collection, or anywhere within a network defined by IBM's System Network Architecture (SNA)
for APPC.

Now that we know what CMS macros are provided by the CMS support for IUCV, let us describe how to
use them. First, your program declares to CMS its intent to use IUCV by using the HNDIUCV SET macro
function. The EXIT= parameter on HNDIUCV SET identifies the interrupt handler exit routine which should

CMS IUCV

© Copyright IBM Corp. 1990, 2024 279

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

get control when CMS gets IUCV connection pending interrupt for the name specified on the NAME=
parameter. Other programs will use name as the value for the USERDTA= field on IUCV CONNECT when
establishing an IUCV path with your program.

After successfully calling HNDIUCV SET, your program is ready to both receive IUCV connection pending
interrupts for the specified name and to initiate IUCV communication with other programs. Let us
examine both cases.

• To start IUCV communications with another program, your program would first build an IUCV CONNECT
parameter list with the MF=L option and then issue CMSIUCV CONNECT, passing CMS the IUCV
CONNECT parameter list. Your call to CMSIUCV CONNECT should specify on the NAME= parameter the
same name as on HNDIUCV SET. Note also that there is an EXIT= parameter on CMSIUCV CONNECT;
this allows you to specify a different interrupt handler exit routine from the one that was specified on
HNDIUCV SET.

If your partner accepts your connection, your interrupt handler exit routine will be driven with a
connection complete interrupt. Now, you can use the IUCV SEND, RECEIVE or other functions provided
by the CP IUCV macro; and your interrupt handler exit routine will be driven for all interrupts associated
with this IUCV path.

• If another program can communicate with your program, the interrupt handler exit routine specified on
HNDIUCV SET will get control for a connection pending interrupt. Your program can accept the path by
building an IUCV ACCEPT parameter list and issuing CMSIUCV ACCEPT. Your call to CMSIUCV ACCEPT
should specify on the NAME= parameter the same name as on HNDIUCV SET. Note also that there
is an EXIT= parameter on CMSIUCV ACCEPT; like CMSIUCV CONNECT, this will allow you to specify a
different interrupt handler exit routine from the one that was specified on HNDIUCV SET.

If your CMSIUCV ACCEPT function completes indicating success, an IUCV path is established and you
can use the IUCV SEND, RECEIVE or other functions provided by the CP IUCV macro; and your interrupt
handler exit will be driven for all interrupts associated with this IUCV path.

When your program is ready to end IUCV communications on a path or your partner has terminated
IUCV communications with your program, set up an IUCV SEVER parameter list and issue CMSIUCV
CONNECT. Finally, when your program is all done using IUCV, use the HNDIUCV CLR function to have CMS
discontinue the tracking of your name and the interrupt handler exit routine associated with the name.

The next section shows an example using the CMS support for IUCV.

Using IUCV in CMS to Communicate Between Two Virtual Machines
Figure 51 on page 281 shows an example of how HNDIUCV and CMSIUCV macro instructions can be
issued by two virtual machines communicating with each other in CMS.

CMS IUCV

280 z/VM: 7.4 CMS Application Development Guide for Assembler

 Virtual Machine X - Source Virtual Machine Y - Target

 1. HNDIUCV SET,NAME=ONE,EXIT=A 1. HNDIUCV SET,NAME=TWO,EXIT=X1
 2. Set up the IUCV CONNECT
 parameter list
 3. CMSIUCV CONNECT,NAME=ONE,EXIT=B
 4. Connection pending external
 interrupt
 5. EXIT X1 receives control
 6. Set up the IUCV ACCEPT
 parameter list
 7. CMSIUCV ACCEPT,NAME=TWO,EXIT=X2
 8. Connect-complete external
 interrupt
 9. EXIT B receives control
 .
 . .
10. Programs in virtual machines X and Y communicate using
 IUCV functions such as SEND and RECEIVE.
 . .
 . .
11. Set up the IUCV SEVER
 parameter list
12. CMSIUCV SEVER,NAME=ONE .
 13. SEVER external interrupt
 14. EXIT X2 receives control
 15. Set up the IUCV SEVER
 parameter list
 16. CMSIUCV SEVER,NAME=TWO
17. HNDIUCV CLR,NAME=ONE 17. HNDIUCV CLR,NAME=TWO
 . .
 . .
 . .
18. ONE DC CL8‘RED’
 19. TWO DC CL8‘BLUE’
20. A exit routine 20. X1 exit routine
21. B exit routine 21. X2 exit routine

Figure 51. Sequence of Instructions in Virtual Machine to Virtual Machine Communication

The following list is an explanation of the sequence of instructions used in Figure 51 on page 281.

1. A program running in virtual machine X wishes to communicate with a program running in
virtual machine Y. Each program must independently issue the HNDIUCV macro to begin IUCV
communications. By issuing HNDIUCV SET, CMS invokes the IUCV DCLBFR function and enables for
IUCV external interrupts (bit 30 of control register 0) if the virtual machine's IUCV environment has
not already been initialized. The EXIT parameter specifies the label of the exit routine to handle
"connection pending" external interrupts for this HNDIUCV SET name. The name specified in the
“NAME=name” parameter is required in all subsequent CMSIUCV macro functions for connection
links (IUCV path IDs) associated with this name.

2. Before issuing a CMSIUCV CONNECT, the source program must set up an IUCV CONNECT parameter
list (using MF=L). The IPVMID field of the IUCV CONNECT parameter list contains the user ID of the
virtual machine you are connecting to (virtual machine Y). The first eight bytes of the IPUSER field
of the IUCV CONNECT parameter list contain the eight-character identifying name of the program
that issued a HNDIUCV SET in virtual machine Y. (This name must match the name specified on the
HNDIUCV SET macro function issued by the program in virtual machine Y.) In this example, the first
eight bytes of the IPUSER field equals ‘BLUE ’.

3. The program in virtual machine X issues a CMSIUCV CONNECT to initiate a communication link with
virtual machine Y. By issuing CMSIUCV CONNECT, CMS invokes the IUCV CONNECT function. The
‘EXIT=B’ parameter causes CMS to associate the exit routine at label B with the IUCV path ID. (If the
‘EXIT=B’ parameter was omitted, CMS would associate the exit routine at label A – the one specified
in the HNDIUCV SET macro – with the IUCV path ID.)

4. Virtual machine Y receives a connection-pending external interrupt as a result of the CMSIUCV
CONNECT issued by the program in virtual machine X.

5. "EXIT X1" receives control as a result of the external interrupt. ("EXIT X1" receives control because
it was specified on the EXIT parameter of the HNDIUCV SET macro, and the first eight bytes of

CMS IUCV

Chapter 19. CMS Support of IUCV 281

the IPUSER field in the connection pending external interrupt, match the field at the label (TWO)
specified in the NAME parameter of the HNDIUCV SET macro.)

6. Before issuing a CMSIUCV ACCEPT, the target program must set up an IUCV ACCEPT parameter list
(using MF=L). The IUCV path ID is the same as the one in the connection pending external interrupt.

7. To complete the connection, the program in virtual machine Y issues a CMSIUCV ACCEPT. By issuing
CMSIUCV ACCEPT, CMS invokes the IUCV ACCEPT function. This completes the IUCV communication
link with virtual machine X. The ‘EXIT=X2’ parameter also associates the exit routine at label X2 with
the path ID. (If the ‘EXIT=X2’ parameter was omitted, CMS would associate the exit routine at label
X1 – the one specified in the HNDIUCV SET macro – with the IUCV path ID.)

8. Virtual machine X receives a connection complete external interrupt as a result of the CMSIUCV
ACCEPT issued by the program in virtual machine Y.

9. "EXIT B" receives control as a result of the external interrupt. ("EXIT B" receives control because it is
specified on the EXIT parameter of the CMSIUCV CONNECT macro.)

10. The programs in virtual machine X and virtual machine Y carry on a conversation using IUCV macro
functions. The most basic conversations use SEND and RECEIVE, but other IUCV functions can be
used in a more advanced program.

11. Before issuing the CMSIUCV SEVER, the application in virtual machine X must set up a sever
parameter list using IUCV SEVER with MF=L.

12. Virtual machine X completed its communications with virtual machine Y and terminates the IUCV
communication link. The program in virtual machine X issues an CMSIUCV SEVER to terminate this
link. By issuing CMSIUCV SEVER, CMS invokes the SEVER function and clears the exit associated with
the IUCV path ID.

13. Virtual machine Y receives a SEVER external interrupt as a result of the CMSIUCV SEVER issued by
virtual machine X.

14. "EXIT X2" receives control as a result of the external interrupt. ("EXIT X2" receives control because it
was specified on the EXIT parameter of the CMSIUCV ACCEPT macro.)

15. Before issuing the CMSIUCV SEVER, the program in virtual machine Y must set up a sever parameter
list using IUCV SEVER with MF=L.

16. The program then issues a CMSIUCV SEVER to terminate the communication link. By issuing
CMSIUCV SEVER, CMS invokes the IUCV SEVER function and clears the exit associated with the
communication link.

17. After all communications are complete and all communication paths have been severed, the program
in virtual machine X and the program in virtual machine Y independently issue HNDIUCV CLR.
HNDIUCV CLR terminates IUCV communications and clears the exit for connection pending interrupts
for the name specified in the NAME parameter. CMS invokes the IUCV RTRVBFR function and disables
IUCV external interrupts (bit 30 in control register 0) if there are no other programs in the virtual
machine using IUCV.

18. This is the label specified in the NAME parameter. This location contains the identifying name of the
program in virtual machine X. The name of this program is RED.

19. This is the label specified in the NAME parameter. This location contains the identifying name of the
program in virtual machine Y. The name of this program is BLUE.

20. This is the label of an exit (interrupt handler) routine specified in the EXIT parameter of the
HNDIUCV SET macro. This routine receives control when a connection pending interrupt occurs for
the associated HNDIUCV SET name.

21. This is the label of an exit (interrupt handler) routine specified in the EXIT parameter of the
CMSIUCV CONNECT or ACCEPT macros. This routine receives control when an interrupt occurs for
the associated path ID.

Understanding Exit Routines
An exit routine receives control whenever an IUCV external interrupt occurs on an IUCV path. When the
program's IUCV external interrupt routine is given control, all interrupts are disabled. The exit routine is

CMS IUCV

282 z/VM: 7.4 CMS Application Development Guide for Assembler

responsible for providing proper entry and exit linkage for its IUCV external interrupt handling routine. The
exit routine has the following requirements:

• The routine should not enable itself for any type of interrupts.
• The routine should not perform any I/O operations, since all interrupts are disabled.
• The routine must return control to the address in register 14.

When the routine receives control, the significant registers contain:

Table 26. Contents of registers

Register Contents

0 UWORD (user word) Field

1 Points to a SAVEAREA in this format:

Label
Displacement

Contents
Dec Hex

GRS 0 0 General purpose registers 0–15 at the time of the
interrupt.

FRS 64 40 Floating-point registers 0–7 at the time of the
interrupt.

PSW 96 60 External Old PSW at the time of the interrupt.

UREA 104 68 Register save area for exit routine's use.

END 176 B0 End of save area

2 Address of the IUCV External Interrupt Buffer

13 Points to the register save area at label UAREA for use by the exit routine

14 Return address

15 Entry point address

Guidelines for Using the CMS Support of IUCV
Some IUCV macro functions affect the IUCV environment of the entire virtual machine. Because CMS
cannot intercept any IUCV macro functions directly issued by a program, any CMS application program
using IUCV has certain limitations on its use of IUCV functions. The program must not issue any IUCV
function that interferes with the operation of other IUCV applications running in the same virtual machine.

Each IUCV macro function is listed below, along with an explanation of how the IUCV function can be
used in a CMS application program. If a program does issue any IUCV functions listed as "Should not be
used…", other programs using IUCV in CMS in the same virtual machine may be affected.

Use the following functions only to set up the parameter list:
ACCEPT

Is invoked by a program using CMSIUCV ACCEPT. It should not be issued directly by a program in
CMS, except to set up an IUCV ACCEPT parameter list (MF=L).

CONNECT
Is invoked by a program using CMSIUCV CONNECT. It should not be issued directly by a program in
CMS, except to set up an IUCV CONNECT parameter list (MF=L).

SEVER
Is invoked by a program using CMSIUCV SEVER. This function should not be issued directly by a
program in CMS, except to set up an IUCV SEVER parameter list (MF=L). CMSIUCV SEVER checks to

CMS IUCV

Chapter 19. CMS Support of IUCV 283

make sure that the IPALL bit is not turned on in the IPFLAGS1 parameter list, because this would
sever all paths in the virtual machine.

Use these functions freely, but with caution as noted under each function:
PURGE

Can be issued directly by a program in CMS.
QUERY

Can be issued directly by a program in CMS. This function is also used by HNDIUCV to determine the
size of the external interrupt buffer and the maximum number of connections for this virtual machine.

QUIESCE
Can be issued directly by a program in CMS to quiesce a specific path. However, the issuing program
must be careful that the IPALL bit is not turned on in the IPFLAGS1 parameter list, because this would
quiesce all paths in the virtual machine.

RECEIVE
Can be issued directly by a program in CMS. However, the issuing program must be careful that a
specific message ID or path ID is specified in the IUCV parameter list. If it is not, IUCV receives the
first message that has not yet been partially received for the entire virtual machine, and this message
may not belong to the program that issued the RECEIVE.

REJECT
Can be issued directly by a program in CMS.

REPLY
Can be issued directly by a program in CMS.

RESUME
Can be issued directly by a program in CMS to resume a specific path. However, the issuing program
must be careful that the IPALL bit is not turned on in the IPFLAGS1 byte of the parameter list, because
that would resume all paths in the virtual machine.

SEND
Can be issued directly by a program in CMS.

TESTCMPL
Can be issued directly by a program in CMS. However, the issuing program must be careful that
the specified message ID or path ID is also specified in the IUCV parameter list. If it is not, IUCV
completes the first message on the REPLY queue for the entire virtual machine, and this message may
not belong to the program that issued the TESTCMPL.

Do not use these functions in a CMSIUCV program:
DCLBFR

Should not be issued directly by a program in CMS. This function is used by HNDIUCV SET to initialize
the virtual machine's IUCV environment.

DESCRIBE
Should not be used by a program in CMS. This function clears the pending-message external
interruption for the described message. This interrupt may not belong to the issuer of the DESCRIBE
function; as a result, other programs running in the same virtual machine may be affected because the
message is lost and never reflected to the true target.

RTRVBFR
Should not be issued directly by a program in CMS. The HNDIUCV CLR function and CMS abend
processing use RTRVBFR to terminate the virtual machine's IUCV environment.

SETMASK
Should not be used by a program in CMS. This function disables certain IUCV external interrupts for
the entire virtual machine; as a result, other programs running in the same virtual machine may be
affected.

SETCMASK
Should not be used by a program in CMS. This function disables certain IUCV external interrupts for
the entire virtual machine; as a result, other programs running in the same virtual machine may be
affected.

CMS IUCV

284 z/VM: 7.4 CMS Application Development Guide for Assembler

TESTMSG
Should not be used by a program in CMS. This function places the entire virtual machine in a wait state
if no incoming messages or replies are pending; as a result, other programs running in the same virtual
machine may be affected.

CMS IUCV

Chapter 19. CMS Support of IUCV 285

CMS IUCV

286 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 20. APPC/VM Assembler Interface

In its simplest form, connectivity is the ability of one program to communicate with another program.
In this book, we are concerned with communications between two application programs. Application
programs are typically written to communicate with one another because a user needs access to some
kind of data.

Systems Network Architecture (SNA) defines various sets of rules for data to be transmitted in a network.
Application programs communicate with each other using a layer of SNA called Advanced Program-to-
Program Communication (APPC). APPC is also known as LU 6.2. VM implements the base set of APPC
and several APPC option sets using Advanced Program-to-Program Communication/VM (APPC/VM).

VM provides two programming interfaces to APPC/VM:

1. A low-level interface intended for programs written in assembler language.
2. Common Programming Interface (CPI) Communications (also known as SAA* communications

interface).

Note: Refer to the Common Programming Interface Communications Reference (https://
publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf) for more details about CPI Communications routines.

The following communications programming interface is also available in z/VM:

• The Inter-User Communication Vehicle (IUCV), which is for communications between two programs
on the same VM system. IUCV also allows a program to communicate with a CP system service. For
complete information on IUCV, see the z/VM: CP Programming Services.

Overview of APPC/VM Assembler Interface
The assembler programming interface for APPC/VM allows communications between application
programs that are written in assembler language. The APPC/VM assembler interface implements the
base set of APPC (SNA LU 6.2) verbs and several APPC option sets.

The APPC/VM assembler interface provides macros and parameter lists that applications can use to set
up and control the communications environment within one VM system, and among VM systems in a TSAF
or CS collection. (For programs communicating outside a TSAF or CS collection to an SNA network, AVS
translates APPC/VM protocols into APPC/VTAM*, which is the VTAM implementation of APPC.)

In addition, VM has implemented some IUCV functions for an APPC/VM environment. IUCV functions are
not part of the APPC architecture and are unique to VM. For more information on how IUCV relates to
APPC/VM, see “How APPC/VM Relates to General IUCV” on page 303.

This chapter gives an overview of the APPC/VM assembler interface, describes various APPC/VM
assembler functions, shows how to write assembler APPC/VM programs in CMS, and discusses the
relationship between APPC/VM and IUCV.

Note: The remainder of this book refers to the APPC/VM assembler programming interface as simply
APPC/VM.

Basics of APPC/VM
The following sections describe some of the basics of APPC/VM communication: paths, states, and
interrupts.

APPC/VM Paths
An APPC/VM path is a logical connection between one or more virtual machines. Information flows on
APPC/VM paths. To establish an APPC/VM path between two virtual machines, at least one of the virtual
machines must be authorized in the IUCV directory statement.

APPC/VM Assembler Interface Overview

© Copyright IBM Corp. 1990, 2024 287

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

A path is created when the source virtual machine invokes the CONNECT function and the target virtual
machine invokes the ACCEPT function. After the path is created, communications can begin. Programs
identify a path using the PATHID parameter of the pertinent APPC/VM function.

The target virtual machine can prevent the path from being established by invoking the SEVER function.
Either virtual machine can destroy an established path with the SEVER function.

A single virtual machine can have up to 65,536 APPC/VM paths defined. Two virtual machines can have
more than one path between them. Communication can occur over multiple paths at the same time.

An APPC conversation is represented within a TSAF or CS collection as an APPC/VM path. A path exists
for the life of the conversation. The APPCVM CONNECT is analogous to the APPC ALLOCATE because it
creates a path; the APPCVM SEVER is analogous to the APPC DEALLOCATE because it destroys a path.

Note: SNA sessions have no representation in a TSAF or CS collection. VTAM allocates and ends the SNA
sessions on which APPC/VM conversations through an SNA network are established.

APPC/VM States
The APPC/VM interface is a half-duplex communications protocol. This means that only one of the
communications partners can send data at a time. Because of this, APPC/VM uses states to define what
functions a program can and cannot issue at any given time.

A program is always in a single state for a particular conversation. When your program or your
communications partner issues an APPC/VM function, the state of the conversation may change. If your
virtual machine is communicating with different virtual machines through various paths, it may be in
different states on different paths at the same time. A program participating in multiple conversations
could have multiple states, too.

The basic states for APPC/VM assembler programs are:
Reset

The state for each program before communications begin and after communications end.
Connect

The state for a source program after a connection has been started but before it has completed, or
the state for a target program after it has received a connection pending interrupt but before it has
accepted.

Send
The state in which a program is allowed to send data.

Receive
The state in which a program is ready to receive data.

Confirm
The state in which a program must respond to its communications partner.

Sever
The state a program is in when its partner stops communications.

These APPC/VM states are based on the states that APPC defines, but there are two differences:

1. The Connect state is unique to APPC/VM
2. The Sever state is analogous to the APPC Deallocate state.

APPC/VM Interrupts
In APPC/VM, your program may receive notification of pending functions through external interrupts.
Interrupts are caused by actions taken by the virtual machine on the other end of the local APPC/VM
path. Interrupts indicate pending and completed functions. For example, your virtual machine receives an
interrupt when another virtual machine sends you a message that it wants you to receive.

At the start of your program, you should create a buffer to hold the interrupt information for an
established APPC/VM path. (You can create this buffer using the HNDIUCV SET or IUCV DCLBFR function.)
This buffer is a 40-byte area called an external interrupt buffer. There are two types of external interrupt

APPC/VM Assembler Interface Overview

288 z/VM: 7.4 CMS Application Development Guide for Assembler

buffers, control and application. For a complete description of these buffers, see the section on the IUCV
DCLBFR (Declare Buffer) function in the z/VM: CP Programming Services. When your program is presented
with an interrupt, information about the interrupt goes into one of these external interrupt buffers.

The possible APPC/VM interrupts you can get fall into two categories. The first type of interrupt signals
that your communications partner has invoked some function, independent of your actions. These
interrupts are:

• Connection pending
• Message pending
• Request-to-Send
• Sever.

The second type of interrupt signals the completion of a function that you initiated. These interrupts are:

• Connection complete
• Function complete.

The six basic types of APPC/VM interrupts are described in the following paragraphs.

Connection Pending External Interrupt
You get a connection pending interrupt when a virtual machine invokes an APPCVM CONNECT function to
connect to your virtual machine. The interrupt is placed in a control buffer if the virtual machine wants to
connect to a private resource; otherwise, the interrupt is presented to your virtual machine's application
buffer.

Message Pending External Interrupt
You get a message pending interrupt when your communications partner issues an APPC/VM function for
which you should issue an APPCVM RECEIVE. Any of the following APPCVM macro functions issued by
your communications partner can cause a message pending interrupt:

• RECEIVE
• SENDCNF
• SENDDATA
• SENDERR.

You only get a message pending interrupt if you are in Receive state on the corresponding path.

Request-to-Send External Interrupt
You get a request-to-send interrupt when your communications partner issues the APPCVM SENDREQ
function to request to send data.

Sever External Interrupt
You get a sever interrupt when the program to which you are connected or trying to connect to invokes an
APPCVM SEVER or IUCV SEVER, invokes an HNDIUCV CLR (or IUCV RTRVBFR), or abends. You could also
get a sever interrupt when the virtual machine to which you are connected or trying to connect to resets
its virtual machine or logs off.

Note: If you get a sever interrupt after you have issued an APPC/VM function to your partner, do not
assume that your function has terminated.

Connection Complete External Interrupt
You get a connection complete interrupt when you issue the APPCVM CONNECT WAIT=NO function and
the virtual machine on the other end of the local APPC/VM path accepts the connection.

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 289

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

When you get a connection complete interrupt, do not assume that the target program performed any
action to cause your function to complete.

Function Complete External Interrupt
You get a function complete interrupt (FCI) when the function that you issued completes. The completion
of any of the following APPC/VM functions can cause a function complete interrupt:

• RECEIVE
• SENDCNF
• SENDDATA
• SENDERR
• SEVER.

For more information on APPC/VM external interrupts, see the z/VM: CP Programming Services.

Invoking APPC/VM Communication Functions
VM programs at each end of an APPC/VM path use APPC/VM functions to communicate with each
other. Most APPC/VM communications functions are provided as parameters of the APPCVM macro. The
APPC/VM communications functions used with the APPCVM macro are:

• CONNECT
• RECEIVE
• SENDCNF
• SENDCNFD
• SENDDATA
• SENDERR
• SENDREQ
• SEVER.

In addition, some APPC/VM functions are provided as parameters on the IUCV macro. The APPC/VM
communications functions used with the IUCV macro are:

• ACCEPT
• QUERY
• SEVER.

The IUCV macro functions relate to both APPC/VM and IUCV paths. The IUCV functions are not defined
by the SNA LU 6.2 (APPC architecture) verb interface, but they are a necessary complement for APPC
programs executing in a VM processor. The IUCV macro functions that relate to APPC/VM are:

• ACCEPT
• CONNECT
• DCLBRF
• DESCRIBE
• QUERY
• RTRVBFR
• SETCMASK
• SETMASK
• SEVER
• TESTCMPL

APPC/VM Assembler Interface Overview

290 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

• TESTMSG.

Note: Other IUCV macro functions are possible from APPC/VM, but are not recommended for use by
APPC/VM programs running in CMS. See “How APPC/VM Relates to General IUCV” on page 303 for more
information about these other IUCV functions.

Using Basic APPC/VM Functions
To write starter APPC/VM programs, you need to know the APPC/VM functions that do the basic steps of
starting a conversation, communicating in a conversation, and ending a conversation.

Starting a Conversation
To start a conversation, your user program must issue an APPCVM CONNECT with a resource ID.
Depending on the type of connection, a user program also might supply a connection parameter list
extension, which contains detailed information that is necessary to make a connection. (If the resource ID
maps to an entry in a CMS communications directory file, the program generally does not have to build the
extension itself, CMS does it.)

When your program issues an APPCVM CONNECT, your communications partner gets a connection
pending interrupt. Your partner should examine the interrupt before accepting or rejecting the connection.
The interrupt contains information such as the resource ID for which the connection is being made and
the user ID of the requesting program.

In addition to the connection pending interrupt, your partner can also get other kinds of data before
accepting the connection:

• Allocate data, which provides more details about the pending connection
• Program Initialization Parameters (PIP data), which can serve many purposes. (See “Sending and

Receiving Early Information” on page 308 for more information.)

After examining all this data, your communications partner can do either of the following in response to
your connect request:

• Accept the connection if it wants to communicate with your program, making sure to specify the path ID
that was on the connection pending interrupt.

• Accept the connection and then immediately sever the connection if it does not want to communicate
with your program.

Sending and Receiving Data on the Conversation
When you issue the command to connect to a target, and your communications partner accepts the
connection:

• Your program is in Send state for the conversation.
• Your communications partner's program is in Receive state.

You can now send data, using APPCVM SENDDATA. Your program must set up data in buffers, and the
data must be in APPC logical record format. Remember that you can only send data when your program is
in Send state and receive data when your program is in the Receive state.

As you send data, your communications partner is notified through one or more message pending
interrupts. Your partner can then receive the data using APPCVM RECEIVE.

Ending a Conversation
When your program is finished communicating with your partner program, you should end the
conversation by issuing APPCVM SEVER or IUCV SEVER.

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 291

APPCVM SEVER
You can issue an APPCVM SEVER anytime after you have established a path with your partner (that is,
you must first issue a CONNECT and your partner must issue an ACCEPT). At this point your partner will
receive a sever interrupt that contains information about the path and any errors that may have occurred
during the sever.

You can also include log data on an APPCVM SEVER. This data can be accepted by your partner and used
for debugging and error recovery.

After you issue an APPCVM SEVER, your partner can examine the sever interrupt information and:

• Issue an APPCVM SEVER to sever their side of the path.
• If log data is available, issue an APPCVM RECEIVE to obtain that data before severing using IUCV

SEVER.
• Issue an IUCV SEVER to sever their side of the path.

IUCV SEVER
An IUCV SEVER can be issued at any time during a conversation. Usually your partner will receive a sever
interrupt which contains information about the path and any errors that may have occurred during the
sever.

After receiving an IUCV SEVER, your partner can:

• Issue an APPCVM SEVER to sever their side of the path.
• Issue an IUCV SEVER to sever their side of the path.

In a CMS environment, you can also use the CMSIUCV macro. This macro is described in the z/VM: CMS
Macros and Functions Reference.

Using the CMS Interface to APPC/VM
You should write your APPC/VM application for a CMS environment. CMS support of APPC/VM makes it
easier for multiple APPC/VM programs to operate within the same virtual machine. The CMS Shared File
System, session services, private resources, CPI Communications, Coordinated Resource Recovery (CRR),
and other system functions and products also require the CMS support of APPC/VM.

In CMS, you can invoke APPC/VM functions through the CMS macros named HNDIUCV and CMSIUCV.
These macros are necessary to tell CMS when APPC/VM paths have been created or destroyed.

HNDIUCV and CMSIUCV macro functions have a NAME keyword and value that corresponds to one or
more APPC/VM paths. This ensures that no program severs a path that another program has established.
If the program requests a SEVER or an ACCEPT for a specific path and the NAME specified does not
correspond with the owner of that path, the SEVER or ACCEPT is not permitted.

Note: The program name !CMS is reserved. CMS uses this program name so it can use APPC/VM paths.

The HNDIUCV macro functions let you:

• Initialize a program's APPC/VM environment in CMS (SET function)
• Terminate a program's APPC/VM environment in CMS (CLR function)
• Override address and information values (REP function)
• Place connection pending interrupts for private resources on a queue (HLD function)
• Release connection pending interrupts for private resources from the queue (RES function).

The HNDIUCV SET function identifies a program name to CMS. You must issue this function before issuing
any CMSIUCV macro functions.

The CMSIUCV macro functions let you:

APPC/VM Assembler Interface Overview

292 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

• Request to begin communications with another program in the same or different virtual machine
(CONNECT function)

• Agree to begin communications with another program (ACCEPT function)
• Terminate communications with another program (SEVER function).

An APPC/VM conversation established using CMSIUCV CONNECT or CMSIUCV ACCEPT is automatically
severed by CMS (using SEVER TYPE=ABEND) as part of end-of-work-unit processing. Work unit
processing completes at end-of-command, end-of-subset, when DMSPURWU (purge work unit) or
DMSRETWU (return work unit) routines are issued, or during an abend. If you want your conversation
to remain allocated after work unit processing, you must specify this when you accept or connect to your
partner.

Before issuing any CMSIUCV macro functions, your program must set up the proper parameter list with
the MF=L format of the appropriate IUCV or APPCVM macro. (For instance, before issuing a CMSIUCV
CONNECT, you must issue an APPCVM CONNECT with a proper parameter list and MF=L.)

You can see how APPC/VM programs use HNDIUCV and CMSIUCV functions in the following scenarios:

• “Scenario 1: Request for Global Resource” on page 295
• “Scenario 2: Request for Private Resource” on page 299.

Also, see the z/VM: CMS Macros and Functions Reference for detailed descriptions for each of these
functions.

Note: This book does not describe how to write APPC/VM programs to run in a Group Control System
(GCS) environment of z/VM. If you are writing communications applications for a GCS environment, refer
to the z/VM: Group Control System, which contains complete descriptions of the IUCVCOM and IUCVINI
macros.

CMS support of APPC/VM interrupts provided by HNDIUCV and CMSIUCV processing manage the
communication linkage on conversation paths. HNDIUCV and CMSIUCV processing controls the setting of
the IUCV mask (bit 30) in control register 0 for applications using this support.

Errors and Interrupts for APPC/VM in CMS
You can specify path-specific exits on the HNDIUCV and CMSIUCV macro functions. These exits are
addresses of routines that receive control when an APPC/VM interrupt occurs.

Please note the following points about error conditions for APPC/VM CMS macros:

• APPC/VM generates exceptions for certain error conditions. If APPC/VM generates an operation,
specification, or addressing exception while an HNDIUCV or CMSIUCV macro is executing, control does
not directly return to the next sequential instruction; instead, a program check is generated.

• The CMS external interrupt handler recognizes two error conditions while an HNDIUCV or CMSIUCV
macro is executing:

– An APPC/VM connect pending external interrupt occurs and the IPRESID field does not match any
active program name in the virtual machine. (An active program name is one that has been identified
to CMS by HNDIUCV SET.)

– Any other type of APPC/VM external interrupt occurs and the path that it occurs on is not owned by
any active programs in the virtual machine.

In either condition, CMS issues an IUCV SEVER for the path in error.
• If a CMS abend occurs, the following happens within the virtual machine:

– All program names previously defined by HNDIUCV SET are made inactive.
– External interrupt buffers created by HNDIUCV SET are destroyed.
– Exits set up by the CMSIUCV or HNDIUCV macros are canceled.

• A program must be ready to handle any incoming external interrupts immediately after an HNDIUCV
or CMSIUCV macro has finished processing. A program can even be interrupted before the sequential
instruction following the macro in the program is executed.

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 293

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4

Guidelines for Using the CMS Interface to APPC/VM
This section lists all the APPC/VM functions that can be used in an APPC/VM environment, and discusses
guidelines for using these functions.

The first list shows the APPCVM and IUCV macro functions that should be directly issued from an
APPC/VM program in CMS. Programs must be careful to specify a path ID when invoking each of these
APPC/VM functions (except QUERY). If an APPC/VM function is invoked without specifying a particular
path ID, that function will apply for the entire virtual machine. If more than one program is active in the
virtual machine, the APPC/VM function could get invoked for the wrong program.

• QUERY (HNDIUCV SET also uses QUERY to determine the maximum number of connections for a virtual
machine.)

• RECEIVE
• SENDCNF
• SENDCNFD
• SENDDATA
• SENDERR
• SENDREQ.

The following list describes those APPC/VM and IUCV macro functions that you should use to just set up
parameter lists with MF=L.

• ACCEPT

This should not be directly issued by a program in CMS, except to set up an IUCV ACCEPT parameter
list. A CMS program should invoke the accept using CMSIUCV ACCEPT.

• CONNECT

This should not be directly issued by a program in CMS, except to set up an APPCVM CONNECT
parameter list. A CMS program should invoke the connect using CMSIUCV CONNECT.

• SEVER

This should not be directly issued by a program in CMS, except to set up an APPCVM SEVER or IUCV
SEVER parameter list. A CMS program should invoke the sever using CMSIUCV SEVER.

Some functions on the APPCVM or IUCV macro affect the APPC/VM environment of the entire virtual
machine. Because CMS cannot intercept any APPCVM or IUCV macro functions directly issued by a
program, any APPC/VM application program in CMS has certain limitations on its use of these functions—it
must not issue any APPC/VM function that interferes with the operation of other APPC/VM applications
running in the same virtual machine.

You should not use the following functions of the IUCV macro when writing CMS programs, because they
could affect other APPC/VM programs in the same virtual machine:

• DCLBFR
• DESCRIBE
• RTRVBFR
• SETMASK
• SETCMASK
• TESTCMPL
• TESTMSG.

Note: CP macro libraries HCPGPI and HCPPSI are located on the system disk. The HCPGPI MACLIB
contains the APPCVM macro and the IUCV macro. Refer to “Using Macro Libraries” on page 21 for more
information.

APPC/VM Assembler Interface Overview

294 z/VM: 7.4 CMS Application Development Guide for Assembler

Refer to “How APPC/VM Relates to General IUCV” on page 303 for detailed information about using these
IUCV macro functions in an APPC/VM environment. For details about using these and any other IUCV
functions in an IUCV environment, see the z/VM: CP Programming Services.

Managing a Resource
For a virtual machine to manage a local or global resource, it must first be authorized to connect to
the Identify System Service, *IDENT. Your system administrator is the person who can authorize your
virtual machine to manage a particular resource. To do this, the administrator must specify a special IUCV
*IDENT statement in your virtual machine's directory entry. The z/VM: CP Planning and Administration
describes how a system administrator authorizes virtual machines to manage resources. For details on
global and local resources, see the z/VM: CMS Macros and Functions Reference.

Your virtual machine must connect to *IDENT before using it to manage a resource. This connect should
be done using an IUCV CONNECT.

If your virtual machine becomes a local or global resource manager by establishing a connection to
*IDENT, APPC/VM lets other virtual machines connect to you. The connecting virtual machines must
specify, on their connection request, the resource ID you identified through *IDENT.

*IDENT maintains a local system resource table. *IDENT adds an entry to this table each time it accepts
a virtual machine connection and deletes the entry when it severs the associated connection. A virtual
machine manages a resource only while connected to *IDENT. For details on how *IDENT works, see the
z/VM: CP Programming Services.

Revoking a Resource
To manage a resource, a program must identify the resource name by connecting to *IDENT. The virtual
machine for the program must have proper directory authorization to connect to *IDENT. A program can
also revoke—stop management of—a resource name.

A program can revoke a resource it manages by issuing an IUCV SEVER to sever its path to *IDENT.
*IDENT then deletes the resource from the system resource table and severs its half of the path. Your
program then gets an IUCV sever interrupt from *IDENT. The SEVER does not affect existing APPC/VM
paths to your virtual machine.

If another virtual machine connects to *IDENT to manage the resource that you revoked, requests to
connect to the resource go to that virtual machine.

Note: If a virtual machine tries to connect to a resource that you manage before your revoke completes,
the path may be established.

A program can revoke a resource that another program manages by issuing an IUCV CONNECT to
*IDENT with the appropriate user data. The issuing program's virtual machine must have proper directory
authorization to connect to *IDENT and to do this kind of revoke. Your system administrator can authorize
your program's virtual machine to revoke a particular resource.

You might have a case where two disjoint TSAF collections merge, and the same resource name is
identified (through connections to *IDENT) by virtual machine programs on both collections. If this
happens, the TSAF virtual machine issues a revoke to one of the competing virtual machines, and *IDENT
severs its path to the resource manager program within that virtual machine.

Scenario 1: Request for Global Resource
“Sequence of Instructions Requester/Server Communication” on page 296 shows the sequence of macro
instructions issued when an APPC/VM assembler program in CMS communicates with a global resource
manager program using APPC/VM. In this scenario, the global resource is on a different system, but within
the same TSAF or CS collection.

The functions performed by these instructions include:

• Starting APPC/VM communications

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 295

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

• Connecting to another virtual machine
• Sending and receiving messages
• Replying to and waiting for messages
• Severing the connection to another virtual machine
• Ending APPC/VM communications.

This scenario is to give you a better idea of how APPC/VM programs work together. Note that the macro
functions can be more detailed than what is shown in this scenario.

Sequence of Instructions Requester/Server Communication
User Program Global Resource Manager
 Program
(Requester Virtual Machine) (Server Virtual Machine)
----------------------------- --------------------------
1 HNDIUCV SET,NAME=USRNAME, 1 HNDIUCV SET,NAME=RESNAME,
 EXIT=X1 EXIT=X2
 2 IUCV CONNECT PRMLIST=PLADDR,
 USERID=*IDENT,
 USERDTA=stuff,MF=L
 3 CMSIUCV CONNECT NAME=RESNAME,
 PRMLIST=PLADDR,EXIT=X2,
 ERROR=ERR2
 4 gets connect complete
 interrupt

5 APPCVM CONNECT,PRMLIST=PLADDR,
 MF=L,RESID=RESNAME,WAIT=NO,
 BUFLEN=0 program waits for interrupt
6 CMSIUCV CONNECT,NAME=USRNAME, .
 PRMLIST=PLADDR,EXIT=X1, .
 COMDIR=NO,ERROR=ERR1

 . 7 connect-pending external
 interrupt
 . 8 exit X2 receives control
 and posts ECB
program busy waits for interrupt 9 IUCV ACCEPT,PRMLIST=PLADDR,
 PATHID=path2,MF=L
 . 10 CMSIUCV ACCEPT,NAME=RESNAME,
 . PRMLIST=PLADDR,EXIT=X2
 .
11 gets connect complete interrupt .
12 exit X1 gets control, posts ECB program waits for interrupt
13 APPCVM SENDDATA PRMLIST=PLADDR, .
 PATHID=path1,BUFFER=dataddr, .
 RECEIVE=NO .

 14 gets message pending
 interrupt
 15 exit X2 receives control
 and posts ECB
 16 APPCVM RECEIVE
 PRMLIST=PLADDR,
 PATHID=PTH2
 BUFFER=bufaddr,
 BUFLEN=length

17 X1 gets control for FCI
 . .
 18 sending and receiving continue
 . .
 . .
19 APPCVM SEVER,PRMLIST=PLADDR,
 TYPE=NORMAL,PATH=path1,MF=L
20 CMSIUCV SEVER,NAME=USRNAME,
 PRMLIST=PLADDR, CODE=ONE
21 X1 gets control for FCI
 22 sever interrupt
 23 exit X2 receives control
 24 APPCVM SEVER,PRMLIST=PLADDR,
 PATHID=path2,MF=L
 25 CMSIUCV SEVER,NAME=RESNAME,
 PRMLIST=PLADDR

APPC/VM Assembler Interface Overview

296 z/VM: 7.4 CMS Application Development Guide for Assembler

 26 X2 gets control for FCI

27 HNDIUCV CLR,NAME=USRNAME 27 HNDIUCV CLR,NAME=RESNAME
 . .
 . .
 . .
28 X1 address of exit routine X2 address of exit routine
29 ERR1 address of error ERR2 address of error
 routine routine
30 USRNAME DC CL8'RED' RESNAME DC CL8'BLUE'
31 RESNAME DC CL8'BLUE'
32 PLADDR DS XL40 PLADDR DS XL40

The following list explains the sequence of instructions shown in “Sequence of Instructions Requester/
Server Communication” on page 296.

1. Each program must first independently issue HNDIUCV SET to declare itself to CMS. (This function
creates a buffer for CP to store external interrupt data.) Each program also specifies an exit address
that gets control in case of an interrupt.

2. The resource manager program must establish itself as a resource manager by connecting to *IDENT.
This allows APPC/VM connections from user programs. In this step, the program just sets up the
IUCV CONNECT parameter list using MF=L.

3. The program issues a CMSIUCV CONNECT to actually invoke the connection to *IDENT.
4. The resource manager program receives a connection complete interrupt as a result of the connect

request to *IDENT.
5. The user program wants to connect to resource BLUE (referenced by label RESNAME). It must

identify this resource on the RESID parameter. In this step, the user program just sets up an APPCVM
CONNECT parameter list using MF=L.

Note:

a. This RESID value must match the name that the resource manager program specified on its
HNDIUCV SET. In this example, the RESID is the value BLUE.

b. Specifying BUFLEN=0 means that we are not supplying a connection parameter list extension.
6. The user program issues a CMSIUCV CONNECT to actually invoke the connection to the resource

manager program and create a path (from the user program's side). The exit address, X1, is
associated with the path ID. Specifying COMDIR=NO means that no communications directory
resolution has to be done; BLUE is the only value necessary to establish the connection.

7. The resource manager program receives a connection pending interrupt as a result of the user
program's connect request.

8. The interrupt (exit) routine at address X2 receives control as a result of the external interrupt. (X2
receives control because it was specified on the EXIT parameter of the HNDIUCV SET macro.) The
interrupt routine posts the ECB, then returns control to the "mainline" resource manager program.

9. The resource manager program wants to do an ACCEPT to complete the connection. In this step, it
issues an IUCV ACCEPT with MF=L to format an IUCV ACCEPT parameter list.

10. The resource manager program issues a CMSIUCV ACCEPT to actually invoke the ACCEPT. This
completes the APPC/VM communications link with the user program and creates a path (from the
resource manager program's side). The EXIT parameter associates the address, X2, with the path ID.

11. The user program is presented with a connection-complete external interrupt as a result of the
resource manager's CMSIUCV ACCEPT.

12. The exit routine at address X1 receives control as a result of the external interrupt. (X1 receives
control because it is specified on the EXIT parameter of the CMSIUCV CONNECT.)

13. The user program sends data to the resource manager by issuing an APPCVM SENDDATA. The data
being sent would be located at the address specified on BUFFER.

14. The resource manager program gets a message pending interrupt because of the user program's
SENDDATA.

15. The interrupt (exit) routine at X2 receives control, posts the ECB, then returns control to the mainline
resource manager program.

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 297

16. The resource manager receives the amount of data pending by issuing one or more APPCVM RECEIVE
functions.

17. The interrupt (exit) routine at X1 receives control for a function complete external interrupt, notifying
the user program of the completion of the APPCVM SENDDATA issued in step 13.

18. Data is sent and received back and forth between the two programs using APPCVM SENDDATA and
APPCVM RECEIVE functions.

Note: When a program specifies APPCVM SENDDATA RECEIVE=NO, it is in Send state and its partner
is in Receive state. However, a program issuing an APPCVM SENDDATA can switch conversation
states by specifying RECEIVE=YES on the SENDDATA, or by issuing the APPCVM RECEIVE function.

19. The user program completes its communications with the resource manager and wants to terminate
its APPC/VM communications path. It sets up the APPCVM SEVER parameter list.

20. The user program then issues a CMSIUCV SEVER to actually invoke the SEVER function. This also
clears the exit address associated with the communications path (specified on CMSIUCV CONNECT).

21. The interrupt (exit) routine at X1 receives control for a function complete external interrupt, notifying
the user program of the completion of the APPCVM SEVER issued in step 19.

22. The resource manager receives a sever external interrupt as a result of the CMSIUCV SEVER issued
by the source program.

23. The exit routine at address X2 gets control as a result of the external sever interrupt.
24. The resource manager program wants to terminate the communications link. In this step, it sets up

an APPCVM SEVER parameter list.
25. The resource manager issues CMSIUCV SEVER to actually invoke the sever. This clears the exit

address associated with the communications path (specified on the CMSIUCV ACCEPT).
26. The interrupt (exit) routine at X2 receives control for a function complete external interrupt, notifying

the resource manager program of the completion of the APPCVM SEVER issued in step 24.
27. After all communications are complete and the communications path has been severed on each

side, the two programs independently issue HNDIUCV CLR. HNDIUCV CLR terminates APPC/VM
communications for the program name, and clears the general exit address (specified on HNDIUCV
SET).

28. This is the label of the exit (interrupt handler) routine. This routine receives control when an interrupt
occurs on the associated path. The routine checks for various types of interrupts, post an ECB, then
return control to the main program.

29. This is the label of an error routine. If an error is encountered while processing the associated
function, then this routine receives control.

30. This is the name that the program must first identify to CMS on HNDIUCV SET and then on any
subsequent HNDIUCV or CMSIUCV macros. The user program has a name of RED, and the resource
manager program has a name of BLUE.

31. The user program must specify the resource manager program name, BLUE (resolved through
COMDIR), as the resource ID (RESID) on the APPCVM CONNECT.

32. This declares 40-byte parameter list areas.

Use the z/VM HELP Facility for complete details on all APPC/VM functions, or use the following
publications:

• For details on the APPCVM and IUCV macro functions, see the z/VM: CP Programming Services.
• For complete details on all CMSIUCV and HNDIUCV macro functions, see the z/VM: CMS Macros and

Functions Reference.

APPC/VM Assembler Interface Overview

298 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Scenario 2: Request for Private Resource
“Sequence of Steps in Private Resource Request Processing” on page 299 shows the sequence of steps
that occur when an APPC/VM assembler user program in CMS requests a private resource from an
APPC/VM assembler private resource manager program.

In this scenario, the private resource is on a different system, but within the same TSAF collection.
Assume the requester virtual machine has a user ID of "REQ1" and the server virtual machine has a user
ID of "SERV1".

The functions performed in this scenario include:

• Setting up the two communicating virtual machines
• Starting APPC/VM communications
• Connecting to another virtual machine
• Sending and receiving messages
• Replying to and waiting for messages
• Severing the connection to another virtual machine
• Ending APPC/VM communications.

This scenario is to give you a better idea of how APPC/VM programs work together. Note that the macro
functions can be more detailed than what is shown in this scenario.

Sequence of Steps in Private Resource Request Processing
 User Program Private Resource Manager Program Program
 (Requester Virtual Machine) (Server Virtual Machine)
 ----------------------------- -------------------------------- -------
Enable communications directory file Set up $SERVER$ NAMES file

1 HNDIUCV SET,NAME=USRNAME,EXIT=X1
2 APPCVM CONNECT,PRMLIST=PLADDR,
 RESID=RESNAME,WAIT=NO,
 BUFLEN=0,MF=L
3 CMSIUCV CONNECT,NAME=USRNAME,
 PRMLIST=PLADDR,EXIT=X1,
 COMDIR=YES,ERROR=ERR1

 4 CMS invokes program
 5 HNDIUCV SET,NAME=RESNAME,
 EXIT=X2
 . 6 exit X2 receives control
 and posts ECB
 program waits for interrupt 7 IUCV ACCEPT,
 PRMLIST=PLADDR,
 PATHID=path2,MF=L
 . 8 CMSIUCV ACCEPT,
 NAME=RESNAME,
 . PRMLIST=PLADDR,EXIT=X2
 9 HNDIUCV HLD,NAME=RESNAME
 .

10 gets connect complete interrupt .
11 exit X1 gets control and posts ECB program waits for interrupt
12 APPCVM SENDDATA PRMLIST=PLADDR, .
 PATHID=path1,BUFFER=dataddr, .
 RECEIVE=NO .
 13 gets message pending
 interrupt
 14 exit X2 receives control
 and posts ECB
 15 APPCVM RECEIVE
 PRMLIST=PLADDR,
 PATHID=path2
 BUFFER=bufaddr,
 BUFLEN=length

16 X1 gets control for FCI
 . .
 . .

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 299

 17 sending and receiving continue
 . .
 . .
18 APPCVM SEVER,PRMLIST=PLADDR,
 TYPE=NORMAL,PATH=path1,MF=L
19 CMSIUCV SEVER,NAME=USRNAME,
 PRMLIST=PLADDR, CODE=ONE
20 X1 gets control for FCI

 21 sever interrupt
 22 exit X2 receives control
 23 APPCVM SEVER,
 PRMLIST=PLADDR,
 PATHID=path2,MF=L
 24 CMSIUCV SEVER,
 NAME=RESNAME,
 PRMLIST=PLADDR
 25 X2 gets control for FCI
 26 HNDIUCV RES,
 NAME=RESNAME,
 PRMLIST=PLADDR

27 HNDIUCV CLR,NAME=USERNAME 27 HNDIUCV CLR,NAME=RESNAME
 . .
 . .
 . .
28 X1 address of exit routine X2 address of exit
 routine
29 ERR1 address of error routine ERR2 address of error
 routine
30 USRNAME DC CL8'RED' RESNAME DC CL8'BLUE'
31 RESNAME DC CL8'TARGET'
32 PLADDR DS XL40 PLADDR DS XL40

Use the HELP Facility for complete details on all APPC/VM functions, or use the following publications:

• For details on the APPCVM and IUCV macro functions, see the z/VM: CP Programming Services.
• For complete details on all CMSIUCV and HNDIUCV macro functions, see the z/VM: CMS Macros and

Functions Reference.

Virtual Machine Preparations
• The requester virtual machine should have a communications directory entry set up so it can connect

to the private resource manager. The communications directory file might have an entry that looks like
this:

:nick.TARGET :tpn.BLUE
 :luname.*USERID SERV1
 :security.NONE

Note that the transaction program name entry must match the name that the resource manager
program specified on its HNDIUCV SET. Also note that no access security information is needed for
this particular connection.

• The private server virtual machine program must set up a $SERVER$ NAMES file so it can check to see if
a requesting program is authorized. The name of the resource is BLUE and the user ID of the requesting
virtual machine is "REQ1". However, because our private server will not check security, the $SERVER$
NAMES file has an entry that looks like this:

:nick.BLUE :list.*

Program Functions
1. The user program must issue HNDIUCV to declare itself to CMS. (This function creates a buffer for CP

to store external interrupt data.) This function also specifies an exit routine address that gets control
in case of an interrupt.

2. The user program wants to connect to resource that has a TPN of BLUE. It must identify this resource
on the RESID parameter; this RESID value is a symbolic destination name, used as an index to the

APPC/VM Assembler Interface Overview

300 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

CMS communications directory file. In this step, the user program just sets up an APPCVM CONNECT
parameter list using MF=L.

The user program does not have to specify a connection parameter list extension, so it specifies
BUFLEN=0. The extension will be automatically created and filled in from information in the
communications directory. (This is because COMDIR=YES is specified in step 3.)

3. The user program issues a CMSIUCV CONNECT to actually invoke the connection to the resource
manager program and create a path (from the user program's side). The exit address, X1, is
associated with the path ID.

4. One of the following scenarios must occur for a successful private resource connection:

a. If the private resource virtual machine is already logged on, CMS must be IPLed and the SET
SERVER ON command must have been issued.

b. If the private resource virtual machine is not already logged on,

i) CP must be able to autolog it.
ii) The directory for this private resource manager virtual machine must contain an IPL CMS

statement.
iii) The virtual machine's PROFILE EXEC, which is automatically invoked during an IPL CMS, must

contain the SET SERVER ON command.

Also, in each case, FULLSCREEN must be set OFF.

CP presents an APPC/VM connection pending external interrupt to CMS for the private resource
named BLUE. CMS validates the user ID presented in the connection pending interrupt by checking
the $SERVER$ NAMES file for this virtual machine. Because * was specified for BLUE, the user ID is
automatically authorized. CMS then queues the connection pending interrupt for the private server.

When CMS is in the Ready; state for the private server, CMS invokes the specified private resource
program. The name of the program being invoked is either the resource ID (default), or the value of
the :module. tag in a matching $SERVER$ NAMES file entry if one exists.

5. The private resource manager program issues an HNDIUCV SET to identify itself to CMS as an
APPC/VM program. You must also specify a user exit address on the HNDIUCV SET macro. Control is
passed to this user exit address when an APPC/VM or IUCV connection pending interrupt is received
for the resource ID.

If there are any queued connection pending interrupts for this private resource when the HNDIUCV
SET macro is issued, control is passed to the user exit address before the instruction following the
HNDIUCV macro is executed.

6. CMS takes the interrupt buffer off the queue (with a resource ID BLUE, which matches the NAME
parameter on HNDIUCV) and passes control to the user interrupt processing exit routine at label
"X2".

(At this point, the resource manager could issue an APPCVM RECEIVE to receive the allocate data; CP
purges this data if the program does not receive it before accepting the connection.)

7. The resource manager program wants to do an ACCEPT to complete the connection. In this step, it
issues an IUCV ACCEPT with MF=L to format an IUCV ACCEPT parameter list.

8. The resource manager program issues a CMSIUCV ACCEPT to actually invoke the ACCEPT. This
completes the APPC/VM communications link with the user program and creates a path (from the
resource manager program's side). The EXIT parameter associates the address, X2, with the path ID.

9. The resource manager issues an HNDIUCV HLD for the resource (program) name BLUE. This causes
CMS to queue any subsequent connection pending interrupts for BLUE.

10. The user program is presented with a connection-complete external interrupt as a result of the
resource manager's CMSIUCV ACCEPT.

11. The exit routine at address X1 receives control as a result of the external interrupt. (X1 receives
control because it is specified on the EXIT parameter of the CMSIUCV CONNECT.)

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 301

12. The user program sends data to the resource manager by issuing an APPCVM SENDDATA. The data
being sent would be located at the address specified on BUFFER.

13. The resource manager program gets a message pending interrupt because of the user program's
SENDDATA.

14. The interrupt (exit) routine at X2 receives control, posts the ECB, then returns control to the mainline
resource manager program.

15. The resource manager receives the amount of data pending by issuing one or more APPCVM RECEIVE
functions.

16. The interrupt (exit) routine at X1 receives control for a function complete external interrupt, notifying
the user program of the completion of the APPCVM SENDDATA issued in step 12.

17. Data is sent and received back and forth between the two programs using APPCVM SENDDATA and
APPCVM RECEIVE functions.

Note: When a program specifies APPCVM SENDDATA RECEIVE=NO, it is in Send state and its partner
is in Receive state. However, a program issuing an APPCVM SENDDATA can switch conversation
states by specifying RECEIVE=YES on the SENDDATA, or by issuing the APPCVM RECEIVE function.

18. The user program completes its communications with the resource manager and wants to terminate
its APPC/VM communications path. It sets up the APPCVM SEVER parameter list.

19. The user program then issues a CMSIUCV SEVER to actually invoke the SEVER function. This also
clears the exit address associated with the communications path (specified on CMSIUCV CONNECT).

20. The interrupt (exit) routine at X1 receives control for a function complete external interrupt, notifying
the user program of the completion of the APPCVM SEVER issued in step 18.

21. The resource manager receives a sever external interrupt as a result of the CMSIUCV SEVER issued
by the source program.

22. The exit routine at address X2 gets control as a result of the external sever interrupt.
23. The resource manager program wants to terminate the communications link. In this step, it sets up

an APPCVM SEVER parameter list.
24. The resource manager issues CMSIUCV SEVER to actually invoke the sever. This clears the exit

address associated with the communications path (specified on the CMSIUCV ACCEPT).
25. The interrupt (exit) routine at X2 receives control for a function complete external interrupt, notifying

the resource manager program of the completion of the APPCVM SEVER issued in step 23.
26. The resource manager issues HNDIUCV RES to remove the hold status for resource name BLUE. This

means that the resource manager program is ready to handle the first queued connection pending
interrupt.

27. After all communications are complete and the communications path have been severed on each
side, the two programs independently issue HNDIUCV CLR. HNDIUCV CLR terminates APPC/VM
communications for the program name, and clears the general exit address (specified on HNDIUCV
SET).

28. This is the label of the exit (interrupt handler) routine. This routine receives control when an interrupt
occurs on the associated path. The routine checks for various types of interrupts, post an ECB, then
return control to the main program.

29. This is the label of an error routine. If an error is encountered while processing the associated
function, then this routine receives control.

30. This is the name that the program must first identify to CMS on HNDIUCV SET and then on any
subsequent HNDIUCV or CMSIUCV macros. The user program has a name of RED, and the resource
manager program has a name of BLUE.

31. The user program must specify the resource manager program name, BLUE, as the resource ID
(RESID) on the APPCVM CONNECT.

32. This declares 40-byte parameter list areas.

APPC/VM Assembler Interface Overview

302 z/VM: 7.4 CMS Application Development Guide for Assembler

How APPC/VM Relates to General IUCV
The Inter-User Communications Vehicle (IUCV) provides a way for program-to-program communications
within one VM system. A program using IUCV can communicate with itself, with a CP system service, or
with another program on the same system. IUCV is not part of the APPC (SNA LU 6.2) architecture. For
details on IUCV, see the z/VM: CP Programming Services.

APPC/VM, which is VM's implementation of APPC (SNA LU 6.2) protocol, includes some IUCV support.
However, because IUCV is not part of the APPC architecture, it is important to know the differences
between APPC/VM and IUCV.

To start, APPC/VM depends on a half-duplex protocol, while IUCV communication uses a full-duplex
protocol. In support of half-duplex protocol, APPC/VM defines and enforces states on each path.

Also, in APPC/VM the high-order bit of the IPTYPE field is set to designate APPC/VM from IUCV interrupts.
(The IPTYPE field is part of the interrupt information.)

APPC/VM and IUCV each provide a set of communication functions. The following list shows the
differences and similarities between APPC/VM functions and IUCV functions.

• APPC/VM and IUCV functions that work differently:

– CONNECT
– RECEIVE
– SEND (for APPC/VM, SENDDATA).

Specific differences on APPCVM macro and IUCV macro functions are described in the z/VM: CP
Programming Services.

• IUCV functions not supported on APPC/VM paths:

– PURGE
– QUIESCE
– RESUME
– REJECT (APPCVM SENDERR is similar, however.)
– REPLY (APPCVM SENDDATA can be used instead, however.)

• APPC/VM functions not supported on IUCV paths:

– SENDCNF and SENDCNFD

IUCV has no equivalent functions.
– SENDERR

IUCV REJECT is similar, however.
– SENDREQ

However, an IUCV priority 1WAY parameter data SEND is similar when that SEND is used as a signal
and does not contain any data.

• Shared APPC/VM and IUCV functions

The following IUCV macro functions can be used on APPC/VM and IUCV paths, and can be used safely in
a CMS environment:

– ACCEPT
– QUERY
– SEVER.

Other IUCV macro functions can be used on APPC/VM and IUCV paths, but should not be used in a CMS
environment because they could affect other programs in the same virtual machine.

These functions are:

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 303

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

– DCLBFR

DCLBFR declares an interrupt buffer. (Both APPC/VM and IUCV interrupts are presented in the same
buffers.)

DCLBFR should not be directly issued by a program in CMS; HNDIUCV uses DCLBFR to initialize the
virtual machine's APPC/VM environment.

– DESCRIBE

DESCRIBE gives the following information:

- The next message pending on non-APPC paths
- The next message pending on an APPC path that is in Receive state
- A SENDREQ on an APPC path.

DESCRIBE should not be used in CMS because this function clears the pending-message external
interrupt for the described message. This interrupt may not belong to the issuer of the DESCRIBE
function; thus, other programs running in the same virtual machine can be affected because the
message is lost and never reflected to the true target.

– RTRVBFR

RTRVBFR releases an interrupt buffer. (Both APPC/VM and IUCV interrupts are presented in the same
buffers.)

RTRVBFR should not be directly issued by a program in CMS; HNDIUCV and CMS abend processing
use RTRVBFR to terminate a virtual machine's APPC/VM environment.

– SETMASK and SETCMASK

SETMASK and SETCMASK disable and enable APPC and non-APPC interrupts.

These functions should not be used by a program in CMS because they disable certain APPC/VM
external interrupts for the entire virtual machine. Thus, other programs running in the same virtual
machine may be affected.

– TESTCMPL

TESTCMPL determines the next APPC or non-APPC function that has completed.

TESTCMPL can be directly issued by a program in CMS; however, the issuer must be careful that a
message ID or path ID is specified in the IUCV parameter list. If it is not, APPC/VM completes the first
message on the REPLY queue for the entire virtual machine, and that message may not belong to the
application that issued the TESTCMPL.

– TESTMSG

TESTMSG waits for the following:

- A message pending or message complete interrupt on non-APPC paths
- A message pending interrupt on an APPC path that is in Receive state
- A request-to-send interrupt on an APPC path
- A function complete interrupt on an APPC path.

TESTMSG should not be used by a program in CMS because it places the entire virtual machine in a
wait state if no incoming messages or replies are pending. Thus, other programs running in the same
virtual machine may be affected.

CMS Support of APPC/VM
CMS provides an interface to APPC/VM through two macros called CMSIUCV and HNDIUCV. Usually
CMSIUCV macros are used for creating and destroying paths and HNDIUCV macros are used for
identifying programs to CMS. CMSIUCV and HNDIUCV are similar to their IUCV counterparts but they
tell CMS about APPCVM paths that have been created or destroyed.

APPC/VM Assembler Interface Overview

304 z/VM: 7.4 CMS Application Development Guide for Assembler

Two parameters that CMS provides with the CMSIUCV and HNDIUCV macros include ERROR and EXIT.
All of the CMSIUCV and HNDIUCV macros let you specify the ERROR parameter which gives the address
of a routine that receives control when an error occurs. Most of the CMSIUCV and HNDIUCV macros let
you to specify EXIT which gives the address of an exit routine to receive control whenever an APPC/VM
external interrupt occurs on an APPV/VM path.

The following steps show you the sequence of macros you and your partner can use to set up an APPC/VM
conversation.

1. HNDIUCV SET - Identifies a program to CMS.
2. APPCVM CONNECT - Sets up an APPCVM connection parameter list using MF=L.
3. CMSIUCV CONNECT - Requests that CMS perform the connect. The COMDIR parameter on this macro

lets you indicate that you want communication directory resolution.
4. IUCV ACCEPT - Sets up an ACCEPT parameter list using MF=L.
5. CMSIUCV ACCEPT - Requests that CMS perform the accept.
6. APPCVM SEVER - Sets up the APPCVM SEVER parameter list using MF=L.
7. CMSIUCV SEVER - Requests that CMS perform the sever.
8. HNDIUCV CLR - Removes an APPC/VM program from the list of active APPC/VM programs in CMS.

Summary of APPC/VM Assembler Macro Functions
The following table summarizes APPC/VM assembler macro functions. Details on APPCVM and IUCV
macro functions are described in the z/VM: CP Programming Services. Details on CMSIUCV and HNDIUCV
macro functions are contained in z/VM: CMS Macros and Functions Reference.

Table 27. Summary of APPC/VM Assembler Macro Functions

Function Macro Description

ACCEPT IUCV Accepts the connection from a requesting program to complete a
path.

ACCEPT CMSIUCV Accepts the connection from a requesting program to complete a
path, and lets CMS know about it.

CLEAR HNDIUCV Removes an APPC/VM program name from the list of APPC/VM
programs that are active in CMS.

CONNECT APPCVM Establishes and reserves a path to communicate with another
program.

CONNECT CMSIUCV Establishes and reserves a path to communicate with another
program, and lets CMS know about the connection.

CONNECT IUCV Establishes and reserves a path for resource manager programs
to communicate with *IDENT.

HOLD HNDIUCV Temporarily places private resource connection requests on a
CMS queue.

QUERY IUCV Gets information about the external interrupt buffer and finds out
how many paths can be established.

QCMSWID CMSIUCV Gets the current CMS work unit identifier.

RECEIVE APPCVM Receives data and information sent to your program.

REPLACE HNDIUCV Replaces the exit address and UWORD for APPC/VM programs
that have been declared to CMS.

APPC/VM Assembler Interface Overview

Chapter 20. APPC/VM Assembler Interface 305

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Table 27. Summary of APPC/VM Assembler Macro Functions (continued)

Function Macro Description

RESOLVE CMSIUCV Gets values from a CMS communications directory file for
examination.

RESUME HNDIUCV Releases previously-held private resource connection requests
from a CMS queue.

SENDCNF APPCVM Sends a confirmation request to your communications partner.

SENDCNFD APPCVM Sends a response to a confirmation request.

SENDDATA APPCVM Sends data to your communications partner.

SENDERR APPCVM Sends notice to your communications partner that your program
has detected an error.

SENDREQ APPCVM Requests permission to send data.

SET HNDIUCV Declares an APPC/VM program name to CMS.

SEVER APPCVM Ends communications with another program.

SEVER CMSIUCV Ends communications with another program, and lets CMS know
about it.

SEVER IUCV Ends communications with another program when APPCVM
SEVER is not appropriate.

APPC/VM Assembler Interface Overview

306 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 21. Using Advanced APPC/VM Functions

In addition to the basic functions, APPC/VM also provides more advanced functions that you can use
in your programs. These advanced functions allow you to confirm communications with your partner
program, send error indications to your partner, ask your partner for permission to start sending data, and
synchronize your functions.

Requesting Confirmation
When you are sending data to another virtual machine, you may want to confirm that you should continue
to send. To do this, you issue the SENDCNF function and specify TYPE=NORMAL. The SENDCNF is not
complete until your partner issues one of the following functions:

• SENDCNFD to indicate that the sender can continue
• SENDERR to indicate that something is wrong
• SEVER to end communications.

When you are sending data to another virtual machine, you may want to sever the connection. You can
confirm this decision with your communications partner by issuing the SENDCNF function and specify
TYPE=SEVER.

To use SENDCNF and SENDCNFD, the program starting the conversation must indicate that confirmation
is allowed on the conversation. The program does this by specifying SYNCLVL=CONFIRM on the APPCVM
CONNECT function.

Signaling an Error
When you sense that there is an error in the communications, whether you are in Send or Receive state,
you can issue SENDERR. This signals your communications partner and causes a break in the normal
send/receive sequence.

If you are in Receive state, and issue SENDERR:

1. The error notice goes to your communications partner.
2. Your virtual machine enters Send state when the SENDERR completes.

If you are in Send state, and issue SENDERR:

1. The error notice goes to your communications partner.
2. Your virtual machine remains in Send state.

When sending an error notice to your communications partner, you can also send log data. Log data
contains information that describes the error in detail, and it can help your partner diagnose the error. For
log data to get to your partner, however, your partner must have indicated that it will accept log data. This
can be done using the LOGDATA=YES parameter for IUCV ACCEPT. Note that you can also send log data
on an APPCVM SEVER.

Requesting to Send
At some point, when your partner is sending data, you may want to interrupt your partner so that you
can send data. To do this, you issue a SENDREQ, which is presented to your partner as a request-to-send
interrupt.

Your program will be able to send data if your partner decides to change states (by issuing RECEIVE
or SENDDATA RECEIVE=YES) because of your SENDREQ However, note that your partner can choose to
ignore your SENDREQ.

Using Advanced APPC/VM Functions

© Copyright IBM Corp. 1990, 2024 307

Sending and Receiving Early Information
When issuing an APPCVM CONNECT, you can send data to your communications partner that the partner
can use before it accepts your connection.

This early data is referred to as program initialization parameters, or PIP data. Regular application
programs can set up PIP data in storage and then specify the data's address and length in the APPCVM
CONNECT parameter list extension. PIP data is sent to a partner program through a PIP variable.

Here are some possible uses for sending PIP data:

• The target program can use the information to initialize values.
• A source program could send an entire start-up program to a target.
• In a distributed environment, a central program can send identical loader information to all remote

nodes.

Target programs know if PIP data is present on an incoming connection by looking at a field (IPPIPLEN)
in the connection pending interrupt. The target program can obtain information in a PIP variable by
specifying APPCVM RECEIVE PIP=YES before accepting the connection. Programs running on CMS and
using CMS support for communication do not need to issue a receive to get a PIP variable. CMS receives
the PIP variable and places its address in register 4.

Communications servers must set up a special area when forwarding PIP data for a requesting
application. This area is called a VM communications server area. For more information on PIP data
in z/VM, see the z/VM: CP Programming Services.

Using Synchronous Functions
When you issue a synchronous APPC/VM function (by specifying WAIT=YES on the APPCVM macro), your
virtual machine goes into a WAIT state. This means you cannot issue any APPC/VM functions to any paths
until the synchronous function that you issued completes. You can, however, enter the CP commands IPL,
LOGOFF, SYSTEM RESET, and SYSTEM CLEAR to terminate the wait state.

When a synchronous APPC/VM function completes you do not get an interrupt to tell you about the
completion; instead, the function complete data goes to the output parameter list for the function.

The following can cause your APPC/VM function to complete:

• Your partner issues a function to complete your function
• Your partner logs off or resets its virtual machine
• You log off or reset your virtual machine
• Your partner completes work unit processing for APPC/VM conversations established using CMSIUCV

CONNECT or CMSIUCV ACCEPT
• You complete work unit processing for APPC/VM conversations established using CMSIUCV CONNECT

or CMSIUCV ACCEPT.

Synchronous functions are not affected by interrupts of any kind. Even if your virtual machine is enabled
for interrupts, you are not given control until your function completes.

Use synchronous functions carefully! If your communications partner does not respond, log off, or do
a system reset, your virtual machine cannot execute any instruction until you IPL, log off, reset, or clear
your virtual machine. Applications should take responsibility to avoid deadlock situations. A deadlock
situation is when two virtual machines are waiting for an action or response from each other. Do not use
the synchronous option for a program that must serve more than one user at the same time, or for a
program that must run in a multitasking environment within a virtual machine.

Using asynchronous APPC/VM functions can help you avoid a deadlock situation. An APPC/VM function
that is asynchronous (WAIT=NO is specified) may or may not complete immediately:

Using Advanced APPC/VM Functions

308 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

• When the APPC/VM function does not complete immediately, your virtual machine must wait before
issuing other APPC/VM functions on the path; however, you can issue APPC/VM functions to other paths
while waiting for the asynchronous function to complete. You get an interrupt when the function does
complete.

• When an asynchronous APPC/VM function does complete immediately, you do not receive a function
complete interrupt; however, you get the function complete data in the output parameter list.

Your communications partner sees no difference if you issue APPC/VM functions synchronously
(WAIT=YES) or asynchronously (WAIT=NO).

Note: The asynchronous capability of APPC/VM is a VM-unique implementation, it is not based on APPC
(SNA LU 6.2) architecture.

Synchronizing Updates to Multiple Resources
You can write an APPC/VM application that uses CMS's Coordinated Resource Recovery (CRR) to
coordinate updates to multiple participating resources. CRR ensures that either all updates are made
together, or no updates are made. This can help you to protect against network failure and other data
integrity problems.

Suppose that two application programs, APPLA and APPLB, want to establish a conversation and:

• APPLA wants to make updates to RESA
• APPLB wants to make updates to RESB
• APPLA and APPLB want to make sure the updates are made as a unit.

To accomplish this, APPLA must establish a protected conversation with APPLB by:

1. Setting up the parameter list using APPCVM CONNECT
2. Using CMSIUCV CONNECT to do the connection.

Because you want updates to RESA and RESB to be performed in unison, APPLA must specify
SYNCLVL=SYNCPT on the APPCVM CONNECT. A conversation established with SYNCLVL=SYNCPT is
known as a protected conversation. Using a protected conversation tells CMS that the conversation
between APPLA and APPLB is part of a logical unit of work. See the z/VM: CMS Application Development
Guide for a discussion of CMS work units and the concept of logical units of work.

After making updates to RESA and RESB, APPLA (or APPLB) can choose to either commit the changes or
roll back the changes. The commit (or rollback) marks the boundary between logical units of work.

A commit is done using the CSL routine DMSCOMM or the SAA resource recovery (also known as CPI
resource recovery) routine, SRRCMIT. A rollback is done using the CSL routine DMSROLLB or the SAA
resource recovery routine, SRRBACK. These routines are fully described in the Common Programming
Interface Resource Recovery Reference.

If an APPC/VM function completes with IPWHATRC=IPPREPAR or IPREQCOM, your partner has initiated
a commit. After preparing the other resources associated with that work unit, you should commit (or
rollback) the work unit.

If an APPC/VM function completes with IPWHATRC=IPBACK, your partner has initiated a rollback. You
should roll back the work unit associated with that conversation.

If you sever (using CMSIUCV SEVER or HNDIUCV CLR) or your partner severs (an APPC/VM function
completes with IPWHATRC=IPSABEND or IPSNORM) a protected conversation, you should roll back the
work unit associated with that conversation before doing any other processing for that work unit because
it is likely that your work unit needs to be rolled back.

If a work unit requires a rollback, all protected resources associated with that work unit, including
APPC/VM protected conversations, are forced into a state that requires a rollback. As a result, you can
only issue a rollback or one of the following APPCVM functions at this time:

• CMSIUCV SEVER with either an IUCV SEVER parameter list or an APPCVM SEVER parameter list with
TYPE=ABEND

Using Advanced APPC/VM Functions

Chapter 21. Using Advanced APPC/VM Functions 309

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

• HNDIUCV CLR
• CMSIUCV SEVER with an APPCVM SEVER parameter list with TYPE=NORMAL when the conversation is

in sever state
• APPCVM QRYSTATE
• APPCVM RECEIVE if log data is pending.

Issuing any other APPCVM function will result in a state check.

It is possible, however, that the work unit does not require a rollback. For example, if the last sync point
resulted in a rollback, it is possible that the conversation was severed during that sync point and so the
work unit does not require another rollback. A procedure for determining if a rollback is required follows.

Determining When a Sever Requires a Rollback
1. If your partner severs:

a. If IPWHATRC=IPSABEND and IPCODE=X'01xx:X', this is an allocation error. A rollback is not
required.

b. If you issue an APPC/VM function that completes with IPWHATRC=IPBACK, then a rollback is
required.

c. If you issue an APPC/VM function that initially completes with CC=0 and subsequently completes
with a function complete interrupt with IPWHATRC=IPSABEND or IPSNORM, then a rollback is
required.

d. If you issued an APPC/VM function while disabled for external interrupts and the function
completes immediately (CC=2) with IPWHATRC=IPSABEND or IPSNORM, then (while still
disabled):

i) APPCVM RECEIVE any log data
ii) Set up an APPC/VM Sever or IUCV SEVER parameter list

iii) Use CMSIUCV SEVER to sever the path and proceed with “2” on page 310 below.
e. If you issue an APPC/VM function while enabled for external interrupts and the function completes

immediately (CC=2) with IPWHATRC=IPSABEND or IPSNORM, then see “3” on page 310 below to
determine whether the work unit requires a rollback.

2. If you initiate the sever or if you sever in response to a sever from your partner (see “1.d” on page 310
above), the sever you issued may merely have freed the path ID of a conversation that was severed in
the preceding sync point that resulted in a rollback. You can determine if this is the case by checking
the APPCVM or IUCV SEVER output parameter list: If the IPFREPTH flag is 0 or the IPURGBKR flag is 1,
then a rollback is required. Otherwise, a rollback is not required.

3. The only other way to determine if a rollback is required is to query the conversation state (APPCVM
QRYSTATE) of some other conversation (if any) that is associated with the same work unit. If
IPSTATE=IPBKREQ, the associated work unit requires a rollback.

4. If protected conversations are severed due to HNDIUCV CLR, you can take one of the following actions:

• You can issue a rollback for all of the work units.
• You can terminate and let CMS end-of-command processing roll back all the work units.
• You can determine (as described in “3” on page 310 above) whether the work unit(s) associated with

the conversations must be backed out and then take the appropriate action.

Every APPC/VM protected conversation is associated with a work unit. A program can initiate multiple
protected conversations on a work unit, but can accept only one.

Note that you cannot route a SYNCLVL=SYNCPT conversation through the TSAF virtual machine or a CS
collection; only AVS machines and APPCVM programs communicating within the same system support
protected conversations.

Using Advanced APPC/VM Functions

310 z/VM: 7.4 CMS Application Development Guide for Assembler

Scenario 3: Coordinating Resources
The following scenario shows how an assembler program can make updates to three files using a
protected conversation.

Figure 52. Updating Three SFS Files Using Coordinated Resource Recovery

The application, CRREXMP1, running in Virtual Machine 1, has access to two files, CHILDS LIST and
TOYSTORE ORDERS. These files are located in two different SFS directories, CRRDIR1 and CRRDIR2,
respectively. The application, CRREXMP2, running on Virtual Machine 2, has access to one file, SANTAS
SACK, which is located in the SFS directory CRRDIR3.

Imagine that one virtual machine is operated by a child entering a Christmas list at a local toy store.
The other virtual machine are handled by one of Santa's elves at the North Pole. As the child enters the
toys, CRREXMP1 updates its two files, CHILDS LIST and TOYSTORE ORDER. CRREXMP1 then establishes
a protected conversation to CRREXMP2 (at the North Pole). CRREXMP1 will send the list of toys to be
added to the list Santa will bring the child (SANTA SACK). If CRREXMP2 is successful in updating its file (it
will first have to see if the child has been naughty or nice), it will request that the updates be committed.
Otherwise, it will request that the updates be rolled back.

Note: This same example is illustrated in z/VM: CMS Application Development Guide using CPI
Communications.

Following is a high-level overview of the assembler code that could be used to complete this scenario. For
information on the macros used in this scenario see:

• z/VM: CMS Macros and Functions Reference for CMSIUCV and HNDIUCV macros
• z/VM: CP Programming Services for APPCVM and IUCV macros in z/VM.

Sequence of Instructions for Updating Multiple Files
 CRREXMP1 CRREXMP2
 1 HNDIUCV SET 1 HNDIUCV SET
 2 DMSSSPTO
 3 DMSSETAG
 4 DMSOPEN CHILDS LIST
 5 DMSWRITE CHILDS LIST
 6 DMSCLOSE CHILDS LIST
 7 DMSOPEN TOYSTORE ORDERS

Using Advanced APPC/VM Functions

Chapter 21. Using Advanced APPC/VM Functions 311

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4

 8 DMSWRITE TOYSTORE ORDERS
 9 DMSCLOSE TOYSTORE ORDERS
 10 APPCVM CONNECT SYNCLVL=SYNCPT, MF=L
 11 CMSIUCV CONNECT
 12 IUCV ACCEPT (MF=L)
 13 CMSIUCV ACCEPT
 14 APPCVM SENDCNF
 15 APPCVM RECEIVE
 16 APPCVM SENDCNFD
 17 APPCVM SENDDATA
 18 APPCVM RECEIVE TYPE=RECEIVE
 19 APPCVM RECEIVE
 20 APPCVM SENDCNFD

 21 DMSSPTO
 22 DMSSETAG

 23 DMSOPEN SANTAS SACK
 24 DMSWRITE SANTAS SACK
 25 DMSCLOSE SANTAS SACK

 26 CMSIUCV QCMSWID 26 CMSIUCV QCMSWID

 * One of three things can happen at this point: *
 * 1. Both applications roll back the updates (steps 27-35).*
 * 2. Both applications commit the updates (steps 36-42). *
 * 3. One application tries to commit the updates but the *
 * other one rolls back (steps 43-52). *

 Both CRREXMP1 and CRRECXP2 roll back updates
 27 DMSROLLB
 28 APPCVM RECEIVE
 29 DMSROLLB
 30 APPCVM SEVER MF=L
 31 CMSIUCV SEVER
 32 APPCVM RECEIVE
 33 APPCVM SEVER MF=L
 34 CMSIUCV SEVER
 35 HNDIUCV CLR 35 HNDIUCV CLR

 Both CRREXMP1 and CRREXMP2 commit updates

 36 APPCVM SETMODFY TYPE=SEVER
 37 DMSCOMM
 38 APPCVM RECEIVE
 39 DMSCOMM
 40 APPCVM SEVER MF=L 40 APPCVM SEVER MF=L
 41 CMSIUCV SEVER 41 CMSIUCV SEVER
 42 HNDIUCV CLR 42 HNDIUCV CLR

 CRREXMP2 commits updates and then CRREXMP1 rolls back the updates

 43 APPCVM SETMODFY TYPE=SEVER
 44 DMSCOMM
 45 APPCVM RECEIVE
 46 DMSROLLB
 47 APPCVM SEVER MF=L
 48 CMSIUCV SEVER
 49 APPCVM RECEIVE
 50 APPCVM SEVER MF=L
 51 CMSIUCV SEVER
 52 HNDIUCV CLR 52 HNDIUCV CLR

The following list explains the outline of instructions shown in “Sequence of Instructions for Updating
Multiple Files” on page 311.

1. Both CRREXMP1 and CRREXMP2 assembler programs identify the program name to CMS with
HNDIUCV SET.

2. DMSSSPTO sets the synchronization point options.
3. DMSSETAG sets the transaction tag.

Using Advanced APPC/VM Functions

312 z/VM: 7.4 CMS Application Development Guide for Assembler

4. DMSOPEN opens the CHILDS LIST file in the SFS directory, CRRDIR1.
5. DMSWRITE writes to the CHILDS LIST file.
6. DMSCLOSE with NOCOMMIT option closes the CHILDS LIST file.
7. DMSOPEN opens the TOYSTORE ORDERS file in the SFS directory, CRRDIR2.
8. DMSWRITE writes to the TOYSTORE ORDERS.
9. DMSCLOSE with NOCOMMIT option closes the TOYSTORE ORDERS file.

10. APPCVM CONNECT MF=L formats APPC/VM parameter list for connect.
11. CMSIUCV CONNECT connects to CRREXMP2 with the APPC/VM parameter list
12. IUCV ACCEPT MF=L formats the IUCV parameter list for ACCEPT.
13. CMSIUCV ACCEPT accepts CRREXMP1's connection.
14. APPCVM SENDCNF ensures that CRREXMP2 has received allocation.
15. APPCVM RECEIVE gets confirmation request.
16. APPCVM SENDCNFD responds to the confirmation request.
17. APPCVM SENDDATA sends the data record to CRREXMP2.
18. APPCVM RECEIVE TYPE=RECEIVE to confirm and enter receive state.
19. APPCVM RECEIVE receives the data record and CRREXMP's request to enter receive state.
20. APPCVM SENDCNFD confirms CRREXMP1's state request.
21. DMSSSPTO sets synchronization point options.
22. DMSSETAG sets the transaction tag.
23. DMSOPEN opens SANTAS SACK file in the SFS directory, CRRDIR3.
24. DMSWRITE writes to SANTAS SACK.
25. DMSCLOSE with NOCOMMIT option closes SANTAS SACK.
26. CMSIUCV QCMSWID determines workunitid for APPC/VM paths.*

**
* One of three things can happen at this point: *
* 1. Both applications roll back the updates (steps 27-35). *
* 2. Both applications commit the updates (steps 36-42). *
* 3. One application tries to commit the updates but the *
* other one rolls back (steps 43-52). *
**

Both CRREXMP1 and CRREXMP2 roll back updates
27. DMSROLLB initiates rollback processing for returned workunitid.
28. APPCVM RECEIVE receives the rollback indication.
29. DMSROLLB performs rollback processing for returned work.
30. APPCVM SEVER MF=L formats APPC/VM parameter list for sever abend.
31. CMSIUCV SEVER severs the protected conversation with the partner.
32. APPCVM RECEIVE gets the sever indication.
33. APPCVM SEVER MF=L formats the APPC/VM parameter list for normal sever
34. CMSIUCV SEVER severs local path for protected conversation.
35. Both CRREXMP1 and CRREXMP2 assembler programs notify CMS that the program is complete with

HNDIUCV CLR.

Both CRREXMP1 and CRREXMP2 commit updates
36. APPCVM SETMODFY TYPE=SEVER severs the conversation after a successful sync point.
37. DMSCOMM initiates commit processing for the returned workunitid.
38. APPCVM RECEIVE receives the commit request indication.

Using Advanced APPC/VM Functions

Chapter 21. Using Advanced APPC/VM Functions 313

39. DMSCOMM performs commit processing for returned workunitid.
40. APPCVM SEVER MF=L formats the APPC/VM parameter list for normal sever.
41. CMSIUCV SEVER severs the local path for the protected conversation.
42. Both CRREXMP1 and CRREXMP2 assembler programs notify CMS that the program is complete with

HNDIUCV CLR.

CRREXMP2 commits the updates and then CRREXMP1 rolls back the updates
43. APPCVM SETMODFY TYPE=SEVER severs the conversation after a successful sync point.
44. DMSCOMM initiates commit processing for returned workunitid.
45. APPCVM RECEIVE receives the commit request indication.
46. DMSROLLB performs rollback processing for returned workunitid. This causes the updates made by

CRREXMP1 and CRREXMP2 to be rolled back.
47. APPCVM SEVER MF=L formats the APPC/VM parameter list for sever abend.
48. CMSIUCV SEVER severs the protected conversation with CRREXMP1.
49. APPCVM RECEIVE gets the sever indication.
50. APPCVM SEVER MF=L formats the APPCVM parameter list for normal sever.
51. CMSIUCV SEVER severs the local path for the protected conversation.
52. Both CRREXMP1 and CRREXMP2 assembler programs notify CMS that the program is complete with

HNDIUCV CLR.

Using Advanced APPC/VM Functions

314 z/VM: 7.4 CMS Application Development Guide for Assembler

Part 5. OS/MVS Simulation

This part of the document describes how CMS simulates OS/MVS services. Part 5, “ OS/MVS Simulation,”
on page 315 includes the following chapters:

• Chapter 22, “Developing OS/MVS Programs under CMS,” on page 317 describes how to develop
OS/MVS programs that can be simulated in CMS.

• Chapter 23, “Using OS/MVS Simulated Data Sets in CMS,” on page 349 describes how to use OS/MVS
simulated data sets in CMS.

© Copyright IBM Corp. 1990, 2024 315

316 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 22. Developing OS/MVS Programs under CMS

This chapter describes:

• Background of OS/MVS Simulation
• Considerations for using OS/MVS macros in CMS
• OS/MVS macros that CMS simulates
• OS/MVS Resource Management
• Using CMS libraries to aid in OS/MVS program development
• OS/MVS and CMS terminology.

For more information on OS/MVS simulation, see Chapter 23, “Using OS/MVS Simulated Data Sets in
CMS,” on page 349.

Note: The programming interfaces defined by the MVS operating system and simulated by CMS are
documented in this chapter and in Chapter 23, “Using OS/MVS Simulated Data Sets in CMS,” on page 349.
For information about these interfaces, see the MVS documentation.

OS/MVS Simulation History
When the VM operating system was being developed, applications and licensed programming products
were already running under the OS/VS1 or DOS operating systems. The VM designers saw the need to
allow these applications and program products to run in the new VM environment where our customers
could use them for new program development and testing, a major task for almost every customer shop.
Because the available IBM licensed products had to run in both operating environments, we needed to
develop a subsystem which would allow them to use the OS interface on VM. The CMS OS Simulation
subsystem was developed to satisfy that requirement.

Today, many basic OS/MVS functions are supported using the CMS OS Simulation subsystem. You should
note that it does not support all of either the OS/MVS macros or the SVC functions. The subsystem
was intended to support just those functions needed to allow the IBM program products and featured
applications to run under VM/CMS with little or no modification of the program products themselves. A list
of the OS/MVS macros and SVC functions that CMS supports can be found in Table 28 on page 320, Table
29 on page 328, Table 30 on page 335, and Table 31 on page 335.

How CMS Performs OS/MVS Simulation
When CMS OS Simulation is used, VM does not invoke MVS to handle the function. Instead, it calls a
series of programs within the CMS operating system to simulate the function of the OS/MVS system. This
simulation is not exact because OS Simulation calls CMS native functions to provide the actual services.

CMS tries to functionally simulate OS/MVS macro and SVC function interfaces in a way which provides
results to OS programs executing under CMS equivalent to the results obtained running on an MVS
system. MVS macros and SVC functions expand to call CMS OS Simulation routines which do setup,
provide control block and device interface information, and/or invoke CMS native support routines to
perform the required functions. At the same time, OS Simulation maintains pseudo-control blocks for the
OS/MVS products so that they can query and manipulate data as if they were running in an OS/MVS type
environment.

Programs using simulated OS/MVS macros run in an environment defined by CMS commands. OS
Simulation runs on top of the CMS virtual machine configuration. The accessed disks and directories
and the files residing on them comprise the files which OS Simulation will use. The FILEDEF and GLOBAL
commands define the files that the particular program will use and associate them with particular DCBs

Developing OS/MVS Programs

© Copyright IBM Corp. 1990, 2024 317

the same way the data definition (DD) statements in job control language (JCL) define the datasets that
the program would use if it ran in the MVS batch environment.

Using OS/MVS Macros in CMS Programs — Some Considerations
Before you use OS/MVS macros in your programs, you should note the following considerations:

1. OS Simulation becomes active when the first DCB is opened. It becomes inactive when the last DCB
is closed. While OS Simulation is active, no CMS commands should be issued which will change the
OS Simulation environment for any open DCB. It is best not to issue any CMS commands or macros
that could change the OS Simulation environment while OS Simulation is active.

The list of commands and macros which would change the OS Simulation environment begins
with the GLOBAL, FILEDEF, and LABELDEF commands which directly define the OS Simulation
environment. The list extends to the CMS file system commands and macros which define the files
in the OS Simulation environment. These include the FSOPEN, FINIS, FSWRITE, and FSREAD I/O
macros, the COPY, RENAME, and ERASE commands which create or delete files, the LINK, DETACH,
ACCESS, RELEASE, and FORMAT commands which manipulate disks and directories, and the TAPE
command which sets up tapes. Issuing any of these commands while OS Simulation is active changes
the environment and can cause unpredictable errors such as abending CMS.

2. Most, but not all, OS/MVS macros are supported. Some of these are supported for execution under
CMS. Others exist only to allow programs to be assembled or compiled under CMS for development.
The programs which use these restricted macros must actually be executed in a true OS/MVS
environment.

3. The simulation of OS/MVS macros by CMS is not necessarily the same as the current MVS™ support.
CMS simulates only a selected subset of OS/MVS macros and, because of operational differences
between VM and MVS, macros that are supported may work differently between the two systems.

4. Not all parameters are simulated on the OS/MVS macros CMS supports. Since all parameters do
assemble, it is very important to note which parameters are simulated. CMS ignores parameters it
does not simulate and no error messages are supplied. See “OS/MVS Macros That CMS Simulates” on
page 319 for a list of the macros CMS supports and the parameters CMS simulates.

5. The OS/MVS macros in CMS provide an OS/MVS interface to CMS services. If you are developing a
program exclusively for CMS, you should use CMS macros rather than OS/MVS macros.

6. MVS/XA supports System/370 and 370-XA expansions for most, but not all, macros. Various MVS
macros (such as WTO, ESTAE, and ATTACH) require you to use the SPLEVEL macro to generate the
proper expansion. If you use these macros in an application you plan to run on MVS/XA, you must use
SPLEVEL to generate the proper expansion. See the MVS/XA Conversion Notebook for information on
how and when MVS/XA requires you to use the SPLEVEL macro.

Notes:

a. Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.
b. If you do not plan to run your application on MVS, you do not need to use the SPLEVEL macro. CMS

supports System/370, 370-XA, and ESA/XC expansions for all the OS/MVS macros it simulates;
when you code an OS/MVS macro for a program you run on CMS, you do not need to worry about
what mode expansion gets generated.

7. OS/MVS macros simulated by CMS are not access-register mode (AR mode) capable. The calling
program must ensure that it is not in AR mode when the macro call is issued; otherwise CMS OS/MVS
simulation support will terminate the call with aX'0F8' abend code and reason code X'18'. This
support is consistent with current MVS/ESA* support.

Access registers are saved across the interface call and are restored upon return to the caller. The
CMS OS/MVS simulation function called by the interface executes in primary-space mode (non-AR
mode), so parameters associated with the call must refer to data in the caller's primary-address
space or unpredictable results may occur.

8. CMS OS Simulation is not an OS or MVS multitasked environment. It is by design a single user,
synchronous environment where the calling program waits until subtasks complete their function and

Developing OS/MVS Programs

318 z/VM: 7.4 CMS Application Development Guide for Assembler

return. In many cases this means the user session is 'tied up' until the requested simulation function
completes. These subtasks may require that an interactive environment be maintained to allow user
to respond to OS Simulation subsystem prompts.

9. Several restrictions still apply for AMODE and RMODE execution of these simulated services. Most of
the control blocks and interface parameter lists are designed to the original OS/MVS conventions of
24-bit addressing. Frequently the address fields contain control or flag information in the high order
byte. This requires that many of the key control blocks, which may be defined by user applications,
reside below the 16M line to allow proper address resolution. Applications must also ensure that OS
Simulation services are called while in the proper AMODE to ensure addressability.

10. Storage resource management can be done using either OS/MVS macro calls (GETMAIN,FREEMAIN)
or CMS native services (CMSSTOR). Both are actually implemented via the same CMS storage
management subsystem. However, the default subpool name in which CMSSTOR obtains storage
is USER, while the default subpool name used by GETMAIN/FREEMAIN is DMSOS000. (Note: The
subpool name used by GETMAIN/FREEMAIN can be changed to DMSOSnnn by specifying the SP=
parameter, where nnn is the value specified on the SP= parameter.) Because GETMAIN automatic
storage cleanup can be affected by the CMS STORECLR setting, it is not advised to mix these services.

OS/MVS Macro Libraries
There are several levels and usage classification of macro support for OS/MVS functions which CMS
maintains. Four major macro libraries differentiate these levels:
OSMACRO

Contains the macros that CMS provides for execution of programs using MVS interfaces in 370, XA, or
XC virtual machines.

Note: Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.

MVSXA
Contains the simulated MVS/XA versions of the OS/MVS macros for the execution of programs using
MVS interfaces in XA or XC virtual machines. These macros expand to allow 31-bit addressing
exploitation.

OSMACRO1
Contains the nonsimulated versions of OS/MVS macros that are used only for assembly only under
CMS.

OSVSAM
Contains the subset of supported OS/VSAM macros.

Note: The MACLIBs listed previously contain MVS SP 2.2.0 macros and DFP 2.3.0 macros.

Refer to “Using Macro Libraries” on page 21 for information on CMS and CP macro libraries.

OS/MVS Macros That CMS Simulates
When a language processor or a user-written program is executing in the CMS environment and using
OS-type functions, it is not executing OS/MVS code. Instead, CMS provides routines that simulate the
OS/MVS functions required to support OS/MVS language processors and their generated object code.

CMS functionally simulates the OS/MVS macros in a way that presents equivalent results to programs
executing under CMS. The OS/MVS macros are supported only to the extent stated in the publications
for the supported language processors and then only to the extent necessary to successfully satisfy the
specific requirement of the supervisory function.

For more information on the data management macros, see the MVS/XA Data Administration: Macro
Instruction Reference and the MVS/XA Data Administration Guide. For information on the supervisor
macros, see MVS/XA Supervisor Services and Macro Instructions.

The tables list the OS/MVS macros that CMS supports.

Notes:

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 319

1. The following charts list only the parameters that CMS functionally supports for each macro. The
MVS versions of these macros may include other parameters that CMS ignores. Parameters that CMS
ignores assemble correctly; they just don't do anything.

2. For some parameters, CMS supports only certain options. For example, CMS supports XCTL=NO for
STAE/ESTAE and DEFER=NO for STAX; it ignores XCTL=YES for STAE/ESTAE and DEFER=YES for STAX.
Because CMS does not flag ignored parameters during assembly, you should carefully check the
results of your program.

3. Some parameters such as PURGE for STAE/ESTAE and some macros such as ATTACH have no CMS
equivalents; they assemble correctly but are ignored during execution.

MVS/XA Data Management Macros
Table 28. MVS/XA Data Management Macros That CMS Simulates

Macro Description and Parameters/Options Supported

BLDL Builds a directory list for a partitioned data set.

dcb_address , list_address

BSP Backs up a record on a tape or disk.

dcb_address

BUILDRCD Causes a buffer pool and a record area to be constructed.

area_address , number_of_buffers , buffer_length , record_area_address

, record_area_length

CHECK Verifies READ/WRITE completion.

decb_address

, DSORG = ALL

CHKPT No-op.

NOP

CLOSE Completes and secures I/O processing on a DCB.

(dcb_address

, REREAD

, LEAVE

, REWIND

)

, TYPE = T

CNTRL No-op.

NOP

Developing OS/MVS Programs

320 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

DCB (BDAM)13 Constructs a data control block for BDAM.

DSORG = DA , MACRF = (

R

K I S C

W

A K I C

R

K I S C

, W

A K I C

)

, BLKSIZE = , DDNAME = , EXLST =

, LIMCT =

, OPTCD =

R

A E F

, RECFM = U

V

B

F

, SYNAD =

DCB (BPAM)13 Constructs a data control block (BPAM).
DSORG = PO , MACRF = R

W

R , W

, BLKSIZE =

, DDNAME = , EODAD = , EXLST =

, LRECL = , RECFM = U

V

F

A

, SYNAD =

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 321

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

DCB (BSAM)13 Constructs a data control block (BSAM).

DSORG = PS , MACRF = (R

C

P

W

C

P

L

R

C

P

, W

C

P

,

, BLKSIZE = , DDNAME = , EODAD =

, EXLST = , KEYLEN = , LRECL =

, RECFM = U

V

F

D

B S

, SYNAD = , OPTCD = Q

J

, BUFOFF = (0 - 99)

L

Developing OS/MVS Programs

322 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

DCB (QSAM)13 Constructs a data control block (QSAM).
DSORG = PS , MACRF = (G

P

G

M

L

D
1

, P

M

L

D
1

)

, BLKSIZE = , DDNAME = , EODAD =

, EXLST = , LRECL =

, RECFM = U

V

F

D

B

S

BS

, SYNAD =

, BUFL = , BUFNO = , BUFCB =

, OPTCD = Q

J

, BFTEK = S

A

, BUFOFF = (0 - 99)

L

Notes:
1 MACRF of D is supported for assembly only. Data mode is not supported for
execution.

DCBD Generates a DSECT for a data control block.

DSORG = (BS

DA

PO

PS

QS

)

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 323

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

DEVTYPE Obtains device-type physical characteristics.
ddloc_address , area_address

, DEVTAB

Note: The DEVTYPE interface will not return valid track or cylinder details that can
be used for DASD space calculations. It is intended only to give access to default
device characteristics. If detailed real DASD device characteristics are needed, see CP
DIAGNOSE X'210' in the z/VM: CP Programming Services or the CMS 'DEVTYPE' utility
program in the z/VM: General Information.

EXCP Executes a channel program for graphic access method (GAM).

iob_address

FEOV Forces an EOV condition on a tape or DASD file.
address

reg , REWIND

LEAVE

FIND Locates a member of a partitioned data set.

dcb_address , name_address , D

relative_address_list , C

FREEBUF Returns a buffer to the DCB buffer pool.
dcb_address , register

FREEDBUF Releases a simulated BDAM buffer.
decb_address , D , dcb_address

FREEPOOL Releases the DCB buffer pool.
dcb_address

GET Reads system-blocked data (QSAM).

GET is supported for Locate and Move modes only.

dcb_address

, area_address

GETBUF Acquires DCB buffer storage.
dcb_address , register

GETPOOL Constructs a buffer pool for a DCB.
dcb_address , number_of_buffers , buffer_length

(0)

Developing OS/MVS Programs

324 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

NOTE Manages data set positioning.
dcb_address

OPEN Prepares a DCB for I/O processing.
(dcb_address ,

(INPUT)

(INOUT)

(OUTPUT)

(OUTIN)

(RDBACK)

(EXTEND)

(UPDATE)

(REREAD)

)

, TYPE = J

POINT Manages data set positioning.
dcb_address , block_address

PUT Writes system-blocked data (QSAM).

PUT is supported for Locate and Move modes only.

dcb_address

, area_address

PUTX Returns the updated record to the data set from which it was read (QSAM).
dcb_address

, input_dcb_address

RDJFCB Obtains information from FILEDEF command about an OS/MVS data set.

(dcb_address

, (options)
1

)

Notes:
1 RDJFCB has the same options as OPEN.

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 325

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

READ (BDAM) Reads a physical input record (BDAM).
decb_address , DI

DK

DIF

DKF

, dcb_address , area_address

, ‘ S ’

, length

, ‘ S ’

, key_address

, ‘ S ’

0

, block_address

READ (BPAM and
BSAM)

Reads a physical input record (BSAM, BPAM).
decb_address , SF , dcb_address , area_address , length

, ‘ S ’

RELSE No-op.

NOP

STOW Updates partitioned dataset directories.
dcb_address , list_address

, A

C

D

R

SYNADAF Provides SYNAD analysis function.
ACSMETH = BDAM

BPAM

BSAM

QSAM

, PARM1 = , PARM2 =

SYNADRLS Releases SYNADAF message and save areas.

(no parameters)

Developing OS/MVS Programs

326 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 28. MVS/XA Data Management Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

WRITE (BDAM) Writes a physical record (BDAM).
decb_name , DA

DI

DK

DAF

DIF

DKF

, dcb_address , area_address

, ‘ S ’

, length

, ‘ S ’

, key_address

, ‘ S ’

0

, block_address

WRITE (BPAM and
BSAM)

Writes a physical record (BSAM, BPAM).
decb_name , SF , dcb_address , area_address , length

, ‘ S ’

WRITE (Create
BDAM Data Set With
BSAM)

Writes a physical record (BSAM, BDAM).
decb_name , SF

SD

SZ

, dcb_address , area_address

, length

, ‘ S ’

XDAP Reads or writes direct access volumes.

ecb_symbol , R

W

I

K

, dcb_address , area_address , length_value

, (key_address , length_address)

, blkref_address

13 CMS supports DCBs only below the 16MB line and in 24-bit addressing mode only.

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 327

MVS/XA Supervisor Macros
Table 29. MVS/XA Supervisor Macros That CMS Simulates

Macro Description and Parameters/Options Supported

ABEND Terminates processing with user-specified completion and reason codes.

comp_code

,REASON= ,

DUMP , , SYSTEM

USER

ATTACH Passes control to another program at a new task level

EP=

EPLOC= , PARAM=

, PARAM= , VL=1

,ECB= ,ETXR=

,STAI=

,ESTAI=

,RELATED=

CALL Transfers control to a control section at a specified entry.

entry_name

,(addr)

,(addr) , VL

,ID=

CHAP No-op.

NOP

DELETE Deletes a loaded program.

EP=

EPLOC= ,RELATED=

DEQ No-op.

NOP

DETACH No-op.

NOP

ENQ No-op.

NOP

Developing OS/MVS Programs

328 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 29. MVS/XA Supervisor Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

ESPIE Sets up handlers for program interrupts in XA and XC mode.

SET , exit_addr , interruptions

, PARAM=

RESET , token

TEST , parm_addr

ESTAE Sets up abend exit routines in 370, XA, and XC virtual machines.

exit_addr

0 ,CT

,OV

,PARAM= ,RELATED=

EXTRACT No-op.

NOP

FREEMAIN Releases user-acquired storage.

LC,LA=

LU,LA=

L,LA=

VC

VU

V

EC,LV=

EU,LV=

E,LV=

RC,LV=

RU,LV=

RU,SP=

R,LV=

R,SP=

,A=

,SP= ,RELATED=

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 329

Table 29. MVS/XA Supervisor Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

GETMAIN Acquires user storage.

LC,LA=,A=

LU,LA=,A=

VC,LA=,A

VU,LA=,A

EC,LV=,A

EU,LV=,A

RC,LV=

RU,LV=

R,LV=

VRC,LV=

VRU,LV=

,SP= ,BNDRY= ,LOC= ,RELATED=

IDENTIFY Adds an entry name to a loaded program.

EP=

EPLOC=

,ENTRY=

IHAEPIE EPIE work area mapping macro.

(no parameters)

IHASDWA Mapping macro for the system diagnostic work area used in ESTAE.

DSECT=

,VARMAP=

VRAMAP

Note: On entry to an ESTAE routine, SDWAGR1 and SDWAGR15 contain abend
information and not the contents of the registers at the time of the abend.

IHAVRA Mapping macro for the system diagnostic work area variable recording area.

DSECT= YES

NO

RRKEY YES

NO

LINK Passes control to another program at the same task level and returns to the calling
program.

EP=

EPLOC= , PARAM=

, PARAM= , VL=1

,ERRET=

Developing OS/MVS Programs

330 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 29. MVS/XA Supervisor Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

LOAD Reads a program into storage.

EP=

EPLOC= ,ERRET= ,LOADPT= ,RELATED=

PGLOAD No-op.

NOP

PGOUT No-op.

NOP

PGRLSE No-op.

NOP

PGSER No-op.

NOP

POST Signals event completion.

ecb_addr

, comp_code ,RELATED=

RETURN Returns from a called program.

(reg1)

(reg1 , reg2) ,T ,RC=

SAVE Saves program registers.

(reg1)

(reg1 , reg2) ,T , id_name

SETRP Makes requests for recovery from an ESTAE/ESTAI exit.

,WKAREA= ,DUMP= ,REGS= ,REASON= ,RC=

,RETADDR= ,RETREGS= ,FRESDWA= ,COMPCOD=

SNAP Dumps specified areas of storage.

DCB=

,ID=
,STORAGE=

,LIST=

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 331

Table 29. MVS/XA Supervisor Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

SPIE Sets up an exit to be given control under user selected program interrupts.

exit_addr ,(interrupts)

SPLEVEL Sets System/370 or 370-XA macro expansion.

SET=

SET

TEST

STAE Sets up an abend exit routine in a 370 virtual machine.

0

exit_addr ,CT

,OV

,PARAM= ,XCTL=NO

STAX Sets or cancels user exit for terminal attention interrupts

exit addr

STIMER Sets the timer interval and the timer exit routine.

REAL

REAL, exit_rtn_addr

TASK

TASK, exit_rtn_addr

WAIT

 , BINTVL=

DINTVL=

MICVL=

TOD=

TUINTVL=

,ERRET=

Developing OS/MVS Programs

332 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 29. MVS/XA Supervisor Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

STIMERM Sets, tests, or cancels multiple timer intervals and the timer exit routines.

Set

Test

Cancel

,ERRET= ,RELATED=

Set
SET ,ID= , BINTVL

DINTVL

MICVL

TOD

TUINTVL

,EXIT= ,PARM=

,WAIT= YES

NO

Test
TEST ,ID= , TU

MIC

Cancel
CANCEL , ID= stor_addr

ID=ALL ,TU=

SYSSTATE Conditions preferred-group macros so that access-register mode toleration code is
expanded at assembly time.

TEST

ASCENV= P

AR

ANY

TIME Gets the time of day.

DEC

BIN

TU

MIC , stor_addr

STCK , stor_addr

,ERRET=

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 333

Table 29. MVS/XA Supervisor Macros That CMS Simulates (continued)

Macro Description and Parameters/Options Supported

TTIMER Tests or cancels the timer.

CANCEL
,TU

,MIC

,ERRET=

WAIT Waits for one or more events.

event_number ,

ECB=

ECBLIST= ,RELATED=

WTO Writes a message to the operator's terminal.

' msg '

(' text ')

(' text , line_type ')

WTOR Writes a message to the operator's terminal and requests a reply.

' msg ' , reply_addr , reply_length , ecb_addr

XCTL Passes control to another program at the same task level and does not return to the
calling program.

(reg1),

(reg1 , reg2),

EP=

EPLOC= , PARAM=

, PARAM= , VL=1

Notes:

1. Complete documentation on MVS macros can be found in the MVS documentation. See the beginning
of this chapter for more information on some limitations and considerations for using OS/MVS macros
in CMS programs.

2. All of the macros in Table 28 on page 320 and Table 29 on page 328 are contained in OSMACRO
MACLIB and MVSXA MACLIB.

• OSMACRO MACLIB contains the macros that CMS provides for execution of programs using MVS
interfaces in 370, XA, or XC virtual machines.

Note: Only CMS levels prior to CMS Level 12 can execute in a 370 virtual machine.
• MVSXA MACLIB contains the simulated MVS/XA versions of the OS/MVS macros for the execution of

programs using MVS interfaces in XC or XA virtual machines.
3. With the following exceptions, all macros listed in Table 28 on page 320 and Table 29 on page 328 run

in XC, XA, and 370 virtual machines:

• ESPIE works in XC and XA virtual machines only.
• SPIE, STAE, and the STAI parameter of the ATTACH macro work in 24-bit addressing mode only.

Developing OS/MVS Programs

334 z/VM: 7.4 CMS Application Development Guide for Assembler

• In an XC or XA virtual machine, DCBs must reside below the 16MB line. (The same restriction applies
in MVS/XA.)

• MVS/XA supports 370-XA and System/370 expansions for most, but not all, macros. For
details, refer to the sixth consideration under “Using OS/MVS Macros in CMS Programs — Some
Considerations” on page 318.

4. Several of the macros are no-ops (NOPs). They are included for portability purposes and pass control
to CMS using an SVC instruction or a direct branch. CMS returns control to the program.

5. CLOSE TYPE=T (TCLOSE) is supported only for tape and DASD devices. CMS ignores a TCLOSE to any
other device and processes the next DCB in the list.

TSO Macros
Table 30. TSO Macros That CMS Simulates

Macro Parameters/Options Supported

STAX exit addr

TCLEARQ INPUT

OUTPUT

TGET buffer addr , buffer size

, EDIT

, WAIT

TPUT buffer addr , buffer size

, EDIT

, WAIT

Simulated OS/MVS Supervisor Calls

Table 31. Simulated OS/MVS Supervisor Calls

Linkage Macro Function

SVC 00 XDAP Reads or writes direct access volumes

SVC 00 EXCP Executes a channel program for graphic access method (GAM)

SVC 01 WAIT Waits for one or more events

SVC 02 POST Signals event completion

SVC 03 None Exits from called program

SVC 04 GETMAIN Acquires user storage

SVC 05 FREEMAIN Releases user-acquired storage

SVC 06 LINK Passes control to another program

14 The DEVTYPE interface will not return valid track or cylinder details that can be used for DASD space
calculations. It is intended only to give access to default device characteristics. If detailed real DASD device
characteristics are needed, see CP DIAGNOSE X'210' in the z/VM: CP Programming Services or the DEVTYPE
utility program in the z/VM: CMS Commands and Utilities Reference.

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 335

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Table 31. Simulated OS/MVS Supervisor Calls (continued)

Linkage Macro Function

SVC 07 XCTL Passes control to another program at the same task level and
does not return to the calling program

SVC 08 LOAD Reads a program into storage

SVC 09 DELETE Deletes a loaded program

SVC 10 GETMAIN/
FREEMAIN

Manipulates user free storage

SVC 11 TIME Gets the time of day

SVC 13 ABEND Terminates processing with user specified completion and reason
codes

SVC 14 SPIE Sets up an exit to be given control under user selected program
interrupts

SVC 17 RESTORE NOP

SVC 18 BLDL Builds a directory list for a partitioned data set

SVC 18 FIND Locates a member of a partitioned data set

SVC 19 OPEN Prepares a DCB for I/O processing

SVC 20 CLOSE Completes and secures I/O processing on a DCB

SVC 21 STOW Updates partitioned dataset directories

SVC 22 OPEN TYPE=J Prepares a DCB for I/O processing after an RDJFCB has been
issued

SVC 23 CLOSE TYPE=T Temporarily deactivates a tape or DASD file

SVC 24 DEVTYPE14 Obtains device-type physical characteristics

SVC 25 TRKBAL NOP

SVC 31 FEOV Forces an EOV condition on a tape or DASD file

SVC 35 WTO/WTOR Writes a message to the operator's terminal

SVC 40 EXTRACT NOP

SVC 41 IDENTIFY Adds an entry name to a loaded program

SVC 42 ATTACH Passes control to another program at a new task level

SVC 44 CHAP NOP

SVC 46 TTIMER Tests or cancels timer

SVC 46 STIMERM Tests or cancels multiple timer (real time only)

SVC 47 STIMER/STIMERM Sets the timer interval and the timer exit routine

SVC 48 DEQ NOP

SVC 51 SNAP Dumps specified areas of storage

SVC 56 ENQ NOP

SVC 57 FREEDBUF Releases simulated BDAM buffer

SVC 60 STAE Sets up an abend exit routine in a 370 virtual machine

Developing OS/MVS Programs

336 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 31. Simulated OS/MVS Supervisor Calls (continued)

Linkage Macro Function

SVC 60 ESTAE Sets up an abend exit routine in a 370, XA and XC virtual machine

SVC 62 DETACH NOP

SVC 63 CHKPT NOP

SVC 64 RDJFCB Obtains information from FILEDEF command about an OS/MVS
data set

SVC 68 SYNADAF Provides SYNAD analysis function

SVC 68 SYNADRLS Releases SYNADAF message and save areas

SVC 69 BSP Backs up a record on a tape or disk

SVC 93 TGET/TPUT Reads or writes a terminal line

SVC 94 TCLEARQ Clears terminal input queue

SVC 96 STAX Sets or cancels user exit for terminal attention interrupts

SVC 109 ESPIE Sets up handlers for program interrupts in XA and XC modes

SVC 112 PGRLSE NOP

SVC 112 PGOUT NOP

SVC 113 PGLOAD NOP

SVC 122 LINK, XCTL, LOAD Performs a link, transfer of control, or load in XA and XC virtual
machines

SVC 138 PGSER NOP

OS/MVS Macros for Assembly Only
In addition to the OS/MVS macros that CMS simulates, CMS includes many nonsimulated OS/MVS macros.
The macros are contained in OSMACRO1 MACLIB.

These macros, which are listed below, are for assembly purposes only. Because CMS does not simulate
these macros you should not use them in programs you intend to run on CMS.

For more information on these macros, see OS/390 MVS Assembly Service or DFSMS Access Service
Macros.

ATSET LOCASCB SCHEDULE
AXEXT LXFRE SDUMP
AXFRE LXRES SEGLD
AXRES MGCR SEGWT
AXSET MODESET SETFRR
BLSABDPL NIL SETL
BLSQMDEF NUCLKUP SETLOCK
BLSRESSY OIL SETPRT
BUILD PCLINK SPOST
CALLDISP PDAB SRBSTAT
CALLRTM PDABD SRBTIMER
CHANGKEY PGANY STATUS
CIRB PGFIX SUSPEND
CPOOL PGFIXA SVCUPDTE
CPUTIMER PGFREEA SYNCH
CVT PROTPSA SYSEVENT
DATOFF PRTOV TCTL
DOM PTRACE TESTAUTH
DSGNL PURGEDQ TRUNC
DYNALLOC QEDIT VRADATA
ECVT RACDEF VSMLIST
ESETL RACHECK VSMLOC
ETCON RACINIT VSMREGN

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 337

ETCRE RACLIST WTL
ETDES RACROUTE XLATE
ETDIS RACSTAT
EVENTS RACXTRT
FESTAE RELEX
FRACHECK RESERVE
GQSCAN RESUME
IOSINFO RISGNL
IOSLOOK RPSGNL

OS/MVS Resource Management
By default, CMS releases GETMAIN storage and user exit routines at SVC 202/CMSCALL and SVC 42/
ATTACH termination. This method is consistent with MVS and provides a programming environment
where clearly defined boundaries exist between programs at different SVC levels. (For a detailed
discussion of SVC-levels, end-of-command, and program boundaries, see Chapter 2, “CMS Operating
Characteristics,” on page 15.)

Note: In releases of CMS previous to CMS 5.5, CMS released GETMAIN storage and user exit routines at
end-of-command (end-of-command is when CMS displays the ready message (Ready;)).

Cleaning Up GETMAIN Storage
The SET STORECLR command specifies whether CMS cleans up GETMAIN storage and user exit routines
at end-of-command or at SVC 202/CMSCALL and SVC 42/ATTACH termination. This, in turn, affects
whether boundaries exist between programs at different SVC levels, and it affects how certain functions
(the STRINIT macro and EXECOS) work.

The default value SET STORECLR ENDSVC indicates that CMS releases GETMAIN free storage and user
exit routines when the current SVC level ends; STRINIT and EXECOS are treated as no-ops.

If you use SET STORECLR ENDCMD, CMS releases GETMAIN free storage and user exit routines at
end-of-command; STRINIT and EXECOS are handled as in previous releases.

If an entire system must retain GETMAIN storage, place SET STORECLR ENDCMD command in the
SYSTEM profile. If a particular virtual machine must retain GETMAIN storage, place the SET STORECLR
ENDCMD command in the user's PROFILE EXEC. For a particular application, you can switch SET
STORECLR from ENDCMD to ENDSVC and back using the CMSCALL macro for assembler programs, or
using a front-end exec. Note, however, that when you use the SET STORECLR command to change the
current setting, a STRINIT is performed on existing OS/MVS GETMAIN storage.

Use the QUERY STORECLR command to determine the current setting of GETMAIN storage cleanup.

The following table shows how other CMS components operate in CMS based on the STORECLR setting.

Table 32. SET STORECLR Command Setting

Component ENDCMD ENDSVC

STRINIT same No-op

EXECOS same No-op

EXEC same Resources released at SVC 202/CMSCALL
termination

EXEC2/REXX same Resources released at SVC 202/CMSCALL
termination

PROP same Resources released at SVC 202/CMSCALL
termination

Developing OS/MVS Programs

338 z/VM: 7.4 CMS Application Development Guide for Assembler

CMS Storage Management
CMS supports all GETMAIN and FREEMAIN options except for the RELATED keyword; CMS ignores
RELATED. The options CMS supports include:

• The LIST options (LC, LU, L)
• Subpool support (SP)
• RC, RU, VRC, VRU - these options enable CMS to use the CMSSTOR LOC parameter to obtain and release

storage above the 16MB line.

CMS translates GETMAIN and FREEMAIN requests into an appropriate CMS storage request. This means
that CMS supports only one storage management system based on the CMSSTOR and SUBPOOL macros.
Programs cannot use NUCON addresses for GETMAIN storage.

You can use the SET GETMAIN command to control the amount of storage obtained on a variable
GETMAIN request. When you issue a variable GETMAIN request and there is not enough contiguous
free storage to satisfy the entire request, a predetermined percentage of the largest free storage area is
allocated by default. The size of the virtual machine determines the percentage as follows:

Table 33. SET GETMAIN Storage Setting

Virtual Machine Size Percentage of the Largest Free Storage Area Allocated

Less than 4MB 67

Between 5MB and 6MB 80

Greater than 6MB 95

All CMS storage requests are satisfied from the highest available free storage address. If the above
algorithm is used followed by smaller GETMAIN requests, those requests will be satisfied from the
remaining available storage and could remain in storage long after the variable storage from GETMAIN
has been freed. This presents the possibility of fragmenting storage or not being able to load non-
relocatable modules that could be loaded prior to release VM/SP 6 and VM/XA* SP. You can use the SET
GETMAIN command to change the percentage of GETMAIN storage used to satisfy variable GETMAIN
requests, allowing additional control over the GETMAIN process.

CMS Simulation of OS/MVS Subpools
CMS simulation of OS/MVS subpools is very similar to the way subpools work in MVS/XA. One exception is
that only subpools 0-127 are valid in CMS; indicating any other subpool results in an abend.

Use the SP parameter on GETMAIN or FREEMAIN to request that CMS create or release a subpool. Make
sure that the name you use for the subpool adheres to the CMS subpool naming conventions. (See the
z/VM: CMS Macros and Functions Reference for a description of these conventions.)

How CMS Handles GETMAIN Storage
By default, CMS releases GETMAIN storage at SVC 202/CMSCALL or SVC 42/ATTACH termination. This
removes the need to issue the STRINIT macro. Therefore, when SET STORECLR ENDSVC is specified or
defaulted to, CMS treats the STRINIT macro as a no-op.

Note: Prior to CMS 5.5, CMS released GETMAIN storage at end-of-command.

For example,

1. Assume that Program A issues an SVC 202 to call Program B
2. Program B issues a GETMAIN to obtain some free storage
3. When Program B returns to Program A, CMS releases the free storage that Program B obtained.

If you want CMS to release GETMAIN storage at end-of-command, use the SET STORECLR ENDCMD.
For the previous example, let's assume that SET STORECLR ENDCMD was issued before Program A was
invoked. For this case, when Program B returns to Program A, CMS would not release the free storage

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 339

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Program B had obtained. Program A would have to issue a STRINIT to explicitly release the free storage
that Program B had obtained.

Program Management
1. MVS/XA Linkage Editor at DFP level 2.3.0 provides AMODE and RMODE support.
2. CMS treats the RMODE and AMODE attributes in the same manner as MVS/XA. MVS services that

run only in 24-bit addressing mode in MVS/XA run only in 24-bit addressing mode on XA and XC
virtual machines. MVS services that run only in 31-bit addressing mode in MVS/XA run only in 31-bit
addressing mode on XA and XC virtual machines. MVS services that run in either addressing mode in
MVS/XA run in either mode on XA and XC virtual machines.

3. CMS supports 31-bit addressing for the LOAD, LINK, ATTACH, XCTL, and DELETE macros. After
completion of a LOAD, bit 0 of register 0 indicates the program's addressing mode. When a program
has been called with LINK/ATTACH/XCTL, bit 0 of register 14 indicates the addressing mode of the
calling program.

Program Boundaries in OS/MVS Simulation
CMS simulates the MVS task control block and the MVS task block boundaries. CMS makes available and
releases OS/MVS exits and programs in a manner similar to MVS. Abend exits are available to any active
program within the task. They are cleaned up when the program that issues them terminates.

CMS defines a task at the first SVC level associated with the command or when an OS/MVS ATTACH macro
is issued. This is not meant as multitasking; rather, it determines:

• Exit availability for percolation (percolation is the transfer of control between exits).
• When CMS cleans up called programs and exits.

CMSCALL and ATTACH are treated as MVS task block boundaries. Thus, exits such as ESPIE exits and
ESTAE exits are available to programs called with CMSCALL as long as the program that issued the exit
is still active. Except for STAX exits, exits are cleaned up when the program that issued them ends. STAX
exits are available after the program that issues the STAX ends; they survive until task clean up is done by
CMS. CMS performs task clean up when the SVC level designated as a task ends. In MVS, STAX exits are
cleaned up only at task clean up.

OS/MVS Exit Availability and Clean-Up Behavior
Assume that (as shown in the following example) Program A starts executing, issues some macros, and
then calls Program B. Program B issues some macros and then uses the ATTACH macro with ESTAI to call
Program C. Program C issues some macros and then does an SVC 202 to Program D. Figure 53 on page
341 shows the exit environment in effect at the point that Program D starts executing. The dotted lines
(<---->) represent the task boundaries (similar to the MVS task control block boundary) that separate
the programs. Programs cannot access the exit routines across a task boundary. For example, the exits
available to Program D are:

ESPIE C1
ESTAE D1
ESTAI C1
STAX D1

When Program D ends, the ESTAE exit it established is cleaned up. The STAX exit it established remains
available until Program C completes, since the ATTACH macro defined a task boundary to CMS. For more
specific information about the individual exits and their clean up (request block/program level or task) see
the MVS/XA Supervisor Services and Macro Instructions book.

Developing OS/MVS Programs

340 z/VM: 7.4 CMS Application Development Guide for Assembler

 MACROS ISSUED EXIT ENVIRONMENT
<--->

 PROGRAM A POINTER->ESTAE-A2-->ESTAE-A1
 ESTAE-A1
 ESTAE-A2
 CMSCALL PROGRAM B

 PROGRAM B
 STIMERM-B1 POINTER->STIMERM-B1->STIMERM-B3->STIMERM-B2
 STIMERM-B2 POINTER->ESPIE-B1
 STIMERM-B3 POINTER->ESTAE-B1
 ESPIE-B1
 ESTAE-B1
 ATTACH PROGRAM C, ESTAI-C

<--->

 PROGRAM C

 ESPIE-C1 POINTER->ESPIE-C1
 SVC 202 to PROGRAM D

 PROGRAM D

 ESTAE-D1 POINTER->ESTAE-D1->ESTAI-C
 STAX-D1 POINTER->STAX-D1

<--->

Figure 53. OS/MVS Exit Availability and Clean-Up Behavior

Note: The exits defined by Program A and Program B (for example, ESTAE-A1 and ESPIE-B1) are not
available across the boundary established by the ATTACH. The ESTAI parameter can be used on ATTACH
to intercept abnormal termination. Any programs called after the ATTACH can also use the ESTAI-C1 exit
program.

When several exits are defined for a program, the order of availability is the same as MVS. For SPIE,
ESPIE, STAE, ESTAE, ESTAI, and STAX, a LIFO order is followed. The transfer of control between
exits is called percolation. Percolation happens with STAE/ESTAE and STAI/ESTAI exits. During abend
processing, CMS checks SPIE/ESPIE exits before STAE/ESTAE or STAI/ESTAI exits. If control is given to
a SPIE/ESPIE exit, no further exit processing is done in CMS. For STIMERM and STIMER, the order of
availability is determined by the time interval requested as in MVS. The pointers (->) in Figure 53 on page
341 illustrate the order of availability of exits.

Note:

1. ATTACH processing in CMS differs from the same process in an OS environment. When the ATTACH
macro is issued, Program B halts execution until Program C completes and returns through an OS
Simulated Exit (SVC 3) or a branch instruction. Program B has control returned to it at the instruction
following the ATTACH of Program C, with a return code in Register 15 and in the ECB (if specified),
even if there is a program check or the ABEND macro is issued during the execution of Program C or
Program D. System return codes 15A and 155 will be generated when CMS is not able to locate the
requested text deck or module respectively. (For more information on OS loading modules, refer to the
CMS COMPSWT macro in the z/VM: CMS Application Development Guide.) When CMS is able to locate
the program in the ATTACH macro (in Program C) and that program exits, CMS updates Register 15 of
Program B and the ECB return code (if ECB was specified on the ATTACH macro) with the last value of
Register 15 in Program C.

2. SET STORECLR ENDCMD should be used with caution as it effectively limits the user to one globally
defined task for the life of the active command. If EXECOS is issued at any point within the command,
all OS/MVS resources (such as exits, maclibs, and loadlibs) are freed without any regard for task
or request block boundaries. If EXECOS is issued in the CMS default environment (SET STORECLR
ENDSVC), it resets DOS and VSAM pointers only if they are active. It does not affect OS/MVS resources.
CMS releases OS/MVS resources during program (request block) or task level clean up.

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 341

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

Abnormal Termination
1. To exploit 31-bit addressing for program interrupt handling or abend handling, CMS supports the

ESPIE, ESTAE, and SETRP macros, and the ESTAI parameter of the ATTACH macro.

For ESPIE, an EPIE work area is provided. For ESTAE, an SDWA work area is provided.
2. CMS supports ABEND macro reason codes. (These reason codes are passed to the exit routine using

the SDWA.)
3. CMS does not fully support task control block/request block (TCB/RB) environments for ESPIES as in

OS/MVS. For example, CMS allows a program to override/delete a specific SPIE/ESPIE environment
established under a previous TCB.

Timer Support
CMS simulates the MVS/XA STIMERM macro to provide multiple timer interval support. STIMERM is
supported in all virtual machine modes.

STIMER and STIMERM allow you to set a timer interrupt request for a specified time interval or for an
interval that expires at a specified time of day. Up to 16 such requests may be in effect at a time with
STIMERM (total of 17 per task with STIMER).

Using CMS Libraries
CMS provides three types of libraries to aid in OS/MVS program development:

• Macro libraries contain macro definitions, copy files, or both
• Text, or program libraries, contain object programs (compiler output)
• LOADLIB libraries contain link edit files (load modules).

These CMS libraries are functionally like OS/MVS partitioned data sets (PDS); each has a directory and
members. These libraries are stored in a data format unlike either a real MVS PDS or a normal CMS file.
Because they are not like other CMS files, you create, update, and use them differently than you do other
CMS files. Although these library files are similar in function to OS/MVS partitioned data sets, OS/MVS
macros should not be used to update them. The z/VM: CMS Application Development Guide discusses
macro libraries and text libraries. The following sections discuss LOADLIB libraries.

OS/MVS Module Libraries and CMS LOADLIBS
The OS/MVS relocating loader allows the user to load a member of a CMS LOADLIB or an OS/MVS module
library on an OS/MVS formatted disk. The OS/MVS LINK, LOAD, ATTACH, and XCTL macros are supported.
In addition, the OSRUN command (which generates a LINK SVC) loads and executes members directly
from the console.

For the LINK, LOAD, ATTACH, and XCTL macros, the libraries specified in the LOADLIB global list are
searched. If the requested member is not found, CMS looks for a TEXT file by that name. Then, if still not
found, the TXTLIBs specified in the TXTLIB global list are searched for the member name.

For the OSRUN command, the libraries specified in the LOADLIB global list are searched. If the member is
not found and the user has a $SYSLIB LOADLIB file, it is searched for the member name. (TEXT files and
TXTLIBs are not considered by OSRUN.)

You can use the PARM operand to pass OS parameters to the module in the CMS LOADLIB or OS/MVS
module library. If the parameters contain blanks or special characters, they must be enclosed in quotation
marks. To include quotation marks in the parameters, use double quotation marks. The parameters are
passed in OS format: register 1 points to a fullword containing the address of a character string headed by
a halfword field containing the length of the character string. The parameters are restricted to a maximum
length of 100 characters.

Note: You may not pass parameters (PARM=) to the module if you issue the OSRUN command from a CMS
EXEC file. The OSRUN command can be issued from a REXX or an EXEC 2 file with no restrictions.

Developing OS/MVS Programs

342 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

Executing OS/MVS Module Libraries
If the module to be executed resides in an OS/MVS module library on an OS/MVS formatted disk, the disk
must be accessed and the library must be defined (through the FILEDEF command) to make it known to
CMS.

For example, access the OS/MVS disk as a B-disk at the address 250:

ACCESS 250 B

Suppose SYS1.TESTLIB is an OS/MVS module library on the OS/MVS disk and contains the member
TEST1.

Use the FILEDEF command to relate SYS1.TESTLIB to the CMS LOADLIB called OSLIB LOADLIB:

FILEDEF $SYSLIB DISK OSLIB LOADLIB B DSN SYS1 TESTLIB
 (DSORG PO RECFM U BLOCK 7294

The ddname specified on the FILEDEF command must be $SYSLIB. The file name (OSLIB), specified on
the FILEDEF command, can be any name. The file type must be LOADLIB.

After issuing this FILEDEF, you can refer to the OS module library, SYS1.TESTLIB, by using the CMS file
identifier OSLIB LOADLIB.

Before you try to execute TEST1, use the GLOBAL command to identify the CMS LOADLIBs to be
searched. The library name must correspond to the file name specified in the FILEDEF command. For
example,

GLOBAL LOADLIB OSLIB

Then, the OSRUN command searches OSLIB LOADLIB for the member, TEST1, to load and execute. For
example,

OSRUN TEST1

Creating and Executing CMS LOADLIBs
If the program to be executed resides on a CMS disk, use the LKED command. The LKED command
creates a CMS LOADLIB from a CMS TEXT file. For example:

LKED TESTFILE

takes the CMS TEXT file, TESTFILE TEXT, and creates the CMS LOADLIB, TESTFILE LOADLIB. The CMS
LOADLIB created by the LKED command is an OS simulated partitioned data set (PDS) named TESTFILE
LOADLIB and contains one member named TESTFILE.

For more information on input to the LKED command refer to “The LKED Command” on page 344.

Before executing TESTFILE, use the GLOBAL command to identify the LOADLIB to be searched:

GLOBAL LOADLIB TESTFILE

Then the OSRUN command loads, relocates, and executes the TESTFILE member of TESTFILE LOADLIB:

OSRUN TESTFILE

Maintaining CMS LOADLIBs
The LOADLIB command provides the utility necessary to maintain the CMS LOADLIBs. The following
parameters are provided:
COPY

Copy members from one LOADLIB to another Merge complete LOADLIBs Copy with SELECT or
EXCLUDE

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 343

COMPRESS
Compress a CMS LOADLIB

LIST
LIST members of a CMS LOADLIB

For more detailed information on the LKED, GLOBAL, OSRUN, and LOADLIB commands, see the z/VM:
CMS Commands and Utilities Reference.

Concatenating Files
To define more than one library with the same ddname, use the CONCAT option of the FILEDEF command.
You can concatenate the LOADLIB files on OS/MVS disks with each other or with CMS LOADLIB files. Any
library to be searched must be specified in the GLOBAL LOADLIB statement. The data set with the largest
block size should be specified first (both in the FILEDEF and in the GLOBAL list). CMS files do not require a
file definition. The GLOBAL list determines the order in which the libraries are searched.

For GLOBAL libraries, the filemode on a related concatenated FILEDEF is honored. If the file cannot be
found on the specified cms disk, an error message is issued during open processing for the ddname. If
a filemode of '*' is used on FILEDEFs relating to GLOBAL libraries, the established search order finds the
first occurrence of the file and uses it. However, the use of filemode '*' can increase search time and
degrade overall performance if there are many disks in the search order.

For example, search two OS/MVS files and a CMS LOADLIB for the member, THETA, using the following
commands:

ACCESS 250 B (if 250 is the address of the OS/MVS disk)
FILEDEF $SYSLIB DISK OSLIB LOADLIB DSN SYS1 LIB1
 (DSORG PO RECFM U BLOCK 7294)
FILEDEF $SYSLIB DISK MYLIB LOADLIB B DSN SYS1 LIB2 (CONCAT)
GLOBAL LOADLIB OSLIB MYLIB DMSGPI
OSRUN THETA

If any library in a global list (or concatenation) resides on an OS/MVS format disk, then the first library in
the concatenation for those global libraries must reside on an OS/MVS format disk. For example, if both
CMS and MVS LOADLIBs are to be used in the same concatenation, one of the MVS LOADLIBs must be the
first library in the concatenation. The remaining CMS and MVS LOADLIBs can follow in any order desired.

For example, the following sequence of commands may be used:

FILEDEF $SYSLIB DISK OSLIB1 LOADLIB * DSN SYS1 LIB1
 (DSORG PO BLOCK 2320)
FILEDEF $SYSLIB DISK OSLIB2 LOADLIB * DSN SYS1 LIB2
 (DSORG PO CONCAT BLOCK 2320)
FILEDEF $SYSLIB DISK TESTLIB1 LOADLIB *
 (DSORG PO CONCAT BLOCK 2320)
GLOBAL LOADLIB OSLIB1 OSLIB2 TESTLIB1

The first FILEDEF command for $SYSLIB should describe the first library file name in the GLOBAL list. Its
attribute is used when the libraries are searched. It is advisable not to code the CONCAT option on the
first FILEDEF command because it clears all previous FILEDEFs for that ddname.

For a file in a GLOBAL list, FILEDEF attempts to open the file on the specified disk. If the file cannot be
found on the specified disk, an OPEN error message is issued.

Using filemode * degrades performance of concatenated files.

The LKED Command
The LKED command uses the MVS/XA Linkage Editor for the actual link of the TEXT file to the LOADLIB
as an executable module. To link edit CMS files, you can issue the FILEDEF command to identify input to
the MVS/XA Linkage Editor. Primary LKED input is a data set known to the linkage editor as SYSLIN, which
can be described in the fname operand of the LKED command. The file type of the input file named in the
command line must be TEXT. Optionally, you can override the fname operand by issuing a FILEDEF that
defines SYSLIN as the ddname of an alternate primary input source. If your alternate input is a CMS file,
the choice of file type is unrestricted. The contents of the SYSLIN dataset may be:

Developing OS/MVS Programs

344 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

1. Object text such as assembler or compiler output
2. Linkage editor control statements
3. A combination of object text and control statements.

Linkage editor control statements can be inserted before, between, and after object modules and other
control statements. Editing procedures can be used to construct files to meet your requirements. Linkage
editor INCLUDE statements may be used to designate explicitly the following files or file members as
secondary linkage editor input:

1. CMS TEXT files
2. Members of CMS TXTLIB files
3. Members of CMS LOADLIB files
4. Members of OS/MVS object libraries
5. Members of OS/MVS load libraries.

A FILEDEF must be issued before the LKED command to define a unique ddname for each file to be
included as secondary linkage editor input. An INCLUDE statement in the SYSLIN dataset must specify
the ddname assigned to the file by your FILEDEF. For library files, the statement must also specify
all members of the library that are to be included as input. The following example shows all FILEDEF
commands and INCLUDE statements used to identify input files.

CMS commands:

FILEDEF LIBDEF DISK MYLIB TXTLIB B
FILEDEF TXTDEF DISK MYFILE TEXT C
LKED INPUT (LIBE TESTLIB

SYSLIN input:

INCLUDE LIBDEF(CSECT1,CSECT2)
INCLUDE TXTDEF
NAME TESTPROG

The LKED command links CSECT1 and CSECT2 from the MYLIB TXTLIB with the MYFILE TEXT file, builds
TESTLIB LOADLIB, and puts the executable module, TESTPROG, in TESTLIB LOADLIB. The INPUT TEXT
file contains the SYSLIN input.

INCLUDE statements must begin in column 2. The applicable statement formats are described in the
MVS/XA Linkage Editor and Loader User’s Guide.

Use the following CMS commands to execute TESTPROG:

GLOBAL LOADLIB TESTLIB
OSRUN TESTPROG

When SYSLIN input to the LKED command is an assembled object file in fixed-block format residing on an
OS/MVS disk, the RECFM FBS option of the FILEDEF command must be specified.

Example of identifying an OS/MVS object library and CMS TXTLIB
The following FILEDEF commands and SYSLIN input identify a member of an OS/MVS object library and a
CMS TXTLIB.

CMS commands:

FILEDEF OSOBJ DISK OBJECT FILE Q DSN SYS1 FEOBJ (RECFM FBS
 LRECL 80 BLOCK 3120
FILEDEF TXTDEF DISK NEWLIB TXTLIB B

SYSLIN input:

INCLUDE OSOBJ(MEMBER1)
INCLUDE TXTDEF(CSECT1)

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 345

Automatic library search is available for either CMS or OS/MVS type library members if the FILEDEF
for the dataset to be searched specifies SYSLIB as the ddname. Additional libraries can be selected for
automatic search by placing linkage editor LIBRARY statements in your SYSLIN input file. Each library
statement must contain the associated ddname and a list of members within the library to be included
in the search. A FILEDEF must be issued before the LKED command to assign a unique ddname to each
dataset to be searched. The CONCAT option of the FILEDEF command is valid for LKED input datasets
only when the ddname is SYSLIB and the input file type is TXTLIB. To expand the automatic SYSLIB
search, the user may combine the members of several CMS libraries into a single composite library. The
automatic search facility applies to CMS TXTLIBs and LOADLIBs and to OS object libraries and LOAD
libraries.

Example of automatic library search and concatenating CMS TXTLIBs
The following example shows FILEDEF commands and SYSLIN input for an automatic library search and
concatenating CMS TXTLIBs as input to the LKED command.

CMS commands:

GLOBAL TXTLIB SEARCH1 SEARCH2 SEARCH3
FILEDEF SYSLIB DISK SEARCH1 TXTLIB A (CONCAT
FILEDEF LIBDEFA DISK SEARCH4 LOADLIB (RECFM U
FILEDEF LIBDEFB DISK OSTEXT LIBRARY D DSN OBJMODS

SYSLIN input:

LIBRARY LIBDEFA(MEMBER1,MEMBER2)
LIBRARY LIBDEFB(MEMBER3,MEMBER4)

LIBRARY statements must begin in column 2. The GLOBAL command is only needed to identify
concatenated TXTLIBs as input to the linkage editor. It is not needed for those libraries specified in the
linkage editor LIBRARY statements. You cannot use SYSLIB for TXTLIB and LOADLIB in the same LKED
session. For LOADLIB input to the linkage editor, the RECFM U option of the FILEDEF command must be
specified.

As shown in the example, to concatenate TXTLIBs as input on the LKED command, the ddname on the
FILEDEF command must be SYSLIB. The file name, SEARCH1, specified on the FILEDEF command, can be
any valid TXTLIB file name. (This file name does not have to correspond to any file names listed on the
GLOBAL command.) The file type must be TXTLIB, and the file must be a fixed-formatted file.

If you concatenate TXTLIBs, all the TXTLIBs listed on the GLOBAL command are searched and the TXTLIB
specified on the FILEDEF command is ignored. The GLOBAL command determines the order in which the
libraries are searched. If you do not concatenate TXTLIBs, you do not need to issue a GLOBAL command.
Only the TXTLIB specified on the FILEDEF command is searched.

The default FILEDEF commands issued by the LKED command for the ddnames presented to the Linkage
Editor are as follows:

FILEDEF SYSLIN DISK FNAME TEXT * (RECFM F BLOCK 80 NOCHANGE
FILEDEF SYSLMOD DISK fname LOADLIB A1 (RECFM U BLOCK 260 NOCHANGE
-or-
FILEDEF SYSLMOD DISK libname LOADLIB A1 (RECFM U BLOCK 260 NOCHANGE
FILEDEF SYSUT1 DISK fname SYSUT1 *
FILEDEF SYSPRINT DISK fname LKEDIT A1
-or-
FILEDEF SYSPRINT PRINTER
-or-
FILEDEF SYSPRINT DUMMY

At the completion of the LKED command, all FILEDEFs that do not have the PERM option are erased.

Example of linking a program that requires more than one library
In the following example, your assembler program, TEST TEXT, calls a routine, SUB0000, from a user
library, USERLIB TXTLIB. TEST TEXT also calls routines from the MYLIB library. Then, the LKED command
places an executable module called TEST0000 in the TESTLIB LOADLIB.

Developing OS/MVS Programs

346 z/VM: 7.4 CMS Application Development Guide for Assembler

You can define and create the appropriate libraries using one of the following two methods:

Method 1

First, create the following SYSLIN input file called INPUT TEXT:

INCLUDE TEXTDEF
LIBRARY LIBDEF(SUB0000)

Next, enter the following CMS commands:

FILEDEF TXTDEF DISK TEST TEXT A
FILEDEF SYSLIB DISK MYLIB TXTLIB *
FILEDEF LIBDEF DISK USERLIB TXTLIB *
LKED INPUT (LIBE TESTLIB NAME TEST0000

To execute TEST0000, enter the commands:

GLOBAL LOADLIB TESTLIB
OSRUN TEST0000

Note: Note that by using the library statement, instead of the INCLUDE statement, the indicated
member(s) are only added to the LOADLIB as they are required by LKED to resolve external references
found in the program. The INCLUDE and LIBRARY statements must begin in column 2.

Method 2

Enter the following CMS commands:

GLOBAL TXTLIB USERLIB MYLIB
FILEDEF SYSLIB DISK USERLIB TXTLIB * (CONCAT
LKED TEST (LIBE TESTLIB NAME TEST0000

To execute TEST0000, enter the commands:

GLOBAL LOADLIB TESTLIB
OSRUN TEST0000

OS/MVS and CMS Terminology
CMS uses many OS/MVS terms, but there are several OS/MVS functions that CMS performs somewhat
differently. See Table 34 on page 347 to help you become familiar with some of the equivalents (where
they do exist) for OS/MVS terms and functions. It lists some commonly used OS/MVS terms and discusses
how CMS handles the functions they imply.

Table 34. OS/MVS Terms and CMS Equivalents

OS Term/Function CMS Equivalent

cataloged procedure EXEC files can execute command sequences similar to cataloged procedures, and
provide for conditional execution based on return codes from previous steps.

data set Data sets are called files in CMS. CMS can simulate certain OS/MVS data sets and
can read real OS/MVS data sets only if they are sequential or partitioned. CMS can
never write to real OS/MVS data sets. CMS reads and writes DOS VSAM data sets.

data definition (DD) card The FILEDEF command lets you perform the functions of the JCL DD statement to
specify device types and output file dispositions.

data set control block
(DSCB)

Information about a CMS disk file is contained in a file status table (FST).

EXEC card To execute a program in CMS you specify only the name of the program if it is an
exec, MODULE file, or CMS command. To execute TEXT files, use the LOAD and
START commands.

Developing OS/MVS Programs

Chapter 22. Developing OS/MVS Programs under CMS 347

Table 34. OS/MVS Terms and CMS Equivalents (continued)

OS Term/Function CMS Equivalent

job control language (JCL) CMS and user-written commands perform the functions of JCL.

job step Command or Exec

link-editing The CMS LKED command creates LOADLIB libraries from CMS TEXT files or
OS/MVS object modules. The CMS LOAD command loads TEXT files into virtual
storage, and resolves external references; the GENMOD command creates
MODULE files.

load module Load modules are members of CMS LOADLIB libraries. LOADLIB members are
loaded, relocated, and executed by the OSRUN command, and LOADLIB members
are loaded and relocated by the NUCXLOAD command. Also, LOADLIB members
are referenced by the LINK, LOAD, ATTACH and XCTL macros.

object module Assembler and high-level language compiler output is placed in CMS files with a
file type of TEXT.

OS/MVS Refers to the OS and MVS operating systems.

STEPCAT, JOBCAT VSAM catalogs can be assigned for jobs or job steps in CMS by using the special
ddnames IJSYSCT and IJSYSUC when identifying catalogs.

partitioned data set CMS LOADLIBs, MACLIBs, DOSLIBs, and TXTLIBs are CMS files which resemble
partitioned data sets.

STEPLIB, JOBLIB The GLOBAL command establishes macro, text, and LOADLIB libraries; you can
indirectly provide job libraries by accessing and releasing CMS disks that contain
the files and programs you need.

task SVC or program level

utility program Functions similar to those performed by the OS/MVS utility programs are provided
by CMS commands.

volume table of contents
(VTOC)

The list of files on a CMS disk is contained in a file directory.

Developing OS/MVS Programs

348 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 23. Using OS/MVS Simulated Data Sets in
CMS

This chapter describes:

• OS/MVS record formats that CMS can simulate
• Identifying I/O files and devices to OS simulation
• Using OS/MVS simulated data sets and OS/MVS data sets in CMS
• Accessing data through OS simulation
• Using the OS/MVS simulated buffering techniques
• Opening, reading, writing and closing data sets
• OS/MVS exit routines simulated in CMS
• End-of-volume processing.

Overview of OS/MVS Simulated Data Sets
A data set is a collection of logically related data records that are stored on a volume. Data sets are called
files in CMS. In this chapter, data set has the same meaning as a file in CMS.

OS simulation lets you define your data sets three ways:

• OS/MVS simulated data sets - resides on CMS format DASD and has a file mode number of 4
• OS/MVS data sets - resides on OS/MVS format DASD
• CMS format files - resides on CMS format DASD.

You can read or write OS/MVS simulated data sets using OS simulation, but, you can only read OS/MVS
data sets.

To read or write data sets using OS simulation, you must describe the data to be processed, identify the
access method, and identify the buffering technique to be used.

• To find out more about describing data, see “Data Set Organization” on page 349, “Record Formats in
OS Simulation” on page 350, “Identifying I/O Files and Devices to OS Simulation” on page 357, “Using
OS/MVS Simulated Data Sets in CMS” on page 363, and “Using OS/MVS Data Sets in CMS” on page 368.

• To find out more about access methods, see “Accessing Data through OS/MVS Simulation” on page 373.
• To find out more about buffering techniques, see “Using the OS/MVS Simulated Buffering Techniques”

on page 375.

Data Set Organization
CMS can use OS/MVS data that is organized in three ways:

• Sequential: Records are organized in physical rather than logical sequence. Given one record, the
location of the next record is determined by the physical position in the data set. You must use the
sequential data set organization for all magnetic tape devices, but it is optional on direct access devices.

• Partitioned: Independent groups of sequentially organized records, called members, are in direct access
storage. Each member has a simple name stored in a directory that is part of the data set.

• Direct: Records within the data set, which must be on a direct access volume, may be organized in any
manner you choose. You specify addresses by which records are stored and retrieved directly.

For more information on sequential, partitioned, and direct data set organization, see the MVS/XA Data
Administration Guide.

Using OS/MVS Simulated Data Sets in CMS

© Copyright IBM Corp. 1990, 2024 349

Record Formats in OS Simulation
Sequential, partitioned, and direct data sets consist of records. A record is the basic unit of information
used by a processing program. In OS simulation, records can be in one of three formats:

• Fixed-length records
• Variable-length records
• Variable-length spanned records.

Blocking is the process of grouping records before they are written on a volume. A block consists of one
or more logical records written between consecutive interrecord gaps (IRGs). For more information on
blocking, see “Blocking for CMS Format Files” on page 365.

You can identify your record format in the data control block using options in the DCB macro or in the
FILEDEF command. For example, to specify the file, APPLE, as a variable spanned record, you could use
the command:

FILEDEF APPLE DISK APPLE FILE A4 (RECFM VS

Or, you could use the macro:

DCB DDNAME=APPLE,RECFM=VS,DSORG=PS,MACRF=(GL)

Fixed-Length Records
The size of fixed-length (format-F) records is constant for all records in the data set. If the records are
blocked, then the number of records within a block is constant for every block in the data set, unless the
data set contains a truncated (short) block as the last block of the file. If the data set contains unblocked
format-F records, one record constitutes one block. See Figure 54 on page 350 for an illustration.

Figure 54. Fixed-Length Records

To indicate that a file consists of fixed-length records, use the F, FB, FS, or FBS options on the FILEDEF
command or DCB macro.

FILEDEF FRUIT DISK PEAR EXEC A4 (RECFM F

indicates that the file, PEAR EXEC, has a fixed-length record format.

The options you can specify with RECFM have the following characteristics:
F

specifies that the data set contains fixed-length records.

Using OS/MVS Simulated Data Sets in CMS

350 z/VM: 7.4 CMS Application Development Guide for Assembler

B
specifies that the data set contains blocked records.

S
specifies that the records are written as standard blocks. Standard blocks must conform to the
following specifications:

• All records in the data set are format-F records.
• No block except the last block is truncated.
• Every track except the last contains the same number of blocks.
• The data set organization is physical sequential.

Do not code S for fixed-length records that were created using a record format other than standard.

Fixed-Length ANSI Records
ANSI records can only be read from and written to ANSI tapes. Fixed-length Format-F records that exist
on ANSI tapes are stored in 7-bit ASCII code. Fixed-length ANSI records and blocks are similar to those
shown in Figure 54 on page 350 except they may include a block prefix. The block prefix precedes the
data and can vary in length from 0 to 99 bytes. See Figure 55 on page 351 for an illustration.

Figure 55. Fixed-Length ANSI Records

You can use the QSAM or BSAM access method to read a fixed-length record. Using QSAM or BSAM to
read records with block prefixes requires that you specify the BUFOFF operand in the DCB. The block
prefix can be 0 to 99 bytes long. When using QSAM, you cannot access the block prefix on input. When
using BSAM, you must account for the block prefix on input and output.

You can use the F or FB option of RECFM to specify fixed-length ANSI records. For example, to be read
from an ANSI tape, you could use the following DCB:

DCB DSORG=PS,DDNAME=ORANGE,MACRF=(GL),
 LRECL=100,BLKSIZE=120,BUFOFF=20,RECFM=F

In this DCB, BUFOFF specifies the length of the block prefix. This length is included in the length specified
in the BLKSIZE. RECFM=F indicates that the data contains fixed length records.

When writing to an output file, BUFOFF must be 0 or L. The option L specifies that a block descriptor word
of 4 bytes will be written. The only block prefix that OS simulation will write is a BDW.

For more information on the block prefix and ANSI records, see the MVS/XA Data Administration Guide.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 351

Variable-Length Records
Format-V provides for variable-length records and variable-length record segments. The first 4 bytes of
each record, record segment, or block, make up a descriptor word containing control information. You
must allow for the additional 4 bytes in both your input and output buffers.

Block descriptor word
A variable-length block consists of a 4-byte block descriptor word (BDW) followed by one or more logical
records or record segments. The first 2 bytes in the BDW specify the block length and the second 2 bytes
are reserved. If you do your own blocking, you must supply the BDW. For variable blocks, the minimum
buffer length is 9 bytes.

Record descriptor word
A variable-length logical record consists of a 4-byte record descriptor word (RDW) followed by the data.
The first 2 bytes contain the length of the logical record. The last 2 bytes must be 0 because these are
used for spanned records. When using variable-length records on output, you must provide the RDW; for
input, the operating system provides the RDW.

Figure 56 on page 352 shows blocked and unblocked variable length records without spanning.

Figure 56. Nonspanned, Format-V Records

See the MVS/XA Data Administration Guide for more information on descriptor words.

To specify that a file consists of variable-length records, use the V or VB option on the DCB macro or
FILEDEF command. For example,

DCB DDNAME=BANANA,RECFM=VB,DSORG=PS,MACRF=(GL)

indicates that the file, BANANA, contains variable blocked records.

The V or VB options have the following characteristics:
V

specifies that the data set contains variable-length records.

Using OS/MVS Simulated Data Sets in CMS

352 z/VM: 7.4 CMS Application Development Guide for Assembler

B
specifies the data set contains blocked records.

Variable-Length ANSI Records
Variable-length ANSI records can only be read from and written to ANSI tapes. Variable-length records
that exist on ANSI tapes are recorded in 7-bit ASCII code. These records are called format-D records.

Variable-length ANSI records are similar to those shown in Figure 56 on page 352 except they contain a
record control word (RCW) instead of an RDW. The RCW is a 4-byte field that describes the record and
is internally equivalent to the RDW. (See “Record descriptor word” on page 352 for more information on
RDW.) Variable-length ANSI records may also contain a block prefix. See Figure 57 on page 353 for an
illustration.

Figure 57. Nonspanned, Format-D Records for ANSI Tapes

To specify that a data set contains variable-length ASCII tape records, use the D option of the RECFM
parameter. You can also use the DB option to indicate variable blocked ANSI records. RECFM can either
be specified on the FILEDEF command or the DCB macro. Support for variable ANSI records is available
through both QSAM and BSAM access methods.

Following is an example of a DCB that specifies variable-length ANSI records.

DCB DSORG=PS,DDNAME=ORANGE,MACRF=(GL),
 LRECL=100,BLKSIZE=1020,BUFOFF=20,RECFM=DB

The BUFOFF parameter indicates a block prefix will be read. When using QSAM access method for input,
the block prefix cannot be returned to the application. When writing to an output file using QSAM or
BSAM, BUFOFF must be 0 or L. In CMS, you can only write a block prefix using L. For variable records,
using L specifies that you want to write a record descriptor word (RDW).

The length specified for BLKSIZE in the DCB includes the length of the block prefix. For format-D, the
minimum value for BLKSIZE or BUFL for variable-length ANSI records BUFL is 18 bytes, the maximum
value is 9999 bytes.

For more information about variable-length ANSI records, see the MVS/XA Data Administration Guide.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 353

Variable Spanned Records
Variable spanned records are logical records that extend across more than one block. CMS supports
spanned records in QSAM and BSAM. With spanned records, a record larger than the block size is split into
segments and written in two or more blocks.

• For unblocked records, each block contains only one record or one segment.
• For blocked records, a block can contain a combination of records and segments. However, a block will

never contain more than one segment from the same logical record.

Logical record length for spanned records must not exceed 65535.

Since the record length is not dependent on block size, the block size can be set to the one that is best for
a given device or processing situation. Block size is not restricted by the maximum record length of a data
set.

When unit record devices, such as punches, printers, and readers, are used with spanned records, the
system assumes that unblocked records are being processed and the block size must be equivalent to the
length of one print line or one card. In this case, records that span blocks are written one segment at a
time.

You can specify variable spanned records using the FILEDEF command or DCB macro. For example,

FILEDEF PEACHES DISK PEACH FRUIT A4 (RECFM VBS

specifies that the file with a ddname of PEACHES has variable blocked spanned records. Note that when a
CMS DASD device is used, the file containing the variable spanned records must have a file mode number
of 4.

Segment descriptor word
Each record segment in a spanned record consists of a segment descriptor word (SDW) followed by the
data. The segment descriptor word, similar to the RDW, is a 4 byte field that describes the segment. See
“Record descriptor word” on page 352 for information on RDWs.

The first 2 bytes contain the length of the segment, including the 4-byte SDW. The third byte of the SDW
contains the segment control code, which specifies the relative position of the segment in the logical
record. The segment control code is in the rightmost 2 bits of the byte. (The segment control codes are
listed in Table 35 on page 354.) The remaining bits of the third byte and all of the fourth byte are reserved
and must be 0.

Table 35. Segment Control Code for SDW

Binary Code Relative Position of Segment

00 Complete logical record

01 First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first or last segment.

The SDW for the first segment replaces the RDW for the record after the record has been segmented. You
or the operating system can build the SDW, depending on which access method is used.

For an illustration of variable spanned records, see Figure 58 on page 355.

Using OS/MVS Simulated Data Sets in CMS

354 z/VM: 7.4 CMS Application Development Guide for Assembler

Figure 58. Variable Spanned Records

For more information on variable spanned records, see the MVS/XA Data Administration Guide.

Variable Spanned ANSI Records
Variable spanned records that exist on ANSI tapes are recorded in 7-bit ASCII code. They are similar to
those shown in Figure 58 on page 355 except that they contain a segment control word (SCW) instead
of an SDW. The SCW is a 5-byte field that describes the record and is internally equivalent to the SDW.
(See page “Segment descriptor word” on page 354 for more information on SDW.) Variable spanned ANSI
records may also contain a block prefix. See Figure 59 on page 356 for an illustration.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 355

Figure 59. Variable Spanned ANSI Records

To specify that a data set contains variable spanned ANSI tape records, use either the DS or DBS option
of the RECFM parameter. RECFM can either be specified in the FILEDEF command or DCB macro. Support
for variable spanned ANSI records is available through both QSAM and BSAM access methods.

The following example specifies variable spanned ANSI records to be read from a tape.

DCB DSORG=PS,DDNAME=ORANGE,MACRF=(GL),
 LRECL=100,BLKSIZE=1020,BUFOFF=20,RECFM=DBS,BFTEK=A

The BFTEK=A option specifies that the logical record interface will be used. For ANSI spanned records,
RECFM=DS and RECFM=DBS is supported only through LRI in QSAM mode. For more information, see
“Logical Record Interface” on page 376.

The BUFOFF parameter indicates a block prefix will be read. When using QSAM access method for input,
the block prefix cannot be returned to the application. When writing to an output file using QSAM or
BSAM, BUFOFF must be 0 or L. In CMS, you can only write a block prefix using L. For variable spanned
records, using L specifies that you want to write a segment descriptor word (SDW).

Null Segments
A 1 in bit position 0 of the SDW indicates a null segment. A null segment means that there are no more
segments in the block. Bits 1 to 7 of the SDW and the remainder of the block must be binary zeros. If you
create a data set file using null segments, the results are unpredictable.

Using OS/MVS Simulated Data Sets in CMS

356 z/VM: 7.4 CMS Application Development Guide for Assembler

Moving Variable Spanned Records
Use the MOVEFILE command to move variable spanned records from any device supported by VM to any
other device supported by VM. Note that when a CMS DASD device is used, the file containing the variable
spanned records must have a file mode number of 4. For example,

FILEDEF IN TAP1 SL (RECFM VS
FILEDEF OUT DISK ARIZONA BBALL A4 (RECFM VS LRECL 1024
 BLOCK 512
MOVEFILE IN OUT

This moves the first file from the IBM standard labeled tape on TAP1 to the file ARIZONA BBALL A. The
input record length and input block size for the IN file are taken from the tape label. The output file
attributes on FILEDEF are used for the OUT file.

Error Handling for Spanned Records
If an error occurs during spanned record processing, error message 120 with error code 8 is issued.

Other errors include:

• If record segments of a variable spanned record are found to be in an improper sequence, unpredictable
result can occur.

• If the record area is too small to contain a logical record, the GET or PUT will fail.

In either of these cases, if the SYNAD address is available, it will receive control and the error information
can be obtained through the SYNADAF macro. If no SYNAD address is specified, CMS will abend.

For more information on SYNAD, see “Exit Routines” on page 387 and the MVS/XA Data Administration
Guide.

When spanned records are stored on multiple volumes, errors may occur if a volume that begins with a
middle or last segment is mounted first or if an FEOV macroinstruction is issued followed by another GET.

Identifying I/O Files and Devices to OS Simulation

For the application programmer, the most significant difference between the MVS and CMS support is
how the input and output (I/O) files are defined to the system. In MVS, you set up the data definition
(DD) statements in the OS/MVS job control language (JCL) to define the input and output datasets to the
program. For example:

 //MYIDX JOB (XYZ),'MYNAME',CLASS=A,MSGCLASS=A
 //RUNIT EXEC PGM=MYPROG
 //MYINPUT DD DSN=MYID.INPUT.DATA,DISP=SHR
 //MYOUTPUT DD DSN=MYID.OUTPUT.DATA,DISP=OLD

In this example, MYPROG is the application program and MYINPUT is the name the program uses to
refer to its input file. MYOUTPUT is the name the program uses to refer to its output file. To run this
program, you would submit this JCL and the batch job would run in a separate initiator address space
under jobname MYIDX.

Whenever you execute an OS/MVS program under CMS which has input or output files, you must first
identify the files to CMS with the FILEDEF command. The FILEDEF command in CMS describes the input
and output files. The FILEDEF command serves the same purpose as the JCL DD statement.

To run the above program under CMS OS simulation, you must define the I/O to the system using the
FILEDEF command and execute the program using the CMS LOAD and START commands. For example:

 FILEDEF MYINPUT DISK INPUT DATA A
 FILEDEF MYOUTPUT DISK OUTPUT DATA A
 LOAD MYPROG \
 START / or simply LOAD MYPROG (START

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 357

The program will then be executed in the CMS Virtual Machine's address space while the CMS user waits
for it to complete.

When you enter the FILEDEF command, you specify:

• The ddname
• The device type
• A file identification, if the device type is DISK
• Type of label on your tape file, if tape label processing is specified
• Options (if necessary).

Some guidelines for entering these specifications follow.

Specifying the ddname
If the FILEDEF command is issued for a program input or output file, the ddname must be the same as the
ddname or file name specified for the file in the source program. For example, you can have an assembler
language source program that contains the line:

INFILE DCB DDNAME=INPUTDD,MACRF=(GL),
DSORG=PS,RECFM=F,LRECL=80

If you want to use the CMS file MYINPUT FILE A1 as your input file, you must issue a FILEDEF for this file
before executing the program.

FILEDEF INPUTDD DISK MYINPUT FILE A1

When you want to read or write to the file, MYINPUT FILE A1, your program can refer to it using the
ddname, INPUTDD. If the input file you want to use is on an OS/MVS disk accessed as your C-disk and it
has a data set name of PAYROLL.RECORDS.AUGUST, then your FILEDEF command might be:

FILEDEF INPUTDD C1 DSN PAYROLL.RECORDS.AUGUST

The ddname, INPUTDD, is now associated with the OS/MVS file, PAYROLL.RECORDS.AUGUST.

Specifying the Device Type
The device type can be specified for 4 situations, reading input files, writing to output files, executing
programs that you do not want real I/O to be performed, and clearing ddnames.

For input files
The device type you enter on the FILEDEF command indicates the device from which you want records
read. It can be DISK, TERMINAL, READER (for input from real cards or virtual cards), or TAPn (for tape).
Using the above example, if your input file is to be read from your virtual card reader, the FILEDEF
command might be as follows:

filedef inputdd reader

Or, if you were reading from a tape attached to your virtual machine at virtual address 181 (TAP1):

filedef inputdd tap1

For output files
the device you specify can be DISK, PRINTER, PUNCH, TAPn (tape), or TERMINAL.

Using OS/MVS Simulated Data Sets in CMS

358 z/VM: 7.4 CMS Application Development Guide for Assembler

For DUMMY files
if you do not want any real I/O performed during the execution of a program for a disk input or output file,
you can specify the device type as DUMMY. For example,

filedef inputdd dummy

For clearing existing ddname:
Use the CLEAR option. Clearing a ddname before defining it ensures that a file definition does not exist
and that any options previously defined with the ddname no longer exist. For example,

filedef inputdd clear

Entering File Identifications

Using a CMS file
If you are using a CMS disk file for your input or output, specify:

filedef ddname disk filename filetype filemode

The file mode field is optional; if you do not specify it, your A-disk is assumed. If * is used for the file mode
of an output file, unpredictable results may occur.

Using an OS/MVS simulated data set
If you want an output file to be constructed in OS/MVS simulated data set format, you must specify the
file mode number as 4. For example, if a program contains a DCB for an output file with a ddname of
OUTPUTDD and you are using it to create a CMS file named DAILY OUTPUT on your B-disk, specify:

filedef outputdd disk daily output b4

Using an OS/MVS data set
If your input file is an OS/MVS data set on an OS/MVS disk, you can identify it in several ways:

• If the data set name has only two qualifiers, for example HEALTH.RECORDS, you can specify:

filedef inputdd disk health records b1

• If it has more than two qualifiers, you can use the DSN keyword and enter:

filedef inputdd b1 dsn health records august 1990
 — or —
filedef inputdd b1 dsn health.records.august.1990

Or you can request a prompt for a complete data set name:

filedef inputdd b1 dsn ?
Enter data set name:
health.records.august.1990

Note: When you enter a data set name using the DSN keyword either with or without a request for
prompting, you should omit the device type specification of DISK, unless you want to assign a CMS file
identifier, as in the example below.

• You can also relate an OS/MVS data set name to a CMS file identifier:

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 359

filedef inputdd disk ossim file c1 dsn monthly records
 — or —
filedef inputdd disk ossim file c1 dsn monthly.records

Then you can refer to the OS/MVS data set MONTHLY.RECORDS by using the CMS file identifier, OSSIM
FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output file or if you enter only the
ddname and device type on the FILEDEF command then CMS issues a default file definition, as follows:

FILEDEF ddname DISK FILE ddname A1

where ddname is the ddname you assigned with the DCB macro in your program or on the FILEDEF
command.

For example, if you assign a ddname of OSCAR to an output file and do not issue a FILEDEF command
before you execute the program, then the CMS file FILE OSCAR A1 is created when you execute the
program.

If the file type of a CMS input file, FILE ddname A1, is the same as the assigned ddname, the file can be
identified by a default file definition. Even though an input file can be defined explicitly or by default, if an
attempt is made to read the file and the file is not found, unpredictable results may occur.

Specifying CMS Tape Label Processing
You can use the label operands on the FILEDEF command to indicate the type of label processing to be
done for your file. For example, to process a file on an ANSI labeled tape at the virtual address, 182, use
the command,

FILEDEF MAGIC TAP2 AL VOLID LAKER

The following types of label processing can be performed by CMS:

• ANSI label and ANSI user label (AL/AUL)
• IBM standard label and IBM standard user label (SL/SUL)
• Nonstandard label (NSL)
• No label (NL)
• Bypass label processing (BLP)
• No CMS tape label processing (LABOFF).

CMS supports the MVS convention for writing standard labels in non-compacted mode when the data
is actually written in 3480 compaction mode. This allows 3480 compacted tapes to be more portable
between CMS and MVS systems. Open processing will check the HDR2 tape label tape recording
technique field and the users requested (or defaulted) tape recording format code in the tape FILEDEF.
If either indicates compaction, the tape drive must actually support the IDRC data compaction feature or
else the open will fail. Message DMS115S will be issued if the FILEDEF tape format indicates compaction
and the tape drive does not support the feature. Message DMS434E will be issued if the existing HDR2
label indicates data compaction and the tape drive does not support the feature.

If CMS OS Simulation is used to add data to an existing tape file using either the OPEN EXTEND or
FILEDEF (DISP MOD processing, the new data must conform to the existing tape recording technique
as specified in the HDR2 label. If it does not, OPEN processing will protect the integrity of the data by
adjusting the user's recording format to match the recording format of the existing data.

For more information on CMS tape label processing, see “Tape Labels in CMS” on page 151.

Using OS/MVS Simulated Data Sets in CMS

360 z/VM: 7.4 CMS Application Development Guide for Assembler

Specifying Options
The FILEDEF command has many options; those mentioned below are a sampling only. For complete
descriptions of all the options of the FILEDEF command, see the z/VM: CMS Commands and Utilities
Reference.

Supplying File Format Information
If you are using the FILEDEF command to relate a data control block (DCB) in a program to an input or
output file, you may need to supply some of the file format information on the FILEDEF command line,
such as the block size (BLOCK or BLKSIZE), record length (LRECL), record format (RECFM), and data set
organization (DSORG). For example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=OUT,MACRF=(PM),DSORG=PS

then, when you are issuing a FILEDEF for this ddname, you must specify the format of the file. To create
an output file on disk blocked in OS/MVS simulated data set format, you could issue:

filedef out disk myoutput file a4
(recfm fb lrecl 80 block 1600

To punch the output file onto cards, you would issue:

filedef out punch (lrecl 80 recfm f

You can omit file format information on the FILEDEF command line whenever it is supplied on the DCB
macro or whenever your file exists on an OS/MVS disk. For existing CMS disk files, format information is
required only if you want OS-simulated data set formats other than F or V.

When the OPEN macro instruction is executed, the CMS simulation of the OS OPEN routine initializes the
data control block (DCB). The DCB fields are filled in with information from the DCB macroinstruction, the
information specified on the FILEDEF command, or if the data set already exists, the data set label. See
“Filling in the DCB information” on page 382 for more information on DCB information.

Removing and Retaining File Definitions
To remove any existing definition for the specified ddname, use the CLEAR operand. Clearing a ddname
before defining it ensures that a file definition does not already exist and that any options previously
defined with the ddname no longer have effect.

Be careful not to clear a file definition after the corresponding DCB has been opened. The OS macros rely
on information set up by the FILEDEF command. If this information is cleared, the macros are not able to
function properly and unpredictable results can occur.

Note: Execs or programs should never issue the FILEDEF * CLEAR command because it will clear
FILEDEFs which are needed by other programs. If those programs try to use the cleared FILEDEFs to open
or close a file, errors will result.

Usually, when you execute one of the language processors, all existing file definitions are cleared. If the
development of a program requires you to recompile and re-execute it frequently, you might want to use
the PERM option when you issue file definitions for your input and output files. For example:

cp spool punch to *
filedef indd disk test file a1 (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, because you spooled your virtual punch to your own virtual card reader, output files are
placed in your virtual reader. You can either read or delete them.

All file definitions issued with the PERM option stay in effect until you log off, specifically clear those
definitions, or redefine them:

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 361

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

filedef indd clear
filedef outdd tap1 (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is redefined as a tape file.

When you issue the command:

filedef * clear

all file definitions are cleared, except those you enter with the PERM option.

When a program abends, or when you issue the HX Immediate command, all file definitions are cleared,
including those entered with the PERM option.

Adding Records to a File
When you issue a FILEDEF command for an output file and assign it a CMS file identifier that is identical
with an existing CMS file, the existing file is replaced by the new output file if anything is written to that
ddname. If you want, instead, to have new records added to the bottom of the existing file, you can use
the DISP MOD option:

filedef outdd disk new update a1 (disp mod

The file must be on a disk accessed as read/write. Note that an extension of a disk is read-only.

You can also add records to the end of a file using the EXTEND parameter on the OPEN macro. For more
information, see “Adding records to the end of an existing file” on page 379.

Specifying a Member Name of a Data Set
If the file you want to read is a member of an OS/MVS partitioned data set (or a CMS MACLIB or TXTLIB),
you can use the MEMBER option to specify the member name. For example:

filedef test c dsn sys1.maclib (member test

defines the member TEST from the OS/MVS macro library SYS1.MACLIB.

Receiving Control during I/O Operation
The AUXPROC option of the FILEDEF command can be used to monitor and modify I/O operations. It
requires some knowledge of the control blocks, OPSECT and FCB, in order to be used. See the z/VM: CMS
Macros and Functions Reference for information on OPSECT and FCB.

Use the FILEDEF AUXPROC option to indicate the fullword address of an auxiliary processing routine you
have written. The AUXPROC option is valid only when FILEDEF is executed by an internal program call.
It is invalid when entered as a terminal command because it must specify an address. Your AUXPROC
routine will receive control from CMS before any device I/O is performed. The CMS language interface
programs use this feature for special I/O handling of certain (utility) data sets. If your AUXPROC routine
issues an OS OPEN on a file, you must make sure that any changes to the file attributes do not interfere
with any other file processing.

At the completion of your auxiliary routine processing, control returns to CMS, signaling whether I/O has
been performed. If it has not been done, CMS performs the appropriate device I/O.

When the routine receives control from CMS, the general purpose registers contain the following
information:

GPR2
= data control block (DCB) address

GPR3
= base register for CMS

GPR8
= CMS OPSECT address

Using OS/MVS Simulated Data Sets in CMS

362 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

GPR11
= file control block (FCB) address

GPR14
= return address in CMS

GPR15
= auxiliary processing routine address

all other registers
= work registers

The FCBSECT can be found in the DMSOM MACLIB as member CMSCB. The OPSECT can be found in the
DMSOM MACLIB as member IO. See the z/VM: CMS Macros and Functions Reference for information about
OPSECT and FCBSECT.

The auxiliary processing routine must provide a save area to save the general purpose registers. This
routine must also perform the save operation. CMS does not provide the address of a save area in
general purpose register 13, as is usually the case. When control returns to CMS, the general purpose
registers must be restored to their original values. Control is returned to CMS by branching to the address
contained in general purpose register 14.

GPR15 is used by the auxiliary processing routine to inform CMS of the action that has been or should be
taken with the data block as follows:

Register Content Action

GPR15=0 No I/O performed by AUXPROC routine. CMS performs I/O.

GPR15<0 I/O performed by AUXPROC routine and error was
encountered. CMS takes error action.

GPR15>0 and GPR15<X'10000' I/O performed by AUXPROC routine with residual count in
GPR15.

GPR15=X'10000' I/O performed by AUXPROC routine with zero residual count.

GPR15 should not be returned with a value greater than X'10000'. If it does, the system will treat the last
two bytes of GPR15 as the residual count.

Passing Information to the DMSTVI Routine
An interface routine, DMSTVI, can be used to give control to a different multivolume switching routine
than the one supplied with VM or to a tape management system. Use the SYSPARM option to pass
information not included on the FILEDEF or LABELDEF command to the DMSTVI routine. See “Passing
Information to the DMSTVI Routine” on page 399 for more information on SYSPARM and the DMSTVI
routine.

Using OS/MVS Simulated Data Sets in CMS
The CMS access method support allows you to store your OS/MVS data on DASD in two different formats:

1. CMS format - like any CMS minidisk file
2. OS/MVS simulated format - file mode number 4

In general, OS/MVS simulation uses the CMS file formats to simulate different types of OS/MVS files. For
more information on the OS record formats, see the MVS/XA Data Administration Guide.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 363

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

OS Record Format CMS File Format for Simulation

F
Fixed, Unblocked

FB
Fixed, Blocked

FBS
Fixed, Standard Block

F
Fixed format

V
Variable, Unblocked

VB
Variable, Blocked

VS
Variable, Spanned

VBS
Variable, Blocked, Spanned

U
Undefined format

V
Variable format

As long as the file mode number specified on the FILEDEF command for your output file is not 4, OS/MVS
simulation will write your data to the DASD device in standard CMS format. A file mode number 4
indicates that the file is to be written in OS/MVS simulated format.

Storing OS/MVS Data in CMS Format DASD Files
CMS format files created by OS/MVS simulation have the following attributes:

• Each logical OS record is written as a separate record (line) in the CMS file, even if a blocked OS record
format is used.

• For variable format files (V and VB), the 4-byte block descriptor word (BDW) and each 4-byte record
descriptor word (RDW) is deleted before the records are written. On input, OS/MVS simulation restores
the descriptor words for V format records inside the virtual storage I/O buffers. The stripping and
restoring of descriptor information makes the OS created files compatible with CMS created files and
CMS utilities.

• The CMS record length for fixed format files is equal to the LRECL defined in the file's DCB. For variable
format files, the CMS record length is equal to the length of the longest record in the file.

• For fixed format files (F, FB, and FBS), the file must be referenced with the same LRECL defined in the
file's DCB.

Specifying CMS Data Files
To illustrate how OS/MVS simulation creates CMS format files, assume that you have defined your output
file using the following FILEDEF command;

FILEDEF OUTFILE DISK CMSFORM FILE A1 (LRECL 20 BLKSIZE 60 RECFM FB

This requests a CMS format file (A1) that contains fixed length records of 20 bytes (LRECL 20, RECFM FB).
Let's say your application writes five records to this file and then closes it. If you were to XEDIT the file,
you would see the following:

Using OS/MVS Simulated Data Sets in CMS

364 z/VM: 7.4 CMS Application Development Guide for Assembler

CMSFORM FILE A1 F 60 Trunc=60 Size=2 Line=1
 Col=1 Alt=10
===== * * * Top of File * * *
===== Record 1 01234567890
===== Record 2 01234567890
===== Record 3 01234567890
===== Record 4 01234567890
===== Record 5 01234567890
===== * * * End of File * * *

Note that although blocking was requested in the FILEDEF command (LRECL 20 BLKSIZE 60), there is no
record blocking in the output CMS file. Each OS record is written as a separate CMS record.

Blocking for CMS Format Files
Here are some concepts you should know about blocking for CMS format files under OS/MVS simulation:

• Using a blocked record format (FB, FBS, VB, VBS) reduces the amount of CMS file system overhead
associated with OS/MVS data management requests by reducing the number of file system requests
made by OS/MVS simulation.

With blocking, OS/MVS simulation can read or write several CMS records at a time. The number of
records read or written is the number of records in one OS/MVS block. However, each logical OS/MVS
record is still recorded as a separate CMS record on the DASD device.

Without blocking, OS/MVS simulation must call the file system once for every record in the file.
• Under QSAM simulation, CMS does all of the blocking and deblocking for you, so the application does

not have to worry about where records begin and end in its I/O buffers. For FB format files, QSAM
simulation will only write a short block for the very last block in the file.

• Under BSAM and BPAM simulation, it is the application's responsibility to block and deblock records in
the I/O buffers. If you write a short block (by reducing the value of the DCBBLKSI field in the DCB), all
subsequent blocks will be written using the shorter block size, even if you restore the original DCBBLKSI
value after the "short write". Additionally, on input, CMS uses the LRECL and BLKSIZE information
specified for the input file to perform any blocking. CMS has no way of knowing what block sizes were
used to write the file to the device.

Storing OS/MVS Data in OS/MVS Simulated DASD Files
For some of your OS/MVS applications, you may want to store your data in OS/MVS format; that is,
actually write blocked data to the device in physical blocks, rather than breaking it up into logical records
first. For these applications, CMS provides OS/MVS simulated files.

OS/MVS simulated files are maintained on CMS disks but in OS format rather than in CMS format. Because
they are CMS files, you can edit, rename, copy, or manipulate them just as you would any other CMS file.
These files are created and identified by specifying a file mode number of 4 on the FILEDEF command
that describes the file.

By simulating OS/MVS macros, CMS simulates the following access methods so that OS/MVS data
organized by these access methods can reside on CMS disks:

• BDAM
• BPAM
• BSAM/QSAM
• VSAM.

See “Accessing Data through OS/MVS Simulation” on page 373 for more information on these access
methods.

Because CMS does not simulate the indexed sequential access method (ISAM), no OS/MVS program using
ISAM can execute under CMS. Therefore, no program can write an indexed sequential data set on a CMS
disk.

OS/MVS simulated files have the following attributes:

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 365

• Each block of information is written to DASD intact as a single record in the CMS file.
• For fixed format files (F, FB, and FBS), the file must have the same LRECL and BLKSIZE in the DCB as

the file you are referencing. One exception to this is when you are writing FB or FBS format files under
BSAM or BPAM simulation. For this case, you may specify a BLKSIZE value that is less than the BLKSIZE
of the file you are referencing.

• For variable format file (V and VB), all block and record descriptor words are written to the file as part of
the block (just as it would be by an OS or MVS system).

• The CMS record length for the file is equal to the length of the largest block in the file (for fixed format
files, all blocks are the same size).

• OS simulated blocks consist of OS simulated records. The term OS simulated block corresponds to the
CMS record. There is no equivalent term in CMS for the OS simulated record. See Figure 60 on page 366
for clarification.

OS simulated OS simulated OS simulated

record record record

OS Simulated Block

CMS Record

Figure 60. OS Simulated Block vs. CMS Record

Note: CMS does not support the writing of short blocks anywhere other than to the last block of a file.
Although such a request will not be prevented, any later attempt to read from or write to the file may
produce unpredictable results.

Specifying OS/MVS Simulated Data Files
Let us examine how the previous example (“Specifying CMS Data Files” on page 364) would work if we
used an OS/MVS simulated file. In this case, the FILEDEF command would look like this:

FILEDEF OUTFILE DISK OSFORM FILE A4
 (LRECL 20 BLKSIZE 60 RECFM FB

Note that the only difference between this example and the one in “Specifying CMS Data Files” on page
364 is the file name and the file mode number. For OS/MVS simulated data file, you must specify a file
mode number of 4.

OSFORM FILE A4 F 60 Trunc=60 Size=2
 Line=1 Col=1 Alt=10
===== * * * Top of File * * *
===== Record 1 01234567890Record 2 01234567890Record 3
 01234567890
===== Record 4 01234567890Record 5 01234567890/
 /
===== * * * End of File * * *

Each CMS record now contains one OS block. Notice the characters following record 5. The first 4
characters are the end of the file marker; this is the character string X'61FFFF61'. The X'61' is displayed
as a ‘/’. Because X'FF' is a nondisplayable character, XEDIT substitutes a double quotation mark. This is
also the case with the rest of the nondisplayable characters in the block.

End-of-file marker
OS/MVS simulation uses the end-of-file (EOF) marker (X'61FFFF61') to identify the end of the OS data in a
file when all of the following conditions are met:

• File mode number is 4
• OS record format is FB or FBS
• Last block of the file is a short block

Using OS/MVS Simulated Data Sets in CMS

366 z/VM: 7.4 CMS Application Development Guide for Assembler

• File is being processed under the QSAM, BSAM, or BPAM access method.

Because CMS file system will not allow you to write records of varying length to a fixed format CMS file,
the EOF marker marks the end of a file.

There are a few other places where the EOF marker is used:

• Any time the MOVEFILE command is being used to read a file.
• Any time a partitioned data set (PDS) is being read by OS/MVS simulation. A file is considered to be a

PDS when the DCB data set organization is specified as partitioned (DSORG=PO), when the MEMBER
option of the FILEDEF command is specified for the file, or when the PDS option has been specified on
the MOVEFILE command that is reading the file.

Note: When writing an FB or FBS format file, under BSAM or BPAM, you may specify a BLKSIZE value that
is less than the file you are referencing. This is done to indicate that the last block is a short block, causing
OS/MVS simulation to place an end-of-file marker (described in “End-of-file marker” on page 366) after
the last logical record in the output block.

One last example, let's see what a VB format file would look like. In the FILEDEF command:

FILEDEF OUTFILE DISK OSFORM VFILE A4
 (LRECL 70 BLKSIZE 74 RECFM VB

the OSFORM VFILE will have variable blocked records (RECFM VB). The maximum length of a record will
be 66 bytes plus 4 bytes for a record descriptor word (LRECL 70). Each block must be large enough
to hold the longest record (LRECL 70) plus a 4-byte block descriptor word (BLKSIZE 74). Now if your
application writes 5 records of lengths 20, 8, 15, 37, and 15 bytes (respectively) to a file, closes it, and
you were to XEDIT the file, you would see the following:

OSFORM FILE A4 F 64 Trunc=64 Size=2
 Line=1 Col=1 Alt=10
===== * * * Top of File * * *
===== Record 1 01234567890 Record 2
 Record 3 012345
===== Record 4 0123456789012345678901234567
 Record 5 012345
===== * * * End of File * * *

The first four nondisplayable characters on each line are block descriptor words. The four nondisplayable
characters in front of each record are the record descriptor words for those records. Note that the CMS
record length for the file is shown as 64; this is the length of the longest block in the file.

Considerations for Files in Shared File System Directories
OS/MVS data can be stored in a Shared File System directory and manipulated through OS simulation.
Here are some special considerations to make note of when updating OS/MVS data that resides on shared
file directories:

• As long as no read/write sharing is taking place (for example, one user reads a file while another user
writes to it), the version of all data sets is guaranteed to remain constant to the OS application. Only
those changes made by the application itself will be seen. This guarantee does not exist for a read/write
sharing environment.

• All shared file directories that are used for output by an OS application must be accessed as R/W.
• Unpredictable results may occur if the default SFS work unit is changed during the execution of a

program that uses OS simulation. Also, if a file used by an OS simulation application is already open
(through FSOPEN, EXECIO, or a previous OS OPEN) at entry to that application and the default work unit
on which the file was opened is different from that used during the application, unpredictable results
may occur if the application closes and then reopens the file.

• If an application opens a data set whose FILEDEF specifies a file mode of * for output, OS simulation
will search all R/W file modes for the file. If it finds the file on any of those file modes, it will use the
first occurrence of the file. Otherwise, OS simulation will create a new file with mode A1 when the
application does the first write to the file.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 367

• Each time a CLOSE is issued for a DASD DCB without the TYPE=T parameter, the file represented by that
DCB will have FINIS issued for it.

• When you execute programs with OS macros that write to SFS files, you should ensure that there is an
ample supply of unused blocks in the file space to which you are writing. Otherwise, your program could
abnormally end when your program tries to close the file. You might also consider limiting write access
to the file space so that other users do not consume the blocks you require for your application.

• If your application uses OS/MVS queued sequential access method (QSAM) to update SFS files, be
sure to erase all data from the buffers (for example, close the files) before issuing a commit. This
may be required because of QSAM buffering. For example, if a program uses OS/MVS QSAM with
blocked records for an SFS output file, some of the most recently written output records may not
be committed if the program issues a commit without first closing the QSAM file. These records will
subsequently be committed when the program closes the file and either commits the work unit or
allows end-of-command processing to commit the work unit. Using only FS macros to write to SFS files
avoids this situation.

• An OS Simulation WRITE/PUT to a file in an SFS server will generally receive a disk full error when
the SFS file space limit is exceeded. However, an OS Simulation WRITE/PUT to a file in an SFS server
running at release levels prior to Release 2.1 will detect a disk full condition when the file space
threshold is exceeded.

Using OS/MVS Data Sets in CMS
By simulating OS/MVS macros, CMS can read sequential and partitioned data sets that reside on OS/MVS
disks. However, a sequential or partitioned data set that resides on an OS/MVS disk can only be written
or updated by an OS/MVS program running in an OS system. CMS cannot write or update data sets on
OS/MVS disks.

CMS can execute programs that read and write VSAM files from OS/MVS programs written in the VS
BASIC, COBOL, PL/I, VS/APL, and VS FORTRAN programming languages. CMS also supports VSAM for use
with DOS/VS SORT/MERGE. This CMS support is based on the VSE/VSAM licensed program and, therefore,
the OS/MVS user is limited to those VSAM functions that are available under VSE/VSAM.

CMS Commands You Can Use with OS/MVS Data Sets
The CMS commands that recognize OS/MVS data sets on OS/MVS disks are listed in Table 36 on page
368.

Table 36. CMS Commands that Recognize OS/MVS Data Sets on OS/MVS Disks

Command Operation

ACCESS Makes the OS/MVS disk containing the data set available to your CMS virtual
machine.

ASSEMBLE Assembles an OS/MVS source program under CMS.

DDR Copies an entire OS/MVS disk to tape.

FILEDEF Defines the OS/MVS data set for use under CMS by associating an OS/MVS ddname
with an OS/MVS data set name. Once defined, the data set can be used by
an OS/MVS program running under CMS and can be manipulated by the other
commands that support OS/MVS functions.

GLOBAL Makes macro libraries or LOADLIB libraries available to CMS. You can prepare
an OS/MVS library for reference by the GLOBAL command by issuing a FILEDEF
command for the data set and giving the data set the appropriate file type of
MACLIB or LOADLIB.

LKED Creates CMS LOADLIB libraries from CMS TEXT files or OS object modules.

LISTDS Lists information describing OS/MVS data sets residing on OS/MVS disks.

Using OS/MVS Simulated Data Sets in CMS

368 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 36. CMS Commands that Recognize OS/MVS Data Sets on OS/MVS Disks (continued)

Command Operation

MOVEFILE Moves data records from one device to another device. Each device is specified by
a ddname, which must have been defined by FILEDEF. You can use the MOVEFILE
command to create CMS files from OS/MVS data sets.

NUCXLOAD Loads, relocates, and establishes as a nucleus extension a load module either from
a CMS LOADLIB or from an OS/MVS module library on an OS/MVS formatted disk.

OSRUN Loads, relocates, and executes a load module either from a CMS LOADLIB or from
an OS/MVS module library on an OS/MVS formatted disk.

QUERY Lists (1) the files that have been defined with the FILEDEF and DLBL commands
(QUERY FILEDEF, QUERY DLBL), or (2) the status of OS/MVS disks attached to your
virtual machine (QUERY DISK, QUERY SEARCH).

RELEASE Releases an OS/MVS disk you have accessed (by ACCESS) from your CMS virtual
machine.

STATE Verifies the existence of an OS/MVS data set on a disk. Before STATE can verify the
existence of the data set, you must have defined it (using FILEDEF).

Accessing OS/MVS Data Sets
Before CMS can read an OS/MVS data set that resides on a non-CMS disk, you must issue the CMS
ACCESS command to make the disk available to CMS. You must not specify options or file identification
when accessing an OS/MVS disk. For more details, see the z/VM: CMS User's Guide.

Using OS Format Disks on CMS
MVS and DOS (OS) format disks which may be resident volumes on an actual MVS or DOS system may
be accessed by CMS as a Read-Only minidisk. The organization of these disks is very different from that
of a CMS minidisk, so ordinary CMS commands will not work on OS format disks. However, certain CMS
commands can use files residing on OS format disks if the files are defined to CMS with a FILEDEF
command.

Listing Information about OS Disks with the LISTDS Command
The QUERY DISK command gives usage information about normal CMS minidisks, but gives minimal
information about OS disks. You can use the LISTDS command with the FREE option to obtain information
about free space on an OS disk. For example:

listds n (free
Freespace extents for N disk:
 CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
00000 00008 8 00001 00014 29 22
Ready;

The LISTDS command with the PDS option provides information about the libraries residing on an OS disk.

The LISTFILE command gives information about minidisk or SFS files, but not about files on an OS disk.
You can use the LISTDS command with the FORMAT option to obtain information about OS disk files. For
example:

listds n (format
RECFM LRECL BLKSI DSORG DATE LABEL FM DATA SET NAME
FB 80 27920 PO 12/12/91 MVS292 N MY.OWN.MACLIB
Ready;

listds n (extent

Extent information for VTOC on N disk:
SEQ TYPE CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 369

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb3_v7r4.pdf#nameddest=dmsb3_v7r4

000 VTOC 00000 00001 1 00000 00002 2 2

Extent information for MY.OWN.MACLIB on N disk:
SEQ TYPE CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
000 DATA 00000 00003 3 00000 00007 7 5
Ready;

Using the GLOBAL Command with OS Files
The GLOBAL command can use OS files if they are defined with the FILEDEF command with a name
normally used in the global list. The FILEDEF command equates an OS data set name such as A.B.C with a
CMS minidisk fn ft fm such as MY DOSLIB A1. Any ddname may be used, but the device must be DISK. fn
must be one of the names from the GLOBAL list and ft must match the type of GLOBAL command, such as
a file type of LOADLIB for a GLOBAL LOADLIB command. fm must be the file mode used to access the OS
disk. The dsn value must be the actual OS data set name. For example:

listds f
FM DATA SET NAME
F MY.OWN.MACLIB
Ready;

filedef syslib disk os maclib f dsn my.own.maclib
Ready;

query filedef
SYSLIB DISK OS MACLIB F1 MY.OWN.MACLIB
Ready;

global maclib os
Ready;

query maclib
MACLIB = OS
Ready;

Using XEDIT with OS Files
XEDIT can use OS files if they are defined with the FILEDEF command with a ddname of SYSIN. Most
XEDIT commands can be used on an OS file, including using the XEDIT PUT command and filing on a
different file mode. However, since OS disks are Read-Only to CMS, XEDIT may not be used to file an OS
data set back onto the OS disk. The ddname must be SYSIN, and the device type must be DISK. fn and ft
may be any valid CMS names. fm must be the file mode used to access the OS disk. The dsn value must be
the actual OS data set name. For example:

Ready;

acc 291 f
DMSACC723I F (0291) R/O - OS
Ready;

listds f
FM DATA SET NAME
F MY.OWN.MACLIB
F MY.OWN.FMTFXD
F MY.OWN.FMTVAR
Ready;

filedef sysin disk os file f dsn my.own.fmtfxd
Ready;

xedit os file f

Creating CMS Files from OS/MVS Data Sets
If you have data sets on OS/MVS disks, tapes, or cards, you can copy them into CMS files so that you can
edit, modify, or manipulate them with CMS commands. The CMS MOVEFILE command copies OS/MVS (or
CMS) files from one device to another. You can move data sets from any valid input device to any valid
output device.

Using OS/MVS Simulated Data Sets in CMS

370 z/VM: 7.4 CMS Application Development Guide for Assembler

Before using the MOVEFILE command, you must define the input and output data sets or files and assign
them ddnames using the FILEDEF command. If you use the ddnames INMOVE and OUTMOVE, then you
do not need to specify the ddnames when you issue the MOVEFILE command. For example, the following
sequence of commands copies a OS/MVS disk file into your virtual card punch:

filedef inmove disk diskin file a1
filedef outmove punch
movefile

The result of these commands is effectively the same as if you had issued the command:

punch diskin file (noheader

This example illustrates the basic relationship between the FILEDEF and MOVEFILE commands. In
addition to the MOVEFILE command, if the OS/MVS input data set is on tape or cards, you can use
the TAPPDS or READCARD command to create CMS files.

When you copy a variable-length data set or variable spanned data set from an OS/MVS disk to a CMS
disk, the logical record length (LRECL) of the file that is created on the CMS disk is equal to the size of the
largest record in the data set being copied. If the file that is being created has a file mode of 4, the logical
record length is equal to the LRECL of the largest record plus 8 bytes. The actual LRECL of the new file can
be determined by using the CMS FILELIST command.

Copying Sequential Data Sets from Disk
The MOVEFILE command can copy a sequential OS/MVS disk data set from a read-only OS/MVS disk into
an integral CMS file on a CMS read/write disk. You use FILEDEF commands to identify the input file disk
mode and data set name:

filedef inmove c1 dsn sales.manual

the CMS output file's disk location and fileid:

filedef outmove disk sales manual a1

and then you issue the MOVEFILE command:

movefile

Copying Partitioned Data Sets from Disk
The MOVEFILE command can copy partitioned data sets (PDS) into CMS disk files and create separate
CMS files for each member of the data set. You can have the entire data set copied, or you can copy only
a selected member. For example, if you have a partitioned data set named ASSEMBLE.SOURCE whose
members are individual assembler language source files, your input file definition might be:

filedef inmove c1 dsn assemble source
 — or —
filedef inmove c1 dsn assemble.source

If ASSEMBLE.SOURCE has 3 members, LIONS, TIGERS, BEARS, you could create individual CMS
ASSEMBLE files, by issuing the output file definition as:

filedef outmove disk zoo assemble a1

Then use the PDS option of the MOVEFILE command:

movefile (pds

When the CMS files are created, the member names are used for the file name and the file type on the
output file definition is used for the file type. For the previous example, 3 files would be created, LIONS
ASSEMBLE, TIGERS ASSEMBLE, and BEARS ASSEMBLE.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 371

If you want to copy only a single member, you can use the MEMBER option of the FILEDEF command:

filedef inmove disk assemble source c (member lions

and omit the PDS option on the MOVEFILE command:

movefile

Only the file LIONS ASSEMBLE would be created.

Summary
The following tables summarize the various ways that you can create CMS files from OS/MVS data sets.

Table 37. Input File. An OS sequential data set named: COMPUTE.TEST.RECORDS

Source CMS Command Examples CMS Output File

Disk:

OS R/O
C-disk

filedef indd c1 dsn compute test
records
filedef outdd disk compute records a1
movefile indd outdd

COMPUTE RECORDS A1

Tape:

181
filedef inmove tap1 (lrecl 80
filedef outmove disk test records a1
movefile

tappds newtest compute (nopds

TEST RECORDS A1

NEWTEST COMPUTE A1

Cards: filedef cardin reader
filedef diskout disk compute cards a1
movefile cardin diskout

readcard compute test

COMPUTE CARDS A1

COMPUTE TEST A1

Table 38. Input File. OS partitioned data set named: TEST.CASES; members named: SIMPLE, COMPLEX, MIXED

Source CMS Command Examples CMS Output File

Disk:

OS R/O
C-disk

• filedef infile c1 dsn test cases
• filedef outfile disk new testcase a1
• movefile infile outfile (pds

• filedef in c1 dsn test cases (member

simple
• filedef run disk
• movefile in run

• SIMPLE TESTCASE A1
• COMPLEX TESTCASE A1
• MIXED TESTCASE A1

• FILE RUN A1

Tape:

182
tappds * testrun (tap2 SIMPLE TESTRUN A1

COMPLEX TESTRUN A1
MIXED TESTRUN A1

Using OS/MVS Simulated Data Sets in CMS

372 z/VM: 7.4 CMS Application Development Guide for Assembler

Accessing Data through OS/MVS Simulation
An access method governs the manipulation of data. CMS can access files on both CMS disks and OS/MVS
disks by simulating OS/MVS macros and access methods.

To execute OS/MVS code under CMS, the processing program must see data as OS/MVS would present it.
For instance, when the processors expect an access method to acquire input source cards sequentially,
CMS invokes specially written routines that simulate the OS/MVS sequential access method and pass data
to the processors in the format that the OS/MVS access methods would have produced. Therefore, data
appears in storage as if it had been manipulated using an OS/MVS access method. Block descriptor words
(BDW), buffer pool management, and variable records are updated in storage as if an OS/MVS access
method had processed the data. However, the actual writing to and reading from the I/O device is handled
by the CMS file system.

The OS simulated access methods use the master file directory (MFD) and the file status table (FST) for
information to access data. (In OS, this information is found in the volume table of contents and the data
set control block.) A MFD updates the disk contents, and a FST describes each data file. All CMS disks are
formatted in physical blocks of 512, 1024, 2048, or 4096 bytes.

To accomplish OS/MVS simulation, CMS supports the following access methods:
BDAM

(direct) - identifying a record by a key or by its relative position within the data set.
BPAM

(partitioned) - seeking a named member within data set.

Note: Two BPAM files with the same file type cannot be updated at the same time.

BSAM/QSAM
(sequential) - accessing a record in a sequence in relation to preceding or following records.

VSAM
(direct or sequential) - accessing a record sequentially or directly by key or address.

Note: CMS support of OS/MVS VSAM files is based on VSE/VSAM. Therefore, the OS/MVS user is
restricted to those functions available under VSE/VSAM. See “OS/VSAM Macros Supported in CMS” on
page 475 for more information.

CMS also updates those portions of the OS/MVS control blocks needed by the OS/MVS simulation routines
to support a program during execution. The CMSCVT macro invokes the CVTSECT control block and
simulates the communication vector table. Location X'10' contains the address of the CVT control section.

Note: The MVS version of the CVT is now included in OSMACRO1 MACLIB.

Accessing Data with OS/MVS Macros
Requests for input and output can be accomplished through several OS simulated macros. These macros
support fixed and variable length records. Also, variable spanned records are supported through QSAM
and BSAM.
GET (QSAM)

GET LOCATE and GET MOVE are supported.
GET (QISAM)

QISAM is not supported in CMS.
PUT (QSAM)

PUT LOCATE and PUT MOVE are supported. When you use Locate mode, issue an explicit CLOSE prior
to returning to CMS to obtain the last record written with a PUT macro.

PUT (QISAM)
QISAM is not supported in CMS.

PUTX(QSAM)
PUTX support is provided only for data sets OPENed for Update with simple buffering.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 373

READ/WRITE (BISAM)
BISAM is not supported in CMS.

READ/WRITE (BSAM and BPAM)
All the BSAM and BPAM options of READ and WRITE are supported except for the SB option (read
backward).

READ (Offset Read of Keyed BDAM data set)
This type of READ is not supported because it is used only for spanned records.

READ/WRITE (BDAM)
All the BDAM and BSAM (create) options of READ and WRITE are supported except for the R and RU
options.

BSP
When backspacing a non-OS simulated file, BSP assumes that the blocking factor of the file is the
blocking factor used on the most recent write operation. Based on this value, the file is positioned to
the previous blocking boundary.

When an input or output error occurs, do not depend on OS/MVS sense bytes. An error code is supplied
by CMS in the ECB in place of the sense bytes. These error codes differ for various types of devices.
Their meaning in z/VM can be found in z/VM: CMS and REXX/VM Messages and Codes under DMS message
120S.

For a disk device, when an input or output error occurs and a SYNAD routine is not specified, message
120S is issued and CMS is terminated abnormally during READ/WRITE processing.

Special Considerations for Blocked Data
Some special considerations must be made when using blocked data OS/MVS macros with CMS filemodes
other than filemode 4. OS Simulation supports both Fixed Blocked (FB) and Variable Blocked (VB) data
records when CMS filemode 4 is used, so that most common OS/MVS macros that use blocked data yield
similar results under both the OS/MVS and VM operating systems.

Fixed Blocked Files
CMS filemode 1 files do not have blocked characteristics. When CMS filemode 1 files are used with OS
Simulation for blocked record reads and writes, the records are treated as individual units rather than as
blocked groups. This causes some problems when OS/MVS block record macro functions, such as READ,
WRITE, NOTE, POINT, and BSP (BackSPace), are used on filemode 1 records. Normally these functions
return a reference to the block number of a record grouping. However, when CMS filemode 1 files are
used with these functions, the records must be logically pseudo-blocked because they exist as individual
pieces rather than blocked groups. For Fixed Blocked records, both the size of each record and the size
of the block is known, so the OS Simulation code can do a simple calculation to determine the OS/MVS
block number reference based on the CMS relative record number, the record length and the block size.
Therefore, Fixed Blocked files stored as CMS filemode 1 types will get the same block reference values
returned as those stored as filemode 4 types.

Variable Blocked Files
The results for Variable Blocked files under CMS filemode 1 processing are different. Because the records
are stored as individual pieces in common CMS file format, there are no Block Descriptor Word (BDW) or
Record Descriptor Word (RDW) lengths that are kept with the data as when using filemode 4. Therefore,
the OS Simulation code cannot calculate a block reference number to be associated with any particular
record in the filemode 1 file. This means that OS/MVS blocked record macro functions cannot return a real
OS block reference number. Instead, functions like NOTE and BSP return the real CMS filemode 1 relative
record number for the last record that was processed. If application code is imported from an OS/MVS
environment and uses blocked reference macros on Variable Blocked files, the files should always be be
defined as CMS filemode 4 types. Otherwise, unpredictable results may occur if the application tries to
make use of the CMS relative record number as if it were a real OS/MVS block reference number.

Using OS/MVS Simulated Data Sets in CMS

374 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4

BDAM Restrictions
The four methods of accessing BDAM records are:

1. Relative Block RRR
2. Relative Track TTR
3. Relative Track and Key TTK
4. Actual Address MBBCCHHR.

The restrictions on these access methods are as follows:

• Only the BDAM identifiers underlined above can be used to refer to records because the CMS simulation
of BDAM files uses a three-byte record identifier.

• CMS BDAM files are always created with 255 records on the first logical track and 256 records on all
other logical tracks, regardless of the block size. If BDAM methods 2, 3, or 4 are used and the RECFM is
U or V, the BDAM user must either write 255 records on the first track and 256 records on every track
thereafter, or the BDAM user must not update the track indicator until a NO SPACE FOUND message is
returned on a write. For method 3 (WRITE ADD), this message occurs when no more dummy records
can be found on a WRITE request. For methods 2 and 4, this does not occur and the track indicator is
updated only when the record indicator reaches 256 and overflows into the track indicator.

• Two files of the same file type, both using keys, cannot be open at the same time. If a program that is
updating keys does not close the file it is updating for some reason, such as a system failure or another
IPL operation, the original keys for files that are not fixed format are saved in a temporary file with the
same file type and a file name of $KEYSAVE. To finish the update, run the program again.

• Variable-length BDAM files must be created under CMS in their entirety, with the XTENT option of
FILEDEF specifying the exact number of records to be written. When reading variable BDAM files, the
XTENT and key length information specified must duplicate what was created at file creation time. CMS
does not support adding variable-length records to BDAM files.

• After a file is created using keys, additions to the file must not be made without using keys and
specifying the original length.

• Note that there is limited support from the CMS file system for BDAM created files (sparse). Sparse files
are manipulated with CMS commands but are not treated as sparse files by most CMS commands. The
number of records in the FST is treated as a valid record number.

• The number of records in the data set extent must be specified using the FILEDEF command. The
default size is 50 records.

• The minimum LRECL for a CMS BDAM file with keys is eight bytes.

Using the OS/MVS Simulated Buffering Techniques
OS simulation uses buffers to assemble and disassemble the input and output records of the application.
These buffers belong to a specific DCB.

Obtaining I/O Buffers
The system will obtain the necessary buffers, but the application may obtain its own buffers with the
GETPOOL macro. The application may issue the GETPOOL macro either before it opens the DCB or in the
DCB Open exit. If the buffers supplied to Open processing are too small, the Open will fail with error code
35. Any application which obtains its own buffers MUST issue a FREEPOOL macro after it closes the DCB
using the buffers. This frees the buffers which the GETPOOL macro obtained.

Determining the Minimum Buffer Size
In most cases, the blocksize is the minimum buffer size. The buffer must be large enough to hold the data
which will be written out. Any BPAM, BDAM, or BSAM I/O will be done in blocks. Any Blocked or Spanned
I/O will be done in blocks. If QSAM I/O (Get/Put) is specified and the record format is neither blocked nor
spanned (that is F or V, not FB/VB/VS/VBS), then the minimum size for Fixed record format is the logical

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 375

record length and the minimum size for Variable record format is the logical record length plus four bytes
for the Record Descriptor Word (RDW). For any ANSI tapes, the Buffer Offset value (DCBBUFOF) must be
added to the above minimum values.

Segment Interface
If the logical record interface is not specified, the segment interface is the default buffer technique for OS
simulation. For input records, the application is responsible for assembling record segments into logical
records by issuing GET or READ macroinstructions. Each call to GET or READ returns one segment. For
output records, the application is responsible for breaking the logical record into record segments and for
writing the segments out to the device using the PUT or WRITE macros.

Logical Record Interface
CMS simulates the logical record interface (LRI) in QSAM Locate and QSAM Update modes. (CMS also
supports the extended logical record interface (XLRI) for longer records, up to 65535 bytes in length.)
Under the logical record interface, CMS assembles record segments into complete logical records on
input and disassembles logical records into multiple segments on output. By using this interface, an
application only has to deal with logical records; it does not have to worry about how the records are
segmented or how they are recorded on the physical device.

You can specify the logical record interface using the BUILDRCD or DCB macro. In CMS, when the
logical record interface is in effect, all records (spanned or nonspanned) are presented to the application
programs only in the record area.

For files with the record formats of VS and VBS, the logical record interface is supported for QSAM Locate
and QSAM Update modes. For files with the record formats of DS and DBS, the logical record interface is
supported for QSAM Locate mode. If other QSAM modes are used with VS, VBS, DS, or DBS records, the
results are unpredictable.

Specifying LRI with the BUILDRCD Macro
You can use the BUILDRCD macro to request the logical record interface (LRI). For example:

 .
 .
 .
 BUILDRCD BUFFPOOL,4,100,RECAREA,1032
 OPEN SPANDCB,OUTPUT
 .
 .
 CLOSE SPANDCB,OUTPUT
 .
SPANDCB DCB DSORG=PS,DDNAME=SPANNER,MACRF=(GL),
 LRECL=1000,
 RECFM=VS,BLKSIZE=100,BUFNO=4,
 BUFCB=BUFFPOOL
 .
 .
 DS 0F Fullword alignment
BUFFPOOL DS XL412 Buffer pool
 DS 0D Doubleword alignment
RECAREA DS XL1032 Record area

Figure 61. Using the BUILDRCD Macro and the Logical Record Interface.

The BUILDRCD macro sets up a buffer pool and a record area in a user-provided storage area. In Figure
61 on page 376, this storage area is defined as BUFFPOOL and RECAREA. QSAM uses the areas set up by
BUILDRCD for buffering and for assembling and disassembling logical records.

You request the logical record interface through the BUILDRCD by issuing it before a file is opened (as
shown in Figure 61 on page 376) or during processing of the DCB open exit routine.

In Figure 61 on page 376, the record format is defined as variable spanned. If LRI is requested and the
record format is not VS, VBS, DS, or DBS the request for LRI is ignored and the file is processed according
to the specified record format.

Using OS/MVS Simulated Data Sets in CMS

376 z/VM: 7.4 CMS Application Development Guide for Assembler

Specifying LRI with the DCB Macro
You can also specify the logical record interface using the BFTEK=A option on the DCB macro. If the
BUILDRCD macro had not been used in Figure 61 on page 376 then the following DCB macro could have
been used to specify LRI.

SPANDCB DCB DSORG=PS,DDNAME=SPANNER,MACRF=(GL),
 LRECL=1000,
 BLKSIZE=100,RECFM=VS,BFTEK=A

OS simulation DCB macro processing accepts LRI or XLRI conventions for QSAM variable spanned
records, up to 65535 bytes in length. For the logical record length (LRECL) on the DCB macro, CMS
supports an absolute value of 9-65535 bytes or 1-64K. Specifying 0K or X indicates the default
(maximum) size.

Note: Specifying 64K actually yields a size of 64K-1, or 65535, the maximum LRECL supported.

Determining Record Area Size
If the record area had not been previously allocated using BUILDRCD, then the OPEN macro will allocate
a record area for the application to use (see Table 39 on page 377 for the default values). In this case,
the associated CLOSE macro will release the record area. If a record area already exists, OPEN will use it
instead of allocating a new one.

If the record area is not present and BFTEK=A is specified when a file is opened, CMS defines a record
area. The record area size is the logical record length (LRECL) specified in the DCB or by FILEDEF plus 32
bytes. If LRECL is not provided in the DCB or by FILEDEF, the default values for the record area length will
be set according to the following table.

Table 39. Default Values for the Record Area

Device Default Record Area Length

CMS Disk • 32756+32, if the DCB indicates LRI processing
• 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

Tape • If the file exists, and a tape label is available, the LRECL specified in the data set label
for the file is used.

• If the file does not exist or no tape label is read:

– 32756+32, if the DCB indicates LRI processing
– 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

OS Disk • If the file exists, the LRECL specified in the data set label for the file is used.
• If the file does not exist:

– 32756+32, if the DCB indicates LRI processing
– 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

Printer • 32756+32, if the DCB indicates LRI processing
• 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

Console • 32756+32, if the DCB indicates LRI processing
• 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

Reader • 32756+32, if the DCB indicates LRI processing
• 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 377

Table 39. Default Values for the Record Area (continued)

Device Default Record Area Length

Punch • 32756+32, if the DCB indicates LRI processing
• 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

Dummy • 32756+32, if the DCB indicates LRI processing
• 65535+32, if the DCB indicates XLRI processing (LRECL= 0K or X)

These default record area sizes are designed to hold the largest records allowed by LRI (or XLRI)
processing. However, allowing the record area size to default can degrade the performance of the
application because large amounts of storage are used. If the largest records are less than 32K long
(or longer than 32K but less than 64K), you should specify the LRECL in the DCB macro or FILEDEF
command as the length of the largest record the application will encounter. This will cause the record
area length to be set to the minimum required size. Alternatively, if you use the BUILDRCD macro, you can
specify the record area length on the macro to be the size of the largest record plus 32 bytes.

Opening Data Sets
You can open a data file using the OS simulated OPEN macro. You can use the OPEN macro parameters
to identify the method of processing and volume position on an end of volume condition. When the OPEN
macro instruction is executed, the OPEN routine:

• Completes the data control block. (For more information on how the DCB is built, see “Filling in the DCB
information” on page 382 or the DFSMS Macro Instruction for Data Sets.)

• Loads all necessary access method routines not already in virtual storage.
• Initializes tape data sets by reading or writing labels and control information.
• Builds the necessary system control blocks and obtains the required buffers.

See Table 28 on page 320 for a list of all the OPEN parameters supported through OS simulation.

Specifying an Input Data File
To specify that a data file be used for input, use the following OPEN parameters:

• For QSAM processing, use INPUT and RDBACK

Note: RDBACK is only valid for tape files. If RDBACK is specified for a non-tape file, the OPEN parameter
will default to INPUT.

• For BSAM processing, use OUTIN, INPUT, or INOUT.

Note: INOUT cannot be used with AL or AUL tapes.

Reading tape files backward
You can also specify that an input file on magnetic tape be processed backward by using the RDBACK
parameter. The RDBACK option is supported for:

• QSAM tape files
• Records formats of F, FB, and U
• All types of label processing
• Single volume magnetic tape files.

The following table describes the tape positioning for files that are opened and closed for RDBACK.

Using OS/MVS Simulated Data Sets in CMS

378 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 40. Positioning of Files Opened and Closed with RDBACK

Macro Specifies LEAVE
on the OPEN or
CLOSE Macro

FILEDEF TAPn Options Tape positioning

OPEN Yes SL|SUL|AL|AUL|NSL option Assumed position is immediately
after the tape mark that ends the
trailer label group.

OPEN Yes LABOFF|BLP|no label processing
option

Assumed position is immediately
after the tape mark that ends the
data.

OPEN Yes No label processing option The tape is rewound.

OPEN No15 All except LABOFF The tape is rewound.

OPEN No15 LABOFF Assumed position is immediately
after the tape mark that ends the
data.

CLOSE Yes SL|SUL|AL|AUL|NSL option The tape is left immediately before
the header label group.

CLOSE Yes LABOFF, BLP, NL, no label
processing option

The tape is left immediately before
the first data block of the file.

CLOSE No16 The tape is always rewound.

For more information on the RDBACK option, see the DFSMS Macro Instruction for Data Sets.

Specifying an Output Data File
To specify that a data file be used for output, use the following OPEN parameters,

• For QSAM processing, use OUTPUT and UPDAT

Note: UPDAT is valid only for DASD files. UPDAT is invalid for a file found on a read-only extension.
• For BSAM processing, use OUTIN, INOUT, or EXTEND.

Note: If the processing method is omitted from the OPEN macroinstruction, INPUT is assumed.

Adding records to the end of an existing file
To specify that new records be added to the end of a file, use the EXTEND parameter of OPEN. The
EXTEND parameter prepares a tape or DASD file for output and specifies that new records be added to the
end of the file.

EXTEND is valid only for QSAM and BSAM files. If it is specified for any other access method or devices
other than DASD and tape, it will be treated as though the OUTPUT parameter had been specified.

15 If neither LEAVE nor any other positioning option is specified on the OPEN macro, then positioning depends
on the FILEDEF options. If you specify the LEAVE option on the FILEDEF command, positioning is as if you
specified OPEN LEAVE.

16 If neither LEAVE nor any other positioning option is specified on the CLOSE macro, then the positioning
option is taken from the FILEDEF DISP PASS or KEEP parameter, if any was specified. CLOSE with no
options and FILEDEF with the DISP and PASS options behaves like CLOSE LEAVE.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 379

You can also specify the DISP MOD parameter on OPEN or the FILEDEF command to indicate that records
be added to the end of a file.

DISP MOD, EXTEND, and INOUT cannot be used with AL or AUL tapes.

For more information on OPEN EXTEND or OPEN with DISP MOD, see the DFSMS Macro Instruction for
Data Sets. For more information on the DISP MOD option of FILEDEF, see the z/VM: CMS Commands and
Utilities Reference.

Determination of BLKSIZE and LRECL on CMS DASD
The CMS file system control blocks do not allow for recording both a record length and a block size; only
the record length of the file is saved. Generally, the CMS record length will be the OS simulation blocksize.
The LRECL and BLKSIZE values used by OS simulation are determined according to the file that is opened.

When a file is opened and either the blocksize or the logical record length is specified, the remaining
values are determined according to Table 41 on page 380. These values may be specified either in the
DCB or in the FILEDEF command.

Note: If a field is specified in both the DCB and the FILEDEF command, the value from the DCB macro will
be used.

If the open intent is not OUTPUT (and thus not replacing the file) and the file already exists on a minidisk
or SFS directory and the file is not a partitioned data set, then the block size will be set to the record
length of the actual CMS file, regardless of how it was previously specified. For this case, the LRECL can be
determined according to Table 41 on page 380.

Table 41. Determining BLKSIZE and LRECL on CMS DASD when either LRECL or BLKSIZE, or both, are specified

BLKSIZE LRECL Results

Specified Not specified When simple RECFM values are used:

• For RECFM=F:

– LRECL=BLKSIZE
• For RECFM=V|D|U:

– LRECL=BLKSIZE —4 for true OS file types
– LRECL=BLKSIZE for CMS file types

Specified Not specified When compound RECFM values are used (OS only):

• For RECFM=FB|FBS:

– LRECL=BLKSIZE
• For RECFM=VB|VS|VBS|DB:

– LRECL=BLKSIZE —4
• Under LRI or XLRI for RECFM=VS|VBS|DS|DBS:

– LRECL=length of record area —32

Not specified Specified When simple RECFM values are used:

• For RECFM=F:

– BLKSIZE=LRECL
• For RECFM=V|D|U:

– BLKSIZE=LRECL+4 for true OS file types
– BLKSIZE=LRECL for CMS file types

Using OS/MVS Simulated Data Sets in CMS

380 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Table 41. Determining BLKSIZE and LRECL on CMS DASD when either LRECL or BLKSIZE, or both, are specified
(continued)

BLKSIZE LRECL Results

Not specified Specified When compound RECFM values are used (OS only):

• For RECFM=FB|FS|FBS:

– BLKSIZE=LRECL
• For RECFM=VB|VS|VBS:

– BLKSIZE=LRECL+4

Specified Specified The specified values are used.

If neither LRECL nor BLKSIZE is specified and, (1) the file is opened for OUTPUT or OUTIN without DISP
MOD (meaning that the file will be replaced), or (2) the file being opened does not exist, then message
DMSSOP036E will be issued with error code 4. This is because CMS cannot determine what LRECL and
BLKSIZE to use. Otherwise, the rules in Table 42 on page 381 apply when neither LRECL nor BLKSIZE is
specified.

Table 42. Determining BLKSIZE and LRECL on CMS DASD when neither LRECL nor BLKSIZE is specified.

BLKSIZE LRECL Results

Not specified Not specified • For RECFM=F|FB|FS|FBS:

– BLKSIZE=CMS record length
– LRECL=CMS record length

• For RECFM=V|VB|VS|VBS|D|DB:

– BLKSIZE=CMS record length
– LRECL=CMS record length –4 for true OS file types
– LRECL=CMS record length for CMS file types

• Under the LRI for RECFM=VS|VBS|DS|DBS:

– BLKSIZE=CMS file record length
– LRECL=length of record area –32

Open Processing
When the OPEN macro instruction is executed, the CMS simulation of the OS OPEN routine initializes the
data control block (DCB). After the OPEN macro instruction has been executed, the DCBOFOPN flag in the
DCBOFLGS field (bit 3) in the DCB is set if the DCB has been opened successfully, but is not set if the DCB
has not been opened successfully.

Unlike OS/MVS, CMS will allow you to perform an open for input on a nonexistent CMS data set. When this
occurs, the DCBOFOPN bit in DCBOFLGS is set. The program will find out that the file does not exist only
when it does the first I/O on the file and gets an EOF indication. OS simulation behaves this way because
certain program products open files which they do not need, which could be empty files in MVS. Because
CMS does not really support empty files, OS simulation imitates MVS empty files by allowing a nonexistent
file to be opened for input.

An application program using OS simulation services may not open a file for output on a R/O disk. The
open bit will not be set, and the DMSSOP036 message will be issued with error code 11.

You should always check the DCBOFOPN bit after an OPEN macro to ensure that the OPEN macro
executed successfully. If you do not check this flag and the OPEN macro did not execute successfully,
attempts to use the DCB for other OS Simulated Access Method Macros (GET, PUT, and so forth) will lead
to unpredictable results. Because OPEN processing sets up the I/O routine address in the DCB, if the

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 381

OPEN fails and the application tries to issue a READ, WRITE, GET, or PUT macro, it will branch to an invalid
address. The example below shows how you can test whether an OPEN macro completed successfully:

 LA R4,DCBOUT Point to the DCB
 OPEN ((R4),OUTPUT) Open the DCB
 USING IHADCB,R4 Addressability to
 the DCB
 TM DCBOFLGS,DCBOFOPN Did the DCB OPEN
 successfully?
 BZ OPENERR No. Go handle OPEN
 error
 DROP R4
 .
 . Process a successful OPEN
 .
 OPENERR DS 0H Handle OPEN error
 WTO 'OPEN macro failed for OUTFILE'
 .
 .
 .
 DCBOUT DCB DDNAME=OUTFILE,DSORG=PS,…
 .
 .
 .
 DCBD DEVD=DA,DSORG=PS Mapping of the DCB
 END

Filling in the DCB information
When the OPEN macro completes successfully, the DCB fields are filled in with information from the DCB
macro instruction, the information specified on the FILEDEF command, or, if the data set already exists,
the data set label. However, if more than one source specifies information for a particular field, only one
source is used.

The precedence of the sources for DCB values is:

1. The values specified on the DCB macro instruction in your program
2. Information in the fields you specified on the FILEDEF command
3. The data set label if the data set already exists.

Any field not set in the DCB macro will be filled in from the FILEDEF command, if it was specified there.
Any field not filled in from the DCB macro or FILEDEF command can be filled in from the data set label.

Data set label information from an existing CMS file is used only when the OPEN is for input or update;
otherwise, the OPEN routine erases the existing file.

You can modify any DCB field either before the data set is opened or through a data control block open
exit. The address of a data control block open exit may be specified using the DCB (EXLST) parameter. For
more information on exit routines, see “Exit Routines” on page 387. When the data set is closed, the DCB
is restored to its original condition. CLOSE processing clears fields that were merged in at OPEN time from
the FILEDEF and the data set label.

Note: The results may be unpredictable if two DCBs access the same file at the same time.

Reading Data
CMS users can read data from both OS/MVS simulated data files and OS/MVS data files.

Reading OS/MVS Simulated Data Sets
For files accessed with the basic access method (BSAM, BPAM, or BDAM), use the READ macro for reading
data. For files accessed with the queued sequential access method (QSAM) use the GET macro to read
data. Both the basic and queued sequential access methods can read a record with a fixed, variable or
variable spanned length.

Using OS/MVS Simulated Data Sets in CMS

382 z/VM: 7.4 CMS Application Development Guide for Assembler

Using the READ macro
For data sets accessed with one of the basic access techniques, use the READ macro to obtain data
from auxiliary storage. READ retrieves a data block from an input data set and places it in a designated
area of virtual storage (a buffer). READ processes blocks, not records, so unblocking of records is your
responsibility. Buffers where the records are placed can be allocated by you or by the operating system
and are filled individually each time a READ is issued.

For fixed and variable-length records
Before issuing READ, R1 must be pointing to the first block to be read. You can then call READ and specify
the number of bytes in each block to be read. The length of the blocks can be found in the first 2 bytes of
the BDW.

READ will get all of the data records contained in the block and place it at the buffer address specified
in the area address parameter of READ. It is then the application's responsibility to break the block into
logical records. This can be done using the information in the RDW. See “Record descriptor word” on page
352 for more information.

After READ processing is complete, R1 will be pointing to the next block to be read; READ can then be
issued again to obtain the next block of data.

Note: For files opened for RDBACK, register 1 will be pointing to the end of the buffer instead of the
beginning.

For variable spanned records
Using the READ macro to get variable spanned records is the same as for fixed and variable records
except that your program must make sure that all segments of the records are read. Variable spanned
records use the SDW instead of the RDW. The SDW contains information on the length of a variable
spanned record segment and whether a segment is the first, middle, last, or only part of the spanned
record. See “Segment descriptor word” on page 354 for more information.

The READ macro only starts input operations. To ensure that the operation completes successfully, you
should issue a CHECK macro to test the data event control block (DECB). Otherwise, you will not get any
notification of I/O errors or end-of-file conditions. For more information on the CHECK macro, see “Using
the CHECK macro” on page 385.

Using the GET macro
For data sets accessed with the queued sequential access method (QSAM), use the GET macro to obtain
data from auxiliary storage. GET obtains a record from an input data set (as opposed to a block) and
places it in a designated area of virtual storage (a buffer). Buffers can be allocated by you or by the
operating system and are filled each time a GET is issued.

GET provides various modes that can be specified in the DCB macro. These modes include:

• Locate
• Move.

For more information on these modes, see the DFSMS Macro Instruction for Data Sets.

For fixed and variable-length records
Before issuing GET, R1 must be pointing to the first record to be read. You can then call GET and specify
the number of bytes in each record to be read. The length of the records can be found in the first 2 bytes
of the RDW. See “Record descriptor word” on page 352 for more information.

GET will obtain the record and place it at the buffer address specified in the area address parameter of
GET. After GET processing is complete, R1 will be pointing to the next record to be read; GET can then be
issued again to obtain the next data record.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 383

For variable spanned records under the segment interface
Using the GET macro to read variable spanned records is the same as for fixed and variable records
except that your program must make sure that all segments of the record are read. Variable spanned
records use SDW instead of RDW. The SDW contains information on the length of a variable spanned
record segment and whether a segment is the first, middle, or last part of the entire spanned record. See
“Segment descriptor word” on page 354 for more information.

For variable spanned records under the logical record interface
The logical record interface (LRI) can be used in QSAM Locate mode. LRI will assemble record segments
into complete logical records on input so you do not have to worry about how the records are segmented
or how they are recorded on the physical device.

LRI can be specified on the DCB or BUILDRCD macro. For more information on LRI and an example, see
“Logical Record Interface” on page 376.

Reading OS/MVS Data Sets
CMS users can read OS/MVS sequential and partitioned data sets that reside on OS/MVS disks. The CMS
MOVEFILE command can be used to manipulate those data sets, and the OS/MVS QSAM, BPAM, and
BSAM macros can be executed under CMS to read them.

The following OS/MVS BSAM, BPAM, and QSAM macros can be used with CMS to read OS/MVS data sets
and DOS files:

BLDL ENQ RDJFCB

BSP FIND READ

CHECK GET SYNADAF

CLOSE NOTE SYNADRLS

DEQ POINT WAIT

DEVTYPE POST

Note: These macros cannot be used to read DOS files on fixed block architecture (FBA) devices.
CMS supports the following disk formats for the OS/MVS and OS/VS sequential and partitioned access
methods:

• Split cylinders
• User labels
• Track overflow
• Alternate tracks.

As in OS, the CMS support of the BSP macro produces a return code of 4 when trying to backspace over a
tape mark or when a beginning of an extent is found on an OS/MVS data set. If the data set contains split
cylinders, an attempt to backspace within an extent resulting in a cylinder switch also produces a return
code of 4. When a data set has been allocated or updated by OS/MVS on an OS/MVS disk, an OS/MVS
CLOSE must be issued before CMS can read or move it. Attempting to read an empty data set on an OS
disk is not supported and the results will be unpredictable.

Restrictions for Reading OS/MVS Data Sets
The following restrictions apply when you read OS/MVS data sets from OS/MVS disks under CMS:

• Read-password-protected data sets are not read.
• RACF™ password protection is ignored.
• BDAM and ISAM data sets are not read.

Using OS/MVS Simulated Data Sets in CMS

384 z/VM: 7.4 CMS Application Development Guide for Assembler

• Multivolume data sets are read as single-volume data sets. End-of-volume is treated as end-of-file and
there is no end-of-volume switching.

• Keys in data sets with keys are ignored; only the data is read.
• Results may be unpredictable if two DCBs access the same data set at the same time.
• An Indexed VTOC on an OS/MVS disk is read the same as a standard OS/MVS VTOC because there is no

special support in CMS for this.

The following restrictions apply when you are reading OS/MVS data sets from tapes under CMS:

• Read-password-protected data sets are read.
• RACF password protection is ignored.
• User labels in user-labeled data sets are bypassed.
• Results may be unpredictable if two DCBs access the same data set at the same time.

Using the CHECK macro
The CHECK macro tests successful completion of BSAM, BDAM, and BPAM I/O. The CHECK macro refers
back to the DECB for the prior READ or WRITE operation corresponding to that DECB. If that I/O operation
completed successfully, control returns to the next instruction and the program continues normally.
However, if the I/O operation was unsuccessful, CHECK processing will pass control to the address
specified on the EODAD or SYNAD parameter of the DCB macro. The error handling routine can perform
error analysis, record the error and continue, and/or issue its own abend.

When you code BSAM or BPAM I/O, you must code a CHECK macro for each READ or WRITE macro. When
you code BDAM I/O, you must code either a CHECK or a WAIT macro for each READ or WRITE macro. If
you do not, your program will continue executing, in spite of any I/O errors or end of file condition. This
could cause a variety of situations, including abends, bad data, or destroyed files.

When READing a BPAM or BSAM file, if the program issues a CHECK macro following a READ macro which
tried to read a record beyond the last record in the file, control will pass to the EODAD address to handle
the condition. Normally, the program should CLOSE the file at this point.

The following is an example of using the READ, WRITE, and CHECK macros.

 OPEN INDCB
 OPEN OUTDCB
 ...
LOOP EQU *
 READ INDECB,SF,INDCB,BUFFER
 ...
 CHECK INDECB
 ...
 WRITE OUTDECB,SF,OUTDCB,BUFFER
 ...
 CHECK OUTDECB
 ...
 B LOOP
 ...
ERROR EQU *
 ...write out error message ...
END EQU *
 ...
 ...
 CLOSE INDCB
 ...
 ...
 CLOSE OUTDCB
 ...
 ...
 BR R14

 INDCB DCB DDNAME=INDCB,DSORG=PS,MACRF=(R),
 EODAD=END,SYNAD=ERROR
 OUTDCB DCB DDNAME=OUTDCB,DSORG=PS,MACRF=(W),SYNAD=ERROR
 BUFFER DS CL800

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 385

Writing OS/MVS Simulated Data Sets
For files accessed with the basic access method (BSAM, BDAM, or BPAM), use the WRITE macro for
writing data. For files accessed with the queued sequential access method (QSAM), use the PUT macro for
writing data. Both WRITE and PUT can write a record with fixed, variable, or variable spanned lengths.

Using the WRITE Macro
For data sets accessed with one of the basic access techniques, use the WRITE macro to place data into
auxiliary storage. Each time WRITE is issued, data blocks from a buffer in virtual storage are put into an
output data set. Because WRITE processes blocks, you are responsible for blocking the records before
writing them to virtual storage.

When ASCII/EBCDIC translation is specified (using OPTCD Q on FILEDEF or DCB), if you issue multiple
WRITE macros instructions on the same record, an error will occur. This is because the first WRITE
instruction issued translates the output data in the output buffer into ASCII.

For fixed and variable-length records
Before issuing WRITE, R1 must be pointing to the place where you want to write the block. You must
then assemble the records you want to write into blocks and write the BDWs and RDWs for each block
and record written. For information on the contents of the BDW and RDW, see “Block descriptor word” on
page 352 and “Record descriptor word” on page 352.

After WRITE processing is complete, R1 will be pointing to the address where next block should be
written.

For variable spanned records
Using the WRITE macro to place variable spanned records into auxiliary storage is the same as for fixed
and variable records except that your program must make sure that all segments of the records are
written. You can put the spanned records into one or more blocks and write an SDW for each segment of
the record. The SDW contains information on both the length of the segment and whether it is the first,
middle, or last part of the whole spanned record. See “Segment descriptor word” on page 354 for more
information.

Checking for I/O completion
The WRITE macro only starts output operations. To ensure that the operation completes successfully, you
should issue a CHECK macro to test the data event control block (DECB). Otherwise, you will not get any
notification of I/O errors or end-of-file conditions. For more information on the CHECK macro, see “Using
the CHECK macro” on page 385.

Using the PUT Macro
For data sets accessed with the queued sequential access method (QSAM), use the PUT macro to write
data to auxiliary storage. PUT places a record from a buffer in virtual storage into an output data set.

Similar to the GET macro, PUT provides various modes that can be specified in the DCB macro. These
modes include:

• Locate
• Move.

For more information on these modes, see the DFSMS Macro Instruction for Data Sets.

For fixed and variable-length records
The first PUT you issue will point R1 to the place where you want to write the first record. Then you can
issue another PUT to store the RDW and data in the buffer to the output data set. (For information on the
contents of the RDW, see “Record descriptor word” on page 352.) The second PUT also moves the pointer

Using OS/MVS Simulated Data Sets in CMS

386 z/VM: 7.4 CMS Application Development Guide for Assembler

to the address where the next data record will be written. All subsequent PUTs will write the data and
move the pointer. When you close the file, the CLOSE macro writes the last data record.

For variable spanned records under the segment interface
Using the PUT macro to write variable spanned records is the same as for fixed and variable records
except that your program must make sure that all the segments of the record are written. For each
segment of a variable spanned record, a SDW must be written. The SDW contains information on both the
length of the segment and whether it is the first, middle of last part of the whole spanned record.

Note that CMS does not clear the third and fourth byte of the SDW on QSAM output. Your application must
include the segment control code in the third byte and X'00' in the fourth byte.

See “Segment descriptor word” on page 354 for more information on SDWs.

For variable spanned records under the logical record interface
The logical record interface can be used in QSAM Locate mode. LRI disassembles multiple segments and
writes them to auxiliary storage.

LRI can be specified on the DCB or BUILDRCD macro. For more information on LRI and an example, see
“Logical Record Interface” on page 376.

Closing Data Files
When you have completed your I/O to a DCB, you must close the data file by issuing the OS simulated
CLOSE macro. CLOSE terminates processing of a data set and releases it from the DCB. It restores the
original status of the DCB. CLOSE also performs any volume positioning you specified (for tapes only).

A FREEPOOL macro should usually follow a CLOSE macro to regain the buffer pool storage space and
allow a new buffer pool to be built if the DCB is reopened with different record size attributes.

Exit Routines
The DCB macro can be used to identify the location of a:

• Routine that performs end-of-data procedures
• Routine that supplements the operating system's error recovery routine
• List that contains addresses of special exit routines.

Table Table 43 on page 387 lists the OS/MVS exit routines that CMS can simulate.

Table 43. OS/MVS Exit Routines Simulated in CMS

Exit Routine When Available Where Specified

End-of-data-set When no more sequential records or blocks are
available.

EODAD operand

Error analysis After an uncorrectable input/output error SYNAD operand

DCB open When opening a data set EXLST operand and exit
list

User Label Exits When processing SUL or AUL tapes. EXLST operand and exit
list

Block count After unequal block count comparison by end-of-
volume

EXLST operand and exit
list

DCB Abend When an abend condition occurs in OPEN, CLOSE,
or end-of-volume routine.

EXLST operand and exit
list

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 387

Following is a description of these exit routines. For more details, see the DFSMS Macro Instruction for
Data Sets.

End-of-Data-Set Exit Routine (EODAD)
The EODAD parameter of the DCB macro specifies the address of your end-of-data-set routine. This
routine can perform any final processing on an input data set. EODAD is entered when an FEOV macro is
issued or when a CHECK or GET macro is issued and there are no more records or blocks to be retrieved.

You program will abnormally end under either of the following conditions:

• No exit routine is provided.
• A GET macro is issued in the EODAD routine to the DCB that caused this routine to be entered.

When control is passed to the EODAD routine, the registers contain the following information:
Register

Contents
0-1

Reserved
2-13

Contents before execution of CHECK, GET, or FEOV macros
14

Address of the instruction after the last issued GET, CHECK, or FEOV macro
15

Reserved

Synchronous Error Routine Exit (SYNAD)
The SYNAD parameter of the DCB macro specifies the address of an error routine that is to be given
control when an input/output error occurs. This routine can be used to analyze exceptional conditions or
uncorrectable errors. The block being read or written, can be accepted, skipped, or processing can be
terminated.

Exit List (EXLST)
The EXLST parameter of the DCB macro specifies the address or a list that contains the addresses of
special processing routines. An exit list must be created if user labels, data control block, end-of-volume,
block count, or DCB abend exit are used.

The exit list is built of 4-byte entries that must be aligned on fullword boundaries. Each exit list entry is
identified by a code in the high-order byte, and the address of the routine, image, or area is specified in
the 3 low-order bytes. Codes and addresses for the exit list entries are shown in Table 44 on page 388.

Table 44. Format and Contents of an Exit List

Entry Type Hexadecimal Code Purpose

Inactive entry 00 Ignore the entry; it is not active

Input header label exit 01 Process a user input header

Output header label exit 02 Create a user output header label

Input trailer label exit 03 Process a user input trailer label

Output trailer label exit 04 Create a user output trailer label

Data control block exit 05 Take a data control block exit.

End-of-volume exit 06 Not simulated

Using OS/MVS Simulated Data Sets in CMS

388 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 44. Format and Contents of an Exit List (continued)

Entry Type Hexadecimal Code Purpose

JFCB exit 07 Not simulated

 08-09 Reserved

User totaling area 0A Not simulated

Block count exit 0B Take a block-count-unequal exit

Defer input trailer label 0C Not simulated

Defer nonstandard input trailer
label

0D Not simulated

 0E-0F Reserved

FCB image 10 Not simulated

DCB abend exit 11 Examine the abend condition and
select one of several options.

QSAM parallel input 12 Not simulated

Allocation retrieval list 13 Not simulated

 14 Reserved

JFCBE exit 15 Not simulated

 16 Reserved

OPEN/EOV nonspecific tape volume
mount

17 Not simulated

OPEN/EOV volume security/
verification

18 Not simulated

 19-7F Reserved

Last entry 80 Treat this entry as the last entry in
the list. This code can be specified
with any of the above but must
always be specified with the last
entry.

When control is passed to an exit routine, the registers contain the following information:
Register

Contents
0

Variable; see exit routine description
1

The 3 low-order bytes contain the address of the DCB currently being processed or the parameter list
of the exit. See the explanation of each exit routine in the DFSMS Macro Instruction for Data Sets.

2-13
Contents before execution of the macro.

14
Return address (must not be altered by the exit routine)

15
Address of exit routine entry point.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 389

The conventions for saving and restoring register contents are as follows:

• The exit routine must preserve the contents of register 14. It need not preserve the contents of other
registers. The control program restores the contents of register 2 to 13 before returning control to your
program.

• The exit routine must not use the save area whose address is in register 13 because this area is used by
the control program. If the exit routine calls another routine or issues supervisor or data management
macros, it must provide the address of a new save area in register 13.

• The DCBOFUEX bit in the DCBOFLGS is set to zero when a user exit is taken. This restricts the use of
certain macros in an exit routine.

Following is a detailed description of how CMS simulates the DCB abend exit. For information on the other
exit lists, see the DFSMS Macro Instruction for Data Sets.

DCB Abend Exit (DCB EXLST Entry Code X'11')
The DCB abend exit is provided to handle abend conditions that may occur during:

• Open processing
• Close processing
• End of volume processing

for a DCB.

Figure 62 on page 390 shows the parameter list that contains information about the abend condition.
The address of this parameter list is passed to your DCB abend exit in register 1. All information in the
parameter list is in binary form.

System Completion Code Return Code Option Mask

DCB Address

Reserved

Reserved

+4

+8

+12

+0

Figure 62. DCB Abend Exit (X'11') Parameter List

1. The system completion code is 2 bytes long and indicates what error occurred. This will be a right-
justified, halfword value. A list of the system completion codes appears in “DCB Abend Exit System
Completion Code Values” on page 393.

2. The return code is 1 byte long and is a more detailed description of the error.
3. The option mask is 1 byte long and contains flags on input to your exit routine indicating whether your

application can ignore the abend condition or immediately abend.
4. The DCB address is 4 bytes long and contains the address of the DCB on which the error occurred.
5. The reserved fields are for IBM use. These fields will contain zeros.

You can use the DMSABEXP macro to map the DCB abend exit parameter list. For more information on
DMSABEXP, see the z/VM: CMS Macros and Functions Reference.

Note: Although CMS retains the term "abend" for that MVS processing option, this implies CMS error
handling for the error case; an abend may or may not be part of the error handling.

Option Mask Values
Your application can indicate whether to ignore the abend condition or immediately abend. To do this,
your DCB abend exit routine must determine what action is available for the particular abend condition by
examining the contents of the option mask byte in the parameter list (see Figure 62 on page 390). The

Using OS/MVS Simulated Data Sets in CMS

390 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

option mask can have one of the values listed below on input to your exit routine. All other values are
reserved for IBM use.

• X'00' indicates that CMS error processing will occur regardless of what you specify in the parameter
list upon return to CMS. This is specified when there is a irrecoverable error such as an out-of-storage
condition.

– If this occurs during open processing, the DCB is restored to the state it was in prior to calling OPEN
and control returns to the application with the DCBOFOPN bit (X'10') in DCBOFLGS set to zero.

– If this occurs during close processing, an abend 001 occurs.
– If this occurs during end of volume processing, an I/O error is returned which will invoke the

application's SYNAD exit.
• X'04' indicates that the exit can choose to ignore this error; abends will be avoided. When this value is

used, no error messages will be displayed on the screen; all errors will be transparent to the user.

Note: You cannot always ignore errors. For these cases, normal CMS error processing occurs regardless
of what the exit routine puts in the option byte.

– If this occurs during open processing, CMS stops processing the DCB and restores the DCB to the
state it was in prior to calling OPEN. Control is returned to the application with the DCBOFOPN bit in
DCBOFLGS set to zero.

– If this occurs during close processing, processing stops and the DCB may be partially restored. If you
use the DCB at this point, the results are unpredictable.

– If this occurs during end of volume processing, processing stops. The tape positioning is
unpredictable. The application is free to continue processing but any further attempts to use this
file (other than closing it, if the error was not an OPEN error) will receive unpredictable results.

Before your DCB abend exit returns control to CMS, your routine places a code in the option mask field to
tell CMS what action to take.

• '0' indicates that normal CMS error processing for this error will take place.
• '4' ignores the abend error. The ignore available bit (X'04') must have been set to '1' on entry to the exit

to use this return option.
• Any other option mask value is treated as a '0' and normal CMS error processing will take place.

For more information on the DCB abend exit, see the DFSMS Macro Instruction for Data Sets.

Example Using the DCB Abend Exit (X'11')
Following is sample code using the DCB abend exit. It also shows how to use the DMSABEXP macro to
map the parameter list that is passed to the DCB abend exit.

Sample Code Using the DCB Abend Exit
SAMPABEX CSECT ,
 USING *,R12 Get addressability to our
 CSECT
 LR R12,R15 R12 is our base register
 SPACE
 OPEN (DCB1,OUTPUT) OPEN the DCB for OUTPUT.
 If an error occurs,
 MYABEXT will get control
 .
 .
 .
 BR R14
 EJECT
--
* *
* The following DCB defines a problem program exit list, *
* EXITLIST. The exit list indicates that the user written *
* DCB Abend Exit will be called to examine an abend *
* condition. *
* *
--

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 391

DCB1 DCB DSORG=PS,DDNAME=DD1,MACRF=(PL),EXLST=EXITLIST
 SPACE
EXITLIST DS 0F DCB Exit List
 DC XL1'91' X'11' is Abend Exit
 code + X'80' to
 indicate that this is
 last EXLST entry
 DC AL3(MYABEXT) Address of DCB Abend Exit
 SPACE

--
* *
* This is the DCB Abend Exit. It receives control from *
* OPEN processing when an error occurs. For certain *
* FSOPEN/FSCLOSE errors, tape I/O errors, and general *
* OPEN errors, this exit will determine the exact cause *
* of the error, issue a message, and return, telling CMS *
* to ignore the error. For all other cases, control *
* returns with an abend indication, telling CMS to perform *
* its normal error processing. *
* *
* Upon entry, *
* R1 = Address of the DCB Abend Exit parameter list *
* R2-13 = Contents before the OPEN macro was issued *
* R14 = Return address in CMS *
* R15 = Address of MYABEXT *
* *
--
MYABEXT DS 0H DCB Abend Exit Routine
 USING ABENDEXP,R1 Get addressability to
 input plist
 CLI ABEXOPT,ABEIGNOR Can we ignore this error?
 BZ NOIGNORE No, just return to CMS
 Yes, let's see what
 the error is
 SPACE
 CLC ABEXSCC,=H'24' FSOPEN/FSCLOSE error?
 BE FSOPNERR Yes, go handle error
 CLC ABEXSCC,=H'39' Tape I/O error?
 BE TAPIOERR Yes, go handle error
 CLC ABEXSCC,=H'36' General OPEN error?
 BNE NOIGNORE No, don't handle the error
* Yes, Diagnose OPEN errors
 SPACE
*
* Diagnose OS OPEN errors
*
 CLI ABEXRC,RC04 Missing LRECL, BLKSIZE,
 or BUFL?
 BNE … No, continue
 LA R5,MSGnnnn Yes, get message number
 L R2,ABEXDCB Get the DCB address
 USING IHADCB,R2 Get DCB addressability
 LA R6,LRECLSUB Get LRECL substitution
 CLC DCBLRECL,=H'0' Is LRECL missing?
 BE IGNORE Yes, go issue message
 LA R6,BLKSZSUB Get BLKSIZE substitution
 CLC DCBBLKSZ,=H'0' Is BLKSIZE missing?
 BE IGNORE Yes, go issue message
 LA R6,BUFLSUB No, must be BUFL;
 get substitution
 B IGNORE Go issue message
 .
 .
*
* Diagnose FSOPEN/FSCLOSE errors
*
FSOPNERR DS 0H Diagnose FSOPEN/FSCLOSE
 errors…
 CLI ABEXRC,RC31 Rollback on SFS file?
 .
 .
*

* Diagnose Tape I/O errors
*
TAPIOERR DS 0H Diagnose Tape I/O
 errors…
 CLI ABEXRC,RC05 Tape not attached?
 .
 .
*

Using OS/MVS Simulated Data Sets in CMS

392 z/VM: 7.4 CMS Application Development Guide for Assembler

* Issue diagnostic message and tell CMS to ignore the
* error. When control comes here, R7 contains the message
* number and R6 contains the substitution address.
*
IGNORE DS 0H Issue diagnostic message
 APPLMSG NUM=(7),SUB=(CHAR,((6),8))
 MVI ABEXOPT,ABEIGNOR Set ignore indicator -
 CMS should just move on to
 the next DCB
 B EXITLEAV Go return to CMS
 SPACE 2
*
* Tell CMS to proceed with its own error handling
*
NOIGNORE DS 0H We can't or won't ignore
 this error
 MVI ABEXOPT,X'00' Tell CMS to do it's
 error processing
EXITLEAV DS 0H Branch address
 BR R14 Return to CMS
 EJECT
*
* Pertinent Declarations
*
BLKSZSUB DC CL8'BLKSIZE' 'BLKSIZE' message
 substitution
BUFLSUB DC CL8'BUFL' 'BUFL' message substitution
LRECLSUB DC CL8'LRECL' 'LRECL' message substitution
 .
 .

 DMSABEXP Abend exit parameter
 list mapping
 REGEQU Register equates

DCB Abend Exit System Completion Code Values
The values returned in the System Completion Code field are shown below. The return code field will
contain zero unless otherwise specified.

OPEN Error Codes
24

An FSOPEN or FSCLOSE failed and the return code is put in the Return Code field.
25

Virtual storage capacity exceeded.
28

LABELDEF information for the DCB is missing.
32

An error was detected in an IBM or ANSI label or a nonzero return code was returned from the volume
switching routine.

36
OPEN processing encountered an error and the error code was put in the Return Code field. The
possible error codes are the same as those returned by DMSOP036E.

39
An I/O error was encountered during tape label processing. The Return Code field will contain the I/O
error code. These codes are all of the tape input and output error codes from message DMSxxx120S.

40
Open tried to process a library, but no GLOBAL command was in effect. OS simulation processing on
MACLIBs, DOSLIBs, TXTLIBs, and LOADLIBs requires that a GLOBAL command be issued to define the
libraries.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 393

CLOSE Error Codes
1

An I/O error occurred when close processing issued the final QSAM PUT for any residual data in the
application's output buffers. The Return Code field will contain the I/O error code. These codes can be
one of the error code from message DMSxxx120S. Note that since the DMSxxx120S error codes are
device dependent, the DCB Abend Exit must be aware of the DCB's device type.

24
An FSCLOSE or FSOPEN error occurred. The FSCLOSE or FSOPEN return code will be placed in the
Return Code field.

25
Virtual storage capacity exceeded.

28
LABELDEF information for the DCB is missing.

32
An error was detected in an IBM or ANSI label or a nonzero return code was returned from the volume
switching routine.

39
An I/O error was encountered during tape label processing. The Return Code field will contain the I/O
error code. These codes are all of the tape input and output error codes from message DMSxxx120S.

EOV Error Codes
25

Virtual storage capacity exceeded.
28

LABELDEF or FILEDEF information for the DCB is missing.
32

An error was detected in an IBM or ANSI label or a nonzero return code was returned from the volume
switching routine.

39
An I/O error was encountered during tape label processing. The Return Code field will contain the I/O
error code. These codes are all of the tape input and output error codes from message DMSxxx120S.

End-of-Volume Processing
The access methods pass control to the data management end-of-volume routine when an end of volume
condition occurs. An end of volume condition can be forced using the FEOV macro or can be detected
when one of the following is encountered:

• Tapemark on an input tape volume
• Filemark on an input direct access volume
• End-of-data indicator on an input device other than tape or direct access volume
• End-of-tape indicator on output tape.

If multiple volume data sets are specified in your FILEDEF or LABELDEF command, automatic volume
switching can be accomplished by the DMSTVS routine. See “OS/MVS Tape Volume Switching” on page
397 for more information.

Forced End-of-Volume Support
Use the FEOV macro to force an end of volume condition on a file. FEOV signals CMS to assume an end
of volume condition for the specified QSAM or BSAM DCB and causes end of volume processing to take
place before the physical end of the volume.

Using OS/MVS Simulated Data Sets in CMS

394 z/VM: 7.4 CMS Application Development Guide for Assembler

Forced end of volume processing is the same as the physical end of volume processing except that the
FEOV macro allows tape positioning using the REWIND and LEAVE options.

Forced end of volume processing will, by default, rewind and unload a tape. You can use the REWIND and
LEAVE options to position the tape at the beginning of the tape or the end of the file being forced to EOV.

Positioning Tapes with the REWIND and LEAVE Options
REWIND requests that the tape volume be positioned at the beginning of a volume. LEAVE requests that
the tape volume be positioned at the logical end of the file for a volume.

In order for the REWIND option or LEAVE to execute correctly, one of the following must be true:

• Only one tape is being processed (it is not multivolume).
• The last tape of a multivolume file is being processed.
• An alternate tape drive has been defined for the multivolume file using the ALT option on FILEDEF.

If none of these conditions are true then the tape is rewound and unloaded, regardless of the positioning
option specified.

For tapes that are processed forward when LEAVE is used:

• If the tape is the last or only volume of the file, the logical end of file is the physical end of the data:
position 3 in Figure 63 on page 395.

• If the tape is not the last volume or not the only volume of the file, the logical end of file is the end of
volume label group: position 4 in Figure 63 on page 395.

• If the tape is unlabeled, the logical end of file is the physical end of the data: position 3 in Figure 63 on
page 395.

For tapes that are processed backward when LEAVE is used:

• CMS always assumes a single volume file. Therefore, the logical end of file is the physical beginning of
the data: position 2 in Figure 63 on page 395. This is true for unlabeled tapes as well.

Following is an example of the basic tape layout for an ANSI and IBM standard label.

Volume Header TM Data

Label Labels

3 41 2

Set TM Trailer TM TM

Labels

Figure 63. FEOV LEAVE Positioning for ANSI and IBM Standard Labels

If neither REWIND nor LEAVE is specified, the current volume is positioned as follows:

• If this is not the last volume, the tape is rewound and unloaded.
• If this is the last volume and the tape is being processed forward, the tape is positioned after the tape

mark that delimits the end of file, 3 in Figure 63 on page 395.
• If this tape is being processed backward, the tape is positioned before the tape mark that delimits the

beginning of the file, 2 in Figure 63 on page 395.

Processing Files for Forced End of Volume
The FEOV macroinstruction can be used with magnetic tape files, DASD files, and unit record and terminal
files.

For magnetic tape files:

• The REWIND and LEAVE options can be used for volume positioning and are described in the previous
section.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 395

• FEOV end-of-volume processing is the same as processing for a physical end-of-volume condition
except for the volume positioning options of REWIND and LEAVE. For physical end of volume the tape is
always rewound and unloaded.

• EOV output labels are created according to the access method and label processing specification. Also,
input labels are checked to ensure the correct volume was mounted.

• The standard OS exit routines that CMS supports are given control as specified in the DCB exit list17.
• The first GET following an FEOV request for a QSAM input file will read the first block from the new

volume and the input request will be satisfied with a record from that block. Any remaining records in
the previous block from the last volume will be ignored.

• If the FEOV macro is issued for the last volume of a file, the EODAD (end-of-data-set) user routine is
given control. If the FEOV REWIND option is specified, the tape is rewound to the load point, 1 in Figure
63 on page 395. Otherwise, FEOV positions the tape immediately after the tape mark that precedes the
EOF label group, 3 in Figure 63 on page 395.

• If LEAVE is specified on the FILEDEF command and the following sequence of macros are issued:

– FEOV REWIND
– CLOSE LEAVE
– OPEN

errors may occur.

For this case, it is up to the user to position the tape to the correct file before issuing the OPEN macro.
• If a TEOVEXIT routine is available and the FEOV macro is issued for an SL tape, the exit is given control

to handle the end-of-volume condition (in this case, standard CMS multivolume switching routine18.)
For more information on TEOVEXIT routine, see z/VM: CMS Macros and Functions Reference.

The TEOVEXIT routine is ignored for AL tapes.

For DASD files, unit record (readers, punches, printers) files and terminal files:

• If FEOV is issued for an input DCB, the end-of-data-set routine is given control, if it exists.
• If FEOV is issued for an output DCB, it is ignored.

For dummy files, the FEOV macro is ignored.

Error Handling during FEOV Processing
Errors that can occur during FEOV processing are those that occur at the physical end of volume under
CMS. These can include end of tape errors, tape label errors, tape I/O errors, and tape volume switching
errors. If an error occurs during FEOV processing, the tape remains positioned wherever it was at the time
of error and one of the following routines may be called:

• EODAD routine
• DCB abend exit routine
• SYNAD routine (FEOV should not be issued from within SYNAD).

Most errors that occur during input FEOV processing are returned to the application as an EOF condition.
When this happens, the EODAD routine will be called, if it is available.

If FEOV is issued for an output tape file under label processing that does not support multivolume tapes,
the SYNAD routine will be called after the appropriate tape marks or trailer labels are written. When the
SYNAD routine is called, the positioning options are ignored and the tape is left positioned immediately
after the final tape mark that was written.

17 The only DCB exit supported by CMS for an end-of-volume condition is the DCB Abend Exit (exit code
X'11'). For end-of-file conditions, CMS supports the user trailer label exit (exit codesX'03' and X'04').

18 Standard CMS multivolume switching routine refers one of two routines. If the DMSTVI routine has been
provided by the user or installation, then it is used. Otherwise, the DMSTVS routine is used.

Using OS/MVS Simulated Data Sets in CMS

396 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Input/output errors
Other errors that may occur during FEOV processing are input or output errors. These types of errors will
cause control to be passed to either the DCB abend exit or the SYNAD routine, depending on availability. If
neither of these routines is available, processing will stop with an abend 001.

If a DCB abend exit routine is available, it will be called with one of the error codes described in “DCB
Abend Exit System Completion Code Values” on page 393. If the exit returns an ignore for this error, no
error will be reflected to the application, but the results of any further attempt to reference the file (aside
from closing it) will be unpredictable.

A SYNAD routine will be called if it is specified by the DCB and no DCB abend exit is available. In this
case, the SYNADAF macro may be issued to obtain a buffer that contains the text of the error message
DMSSCT120S, which includes an error code describing the failure. See the z/VM: CMS and REXX/VM
Messages and Codes for more information on the error message in z/VM.

Tape volume switching errors
When a program uses QSAM to read a spanned multivolume file, if it issues an FEOV macro and the first
segment on the new volume is not the first segment of a record, errors may occur when the next GET
macro is issued. Such errors will cause control to be passed to the error analysis exit (SYNAD).

During tape volume switching, if the user fails to mount a new tape (either through a CANCEL command
for the mount request or if no response is made to the tape mounting subsystem so that the mount
request processing times out), then the CMS system processing will consider the mount failure as an
irrecoverable I/O error and force a SYNAD (as specified on the DCB macro) or system ABEND exit to end
processing. If the user application contains a SYNAD exit, then that routine will receive control on error
termination. Otherwise, the default is to enter a system ABEND exit.

OS/MVS Tape Volume Switching
DMSTVS is a CMS routine that performs tape volume switching operations for OS/MVS multivolume tape
support. This routine, called only by OS simulation, prompts the operator to mount a specified tape
volume on a specified tape drive.

DMSTVS automatically switches to nucleus key for its processing when it gets control. DMSTVS is called
by SVC 202 and must be executed in AMODE 24.

When DMSTVS is called, register 1 points to the address of the tokenized parameter list, whose contents
will be as follows:

DC CL8'DMSTVS ' SVC 202 routine target name
DC CL8'VOLID ' Volume id to be mounted or
 SCRATCH
DC XL8'01810000' Virtual tape address
 (i.e., 181 or
 any valid CMS tape device
 number)
DC CL8'RING ' Write enable RING or
 'NORING ' Readonly NORING
DC CL8'SL ' IBM Standard labeled tape or
 'AL ' ANSI Standard labeled tape or
 'NL ' No labels in use on tape or
 'BLP ' Bypass label processing or
 'LABOFF ' Label processing off
DC CL8' ' Reserved
DC CL8'DDNAME ' FILEDEF that needs this tape
 volume
DC CL8' ' Use device default mount
 mechanism or
 'LIBSRV ' RMS will be used to call
 Library Dataserver
 (INPUT/OUTPUT field)
DC 8X'FF' Fence to show end of list

The output of DMSTVS depends on the installation. DMSTVS is meant to issue messages to the console to
mount tapes. Any non-zero return code is considered an error situation.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 397

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4

The DMSTVS function can be overridden by a nucleus extension with the name DMSTVS. The nucleus
extension must follow the same entry and exit conventions as DMSTVS. The exit conditions are:

• Normal: R15 = 0
• Error: R15 does not = 0.

DMSTVS uses the TVSPARMS macro to set the tape volume switching parameters for DMSTVS. The
TVSPARMS macro provides time interval information for the volume switching prompt message to the
operator. The operator can ask for another reminder to be issued at a preset interval, or cancel the tape
mount.

It is possible to change the default values that this macro provides to the DMSTVS module. The macro is
used by the native CMS tape switching services to provide:

• The user ID of the person or tape pool operator to receive the tape mounting and error messages from
OPERATOR to some other valid ID.

• Default time intervals between tape drive senses
• Default number of message prompts issued before the Wait time about to expire and Wait
time expired messages are issued.

The macro field names and associated default values are as follows:

TPUSERID DC CL8'OPERATOR' USERID to which mount msgs
 are sent
WAITIME DC C'00003000' Time to wait between drive
 senses
* (the format of WAITIME is HHMMSSTH)
WAITLPCT DC F'10' Number of times to SENSE before
 prompt
ABOUTEXP DC F'3' Prompt count when the
 "ABOUT TO EXPIRE"
* message will be given
EXPIRE DC F'4' Prompt count when the
 "WAIT TIME EXPIRED"
* message will be given
READRING DC CL8'CHECK' If NORING was requested,
 check for RING

Figure 64. TVSPARMS Field Default values

To change any of these system defaults, a system programmer must:

1. Change this macro in a local macro library
2. Recompile the DMSTVS module
3. Rebuild the CMS system using the local modification or generate DMSTVS as a nucleus extension

module.

Please note that DMSTVS sets a CP timer with the OS/MVS STIMER simulation. This paces the prompting
messages.

Usage Notes for DMSTVS Tape Volume Switching
• DMSTVS normally operates in an interactive environment with a human tape operator. It issues

repetitive prompt messages based on the TVSPARMS macro WAITIME value and prompt counter
expirations.

• DMSTVS prompts are issued both to the virtual machine USERID and to the tape operator identified in
the TVSPARMS macro TPUSERID value. The default for the tape operator is OPERATOR, but the macro
can be changed by the customer and the code reassembled so that mount prompts go to a specific tape
operator user ID.

• Prompt messages have a counter that increases if no response is made by the user or the operator
before the next time interval expires. Warnings can also be issued if the total wait time interval is about
to expire.

Using OS/MVS Simulated Data Sets in CMS

398 z/VM: 7.4 CMS Application Development Guide for Assembler

• DMSTVS immediate commands that can be issued are EXTEND and CANCEL. The user or the tape
operator can choose to EXTEND the current wait time interval or let it expire, based on circumstances.
The user or tape operator can also CANCEL a mount request.

• When a wait time EXTEND is issued, or a mount error occurs (such as when a wrong tape VOLID is
mounted for a requested tape), then the prompt counter and time intervals are reset to start over again
from zero.

• A DMSTVS time interval between prompts is equal to the TVSPARMS macro WAITIME value multiplied
by the TVSPARMS macro WAITLPCT value.

• The DMSTVS total wait time equals the prompt time interval multiplied by the TVSPARMS macro EXPIRE
count. This value can be changed if the user or the operator enters the EXTEND immediate command to
reset the time intervals to start over again.

• A prompt is also issued warning that the wait time is about to expire when the prompt count equals the
TVSPARMS macro ABOUTEXP value.

• DMSTVS sets a non-zero return code to its caller when the total wait time expires, or when a tape mount
CANCEL is done. Total wait time expires when the prompt counter equals the TVSPARMS macro EXPIRE
value.

• DMSTVS can operate in automated mode if an Automated Tape Library is in control of the target tape
drive. In this case, DMSTVS issues CSL Mount or Demount commands to the tape library robot via calls
to the DFSMS RMS server machine controlling the tape library. However, if the CSL Mount call to the
DFSMS RMS machine ends in error, DMSTVS then tries to issue prompts to the human tape operator
identified by the TVSPARMS macro TPUSERID value to get the tape mounted.

Passing Information to the DMSTVI Routine
An interface routine, DMSTVI, can be used to give control to a different multivolume switching routine
than the one supplied with VM (DMSTVS) or a tape management system. If a DMSTVI routine is present, it
is always used first. You can make a DMSTVI routine available to the system as a nucleus extension.

The load of the DMSTVI module is done at FILEDEF time. Use the SYSPARM option to pass information not
included on the FILEDEF or LABELDEF command to the DMSTVI routine. The SYSPARM option of FILEDEF
can be used to pass additional information to the DMSTVI routine.

If the customer's tape subsystem product is capable, three file attribute fields are passed in the DMSTVI
parameter list expansion area which allows the tape subsystem to record the attributes for reference.
These recorded attributes can also be supplied by the tape subsystem at OPEN time as default values
to fill in a FILEDEF specification. See the expansion of the TVISECT macro in the z/VM: CMS Macros and
Functions Reference.

Create the interface routine (DMSTVI) by the normal LOAD/GENMOD procedure. Use the RLDSAVE option
of the LOAD command when the text deck is loaded to save the relocation information from the text file.

When DMSTVI is called, the general-purpose registers contain the following information:
GPR 1

= Address of a parameter list defined by the TVISECT DSECT
GPR 14

= Return address
GPR 15

= Entry point address
The calling routine saves and restores the register contents.

DMSTVI automatically switches to nucleus key for its processing when it gets control. When DMSTVI
gets control, it must check the call function keyword in the register 1 PLIST. The call function keyword
identifies the function being processed when DMSTVI is called. DMSTVI should use the information in the
PLIST to build a command or to invoke the tape volume switching routine or tape management system.

When DMSTVI is called during FILEDEF processing, only the call function (SYSPARM) and the SYSPARM
string address and length field are filled in. The other fields are set to zeros.

Using OS/MVS Simulated Data Sets in CMS

Chapter 23. Using OS/MVS Simulated Data Sets in CMS 399

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4

Because DMSTVI gets control during OPEN macro processing before any I/O is done, you do not have to
mount a tape before OPEN is issued. The interface routine can mount the tape before returning control to
OPEN macro processing.

If you specify only the first volid of a multivolume tape and the end of the first volume is reached, DMSTVI
gets control with a call function of 'EOV' and a volid of SCRATC. The tape management system can mount
the next volume if it knows what tape is currently mounted on the drive and the volid of the next volume in
the series.

A 44 character file ID can now be entered with the LABELDEF command. The 44 character file ID is
passed to DMSTVI during OPEN, EOV, and CLOSE macro processing. DMSTVI should check the TVISCRAT
field in the register 1 PLIST to determine if a tape was requested from the tape management system.
DMSTVI checks the TVISCRAT field by giving a file ID.

If the TVISCRAT field contains 'SCRATCH', a scratch tape was requested. If this field contains 'NOSCRATC',
a scratch was not requested — 'SCRATC' was put in TVIVOLID as a default. If a file ID is also specified
(TVIFILID), a tape containing this file ID was requested. If you want to mount a tape by specifying just the
file ID, you should not specify any volid on FILEDEF or LABELDEF (including 'SCRATCH').

If no file ID is specified on the LABELDEF command, the TVIFID field in the register 1 PLIST contains all
zeros. The system uses the ddname (TVIFILE) as the default.

The TVIVSEQ field (volume sequence number) is only supported to the extent that the volseq operand of
the LABELDEF command is supported. This means that the TVIVSEQ field will either be 0 or 1. It is not
incremented when multiple volumes are used.

When DMSTVI is called for an end of volume condition or when a file is closed, the TVIBLKCT field will
contain a count of the I/O to this tape file. Installations can obtain a count of tape I/O for accounting
purposes by recording the TVIBLKCT parameter. Note that this is the count for a file on one particular
tape volume. For multivolume tapes, the TVIBLKCT must be accumulated each time DMSTVI is called for
file close processing to account for the total I/O count on all the volumes on which the tape file exists.
This accounting information is complete only if alternate tape processing is avoided, that is, DMSTVI is not
called for alternate processing.

The output of DMSTVI depends on the installation. DMSTVI is meant to issue operator messages to mount
a tape for the user application. DMSTVI must return to the calling routine when processing is complete.
Any non-zero return code is considered an error situation.

Using OS/MVS Simulated Data Sets in CMS

400 z/VM: 7.4 CMS Application Development Guide for Assembler

Part 6. DOS/VSE, Access Method Services, and VSAM

This part of the document describes the services of the DOS/VSE operating system as they are simulated
by CMS. Note that CMS may not simulate the same services that are provided with DOS/VSE.

Part 6, “ DOS/VSE, Access Method Services, and VSAM,” on page 401 includes the following chapters:

• Chapter 24, “Developing VSE Programs under CMS,” on page 403 describes how you can use CMS to
develop and execute your VSE programs.

• Chapter 25, “Using Access Method Services and VSAM,” on page 445 describes how you can use CMS to
create and manipulate VSAM catalogs, data spaces, and files on OS and DOS disks using access method
services.

© Copyright IBM Corp. 1990, 2024 401

402 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 24. Developing VSE Programs under CMS

CMS simulates many functions of the Disk Operating System (DOS) VSE so you can use the interactive
facilities of z/VM to develop and execute your VSE programs in a VSE virtual machine or in a batch
facility virtual machine. CMS simulation of DOS is not necessarily the same as the current support of
DOS. However, you can use CMS to create, compile, test, execute, and debug VSE programs written in the
Assembler, DOS/VS COBOL, DOS PL/I, DOS/VS RPG-II programming languages.

This chapter discusses the following topics:

• Entering the CMS/DOS environment
• Using DOS files on DOS disks
• Using libraries in CMS/DOS
• VSE assembler language macros supported
• Assembling, link-editing, and executing source programs
• VSE supervisor and I/O macros supported by CMS/DOS
• CMS/DOS user considerations and responsibilities.

Overview of CMS/DOS
CMS/DOS is neither CMS nor is it DOS. It is a composite, and its vocabulary contains both CMS and VSE
terms. CMS/DOS performs many of the same functions as DOS. However, under VSE a function is initiated
by a control card, while under CMS it is initiated by a command. Many CMS/DOS commands, therefore,
have the same names as the VSE control statement that performs the same function. In those cases
where the control statement you would use in VSE and the command you use in CMS are different, the
differences are explained. In general, whenever a term that is familiar to you as a VSE term is used, it has
the same meaning to CMS/DOS, unless otherwise indicated.

CMS/DOS support in z/VM is based on the VSE licensed program. The term DOS, however, continues to be
used in a general sense, and in the discussion that follows, DOS refers to the VSE licensed program.

Entering the CMS/DOS Environment

After you have loaded CMS into your virtual machine, you can enter the CMS/DOS environment by issuing:

set dos on

A typical response from the system would be:

DMSSET1101I 100K DOS partition defined at hexadecimal location 020000
Ready;

If you want to access a DOS system residence volume during your CMS/DOS terminal session, you should
link to and access the disk that contains the DOS SYSRES before you issue the SET command.

For example, if you share the system residence volume with other users and it is in your directory at
virtual address 390, you would issue the command:

access 390 g

then issue the SET command as follows:

Developing VSE Programs

© Copyright IBM Corp. 1990, 2024 403

set dos on g

to indicate that the SYSRES is located on your G-disk. If you are going to use the CMS/DOS librarian
facilities to access any of the libraries on the system residence volume, you must enter the CMS/DOS
environment this way.

If you are using CMS exclusively for DOS applications, you could put the ACCESS and SET DOS ON
commands in your PROFILE EXEC.

All of the CP and CMS online debugging and testing facilities (such as the CP TRACE and STORE
commands) are supported in the CMS/DOS environment. Also, CP disk error recording and recovery are
supported in CMS/DOS.

CMS/DOS can execute programs that use the sequential access method (SAM) and virtual storage access
method (VSAM), and CMS/DOS can access VSE libraries. If you are going to use access method services
functions in CMS/DOS or execute functions that read or write VSAM data sets, you must use the VSAM
option of the SET DOS ON command:

set dos on g (vsam

When you are using CMS/DOS, you can use your virtual machine just as you would if you were in the
CMS environment. In the CMS/DOS environment, CMS supports many VSE facilities, but does not support
OS/MVS simulation. For example, the SCRIPT command uses OS/MVS macros and is therefore invalid in
the CMS/DOS environment. When you no longer need VSE support under CMS, you issue the SET DOS OFF
command and VSE facilities are no longer available.

You have, however, in addition to the CP and CMS commands available, many CMS/DOS commands and
CMS commands with special CMS/DOS operands that simulate VSE functions. Except for the DLBL and
DOSLIB commands, these commands or operands should only be issued in the CMS/DOS environment.

The CMS/DOS commands and CMS commands with special CMS/DOS operands are summarized in Table
45 on page 404. A detailed description of the commands and the command format are found in the z/VM:
CMS Commands and Utilities Reference.

Table 45. CMS/DOS Commands and CMS Commands with Special Operands

Command Operand Comments

ASSGN Assigns CMS/DOS system or programmer logical units to a virtual
device. Executable only in the CMS/DOS environment.

DLBL Defines a VSE or VSAM ddname and relates the ddname to a disk
file.

DOSLIB Deletes, compacts, or lists information about the phases in a
CMS/DOS phase library.

DOSLKED Link-edits CMS text file or object modules from a VSE relocatable
library, and places them in executable forms in a CMS/DOS phase
library. Executable only in the CMS/DOS environment.

DOSPLI (see note
“1” on page 405)

Compiles DOS PL/I source programs. Requires installation of the
DOS PL/I Compiler, 5736-PL1. Executable only in the CMS/DOS
environment.

DSERV Displays information about VSE core image, relocatable, source
statement, and procedure or transient directories. Executable only
in the CMS/DOS environment.

ESERV Displays, updates, punches, or prints edited (E sublibrary)
VSE source statement books. Executable only in the CMS/DOS
environment.

Developing VSE Programs

404 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Table 45. CMS/DOS Commands and CMS Commands with Special Operands (continued)

Command Operand Comments

FCOBOL (see note
“1” on page 405)

Compiles DOS/VS COBOL source programs. Requires installation
of the DOS COBOL Compiler, 5746-CB1. Executable only in the
CMS/DOS environment.

FETCH Fetches a CMS/DOS executable phase. Executable only in the
CMS/DOS environment.

GENMOD OS DOS ALL Specifies the type of macro support needed to execute a module.
The ALL operand is intended for CMS internal use.

GLOBAL DOSLIB The GLOBAL command can specify CMS/DOS phase libraries, as
well as text and macro libraries.

LISTIO Display information about the CMS/DOS system and programmer
logical units. Executable only in the CMS/DOS environment.

LOADMOD Checks that a module generated to execute in a specific macro
simulation environment (CMS/DOS or CMS) is in the correct
environment.

OPTION Sets compiler options for DOS/VS COBOL and DOS/VS RPG-II.
Executable only in the CMS/DOS environment.

PSERV Copies and displays procedures in the VSE procedure libraries
and spools the procedures to the CMS virtual printer and punch.
Executable only in the CMS/DOS environment.

QUERY DLBL DOSLNCNT
DOS DOSLIB
DOSPART
LIBRARY
OPTION
UPSI

Displays the current data set definitions. Displays the current
number of SYSLST lines per page. Executable only in the
CMS/DOS environment. Displays the current status (active or
not active) of CMS/DOS. Displays the names of all CMS/DOS
phase libraries currently being searched for executable phases.
Displays the virtual partition size. Executable only in the CMS/DOS
environment. Displays the names of all CMS/DOS phase libraries
to be searched, in addition to the text and macro libraries.
Displays CMS/DOS compiler options. Executable only in the
CMS/DOS environment. Displays current setting of CMS/DOS UPSI
byte. Executable only in the CMS/DOS environment.

RSERV Copies and displays modules in a VSE relocatable library. Output
can also be directed to the virtual printer or punch. Executable
only in the CMS/DOS environment.

SET DOS DOSLNCNT
DOSPART UPSI

Makes the CMS/DOS environment active or not active. Specifies
the number of SYSLST lines per page. Executable only in the
CMS/DOS environment. Sets the virtual partition size. Executable
only in the CMS/DOS environment. Sets the CMS/DOS User
Program Switch Indicator (UPSI) byte.

SSERV Copies or displays books from the VSE source statement library.
Output can also be directed to the virtual printer or punch.
Executable only in the CMS/DOS environment.

Note:

1. The files used by this command may be CMS minidisk files, shared files in the Shared File System, or a
mixture of both. If a TEXT or LISTING file exists before the command is issued, the files are renamed
to ‘fn CMSUT1’ for the TEXT file, and ‘fn CMSUT2’ for the LISTING file. This is done to preserve file
authorities. It is possible for an error to occur during command processing which would leave the

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 405

temporary files on the user's disk. The temporary file may need to be renamed by the user back to the
original TEXT or LISTING file. File authorities are not preserved if the user specifies a DLBL with a file
type other than TEXT or LISTING for the output text or listing files.

DL/I in the CMS/DOS Environment
Batch DL/I programs can be written and tested in the CMS/DOS environment. This includes programs
written in assembler, COBOL, and PL/I languages. Not all functions of COBOL and PL/I are supported. For
a description of what is supported, see the documentation on the appropriate licensed program.

Database description generation and program specification block generation can also be executed.
However, the application control block generation must be submitted to a DOS virtual machine for
execution. The database recovery and reorganization utilities must also be executed in a DOS virtual
machine. This support provides the ability to:

• Interactively code DL/I control blocks and application programs that contain imbedded DL/I calls.
• Store and maintain macros used to generate DL/I control blocks in a CMS library. Store and maintain

programs created under CMS in a CMS library. Production libraries are thus isolated from the test
environment.

• Modify and compile programs using the CMS/DOS text manipulation and EXEC facilities.
• Link-edit and execute batch DL/I programs either interactively or in CMSBATCH. Online DL/I application

programs requiring access to CICS*/VS must be submitted to a DOS virtual machine for link-editing,
cataloging, and execution.

The following restrictions apply:

• All the existing guidelines and restrictions that apply to VSAM data set creation, maintenance, and
application program use apply to DL/I data sets.

• The CMS/DOS restriction on writing to sequential files applies to SHSAM and HSAM.
• To assemble a DBD or PSB under CMS/DOS, you must first copy the DBDGEN and PSBGEN macros from

the DOS source statement library to a CMS MACLIB.

For more information about using DL/I in the CMS/DOS environment, see DL/I DOS/VS Data Base
Administration.

Using DOS Files on DOS Disks
You can have DOS disks attached to your virtual machine by a directory entry or you can link to a DOS disk
with the LINK command. You can use the ACCESS command to assign a mode letter to the disk:

access 155 b

and the RELEASE command to release it:

release b

Except for VSAM disks, you cannot write on DOS disks or update DOS files on them. You can, however,
execute programs and CMS/DOS commands that read from these files, and you can use the LISTDS
command to display the file IDs of files on a DOS disk.

For example, if you enter:

listds b

You receive the following response, if the data set exists:

FM DATA SET NAME
B NEW.TEST DATA
B ONE.TEST ONE
B TWO.TEST TWO

Developing VSE Programs

406 z/VM: 7.4 CMS Application Development Guide for Assembler

You can also verify the existence of a particular file. For example, if the file-id is NEW.TEST.DATA you can
enter:

listds new.test.data.b
 — or —
listds new test data b

If the file-id of the DOS file you want to verify contains embedded blanks, for example NEW.TEST DATA,
then you have to enter the LISTDS commands with a question mark:

listds ? b

CMS responds:

Enter data set name:

and you can enter the exact file-id:

new.test data

If the data set exists, you receive a response:

FM DATA SET NAME
B NEW.TEST DATA

Reading DOS Files
Under CMS/DOS, you can execute programs that read DOS sequential (SAM) files; you can also execute
programs that read and write VSAM files. You cannot, however, execute programs to read direct (DAM) or
indexed sequential (ISAM) DOS files. Complete information on using CMS to access and manipulate VSAM
files is described in Chapter 25, “Using Access Method Services and VSAM,” on page 445.

The discussion below lists the restrictions placed on reading SAM files.

CMS cannot read DOS files that:

• Have the input security indicator on.
• Contain more than 16 user labels and data extents. (If the file has user labels, they occupy the first

extent. Therefore, the file must contain no more than 15 data extents.) User labels in user-labeled files
are ignored.

• Are multivolume files. Multivolume files are read as single-volume files. End of volume is treated as end
of file. There is no end-of-volume switching.

CMS does not support duplicate volume labels. You cannot access more than one volume with the same
six-character label while you are using CMS/DOS.

Creating CMS Files from DOS Libraries
You can create CMS files from existing DOS files on DOS disks. CMS simulates the DOS librarian functions
DSERV, RSERV, SSERV, ESERV, and PSERV with commands of the same names. You can use these
CMS/DOS commands to create CMS files from relocatable source statement or procedure libraries located
either on the DOS system residence volume or in private libraries. The functions are fully described later
in this section.

Copying DOS Files and Tape Data Files
If you want to create CMS files from DOS files that are not cataloged in libraries or from DOS files on tape,
you can use the MOVEFILE command. The MOVEFILE command lets you copy a file from one device to
another device of the same or a different type. Before issuing the MOVEFILE command, the input and the
output files must be described to CMS with the FILEDEF command.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 407

The MOVEFILE and FILEDEF commands are described in Chapter 22, “Developing OS/MVS Programs
under CMS,” on page 317 and in the z/VM: CMS Commands and Utilities Reference. The procedures are the
same for copying DOS files as for OS/MVS data sets. You must remember, however, that:

• Because DOS files on DOS disks do not contain BLKSIZE, RECFM, or LRECL options, these options must
be specified with the FILEDEF command. Otherwise, default values are assigned. The default values are
BLOCKSIZE=32760 and RECFM=U. LRECL is not used for RECFM=U files.

• If a DOS file ID does not follow OS/MVS naming conventions, you must use the DSN ? operand of
FILEDEF to enter the DOS file ID. The OS/MVS naming conventions are: 1-byte to 8-byte qualifiers, each
qualifier must be separated by a period, and up to 44 characters including periods.

Copying Modules from VSE Library or SYSIN Tapes
You can create individual CMS files for VSE modules from a VSE library distribution tape or VSE SYSIN
tape. Use the VMFDOS command. The VMFDOS command can create a CMS file for each VSE module that
exists, and the CMS file name corresponds to the VSE module name. You can restore individual modules,
groups of modules, or the entire module set.

For VSE library distribution tapes, the VMFDOS command restores modules from either system or private
(relocatable or source statement) libraries. The created CMS files have a file type of TEXT if they are from
a relocatable library. They have a file type of MACRO if they are from a source statement library.

Reading in Real Card Decks
If you have DOS files or source programs on cards, you can create CMS files directly by having these cards
read into the real system card reader and directed to your virtual machine by preceding the data with a CP
ID card.

The format of a CP ID card is:
ID

USERID

userid

CLASS class NAME name

TAG tagtext

The ID or USERID keyword must begin in column 1, and each keyword and operand must be separated by
at least one blank. userid is the user to receive the spool file containing the card deck, class and name are
optional values that can be assigned to the spool file, and tagtext is optional data that will be associated
with the spool file. If tagtext is specified, it must be the last operand on the card.

When the cards appear in your virtual reader, you can read them into a CMS file using any of the usual
methods, such as the RECEIVE or READCARD commands.

Using Tapes in CMS/DOS
See “Label Processing in CMS/DOS” on page 164 for a description of CMS tape label processing for
CMS/DOS tape files. The support for tape labels is only for files defined by a DTFMT macro. If you do
not use this macro, CMS bypasses IBM standard labels on input tapes and writes a tape mark over any
existing labels on an output tape. The CMS LABELDEF command is equivalent in CMS/DOS to the VSE
TLBL control statement when standard tape label processing is used.

The ASSGN Command
The ASSGN command performs the same function for CMS/DOS as the ASSGN control statement in VSE.
The ASSGN command in CMS/DOS assigns a system or programmer logical unit (SYSxxx) to a virtual I/O
device. A logical unit is a symbolic name a program may use to refer to a real I/O device without knowing
the device address.

Developing VSE Programs

408 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

If the device is a disk, you can use the DLBL command to establish a real file identification for a symbolic
file name in a program. The DLBL command is described under "Using the DLBL Command". As in VSE,
you are not allowed to assign the system residence volume with the ASSGN command.

In addition to using the ASSGN command to relate real I/O devices with symbolic units, you must use it in
CMS/DOS to:

• Assign SYSIN or SYSIPT for the input source file for a language compiler when you use the DOSPLI or
FCOBOL commands.

• Identify the disk, by mode letter, on which a private core image, relocatable, or source statement library
resides.

• Assign SYSIN or SYSIPT to the CMS disk on which an ESERV file, containing control statements for the
ESERV program, resides.

When you enter the ASSGN command, you must supply the logical unit and the device. For example:

assgn sys100 printer

assigns the logical unit SYS100 to the printer. When you want to make an assignment to a disk device, you
must specify the mode letter where the disk is accessed. You must also access the disk before making an
assignment to the disk. The command:

assgn sys010 b

assigns the logical unit SYS010 to your B-disk.

Assigning System Logical Units
The system logical units you can assign and the valid device types you can assign to the units in CMS/DOS
are listed below.

Some VSE system logical units cannot be assigned to a DOS formatted FB-512 device. These units are
listed below. An error message is issued and the command terminated if any of the unsupported system
logical units are specified in the ASSGN command.

SYSIPT, SYSRDR, SYSIN
You can assign SYSIPT, SYSRDR, and SYSIN to disk (mode), TAPE, or READER. If you make an assignment
to SYSIN, both SYSRDR and SYSIPT are also assigned the same device. SYSIPT, SYSRDR, and SYSIN
cannot be assigned to a DOS formatted FB-512 device.

SYSLST
You can assign SYSLST, the system logical unit for listings, to disk (mode), PRINTER, or TAPE. An
assignment to DOS FB-512 disks is not supported.

SYSLOG
You can assign SYSLOG, terminal or operator output or messages, to PRINTER or TERMINAL. CMS/DOS
always assigns SYSLOG to TERMINAL by default, so you never have to make this assignment except when
you want to alter it.

SYSPCH
You can assign SYSPCH, punched output (for example, text decks), to PUNCH, disk (mode), or TAPE. An
assignment to DOS FB-512 disks is not supported.

SYSCLB, SYSRLB, SYSSLB
You can assign SYSCLB, SYSRLB, and SYSSLB to private core image, relocatable, and source statement
libraries, respectively. The only valid assignment for these units is to disk (mode). If you want to reference

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 409

private libraries with the DOSLKED, DSERV, ESERV, FETCH, SSERV, or RSERV commands, you must assign
SYSCLB, SYSRLB, or SYSSLB to the disks where the libraries reside.

Compiler I/O Assignments
The compilers supported by CMS/DOS expect input/output to be assigned to the following devices:

• SYSIN/SYSIPT must be assigned to the device where the input source file resides. Valid device types are
reader, tape, or disk.

You must assign SYSIN/SYSIPT. If it is unassigned at compilation time, an error message is issued and
the FCOBOL or DOSPLI command is terminated.

• The user should assign the following logical units to any of the indicated device types:

– SYSPCH and SYSLST to tape, punch, disk, or IGN

If SYSPCH or SYSLST are unassigned at compilation time, the FCOBOL or DOSPLI EXEC file directs
output to the disk where SYSIN resides if SYSIN is assigned to a read/write CMS disk. Otherwise,
output is directed to the CMS read/write disk with the most read/write space.

– SYSLOG to terminal

If SYSLOG is unassigned, it is assigned to the terminal.
– SYS001, SYS002, and SYS006 to disk.

If SYS001, SYS002, and SYS006 are unassigned, output is directed to the CMS disk with the most
read/write space.

– SYS003-SYS005 to tape or disk.

If SYS003 through SYS005 are unassigned, output is directed to the CMS disk with the most read/
write space.

The maximum number of work files is six for DOS/VS COBOL Compiler (FCOBOL) and two for DOS PL/I
Optimizing Compiler (DOSPLI).

All nonpermanent DLBL file definitions are cleared when the DOSPLI or FCOBOL command ends.

Manipulating Device Assignments
You can assign programmer logical units SYS000 through SYS241 with the ASSIGN command. This
deviates from VSE where the number of programmer logical units varies according to the number of
partitions. Besides assigning I/O devices, the ASSGN command can also negate a previous assignment:

assgn syspch ua

Also, for a given device, ASSGN can specify that no real I/O operation (NOP) is to be performed during the
execution of a program:

assgn sys009 ign

When you release a disk from your virtual machine, any assignments made to that disk are unassigned.

Listing I/O Assignments
You can find out the current assignments for system and programmer logical units with the LISTIO
command, which lists all the system or programmer logical units, even those that are unassigned. To list
only currently assigned units, enter:

listio a

To find out the current assignment of one specific unit, for example SYS100, enter:

listio sys100

Developing VSE Programs

410 z/VM: 7.4 CMS Application Development Guide for Assembler

When you use the STAT option, LISTIO lists, for disk devices, whether the disk is read-only or read/write.
For example, if you enter

listio sys100 (stat

you may receive the reply:

SYS100 B R/W

This reply indicates that SYS100 is assigned to the B-disk, which is a read/write disk.

With the EXEC option of the LISTIO command, you can create a disk file containing the list of
assignments. The name of the file is $LISTIO EXEC. It contains two EXEC numeric variables, &1 and
&2, for each unit listed. For example, if you enter the command:

listio sys081 (exec

the file $LISTIO EXEC may contain the record:

&1 &2 SYS081 PRINTER

You can cancel all current assignments by leaving the CMS/DOS environment and then re-entering it:

set dos off
set dos on

Virtual Machine Assignments
When you assign a physical device type to a system or programmer logical unit, CMS relates the device
to your virtual machine configuration. You receive an error message if you try to assign a logical unit to a
device not in your configuration. For example, if you use the ASSGN command to assign a logical unit to
a disk file, you must specify the access mode letter of the disk. If the disk is not accessed, the ASSGN
command fails.

For another example, if you issue:

assgn syspch punch

the punch specified is your own virtual machine card punch. The actual destination of punched output
then depends on the spooling characteristics of the punch. If it is spooled to another user or to *, then
no real cards are punched; virtual card images are placed in the virtual reader of the destination user ID,
which may be another virtual machine or your own.

CMS supports only one reader, one punch, and one printer. You cannot make any assignments for multiple
output devices in CMS/DOS. When you make an assignment for a logical unit that has already been
assigned, it replaces the current assignment.

The DLBL Command
The DLBL command performs the same functions for CMS/DOS as the DLBL control statement in VSE. Use
the DLBL command to supply CMS/DOS with specific file identification information for a disk file that is
going to be used for input or output. For any DLBL command you issue, you must previously have issued
an ASSGN command for the disk, specifying a system or programmer logical unit. The basic relationship
is:

assgn SYSxxx mode
dlbl filename mode DSN ? (SYSxxx

Both the SYSxxx and the mode values must match on the ASSGN and DLBL commands. The disk where
the file resides must be accessed at the specified mode.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 411

Note: File modes R and T cannot be used on this form of the ASSGN command because they are used as
abbreviations for reader and terminal. Instead use,

assgn SYSxxx diskm
dlbl filename m DSN ? (SYSxxx

The file name on the DLBL command line, called a ddname in CMS/DOS, corresponds to the symbolic
name for a file in a program. If you want to reference a private DOS library, you must use one of the
following file names:

System Logical Unit File name
SYSCLB

IJSYSCL
SYSRLB

IJSYSRL
SYSSLB

IJSYSSL

Entering File Identifications
When you issue the DLBL command you must identify the file, by file-id (for a VSE file) or by file identifier
(for a CMS file). The keywords DSN and CMS indicate whether it is a VSE file or a CMS file, respectively.

If the file is a VSE file residing on a DOS disk, you can enter the DLBL command in one of three ways. For
example, for a file named TEST.FILE.INPUT you may enter either:

assgn sys101 d
dlbl infile d dsn test.file.input (sys101

 — or —

dlbl infile d dsn test file input (sys101

 — or —

assgn sys101 d dlbl infile d dsn ? (sys101

For any VSE file with a file-id that contains embedded blanks, you must use the DSN ? form, shown in the
third example above. When you enter the DLBL command with the ? operand, you are prompted to enter
the DOS file-id:

Enter data set name:

Then you can enter the DOS file-id. For example,

test.file.input

When you issue a DLBL command for a CMS file, you enter the file name and file type following the
keyword CMS:

assgn sys102 a
dlbl outfile a cms new output (sys102

In this example, if SYS102 is defined as an output file for a program, the output is written to your CMS
A-disk in a file named NEW OUTPUT.

You can, for convenience, use a CMS default file identifier. If you enter:

dlbl outfile a cms (sys102

then the output file type defaults to the ddname and the file name to FILE. So, this output file is named
FILE OUTFILE.

Developing VSE Programs

412 z/VM: 7.4 CMS Application Development Guide for Assembler

Clearing and Displaying File Definitions
You can clear a DLBL definition for a file by using the CLEAR operand of the DLBL command:

dlbl outfile clear

To clear all existing definitions, except those entered with the PERM option, you can enter:

dlbl * clear

This command is issued by the assembler and the language processors when they complete execution.
Definitions entered with the PERM option must be individually cleared.

Whenever you use the HX Immediate command to halt the execution of a program, the DLBL definitions in
effect are cleared, including those entered with the PERM option.

You can find out what definitions are currently in effect by issuing the DLBL command with no operands:

dlbl

or you can use the QUERY command with the DLBL operand.

Using DOS Libraries in CMS/DOS
CMS/DOS provides you with the capability of using various types of files from DOS system or private
libraries. You can copy, punch, display at the terminal, or print:

• Books from system or private source statement libraries using the SSERV command. Books refer to
macros and source programs in a source statement library.

• Relocatable modules from system or private relocatable libraries using the RSERV command.
• Procedures from the system procedure library using the PSERV command.

You can also:

• Copy and de-edit macros from system and private E sublibraries using the ESERV command.
• Access the directories of system or private libraries using the DSERV command.
• Link-edit relocatable modules from system or private relocatable libraries with the DOSLKED command.
• Read core image phases from system or private core image libraries into storage for execution using the

FETCH command.

The SSERV Command
If you have cataloged source programs or copy files in the system source statement library and you
want to use CMS to modify and test them, you can copy them into CMS files using the SSERV command.
For example, suppose you want to copy a book named PROCESS from the A sublibrary on the system
residence volume. The DOS system residence is in your virtual machine configuration at virtual address
350, and you have accessed it as your F-disk.

First, to indicate to CMS/DOS that the system residence is on your F-disk, you enter:

set dos on f

then you can enter the SSERV command, specifying the sublibrary identification and the book name:

sserv a process

This creates, from the A sublibrary, a file named PROCESS COPY and places it on your A-disk. If the book
contained assembler language source statements you would want the file type to be ASSEMBLE, so you
may enter:

sserv a process assemble

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 413

If you want to copy a book from a private source statement library, you must first use the ASSGN and
DLBL commands to make the library known to CMS/DOS. For example, to obtain a copy file from a private
library on a DOS disk accessed as your D-disk, enter:

assgn sysslb d
dlbl ijsyssl d dsn ? (sysslb
Enter data set name:
program.test library

Now, when you enter the SSERV command:

sserv t setup copy

the book named SETUP in the T sublibrary of PROGRAM.TEST LIBRARY is copied into a CMS file named
SETUP COPY. If SETUP is not found in the private library, then CMS searches the system library, if it is
available.

The RSERV Command
In CMS/DOS, to manipulate relocatable modules that have been cataloged either on the system or a
private relocatable library you must first copy them into CMS files with the RSERV command. You can
link-edit modules directly from DOS relocatable libraries, but if you want to add or modify linkage editor
control statements for a module, you must place the control statements in a CMS file.

If you are copying a relocatable module from the system relocatable library, you should make sure that
you have indicated the system residence disk when you entered the CMS/DOS environment:

set dos on f

then you can issue the RSERV command specifying the name of the relocatable module you want to copy:

rserv rtna

The execution of this command results in the creation of a CMS file named RTNA TEXT on your A-disk.

If you want to copy a relocatable module from a private relocatable library, you must first use the ASSGN
and DLBL commands to make the private library known to CMS/DOS:

assgn sysrlb d
dlbl ijsysrl d dsn reloc.lib (sysrlb

Then, issue the RSERV command for a specific module in that library:

rserv testrtna

to create the CMS file TESTRTNA TEXT from the module named TESTRTNA. If the module TESTRTNA is
not found in RELOC.LIB, CMS searches the system library, if it is available.

The PSERV Command
If you want to copy DOS cataloged procedures into CMS files to use in preparing job streams for a DOS
virtual machine, you can use the PSERV command:

pserv prepjob

This command creates a CMS file on your A-disk. The file is named PREPJOB PROC. To copy a procedure
from the procedure library you must have entered the CMS/DOS environment specifying a disk mode for
the system residence volume.

You cannot execute DOS/VSE procedures directly from the CMS/DOS environment. However, if you modify
a procedure, you can punch it to a virtual machine that is running a DOS system and execute it there.

Developing VSE Programs

414 z/VM: 7.4 CMS Application Development Guide for Assembler

The ESERV Command
The CMS/DOS ESERV command is actually an exec procedure that calls the VSE ESERV utility program. To
use the ESERV program, you first must IPL CMS with a CMSBAM DCSS (shared segment), then create a file
with a file type of ESERV that contains the ESERV control statements you want to execute.

For example, if you want to write a de-edited copy of the macro DTFCD onto your A-disk, you might create
a file named DTFCD ESERV, with the record:

PUNCH E.DTFCD

Just as when you submit ESERV jobs in DOS, column 1 must be blank.

Before executing the ESERV program, you must enter the CMS/DOS environment by specifying the SET
DOS ON command using a VSE system residence volume. This is necessary because the ESERV procedure
invokes the ESERV program directly from the VSE core image library.

Then, you must assign SYSIN to the device on which the ESERV source file resides, usually your A-disk:

assgn sysin a

Then you can enter the ESERV command specifying the file name of the ESERV file:

eserv dtfcd

No other ASSGN commands are required. The CMS/DOS ESERV EXEC makes default assignments for
SYSPCH and SYSLST to disk.

To copy and de-edit macros from a private E sublibrary, issue the ASSGN and DLBL commands to identify
the library. For example, to identify a source statement library named TEST.MACROS on the DOS disk
accessed as the C-disk, enter:

assgn sysslb c
dlbl ijsyssl c dsn test.macros (sysslb

The SYSLST output is contained in a CMS file with the same file name as the ESERV file and a file type of
LISTING. You must examine the LISTING file to see if the ESERV program executed successfully.

The SYSPCH output is contained in a file with the same name as the ESERV file and a file type of MACRO.
If you want to punch ESERV output to your virtual card punch, make an assignment of SYSPCH to PUNCH.

When you use the PUNCH or DSPCH ESERV control statements, CATAL.S, END, or /* records may be
inserted in the output file. When you use the MACLIB command to add the MACRO file to a CMS macro
library, these statements are ignored.

See “Using Macro Libraries” on page 416 for information on creating and manipulating CMS macro
libraries.

The DSERV Command
You can use the DSERV command to examine the contents of system or private libraries. If you do not
specify any options with it, the DSERV command creates a disk file, named DSERV MAP, on your A-disk.
You can use the PRINT or TERM options to specify that the directory list is either to be printed or
displayed at your terminal. You can also use the SORT option to create a sorted list.

To examine a system directory, you must have entered the CMS/DOS environment specifying the mode
letter of the DOS system residence:

set dos on f

If you want to examine the directory of a private source statement, core image, or relocatable library you
must issue the ASSGN and DLBL commands establishing SYSSLB, SYSCLB, or SYSRLB before using the
DSERV command.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 415

For example, to display at your terminal a list of procedures cataloged on the system procedure library,
you would issue:

dserv pd (sort term

If the directory you are examining is for a core image library, you can specify a particular phase name to
verify the existence of the phase:

dserv cd phase $$bopen (term

To list the directory of a private source statement library, you would first issue the ASSGN and DLBL
commands:

assgn sysslb b
dlbl ijsyssl b dsn test.source (sysslb

then enter the DSERV command:

dserv sd

The CMS file, DSERV MAP A, contains the directory of the private source statement library TEST.SOURCE.

The DOSLKED Command
You can use the DOSLKED command to link-edit relocatable modules from system or private relocatable
libraries and to place these modules in a phase library (DOSLIB). CMS searches for a module in a private
relocatable library before searching in a system relocatable library.

For more information on using the DOSLKED command, see “Link-Editing Programs in CMS/DOS” on page
420.

DOS Core Image Libraries
You can load core image phases from DOS core image libraries into virtual storage and execute them
under CMS/DOS. Because CMS cannot write directly to DOS disks, linkage editor output under CMS/DOS is
placed in a special CMS file called a DOSLIB. When you execute the FETCH command in CMS/DOS you can
load phases from either system or private DOS core image libraries as well as from CMS DOSLIBs. More
information on using the FETCH command is contained under “Executing Programs in CMS/DOS” on page
423.

Using Macro Libraries
DOS macro libraries cannot be accessed directly by the z/VM assembler. If you want to assemble DOS
programs in CMS/DOS that use DOS macro or copy files that are on the system or a private macro library,
you must first create a CMS macro library (MACLIB) containing the macros you wish to use. Since the
process of creating a CMS MACLIB from the DOS system source statement library (E sublibrary) can be
very time-consuming, you should check with your installation's system programmer to see if it has already
been done and to verify the file name of the macro library, so that you can use it in CMS/DOS.

Note: The DOS PL/I and DOS/VS COBOL compilers executing in CMS/DOS cannot read macro or copy files
from CMS MACLIBs. Macros and copy files are obtained instead from a DOS source statement library.

If you want to extract DOS system macros to modify them for your private use, or if you want to use
macros from a private library in CMS, you must use the procedure outlined below to create the MACLIB
files.

Creating CMS MACLIBs
A CMS macro library has a file type of MACLIB. You can create a MACLIB from files with file types of
MACRO or COPY. A MACRO file may contain macro definitions. COPY files contain predefined source
statements.

Developing VSE Programs

416 z/VM: 7.4 CMS Application Development Guide for Assembler

To create a CMS macro library, each macro or copy file you want included in the MACLIB must first be
contained in a CMS file with a file type of COPY or MACRO. If you are creating a CMS MACLIB file from a
DOS library, you must use the SSERV command to copy a file from any source statement library other than
an E sublibrary or use the ESERV command to copy and de-edit a macro from an E sublibrary. The SSERV
command uses a default file type of COPY. The ESERV command uses a default file type of MACRO.

The following example shows how to copy macros from various sources and shows how to create and use
the CMS MACLIB that contains these macros:

1. Enter the CMS/DOS environment with the DOS system residence on a disk accessed as mode C:

set dos on c

2. Copy the macro book named OPEN from the A sublibrary of the system source statement library:

sserv a open

3. Establish a private source statement library:

access 351 d
assgn sysslb d
dlbl ijsyssl d dsn ? (sysslb
test source.lib

4. Issue the SSERV command for a macro in the M sublibrary of TEST SOURCE.LIB:

sserv m releas

5. Create an ESERV file to copy from the E sublibrary:

xedit contrl eserv
input punch contrl
file

6. Execute the ESERV command:

assgn sysin a
eserv contrl

7. Create a CMS macro library named MYDOSMAC from the files just created, which are named OPEN
COPY, RELEAS COPY, and CONTRL MACRO:

maclib gen mydosmac open releas contrl

See the z/VM: CMS Application Development Guide for more details.
8. To use these macros in an assembler language program, you must indicate that this MACLIB is

accessible before assembling a source file:

global maclib mydosmac

See “Identifying Libraries” on page 220 for more details.

Rather than issuing these commands every time you want to copy and create macros, you can put these
commands in an exec.

VSE Assembler Language Macros Supported
The programming interfaces defined by the VSE operating system and simulated by CMS are documented
below. For definitive information about these interfaces, see the VSE documentation.

A DOS service call made through a DOS/VSE macro while in access-register mode in an XC virtual machine
causes an abend. An abend code of X'1CD' indicates this.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 417

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4

Table 46 on page 418 lists the VSE assembler language macros supported by CMS/DOS. You can
assemble source programs that contain these macros under CMS/DOS, if you have the macros available in
either your own or a shared CMS macro library. The macros whose functions are described in the Function
column with the term no-op are supported for assembly only; when you execute programs that contain
these macros, the VSE functions are not performed. To accomplish the macro function you must execute
the program on a real VSE system.

Table 46. VSE Macros Supported by CMS

Macro Name SVC
Number

Function

CALL Pass control to another program

CANCEL 06 Terminate processing

CDLOAD 65 Load a VSAM phase

CHECK Verify completion of a read or write operation

CLOSE/ CLOSER Deactivate a data file

CNTRL Control a physical device

COMRG 33 Return address of background partition communication region

DEQ 41 no-op

DTFxx Establish file definitions

DUMP Dump storage and registers and terminate processing

ENQ 42 no-op

EOJ 14 Terminate processing normally

ERET Provide an error routine

EXCP 00 Execute a channel program

EXIT PC 17 Return from program check routine

EXIT AB 95 Return from abnormal termination routine

EXTRACT 98 Retrieve PUB, storage boundaries, or CPUID information

FCEPGOUT 86 no-op

FETCH 01 Load and pass control to a phase

FETCH 02 Load and pass control to a logical transient

FREE 36 no-op

FREEVIS 62 Release user free storage

GENL Generate a phase directory list

GET Access a sequential file

GETFLD/ MODFLD 107 Provide macro interface support for system information retrieval.

GETVCE 99 Return requested device information to output area.

GETVIS 61 Obtain user free storage

GETIME 34 Get the time of day

JDUMP Dump storage and registers and terminate processing

Developing VSE Programs

418 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 46. VSE Macros Supported by CMS (continued)

Macro Name SVC
Number

Function

LOAD 04 Load a phase into storage

LOCK/ UNLOCK 110 Resource control

MVCOM 05 Modify bytes in the partition communication region

NOTE Manage data set access

OPEN/ OPENR Activate a data file

PAGEIN 87 no-op

PDUMP Dump storage and registers and continue processing

PFIX 67 no-op

PFREE 68 no-op

POINTR Position a file for reading

POINTS Reposition a file to its beginning

POINTW Position a file for writing

POST 40 Post the event control block

PRTOV Control printer overflow

PUT Write to a sequential file

PUTR Communicate with the system operator

READ Access a sequential file

RELPAG 85 Simulates the release of pages by setting them to binary zeros

RELSE Skip to begin reading next block

RETURN Return control to calling program

RUNMODE 66 Check if program is running real or virtual

SECTVAL 75 Obtain a sector number

SETIME 10/24 no-op

SETPFA 71 no-op

STXIT AB 37 Provide or terminate linkage to abnormal ending routine

STXIT PC 16 Provide or terminate linkage to program check routine

STXIT IT 18 no-op

STXIT OC 20 no-op

SUBSID 105 Retrieve information on supervisor subsystem

TRUNC Skip to begin writing next block

TTIMER 52 Return a 0 in Register 0 (effectively a no-op)

WAIT 07 Wait for the event completion

WRITE Write to a sequential file

xxMOD Create Logical IOCS routine inline

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 419

Assembling Source Programs
If you are a DOS assembler language programmer using CMS/DOS, you should be aware that the
assembler used is the z/VM assembler, not the DOS assembler. The major difference is that the z/VM
assembler, invoked by the ASSEMBLE command, is designed for interactive use. Therefore, when you
assemble a program, error messages are displayed at your terminal when compilation is completed, and
you do not have to wait for a printed listing to see the results. You can correct your source file and
reassemble it immediately. Then you can print the error-free listing.

To specify options to be used during the assembly, you enter them on the ASSEMBLE command line. So,
for example, if you do not want the output LISTING file placed on disk, you can direct it to the printer:

assemble myfile (print

All of the ASSEMBLE command options are listed in the z/VM: CMS Commands and Utilities Reference.

When you invoke the ASSEMBLE command specifying a file with a file type of ASSEMBLE, CMS searches
all of your accessed disks, using the standard search order, until it locates the file.

When the assembler creates the output LISTING and TEXT files, it writes them onto disk according to the
following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING files are written onto the same disk.
2. If the source file is on a read-only disk that is an extension of a read/write disk, the TEXT and LISTING

files are written onto the parent disk.
3. If the source is on any other read-only disk, the TEXT and LISTING files are written onto the A-disk.

In all of the above cases, the file names assigned to the TEXT and LISTING files are the same as the file
name of the input file.

The output files used by the assembler are defined with FILEDEF commands issued by CMS when it calls
the assembler. If you issue a FILEDEF command using one of the assembler ddnames before you issue
the ASSEMBLE command, you can override the default file definitions.

The ddname for the source input file is ASSEMBLE. If you enter:

filedef assemble reader
assemble sample

then the assembler reads your input file from your card reader, and assigns the file name SAMPLE to
the output TEXT and LISTING files. You can use this method to assemble programs directly from DOS
sequential files on DOS disks. For example, to assemble a source file named DOSPROG from a DOS disk
accessed as a C-disk, you could enter:

filedef assemble c dsn dosprog (recfm f lrecl 80
assemble dosprog

Again, the name you assign on the ASSEMBLE command may be anything. The assembler uses this name
to assign file names to the TEXT and LISTING output files.

LISTING and TEXT are the ddnames assigned to the SYSLST and SYSPCH output of the assembler. You
might issue file definitions to override these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

When these commands are executed, the output from the assembly of the file SOURCE ASSEMBLE is
written to the disk files ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

Link-Editing Programs in CMS/DOS
When the assembler or one of the language compilers executes, the object module produced is written
to a CMS disk in a file with a file type of TEXT. The file name is always the same as the input source file.

Developing VSE Programs

420 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

These TEXT files (sometimes referred to as decks, although they are not real card decks) can be used as
input to the linkage editor or can be used with an INCLUDE linkage editor control statement.

You can invoke the CMS/DOS linkage editor with the DOSLKED command, for example:

doslked test testlib

where TEST is the file name of either a DOSLNK or TEXT file (that is, a file with a file type of either DOSLNK
or TEXT) or the name of a relocatable module in a system or private relocatable library. TESTLIB indicates
the name of the output file which, in CMS/DOS, is a phase library with a file type of DOSLIB.

When you issue the DOSLKED command:

1. CMS first searches for a file with the specified name and a file type of DOSLNK.
2. If none is found, CMS searches the private relocatable library, if you have assigned one. You must issue

an ASSGN command for SYSRLB and use the ddname IJSYSRL in a DLBL statement.
3. If the module is still not found, CMS searches all of your accessed disks for a file with the specified

name and a file type of TEXT.
4. Last, CMS searches the system relocatable library, if it is available. You must enter the CMS/DOS

environment specifying the mode letter of the DOS system residence if you want to access the system
libraries.

Linkage Editor Input
You can place the linkage editor control statements ACTION, PHASE, INCLUDE, and ENTRY in a CMS file
with a file type of DOSLNK. The DOSLNK file must have fixed-length, 80-byte records. Linkage editor
control statements must begin with a blank in column 1 and may not extend beyond column 71.

When you use the INCLUDE statement, you may specify the file name of a CMS TEXT file or the name of a
module in a DOS relocatable library:

INCLUDE XYZ

or you may use the INCLUDE control statement to indicate that the object code follows:

INCLUDE
(CMS TEXT file)

A typical DOSLNK file, named CONTROL DOSLNK, might contain the following:

ACTION REL
PHASE PROGMAIN,S
INCLUDE SUBA
PHASE PROGA,*
INCLUDE SUBB

When you issue the command:

doslked control

the linkage editor searches the following for the object files SUBA and SUBB:

• A DOS private relocatable library, provided you have issued the ASSGN and DLBL commands to identify
it:

assgn sysrlb d
dlbl ijsysrl d dsn ? (sysrlb

• Your CMS disks for files with file names SUBA and SUBB and a file type of TEXT
• The system relocatable library located on the DOS system residence volume (if it is available).

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 421

Link-editing TEXT Files
When you want to link-edit individual CMS TEXT files, you can insert linkage editor control statements in
the file using the editor and then issue the DOSLKED command:

xedit rtnb text
input include rtnc
file
doslked rtnb mydoslib

When the above DOSLKED command is executed, the CMS file RTNB TEXT is used as linkage editor input,
as long as there is no file named RTNB DOSLNK. The ACTION statement, however, is not recognized in
TEXT files.

You can also link-edit relocatable modules directly from a DOS system or private relocatable library, if you
have identified the library. If you do this, however, you cannot directly provide control statements for the
linkage editor.

To link-edit a relocatable module from a DOS private library and add linkage editor control statements to
it, you could use this procedure:

1. Identify the library and use the RSERV command to copy the relocatable module into a CMS TEXT file.
In this example, the module RTNC is to be copied from the library OBJ.MODS:

assgn sysrlb e
dlbl ijsysrl e dsn obj mods (sysrlb
rserv rtnc

2. Create a DOSLNK file, insert the linkage editor control statements, and copy the TEXT file created in
step 1 into it using the GET subcommand:

xedit rtnc doslnk
input action rel
get rtnc text a
file

3. Invoke the linkage editor with the DOSLKED command:

doslked rtnc mydoslib

Alternatively, you could create a DOSLNK file with the following records: DOSLNK file

ACTION REL
INCLUDE RTNC

and link-edit the module directly from the relocatable library. If you do not need a copy of the module on a
CMS disk, you might want to use this method to conserve disk space.

When the linkage editor is reading modules, it may encounter a blank card at the end of a file or a *
(comment) card at the beginning of a file. In either case, the linkage editor issues a warning message
indicating an invalid card, but it continues to complete the link-edit.

Linkage Editor Output: CMS DOSLIBs
The CMS/DOS linkage editor always places the link-edited executable phase in a CMS library with a file
type of DOSLIB. You should specify the file name of the DOSLIB when you enter the DOSLKED command:

doslked prog0 templib

where PROG0 is the relocatable module you are link-editing and TEMPLIB is the file name of the DOSLIB.

If you do not specify the name of a DOSLIB, the output is placed in a DOSLIB that has the same name
as the DOSLNK or TEXT file being link-edited. In the above example, a CMS DOSLIB is created named
TEMPLIB DOSLIB, or, if the file TEMPLIB DOSLIB already exists, the phase PROG0 is added to it.

Developing VSE Programs

422 z/VM: 7.4 CMS Application Development Guide for Assembler

DOSLIBs can contain relocatable core image phases suitable for execution in CMS/DOS. Before you can
access phases in them, you must identify them to CMS with the GLOBAL command:

global doslib templib permlib

When CMS is searching for executable phases, it searches all DOSLIBs specified on the last GLOBAL
DOSLIB command. If you have named a number of DOSLIBs or if any particular DOSLIB is very large,
the time required for CMS to fetch and execute the phase increases. You should use separate DOSLIBs
for executable phases, whenever possible. Then specify only the DOSLIBs you need on the GLOBAL
command.

When you link-edit a module into a DOSLIB that already contains a phase with the same name, the
directory entry is updated to point to the new phase. However, the space that was occupied by the old
phase is not reclaimed. You should periodically issue the command:

doslib comp templib

to compress the DOSLIB and delete unused space. TEMPLIB is the file name of the DOSLIB.

Linkage Editor Maps
The DOSLKED command also produces a linkage editor map. It writes into a CMS file with a file name
specified on the DOSLKED command line and a file type of MAP. The file mode is always A5. If you do not
want a linkage editor map, use the NOMAP option on the ACTION statement in a DOSLNK file.

Executing Programs in CMS/DOS
After you have assembled or compiled a source program and link-edited the TEXT files, you can execute
the phases in your CMS virtual machine. You may not, however, be able to execute all your DOS programs
directly in CMS. There are several execution-time restrictions placed on CMS/DOS programs. You cannot
execute a program that uses:

• Multitasking
• More than one partition
• Teleprocessing
• ISAM macros to read or write files
• CMS module files created by GENMOD with the OS option.

Executing DOS Phases
You can load executable phases into your CMS virtual machine using the FETCH command. Phases must
be link-edited with ACTION REL before you load them. When you issue the FETCH command, you specify
the name of the phase to be loaded:

fetch myprog

Then you can begin executing the program by issuing the START command:

start

Or, you can fetch a phase and begin executing it with a single command:

fetch prog2 (start

When you use the FETCH command without the START option, CMS issues a message telling you at what
virtual storage address the phase is loaded:

PHASE PROG2 ENTRY POINT AT LOCATION 020000

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 423

Relocatable phases are always loaded starting at the beginning of the DOS partition unless you specify a
different address using the ORIGIN option of the FETCH command:

fetch prog3 (origin 22000
start

The program PROG3 executes beginning at location X'22000'.

Search Order for Executable Phases
When you execute the FETCH command, CMS searches for the phase name you specify in the following
places:

1. In a DOS private core image library on a DOS disk. If you have a private library you want searched for
phases, you must identify it using the ASSGN and DLBL commands using the logical unit SYSCLB:

assgn sysclb d
dlbl ijsyscl d dsn ? (sysclb

When you enter the DLBL command with the ? operand, you are prompted to enter the DOS file-id.
2. In CMS DOSLIBs on CMS disks. If you want DOSLIBs searched for phases, you must use the GLOBAL

command to identify the DOSLIBs to CMS/DOS:

global doslib templib mylib

You can specify up to 63 DOSLIBs on the GLOBAL command line.
3. On the DOS system residence core image library. If you want the system core image library searched

you must have entered the CMS/DOS environment specifying the mode letter of the system residence:

set dos on z

When you want to fetch a core image phase that has copies in both the core image library and a DOSLIB,
and you want to fetch the copy from the CMS DOSLIB, you can bypass the core image library by entering
the command:

assgn sysclb ua

When you need to use the core image library, enter:

assgn sysclb c

where C is the mode letter of the system residence volume. You do not need to reissue the DLBL
command to identify the library.

Making I/O Device Assignments
If you are executing a program that performs I/O, you can use the ASSGN command to relate a system or
programmer logical unit to a real I/O device:

assgn syslst printer
assgn sys052 reader

In this example, your program is going to read input data from your virtual card reader. The output print
file is directed to your virtual printer. If you want to reassign these units to different devices, you must be
sure that the files have been defined as device independent.

If you assign a logical unit to a disk, you should identify the file by using the DLBL command. On the DLBL
command, you must always relate the DLBL to the system or programmer logical unit previously specified
in an ASSGN command:

assgn sys015 b
dlbl myfile b dsn ? (sys015

Developing VSE Programs

424 z/VM: 7.4 CMS Application Development Guide for Assembler

When you enter the DLBL command with the ? operand you are prompted to enter the DOS file-id.

You must issue all of the ASSGN and DLBL commands necessary for your program's I/O before you issue
the FETCH command to load the program phase and to begin executing.

Specifying a Virtual Partition Size
For most of the programs that you execute in CMS, you do not need to specify how large a partition you
want those programs to execute in. Following the SET DOS ON command, the partition starting address
and the size of the partition is described by message DMSSET1101I. If this size (which normally defaults
to 100K) is not large enough to contain the program to be executed, you can either let CMS attempt to get
additional storage contiguous to the end of the partition or you can use the SET DOSPART command to
redefine the size of the partition.

In some instances, you may want to control the partition size:

• For performance considerations
• Because the default may not leave enough free storage to satisfy the GETVIS requests issued by the

DOS program or the access method services function being executed.

You can set the partition size with the DOSPART operand of the SET command. For example, after you
enter the command:

set dospart 60k

all programs that you subsequently execute during this session execute in a 60K partition. In this way you
can:

• Set a smaller partition size for programs that run better in smaller partitions.
• Set a smaller partition size to leave more free storage. If the reduction of the DOS partition does not

free enough storage for the GETVIS requests, a larger virtual machine must be defined. Issuing the
command:

set dospart off

frees the storage allocated to the partition and redefines the partition to the default value. The default
size is a maximum of 100K bytes and a minimum of 20K bytes of contiguous storage.

Note: The CMS/DOS partition, unlike partitions under DOS, is used only for the loading and executing of
programs invoked by the FETCH or LOAD commands. Areas allocated by GETVIS are assigned addresses
outside the partition but within the user's virtual machine.

Setting the UPSI Byte
If your program uses the user program switch indicator (UPSI) byte, you can set it by using the UPSI
operand of the CMS SET command. The UPSI byte is initially binary zeros. To set it to ones, enter:

set upsi 11111111

To reset it to zeros, enter:

set upsi off

Any value you set remains in effect for the duration of your terminal session unless you reload CMS (with
the IPL command).

Debugging Programs in CMS/DOS
You can debug your DOS programs in CMS/DOS using the facilities of CP and CMS. By executing your
programs interactively, you can determine the cause of an error or program abend, correct it, and attempt
to execute a program again.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 425

Using Exec Procedures in CMS/DOS
During your program development and testing cycle, you may want to create exec procedures to contain
sequences of CMS commands that you execute frequently.

For example, if you need a number of MACLIBs, DOSLIBs, and DLBL definitions to execute a particular
program, you might have an exec procedure as follows:

 /* to set up environment to run program TESTA */

 signal on error
 global maclib testlib dosmac
 assemble testa
 print testa listing
 doslked testa testlib
 global doslib testlib proglib
 access 200 e
 assgn sys010 e
 push dos.test3.stream.beta
 dlbl indd1 e dsn ? '('sys010
 assgn sys011 punch
 cp spool punch to '*'
 assgn sys012 a

 dlbl outfile a cms test data '('sys012
 signal off error
 fetch testa '('start
 select
 when rc = 100 then do
 .
 .
 .
 end
 when rc = 200 then do
 .
 .
 .
 end
 otherwise
 exit rc
 end

Error:
 say 'Error occurred on line' sigl':' sourceline(sigl)
 exit rc

The ‘signal on error’ control statement in the exec procedure ensures that if an error occurs during any
part of the exec, the remainder of the exec does not execute, and the ‘Error’ displays the line number
where the error occurred as well as the actual command which gave the error.

Note: For the DLBL command entered with the DSN ? operand, you must stack the response (using ‘push’)
before issuing the DLBL command.

When your program is finished executing, the REXX special variable RC indicates the contents of general
register 15 at the time the program exited (the ‘Return Code’). You can use this value to perform
additional steps in your exec procedure. Additional steps are indicated in the preceding example by
ellipses.

Hardware Devices Supported
CMS/DOS routines can read real DOS disks containing VSE data files and VSE private and system libraries.
This read support is limited to the following disks supported by VSE:

• IBM 3390 Direct Access Storage
• IBM 9345 Direct Access Storage

Developing VSE Programs

426 z/VM: 7.4 CMS Application Development Guide for Assembler

Note: If the 3390 Model 9 DASD is used, minidisks used with VSAM are limited to 64K (65,536) tracks.
This is a limitation of the VSE/VSAM licensed program. This limit applies whether the minidisk is used by a
VSE guest or by CMS/VSAM.

The following devices, which are supported by VSE, are not supported by CMS/DOS:

• Card Readers: 1442, 2560P, 2560S, 2596, 3504, 5425P, and 5425S
• Printers: 2560P, 2560S, 3203 Models 1 and 2, 3525, 5203, 5425P, and 5425S
• Disks: 2311, 3380.

Also, CMS uses the CP spooling facilities and does not support dedicated unit record devices. Each CMS
virtual machine supports only one virtual console, one reader, one punch, one printer, four tapes, and 26
disks. Programs that are executed in CMS/DOS are limited to the number of devices supported by CMS.

VSE Supervisor and I/O Macros Supported by CMS/DOS

The programming interfaces defined by the VSE operating system and simulated by CMS are documented
below. For definitive information about these interfaces, see the VSE documentation.

CMS/DOS supports the VSE Supervisor macros and the SAM and VSAM I/O macros to the extent
necessary to execute the DOS/VS COBOL Compiler, the DOS PL/I Optimizing Compiler, and DOS/VS RPG
II Compiler under CMS/DOS. CMS/DOS supports VSE Supervisor macros described in the publication
DOS/VSE Macro Reference.

CMS does not simulate all VSE operations. Those it does not support are treated as a "no operation" or a
"cancel".

The following information deals with the type of support that CMS/DOS provides in the simulation of VSE
Supervisor and Sequential Access Method I/O macros. For a discussion of VSAM macros, see “VSE/VSAM
Macros Supported” on page 474.

Supervisor Macros
CMS/DOS supports physical IOCS macros and control program function macros for VSE. Table 47 on page
427 lists the physical IOCS macros and describes their support. Table 48 on page 428 lists the control
program function macros and their support.

Table 47. Physical IOCS Macros Supported by CMS/DOS

Macro Support

CCB (command control block) The CCB is generated. CCW=FORMAT1 is supported only for I/O to the
console or to OS or DOS formatted DASD.

IORB (input/output request block) The IORB is generated. CCW=FORMAT1 is supported only for I/O to the
console or to OS or DOS formatted DASD.

EXCP (execute channel program) The REAL operand is not supported. All other operands are supported.

WAIT Supported. Issued whenever your program requires an I/O operation
(started by an EXCP macro) to be completed before execution of program
continues.

SECTVAL (sector value) Supported for VSAM.

OPEN/OPENR Supported. Activates a data file.

LBRET (label processing return) Return to the $$B-transient after an SVC 8 was issued to give control to
the problem program.

FEOV (forced end of volume) Not supported.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 427

Table 47. Physical IOCS Macros Supported by CMS/DOS (continued)

Macro Support

SEOV (system end of volume) Not supported.

CLOSE/CLOSER Supported. Deactivates a data file.

Table 48. SVC Support Routines and Their Operation

Function/Macro SVC. No.
Dec Hex

Support

EXCP 0 0 Used to start an I/O operation on a device in the CMS/DOS
environment.

FETCH 1 1 Used to bring a problem program phase into user storage
and to start execution of the phase if the phase was found.
Operand SYS=YES is not supported.

FETCH 2 2 Used to bring a $$B-transient phase into the CMS transient
area (or if the phase is in the CMSDOS segment, not to load
it), and start execution of the phase if the phase was found.
Operand SYS=YES is not supported.

FORCE DEQUEUE 3 3 Not supported. See note 2.

LOAD 4 4 Used to bring a problem program phase into user storage,
and return the caller the entry point address of the phase
just loaded. Operand SYS=YES is not supported.

MVCOM 5 5 Provides the user with a means of altering positions 12
through 23 of the partition communications region (BGCOM).

CANCEL 6 6 Cancels a VSE session either by a VSE program request or by
a request from any of the CMS routines handling CMS/DOS.

WAIT 7 7 Used to wait on a CCB, IORB, ECB, or TECB. (Note that
CMS/DOS does not support ECBs or TECBs). CCBs are
always posted by the CMS/DOS routine before returning to
the caller.

The WAIT support under CMS/DOS will effectively be a
branch to the CMS/DOS POST routine.

CONTROL 8 8 Temporarily return control from a $$B-transient to the
problem program.

LBRET 9 9 Return to the $$B-transient after an SVC 8 was issued to give
control to the problem program.

SET TIMER 10 A No operation. Successful return code of 0 is given in R15.
See note 1.

TRANS. RETURN 11 B Return from a $$B-transient to the calling problem program.

JOB CONTROL ‘AND’ 12 C Resets flags to 0 in the linkage control byte in BGCOM
(communication region). If R1 = 0, bit 5 of JCSW4 (COMREG
byte 59) is turned off.

JC FLAGS 13 D Not supported. See note 2.

EOJ 14 E Normally terminates execution of a problem program.

SYSIO 15 F Not supported. See note 2.

Developing VSE Programs

428 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 48. SVC Support Routines and Their Operation (continued)

Function/Macro SVC. No.
Dec Hex

Support

PC STXIT 16 10 Establish or terminate linkage to a user's program check
routine.

PC EXIT 17 11 Used to provide supervisory support for the EXIT macro. SVC
17 provides a return from the user's PC routine to the next
sequential instruction in the program that was interrupted
because of a program check.

IT STXIT 18 12 No operation. Successful return code of 0 is given in R15.
See note 1.

IT EXIT 19 13 Not supported. See note 2.

OC STXIT 20 14 No operation. Successful return code of 0 is given in R15.
See note 1.

OC EXIT 21 15 Not supported. See note 2.

SEIZE 22 16 No operation. Successful return code of 0 is given in R15.
See note 1.

LOAD HEADER 23 17 Not supported. See note 2.

SETIME 24 18 No operation. Successful return code of 0 is given in R15.
See note 1.

HALT I/O 25 19 Not supported. See note 2.

VALID ADDR 26 1A Validate address limits. The upper address must be specified
in general register 2 and the lower address must be specified
in general purpose register 1.

TP HALT I/O 27 1B Not supported. See note 2.

MR EXIT 28 1C Not supported. See note 2.

WAITM 29 1D Not supported. See note 2.

QWAIT 30 1E Not supported. See note 2.

QPOST 31 1F Not supported. See note 2.

32 20 Reserved

COMRG 33 21 Used to provide the caller with the address of the partition
communications region.

CMS/DOS provides the caller with the address of the
partition communications region, in the user's register 1.

GETIME 34 24 Provides support for the GETIME macro. SVC 34 updates the
date field in the communications region. The GMT operand is
not supported.

HOLD 35 23 No operation. Successful return code of 0 is given in R15.
See note 1.

FREE 36 24 No operation. Successful return code of 0 is given in R15.
See note 1.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 429

Table 48. SVC Support Routines and Their Operation (continued)

Function/Macro SVC. No.
Dec Hex

Support

AB STXIT 37 25 Establish or terminate linkage to a user's abnormal
termination routine. Supported for OPTION=DUMP or
NODUMP.

ATTACH 38 26 Not supported. See note 2.

DETACH 39 27 Not supported. See note 2.

POST 40 28 Used to post an ECB, IORB, TECB, or CCB. Byte 2, bit 0 of the
specified control block is turned ‘on’ by CMS/DOS.

DEQ 41 29 No operation. Successful return code of 0 is given in R15.
See note 1.

ENQ 42 2A No operation. Successful return code of 0 is given in R15.
See note 1.

43 2B Reserved

UNIT CHECKS 44 2C Not supported. See note 2.

EMULATOR INTERF. 45 2D Not supported. See note 2.

OLTEP 46 2E Not supported. See note 2.

WAITF 47 2F Not supported. See note 2.

CRT TRANS 48 30 Not supported. See note 2.

CHANNEL PROG. 49 31 Not supported. See note 2.

LIOCS DIAG. 50 32 Issued by a logical IOCS routine when the LIOCS is called to
perform an operation that the LIOCS was not generated to
perform.

The error message “unsupported function in a LIOCS
routine” is issued, and the session is then terminated.

RETURN HEADER 51 33 Not supported. See note 2.

TTIMER 52 34 No operation. Successful return code of 0 is given in R15.
See note 1. R0 is also cleared.

VTAM EXIT 53 35 Not supported. See note 2.

FREEREAL 54 36 Not supported. See note 2.

GETREAL 55 37 Not supported. See note 2.

POWER 56 38 Not supported. See note 2.

POWER 57 39 Not supported. See note 2.

SUPVR. INTERF. 58 3A Not supported. See note 2.

EOJ INTERF. 59 3B Not supported. See note 2.

GETADR 60 3C Not supported. See note 2.

Developing VSE Programs

430 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 48. SVC Support Routines and Their Operation (continued)

Function/Macro SVC. No.
Dec Hex

Support

GETVIS 61 3D Used to obtain free storage for scratch use or for obtaining
an area where a relocatable program may be loaded. The
POOL and SVA GETVIS options are ignored. The PAGE option
is ignored for requests of less than or equal to 2K bytes of
storage. LOC=RES is treated the same as LOC=BELOW.

FREEVIS 62 3E Used to return the free storage obtained with an earlier
GETVIS call.

USE 63 3F The USE/RELEASE function has been replaced by SVC 110
(LOCK/UNLOCK) for serially controlling system resources. All
SVC 63 and 64 requests are mapped into SVC 110 requests
respectively. Return codes previously associated with USE/
RELEASE under CMS/DOS are maintained.

RELEASE 64 40 Reference SVC 63.

CDLOAD 65 41 Used to load a relocatable VSAM phase into storage, unless
the program has already been loaded.

RUNMODE 66 42 Used by a problem program to find out if the program is
running in real or virtual mode. The caller's register 0 is
zeroed to indicate that the program is running in virtual
mode.

PFIX 67 43 No operation. Successful return code of 0 is given in R15.
See note 1.

PFREE 68 44 No operation. Successful return code of 0 is given in R15.
See note 1.

REALAD 69 45 Not supported. See note 2.

VIRTAD 70 46 Not supported. See note 2.

SETPFA 71 47 No operation. Successful return code of 0 is given in R15.
See note 1.

GETCBUF/ FREECBUF 72 48 Not supported. See note 2.

SETAPP 73 49 Not supported. See note 2.

PAGE FIX 74 4A Not supported. See note 2.

SECTVAL 75 4B Used by I/O routines to obtain a sector number for a CKD or
ECKD™ device.

SYSREC 76 4C Not supported. See note 2.

TRANSCCW 77 4D Not supported. See note 2.

CHAP 78 4E Not supported. See note 2.

SYNCH 79 4F Not supported. See note 2.

SETT 80 50 Not supported. See note 2.

TESTT 81 51 Not supported. See note 2.

LINKAGE 82 52 Not supported. See note 2.

ALLOCATE 83 53 Not supported. See note 2.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 431

Table 48. SVC Support Routines and Their Operation (continued)

Function/Macro SVC. No.
Dec Hex

Support

SET LIMIT 84 54 Not supported. See note 2.

RELPAG 85 55 Provides support for the RELPAG macro. At entry register 1
points to a list of 8-byte storage description area. Each entry
contains the beginning address and the length-1 of an area
to be released. A nonzero byte following an entry indicates
the end of the list. An area is released only if it contains at
least a full CP page (4K bytes). CMS simulates the release
of the pages by setting them to binary zeros. On return, R15
holds return code as follows:
R15 = 0

all areas have been released
R15 = 2

one or more negative area lengths were specified
R15 = 4

one or more pages to be released were outside the user
storage area

R15 =16
at least one entry contains a beginning address outside
the user storage area.

FCEPGOUT 86 56 No operation. Successful return code of 0 is given in R15.
See note 1.

PAGEIN 87 57 No operation. Successful return code of 0 is given in R15.
See note 1.

TPIN 88 58 Not supported. See note 2.

TPOUT 89 59 Not supported. See note 2.

PUTACCT 90 5A Not supported. See note 2.

POWER 91 5B Not supported. See note 2.

XECBTAB 92 5C Not supported. See note 2.

XPOST 93 5D Not supported. See note 2.

XWAIT 94 5E Not supported. See note 2.

AB EXIT 95 5F Exit from abnormal task termination routine and continue
the task.

TT EXIT 96 60 Not supported. See note 2.

TT STXIT 97 61 Not supported. See note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The caller requests
PUB information, CPUID, or storage boundary information.
Register 1 on entry points to a parameter list. Output is
placed in an area provided by caller.

GETVCE 99 63 Caller requests device information about specific DASD.
Information is returned in an output area pointed to from
the parameter list. Register 1 contains a pointer to the
parameter list on entry.

Developing VSE Programs

432 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 48. SVC Support Routines and Their Operation (continued)

Function/Macro SVC. No.
Dec Hex

Support

100 64 Reserved

MODVCE 101 65 No operation. Successful return code of 0 is given in R15.
See note 1.

102 66 Reserved.

SYSFIL 103 67 Not supported. See note 2.

EXTENT 104 68 No operation. Successful return code of 0 is given in R15.
See note 1.

SUBSID 105 69 SUBSID.. the ‘INQUIRY’ function is supported for the
supervisor subsystem. Information returned is described
by the SUPSSID control block. The SUBSID ‘NOTIFY’ and
‘REMOVE’ functions are not supported.

LINKAGE 106 6A Not supported. See note 2.

TASK INTERF. 107 6B Provides macro interface support for system information
retrieval. The parameters supported are:

GETFLD:
field=ppsavar

returns problem program save area address.
=savar

returns current save area address.
=maintask

returns maintask TID in R1.
=aclose

returns in R1: 1 if in process, 0 if not.
=pcexit

returns the pcexit routine address and save area in R0
and R1 respectively. If the exit routine is currently active,
bit 0 in R0 is set ON. If no exit is defined, it returns a 0 in
both R0 and R1.

MODFLD:
field=vsamopen

set bit X'08' in tcbflags byte if R1¬=0
=aclose

set bit X'10' in tcbflags byte if R1¬=0
The MODFLD requests for fields CNCLALL and OPENSVA are
treated as a NOP with a return code of 0.

All other SVC 107 macro calls are unsupported. The
error message DMSGMF121S is issued and the request is
canceled. See note 2.

DATA SECURE 108 6C Not supported. See note 2.

PAGESTAT 109 6D Not supported. See note 2.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 433

Table 48. SVC Support Routines and Their Operation (continued)

Function/Macro SVC. No.
Dec Hex

Support

LOCK/UNLOCK 110 6E Used by VSAM to control access to resources. Access
is maintained in either a ‘shared’ or ‘exclusive’ control
environment. When DOS is SET ON, counters are maintained
and the type of control for each resource in a table
(LOCKTAB) built in free storage. All entries not unlocked by
the program are cleared at both normal and abnormal end-
of-job. All requests for resource control are passed to SVC
110 through the DTL macro (define the lock). SVC 63 and 64
requests are mapped into a dummy DTL and processed by
SVC 110.

Note:

1. No operation: In each case, register 15 is cleared to simulate successful operation, and all other
registers are returned unchanged, unless otherwise noted.

2. Not supported: For unsupported SVCs, an error message is given, and the SVC is treated as a “cancel”.

Declarative Macros (Sequential Access Method I/O Macros)
CMS/DOS supports the following declarative macros:

• DTFCD - Types X'02' and X'04'
• DTFCN - Types X'03'
• DTFDI - Types X'33'
• DTFMT - Types X'10', X'11', X'12', andX'14'
• DTFPR - Types X'08'
• DTFSD - Types X'20'

The CDMOD, DIMOD, MTMOD, and PRMOD macros generate the logical IOCS routines that correspond
with the declarative macros. For files on disk, the logical IOCS routines used during program execution
reside in the CMSBAM DCSS and are not generated within the program. The operands that CMS/DOS
supports for the DTF are also supported for the xxMOD macro. In addition, CMS/DOS supports three
internal macros that the COBOL and PL/I compilers require: DTFCP (types X'31' and X'32'), CPMOD, and
DTFSL.

DTFCD Macro — Defines the File for a Card Reader
CMS/DOS does not support the ASOCFLE, FUNC, TYPEFILE=CMBND, and OUBLKSZ operands of the
DTFCD macro. CMS/DOS ignores the SSELECT operand and any mode other than MODE=E. Table 49 on
page 434 describes the DTFCD macro operands and their support under CMS/DOS. An asterisk (*) in the
status column indicates that CMS/DOS support differs from VSE support.

Table 49. CMS/DOS Support of DTFCD Macro

Operand Status Description

DEVADDR=SYSxxx Symbolic unit for reader-punch used for this file.

IOAREA1=xxxxxxxx * Name of the first I/O area.

ASOCFLE=xxxxxxxx * Not supported.

BLKSIZE=nnn * Length of one I/O area, in bytes. If omitted, 80 is assumed. If
CTLCHR=YES is specified, BLKSIZE defaults to 81.

Developing VSE Programs

434 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 49. CMS/DOS Support of DTFCD Macro (continued)

Operand Status Description

CONTROL=YES CNTRL macro used for this file. Omit CTLCHR for this file.

CRDERR=RETRY * Retry if punching error is detected. Applies to 2520
only. However, this situation is never encountered under
CMS/DOS because hardware errors are not passed to the
LIOCS module.

CTLCHR=xxx (YES or ASA). Data records have control character. YES for
S/370 character set; ASA for American National Standards
Institute character set. Omit CONTROL for this file.

DEVICE=nnnn * (2520, 3505, or 3525).

EOFADDR=xxxxxxxx Name of your end-of-file routine.

ERROPT=xxxxxx * IGNORE, SKIP, or name. Applies to 3505 and 3525 only.

FUNC=xxx * Not supported.

IOAREA2=xxxxxxxx * If two output areas are used, name of second area.

IOREG=(nn) Register number if two I/O areas are used and GET or PUT
does not specify a work area. Omit WORKA.

MODE=xx * Only MODE=E is supported.

MODNAME=xxxxxxxx Name of the logic module that is used with the DTF table to
process the file.

OUBLKSZ=nn * Not supported.

RDONLY=YES * Causes a read-only module to be generated.

RECFORM=xxxxxx (FIXUNB, VARUNB, UNDEF). If omitted, FIXUNB is default.

RECSIZE=(nn) * Register number if RECFORM=UNDEF.

SEPASMB=YES DTFCD is to be assembled separately.

SSELECT=n * Ignored.

TYPEFLE= * Input or output.

WORKA=YES I/O records are processed in work areas instead of the I/O
areas.

DTFCN Macro — Defines the File for a Console
CMS/DOS supports all of the operands of the DTFCN macro. Table 50 on page 435 describes the operands
of the DTFCN macro and their support under CMS/DOS. The status column is blank because the CMS/DOS
and VSE support of DTFCN are the same.

Table 50. CMS/DOS Support of DTFCN macro

Operand Status Description

DEVADDR=SYSxxx Symbolic unit for the console used for this file.

IOAREA1=xxxxxxxx Name of I/O area.

BLKSIZE=nnn Length in bytes of I/O area (for PUTR macro usage, length of
output part of I/O area). If RECFORM=UNDEF, maximum is
256. If omitted, 80 is default.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 435

Table 50. CMS/DOS Support of DTFCN macro (continued)

Operand Status Description

INPSIZE=nnn Length in bytes for input part of I/O area for PUTR macro
usage.

MODNAME=xxxxxxxx Logic module name for this DTF. If omitted, IOCS generates a
standard name.

The logic module is generated as part of the DTF.

RECFORM=xxxxxx (FIXUNB or UNDEF). If omitted, FIXUNB is default.

RECSIZE=(nn) Register number if RECFORM=UNDEF. General purpose
registers 2 through 12, enclosed in parentheses.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or CMBND). Input processes both input
and output. CMBND must be specified for PUTR macro
usage. If omitted, INPUT is default.

WORKA=YES GET or PUT specifies work area.

DTFDI MACRO — Defines the File for Device Independence for System Logical
Units
CMS/DOS supports most operands of the DTFDI macro. Table 51 on page 436 describes the operands of
the DTFDI macro and their support under CMS/DOS. An asterisk (*) in the status column indicates that
CMS/DOS support differs from VSE support.

Table 51. CMS/DOS Support of DTFDI Macro

Operand Status Description

DEVADDR=SYSxxx (SYSIPT, SYSLST, SYSPCH, or SYSRDR). System logical
unit. CMS/DOS issues an error message if the logical unit
specified on the DTF does not match the logical unit
specified on the corresponding DLBL command.

IOAREA1=xxxxxxxx Name of the first I/O area.

CISIZE=n * This operand specifies the control interval size for a DOS
formatted FB-512 device assigned to a nonsystem file
logical unit. This operand is ignored for count-key-data
devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FBA=YES This operand is not required and is ignored if specified.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of your error routine). Prevents
termination on errors.

IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

IOREG2=(nn) Register number. If omitted and two I/O areas are used,
register 2 is default. General purpose registers 2 through 12,
enclosed in parentheses.

MODNAME=xxxxxxxx DIMOD name for this DTF. If omitted, IOCS generates a
standard name. This operand is ignored with DASD. The SAM
OPEN routines within the CMSBAM DCSS always load an
IBM-supplied logic module and link it to the DTF.

Developing VSE Programs

436 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 51. CMS/DOS Support of DTFDI Macro (continued)

Operand Status Description

RDONLY=YES Generates a read-only module. Requires a module save area
for each routine using the module.

RECSIZE=nnn Number of characters in record. Default values: 121
(SYSLST), 81 (SYSPCH), 80 (other).

SEPASMB=YES DTFDI to be assembled separately.

TRC=YES * Not supported.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

DTFMT Macro — Defines the File for a Magnetic Tape
CMS/DOS does not support the ASCII, BUFOFF, HDRINFO, LENCHK, and READ=BACK operands of the
DTFMT macro. Tape I/O operations are limited to reading in the forward direction.

You may use the FILABL operand in the DTFMT macro to specify that you have a standard tape label file,
a nonstandard tape label file, or an unlabeled tape. The type of tape label processing depends on the
option selected. See “Label Processing in CMS/DOS” on page 164 for a complete description of tape label
processing in CMS/DOS.

Table 52 on page 437 describes the DTFMT macro operands and their support under CMS/DOS. An
asterisk (*) in the status column indicates that CMS/DOS support differs from VSE support.

Table 52. CMS/DOS Support of DTFMT Macro

Operand Status Description

BLKSIZE=nnnnn Length of one I/O area in bytes (maximum = 32,767).

DEVADDR=SYSxxx Symbolic unit for tape drive used for this file.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FILABL=xxxx (NO, STD, or NSTD). If NSTD specified, include LABADDR.

IOAREA1=xxxxxxxx Name of first I/O area.

ASCII=YES * Not supported.

BUFOFF=nn * Not supported.

CKPTREC=YES Checkpoint records are interspersed with input data records.
IOCS bypasses checkpoint records.

ERREXT=YES Additional errors and ERET are desired.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

HDRINFO=YES * Not supported.

IOAREA2=xxxxxxxx If two I/O areas are used, the name of the second area.

IOREG=(nn) Register number. Use only if GET or PUT does not specify
a work area or if two I/O areas are used. Omit WORKA.
General purpose registers 2 through 12, enclosed in
parentheses.

LABADDR=xxxxxxxx Name of your label routine if FILABL=NSTD or if FILABL=STD
and user-standard labels are processed.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 437

Table 52. CMS/DOS Support of DTFMT Macro (continued)

Operand Status Description

LENCHK=YES * Not supported.

MODNAME=xxxxxxxx Name of MTMOD logic module for this DTF. If omitted, IOCS
generates standard name.

NOTEPNT=xxxxxx (YES or POINTS). YES if NOTE, POINTW, POINTR, or POINTS
macro is used. POINTS if only POINTS macro is used.

RDONLY=YES Generate read-only module. Requires a module save area for
each routine using the module.

READ=xxxxxxx * CMS/DOS only supports READ=FORWARD.

RECFORM=xxxxxx (FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB, SPNBLK, or
UNDEF). For work files use FIXUNB or UNDEF. If omitted,
FIXUNB is assumed.

RECSIZE=nnnn If RECFORM=FIXBLK, number of characters in the record. If
RECFORM=UNDEF, register number. Not required for other
records. General purpose registers 2 through 12, enclosed in
parentheses.

REWIND=xxxxxx (UNLOAD or NORWD). Unload on CLOSE or end-of-volume, or
prevent rewinding. If omitted, rewind only.

SEPASMB=YES DTFMT is to be assembled separately.

TPMARK=NO Prevent writing a tapemark ahead of data records if
FILABL=NSTD or NO.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is default.

VARBLD=(nn) Register number, if RECFORM=VARBLK and records are built
in the output area. General purpose registers 2 through 12
are enclosed in parentheses.

WLRERR=xxxxxxxx Name of wrong-length record routine.

WORKA=YES GET or PUT specifies a work area. Omit IOREG.

DTFPR Macro — Defines the File for a Printer
CMS/DOS does not support the ASOCFLE, ERROPT=IGNORE, and FUNC operands of the DTFPR macro.
Table 53 on page 438 describes the operands of the DTFPR macro and their support under CMS/DOS. An
asterisk (*) in the status column indicates that CMS/DOS support differs from VSE support.

Table 53. CMS/DOS Support of DTFPR Macro

Operand Status Description

DEVADDR=SYSxxx Symbolic unit for the printer used for this file.

IOAREA1=xxxxxxxx Name for the first output area.

ASOCFLE=xxxxxxxx * Not supported.

BLKSIZE=nnn * Length of one output area, in bytes. If omitted, 121 is
default.

CONTROL=YES CNTRL macro used for this file. Omit CTLCHR for this file.

Developing VSE Programs

438 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 53. CMS/DOS Support of DTFPR Macro (continued)

Operand Status Description

CTLCHR=xxx (YES or ASA). Data records have control character. YES for
S/370 character set; ASA for American National Standards
Institute character set. Omit CONTROL for this file.

DEVICE=nnnn * (1403, 1443, 3203, or 3211). If omitted, 1403 is default.

ERROPT=xxxxxxxx * RETRY or the name of your error routine for 3211. Not
allowed for other devices. IGNORE is not supported.

FUNC=xxxx * Not supported.

IOAREA2=xxxxxxxx If two output areas are used, name of second area.

IOREG=(nn) Register number; if two output areas used and GET or PUT
does not specify a work area. Omit WORKA.

MODNAME=xxxxxxxx Name of PRMOD logic module for this DTF. If omitted, IOCS
generates standard name.

PRINTOV=YES PRTOV macro used for this file.

RDONLY=YES Generate a read-only module. Requires a module save area
for each routine using the module.

RECFORM=xxxxxx (FIXUNB, VARUNB, or UNDEF). If omitted, FIXUNB is default.

RECSIZE=(nn) Register number if RECFORM=UNDEF.

SEPASMB=YES DTFPR is to be assembled separately.

STLIST=YES Use 1403 selective tape listing feature.

TRC=YES * Not supported.

UCS=xxx (ON) process data checks. (OFF) ignores data checks. Only
for printers with the UCS feature of 3203 or 3211. If omitted,
OFF is default.

WORKA=YES PUT specifies work area. Omit IOREG.

DTFSD Macro — Defines the File for a Sequential DASD
CMS/DOS does not support the FEOVD, HOLD, and LABADDR operands of the DTFSD macro. Table 54 on
page 439 describes the operands of the DTFSD macro and their support under CMS/DOS. An asterisk (*)
in the status column indicates that CMS/DOS support differs from VSE support.

Table 54. CMS/DOS Support of DTFSD Macro

Operand Status Description

BLKSIZE=nnnn Length of one I/O area, in bytes.

CISIZE=n * This operand specifies the control interval size for a DOS
formatted FB-512 device assigned to a nonsystem file
logical unit. This operand is ignored for count-key-data
devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

IOAREA1=xxxxxxxx Name of first I/O area.

CONTROL=YES This operand is ignored. CONTROL=YES is always included.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 439

Table 54. CMS/DOS Support of DTFSD Macro (continued)

Operand Status Description

DELETFL=NO * If DELETFL=NO is specified, the work file is not erased.
Otherwise, when the work file is closed, CMS/DOS erases
it.

DEVADDR=SYSnnn * Symbolic unit. This operand is optional. If DEVADDR is not
specified, all I/O requests are directed to the logical unit
identified on the corresponding CMS/DOS DLBL command.

If a valid logical unit is specified with the DEVADDR operand
of the DTF and a different, but also valid, logical unit is
specified on the DLBL command, the unit specified on the
DLBL command overrides the unit specified in the DTF.
However, CMS/DOS issues an error message if a valid logical
unit is specified in the DTF and no logical unit is specified on
the corresponding DLBL command.

DEVICE=nnnn * This operand is ignored. The actual device type is
determined by OPEN.

ERREXT=YES Additional error facilities and ERET are desired. This operand
is ignored. ERREXT=YES is always included.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine.) Prevents job
termination on error records. Do not use SKIP for output
files.

FEOVD=YES * Not supported.

HOLD=YES * Not supported. HOLD=YES is specified for DTFSD update
or work files to provide a track hold capability. However,
the CMS/DOS open routine sets the track hold bit off and
bypasses track hold processing.

IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

IOREG=(nn) Register number. Use only if GET or PUT does not specify
work area or if two I/O areas are used. Omit WORKA.

LABADDR=xxxxxxxx * Not supported.

MODNAME=xxxxxxxx This operand is not required. If specified, it is ignored. The
SAM OPEN routines within the CMSBAM DCSS always load
an IBM-supplied logic module and link it to the DTF.

NOTEPNT=xxxxxxxx Indicates that NOTE, POINTR, POINTW, and POINTS are
used. This operand is ignored. NOTEPNT=YES is always
included.

RDONLY=YES This operand is not required and is ignored if specified.
RDONLY=YES is always included.

PWRITE=YES * For a DOS-formatted FB-512 disk, this operand specifies
that for output operations a physical write occurs for every
logical block. This operand is ignored for count-key-data
devices and CMS formatted disks. DOS-formatted FB-512
disks are not supported for output.

Developing VSE Programs

440 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 54. CMS/DOS Support of DTFSD Macro (continued)

Operand Status Description

RECFORM=xxxxxx (FIXUNB, FIXBLK, VARUNB, SPNUNB, SPNBLK, VARBLK, or
UNDEF). If omitted, FIXUNB is assumed.

For work files, use FIXUNB or UNDEF. Although work files
contain fixed-length unblocked records, the CMS file system
handles work UNDEF files as variable-length record files. If
you specify FIXBLK, VARBLK, or UNDEF when creating a CMS
file on a CMS disk, CMS writes the file in variable-length
format. The LISTFILE command would show the file as V
format. If you specify FIXUNB when creating a CMS file on a
CMS disk, CMS writes the file in fixed-length format.

RECSIZE=nnnnn If RECFORM=FIXBLK, number of characters in record. If
RECFORM=SPNUNB, SPNBLK, or UNDEF, register number.
Not required for other records.

SEPASMB=YES DTFSD is to be assembled separately.

TRUNCS=YES RECFORM=FIXBLK or TRUNC macro used for this file.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is assumed.

UPDATE=YES Input file or work file is to be updated.

VARBLD=(nn) Register number if RECFORM=VARBLK and records are built
in the output area. Omit if WORKA=YES.

VERIFY=YES Check disk records after they are written.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

WORKA=YES GET or PUT specifies work area. Omit IOREG. Required for
RECFORM=SPNUNB or SPNBLK.

Imperative Macros (Sequential Access Method I/O Macros)
CMS/DOS supports the following imperative macros:

• Initialization macros: OPEN and OPENR
• Processing macros: GET, PUT, PUTR, RELSE, TRUNC, CNTRL, ERET, and PRTOV.

Note: No code is generated for the CHNG macro.
• Work file macros for tape and disk: READ, WRITE, CHECK, NOTE, POINTR, POINTW, and POINTS.
• Completion macros: CLOSE and CLOSER.

CMS/DOS supports workfiles containing fixed-length unblocked records and undefined records. Disk
work files are supported as single volume, single pack files. Normal extents and split extents are both
supported.

EXCP Support in CMS/DOS
CMS/DOS simulates the EXCP (execute channel program) routines to the extent necessary to support the
LIOCS routines described in the section, “VSE Supervisor and I/O Macros Supported by CMS/DOS” on
page 427.

Because CMS/DOS uses the VSE LIOCS routines, it must simulate all I/O at the EXCP level. The EXCP
simulation routines convert all the I/O in the CCW format to CMS physical I/O requests. That is, CMS
macros (such as FSREAD/FSWRITE, RDCARD/PUNCHC, PRINTL, and LINERD/LINEWRT) replace the CCW

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 441

strings. If CMS is performing I/O to DOS disks or to tape, the I/O requests are handled with the DIAGNOSE
interface.

When an I/O operation completes, CMS/DOS posts the CCB or IORB with the CMS return code.

CMS/DOS User Considerations and Responsibilities
A critical design assumption of CMS/DOS is that installations that use CMS/DOS for VSE program
development also use and have available a VSE system.

You should consider several factors if you plan to use CMS/DOS. The following sections describe some of
the user considerations and responsibilities.

VSE System Generation and Updating Considerations
The CMS/DOS support in CMS may use a real VSE system pack. CMS/DOS provides the necessary path
and then fetches VSE logical transients and system routines directly as well as the DOS/VS COBOL and
DOS PL/I Optimizing compilers from the VSE system or private core image libraries.

It is your responsibility to order a VSE system and then generate it. Also, if you plan to use DOS compilers,
you must order the current level of the DOS/VS COBOL compiler and DOS PL/I Optimizing compiler and
you must install them on the same VSE system.

When you install the compilers on the VSE system, you must link-edit all the compiler modules as
relocatable phases using the following linkage editor control statement:

ACTION REL

You can place the link-edited phases in either the system or the private core image library.

When you later invoke the compilers from CMS/DOS, the library (system or private) containing the
compiler phases must be identified to CMS. You identify all the system libraries to CMS by coding the
file mode letter that corresponds to that VSE system disk on the SET DOS ON command when you invoke
the CMS/DOS environment. You identify a private library by coding ASSGN and DLBL commands that
describe it. The VSE system and private disks must be linked to your virtual machine and accessed before
you issue the commands to identify them for CMS.

CMS/DOS has no effect on the update procedures for VSE19, COBOL, or DOS PL/I. Normal update
procedures for applying IBM-distributed coding changes apply.

z/VM Directory Entries
The VSE system and private libraries are accessed in read-only mode under CMS/DOS. If more than one
CMS virtual machine is using the CMS/DOS environments you should update the z/VM directory entries so
that the VSE system residence volume and the VSE private libraries are shared by all the CMS/DOS users.

The z/VM directory entry for one of the CMS virtual machines should contain the MDISK statements
defining the VSE volumes. The z/VM directory entries for the other CMS/DOS users should contain LINK
statements.

When the VSE System Must Be Online
Most of what you do in the CMS/DOS environment for VSE program development requires that the VSE
system pack or the VSE private libraries be available to CMS/DOS. Usually, you need these VSE volumes
whenever:

19 The CMS/DOS simulation is at the VSE/AF Version 1 level. Version 2 of VSE/AF introduced changes that are
incompatible with CMS/DOS. In particular, CMS/DOS commands such as LISTDS, FETCH, or ESERV will not
work with a VSE/AF Version 2 SYSRES because of changes made to the internal structure of the VSE/AF
library system. Installations which require a VSE/AF SYSRES for the use with CMS/DOS, and for running
VSE/AF itself, will have to maintain two SYSRES levels to get full use of both CMS/DOS and VSE/AF.

Developing VSE Programs

442 z/VM: 7.4 CMS Application Development Guide for Assembler

• You use the DOS/VS COBOL compiler or DOS/PLI Optimizing compiler. The compilers are executed from
the system or private core image libraries.

• Your source programs contain COPY, LIBRARY, %INCLUDE, or CBL statements. These statements copy
books from your system or from the private source statement library.

• You invoke one of the library programs: DSERV, RSERV, SSERV, PSERV, or ESERV.
• You execute VSE programs that use LIOCS modules. CMS/DOS fetches most of the LIOCS routines for

nondisk files directly from VSE system or private libraries.

A VSE system pack is usable when it is:

• Defined for your virtual machine
• Accessed
• Specified, by mode letter, on the SET DOS ON command.

A VSE private library is usable when it is:

• Defined for your virtual machine
• Accessed
• Identified with ASSGN and DLBL commands.

Execution Considerations and Restrictions
The CMS/DOS environment does not support the execution of VSE programs that use:

• Teleprocessing or indexed sequential (ISAM) access methods. CMS/DOS supports only the sequential
(SAM) and virtual storage (VSAM) access methods.

• Multitasking. CMS/DOS supports only a single partition, the background partition.

CMS/DOS can be executed in a CMS Batch Facility virtual machine. If any of the VSE programs that are
executed in the batch machine read data from the card reader, you must ensure that the end-of-data
indication is recognized. Be sure that (1) the program checks for end of data and (2) a /* record follows
the last data record.

If there is an error in the way you handle end of data, the VSE program could read the entire batch input
stream as its own data. The result is that jobs sent to the batch machine are never executed and the VSE
program reads records that are not part of its input file.

Developing VSE Programs

Chapter 24. Developing VSE Programs under CMS 443

Developing VSE Programs

444 z/VM: 7.4 CMS Application Development Guide for Assembler

Chapter 25. Using Access Method Services and VSAM

This chapter describes how you can use CMS to create and manipulate VSAM catalogs, data spaces,
and files on OS and DOS disks using access method services. The CMS support is based on VSE and
VSE/VSAM. This means that if you are an OS VSAM user and plan to use CMS to manipulate VSAM files,
you are allowed to use those functions of access method services that are available under the access
method services portion of VSE/VSAM. The publicationVSE/ESA System Macros User's Guide describes the
control statements you can use.

This chapter also provides information on using the CMS AMSERV command. The CMS AMSERV command
lets you execute access method services. Information is provided on using VSAM macros in CMS. The
discussion is divided as follows:

• “Using the AMSERV command” contains general information.
• “Manipulating OS and DOS Disks for Use With AMSERV” describes how to use CMS commands with OS

and DOS disks.
• “Defining DOS Input and Output Files” is for CMS/DOS users only.
• “Defining OS Input and Output Files” is for OS users only.
• “Using AMSERV Under CMS” includes notes and examples showing how to perform various access

method services functions in CMS.
• “Access Method Services Not Supported” lists the functions not supported in CMS.
• “VSE/VSAM Macros” describes the macros and their support in CMS.
• “OS/VSAM Macros” describes the OSVSAM MACLIB supplied with CMS.
• “Hardware Devices Supported” describes the disks supported by VSE that VSAM data sets in CMS can

use.

Overview of VSAM under CMS
You can use CMS to:

• Execute the access method services utility programs for VSAM and SAM data sets on OS and DOS disks
and minidisks. CMS can both read and write VSAM files using access method services.

• Compile and execute programs that read and write VSAM files from VSE programs.
• Compile and execute programs that read and write VSAM files from OS programs.

VSAM data sets created by CMS are not in the CMS file format. The CMS commands normally used to
manipulate CMS files are not applicable to VSAM files. This includes such commands as PRINT, TYPE,
XEDIT, COPYFILE, and so on.

VSAM files written by CMS are written using VSE/VSAM. Certain files written under CMS cannot be used
directly by OS/VS VSAM. A VSAM data set created by CMS (using VSE/VSAM) has a file format compatible
with OS VSAM data sets when the physical record size of the data set is 512, 1K, 2K, or 4K. For more
information on the compatibility between VSE/VSAM and OS/VS VSAM files, see theVSE/ESA General
Information .

Under CMS, VSAM data sets can span up to 25 volumes. CMS does not support VSAM data set sharing.
However, CMS supports the sharing (read only) of minidisks or full pack minidisks. The Shared File System
does not provide a means of sharing VSAM files.

Because VSAM data sets in CMS are not a part of the CMS file system, CMS file size, record length,
and minidisk size restrictions do not apply. The VSAM data sets are manipulated with Access Method
Services programs executed under CMS, instead of with the CMS file system commands. Also, all VSAM
minidisks and full packs used in CMS must be initialized with the Device Support Facility; the CMS
FORMAT command cannot be used.

Using AMSERV and VSAM

© Copyright IBM Corp. 1990, 2024 445

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, and SHOWCB macros.

Executing VSAM Programs under CMS
The commands used to define input and output data sets for Access Method Services (DLBL) and for
CMS/DOS users (ASSGN) are also used to identify VSAM input and output files for program execution.
Information on executing programs under CMS that manipulate VSAM files is contained in the licensed
program documentation for the language processors.

Restrictions on the use of access method services and VSAM under CMS for OS and DOS users are listed
in “Access Method Services Not Supported in CMS” on page 472. The z/VM: CMS Commands and Utilities
Reference contains complete CMS and CMS/DOS command formats, operand descriptions, and responses
for each of the commands described in this chapter.

When you are going to execute VSAM programs in CMS or CMS/DOS, you should remember to issue the
DLBL commands to identify the master catalog and any other program input or output files you need to
define.

Since VSE/VSAM Release 2, VSE/VSAM has reduced its dependency on explicit ASSGN, EXTENT, and
DLBL information. In many cases, you no longer need to specify this information. Identification of the
master catalog within CMS, however, still requires ASSGN and DLBL commands. For complete information
concerning the ASSGN, DLBL, and EXTENT requirements, refer to theVSE/ESA System Control Statements .

Note: For ASSGN, EXTENT, and DLBL requirements for multivolume files, refer to “Defining DOS Input and
Output Files” on page 453 and “Identifying Existing Multivolume Files” on page 458.

In the discussion that follows, ASSGN, DLBL, and EXTENT information is included even though it may not
be required.

Opening an ACB with a MACRF=ADR and subsequently issuing a GET or a PUT with KEYED ACCESS
specified in the RPL when SHAREOPTION (4) is specified is not allowed in VSE/VSAM Release 2. Likewise,
opening an ACB with KEYED ACCESS and subsequently issuing a GET or a PUT with MACRF=ADR specified
in the RPL when SHAREOPTION (4) is specified is not allowed. Please refer toVSE/ESA System Macros
User's Guide for more information.

VSE/VSAM supports the functions that were previously supported as well as the following enhancements:

• Volume ownership is enhanced so that multiple catalogs may own space in the same DASD volume if
only one recoverable catalog owns space on the volume and only if one catalog resides on the volume.

• You can verify the syntax of the AMS commands without actually executing them by using the SYNCHK
parameter of the AMS PARM command.

• Using the IGNOREERROR parameter of the AMS DELETE command, you can delete incomplete catalog
information that may have resulted from a system failure during DEFINE or DELETE processing. When
you specify the IGNOREERROR parameter of the AMS DELETE command, the PRINT option must be
used on the CMS AMSERV command to send the listing to the virtual printer.

• By issuing the CMS CATCHECK command, a CMS VSAM user (with or without DOS set ON) may invoke
the VSE/VSAM Catalog Check Service Aid to verify a complete catalog structure.

• Using the COMPRESS parameter of the DEFINE function, you can compress or expand data that was
previously compressed. This parameter automatically lets VSAM know if the data is to be converted by
VSAM when it is read or written.

The AMSERV Command
In CMS, you execute access method services utility programs with the AMSERV command. The basic
format is:

amserv filename

filename is the name of a CMS file containing the control statements for access method services.

Using AMSERV and VSAM

446 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Note: Throughout the remainder of this section the term AMSERV refers to both the CMS AMSERV
command and the OS/VS or VSE/VSAM access method services, except where a distinction is being made
between CMS and access method services.

You create an AMSERV file with the CMS editor using a file type of AMSERV and any file name you want.
For example:

xedit mastcat amserv

The editor recognizes the file type of AMSERV and so automatically sets the zone for your input lines
at columns 2 and 72. The sample AMSERV file being created in the example above, MASTCAT AMSERV,
might contain the following control statements:

DEFINE MASTERCATALOG (NAME (MYCAT) -
 VOLUME (123456) CYL(2) -
 FILE (IJSYSCT))

Note: The syntax of the control statements must conform to the rules for access method services,
including continuation characters and parentheses. The only difference is that the AMSERV file does not
contain a /* for a termination indicator.

Before you can execute the DEFINE control statement in this AMSERV example, you must define the
output file, using the ddname IJSYSCT. You can do this using the DLBL command, if required by VSE/
VSAM. Since the exact form required in the DLBL command varies according to whether you are an
OS or a DOS user, separate discussions of the DLBL command are provided later in this section. All of
the following examples assume that any disk data set or file that you are referencing with an AMSERV
command was defined by a DLBL command, if required by VSE/VSAM.

When you execute the AMSERV command, the AMSERV control statement file can be on any accessed
CMS disk or directory. You do not need to specify the file mode. A CMS/DOS user, unlike a VSE/DOS user,
does not need to assign SYSIPT. The task of locating the file and passing it to access method services is
performed by CMS.

AMSERV Output Listings
When the AMSERV command is finished processing, you receive the CMS ready message. If there was an
error, the return code (from register 15) is displayed following the Ready. For example:

Ready(00008);

If you are receiving the long form of the ready message, it appears:

Ready(00008); T=0.01/0.11 10:50:23

If you receive a ready message with an error return code, you should examine the output listing from
AMSERV to determine the cause of the error.

AMSERV output listings are written in CMS files with a file type of LISTING. By default, the file name is the
same as the input AMSERV file. For example, if you have executed:

amserv mastcat

and the CMS ready message indicates an error return code, you should examine the file MASTCAT
LISTING. Edit the file MASTCAT LISTING and issue the following LOCATE subcommand twice:

locate /idc

to find the character string IDC will position you in the LISTING file at the first access method services
message.

The publication VSE/VSAM Messages and Codes lists and explains all of the messages generated by
access method services together with the associated return and reason codes.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 447

If you need to make changes to control statements before executing the AMSERV command again, use
XEDIT to modify the AMSERV input file.

If you execute the same AMSERV file a number of times, each execution results in a new LISTING file that
replaces any previous listing file with the same file name.

Controlling AMSERV Command Listings
When you use AMSERV to print a VSAM file or to list catalog or recovery area contents using the PRINT,
LISTCAT, or LISTCRA control statements, the output is written in a listing file on a CMS read/write disk.

If you only want a printed copy of the output listing, issue the AMSERV command with the PRINT option.
For example,

amserv myfile (print

You might want to use this option if you are executing a PRINT or LISTCAT control statement and expect a
very large output listing that you know cannot be contained on any of your disks.

If you want to save the output listing on disk and also print a copy, issue the AMSERV command without
the PRINT option, and then use the CMS PRINT command to print the LISTING file.

If you issue the AMSERV command with no options, you get a CMS file with a file type of LISTING and
a file name equal to the AMSERV input file. This LISTING file is usually written on your A-disk, but if
your A-disk is full or not accessed, it is written on any other read/write CMS disk or directory you have
accessed.

If there is not enough room on your A-disk or any other disk, the AMSERV command issues an error
message saying that it cannot write the LISTING file. If this happens, the LISTING file created may
be incomplete and you may not be able to tell whether access method services actually completed
successfully. In this case, after you have cleared some space on a read/write disk, you may have to
execute an AMSERV PRINT or LISTCAT function to verify the completion of the prior job.

LISTING files take up considerable disk space, so you should erase them as soon as you no longer need
them.

Controlling the File Name of the Output Listing
You can also control the file name of the output listing file by specifying a second name on the AMSERV
command line. For example,

amserv myfile myfile1

In this example, the input file is MYFILE AMSERV and the output listing is placed in a file named MYFILE1
LISTING. A subsequent execution of this AMSERV file:

amserv myfile myfile2

creates a second listing file, MYFILE2 LISTING, so that the listing created from the first execution is not
erased.

Calling AMS from an Application Program
Use the NORESET option of the AMSERV command to indicate that the call to the access method services
(AMS) is being made dynamically by an application program and that the VSAM environment is not to be
reset after the AMS request is complete.

Note that when this option is specified, all VSAM storage will remain allocated until:

• A SET DOS OFF command is issued.
• An EXECOS command is issued.
• An ABEND occurs, in which case the AMSERV environment cannot be reset correctly. If a subsequent

AMSERV abends, you must re-IPL CMS.

Using AMSERV and VSAM

448 z/VM: 7.4 CMS Application Development Guide for Assembler

• The Ready; appears.
• Another AMSERV command is issued without the NORESET option.
• A DOS EOJ macro or a DOS CANCEL macro is issued.
• The CATCHECK command is issued.
• Upon completion of an OS/VSAM program call from an exec language program.

This option is most useful when the AMSERV command is issued from an exec or program.

Manipulating OS and DOS Disks for Use with AMSERV
To use CMS VSAM and AMSERV, you can have OS or DOS disks in your virtual machine configuration. They
can be assigned in your directory entry, or you can link to them using the CP LINK command. You must
have read/write access to them to execute any AMSERV function or VSAM program that requires opening
the file for output or update.

Before you can use an OS or DOS disk, you must access it with the CMS ACCESS command:

access 200 d

The response from the ACCESS command indicates that the disk is in OS or DOS format:

D (200) R/W - OS
 — or —
D (200) R/W - DOS

You can write on these disks only through AMSERV or through the execution of a program writing VSAM
data sets. Once an OS disk is used with AMSERV or VSAM, CMS considers it a DOS disk. Therefore,
regardless of whether you are an OS user, when you access or request information about a VSAM disk,
CMS indicates that it is a DOS disk. You can still use the disk in an OS or DOS system for VSAM data set
processing. Although the format is not changed, the disk is still subject to any incompatibilities that can
currently exist between OS and DOS disks.

Data and Master Catalog Sharing
There are two meanings of sharing that must be defined clearly with respect to the CMS support of
VSAM. The first is that of the SHAREOPTION parameter found in the DEFINE (and ALTER) command for
access method services. (For more information on the DEFINE command, see “The DEFINE and DELETE
Functions” on page 467.)

The SHAREOPTION keyword enables the VSAM user to define how a component is shared within or
across VSE partitions and VSE systems. Because CMS supports only a single partition environment,
cross partition sharing has no meaning in the CMS environment. In addition, because CMS does not
provide DASD sharing support, cross system sharing is not supported. Consequently, the SHAREOPTION
parameter only has meaning within a CMS virtual machine (functional equivalent of a VSE partition).

The area of sharing most familiar to CMS users is the disk (minidisk) read-sharing provided by CP. For the
VSAM user under CMS, it is still possible to share disks in read-only mode in order to read-share VSAM
components. However, there is a restriction with respect to the VSAM master catalog. That is, only one
virtual machine may have the disk containing the master catalog in write status. This is necessary even
if only read functions are being performed during the session. This is due to the master catalog updating
read statistics at close time and, when necessary, writing a new control record in the catalog at open time.

In the situation where there is one write status and one or more read-only status, it may be important
to ensure data integrity. To make sure that the read-only users get any modified data, use the
SHAREOPTION 4 on the DEFINE command. If data integrity is not important, (for example, there will
be only a write status at any given time) then use the default SHAREOPTION 1.

Under CMS, it is possible to have the master catalog disk read-only. A programming modification (a bit
in the ACB) was made to the DOS/VS VSAM code so that VSAM knows it is running under CMS. If this bit
is on, VSAM will not write to the master catalog for either of the two cases described above. This allows

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 449

one or more CMS virtual machines to share the VSAM master catalog. This assumes either no other virtual
machine has the master catalog disk in write status or only one virtual machine (DOS, OS, or CMS) has it.

Multiple CMS users may have the VSAM master catalog disk in read-only status but only one virtual
machine may have the same in write status. With respect to data set sharing, there is only read-sharing
for the CMS user.

For more information on data and master catalog sharing, see theVSE/ESA System Macros User's Guide .

Disk Compatibility
Because the CMS VSAM support writes VSAM data sets to DOS disks, the question of disk compatibility is
not one between CMS and DOS nor between CMS or OS but rather between DOS and OS disks. Because
CMS actually uses VSE/VSAM for processing VSAM data sets, all disks used by CMS VSAM are DOS disks.
For this reason, we need only discuss how DOS and OS disks are compatible.

In the format-4 DSCB, there is a bit in the VTOC indicators (byte 59, bit 0) defined by OS/VS to indicate
(when OFF) that a format-5 label is included in the VTOC. This bit is always ON under VSE because DOS
does not maintain the format-5 label. This technique allows OS/VS to realize when the format-5 is invalid
and that it must recompute free space and rewrite the format-5 label.

Thus, if a disk originally was used under OS/VS, further allocation could occur under VSE but with the
format-5 ignored. If the disk was then used under OS/VS and additional allocation performed, OS/VS
would recognize the fact that the format-5 was not valid and would rewrite the format-5.

In terms of space allocation, DOS and OS disks are portable between the two systems. However, OS/VS
must perform extra processing prior to using the disk if it intends to reallocate using the format-5.

DOS and OS disks containing VSAM data sets are no exception to this. OS and DOS disks containing VSAM
data sets that are used under CMS are portable among all three systems. Because CMS uses the actual
VSE/VSAM routines, all disks used under CMS to process VSAM data sets become DOS disks.

VSE/VSAM uses physical record sizes ranging from .5K bytes to 8K bytes. All multiples of .5K bytes
between those two values are supported. OS/VS VSAM, however, only supports physical record sizes of
.5K, 1K, 2K, and 4K. Therefore, some VSAM files written under CMS cannot be used directly by OS/VS
VSAM.

Allocating Space
It is necessary to distinguish between two types of allocation under VSAM.

1. The actual space allocation on the disk
2. Allocation within the data set itself

Space for VSAM components must be allocated on the DASD using the DEFINE commands. You can only
allocate space for the master catalog, a user catalog, a data space, and a UNIQUE cluster.

In defining the actual DASD space for components, there are parameters for the DEFINE SPACE command
that allows the user to include a “secondary allocation” specification. These parameters are CYLINDERS,
RECORDS, BLOCKS, and TRACKS. They have this secondary facility only as a syntactic compatibility with
the OS/VS access method services commands. That is, VSE (and, therefore, CMS) does not perform
secondary space allocation on a DASD.

The facility does exist under VSE (and CMS) to extend data or index components through already
allocated data space, catalog extents, or UNIQUE cluster extents. Thus, the CYLINDERS, TRACKS,
RECORDS, and BLOCKS parameters of the DEFINE commands for alternate indexes, clusters, and
catalogs do not dynamically allocate DASD space but only extend a component through existing space.

Using Minidisks
If you have a minidisk in your virtual machine configuration, you can use it to contain VSAM files. Before
you can use it, it must be formatted with the Device Support Facility program. When you request that a
disk be added to your user ID for use with VSAM files under CMS, you should indicate that it be formatted

Using AMSERV and VSAM

450 z/VM: 7.4 CMS Application Development Guide for Assembler

for use with OS or DOS. Or you can format it yourself using the Device Support Facility. How to do this is
described under “Using Temporary Disks” on page 452.

Note: If you are an OS user, you should be careful about allocating space for VSAM on minidisks. Once you
have used CMS AMSERV to allocate VSAM data space on a minidisk, you should not attempt to allocate
file space on that minidisk using an OS/VS system. OS does not recognize minidisks, and would attempt
to format the entire disk pack and thus erase any data on it. To allocate additional space for VSAM, you
should use CMS again.

The LISTDS Command
For OS or DOS disks or minidisks, you can use the LISTDS command to determine the extents of free
space available for use by VSAM. You can also determine what space is already in use. You can use this
information to supply the extent information when you define VSAM files.

The options used with VSAM disks are:

• EXTENT — to find out what extents are in use
• FREE — to find out what extents are available.

For example, if you have an OS disk accessed as a G-disk, and you enter:

listds g (extent

The response might look like:

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK:
SEQ TYPE CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
000 VTOC 00099 00000 1881 00099 00018 1899 19

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK: SEQ TYPE
SEQ TYPE CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
000 DATA 00000 00001 1 00049 00018 949 949

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK: SEQ TYPE
SEQ TYPE CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
000 DATA 00050 00000 950 00051 00018 987 38

You could also determine the extent for a particular data set:

listds ? * (extent

CMS responds:

DMSLDS220R Enter dataset name:

Then, you can enter the file-id:

system.recorder.file

The response might look like:

EXTENT INFORMATION FOR 'SYSTEM RECORDER FILE' ON 'F' DISK:
SEQ TYPE CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
000 DATA 00102 00000 1938 00102 00018 1956 19
002 DATA 00010 00006 206 00010 00008 208 3

LISTDS searches all minidisks accessed until it locates the specified data set. In this example, the data
set occupies two separate extents on disk F. If the data set is a multivolume data set, extents on all
accessed volumes are located and displayed.

If you want to find the free extents on a particular disk, enter:

listds g (free

The response might look like:

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 451

FREESPACE EXTENTS FOR 'G' DISK:
 CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
00052 00000 988 00052 00001 989 2
00054 00002 1028 00080 00000 1520 493
00081 00001 1540 00098 00018 1880 341

You can use this information when you allocate space for VSAM files. If you enter:

listds * (free

CMS lists all the free space available on all of your accessed disks.

Using Temporary Disks
When you need extra space on a temporary basis for use with CMS VSAM and AMSERV, you can use the
CP DEFINE command to create a temporary minidisk and then use the Device Support Facilities program
to format it. For more information on the Device Support Facility, see the Device Support Facilities User’s
Guide and Reference. Once formatted and accessed, it is available to your virtual machine for the duration
of your terminal session or until you detach it using the CP DETACH command. Remember that anything
placed on a temporary disk is lost, so that you should copy output that you want to keep onto permanent
disks before you log off.

Formatting a Temporary Disk
The example below shows a control statement file and an exec procedure that, together, can be used to
format a minidisk using the Device Support Facility. For a complete description of the control statements
used, refer to the Device Support Facilities User’s Guide and Reference.

The input control statements for the Device Support Facility should be placed in a CMS file so that they
can be punched to your virtual card reader. For this example, suppose the statements are in a CMS file
named TEMP DSF:

INIT UNIT(198) DEVTYP(3390) PRG NVFY VOLID(123456) DVTOC(9,7,5) -
 MIMIC (MINI(10))

Note: The example above begins in column 2.

Now consider the CMS file named TEMPDISK EXEC:

 /* to format a temporary DOS disk */

 signal on error
 cp define t3390 198 10
 cp close reader
 cp purge reader class i
 cp spool punch to '*' class i cont nohold
 punch ipl ickdsf '* ('noh
 punch temp dsf '* ('noh
 cp spool punch nocont close
 cp spool reader class i nohold
 cp ipl 00c clear attn
 exit

 Error:
 exit 100

You execute this procedure by entering the file name of the exec:

tempdisk

When the final line of this exec is executed, the Device Support Facility is in control. You will receive the
following three messages:

ICK005E DEFINE INPUT DEVICE, REPLY 'DDDD,VDEV OR CONSOLE'
ENTER INPUT/COMMAND:

Using AMSERV and VSAM

452 z/VM: 7.4 CMS Application Development Guide for Assembler

You should enter:

2540,00c

to indicate that the control statements should be read from your card reader, which is a virtual 2540
device at virtual address 00C.

ICK006E DEFINE OUTPUT DEVICE, REPLY 'DDDD,VDEV OR CONSOLE'
ENTER INPUT/COMMAND:

You should enter:

console

to indicate that the utility output should be sent to your console.

ICK003D REPLY U TO ALTER VOLUME 198 CONTENTS, ELSE T
ENTER INPUT/COMMAND:

You should enter:

u

to continue the execution.

When the Device Support Facilities program is completed, your virtual machine is in a wait state and you
must reload CMS (with the IPL command). You can then access the temporary disk:

acc 198 c

and CMS responds:

C (198) R/W - DOS

Defining DOS Input and Output Files
Note: This information is for VSE/VSAM users. OS/VS VSAM users should refer to the section “Defining OS
Input and Output Files”.

You may use the DLBL command to define VSAM input and output files for both the AMSERV command
and for program execution. The operands required on the DLBL command are:

dlbl ddname filemode DSN datasetname (options SYSxxx

where ddname corresponds to the filename parameter in the AMSERV file and datasetname corresponds
to the entry name or file name of the VSAM file.

There are several options you can use when issuing the DLBL command to define VSAM input and output
files. These options are:
VSAM

indicates that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file as a VSAM file if you are using any of
the options:

• EXTENT
• MULT
• CAT
• BUFSP.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 453

These options imply that the file is a VSAM file. In addition, the ddnames (filenames) IJSYSCT and
IJSYSUC also indicate that the file being defined is a VSAM file.

EXTENT
defines a catalog or a VSAM data space. You are prompted to enter the volume information. This
option provides the function of the EXTENT card in VSE.

MULT
accesses a multivolume VSAM file. You are prompted to enter the extent information.

CAT
identifies a catalog that contains the entry for the VSAM file you are defining.

BUFSP
specifies the size of the buffers VSAM should use during program execution.

Options are entered following the open parenthesis on the DLBL command line, with the SYSxxx:

assgn sys003 b
dlbl file1 b dsn workfile (extent cat cat2 sys003

Using VSAM Catalogs
While you are developing and testing your VSAM programs in CMS, you may find it convenient to create
and use your own master catalog, which may be on a CMS minidisk. VSAM catalogs, like any other cluster,
can be shared read-only among several users.

You name the VSAM master catalog for your terminal session using the logical unit SYSCAT in the ASSGN
command and the ddname IJSYSCT for the DLBL command. For example, if your VSAM master catalog is
located on a DOS disk you have accessed as a C-disk, you would enter:

assgn syscat c
dlbl ijsysct c dsn mastcat (syscat

Note: When you use the ddname IJSYSCT, you do not need to specify the VSAM option on the DLBL
command.

You must define the master catalog at the start of every terminal session. If you are always using the
same master catalog, you might include the ASSGN and DLBL commands in an exec procedure or in your
PROFILE EXEC. You could also include the commands necessary to access the DOS system residence
volume and enter the CMS/DOS environment:

ACCESS 350 Z
SET DOS ON Z (VSAM
ACCESS 555 C
ASSGN SYSCAT C
DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM

You should use the PERM option so that you do not have to reset the master catalog assignment after
clearing previous DLBL definitions.

You must use the VSAM option on the SET DOS ON command if you want to use any access method
services function or access VSAM files.

Defining a Master Catalog
The sample ASSGN and DLBL commands used above are almost identical with those you issue to define
a master catalog using AMSERV. The only difference is the EXTENT option that lists the data spaces that
this master catalog is to control.

Using AMSERV and VSAM

454 z/VM: 7.4 CMS Application Development Guide for Assembler

As an example, suppose that you have a 30-cylinder 3390 minidisk assigned to you to use for testing your
VSAM programs under CMS. If the minidisk is in your directory at address 333, you should first access it:

access 333 d
D (333) R/W - DOS

If you formatted the minidisk yourself, you know what its label is. If not, you can find out what the label is
by using the CMS command:

query search

The response might be:

USR191 191 A R/W
DOS333 333 D R/W - DOS
SYS190 190 S R/O
SYS19E 19E Y/S R/O

Use the label DOS333 in the VOLUMES parameter in the MASTCAT AMSERV file:

DEFINE MASTERCATALOG -
 (NAME (MASTCAT) -
 VOLUME (DOS333) -
 CYL (4) -
 FILE (IJSYSCT))

To find out what extents on the minidisk you can allocate for VSAM, use the LISTDS command with the
FREE option:

listds d (free

The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'D' DISK:
 CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
00000 00001 1 00000 00009 9 9
00000 00011 11 00029 00018 569 560

From this response, you can see that the volume table of contents (VTOC) is located on the first cylinder,
so you can allocate cylinders 1 through 29 for VSAM:

assgn syscat d
dlbl ijsysct d dsn mastcat (syscat perm extent
DMSDLB331R Enter extent specifications:
19 551
 (null line)

After entering the extents, in tracks, giving the relative track number of the first track to be allocated
followed by the number of tracks, you must enter a null line to complete the command. A null line is
required because, when you enter multiple extents, entries may be placed on more than one line. If you
do not enter a null line, the next line you enter causes an error, and you must re-enter all of the extent
information.

Note: As in OS, the extents must be on cylinder boundaries, and you cannot allocate cylinder 0.

Now you can issue the AMSERV command:

amserv mastcat

A ready message with no return code indicates that the master catalog is defined. You do not need to
reissue the ASSGN and DLBL commands to use the master catalog for additional AMSERV functions.

Defining User Catalogs
You can use the AMSERV command to define private catalogs and spaces for them. The procedures for
determining what space you can allocate are the same as those outlined in the example of defining a
master catalog.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 455

To define a user catalog, you may use any programmer logical unit and any ddname:

access 199 e
listds e (free
⋮
assgn sys001 e
dlbl cat1 e dsn private.cat1 (sys001 extent perm
⋮
amserv usercat

The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
 (NAME (PRIVATE.CAT1) -
 CYL (4) -
 VOLUME (DOSVS2)) -
 CATALOG (MASTCAT)

After this AMSERV command has completed successfully you can use the catalog PRIVATE.CAT1. When
you issue a DLBL command to identify a cluster or data set cataloged in this catalog, you must identify the
catalog using the CAT option on the DLBL command for the file:

assgn sys100 c
dlbl file2 c dsn ? (sys100 cat cat1

Or, you can define this catalog as a job catalog.

Using Job Catalogs
If you want to set up a user catalog as a job catalog so that it will be searched during all subsequent jobs,
you can define the catalog using the special ddname IJSYSUC. For example:

assgn sys101 c
dlbl ijsysuc c dsn private.cat1 (sys101 perm

If you defined a user catalog (IJSYSUC) for a terminal session and you use the AMSERV command to
access a VSAM file, the user catalog takes precedence over the master catalog. This means that for files
that already exist, only the job catalog is searched. When you define a cluster, it is cataloged in the job
catalog, rather than in the master catalog, unless you use the CAT option to override it.

If you want to use additional catalogs during a terminal session, you first define them just as you would
any other VSAM file:

assgn sys010 f
dlbl mycat2 f dsn private.cat2 (sys010 vsam

Then, when you enter the DLBL command for the VSAM file that is cataloged in PRIVATE.CAT2, use the
CAT option to refer to the ddname of the catalog:

assgn sys011 f
dlbl input f dsn input.file (sys011 cat mycat2

If you want to stop using a job catalog defined with the ddname IJSYSUC, you can clear it using the CLEAR
option of the DLBL command:

dlbl ijsysuc clear

Then, the master catalog becomes the job catalog for files not defined with the CAT option.

Catalog Passwords
When you define passwords for VSAM catalogs in CMS, or when you use CMS to access VSAM catalogs
that have passwords associated with them, you must supply the password from your terminal when the
AMSERV command executes. The message you receive to prompt you for the password is the same
message you receive when you execute access method services:

Using AMSERV and VSAM

456 z/VM: 7.4 CMS Application Development Guide for Assembler

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

Verifying a Catalog Structure
As a CMS VSAM user (with or without DOS set ON), you can use the CMS CATCHECK command to invoke
the VSE/VSAM Catalog Check Service Aid to verify a complete catalog structure. If you do not specify a
catalog name with the CATCHECK command, the job catalog specified with the DLBL command is used.
CATCHECK produces a print file containing the catalog analysis. For example, issuing:

dlbl ijsysuc f dsn private.cat1 (vsam

and

catcheck

results in a print file containing the VSE/VSAM Catalog Check output.

If you had issued only a DLBL for the master catalog, issuing:

catcheck private.cat1

produces the same result.

Defining and Allocating Space for VSAM files
You can use CMS AMSERV to allocate additional data spaces for VSAM. To use the DEFINE SPACE control
statement, you must have defined the catalog that will control the space, and you must have mounted and
accessed the volume or volumes where the space is to be allocated.

For example, suppose you have a DOS-formatted 3390 disk attached to your virtual machine at virtual
address 255. After accessing the disk and determining the free space on it, you could create a file named
SPACE AMSERV:

DEFINE SPACE -
 (FILE (FILE1) -
 TRACKS (1900) -
 VOLUME (123456)) -
 CATALOG (PRIVATE.CAT2 CAT2)

Before executing this AMSERV file, define PRIVATE.CAT2 as a user catalog using the ddname CAT2. Then
define the ddname for the FILE parameter:

access 255 c
assgn sys010 c
dlbl cat2 c dsn private.cat2 (sys010 vsam
assgn sys011 c
dlbl file1 c (extent sys011 cat cat2
amserv space

You do not need to enter a data set name to define the space. When CMS prompts you for the extents of
the space, you can enter the extent specifications:

DMSDLB331R Enter extent specifications:
190 1900
⋮

When you define space for VSAM, you should be sure that the VOLUMES parameter and the space
allocation parameter (whether CYLINDER, TRACKS, BLOCKS, or RECORDS) in the AMSERV file agree with
the information you provide in the DLBL command. All data extents must begin and end on cylinder
boundaries. Any additional space you provide in the extent information that is beyond what you specified
in the AMSERV file is claimed by VSAM.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 457

Specifying Multiple Extents
When you are specifying extents for a master catalog, data space, or unique file, you can specify up to
16 extents on a volume for a particular space. When prompted by CMS to enter the extents, you must
separate different extents by commas or place them on different lines. To specify a range of extents in the
above example, you can enter:

dlbl file1 c (extent sys011
190 190, 570 190, 1900 1520
 (null line)
 — or —
dlbl file1 c (extent sys011
190 190
570 190
1900 1520
 (null line)

Again, the first number entered for each extent represents the relative track for the beginning of the
extent and the second number indicates the number of tracks.

Specifying Multivolume Extents
You can define spaces that span up to 25 volumes for VSAM files. All of the volumes must be accessed
and assigned when you issue the DLBL command to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do not use the PRINT option, you
must have a read/write CMS disk so that AMSERV can write the output LISTING file.

If you are defining a new multivolume data space or unique cluster, you must specify the extents on each
volume that the data is to occupy (starting track and number of tracks) followed by the disk mode letter
where the disk is accessed and the programmer logical unit to which the disk is assigned. For example:

access 135 b
access 136 c
access 137 d
assgn sys001 b
assgn sys002 c
assgn sys003 d
dlbl newfile b (extent sys001

If you specify more than one extent on the same line, the extents must be separated by commas.
Different extents for the same volume must be entered consecutively.

When you enter multivolume extents, you can use a default mode. For example:

dlbl newfile b (extent sys001
DMSDLB331R Enter extent specifications:
100 60, 400 80, 60 40 d sys003,
2000 100 c sys002
 (null line)

Any extents you enter without specifying a mode letter and SYSxxx value default to the mode and SYSxxx
on the DLBL command line, in this case, the B-disk, SYS001.

If you make any errors issuing the DLBL command or extent information, you must re-enter the entire
command sequence.

Identifying Existing Multivolume Files
When you issue a DLBL command to identify an existing multivolume VSAM file, you must use the MULT
option of the DLBL command:

dlbl old b1 dsn ? (sys002 mult
DMSDLB220R Enter dataset name:
dostest.file
DMSDLB330R Enter volume specifications:
c sys004, d sys003
e sys007
 (null line)

Using AMSERV and VSAM

458 z/VM: 7.4 CMS Application Development Guide for Assembler

When you enter the DLBL command, you should specify the mode letter and logical unit for the first
volume on the command line. When you enter the MULT option, you are prompted to enter additional
specifications for the remaining extents. In the preceding example, the data set has extents on disks
accessed as B-, C-, D-, and E-disks.

Using Tape Input and Output
If you are using AMSERV for a function that requires tape input or output, you must have the tape(s)
attached to your virtual machine. The valid addresses for tapes are 181 through 184. When referring to
tapes, you can also refer to them using their CMS symbolic names TAP1 through TAP4.

For AMSERV functions that use tape input/output, the TLBL control statement is simulated by building a
dummy DLBL containing a user-supplied ddname (filename). CMS does not read tape labels and does not
recognize tape data set names.

When you invoke the AMSERV command, you must use the TAPIN or TAPOUT option to specify the tape
device being used:

amserv export (tapout 181

In this example, the output from the AMSERV control statements in a file named EXPORT goes to a tape at
virtual address 181. CMS prompts you to enter the ddname:

DMSAMS367R Enter tape output DDNAMEs:

After you enter the ddname specified on the FILE parameter in the AMSERV file and press the carriage
return, the AMSERV command executes.

AMSERV opens all tape files as standard labeled tapes or nonlabeled tapes. If you are using standard
labeled tapes, you need to specify a LABELDEF command with AMSERV. The LABELDEF command is
the CMS/DOS equivalent of VSE TLBL control statement. The LABELDEF command specifies information
in VOL1 and HDR1 labels on the tape. See the description of the LABELDEF command in z/VM: CMS
Commands and Utilities Reference for more information on this command.

You should use the same name for the filename on your LABELDEF command as you do for the ddname
you entered in reply to message DMSAMS367R (the ddname specified on the FILE parameter in the
AMSERV file). However, the LABELDEF command must be issued before the AMSERV command. The
following sequence of commands might be used when you have standard labeled tape output:

assgn sys005 tap1
tape rew (181
assgn syscat e
assgn sys006 e
labeldef catout fid catfile volid amserv
dlbl ijsysct e dsn mastcat (syscat vsam
dlbl catin e dsn file (sys006 vsam
amserv repro (tapout 181

DMSAMS367R Enter tape output DDNAMEs:

catout

Note: If you do not care what is written in a tape output label or do not want input labels checked, you can
specify a LABELDEF with no parameters other than filename. When you enter:

labeldef intape

for an input tape with ddname INTAPE, the standard labels on the tape are skipped without any checking.
A similar statement for an output tape writes tape labels with default values (see the description of the
LABELDEF command in z/VM: CMS Commands and Utilities Reference).

If you use nonlabeled tapes, LABELDEF is not required.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 459

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

Reading VSAM Tape Files
When you create a tape in CMS using AMSERV, CMS writes a tape mark preceding each output file that it
writes. When the same tape is read using AMSERV under CMS, HDR1 and VOL1 labels are checked using
the LABELDEF command you provide. If you read this tape in a real VSE system, you should use a TLBL
card instead of the LABELDEF command.

Similarly, when you create a tape under a VSE system using access method services, if the tape is created
with standard labels, CMS AMSERV has no difficulty reading it.

The only time you should worry about positioning a tape created by AMSERV is when you want to read the
tape using a method other than AMSERV, for example, the MOVEFILE command. Then, you must forward
space the tape past the label using the CMS TAPE command before you can read it.

Defining OS Input and Output Files
Note: This information is for OS/VS VSAM users only. VSE/VSAM users should refer to “Defining DOS Input
and Output Files” for information on defining files for use with VSAM.

The OS/VS VSAM user should bear in mind that CMS uses VSE/VSAM to manipulate VSAM files. The VSAM
and AMS statements that can be used are described in the publication VSE/ESA System Macros User's
Guide.

In addition, there are certain incompatibilities between VSE/VSAM and OS/VS VSAM. For a description of
these incompatibilities, refer to theVSE/ESA General Information .

If you are going to use access method services to manipulate VSAM or SAM files or you are going to
execute VSAM programs under CMS, use the DLBL command to define the input and output files. The
basic format of the DLBL command is:

DLBL ddname filemode DSN datasetname (options

where ddname corresponds to the FILE parameter in the AMSERV file and datasetname corresponds to
the entry name of the VSAM file. That is, the name specified in the NAME parameter of an access method
services control statement.

If you are using a CMS file for AMSERV input or output, use the CMS operand and enter CMS file identifiers
as follows:

dlbl mine a cms out file1 (vsam

The maximum length allowed for ddnames under CMS VSAM is seven characters. This means that if
you have assigned eight-character ddnames (or filenames) to files in your programs, only the first seven
characters of each ddname are used. So, if a program refers to the ddname OUTPUTDD, you should
issue the DLBL command for a ddname of OUTPUTD. Since you can encounter problems with a program
that contains ddnames with the same first seven characters, you should recompile those programs using
seven-character ddnames.

There are several options you can use when issuing the DLBL command to define VSAM input and output
files. These options are:
VSAM

indicates that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file as a VSAM file if you are using any of
the other options listed here, since they imply that the file is a VSAM file. In addition, the ddnames
(filenames) IJSYSCT and IJSYSUC also indicate that the file being defined is a VSAM file.

EXTENT
defines a catalog or a VSAM data space. You are prompted to enter the volume information.

MULT
accesses a multivolume VSAM file. You are prompted to enter the extent information.

Using AMSERV and VSAM

460 z/VM: 7.4 CMS Application Development Guide for Assembler

CAT
identifies a catalog which contains the entry for the VSAM file you are defining.

BUFSP
specifies the size of the buffers VSAM should use during program execution.

Allocating Extents on OS Disks and Minidisks
When you use access method services to manipulate VSAM files under OS, you do not have to worry
about allocating the real cylinders and tracks to contain the files. You can, however, use CMS commands
to indicate which cylinders and tracks should contain particular VSAM spaces when you use the DEFINE
control statement to define space.

Extents for VSAM data spaces can be defined, in AMSERV files, in terms of cylinders, tracks, or records.
Extent information you supply to CMS when executing AMSERV must always be in terms of tracks. When
you define data spaces or unique clusters, the extent information (number of cylinders, tracks, or records)
in the AMSERV file must match the extents you supply when you issue the DLBL command to define the
file. When you supply extent information for the master catalog, any extents you enter in excess of those
required for the catalog are claimed by the catalog and used as data space.

CMS does not make secondary space allocation for VSAM data spaces. If you execute an AMSERV file that
specifies a secondary space allocation, CMS ignores the parameter.

When you use the DLBL command to define VSAM data space, you can use the EXTENT option indicating
to CMS that you are going to enter data extents. For example, if you enter:

dlbl space b (extent

CMS prompts you to enter the extents:

DMSDLB331R Enter extent specifications:

When you enter the extents, you specify the relative track number of the first track of the extent, followed
by the number of tracks.

You can never write on cylinder 0 track 0, and since VSAM data spaces must be allocated on cylinder
boundaries, you should never allocate cylinder 0. Cylinder 0 is often used for the volume table of contents
(VTOC) as well. Therefore, it is always best to begin defining space with cylinder 1.

You can determine what disk extents on an OS disk or minidisk are available for allocation by using
the LISTDS command with the FREE option, which also indicates the relative track numbers and actual
cylinder and head numbers.

Using VSAM Catalogs
While you are developing and testing your VSAM programs in CMS, you may find it convenient to create
and use your own master catalog, which may be on a CMS minidisk. VSAM catalogs, like any other cluster,
can be shared read-only among several users.

You name the VSAM master catalog for your terminal session using the ddname IJSYSCT for the DLBL
command. For example, if your VSAM master catalog is located on an OS disk you have accessed as a
C-disk, you would enter:

dlbl ijsysct c dsn master catalog (perm

You must define the master catalog at the start of every terminal session. If you are always using the
same master catalog, you might include the DLBL command you need to define it in your PROFILE EXEC:

ACCESS 555 C
DLBL IJSYSCT C DSN MASTCAT (PERM

You should use the PERM option so that you do not have to reset the master catalog assignment after
clearing previous DLBL definitions. The command:

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 461

dlbl * clear

clears all file definitions except those entered with the PERM option.

Defining a Master Catalog
The sample DLBL command used in the preceding example is almost identical with the one you would
issue to define a master catalog using AMSERV. The only difference is that you can enter the EXTENT
option so you can list the data spaces that this master catalog is to control. As an example, suppose that
you have a 30-cylinder 3390 minidisk assigned to you to use for testing your VSAM programs under CMS.
If the minidisk is in your directory at address 333, you should first access it:

access 333 d
D (333) R/W - DOS

If you formatted the minidisk yourself, you know what label you assigned it. If not, you can find out the
label assigned to the disk by issuing the CMS command:

query search

The response might be:

USR191 191 A R/W
VSAM03 333 D R/W - DOS
SYS109 190 S R/O
SYS19E 19E Y/S R/O

Use the volume label VSAM03 in the MASTCAT AMSERV file:

DEFINE MASTERCATALOG -
 (NAME (MASTCAT) -
 VOLUME (VSAM03) -
 CYL (4) -
 FILE (IJSYSCT))

To find out what extents on the minidisk you can allocate for VSAM, use the LISTDS command with the
FREE option:

listds d (free

The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'D' DISK:
CYL-HEAD (RELTRK) TO CYL-HEAD (RELTRK) TRACKS
00000 00001 1 00000 00009 9 9
00000 00011 11 00029 00018 569 560

From this response, you can see that the VTOC is located on the first cylinder, so you can allocate
cylinders 1 through 29 for VSAM:

dlbl ijsysct d dsn mastcat (perm extent
DMSDLB331R Enter extent specifications:
19 551
 (null line)

After entering the extents, in tracks, giving the relative track number of the first track to be allocated
followed by the number of tracks, you must enter a null line to complete the command. (A null line is
required because, when you enter multiple extents, entries may be placed on more than one line.)

Now you can issue the AMSERV command:

amserv mastcat

A ready message with no return code indicates that the master catalog is defined. You do not need to
reissue the DLBL command to identify the master catalog for additional AMSERV functions.

Using AMSERV and VSAM

462 z/VM: 7.4 CMS Application Development Guide for Assembler

Defining User Catalogs
You can use the AMSERV command to define private catalogs and spaces for them. The procedures for
determining what space you can allocate are the same as those outlined in the example of defining a
master catalog. To define a user catalog, you can assign any ddname you want:

access 199 e
listds e (free
⋮
dlbl cat1 e dsn private.cat1 (extent
⋮
amserv usercat

The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
 (NAME (PRIVATE.CAT1) -
 FILE (CAT1) -
 CYL (4) -
 VOLUME (OSVSAM)) -
 CATALOG (MASTCAT)

After this AMSERV command has completed successfully, you can use the catalog PRIVATE.CAT1. When
you define a file cataloged in it, you identify the catalog using the CAT option on the DLBL command:

dlbl file2 e dsn ? (cat cat1

Or, you can define it as a job catalog.

Using a Job Catalog
During a terminal session, you may be referencing the same private catalog many times. If this is the case,
you can identify a job catalog by using the ddname IJSYSUC. Then, that catalog is searched during all
subsequent jobs unless you override it using the CAT option when you use the DLBL command to define a
file.

If you defined a user catalog (IJSYSUC) for a terminal session and you use the AMSERV command to
access a VSAM file, the user catalog takes precedence over the master catalog. This means that for files
that already exist, the job catalog is searched. When you define a cluster, it is cataloged in the job catalog,
rather than in the master catalog, unless you use the CAT option to override it. CMS never searches more
than one VSAM catalog.

You should use the CAT option to name a catalog when the AMSERV file you are executing references,
with the CATALOG parameter, a catalog that is not defined either as the master catalog or as a user
catalog.

If you want to use additional catalogs during a terminal session, you first define them just as you would
any other VSAM file:

dlbl mycat2 f dsn private.cat2 (vsam

Then, when you enter the DLBL command for the VSAM file that is cataloged in PRIVATE.CAT2 use the
CAT option to refer to the ddname of the catalog:

dlbl input f dsn input.file (cat mycat2

If you want to stop using a job catalog defined with the ddname IJSYSUC, you can clear it using the CLEAR
option of the DLBL command:

dlbl ijsysuc clear

or, you can assign the ddname IJSYSUC to some other catalog. If you clear the ddname for IJSYSUC, then
the master catalog becomes the job catalog.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 463

Catalog Passwords
When you define passwords for VSAM catalogs in CMS or when you use CMS to access VSAM catalogs
that have passwords associated with them, you must supply the password from your terminal when the
AMSERV command executes. The message you receive to prompt you for the password is the same
message you receive when you execute access method services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

Verifying a Catalog Structure
As a CMS VSAM user (with or without DOS set ON), you can use the CMS CATCHECK command to invoke
the VSE/VSAM Catalog Check Service Aid to verify a complete catalog structure. If you do not specify
a catalog name with the CATCHECK command, the catalog specified with the DLBL command is used.
CATCHECK produces a print file containing the catalog analysis. For example, issuing:

dlbl ijsysuc f dsn private.cat1 (vsam

and

catcheck

results in a print file containing the VSE/VSAM Catalog Check output.

If you had issued only a DLBL for the master catalog, issuing:

catcheck private.cat1

produces the same result.

Defining and Allocating Space for VSAM files
You can use CMS AMSERV to allocate additional data spaces for VSAM. To use the DEFINE SPACE control
statement, you must have defined either the master catalog or a user catalog that will control the space,
and you must have mounted and accessed the volume or volumes where the space is to be allocated.

For example, suppose you have an OS 3390 disk attached to your virtual machine at virtual address
255. After accessing the disk and determining the free space on it, you could create a file named SPACE
AMSERV:

DEFINE SPACE -
 (FILE (FILE1) -
 TRACKS (1900) -
 VOLUME (123456)) -
 CATALOG (PRIVATE.CAT2 CAT2)

Before executing this AMSERV file, define PRIVATE.CAT2 using the ddname CAT2. Then define the
ddname for the file:

access 255 c
dlbl cat2 c dsn private.cat2 (vsam
dlbl file1 c (extent cat cat2

You do not need to enter a data set name to define the space. When CMS prompts you for the extents of
the space, you can enter the extent specifications:

DMSDLB331R Enter extent specifications:
190 1900
⋮

Using AMSERV and VSAM

464 z/VM: 7.4 CMS Application Development Guide for Assembler

When you define space for VSAM, you should be sure that the VOLUMES parameter and the space
allocation parameter (whether CYLINDER, TRACKS, BLOCKS, or RECORDS) in the AMSERV file agree with
the track information you provide in the DLBL command.

Specifying Multiple Extents
When you are specifying extents for a master catalog, data space, or unique file, you can specify up to
16 extents on a volume for a particular space. When prompted by CMS to enter the extents, you must
separate the different extents by commas or place them on different lines. To specify a range of extents in
the above example, you could enter:

dlbl file1 c (extent
190 190, 570 190, 1900 1520
 (null line)
 — or —
dlbl file1 c (extent
190 190
570 190
1900 1520
 (null line)

Again, the first number entered for each extent represents the relative track for the beginning of the
extent and the second number indicates the number of tracks.

Specifying Multivolume Extents
You can define spaces that span up to 25 volumes for VSAM files. All of the volumes must be accessed
and assigned when you issue the DLBL command to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do not use the PRINT option, you
must have a read/write CMS disk so that AMSERV can write the output LISTING file.

If you are defining a new multivolume data space or unique cluster, you must specify the extents on each
volume that the data is to occupy (starting track and number of tracks) followed by the disk mode letter at
which the disk is assigned:

access 135 b
access 136 c
access 137 d
dlbl newfile b (extent

If you specify more than one extent on the same line, the extents must be separated by commas. If you
enter a comma at the end of a line, it is ignored. Different extents for the same volume must be entered
consecutively.

When you enter multivolume extents, you do not have to enter a mode letter for those extents on the disk
identified in the DLBL command. For the extents on disk B in the above example, you could enter:

dlbl newfile b (extent
DMSDLB331R Enter extent specifications:
100 60, 400 80, 60 40 d
2000 100 c
 (null line)

If you make any errors issuing the DLBL command or extent information, you must reissue the entire
command sequence.

Identifying Existing Multivolume Files
When you issue a DLBL command to identify an existing multivolume VSAM file, you must use the MULT
option of the DLBL command:

dlbl old b1 dsn ? (mult
DMSDLB220R Enter dataset name:
vsamtest.file
DMSDLB330R Enter volume specifications:
c, d

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 465

e
 (null line)

When you enter the DLBL command you should specify the mode letter for the first disk volume on the
command line. When you enter the MULT option you are prompted to enter additional specifications for
the remaining extents. In the above example, the data set has extents on disks accessed as B-, C-, D-, and
E-disks.

Using Tape Input and Output
If you are using AMSERV for a function that requires tape input or output, you must have the tape(s)
attached to your virtual machine. The valid addresses for tapes are 181 through 184. When referring to
tapes, you can also refer to them using their CMS symbolic names TAP1 through TAP4.

When you use AMSERV to create or read a tape, you supply the ddname for the tape device interactively,
after you issue the AMSERV command. To indicate to AMSERV that you are using tape for input or output,
you must use the TAPIN or TAPOUT option to specify the tape device being used:

labeldef tapedd fid filename…
amserv export (tapout 181

In this example, the output from an EXPORT function is to a tape at virtual address 181. CMS prompts you
to enter the ddname:

DMSAMS367R Enter tape output DDNAMEs:

After you enter the ddname (TAPEDD in this example) for the tape file, AMSERV begins execution.

AMSERV in CMS assumes that tape volumes used for input or output have IBM standard tape labels,
for example, VOL1, HDR1, and so forth. The user can override this default by indicating to AMSERV with
Access Method Services control statements to use nonlabel tapes. If standard label tapes are used,
the LABELDEF command is required. The CMS/DOS routine that performs the tape open needs label
information for standard label tapes. See the description of the LABELDEF command in the z/VM: CMS
Commands and Utilities Reference for further information. The filename you specify on the LABELDEF
command should be the same one you use to reply to the access method service message that requested
you to supply the tape's ddnames. However, the LABELDEF command must be issued before the AMSERV
command. If you only want the tape labels skipped, but not checked, enter a LABELDEF with no
parameters other than filename.

Standard label tapes used for input must always contain standard VOL1, HDR1, and EOF1 labels or they
are rejected by CMS AMSERV. Standard label output tapes do not need to contain VOL1 labels because
the user is prompted to enter a volume serial number and have the VOL1 label written if he wants.
However, blank tapes should not be used for output because the open routine tries to read the tape.

Reading Tapes
When you create a tape file using AMSERV under CMS, CMS writes a label file preceding each output file.
When CMS AMSERV reads this file, it checks the HDR1 and VOL1 labels using the LABELDEF command
you provide before it reads the data file. If you want to read the tape on a real OS/VS system, however, you
must use either LABEL=SL or LABEL=(2,NL) as a parameter on the data definition (DD) card for the tape.

If you are creating a tape under OS/VS access method services to be read by CMS AMSERV, you must be
sure to create the tape using standard labels so that CMS can read it properly. CMS cannot read a tape
created with LABEL=(,NL) on the DD card.

For CMS to read this tape for any other purpose (for example, to use the MOVEFILE command to copy it),
you must remember to forward space the file past the tape mark before beginning to read it.

Using AMSERV under CMS
This section provides examples of AMSERV functions executed under CMS. The examples are applicable
to both the CMS (OS) and CMS/DOS environments. You should be familiar with the material presented

Using AMSERV and VSAM

466 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

in either “Defining DOS Input and Output Files” on page 453 or “Defining OS Input and Output Files”
on page 460, depending on whether you are a DOS or an OS user, respectively. For the examples shown
below, command lines and options that are required only for CMS/DOS users are shaded. OS users should
ignore these shaded entries.

A CMS variable format file cannot be used directly as input to AMSERV functions as a variable (V) or
variable blocked (VB) file because the standard variable CMS record does not contain the BL and RL
headers needed by the variable record modules. If these headers are not included in the record, errors
will result.

All files placed on the CMS disk by AMSERV show a RECFM of V, even if the true format is fixed (F), fixed
blocked (FB), undefined (U), variable (V), or variable blocked (VB). You must know the true format of the
file you are trying to use with the AMSERV command and access it properly or errors will result.

A CMS standard variable-format file can be accessed as RECFM=U to use the file as follows:

AMSERV AMREPUV

The file AMREPUV AMSERV contains the following 2 cards:

REPRO INFILE (INPUT ENV(RECFM(U),BLKSZ(800),PDEV(3390)))
 OUTFILE (OUTPUT ENV(RECFM(V),BLKSZ(800),RECSZ(84),PDEV(3390)))

The input file can be any CMS file with LRECL 800 or less. The output file will be a true variable file that
can be used with AMSERV.

The DEFINE and DELETE Functions
When you use the DEFINE and DELETE control statements of AMSERV, you do not need to specify the
DSN parameter on the DLBL command:

assgn syscat c
dlbl ijsysct c (perm extent syscat

If the above commands are executed prior to an AMSERV command to define a master catalog, the
DEFINE will be successful if you have assigned a data set name using the NAME parameter in the AMSERV
file. The same is true when you define clusters or when you use the DELETE function to delete a cluster,
space, or catalog.

When you do not specify a data set name, AMSERV obtains the name from the AMSERV file. In the case of
defining or deleting space, no data set name is needed. The FILE parameter corresponding to the ddname
is all that is necessary, and AMSERV assigns a default data set name to the space.

When you define space on a minidisk using AMSERV, CMS does not check the extents you specify to see
whether they are greater than the number of cylinders available. As long as the starting cylinder is a valid
cylinder number and the extents you specify are on cylinder boundaries, the DEFINE function completes
successfully. However, you receive an error message when you use an AMSERV function that tries to use
this space.

Defining a Suballocated Cluster
To define a cluster for VSAM space that has already been allocated, you need:

1. An AMSERV file containing the control statements necessary for defining the cluster, and
2. The master catalog (and, perhaps, user catalog) volume, which will point to the cluster.

The volume where the cluster is to reside does not have to be online when you define a suballocated
cluster.

For example, the file CLUSTER AMSERV contains the following:

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 467

DEFINE CLUSTER (NAME (BOOK.LIST) -
 VOLUMES (123456) -
 TRACKS (40) -
 KEYS (14,0) RECORDSIZE (120,132)) -
 DATA (NAME (BOOK.LIST.DATA)) -
 INDEX (NAME (BOOK.LIST.INDEX))

To execute this file, you would need to enter the following command sequence (assuming that the master
catalog, on volume 123456, is in your virtual machine at address 310):

access 310 b
assgn syscat b
dlbl ijsysct b (perm syscat
amserv cluster

Defining a Unique Cluster
For a unique cluster (one defined with the UNIQUE attribute), you must define the space for the cluster
at the same time you define its name and attributes. Therefore, the volume or volumes where the cluster
is to reside must be mounted and accessed when you execute the AMSERV command. You can supply
extent information for the cluster's data and index portions separately.

Suppose UNIQUE AMSERV contains the following (the ellipses indicate that the AMSERV file is not
complete):

DEFINE CLUSTER -
 (NAME (PAYROLL)) -
 DATA (FILE (UDATA) -
 UNIQUE -
 VOLUMES (567890) -
 CYLINDERS (40) -
 …) -
 INDEX (FILE (UINDEX)) -
 UNIQUE -
 VOLUMES (567890) -
 CYLINDERS (10) -
 …)

To execute UNIQUE AMSERV, issue the following command sequence:

access 350 c
assgn sys004 c
dlbl udata c (extent sys004
DMSDLB331R Enter extent specifications:
800 800 c sys004
dlbl uindex c (extent sys004
600 200 c sys004
amserv unique

Deleting Clusters, Spaces, and Catalogs
When you use AMSERV to delete a VSAM cluster, the volume containing the cluster does not have to be
accessed unless the volume also contains the catalog where the cluster is defined. In the case of data
spaces and user catalogs or the master catalog, the volume(s) must be mounted and accessed to delete
the space.

When you delete a cluster or a catalog, you do not need to use the DLBL command, except to define the
master catalog; AMSERV can obtain the necessary file information from the AMSERV file.

When you are using temporary disks with AMSERV, you should be particularly careful that you have not
cataloged a temporary data space or cluster in a permanent catalog. You will not be able to delete the
space or cluster from the catalog.

Using Data Compression Services
Both CMS and GCS support the VSE/VSAM for VM Version 6 Release 1 Data Compression Services, which
allows automatic compression and expansion of data records on clusters DEFINEd as COMPRESS. ESDS,

Using AMSERV and VSAM

468 z/VM: 7.4 CMS Application Development Guide for Assembler

KSDS, and VRDS clusters can then be defined as COMPRESS and related to the compression control data
set in the catalog where the cluster is defined. RRDS and SAM-ESDS cluster types cannot be defined as
COMPRESS. Note that clusters defined as COMPRESS type cannot be opened in control interval mode.
Compressed data is under the control of the VSE/VSAM program.

Creating a Compressed CLUSTER
Two things must be done to create a new data set in compressed format:

1. A 'VSAM.COMPRESS.CONTROL' KSDS compression control data set must be defined in each catalog
where compressed data will reside.

2. The new data set CLUSTER must be defined as COMPRESS format.

When you use AMSERV to create a VSAM cluster, the COMPRESS parameter of the DEFINE function
will allow record data to be compressed when it is written and will expand data when it is read. This
parameter automatically lets VSAM know if the data is to be converted by VSAM when it is read or written;
no application program changes are necessary.

Application Migration Considerations
An existing application can take advantage of these VSAM Data Compression Services without the
need for program changes. The compression controls are in the VSAM product and are not tied to the
application code. Two things must be done to migrate existing data sets to compressed format:

1. A 'VSAM.COMPRESS.CONTROL' KSDS compression control data set must be defined in each catalog
where compressed data will reside.

2. The existing data set CLUSTER must be redefined as COMPRESS format.

Use the following examples to assist you in migrating to a compressed format.

Compression control data set example

 DEFINE CLUSTER (NAME(VSAM.COMPRESS.CONTROL)
 RECORDS(200 100)
 SHAREOPTIONS(4 4)
 RECSZ(80 500)
 VOL(123456)
 NOREUSE
 NOIMBED
 INDEXED
 FREESPACE(15 5)
 KEYS(44 0)
 TO(99366))
 DATA (NAME(VSAM.COMPRESS.CONTROL.@D@)
 CNVSZ(512))
 INDEX (NAME(VSAM.COMPRESS.CONTROL.@I@))
 CATALOG(MASTCAT)

KSDS with the COMPRESS parameter example

 DEFINE CLUSTER (NAME(KSDS1)
 TRK(5 5)
 FILE(KSDS01)
 VOL(123456)
 KEYS(2 0)
 CNVSZ(512)
 COMPRESS
 RECSZ(80 80))
 DATA (NAME(KSDS1.DATA))
 INDEX (NAME(KSDS1.INDEX))
 CATALOG(MASTCAT)

Existing data sets can be unloaded temporarily so that the cluster can be redefined as compressed.
The cluster can then be reloaded to create the compressed database which is immediately usable by
application programs.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 469

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM Version 6 Release 1
Commands and VSE/VSAM Version 6 Release 1 User's Guide and Application Programming.

The REPRO, IMPORT, and EXPORT Functions
You can manipulate VSAM files in CMS with the REPRO, IMPORT, and EXPORT functions of AMSERV. You
can create VSAM files from sequential tape or disk files (on OS, DOS, or CMS disks) using the REPRO
function. Using REPRO, you can also copy VSAM files into CMS disk files or onto tapes. For the IMPORT/
EXPORT process, you have the option (for smaller files) of exporting VSAM files to CMS disks or to tapes.

You cannot, however, use the EXPORT function to write files onto OS or DOS disks. Nor can you use the
REPRO function to copy ISAM (indexed sequential) files into VSAM data sets, because CMS cannot read
ISAM files.

When creating a VSAM file from a non-VSAM disk file, the device track size must be the maximum
BLOCKSIZE in the INFILE statement. AMSERV expects a DOS or OS file as input and will not open a disk
file when the BLOCKSIZE specified is greater than the track capacity of the disk device being used.

You cannot use the ERASE or PURGE options of the EXPORT command if you are exporting a VSAM
file from a read-only disk. The export operation succeeds, but the listing indicates an error code 184,
meaning that the erase function could not be performed.

You should not use an EXPORT DISCONNECT function from a CMS minidisk and try to perform an IMPORT
CONNECT function for that data set onto an OS system. OS incorrectly rebuilds the data set control block
(DSCB) that indicates how much space is available.

Copying a CMS Sequential File into a VSAM File
The AMSERV file below gives an example of using the REPRO function to copy a CMS sequential file into
a VSAM file. The CMS input file must be sorted in alphanumeric sequence before it can be copied into the
VSAM file, which is a keyed sequential data set (KSDS). The VSAM cluster, NAME.LIST, is defined in an
AMSERV file named PAYROLL:

DEFINE CLUSTER (NAME (NAME.LIST) -
 VOLUMES (CMSDEV) -
 TRACKS (20) -
 KEYS (14,0) -
 RECORDSIZE (120,132)) -
 DATA (NAME (NAME.LIST.DATA)) -
 INDEX (NAME (NAME.LIST.INDEX))

To sort the CMS file, create the cluster, and copy the CMS file into it, use the following commands:

sort name list a name sort a
DMSSRT604R Enter sort fields:
1 14
access 135 c
assgn syscat c
dlbl ijsysct c (perm syscat
amserv payroll
assgn sys006 a
dlbl sort a cms name sort (sys006
assgn sys007 c
dlbl name c dsn name list (sys007 vsam
amserv repro

The file REPRO AMSERV contains:

REPRO INFILE (SORT -
 ENV (RECORDFORMAT (F) -
 BLOCKSIZE (80) -
 PDEV (3390))) -
 OUTFILE (NAME)

Using AMSERV and VSAM

470 z/VM: 7.4 CMS Application Development Guide for Assembler

EXPORTing a VSAM File to a Tape
When you use the REPRO, IMPORT, or EXPORT functions with tape files, you must remember to use the
TAPIN and TAPOUT options of the AMSERV command. These options perform two functions:

• They allow you to specify the device address of the tape.
• They notify AMSERV to prompt you to enter a ddname.

In the example below, a VSAM file is being exported to a tape. The file, TEXPORT AMSERV, contains:

EXPORT NAME.LIST -
 INFILE (NAME) -
 OUTFILE (TAPE ENV (PDEV (2400)))

To execute this AMSERV, you enter the commands as follows:

assgn sys006 c
dlbl name c (sys006 vsam
amserv texport (tapout 181
DMSAMS367R Enter tape output DDNAMEs:
tape

Writing Execs for AMSERV and VSAM
You may find it convenient to use exec procedures for most of your AMSERV functions, as well as setting
up input and output files for program execution, and executing your VSAM programs. If, for example, a
particular AMSERV function requires several disks and a number of DLBL statements, you can place all of
the required commands in an exec file.

Suppose you have the following file called SETUP EXEC:

/* */
ACCESS 135 B
ACCESS 136 C
ACCESS 137 D
ACCESS 300 G
ASSGN SYSCAT G
DLBL IJSYSCT G '('PERM SYSCAT
ASSGN SYS001 B
DLBL FILE1 B DSN FIRST FILE '('VSAM SYS001
ASSGN SYS002 C
DLBL FILE2 C DSN SECOND FILE '('VSAM SYS002
ASSGN SYS003 D
DLBL FILE3 D DSN THIRD FILE '('VSAM SYS003
AMSERV MULTFILE

To invoke this sequence of commands, enter the name of the exec:

setup

If you place the following statement at the beginning of the exec file:

signal on error

and then place the following statements at the end of the exec:

Error:
Say 'Unexpected return code' rc 'from command'
Say sourceline(sigl) 'at line' sigl'.'
Exit rc

you can be sure that the AMSERV command does not execute unless all of the prior commands completed
successfully.

For those AMSERV functions that issue response messages, you can use the REXX PUSH or QUEUE
instructions. For example:

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 471

/* An exec to invoke AMSERV */
signal on error
access 305 d
assgn sys007 d
dlbl output d '('vsam sys007
labeldef tape fid file1
signal off error
push tape
amserv timport '('tapin 181
if rc ¬= 0
 then type timport listing
tape rew
exit 0

Error: Say 'Unexpected return code' rc 'from command' Say
sourceline(sigl) 'at line' sigl'.' Exit rc

When the AMSERV command in the exec is executed, the request for the tape ddname is satisfied
immediately by the response stacked with the PUSH statement.

If you are executing a command that accepts multiple response lines, you have to stack a null line as
follows:

 queue c sys002',' d sys003
 queue
 dlbl multfile b '('mult sys001

Successive iterations of programs that call the OS environment with VSAM result in an abend and error
message DMSIPT141T. To avoid this problem, the user should include an EXECOS at the beginning of
the exec to clear and reset the OS and VSAM environment without having to return to the interactive
environment.

VSE/VSAM Functions Not Supported in CMS
Refer to the publication Using VSE/VSAM Commands and Macros for a description of Access Method
Services functions available under VSE, and, therefore, under CMS. This knowledge of Access Method
Services is assumed throughout this publication.

All of VSE/VSAM is supported by CMS, except for the following:

• Non-VSAM data sets with data formats that are not supported by CMS/DOS (for example, BDAM and
ISAM files are not supported).

• The SHAREOPTIONS operand is not supported for cross system or cross partition sharing in CMS/DOS
(that is, DASD sharing is not supported).

• The EXCEPTIONEXIT operand of DEFINE CLUSTER or DEFINE ALTERNATE INDEX is not supported
under CMS (both CMS/DOS and OS users).

• Space Management for SAM Feature
• Backup/Restore Feature.

If an AMSERV input file to VSE/VSAM Access Method Services contains the control statement DELETE with
IGNORERROR, the PRINT option on the AMSERV command must be used to send the output to the virtual
printer.

Execution of VSAM macros from a nucleus extension is not supported by CMS.

Access Method Services Not Supported in CMS
In CMS, an OS user is a user that has not issued the command:

SET DOS ON (VSAM)

OS users can use all of the Access Method Services functions that are supported by VSE/VSAM, with the
following exceptions:

Using AMSERV and VSAM

472 z/VM: 7.4 CMS Application Development Guide for Assembler

• Non-VSAM data sets with data formats that are not supported by CMS/DOS (for example, BDAM and
ISAM files are not supported).

• The SHAREOPTIONS operand is not supported for cross system or cross partition sharing in CMS/DOS
(that is, DASD sharing is not supported).

• The EXCEPTIONEXIT operand of DEFINE CLUSTER or DEFINE ALTERNATE INDEX is not supported
under CMS (both CMS/DOS and OS users).

• Do not use the AUTHORIZATION (entrypoint) operand in the DEFINE and ALTER commands unless your
own authorization routine exists on the DOS core image library, the private core image library, or in a
CMS DOSLIB file. In addition, results are unpredictable if your authorization routine issues an OS SVC
instruction.

• The OS Access Method Services GRAPHICS TABLE options and the TEST option of the PARM command
are not supported.

• The file name in the FILE (filename) operands is limited to seven characters. If an eighth character is
specified, it is ignored.

• The OS access method services CNVTCAT and CHKLIST commands are not supported in VSE/VSAM
access method services. In addition, all OS access method services commands that support the 3850
Mass Storage System are not supported in DOS/VS access method services.

• Table 55 on page 473 is a list of OS operands, by control statement, that are not supported by the CMS
interface to VSE/VSAM Access Method Services.

If any of the unsupported operands or commands in Table 55 on page 473 are specified, the AMSERV
command terminates and displays an appropriate error message.

Table 55. OS Access Method Service Operands NOT Supported in CMS

OS ACCESS METHOD
SERVICES CONTROL
STATEMENT

 OPERANDS NOT SUPPORTED IN CMS

ALTER EMPTY/NOEMPTY SCRATCH/NOSCRATCH DESTAGEWAIT/NODESTAGEWAIT
STAGE/BIND/CYLINDERFAULT

DEFINE ALIAS EMPTY/NOEMPTY GENERATIONDATAGROUP PAGESPACE SCRATCH/
NOSCRATCH DESTAGEWAIT/NODESTAGEWAIT STAGE/BIND/CYLINDERFAULT
TO/FOR/OWNER20

DELETE ALIAS GENERATIONDATAGROUP PAGESPACE

EXPORT OUTDATASET

IMPORT INDATASET OUTDATASET IMPORTA

LISTCAT ALIAS GENERATIONDATAGROUP LEVEL OUTFILE21 PAGESPACE

PRINT INDATASET OUTFILE21

REPRO INDATASET OUTDATASET

When you use the PRINT, EXPORT, IMPORT, IMPORTRA, EXPORTRA, and REPRO control statements
for sequential access method (SAM) data sets, you must specify the ENVIRONMENT operand with the
required DOS options (that is, PRIME DATA DEVICE, BLOCKSIZE, RECORDSIZE, or RECORDFORMAT). You
must have previously issued a DLBL for the SAM file.

20 The TO/FOR/OWNER operands are supported for the access method services interface, but are not
supported for the DEFINE NONVSAM control statement.

21 The OUTFILE operand is supported by the access method services interface, but is not supported for the
LISTCAT and PRINT control statements.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 473

AMSERV can write SAM data sets only to a CMS disk or directory, but can read them from DOS, OS, or CMS
disks or directories.

ISAM Interface Program (IIP)
CMS does not support the VSAM ISAM Interface Program (IIP). Thus, any program that creates and
accesses ISAM (indexed sequential access method) data sets cannot be used to access VSAM key
sequential data sets. There is one exception to this restriction. You can execute VSAM I/O requests if:

1. Your OS PL/I programs have files declared as ENV(INDEXED)
2. The library routines detect that the data set being accessed is a VSAM data set.

VSE/VSAM Macros Supported
The programming interfaces defined by the VSE operating system and simulated by CMS are documented
below. For definitive information about these interfaces, see the VSE/VSAM documentation.

The VSE/VSAM macros and their options are supported for use in assembler language programs under
CMS/DOS. The VSE/VSAM macros are:

ACB
BLDVRP
DLVRP
ENDREQ
ERASE
EXLST
GENCB
MODCB
POINT
RPL
SHOWCAT
SHOWCB
TCLOSE
TESTCB
WRTBFR

The VSE/VSAM macros are distributed with the VSE/VSAM product.

All options are supported with the exception of “AM=VSAM”. This option is not supported on any of the
macros.

The EXLST EXCPAD exit may be specified, but it is never taken in the CMS environment. The reason is that
VSE/VSAM takes this exit when it is waiting for I/O to complete, but in the CMS environment, I/O is always
complete when control is returned to VSE/VSAM.

In addition to the above list of macros, the following list of VSE macros normally used with the VSAM
macros are also supported. The following macros are distributed with CMS for use with VSAM only.

Table 56. VSE Macros Normally Used with VSAM Macros

VSE macro Supported Extent of Support

CDLOAD Only supported to the extent required for VSAM execution.

CLOSE Supported for both VSAM and SAM.

CLOSER Supported for both VSAM and SAM.

GET Supported for both VSAM and SAM.

OPEN Supported for both VSAM and SAM.

Using AMSERV and VSAM

474 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 56. VSE Macros Normally Used with VSAM Macros (continued)

VSE macro Supported Extent of Support

OPENR Supported for both VSAM and SAM.

PUT Supported for both VSAM and SAM.

VSE Supervisor Macros and Logical Transients Support
VSE supervisor macros required by VSE/VSAM are supported by CMS. See Table 46 on page 418 for a
complete list of supervisor macros supported.

CMS distributes the VSE transients that are needed in the VSAM support. Thus, OS users do not need to
have the VSE system pack online when they are compiling and executing VSAM programs.

CMS uses all of the VSE B-transients except those that build and release extent blocks. The extent block
is not supported in CMS and, thus, neither are the B-transients that control extent blocks.

The CMSDOS shared segment contains the B-transients that are simulated for VSE support in CMS.
The B-transients pertaining only to VSAM are included in the VSAM saved segment. Other VSE routines
required by VSE/VSAM are contained in the CMSBAM shared segment. This includes the common VTOC
handler routines, SAM data management, and the VSAM look-aside function.

OS/VSAM Macros Supported in CMS
A subset of the OS/VSAM macros is supported for use in CMS. The macros are at an MVS DFP 2.3.0 level
and are contained in the OSVSAM MACLIB shipped with z/VM.

The macros provide compatibility with the MVS/XA 2.3.0 24-bit or 31-bit addressing Application
Programming Interface (API), but have no effect on execution. The macros are:

ACB
CHECK
CLOSE
ENDREQ
ERASE
EXLST
GENCB
GET
MODCB
OPEN
POINT
PUT
RPL
SHOWCB
TESTCB

VSAM Macro Options Not Supported in CMS
Some options of the OS/VSAM macros do not work in CMS because OS/VSAM macro requests are
executed using VSE/VSAM code. Table 57 on page 475 lists the OS/VSAM macros with unsupported
options.

Table 57. Unsupported Options of OS/VSAM Macros

OS/VSAM Macro Unsupported Options

ACB MACRF=CFX, NFX, ICI, NCI, LSR, GSR, DFR, NIS, SIS

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 475

Table 57. Unsupported Options of OS/VSAM Macros (continued)

OS/VSAM Macro Unsupported Options

SHRPOOL

EXLST UPAD

GENCB BLK=ACB MACRF=CFX, NFX, ICI, NCI, LSR, GSR, DFR, NIS, SIS

SHRPOOL

GENCB BLK=EXLST UPAD

GENCB BLK=RPL TRANSID

MODCB ACB MACRF=CFX, NFX, ICI, NCI, LSR, GSR, DFR, NIS, SIS

SHRPOOL

MODCB EXLST UPAD

MODCB RPL TRANSID

RPL TRANSID

SHOWCB ACB BFRFND

BUFRDS

ENDRBA

HALCRBA

LEVEL

LOKEY

NUIW

RELEASE

SHRPOOL

UIW

SHOWCB RPL TRANSID

TESTCB ACB BUFRDS

ENDRBA

MACRF=CFX, NFX, ICI, NCI, LSR, GSR, DFR, NIS, SIS

SHRPOOL

TESTCB RPL TRANSID

With the following restrictions, OS format control blocks (ACB, RPL, EXLST) may reside above the 16MB
line:

• The addresses contained in the ARG, ECB and MSGAREA fields of RPLs and PASSWD and MAREA fields
of ACBs must be less than 16MB.

• The parameter lists for SHOWCB (ACB) and TESTCB (ACB) must be below the 16MB line.

OS/VSAM Error Codes
Error codes returned by VSE/VSAM in response to OPEN, CLOSE, and Data Management Request macro
errors are mapped to the appropriate OS/VSAM error codes.

Using AMSERV and VSAM

476 z/VM: 7.4 CMS Application Development Guide for Assembler

• Table 58 on page 477 lists the error codes returned by VSE/VSAM in response to OPEN errors.
• Table 59 on page 479 lists the error codes returned by VSE/VSAM in response to CLOSE errors.
• Table 60 on page 480 lists the error codes returned by VSE/VSAM in response to Data Management

Request macro errors.

If a VSE/VSAM error code cannot be mapped to any OS/VSAM error code, a CMS error message and an
ABEND 35 are issued except for the cases indicated by an “*”.

The following table lists the VSE/VSAM to OS/VSAM error code mapping for OPEN errors:

Table 58. VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors

VSE/VSAM Error Code CMS Error Message or
OS/VSAM Error Code

VSE/VSAM Return Code OS/VSAM Return Code

2 DMSVIP779E 8 N/A

4 4 8 8

14 DMSVIP782E 8 N/A

15 DMSVIP782E 8 N/A

17 DMSVIP782E 8 N/A

18 DMSVIP782E 8 N/A

19 DMSVIP782E 8 N/A

32 DMSVIP782E 8 N/A

34 DMSVIP782E* 8 8

40 DMSVIP778E 8 N/A

48 168 8 8

50 DMSVIP782E 8 N/A

64 188 8 8

65 188 8 8

66 DMSVIP782E 8 N/A

67 DMSVIP782E 8 N/A

68 168 8 8

69 DMSVIP782E 8 N/A

70 DMSVIP782E 8 N/A

71 DMSVIP782E 8 N/A

72 148 8 8

78 DMSVIP782E 8 N/A

79 DMSVIP782E 8 N/A

80 DMSVIP778E 8 N/A

92 DMSVIP779E 8 N/A

96 96 4 4

100 100 4 4

104 104 4 4

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 477

Table 58. VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors (continued)

VSE/VSAM Error Code CMS Error Message or
OS/VSAM Error Code

VSE/VSAM Return Code OS/VSAM Return Code

108 108 4 4

110 160 8 8

113 144 0 4

114 DMSVIP781E 0 N/A

115 DMSVIP781E 8 N/A

116 116 4 4

117 DMSVIP782E 8 N/A

118 0 0 0

128 128 8 8

132 132 8 8

136 136 8 8

144 144 8 8

148 148 8 8

152 152 8 8

160 160 8 8

161 160 8 8

162 96 4 4

163 132 8 8

165 DMSVIP782E 8 N/A

166 DMSVIP782E 8 N/A

167 DMSVIP782E 8 N/A

168 168 8 8

169 DMSVIP779E (This VSE/
VSAM error code cannot
be received when running
OS/VSAM because CMS
does not support LSR.)

8 N/A

180 180 8 8

188 DMSVIP782E 8 N/A

192 192 8 8

194 194 8 8

195 160 8 8

196 196 8 8

212 212 8 8

216 216 8 8

Using AMSERV and VSAM

478 z/VM: 7.4 CMS Application Development Guide for Assembler

Table 58. VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors (continued)

VSE/VSAM Error Code CMS Error Message or
OS/VSAM Error Code

VSE/VSAM Return Code OS/VSAM Return Code

220 220 8 8

228 228 8 8

232 232 8 8

246 246 8 8

247 247 8 8

248 DMSVIP782E 8 N/A

254 DMSVIP782E 8 N/A

255 144 8 8

The following table lists the VSE/VSAM to OS/VSAM error code mapping for CLOSE errors:

Table 59. VSE/VSAM to OS/VSAM Error and Return Code Mapping for CLOSE Errors

VSE/VSAM Error Code CMS Error Message or
OS/VSAM Error Code

VSE/VSAM Return Code OS/VSAM Return Code

2 DMSVIP783E nonzero N/A

4 4 nonzero 4

76 DMSVIP784 nonzero N/A

136 136 nonzero 4

144 144 nonzero 4

165 DMSVIP784 nonzero N/A

166 DMSVIP784 nonzero N/A

167 DMSVIP784 nonzero N/A

184 184 nonzero 4

188 0 nonzero 4

228 DMSVIP783 nonzero N/A

246 246 nonzero N/A

247 247 nonzero N/A

252 DMSVIP784 nonzero N/A

254 DMSVIP784 nonzero N/A

255 148 nonzero 4

For Data Management Request errors, all VSE/VSAM error codes are returned to the OS/VSAM user
because the VSE/VSAM and OS/VSAM error codes are equivalent, with the following exceptions:

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 479

Table 60. DATA Management Request Error Return Code Mapping

VSE/VSAM Error Code CMS Error Message or
OS/VSAM Error Code

VSE/VSAM Return Code OS/VSAM Return Code

32 DMSVIP785E 0 N/A

48 40 8 8

52 Abend 34* 8 N/A

56 Abend 38* 8 N/A

128 DMSVIP786E 8 N/A

208 DMSVIP786E 8 N/A

212 DMSVIP786E 8 N/A

216 DMSVIP785E 8 N/A

224 48 8 8

229 229 8 8

245 245 8 8

246 246 8 8

Hardware Devices Supported
CMS support of VSAM data sets is based on VSE/VSAM. Therefore, only those disks supported by VSE/
VSAM can be used for VSAM data sets in CMS.

These disks are:

• IBM 3390 Direct Access Storage
• IBM 9345 Direct Access Storage

CMS disk files used as input to or output from Access Method Services may reside on any disk supported
by CMS.

Interface to an Alternate VSAM Emulator
CMS provides the support necessary to define and access an alternate VSAM emulator. Instead of using
the VSE/VSAM support provided by CMS, you can write your own emulator or use some other VSAM
emulator.

Note: Programs that intend to use an alternate VSAM emulator must be OS/VSAM programs.

To define an alternate VSAM emulator use the FILEDEF command. For example, if you have an emulator
named FAST, you could use the following FILEDEF command:

FILEDEF VSAM SUBSYS FAST

The emulator (in this case, FAST) must already exist as a nucleus extension, be available as a module,
or a be member of a loadlib. For more information on the SUBSYS option of FILEDEF, see z/VM: CMS
Commands and Utilities Reference.

For the OPEN, CLOSE, and TCLOSE macros, the interface branches and returns by BALR to the origin of the
alternate VSAM emulator module. On the call entry, the register contents are as follows:
R1

Standard subcommand PLIST address

Using AMSERV and VSAM

480 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4

R2
Address emulator nucleus extension SCBLOCK

R12
Entry point address

R13
24-word save area address

R14
Return address

R15
Entry point address

The parameter list pointed to by R1 may have one of two formats.

For OPEN requests:

Name of the Alternate VSAM Emulator

‘OPEN ‘

Pointer to ACB Reserved

Emulator file name

Emulator file type

SYSPARM string length Pointer to SYSPARM string

X’FFFFFFFF’

0

8

16

24

32

40

48

0 1 2 3 4 5 6 7

For CLOSE or TCLOSE requests:

Name of the Alternate VSAM Emulator

‘CLOSE ‘ or ‘TCLOSE ‘

Pointer to ACB Reserved

0

8

16

0 1 2 3 4 5 6 7

The emulator's OPEN processing initializes the appropriate fields within the ACB according to the file
processing macros (for example, GET, PUT, POINT, and so on).

The connection to the emulator is established as a result of issuing the FILEDEF command. The
connection is an address pointer, at displacement 256 (X'100') within the OS/CVT simulated by CMS,
to the origin of the emulator module. The address pointer is used by the control block manipulation
macros (GENCB, MODCB, TESTCB, and so on) to establish the base address of the branch vector defined
by OS/VSAM interface. The macros then branch directly to the appropriate branch table entry for the
function being executed.

Using AMSERV and VSAM

Chapter 25. Using Access Method Services and VSAM 481

Using AMSERV and VSAM

482 z/VM: 7.4 CMS Application Development Guide for Assembler

Appendix A. Sample Terminal Session for OS
Programmers

“OSTEST ASSEMBLE” on page 483 shows an example assembler language program. “Commands to
Execute OSTEST ASSEMBLE” on page 484 shows how you would assemble and execute it.

OSTEST ASSEMBLE
DATAPROC CSECT
 PRINT NOGEN
 SPACE
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R10 EQU 10
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 SPACE
 STM R14,R12,12(R13) save caller's regs
 BALR R12,0 establish
 USING *,R12 addressability
 ST R13,SAVEAREA+4 store addr of caller's savearea
 LA R15,SAVEAREA get the address of my savearea
 ST R15,8(R13) store addr in caller's savearea
 LR R13,R15 save addr of my savearea
 SPACE
*open files and check that they opened okay
 SPACE
 LA R3,0 initially set return code
 OPEN (INDATA,,OUTDATA,(OUTPUT)) open files
 USING IHADCB,R10 get dsect to check files
 LA R10,INDATA prepare to check output file
 TM DCBOFLGS,X'10' everything ok?
 BNZ CHECKOUT …continue
 LA R3,100 set return code
 B EXIT …exit
CHECKOUT LA R10,OUTDATA check output file
 TM DCBOFLGS,X'10' is it okay?
 BNZ PROCESS …
 LA R3,200 set return code
 B EXIT
 SPACE
PROCESS EQU *
 GET INDATA read a record from input file
 LR R2,R1 save address of record
 PUT OUTDATA,(2) move it to output
 B PROCESS continue until end-of-file
 SPACE

EXIT EQU *
 CLOSE (INDATA,,OUTDATA) close files
 L R13,SAVEAREA+4 addr of caller's save area
 LR R15,R3 load return code
 L R14,12(R13) get return address
 LM R0,R12,20(R13) restore regs
 BR R14 bye…
 SPACE
SAVEAREA DC 18F'0'
INDATA DCB DDNAME=INDD,MACRF=GL,DSORG=PS, *
 RECFM=F,LRECL=80,EODAD=EXIT
OUTDATA DCB DDNAME=OUTDD,MACRF=PM,DSORG=PS
 DCBD
 SPACE
 END

“Commands to Execute OSTEST ASSEMBLE” on page 484 shows the sequence of commands that can be
issued in order to assemble and execute the program in “OSTEST ASSEMBLE” on page 483.

Sample Terminal Session for OS Programmers

© Copyright IBM Corp. 1990, 2024 483

Commands to Execute OSTEST ASSEMBLE
1 global maclib osmacro
 Ready;

2 assemble ostest
 ASSEMBLER DONE
 NO STATEMENTS FLAGGED IN THIS ASSEMBLY
 Ready;

3 filedef indd disk test data a
 Ready;

4 filedef outdd punch
 Ready;

5 cp spool punch to *
 Ready;

6 load ostest
 Ready;
 start
 DMSLIO740I Execution begins…

7 DMSSOP036E Open error code 04 on OUTDD.
 Ready(00200);
8 filedef
 INDD DISK TEST DATA A1
 OUTDD PUNCH
 Ready;

9 filedef outdd punch (lrecl 80 recfm f
 Ready;

10 cp query reader all
 NO RDR FILES
 Ready;

11 load ostest (start
 DMSLIO740I Execution begins…

12 PUN FILE 6198 TO BILBOCOPY 01 NOHOLD
 Ready;

13 fi indd reader
 Ready;
 fi outdd disk new osfile a4 (recfm fb block 1600 lrecl 80
 Ready;

14 listfile new osfile a4 (label
 DMSLST002E File not found.
 Ready(00028);

15 run ostest
 Execution begins…
 Ready;

6 listfile new osfile a4 (label
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
NEW OSFILE A4 F 1600 5 10 9/30/75 8:26:14 PAT198
Ready;

The following list explains the sequence of commands shown in “Commands to Execute OSTEST
ASSEMBLE” on page 484.
1

Since this assembler program uses OS macros, you must issue the GLOBAL command to identify the
CMS macro library, OSMACRO MACLIB, before you can invoke the assembler.

2
The ASSEMBLE command invokes the assembler to assemble the source file. The assembler
completes without encountering any errors. If your ASSEMBLE file has errors, you should use the
editor to correct them.

Sample Terminal Session for OS Programmers

484 z/VM: 7.4 CMS Application Development Guide for Assembler

3
The FILEDEF command defines the I/O files used in this program. The ddnames INDD and OUTDD,
defined in the DCBs in the program, must have a file definition in CMS. To execute this program, you
should have a file on your A-disk named TEST DATA, which must have fixed-length, 80-character
records. If you have no such file, you can make a copy of your ASSEMBLE file as follows:

copyfile ostest assemble a test data a

4
The output file is defined as a punch file so that it will be written to your virtual card punch.

5
The CP SPOOL command is issued, using the CP function, to spool your virtual punch to your virtual
card reader.

6
The LOAD command loads the TEXT file produced by the assembly into virtual storage. The START
command begins program execution.

7
An open error is encountered during program execution. The CMS ready message indicates a return
code of 200, which is the value placed in it by your program.

8
The FILEDEF command, with no operands, results in a display of the current file definitions in effect.

9
Error code 4 on an open request means that no RECFM or LRECL information is available. An
examination of the program listing would reveal that the DCB for OUTDD does not contain any
information about the file format; you must supply it on the FILEDEF command. Re-enter the FILEDEF
command.

10
You can use the CP QUERY command to determine whether there are any files in your card reader.
It should be empty; if not, determine whether they might be files you need and, if so, read them into
your virtual machine; otherwise, purge them.

11
Use the LOAD command to execute the program again; this time, use the START option of the LOAD
command to begin the program execution.

12
The PUN FILE message indicates that a file has been transferred to your virtual card reader. The ready
message indicates that your program executed successfully.

13
For the next execution of this program, you are going to read the file back out of your card reader and
create a new CMS disk file in OS simulated data set format. FI is an acceptable system truncation for
the command named FILEDEF.

14
The LISTFILE command is issued to check that the file NEW OSFILE does not exist.

15
The RUN command (which is an exec procedure) is used instead of the LOAD and START commands to
load and execute the program. The ready message indicates that the program completed execution.

16
The LISTFILE command is issued again, and the file NEW OSFILE is listed. (If you issue another CP
QUERY READER command, you will also see that the file is no longer in your card reader.)

Sample Terminal Session for OS Programmers

Appendix A. Sample Terminal Session for OS Programmers 485

Sample Terminal Session for OS Programmers

486 z/VM: 7.4 CMS Application Development Guide for Assembler

Appendix B. Sample Terminal Session for DOS
Programmers

Figure 65 on page 487 shows a sample assembler language program.

“Commands to Assemble and Execute DOSTEST ASSEMBLE” on page 487 shows how to assemble and
execute the program.

Note: The assembler, in CMS, cannot read macros from VSE/AF libraries. This sample session shows
how to copy macros from VSE/AF libraries and create CMS MACLIB files. Ordinarily, the macros you need
should already be available in a system MACLIB file. You do not have to create a MACLIB each time you
want to assemble a program.

BEGPGM CSECT
 BALR 12,0
 USING *,12
 LA 13,SAVEAREA
 OPEN INFILE,OUTFILE
LOOP GET INFILE
 PUT OUTFILE
 B LOOP
EODAD EQU *
 CLOSE INFILE,OUTFILE
 EOJ
 EJECT
BUFFER DC CL80' '
SAVEAREA DS 9D
INFILE DTFDI MODNAME=SHRMOD,IOAREA1=BUFFER,DEVADDR=SYSIPT, *
 EOFADDR=EODAD,RECSIZE=80
OUTFILE DTFDI MODNAME=SHRMOD,IOAREA1=BUFFER,DEVADDR=SYSPCH, *
 RECSIZE=81
SHRMOD DIMOD TYPEFLE=OUTPUT
ENDPGM EQU *
 END

Figure 65. DOSTEST ASSEMBLE

Figure 66 on page 487 is an example of an ESERV file. You cannot have data in column 1 in an ESERV file.
PUNCH is an ESERV program control statement that copies and de-edits macros from source statement
libraries; in this case, the system source statement library. The output is directed to the SYSPCH device,
which the CMS/DOS ESERV EXEC assigns by default to your A-disk.

 punch open,close,get,put,dimod,dtfdi

Figure 66. GETMACS ESERV, an ESERV file you need to assemble

“Commands to Assemble and Execute DOSTEST ASSEMBLE” on page 487 shows the sequence of
commands issued to assemble and execute the program in Figure 65 on page 487.

Commands to Assemble and Execute DOSTEST ASSEMBLE
*
1 cp link dosres 130 130 rr linkdos
 DASD 130 LINKED R/O
 Ready;
 access 130 z
 Z (130) R/O - DOS
 Ready;
*
2 set dos on z
 DMSSET1101I 100K DOS partition defined at hexadecimal
 location 020000
 Ready;

Sample Terminal Session for DOS Programmers

© Copyright IBM Corp. 1990, 2024 487

*
3 assgn sysipt a
 Ready;
 eserv getmacs
 Ready;
*
4 listfile getmacs *
 GETMACS ESERV A1
 GETMACS MACRO A1
 GETMACS LISTING A1
 Ready;
*
5 maclib gen dosmac getmacs
 Ready;
 erase getmacs *
 Ready;
*
6 global maclib dosmac
 Ready;
*
7 assemble dostest
 ASSEMBLER DONE
 DOS00110 35 EOJ
 IFO078 UNDEFINED OP CODE
 NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 1
 Ready(00008);

*
8 listio sysipt
 SYSIPT DISK A
 Ready;
 eserv eoj
 Ready;
*
9 maclib add dosmac eoj
 Ready;
 maclib map dosmac (term
 MACRO INDEX SIZE
 OPEN 2 43
 CLOSE 46 43
 GET 90 56
 PUT 147 93
 DIMOD 241 647
 DTFDI 889 284
 EOJ 1174 6
 Ready;
*
10 erase eoj *
 Ready;
 assemble dostest
*
11 ASSEMBLER DONE
 NO STATEMENTS FLAGGED IN THIS ASSEMBLY
 Ready;
*

12 listfile dostest *
 DOSTEST ASSEMBLE A1
 DOSTEST LISTING A1
 DOSTEST TEXT A1
 Ready;
 print dostest listing
 Ready;
*
13 doslked dostest *
 Ready;
*
14 listfile dostest *
 DOSTEST ASSEMBLE A1
 DOSTEST DOSLIB A1
 DOSTEST TEXT A1
 DOSTEST LISTING A1
 DOSTEST MAP A5
 Ready;
*
15 cp spool punch to *
 Ready;
 punch test data a
 PUN FILE 0100 TO BILBO COPY 01 NOHOLD
 Ready;
 cp query reader all
 Ready;

Sample Terminal Session for DOS Programmers

488 z/VM: 7.4 CMS Application Development Guide for Assembler

 ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME
 NAME TYPE DIST
 PATTI 5840 A PUN 000097 01 NONE 09/29 15:00:39
 TEST DATA BIN211
*
16 assgn sysipt reader
 Ready;
 assgn syspch a
 Ready;
*
17 dlbl outfile a cms punch output (syspch
 Ready;
 state punch output a
 DMSSTT002E File not found.
 Ready(00028);
*

18 global doslib dostest
 Ready;
 fetch dostest
 DMSFET710I Phase DOSTEST entry point at location 020000.
 Ready;
*
19 start
 DMSLIO740I Execution begins…
 Ready;
 listfile punch output a (label
 FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
 DATE TIME LABEL
 PUNCH OUTPUT A1 F 80 97 10
 9/29/88 14:50:55 BBB191
 Ready;
 cp query reader all
 Ready;
 NO RDR FILES
*
20 assgn sysipt a
 Ready;
 dlbl infile a cms punch output (sysipt
 Ready;
 assgn syspch punch
 Ready;
*
21 fetch dostest (start
 DMSLIO740I Execution begins…
*
22 PUN FILE 5829 TO BILBO COPY 01 NOHOLD
 Ready;
 read punch2 output
 Ready;
 listfile punch2 output a (label
 FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
 DATE TIME LABEL
 PUNCH2 OUTPUT A1 F 80 97 10
 9/29/88 14:50:59 BBB191
 Ready;

The following list explains the sequence of instructions shown in “Commands to Assemble and Execute
DOSTEST ASSEMBLE” on page 487.
1

Use the CP LINK command to link to the DOS system residence volume and the ACCESS command
to access it. In this example, the system residence is at virtual address 130 and is accessed as the
Z-disk.

2
Enter the CMS/DOS environment specifying the mode letter at which the DOS/VS (VSE/AF) system
residence is accessed.

3
You must assign the logical unit SYSIPT before you invoke the ESERV command. GETMACS is the file
name of the ESERV file containing the ESERV control statements.

4
After the ESERV EXEC completes execution, you have three files. You may want to examine the
LISTING file to check the ESERV program listing. The MACRO file contains the punch (SYSPCH) output.

Sample Terminal Session for DOS Programmers

Appendix B. Sample Terminal Session for DOS Programmers 489

5
The MACLIB command creates a macro library named DOSMAC MACLIB. Since the MACLIB command
completed successfully, you can erase the files GETMACS ESERV, GETMACS LISTING and GETMACS
MACRO; an asterisk in the file type field of the ERASE command indicates that all files with the file
name of GETMACS should be erased.

6
Before you can invoke the assembler, you have to identify the macro library that contains the macros;
use the GLOBAL command specifying DOSMAC MACLIB.

7
The ASSEMBLE command invokes the assembler to assemble the source file. The assembler displays
errors encountered during assembly. The error listed indicates that the macro EOJ is not available
since it was not copied from the source statement library. Create another ESERV file to punch this
macro. The file EOJ ESERV contains one line:

 punch eoj

8
Use the LISTIO command to check that SYSIPT is still assigned to your A-disk so that you do not have
to issue the ASSGN command again. Then issue the ESERV command again, this time specifying the
file name EOJ.

9
Use the ADD function of the MACLIB command to add the macro EOJ to DOSMAC MACLIB. Then
issue the MACLIB command again using the MAP function and the TERM option to display a list of the
macros in the library.

10
Erase the EOJ files. You should always remember to erase files that you do not need any longer.
Reassemble the program.

11
This time the assembler completes without encountering any errors. If your ASSEMBLE file still has
errors, you should use the editor to correct them.

12
Use the LISTFILE command to check for DOSTEST files. The assembler created the files DOSTEST
LISTING and DOSTEST TEXT. The TEXT file contains the object module. You can print the program
listing if you want a printer copy. Then you may want to erase it.

13
Use the DOSLKED command to link-edit the TEXT file into an executable phase and write it into a
DOSLIB. Because this program has no external references, you do not need to add any linkage editor
control statements.

14
Now you have a DOSTEST DOSLIB containing the link-edited phase and a MAP file containing the
linkage editor map. You can display the linkage editor map with the TYPE command or use the PRINT
command if you want a printer copy.

15
To execute this program in CMS/DOS, punch a file that has fixed-length, 80-character records into
your virtual card punch. If you do not have any files that have fixed-length, 80-character records, you
can create a file named TEST DATA with the CMS Editor or by copying your ASSEMBLE source file with
the COPYFILE command as follows:

copyfile dostest assemble a test data a

Use the CP SPOOL command to spool the punch to your own virtual machine, then use the PUNCH
command to punch the file. The PUN FILE message indicates that the file is in your card reader. Use
the CP QUERY command to check that it is the first or only file in your reader.

16
Use the ASSGN command to assign SYSIPT to your card reader and SYSPCH to your A-disk.

Sample Terminal Session for DOS Programmers

490 z/VM: 7.4 CMS Application Development Guide for Assembler

17
When you assign a logical unit to a disk mode, you must issue the DLBL command to identify the
disk file to CMS. For this program execution, you are creating a CMS file named PUNCH OUTPUT. The
STATE command ensures that the file does not already exist. If it does exist, rename it or else use
another file name or file type on the DLBL command.

18
Use the GLOBAL command to identify the DOSLIB, DOSTEST if you want to search for executable
phases; then issue the FETCH command specifying the phase name. The FETCH command loads the
executable phase into storage. When the FETCH command is executed without the START option, a
message is displayed indicating the entry point location of the program loaded.

19
The START command begins program execution. The CMS ready message indicates that your program
completed successfully. You can check the input and output activity by using the LISTFILE command
to list the file PUNCH OUTPUT. If you use the CP QUERY command, you can see that the file is no
longer in your virtual card reader.

20
If you want to execute this program again, you can assign SYSIPT and SYSPCH to different devices;
in this example, the input disk file PUNCH OUTPUT is written to the virtual punch. You do not need to
reissue the GLOBAL DOSLIB command; it remains in effect until you reissue it or IPL CMS again.

21
This time the program execution starts immediately because the START option is specified on the
FETCH command.

22
Again, the PUN FILE message indicates that a file has been received in your virtual card reader. You
can use the CMS command READCARD to read it onto disk and assign it a file name and file type; in
this example, PUNCH2 OUTPUT.

Sample Terminal Session for DOS Programmers

Appendix B. Sample Terminal Session for DOS Programmers 491

Sample Terminal Session for DOS Programmers

492 z/VM: 7.4 CMS Application Development Guide for Assembler

Appendix C. Sample Terminal Session Using Access
Method Services

The sample terminal session in “Using Access Method Services under CMS” on page 493 shows you
how to use access method services under CMS. You should have an understanding of VSAM and access
method services before you use this terminal session.

The terminal session uses several CMS files, which you may create during the terminal session; or, you
may prefer to create all of the files that you need beforehand. Within the sample terminal session, the file
that you should create is displayed prior to the commands that use it.

This terminal session is for both CMS OS VSAM programmers and CMS/DOS VSAM programmers.

Note:

1. This terminal session assumes that you have, to begin with, a read/write CMS A-disk. This is the only
disk required. Additional disks used in this exercise are temporary disks, formatted with the Device
Support Facility program. If you have OS or DOS disks available, you should use them, and remember
to supply the proper volume and virtual device number information, where appropriate. The number of
cylinders available to users for temporary disk space varies among installations; if you cannot acquire
ample disk space, see your system support personnel for assistance.

2. Output listings created by AMSERV take up disk space, so if your A-disk does not have a lot of space on
it, you may want to erase the LISTING files created after each AMSERV step.

3. If any of the AMSERV commands that you execute during this sample terminal session issue a nonzero
return code; for example:

 Ready(00012);

You should edit the LISTING file to examine the access method services error messages. The
publicationVSE/ESA Messages and Codes contains the return codes and reason codes issued by access
method services. You should determine the cause of the error, examine the DLBL commands and
AMSERV files you used, correct any errors, and retry the command.

Using Access Method Services under CMS
1 cp define t3390 200 10
 Ready;
 DASD 200 DEFINED
 cp query virtual 200
 Ready;
 DASD 200 3390 (TEMP) R/W 10 CYL
*
 cp define t3390 300 10
 Ready;
 DASD 300 DEFINED
 cp query virtual 300
 Ready;
 DASD 300 3390 (TEMP) R/W 10 CYL
*
 cp define t3390 400 10
 Ready;
 DASD 400 DEFINED
 cp query virtual 400
 Ready;
 DASD 400 3390 (TEMP) R/W 10 CYL
*
2 type PUNCH DSF
 INIT UNIT(200) DEVTYP(3390) NVFY VOLID(222222)
 DVTOC(0,1,1) - MIMIC(MINI(10))
 INIT UNIT(300) DEVTYP(3390) NVFY VOLID(333333)
 DVTOC(0,1,1) - MIMIC(MINI(10))
 INIT UNIT(400) DEVTYP(3390) NVFY VOLID(444444)
 DVTOC(0,1,1) - MIMIC(MINI(10))
*

Sample Terminal Session Using Access Method Services

© Copyright IBM Corp. 1990, 2024 493

3 type DSF EXEC
 /* to Invoke Device Support Facility */
 arg cntrl .
 address command
 'CP CLOSE READER'
 'CP PURGE READER CLASS I'
 'CP SPOOL PUNCH CONT TO * CLASS I'
 'PUNCH IPL DSF S (NOH'
 'PUNCH' cntrl 'DSF (NOH'
 'CP SPOOL PUNCH NOCONT CLOSE'
 'CP SPOOL READER CLASS I NOHOLD'
 'CP IPL 00C CLEAR ATTN'
*

4 exec dsf punch
*
 NO FILES PURGED
 PUN FILE nnnn TO CAMPBEL COPY 001 NOHOLD
*
5 ICK005E DEFINE INPUT DEVICE, REPLY 'DDDD,VDEV' or
 'CONSOLE' ENTER INPUT/COMMAND:
*
6 2540,00c
 2540,00C
 ICK006E DEFINE OUTPUT DEVICE, REPLY 'DDDD,VDEV' or
 'CONSOLE' ENTER INPUT/COMMAND:
*
7 console
 CONSOLE
 ICKDSF - SA DEVICE SUPPORT FACILITIES 5.0 TIME20:26:00
 03/09/82 PAGE 1
 INIT UNIT(200) DEVTYP(3390) NVFY VOLID(222222)
 DVTOC(0,1,1) - MIMIC(MINI(10))
 ICK00700I 200 BEING PROCESSED AS LOGICAL DEVICE = 3390
 PHYSICAL DEVICE = 3390-11
 ICK003D REPLY U TO ALTER VOLUME 200 CONTENTS, ELSE T
 ENTER INPUT/COMMAND:
*

8 u
 U
 ICK01314I VTOC IS LOCATED AT CCHH=X'0000 0001'
 AND IS 1 TRACKS.
 ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
*
 INIT UNIT(300) DEVTYP(3390) NVFY VOLID(333333)
 DVTOC(0,1,1) - MIMIC(MINI(10))
 ICK007001 300 BEING PROCESSED AS LOGOCAL DEVICE = 3390
 PHYSICAL DEVICE = 3390-11
 ICK003D REPLY U TO ALTER VOLUME 300 CONTENTS, ELSE T
 ENTER INPUT/COMMAND:
 u
 U
 ICK01314I VTOC IS LOCATED AT CCHH=X'0000 0001' AND IS
 1 TRACKS.
 ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION
 CODE WAS 0
*
 INIT UNIT(400) DEVTYP(3390) NVFY VOLID(444444)
 DVTOC(0,1,1) - MIMIC(MINI(10))
 ICK00700I 400 BEING PROCESSED AS LOGICAL DEVICE = 3390
 PHYSICAL DEVICE = 3390-11
 ICK003D REPLY U TO ALTER VOLUME 400 CONTENTS, ELSE T
 ENTER INPUT/COMMAND:
 u
 U
 ICK01314I VTOC IS LOCATED AT CCHH=X'0000 0001' AND IS
 1 TRACKS.
 ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION
 CODE WAS 0
*
 ICKDSF MAXIMUM STORAGE USED = 278968 BYTES
 (FIXED = 258120,
 DYNAMIC = 020848)
 ICK00002I ICKDSF PROCESSING COMPLETE. MAXIMUM CONDITION
 CODE WAS 0
*

9 cp ipl cms parm autocr
 Ready;
 CMS z/VM
 Ready;

Sample Terminal Session Using Access Method Services

494 z/VM: 7.4 CMS Application Development Guide for Assembler

*
10 cp link vseaf 350 350 rr pass=read
 DASD 350 LINKED R/O; R/W BY GANDALF
 access 350 z
 DMSACC723I Z (350) R/O - DOS
 Ready;
 set dos on z (vsam
 DMSSET1101I 100K DOS partition defined at hexadecimal
 location 020000
 Ready;
*
11 access 200 b
 DMSACC723I B (200) R/W - OS
 Ready;
 access 300 c
 DMSACC723I C (300) R/W - OS
 Ready;
 access 400 d
 DMSACC723I D (400) R/W - OS
 Ready;
*
12 query search
 PLC191 191 A R/W
 222222 200 B R/W - OS
 333333 300 C R/W - OS
 444444 400 D R/W - OS
 MNT190 190 S R/O
 MNT191 190 Y/S R/O
 VSERES 350 Z R/O - DOS
 Ready;
*
13 type MASTCAT AMSERV
 DEFINE MASTERCATALOG -
 (NAME (MASTCAT) -
 VOLUME (222222) -
 CYL (4) -
 UPDATEPW (GAZELLE) -
 FILE (IJSYSCT)) DATA (CYL(1))
*

14 assgn syscat b
 Ready;
 dlbl ijsysct b dsn mastcat (syscat perm extent
 DMSDLB331R Enter extent specifications:
 19 171
*
15
 Ready;
*
16 amserv mastcat
 Ready;
*
17 type CLUSTER AMSERV
 DEFINE CLUSTER (NAME (BOOK.LIST) -
 VOLUMES (222222) -
 TRACKS (20) -
 KEYS (14,0) -
 RECORDSIZE (120,132)) -
 DATA (NAME (BOOK.LIST.DATA)) -
 INDEX (NAME (BOOK.LIST.INDEX))
*
18 amserv cluster
 4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
 FILE MASTCAT
 gazelle
 Ready;
*
19 type REPRO AMSERV
 REPRO INFILE (BFILE -
 ENV (RECORDFORMAT(F) -
 BLOCKSIZE(120) -
 PDEV (3390))) -
 OUTFILE (BOOK)
*
20 assgn sys001 a
 Ready;
 copyfile test data a (recfm f lrecl 120
 Ready;
 sort test data a book file a
 DMSSRT604R Enter sort fields:
 1 14
 Ready;

Sample Terminal Session Using Access Method Services

Appendix C. Sample Terminal Session Using Access Method Services 495

 dlbl bfile a cms book file (sys001
 Ready;
*

21 assgn sys002 b
 Ready;
 dlbl book b dsn book.list (vsam sys002
 Ready;
 amserv repro
 Ready;
*
22 type SPACE AMSERV
 DEFINE SPACE -
 (FILE (SPACE) -
 TRACKS (57) -
 VOLUME (333333))
*
 assgn sys003 c
 Ready;
*
23 dlbl space c (extent sys003
 DMSDLB331R Enter extent specifications:
 19 57
*
 Ready;
*
24 amserv space
 4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
 FILE MASTCAT
 gazelle
 Ready;
*
25 type UNIQUE AMSERV
 DEFINE CLUSTER -
 (NAME (UNIQUE.FILE) -
 UNIQUE) -
 DATA -
 (CYL (3) -
 FILE (KDATA) -
 RECORDSIZE (100 132) -
 KEYS(12,0) -
 VOLUMES (333333)) -
 INDEX -
 (CYL (1) -
 FILE (KINDEX) -
 VOLUMES (333333))
*

26 dlbl kdata c (extent sys003
 DMSDLB331R Enter extent specifications:
 76 57
*
 Ready;
 dlbl kindex c (extent sys003
 DMSDLB331R Enter extent specifications:
 76 76
*
 Ready;
 amserv unique
 4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
 FILE MASTCAT
 gazelle
 Ready;
*
27 type USERCAT AMSERV
 DEFINE USERCATALOG -
 (CYL (8) -
 FILE (IJSYSUC) -
 NAME (PRIVATE.CATALOG) -
 VOLUME (444444) -
 UPDATEPW (UNICORN) -
 ATTEMPTS (2)) -
 DATA (CYL (3)) -
 INDEX (CYL (1)) -
 CATALOG (MASTCAT/GAZELLE)
*
28 assgn sys006 d
 Ready;
 dlbl ijsysuc d dsn private.catalog (extent sys006 perm
 DMSDLB331R Enter extent specifications:
 19 152
*

Sample Terminal Session Using Access Method Services

496 z/VM: 7.4 CMS Application Development Guide for Assembler

 Ready;
 amserv usercat
 Ready;
*
29 Tape 181 attached
*
30 type EXPORT AMSERV
 EXPORT BOOK.LIST -
 INFILE (BOOK) -
 OUTFILE (TEMP ENV (PDEV (2400) REWIND NOLABEL))
*
31 dlbl book b dsn book list (cat ijsysct sys002
 Ready;
*

32 amserv export (tapout 181
 DMSAMS367R Enter tape output DDNAMEs:
 temp
 Ready;
*
33 type IMPORT AMSERV
 IMPORT -
 CATALOG (PRIVATE.CATALOG/UNICORN) -
 INFILE (TEMP ENV (PDEV (2400) REWIND NOLABEL)) -
 OBJECTS (BOOK.LIST VOL (444444))
*
34 amserv import (tapin 181
 DMSAMS367R Enter tape input DDNAMEs:
 temp
 Ready;

The following list explains the sequence of commands shown in “Using Access Method Services under
CMS” on page 493.
1

These commands define temporary 3390 minidisks at virtual addresses 200, 300 and 400.
2

This file contains control statements for the Device Support Facility program, which initializes disks for
use by VSAM. These disks are labeled 222222, 333333 and 444444.

3
This file contains the commands necessary to use the Device Support Facility program in a virtual
machine.

4
Execute the DSF EXEC, specifying that the Device Support Facility control statements contained in the
file ‘PUNCH DSF’ should be appended to the stand alone Device Support Facility program.

5
These messages are issued by the Device Support Facility stand alone program.

6
Because the Device Support Facility control statements reside in the virtual card reader, you must
indicate to Device Support Facility the device type and the address of your virtual reader.

7
This response tells Device Support Facility to output all run time information to your virtual machine
console.

8
This response gives Device Support Facility permission to proceed with the initialization of the disk.

9
You must re-IPL CMS after all Device Support Facility processing has completed.

10
If you are a CMS/DOS user, you must access the VSE/AF SYSRES disk and issue the ‘SET DOS ON fm
(VSAM’ command. If you have not previously linked to the VSE/AF SYSRES, you must use the CP LINK
command before you issue the ACCESS command. Another method is to have the operator ATTACH
the SYSRES disk to your virtual machine. Consult with your system programmer for the procedure to
use at your installation.

Sample Terminal Session Using Access Method Services

Appendix C. Sample Terminal Session Using Access Method Services 497

11
ACCESS the three newly formatted disks as your B-, C- and D-disks. Note, the access modes you use
need to be a letter before the letter R.

12
You can issue the QUERY SEARCH command to verify the status of all disks you currently have
accessed. The 350 disk will be listed only if DOS is set on.

13
The file MASTCAT AMSERV defines the VSAM master catalog that you are going to use and provides
space for suballocated clusters.

14
Identify the master catalog volume, and use the EXTENT option on the DLBL command so that you
can enter the extents. For this extent, specify 171 tracks (9 cylinders) for the master catalog. Because
4 cylinders are specified in the AMSERV file, the remaining 5 cylinders will be used for suballocation
by VSAM.

15
You must enter a null line to indicate that you have finished entering extent information.

16
Issue the AMSERV command specifying the MASTCAT file. The ready message indicates that the
master catalog is created.

17
Define a suballocated cluster. This cluster is for a key-sequenced data set named BOOK.LIST.

18
No DLBL command is necessary when you define a suballocated cluster. Not that since the password
was not provided in the AMSERV file, access method services prompts you to enter the password of
the catalog, which is defined as GAZELLE.

19
Use the access method services REPRO command to copy a CMS data file into the cluster that you just
defined.

20
You must identify the ddnames for the input and output files for the REPRO function. BFILE is a CMS
file, which must be a fixed-length, 120-character file, and it must be sorted alphamerically in columns
1 through 14. The COPYFILE command can copy any existing file that you have to the proper record
format; the SORT command sorts the records on the proper fields.

21
The output file is the VSAM cluster, so you must use the VSAM option on this DLBL command.

22
Create an AMSERV file to define additional space for the master catalog on the volume labeled
333333.

23
Again, use the EXTENT option on the DLBL command so that you can enter extent information and a
null line to indicate that you have finished entering extents.

24
Issue the AMSERV command. Again, you are prompted to enter the password of the master catalog.

25
This AMSERV file defines a unique cluster, with data and index components.

26
You must enter DLBL command and extent information for both the data and index components of the
unique cluster.

27
Next, define a private (user) catalog for the volume 444444. This catalog is named PRIVATE.CATALOG
and has a password of UNICORN. Again, as in step 13, space is made available for suballocation.

Sample Terminal Session Using Access Method Services

498 z/VM: 7.4 CMS Application Development Guide for Assembler

28
When you define a user catalog that you are going to use as the job catalog for a terminal session, you
should use the ddname IJSYSUC.

29
You may want to try an EXPORT/IMPORT function, if you can obtain a scratch tape from the operator.
When the tape is attached to your virtual machine, you receive this message.

30
The file that is being exported is the cluster BOOK.LIST created above. If you do not have access to a
tape, you can export the file to you CMS A-disk. Remember to change the PDEV parameter to reflect
the appropriate device type.

31
You must reissue the DLBL for BOOK.LIST because there is a job catalog in effect, and the file is
cataloged in the master catalog. Use the CAT option to override the job catalog.

32
There is no default tape value when you are using tapes with the AMSERV command. You must specify
the TAPIN or TAPOUT option and indicate the virtual address of the tape. You are prompted to enter
the ddname, which for this file is TEMP.

33
The last AMSERV file imports the cluster BOOK.LIST to the user catalog PRIVATE.CATALOG.

34
Read the tape in as input.

Sample Terminal Session Using Access Method Services

Appendix C. Sample Terminal Session Using Access Method Services 499

Sample Terminal Session Using Access Method Services

500 z/VM: 7.4 CMS Application Development Guide for Assembler

Appendix D. TSO Macros Simulated in CMS

CMS simulates a limited number of TSO macros. With the exception of the STAX macro, these macros are
at an OS Release 20 level. The simulated TSO macros are provided primarily to support programs that
were developed on TSO and ported to CMS.

The STAX macro is available in MVSXA MACLIB. All of the other TSO macros simulated by CMS are
available in the OSMACRO MACLIB.

Although supported as a programming interface, the simulation of the TSO macros will not be upgraded
(with the exception of STAX) and it is not recommended that you use them for application programming.

The following is a list of the TSO macros simulated by CMS:

GETLINE
GTSIZE
IKJCPPL
IKJCSOA
IKJCSPL
IKJECT
IKJENDP
IKJGTPB
IKJIDENT
IKJIOPL
IKJKEYWD
IKJLSD
IKJNAME
IKJPARM
IKJPGPB

IKJPOSIT
IKJPPL
IKJPSCB
IKJPTPB
IKJRLSA
IKJSTPB
IKJSTPL
IKJSUBF
IKJTAIE
IKJUPT
PUTGET
PUTLINE
RTAUTOPT
SPAUTOPT
STACK

STATTN
STAUTOCP
STAUTOLN
STAX
STBREAK
STCC
STCLEAR
STCOM
STSIZE
STTIMEOU
TCABEND
TCLEARQ
TGET
TPUT
TSABEND

For definitive information about these interfaces, including their programming classification (general use
or product sensitive), please see the appropriate MVS TSO documentation.

TSO Macros Simulated in CMS

© Copyright IBM Corp. 1990, 2024 501

TSO Macros Simulated in CMS

502 z/VM: 7.4 CMS Application Development Guide for Assembler

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2024 503

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This document contains intended Programming Interfaces that allow the customer to write programs to
obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at IBM
Copyright and trademark information (https://www.ibm.com/legal/us/en/copytrade.shtml).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

504 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 505

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

506 z/VM: 7.4 CMS Application Development Guide for Assembler

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1990, 2024 507

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/i1343773.pdf#nameddest=i1343773
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa0_v7r4.pdf#nameddest=hcpa0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa2_v7r4.pdf#nameddest=hcpa2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpf2_v7r4.pdf#nameddest=hcpf2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa4_v7r4.pdf#nameddest=hcpa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa3_v7r4.pdf#nameddest=hcpa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsc6_v7r4.pdf#nameddest=dmsc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd1_v7r4.pdf#nameddest=dmsd1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa6_v7r4.pdf#nameddest=hcpa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa5_v7r4.pdf#nameddest=hcpa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl0_v7r4.pdf#nameddest=hcpl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/gcta0_v7r4.pdf#nameddest=gcta0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe2_v7r4.pdf#nameddest=hcpe2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpa7_v7r4.pdf#nameddest=hcpa7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpg4_v7r4.pdf#nameddest=hcpg4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcps0_v7r4.pdf#nameddest=hcps0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe9_v7r4.pdf#nameddest=hcpe9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb4_v7r4.pdf#nameddest=dmsb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb2_v7r4.pdf#nameddest=dmsb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb3_v7r4.pdf#nameddest=dmsb3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb7_v7r4.pdf#nameddest=hcpb7_v7r4

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

508 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb1_v7r4.pdf#nameddest=hcpb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb2_v7r4.pdf#nameddest=hcpb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb6_v7r4.pdf#nameddest=dmsb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb5_v7r4.pdf#nameddest=dmsb5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa3_v7r4.pdf#nameddest=dmsa3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa5_v7r4.pdf#nameddest=dmsa5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsd0_v7r4.pdf#nameddest=dmsd0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa4_v7r4.pdf#nameddest=dmsa4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsa6_v7r4.pdf#nameddest=dmsa6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb4_v7r4.pdf#nameddest=hcpb4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb5_v7r4.pdf#nameddest=hcpb5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb6_v7r4.pdf#nameddest=hcpb6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ceeb7_v7r4.pdf#nameddest=ceeb7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp4_v7r4.pdf#nameddest=dmsp4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp1_v7r4.pdf#nameddest=dmsp1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp3_v7r4.pdf#nameddest=dmsp3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp0_v7r4.pdf#nameddest=dmsp0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsp2_v7r4.pdf#nameddest=dmsp2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsl0_v7r4.pdf#nameddest=dmsl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsk7_v7r4.pdf#nameddest=dmsk7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb1_v7r4.pdf#nameddest=dmsb1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsb0_v7r4.pdf#nameddest=dmsb0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmse6_v7r4.pdf#nameddest=dmse6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb9_v7r4.pdf#nameddest=hcpb9_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmsw0_v7r4.pdf#nameddest=dmsw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw0_v7r4.pdf#nameddest=hcpw0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc1_v7r4.pdf#nameddest=hcpc1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpc3_v7r4.pdf#nameddest=hcpc3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpe5_v7r4.pdf#nameddest=hcpe5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt1_v7r4.pdf#nameddest=hcpt1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt5_v7r4.pdf#nameddest=hcpt5_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt2_v7r4.pdf#nameddest=hcpt2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt0_v7r4.pdf#nameddest=hcpt0_v7r4

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580
• Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?

topic=osa-icc-3215-support), SA23-2247
• Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/ioa2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

• z/VM: Performance, SC24-6301. See z/VM Performance Data Pump.
• z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 509

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt3_v7r4.pdf#nameddest=hcpt3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpt4_v7r4.pdf#nameddest=hcpt4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk4_v7r4.pdf#nameddest=hcpk4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk2_v7r4.pdf#nameddest=hcpk2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpk3_v7r4.pdf#nameddest=hcpk3_v7r4
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl8_v7r4.pdf#nameddest=hcpl8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpl7_v7r4.pdf#nameddest=hcpl7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=hcpb8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpb8_v7r4.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=hcpw1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/hcpw1_v7r4.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha8_v7r4.pdf#nameddest=icha8_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha4_v7r4.pdf#nameddest=icha4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ichb2_v7r4.pdf#nameddest=ichb2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha1_v7r4.pdf#nameddest=icha1_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha3_v7r4.pdf#nameddest=icha3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha6_v7r4.pdf#nameddest=icha6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha7_v7r4.pdf#nameddest=icha7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/icha2_v7r4.pdf#nameddest=icha2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/ichc6_v7r4.pdf#nameddest=ichc6_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta7_v7r4.pdf#nameddest=dmta7_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta4_v7r4.pdf#nameddest=dmta4_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta3_v7r4.pdf#nameddest=dmta3_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta2_v7r4.pdf#nameddest=dmta2_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/dmta1_v7r4.pdf#nameddest=dmta1_v7r4

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Related Products

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

z/OS
IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

510 z/VM: 7.4 CMS Application Development Guide for Assembler

https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kdpl0_v7r4.pdf#nameddest=kdpl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kldl0_v7r4.pdf#nameddest=kldl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kinl0_v7r4.pdf#nameddest=kinl0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kill0_v7r4.pdf#nameddest=kill0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kiml0_v7r4.pdf#nameddest=kiml0_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/kijl0_v7r4.pdf#nameddest=kijl0_v7r4
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/edclv_v7r4.pdf#nameddest=edclv_v7r4
https://www.ibm.com/docs/en/SSB27U_7.4.0/pdf/vmcug_v7r4.pdf#nameddest=vmcug_v7r4
https://www.ibm.com/docs/en/zos

Index

Special Characters
*IDENT system service

connecting to 295
overview 295
severing connection to 295

$LISTIO EXEC file 411

Numerics
24-bit addressing 4
31-bit addressing 4
31-bit programming conventions 24
370 virtual machine

attributes 214
I/O interrupts 173
program interrupts 188
PSWs 173

370-XA architecture
addressing mode (AMODE)

setting 26
when to specify 214

assembler instructions
AMODE pseudo-op 27
RMODE pseudo-op 27

assembler instructions, comparison to System/370 31
bimodal addressing 24
CMS I/O support

DIAGNOSE X'A4' 29
DIAGNOSE X'A8' 29
preferred interface I/O macros
29

conventions for 31-bit programs 24
residency mode (RMODE)

definition of 25
setting 26
when to specify 214

storing the subchannel id in register 1 30

A
abend (abnormal end)

abend exit routine search order 203
abend processing 203, 206
clearing file definitions 362
creating abend exit routines 204
forcing an abend 205
macros that define abend exit routines 203
overview of 18
resetting abend exit routines 205

abend (abnormal termination)
deleting abend exit routines 205

ABNEXIT macro
creating abend exit routines 204
deleting abend exit routines 205
resetting abend exit routines 205

ACCESS command

ACCESS command (continued)
accessing OS/MVS data sets 369
accessing other user's directories 121
FORCERW 127
format of 369
in SFS 121
modules included in resident directory 273
response when you access VSAM disks 449
used with OS/MVS disks 368

Access Method Services (AMS)
control statements, executing 446
DEFINE CLUSTER statement 467
DEFINE control statement 467
DEFINE USERCATALOG 455
defining a master catalog 454
defining OS input/output files 460
DELETE control statement 467
executing in CMS, examples 466
functions

EXPORT 470
IMPORT 470
REPRO 470

in CMS 445
in CMS/DOS 453
restrictions on using for OS and VSE users 446
return codes 447
services not supported in CMS 472
terminal sessions 493
using tape input/output 459, 466

accessing
access method services 446
accessing other user's directories 121
directories of VSE libraries 415
DOS disks 406
files in storage 128
files with SUBCOM 128
forcing read/write 127
in SFS 121
OS/MVS disks 368
OS/MVS macros 373
OS/MVS simulation 373
using SUBCOM to access files in storage 128
using XEDIT interface to access files in storage 128
VSE system residence volume 403

ACTION, VSE linkage editor control statement 421
Active Disk Table (ADT) 274
ADDENTRY macro 6
addressing

24-bit addressing 24
addressing mode (AMODE)

setting 26
when to specify 214

bimodal addressing 24
comparison of architectures 24
conventions for 31-bit programs 24
free storage management 53, 60
program invocation 39

Index 511

addressing (continued)
residency mode (RMODE)

definition of 25
setting 26
when to specify 214

sample storage layout 54
addressing mode

default values 215
setting at assembly time 215
setting at load time 215
setting at module generation time 215

ADT (Active Disk Table) 274
Advanced Program-to-Program Communication (APPC) 287
Advanced Program-to-Program Communication/VM

(APPC/VM)
APPC/VM and IUCV functions that work differently 303
APPC/VM functions not supported on IUCV paths 303
assembler interface 287
assembler macro functions 305
assembler macros 305
CMS interface 292
interrupts 288, 290
IUCV functions not supported on APPC/VM paths 303
IUCV SEVER 292
LU 6.2 287
making updates to multiple resources 309
making updates to multiple resources, scenario 311
paths 287
programming interfaces 287
protected conversation 309
setting up a conversation 305
severing a path 292
shared APPC/VM and IUCV functions 303
states 288
synchronizing updates to multiple resources 309
synchronizing updates to multiple resources, scenario
311

AL tapes
reading backward 379

alias, files shared through 121
allocating

extents on OS disks 461
space for VSAM files (CMS/DOS) 457
space for VSAM files (OS) 464
VSAM extents on OS disks and minidisks 461

Alternate VSAM Interface
description 480

AMODE
24 bit program 44
31 bit program 44
attribute, how CMS interprets 25

AMODE ANY Programs 35
AMODE parameter on NUCEXT 192
AMODE pseudo-op 27
AMODESW

24-bit addressing mode 35
31-bit addressing mode 35
addressing mode 35
branching to a subroutine in 31-bit addressing mode 36
example 36
formats 35
parameters 35
registers 37
replacing BALR 37

AMODESW (continued)
restoring and saving addressing modes 36
saving and restoring addressing modes 36
switching addressing mode inline 36

AMODESW CALL 36
AMODESW QUERY 36
AMODESW RETURN 36
AMODESW SET 36
AMS (Access Method Services)

control statements, executing 446
DEFINE CLUSTER statement 467
DEFINE control statement 467
DEFINE USERCATALOG 455
defining a master catalog 454
defining OS input/output files 460
DELETE control statement 467
executing in CMS, examples 466
functions

EXPORT 470
IMPORT 470
REPRO 470

in CMS 445
in CMS/DOS 453
restrictions on using for OS and VSE users 446
return codes 447
services not supported in CMS 472
terminal sessions 493
using tape input/output 459, 466

AMSERV command
creating tape files 466
file type 446
files, examples 446
format of 446
functions under CMS 466
NORESET optio 448
output listings 447
using to read tapes 466

Anchor Identifier Registration Form 195
ANCHOR macro

Anchor Identifier Registration Form 195
defining ANCHOR words 195
definition 195
entry conditions 196
examples 195
formats 195
general formats 195
when to use 195

ANCHOR parameter on SUBCOM macro 197
ANCHOR words 195
ANSI

ASCII/EBCDIC translation 386
fixed-length records 351
format-D 353
illustration of fixed-length records 351
illustration of variable-length ANSI record 353
specifying fixed length records 351
variable-length records 353

ANSI labeled tapes
reading backward 379

ANSI user labeled tapes
reading backward 379
user label exit 387

APPC/VM (Advanced Program-to-Program
Communication/VM)

512 z/VM: 7.4 CMS Application Development Guide for Assembler

APPC/VM (Advanced Program-to-Program Communication/VM) (continued)
APPC/VM and IUCV functions that work differently 303
APPC/VM functions not supported on IUCV paths 303
assembler interface 287
assembler macro functions 305
assembler macros 305
CMS interface 292
interrupts 288, 290
IUCV functions not supported on APPC/VM paths 303
IUCV SEVER 292
LU 6.2 287
making updates to multiple resources 309
making updates to multiple resources, scenario 311
paths 287
programming interfaces 287
protected conversation 309
setting up a conversation 305
severing a path 292
shared APPC/VM and IUCV functions 303
states 288
synchronizing updates to multiple resources 309
synchronizing updates to multiple resources, scenario
311

APPCVM CONNECT macro
sending early information 308
SYSCLVL=SYSCPT 309

APPCVM QRYSTATE 310
appending data to existing files 362
application interfaces 117
APPLID parameter on APPLMSG macro 93
APPLMSG macro

APPLID parameter 93
COMP parameter 93
displaying and retrieving messages 92
FMT parameter 93
HEADER parameter 93
NUM parameter 93
replacement for LINEDIT 92
SUB parameter 93

architecture
abend processing 203, 206
addressing

addressing mode (AMODE) 214
addressing mode (AMODE), setting 26
bimodal addressing 24
comparison of architectures 24
residency mode (RMODE) 25, 214

addressing, comparison 24
assembler instructions

AMODE pseudo-op 27
comparison between System/370 and 370-XA
31
RMODE pseudo-op 27

assembler language I/O instructions 29
CMS I/O support

DIAGNOSE X'A4' 29
DIAGNOSE X'A8' 29
overview 28
preferred interface I/O macros
29

console I/O
displaying messages at your terminal 92
full-screen I/O 83, 89
reading lines from a terminal 94

architecture (continued)
console I/O (continued)

retrieving messages from a buffer 92
writing lines from a terminal 94

conventions for 31-bit programs 24
creating subpools 57
disk file I/O 131, 141
free storage management 53, 60
interrupt handling 173, 189
PSWs

comparison among architectures 23
PSWs, comparison 23
residency mode (RMODE), setting 26
sample storage layout 54
saved segments 75, 78
tape I/O 151
unit record I/O 147, 151

ASCII code 353, 355
ASCII/EBCDIC translation 386
ASSEMBLE command

AMODE and RMODE instructions 217
invoking the assembler 217
output files produced 420

assembler instructions
AMODE pseudo-op 27
BAL instruction

conversion considerations 31
BALR instruction

conversion considerations 31
comparison between System/370 and 370-XA
31
LA instruction

conversion considerations 31
RMODE pseudo-op 27

assembler interface to APPC/VM 287
assembler language macros

supported by VSE 417
assembler programs

programs in CMS/DOS 420
VSAM programs in CMS 446

assembling programs
file definitions 218
identifying macro libraries prior to assembly 220

ASSGN command
assigning programmer logical unit 409
description 404
using to assign logical units 408

assigning
disk devices 411
entering before program execution 424
physical devices 411
to a virtual device 411

asynchronous communications
compared with synchronous 308

AUL tapes
reading backward 379
user label exit 387

authorization
connect to *IDENT 295
revoking a resource 295

auxiliary directories
adding 273
DMSLADAD entry point 273
establishing linkage 273

Index 513

auxiliary directories (continued)
GENDIRT command 273
generating 273
saving resources 273
usage 273

auxiliary processing routine to receive control during I/O
operation 362
AUXPROC option

description 362

B
BAL instruction

conversion considerations 31
BALR instruction

conversion considerations 31
replacing BALR 37

basic tape layout for ANSI tape 395
basic tape layout for IBM standard tape 395
BDAM

CHECK macro 385
restrictions on 375
support of 365, 373

BFTEK=A 377
bimodal addressing

addressing mode (AMODE)
setting 26

conventions for 31-bit programs 24
definition of 24
residency mode (RMODE)

definition of 25
setting 26

bit strings in CSL routine, defining 240
block

definition 350
OS simulated block vs. CMS record 366

block descriptor word
assembling records into blocks 386
description 352
illustration 352
L option 351
specifying 351

BLOCK or BLKSIZE option of FILEDEF command 361
block prefix word

variable spanned ANSI records 356
block reads 133, 137
block size

determining on CMS DASD 380
block size, choosing 107
blocking records 350
books copied from DOS/VSE source statement libraries 413
boundaries, program 18
BPAM

CHECK macro 385
support of 365, 373

branching to a subroutine in 31-bit addressing mode 36
break key 85
BRRKEY, CONSOLE macro 85
BSAM access method

adding records to the end of a file 379
blocking 365
CHECK macro 385
deblocking 365
EXTEND parameter on the OPEN macro 379

BSAM access method (continued)
READ macro 383
specifying an input data file 378
specifying an output data file 379
variable spanned ASNI records 356
variable-length ANSI records 353
WRITE macro 386

BSAM/QSAM
support of 365, 373

BUFFER parameter of CONSOLE macro 88
buffering techniques in OS simulation 375
BUFOFF option on DCB 351
BUFOFF option on FILEDEF 351
BUFSP option

in CMS/DOS 454
of the DLBL command 461

BUILDRCD macro
description 376
setting up a buffer pool 376
setting up a record area 376

C
caching

minidisk files 119
calculating storage available in your virtual machine 425
CALL command 418
CANCEL command 418
canceling

DLBL definitions 413
carriage control characters 148
CAT option

of the DLBL command 461
cataloged procedures in OS/MVS equivalent in CMS 347
catalogs

clearing 456
defining in CMS/DOS 454
identifying in CMS/DOS 455
IJSUC ddname 456
job 456, 463
master 462
passwords 456, 464
sharing 449
user 463
user in CMS/DOS 455
verifying a structure 457, 464
VSAM 454, 456, 461

CATCHECK command
verifying a catalog structure 457, 464

CCW
building your own 88
example 88

channel programs, writing your own 88
character data in CSL routines 240
characters, carriage control 148
CHECK macro

CHECK macro 385
choosing block size 107
CLEAR option of the FILEDEF command 361
CLEAR option on CONSOLE WRITE 86
CLEAR option on FILEDEF 359
CLEAR parameter on ANCHOR macro 195
clearing

DLBL definitions 413

514 z/VM: 7.4 CMS Application Development Guide for Assembler

clearing (continued)
effect on FILEDEF definitions 362
FILEDEF definitions 361, 362
job catalogs in CMS/DOS 456
job catalogs in OS 464

CLOSE macro
closing data files 387
FREEPOOL macro 387
logical record interface (LRI) 377
releasing a record area 377

closing paths with the CONSOLE macro 89
CLR function on HNDIUCV 292
CLR parameter on SUBCOM macro 197
clusters

defining 467, 468
deleting 468
suballocated 467
unique 468

CMS (Conversational Monitor System)
assembler programs 15
command-driven 15
operating characteristics 15
user-written programs 15

CMS commands
ASSEMBLE command

when to use 217
FILEDEF command

determining what file definitions are in effect 219
overriding default file definitions 219

GENDIRT command 273
GENMOD command

generating modules 227
generating relocatable modules 227
generating transient modules 228
restricting a module to a particular mode 228
saving historic information for a module 229
setting addressing mode 27
specifying a residency mode for a module 228
specifying an addressing mode for a module 228

GLOBAL command
identifying macro libraries prior to assembly 220
resolving external references 225
when to use 220

HASM command
when to use 217

INCLUDE command
resolving external references 225

LOAD command
determining where files get loaded 222
executing TEXT files 224
generating relocatable modules 227
generating transient modules 228
setting addressing mode 27

NUCXMAP command 229
PROGMAP command 230
QUERY FILEDEF command

determining what file definitions are in effect 219
QUERY MACLIB command 220
QUERY SEGMENT command

displaying information about 79
SET LOADAREA command

determining where files get loaded 222
SET STORECLR command 338
START command

CMS commands (continued)
START command (continued)

executing TEXT files 224
CMS commands you can use with OS/MVS data sets 368
CMS communications directory

used with APPC/VM assembler 291
CMS compatibility functions 11
CMS compatibility interface 10
CMS compatibility macros 10
CMS interface to APPC/VM

errors and interrupts 293
guidelines 294
overview 292

CMS loader control statements 226
CMS macros

ADDENTRY macro 6
ANCHOR macro 195
CMSDEV macro 148
CMSSTOR macro

creating subpools 57
general formats 53
obtaining free storage 55
releasing free storage 59

coding 21
CPRB macro 6
CSMRETCD macro 6
DELENTRY macro 6
DMSABN macro

forcing an abend 205
DMSNUC macro 54
FSPOINT macro 138
HNDINT macro 181
how CMS macros work 22
macros that define abend exit routines 203
preferred macros 6
PRINTL macro 147, 148
programming interface, overview of 3
PUNCHC macro 150
RDCARD macro 150
SENDREQ macro 6
WAITECB macro 178

CMS macros, how they work 22
CMS nucleus

location in CMS storage 54
CMS preferred functions 10
CMS preferred interface I/O macros 29
CMS preferred macros 6
CMS preferred routines 9
CMS programming interface

compatibility group
370 virtual machine 5
addressing 5
contents of 10
definition of 5
XA virtual machine 5
XC virtual machine 5

DOS/VSE group
definition of 5

nonsimulated OS/MVS group
definition of 5

nonsimulated OS/MVS macros 337
preferred interface group

370 virtual machine 5
addressing 5, 6

Index 515

CMS programming interface (continued)
preferred interface group (continued)

advantages of 5
components of 6
XA virtual machine 5
XC virtual machine 5

simulated OS/MVS group
definition of 5
macros contained in 11

CMS/DOS
commands 404
considerations for execution 443
DOSLKED command 421
DTFCD macro 434
DTFCN macro 435
DTFDI macro 436
DTFMT macro 437
DTFPR macro 438
DTFSD macro 439
entering the environment 403
EXCP support 441
extents 458
generating 442
invoking linkage editor 421
libraries 442
options

BUFSP 454
CAT 454
EXTENT 454
MULT 454
VSAM 453

physical IOCS macros 427
program development using 403
relationship to CMS and VSE 403
restrictions 443
SVC support routines 428–434
terminology 403
user responsibilities 442
using tape input/output 459
VSE I/O macros 427
VSE supervisor macros 427
VSE volumes needed 442
VSE/VSAM macros supported 474
z/VM directory entries 442

CMSCALL macro
call charts 45
CMSCALL call-type values 43
COPY parameter 44
copying parameter lists 44
ERROR option 45
FENCE option 45
how long does your program stay in storage 214
interrupt mask settings 48
making the call 43
options 45
program life 214
register usage 48
return codes 50
storage key settings 48
supervisor assisted linkage 52
UFLAGS option 45
XEDIT interface 128

CMSCVT macro 373
CMSDEV macro 148

CMSIUCV macro
ACCEPT parameter 293, 294, 297
between two virtual machines 280
CMS external interrupt 293
CONNECT parameter 293, 294, 297, 309
ERROR parameter 305
establishing a conversation 293
examples 298, 300
EXIT parameter 297, 305
exit routines 282
functions 292
guidelines and limitations 283
in a sync point conversation 309
in the CMS environment 292
invoking APPC/VM functions in CMS 292
IPWHATRC return code 309
NAME keyword 292
sequence of functions 280
setting up a parameter list 293
setting up exits 293
SEVER function 309
SEVER parameter 294, 298
specifying exits 293
synchronous APPC/VM functions 308

CMSRET macro
examples 51
returning to a calling program 51

CMSSTOR macro
31-bit programs 53
creating subpools 57
error processing 55
example, CMSSTOR OBTAIN 55
examples

above 16 MB 56
below 16 MB 56
on a page boundary 56
specific address 56

general formats 53
MF parameters 56
MSG parameters 56
obtaining free storage 55
RELEASE parameter 59
releasing free storage 59
releasing storage 59
TYPCALL parameters 56
Where CMSSTOR gets storage 55

coding CMS macros 21
collection of ES/VM systems (TSAF Collection)

revoking gateways when merging 295
revoking resources when merging 295

command invocation
how long does your program stay in storage 213
program life 213

command loop 17
command processing, an overview 16
committing changes 125
Common Programming Interface (CPI) Communications 287
communicating with I/O devices 179
COMP parameter on APPLMSG macro 93
compatibility for file I/O 119
compatibility functions, CMS 11
compatibility group (interfaces)

contents of 10
definition of

516 z/VM: 7.4 CMS Application Development Guide for Assembler

compatibility group (interfaces) (continued)
definition of (continued)

370 virtual machine 5
addressing 5
XA virtual machine 5
XC virtual machine 5

compatibility macros, CMS 10
compilers

devices assigned 410
input/output assignments
410

completing an I/O operation 87
complex list format, macros 22
compressing

DOSLIB files 423
concatenating files 344
concatenating macro libraries 344
Confirm state 288
confirmation, request 307
Connect state 288
connecting to *IDENT

to manage a resource 295
to revoke a resource 295

connecting to programs
resource manager 295

connection complete interrupts 289
connection pending interrupts 289
connectivity, definition 287
console facility

handling disconnected devices 88
handling reconnected devices 88

console I/O
3270 full-screen I/O 83
displaying messages at your terminal 92
full-screen I/O 83, 89
reading lines from a terminal 94
retrieving messages from a buffer 92
sample program 89
writing lines from a terminal 94

console interrupts, handling 84
CONSOLE macro

BUFFER parameter 88
CLOSE parameter 83
closing paths 89
CONSOLE READ options

NOWAIT 86
RDBUF 86
RDMOD 86
WAIT 86

CONSOLE WRITE options
CLEAR 86
EW 86
EWA 86
NOCLEAR 86
reg 86
W 86
WSF 86

DIAGNOSE code X'24' 83, 88
DIAGNOSE code X'8C' 83, 88
displaying and retrieving messages 92
example of CONSOLE QUERY 87
example, OPEN parameter 83
EXCP parameter 88
exit routine entry conditions 85

CONSOLE macro (continued)
handling console interrupts 84
MODIFY parameter 83, 85
modifying a path definition 85
notes on 89
obtaining information about paths 87
OPEN parameter 83
opening a path to a console 83
ORB parameter 88
overview 83
parameters 83
QUERY parameter 83, 87
READ parameter 83, 86
reading from a screen 86
using a buffer 88
WAIT parameter 83, 86
WRITE parameter 83, 86
writing to a screen 86
writing your own channel programs 88

control blocks
types

active disk table 113
active file table 113
data control block (DCB) 361
data set control block (DSCB) 373, 470
DL/I control blocks 406
event control blocks (ECBs) 174
file system control block (FSCB) 113, 131
MVS task control block 340
OS/MVS control blocks 373
VSAM control blocks 446
VSE supervisor control blocks simulated by
CMS/DOS 403

control characters, carriage 148
control file

for CSL 246
control statements

in AMSERV file 447
Conversational Monitor System (CMS)

AMS services not supported 472
application interfaces 113
assembler macros for APPC/VM 305
boundary relationships 20
buffering techniques for OS simulation 375
cleaning up 17
CMS default external interrupt handler 176
CMS tape label processing 360
command loop 17
command processing 16
compatibility functions 11
compatibility macros 10
creating LOADLIBs 343
determining BLKSIZE and LRECL on CMS DASD 380
end-of-command 17
end-of-SVC 17
end-of-tape processing 158
executing LOADLIBs 343
facilities to handle interrupt 175
file directory 108
file information maintained 108
file system overview 107
first-level interrupt handler 175
FLIH 175
how CMS handles objects in a logical saved segment 78

Index 517

Conversational Monitor System (CMS) (continued)
how CMS manages files 113
I/O interrupts 179
interface to APPC/VM 292, 304
internal I/O buffer 150
LOADLIBs, executing and creating 343
logical record interface 376
making updates to multiple resources 309
making updates to multiple resources, scenario 311
manipulating CMS file 113
multivolume switching 396
open processing in OS simulation 381
OS support 445
OS/MVS and CMS terminology 347
OS/MVS simulation 317
preferred functions 10
preferred macros 6
processing tape labels 167
programming considerations for OS/MVS 318
reclaiming resources 18
releasing storage 17
second-level interrupt handler 175
setting up a conversation 305
simulated TSO macro 501
simulation of OS/MVS macros 318
simulation of VSE functions 426
SLIH 175
storage layout 54
support for OS 445
support for VSAM 445
support of APPC/VM 304
SVC levels 17
synchronizing updates to multiple resources 309
synchronizing updates to multiple resources, scenario
311
tape handling macros 151
tape label processing 164
tape volume switching 397, 399
terminology for OS/MVS and CMS 347
timer support 342
TSO macro, simulated 501
using OS/MVS data sets 349
virtual machine environments 3
virtual machine modes 3
VSAM macros not supported in CMS 475
VSAM support 445
VSE macros 427
VSE simulation 403
VSE/VSAM functions not supported 472

Conversational Monitor System commands
ACCESS 368
AMSERV 446
AMSERV command 448
ASSGN 404
CALL 418
CANCEL 418
CMS/DOS 404
COPYFILE command 123
DDR 368
DLBL command 404
DOSLIB 404
DOSLKED 404
DOSPLI command 404
DSERV 404

Conversational Monitor System commands (continued)
ESERV 404, 415
FCOBOL 405
FETCH 405
FILEATTR 123
FILEDEF command 368
FINIS command 124
GENMOD command 405
GLOBAL command 405
LISTDS 368
LISTIO 405
LKED 368
LKED command 343
LOADMOD 405
MOVEFILE 369
NUCXLOAD command 213
OPTION 405
PSERV 405, 414
QUERY command 405
RELEASE 369
RSERV 405, 414
search order 15
SET 405
SSERV 405, 413
STATE 369
STDEBUG command 62, 66
STORMAP command 60, 63
SUBPMAP command 62, 66

conversations
states 288

converting from SSM instruction to ENABLE macro 173
Coordinated Resource Recovery

description 309
example using CRR 311
protected conversation 309
scenario 311
writing APPC/VM applications 309

COPYFILE command 123
copying

books from VSE source statement libraries 413
DOS cataloged procedure 414
DOS files into CMS files 407
members of OS/MVS partitioned data set with FILEDEF
371
modules from VSE library or SYSIN tapes 408
modules from VSE relocatable libraries 414
OS/MVS data sets into CMS files 370
VSAM files into CMS disk files 470

copying parameter lists 44
copying sequential data sets 371
core image

libraries, using in CMS/DOS 416
on a DOS disk 424
VSE libraries 442

corrupted EDF files and minidisks 115
CP DEFINE STORAGE command 71
CP TRACE COMMAND 63
CPRB macro 6
CQYSECT macro 87
creating

CMS files from DOS libraries 407
DOSLIB files 422
file from DOS disks and tapes 407
macro libraries

518 z/VM: 7.4 CMS Application Development Guide for Assembler

creating (continued)
macro libraries (continued)

example in CMS/DOS 417
from a DOS library 417

modules from VSE library or SYSIN tapes 408
creating a panel 99
creating an FSCB 132
creation time 112
CRR

description 309
example using CRR 311
protected conversation 309
scenario 311
writing APPC/VM applications 309

CSL (callable services library)
allowable data types 236
building libraries 253
control files 246
creating and using 233
creating routines 245
creating template files 237
examples 264
writing routines 234

CSL routines
DMSCATTR 123
DMSCOMM 125
DMSFILEC 123
DMSOPEN 118
DMSPUSHA 123
DMSQFMOD 126
interface to SFS 117
preferred routines, CMS 9
VMLIB 221

CSLENTRY macro 234
CSLEXIT macro 236
CSLFPI macro 263
CSLGEN command 253
CSLGETP macro 235
CSMRETCD macro 6
cylinder

on 3390 disk 462

D
data catalog sharing 449
data compression

with VSAM files 469
data definition card in OS/MVS 347
data event control block (DECB) 383
data files

blocking for CMS format files 365
illustration of a CMS data file 364
OS vs. CMS simulation 363
specifying CMS data files 364

data set control block (DSCB) 373
data set in OS/MVS 347
data sets

CMS format files 349
creating files 372
defining 349
definition in CMS 349
description 349
format of 364, 365
identify VSAM 460

data sets (continued)
organization 349
OS/MVS 349
OS/MVS data set 349
OS/MVS simulated data set 349
reading, OS/MVS 384
specifying a member name 362
VSAM, compatibility considerations 475

data space machine checks 188
data types allowed for CSL routines 236
data, how it is sent

overview 291
date file attribute 111
date of file creation 112
date of last change 112
date of last reference 111
DCB abend exit

close error codes 394
DCB address 390
description 390
error codes 394
open error codes 393
option mask 390
option mask values 390
parameter list 390
return code 390
sample code 391
system completion code 390
system completion code values 393

DCB address on DCB abend exit 390
DCB macro

BFTEK option 356, 377
BUFOFF option 351
BUFOFF parameter 353
CLOSE processing 387
D option 353
DB option 353
DBS option 356
DCBOFLGS 381
ddname, specifying 358
DISP=MOD option 381
DS option 356
EODAD operand 387
example for variable-length ANSI records 353
exit 361
EXLST operand 387
filling in the DCB fields 382
GET macro modes 383
identifying exit routines 387
in an XA virtual machine 335
L option 351
PUT macro modes 386
relationship to FILEDEF command 358
specifying DCB abend exit 387
specifying LRI 376
specifying the logical record interface (LRI) 377
specifying variable spanned ANSI records 356
SYNAD operand 387
V option 352
VB option 352

DCBOFLGS 381, 390
DCLBFR function (IUCV macro)

considerations for 288
ddnames

Index 519

ddnames (continued)
clearing existing definitions 359
IJSCT 461
IJSUC 456, 463
IJSYSCT 454
in OS VSAM programs, restricted to seven characters in
CMS 453
specifying 358
specifying with FILEDEF command 357
used when assembling source programs 420

DDR command 368
de-editing VSE macros 415
debugging storage problems 62
DECB 386
declarative macros

DTFCD 434
DTFCN 435
DTFDI 436
DTFMT 437
DTFPR 438
DTFSD 439

declaring buffers for interrupts 288
default

DLBL definitions 412
FILEDEF definition 360

DEFINE control statement 467
defining

cluster for VSAM space 467
clusters 468
DOS input files 453
DOS output files 453
OS input/output files 460
space for VSAM files in CMS/DOS 457
space for VSAM files in OS 464
unique clusters 468
user catalogs 463
VSAM master catalog in CMS/DOS 454
VSAM master catalog in OS 462

defining nucleus extensions 191
defining saved segments 75
DELENTRY macro 6
DELETE control statement 467
deleting

access method services function 468
VSAM catalogs 468
VSAM clusters 468
VSAM spaces 468

deleting a saved segment 77
deleting specific private subpools 60
descriptor mappings for LRDD 97
descriptor mappings for LWRD 97
determining allocation of pages to storage subpool 62
determining current utilization of free storage 60
determining how much storage to provide for plists 42
determining is storage fragmentation exists 65
determining pages of storage allocated to a subpool 62
determining program entry points 226
determining the SHARE attribute 76
determining when a sever requires a rollback 310
Device Support Facility

formatting temporary disks 452
devices

assignments in CMS/DOS 408
I/O assignments 424

devices (continued)
output, restrictions in CMS/DOS 411
specifying type with FILEDEF command 358
supported, for VSAM under CMS 480

devices, disks, cylinders, and tracks 461
DIAGNOSE code X'58' instruction 86
DIAGNOSE X'A4' 29
DIAGNOSE X'A8' 29
direct branch linkage

AMODE ANY 35
AMODESW 35
BAL 35
BALR 35
BAS 35
BASR 35
BSM 35
BSSM 35
calling other routines 35
comparison to supervisor assisted linkage 35

direct data set
direct data set 349
record formats 350

directory
accessing in SFS 121
entries 442

directory, CMS communications
used with APPC/VM assembler 291

disk file I/O
closing files 139
contents of the file system control block 133
creating a file system control block 132
end-of-file checking 138
erasing files 139
FSOPEN macro

modifying a file system control block 135
FSREAD macro

creating a file system control block 132
modifying a file system control block 135

FSWRITE macro
creating a file system control block 132
modifying a file system control block 135
usage examples 137

mapping a file system control block 134
modifying a file system control block 135
overview 131
reading disk files, examples 137
updating files 139
writing disk files, examples 137

Disk Operating System (DOS)
core image library 424
creating CMS files 407
declarative macros

DTFCD 434
DTFCN 435
DTFDI 436
DTFMT 437
DTFPR 438
DTFSD 439

disks
accessing 406
compatibility with OS disks 450
determining free space 451
formatting using DSF 452
using with AMSERV 449

520 z/VM: 7.4 CMS Application Development Guide for Assembler

Disk Operating System (DOS) (continued)
files used in CMS 406
hardware devices supported 426
imperative macros 441
libraries

executing phases from 424
link-editing modules from 421
size considerations 423

macros supported in CMS 417
restrictions on reading in CMS 407
simulation in CMS 403
support of physical IOCS macros 427
terminal sessions 487
VSE macros under CMS 418

disk, CMS 107
disks

extents 461
read-only, exporting VSAM files from 470
temporary 452

DISP MOD option of FILEDEF command 362
displaying

directories of VSE libraries 415
DLBL definitions 413
listings from access method services 448

displaying information about saved segments 79
DL/I programs in CMS/DOS

restrictions 406
DLBL command

CMS operand 412
default file definitions 412
description of 404
DSN ? operand 426
entering before program execution 425
how to use in CMS/DOS 411
identifying VSAM data sets 460
identifying VSAM data sets on CMS/DOS 453
IJSYSCT ddname 454
options

BUFSP 461
CAT 461
EXTENT 458, 460
MULT 460
VSAM 460

relationship to ASSGN command 411
specifying extents in CMS/DOS 458
specifying multiple extents 465
SYSxxx option 411

DLBL definitions
entering in a CMS EXEC procedure 426
using the HX command 413

DMSABEXP 390
DMSABEXP macro 391
DMSABN macro

forcing an abend 205
DMSCATTR - SFS Change Attributes routine 123
DMSCOMM - Commit routine 125
DMSFILEC - Filecopy routine 123
DMSFREE macro 53
DMSFRES macro 53
DMSFRET macro 53
DMSFST macro

format of 273
DMSGPI MACLIB 15, 21, 220
DMSLAD module 273

DMSLADAD macro
description 273
entry point 273

DMSNUC macro 54
DMSOM MACLIB 15, 21
DMSOPEN routine (Open)

open intent 118
DMSPUSHA - SFS Push Attributes routine 123
DMSQFMOD - Query Filemode routine 126
DMSROLLB - Rollback routine 309
DMSTVI module

CMS multivolume switching 396
passing information to 363
SYSPARM option 363

DMSTVS module 397
DMSXFLPT 129
DMSXFLRD

description 129
example 129

DMSXFLST 128
DMSXFLWR 129
DOS (Disk Operating System)

core image library 424
creating CMS files 407
declarative macros

DTFCD 434
DTFCN 435
DTFDI 436
DTFMT 437
DTFPR 438
DTFSD 439

disks
accessing 406
compatibility with OS disks 450
determining free space 451
formatting using DSF 452
using with AMSERV 449

files used in CMS 406
hardware devices supported 426
imperative macros 441
libraries

executing phases from 424
link-editing modules from 421
size considerations 423

macros supported in CMS 417
restrictions on reading in CMS 407
simulation in CMS 403
support of physical IOCS macros 427
terminal sessions 487
VSE macros under CMS 418

DOS macros 125
DOSLIB command

compressing DOSLIBs 422
description of 404

DOSLKED command
description of 404
using 416, 420

DOSLNK files
used by DOSLKED command 422
used in CMS/DOS 421

DOSPLI 410
DOSPLI command 404
DSCB (data set control block) 373
DSERV command

Index 521

DSERV command (continued)
creating MAP files 416
description of 404
examples 415

DSN operand of DLBL command 412
DSORG option of FILEDEF command 361
DTFCD macro 434
DTFCN macro 435
DTFDI macro 436
DTFMT macro 437
DTFPR macro 438
DTFSD macro 439
dummy data set name specified on FILEDEF command 359
dummy files 359
DVOL1 function in tape command processing 167

E
early information for APPC/VM

allocate data 291
PIP data 291

ECB (event control block), posting 178
EDF (Enhanced Disk Format)

caching 119
data integrity 115
support 107
update-in-place 115
updates to 115

empty files 114
emulator, VSAM 480
ENABLE macro

converting from SSM instruction 173
enabling and disabling external interrupts 175
manipulating the PSW mask 173

end-of-command 17
end-of-file checking 138
end-of-SVC 17
end-of-tape processing in CMS/DOS 165
end-of-tape, processing 158
end-of-volume processing 394
end-of-volume processing in CMS/DOS 165
ENDCMD option on SUBPMAP command 66
Enhanced Connectivity Facilities 6
Enhanced Disk Format (EDF)

caching 119
data integrity 115
support 107
update-in-place 115
updates to 115

entering
DLBL definitions in CMS EXEC procedure 426
file identifications 359

ENTRY loader control statement 226
entry points

displayed following FETCH command 423
entry points (program), determining 226
EODAD exit routine

description 388
FEOV macro 396
register contents 388
with FEOV macro 396

ERROR option on CMSCALL 45
error processing

messages 170

error processing (continued)
NSL routines 170
OS simulation 170
standard label processing 170

error reporting 307
ERROR= parameter 21
ESA virtual machine 3
ESA/390 architecture

assembler language I/O instructions
29
CMS I/O support

overview 28
ESA/XA architecture

assembler instructions
RMODE pseudo-op 27

CMS I/O support
preferred interface I/O macros
29

storing the subchannel id in register 1 30
ESA/XC architecture

addressing mode (AMODE)
setting 26

assembler instructions
AMODE pseudo-op 27
RMODE pseudo-op 27

assembler language I/O instructions 29
CMS I/O support

DIAGNOSE X'A4' 29
DIAGNOSE X'A8' 29
preferred interface I/O macros
29

residency mode (RMODE)
setting 26
when to specify 214

storing the subchannel id in register 1 30
ESERV command

adding MACRO files created by ESERV program 415
description of 404
examples 415
using 415

ESPIE macro 334
event control block (ECB), posting 178
EW option on CONSOLE WRITE 86
EWA option on CONSOLE WRITE 86
examining output listings from access method services 447
EXCP parameter on CONSOLE macro 88
EXCP supported by CMS/DOS 441
EXEC card 347
EXEC procedures

for AMSERV 471
for VSAM 471
in CMS/DOS 426
register contents 426
to execute VSE programs 426

execute macros 22
executing

access method services in exec procedure 471
DOS phases 423
DSF programs 452
phases from core image 423
programs in CMS/DOS 423
restrictions

DL/I programs in CMS/DOS 406
VSAM programs 446

522 z/VM: 7.4 CMS Application Development Guide for Assembler

executing (continued)
VSE procedures 413

executing text files 221, 227
executing TEXT files 224
exit routine for CONSOLE macro 85
exit routines

block count 387
DCB abend exit 387, 390
DCB open 387
EODAD routine 387, 388
EXLST routine 388
identifying with DCB macro 387
SYNAD routine 387, 388
user label exits 387

exit routines, interrupt 173
EXLST exit routine

addresses for exist lists entries 388
codes for exit lists entries 388
description 388
register contents 389

EXPORT access method services function 470
exporting VSAM data sets 470
EXTEND parameter on the OPEN macro 379
extended file attributes

creation date 118
creation time 118
overwrite 118
recoverability 118

extended parameter list 41
EXTENT option of DLBL command 454, 460
extents

allocating on OS disks and minidisk 461
availability of 451
determining for VSAM functions 451
entering in CMS/DOS 458
information when defining VSAM master catalog 454
multiple in CMS/DOS 458
multiple in OS 465
multivolume 458, 465

external interrupt buffers 288
external interrupt handling 174
external interrupt sources, other 175
external interrupts

CMS default external interrupt handler 176
creating a default handler 179
deleting a handler 179
enabling and disabling 175
entry and exit linkage 177
handling overview 174
handling specific interrupts, examples 176
types of 174

external references, resolving 225
EXTSET option on STORMAP command 63
EXTSET option on SUBPMAP command 66
EXTUAREA macro 177

F
F-format, record format 110
fast path 263
FCBSECT 363
FCOBOL 410
FCOBOL command 405
FENCE option on CMSCALL 45

FEOV macro
DASD file processing 396
description 394
dummy file processing 396
end-of-volume condition 396
EODAD exit routine 396
EODAD routine 396
error handling 396
LEAVE option 395
LEAVE option on FILEDEF 396
magnetic tape file processing 395
REWIND option 395
specifying multiple volume data sets 394
support in CMS 394
SYNAD routine 396
tape position 395
TEOVEXIT routine 396
terminal file processing 396
unit record processing 396

FETCH command
description of 405
loading phases in CMS/DOS 416
START option 423

fetching core image phases for execution in CMS/DOS 423
FILE APPEND option on STORMAP command 65
file attributes

creation date 112
creation time 112
date file attribute 111
date of last reference 111
file mode 109
file name 109
file origin pointer 110
file type 109
last change date 112
last change time 112
logical record length 110
number of data blocks 110
number of records 111
overwrite file attribute 111
pointer block levels 110
record format 110
record number 111
recoverability file attribute 111
time file attribute 111

file definitions 218
file directory, CMS 108
file mode

description 109
file mode number 4 366
file mode numbers 109
numbers 0-6 109
update-in-place 109

file mode number 6
description 109
EDF files 115
for SFS files 116
minidisk files 115
SFS files 116

file name, description 109
file origin pointer 110
file status table (FST) 108, 347
file system control block

contents of 133

Index 523

file system control block (continued)
modifying 135
usage examples 135

file system control block, creating 132
file type, description 109
FILEATTR command 123
FILEDEF command

ALT option 395
AUXPROC option 362
BFTEK option 377
BLOCK option 361
BUFOFF parameter 353
CLEAR option 359, 361
clearing existing ddnames 359
D option 353
DB option 353
DBS option 356
ddname, specifying 358
default definition 360
determining what file definitions are in effect 219
device type, specifying 358
DISP MOD option 362
DISP=MOD option 381
DS option 356
DSORG option 361
dummy data set name specified 359
entering file identifications 359
file format, specifying 361
filling in the DCB fields 382
guidelines for entering 357
how to use 357
issued by assembler, overriding 420
MEMBER option 362
options

BLOCK or BLKSIZE 361
CLEAR 361
DISP MOD 362
DSORG 361
MEMBER 362
PERM 361
RECFM 361
SYSPARM 399

OS simulation 152
overriding default file definitions 219
PERM option 361
RECFM option 361
specifying OS/MVS simulated data files 366
specifying OS/MVS simulated data set 359
specifying variable spanned ANSI records 356
specifying variable spanned records 354
SYSPARM option 399
tape label processing 360
used with OS/MVS data sets 368
V option 352
VB option 352
VOLID parameter 154

FILEDEF definitions
clearing 361
making with FILEDEF command 357

files
alias 121
application interfaces 113
caching 119
creating from DOS libraries 407

files (continued)
creating from OS/MVS data sets 372
defining 453
defining and allocating space 464
defining OS input and output 460
definition 107
DOS 406
file attributes 107, 108
format information 361
format, specifying on FILEDEF command 361
FS macro I/O on SFS files 119
handling OS/MVS data residing on CMS disks 365
handling OS/MVS data residing on OS/MVS disks 368
identification 412
in SFS 121
multivolume identification 458, 465
output produced by ASSEMBLE command 420
reading shared locked files 122
reading VSAM tape 460
replacing shared files 122, 123
shared through alias 121
support of OS/MVS format 373
update-in-place files 123
VSAM, allocating 457
VSAM, defining 457

FIND parameter on SEGMENT macro 76
finding the ending address of a saved segment 76
finding the starting address of a saved segment 76
FINIS command 124
first-level interrupt handler

file status information 175
finding the SLIH 180
I/O interrupt processing
180
returning from an SLIH 185

fixed length record format
description 350
description for ANSI records 351
getting data 383
illustration 350
illustration of ANSI records 351
PUT macro 386
reading data 383
writing data 386

FLIH
file status information 175
finding the SLIH 180
I/O interrupt processing
180

FMT parameter on APPLMSG macro 93
FORM=MULTIPLE parameter on LINERD 94
FORM=MULTIPLE parameter on LINEWRT 94
format, macros 22
formatting

files 361
OS and DOS disks 452
temporary disks 452

fragmentation, storage 65, 69
free storage management

CMSSTOR macro
general formats 53

creating subpools 57
determining amount of unallocated storage 61
determining how much free storage is available 60

524 z/VM: 7.4 CMS Application Development Guide for Assembler

free storage management (continued)
determining if contiguous free storage exists 61
information about allocated free storage 60
information about size of largest contiguous block 60
information about unallocated free storage 60
obtaining free storage 55
releasing free storage 59
sample storage layout 54
SUBPMAP command 62
SUBPOOL macro

creating subpools 57
general formats 53
releasing free storage 59

FREEPOOL macro 387
FS macros

file I/O 131
interface to SFS files 118
mixing with CSL routines 126
on SFS files 118
open intent 118
scenario 131
specifying open intent 118

FSCB macro
active file table 113
creating a file system control block 131, 132
creating an FSCB 132
example 134, 135
FORM=E 128
FSCB 132
FSCBAITN field 113
FSCBANIT field 113
FSCBBUFF field 113
FSCBNORD field 113
FSCBRECF field 113
FSCBRPTR field 113
FSCBSIZE field 113
FSCBWPTR field 113
mapping a file system control block 134
mapping to FSCB 132
modifying a file system control block 135
OPENTYP parameter 118
using XEDIT to access files in storage 128

FSCB, creating 132
FSCBD DSECT labels, using 134
FSCBD macro

example 134
using the DSECT labels 134

FSCLOSE
committing changes 125
on SFS files 124

FSCLOSE macro
closing files 139
updating files 139

FSERASE macro
erasing files 139

FSMPPSI CSLLIB 170
FSOPEN macro

caching 136
description 136
modifying a file system control block 135
NEW option for OPENTYP 136
NEW parameter 124
NONE option for OPENTYP 136
on minidisk files 124

FSOPEN macro (continued)
on SFS files 124
open intent 118
OPENTYP parameter 123, 124, 136
READ option for OPENTYP 136
READ parameter 124
REPLACE option for OPENTYP 136
REPLACE parameter 124
replacing files 123
WRITE option for OPENTYP 136
WRITE parameter 124

FSPOINT macro 138
FSREAD macro

creating a file system control block 132
end-of-file checking 138
modifying a file system control block 135
usage examples 137

FST (file status table) 108, 347
FSWRITE

on SFS files 124
FSWRITE macro

creating a file system control block 132
modifying a file system control block 135
usage examples 137

full-duplex communications 303
full-screen I/O 83, 89
function complete interrupts 290
functions, CMS compatibility 11
functions, CMS preferred 10

G
GCS (Group Control System)

writing APPC/VM programs for 293
GENDIRT command

creating auxiliary directories 274
generating

CMS/DOS 442
VSE system 442

generating and executing modules
relocatable modules 227
restricting a module to a particular mode 228
saving historic information for a module 229
specifying a residency mode for a module 228
specifying an addressing mode for a module 228
transient modules 228

GENMOD command
description of 405
generating modules 227
generating relocatable modules 227
generating transient modules 228
parameters 17
restricting a module to a particular mode 228
saving historic information for a module 229
setting addressing mode 27
specifying a residency mode for a module 228
specifying an addressing mode for a module 228

GET macro
description 383
fixed-length records 383
modes 383
register contents upon completion 383
variable spanned records 384
variable spanned records under LRI 384

Index 525

GET macro (continued)
variable-length records 383
with QSAM 383

GETMAIN storage 339
GLOBAL command

example with OS files 370
identifying macro libraries prior to assembly 220
in CMS/DOS 405
resolving external references 225
used to identify DOSLIBs 423
used to identify macro libraries in CMS/DOS 417
using with OS files 370

global resource manager programs
used in assembler scenario 295

GLOBAL subpools 57
Group Control System (GCS)

writing APPC/VM programs for 293
guidelines and limitations of CMS IUCV 283
guidelines for using APPC/VM in CMS 294

H
handlers, interrupts 173
handling external interrupts 174
HCPGPI MACLIB 21, 220
HCPPSI MACLIB 21, 220
HDR1 tape label 169
HEADER parameter on APPLMSG macro 93
HLD function on HDNIUCV 292
HNDEXT macro

creating a default handler 179
deleting a handler 179
handling specific interrupts, examples 176
overview 174

HNDINT macro 181
HNDIO macro

defining handlers, considerations 181
defining handlers, conventions 183, 184
defining handlers, examples 182
deleting an I/O interrupt handler 185
entry and exit linkage 183, 184
overview 181

HNDIUCV macro
CLR function 309, 310
ERROR parameter 305
EXIT parameter 305
functions 292
IPWHATRC return code 309

HNDSVC macro
creating an SVC interrupt handler 186
deleting an SVC interrupt handler 187
entry and exit linkage 187

how CMS macros work 22
how CMS manages files 113
HSVCSAVE macro 187
HX (Halt Execution) immediate command

effect on DLBL definitions 413

I
I/O (input/output)

assembler language I/O instructions 29
assignments 410

I/O (input/output) (continued)
completing operation 87
console I/O

displaying messages at your terminal 92
full-screen I/O 83, 89
reading lines from a terminal 94
retrieving messages from a buffer 92
writing lines from a terminal 94

defining VSAM files 453
device assignments in CMS/DOS 408, 424
DIAGNOSE X'A4' 29
DIAGNOSE X'A8' 29
disk file I/O 131, 141
file compatibility 119
listing assignments 410
macros 427
overview of CMS I/O support 28
preferred interface I/O macros 29
storing the subchannel id in register 1 30
tape 459
tape I/O 151
tapes 466
unit record I/O 147, 151

I/O commands of several architectures 30
I/O errors related to data spaces 188
I/O interrupts

defining handlers, considerations 181
defining handlers, conventions 183, 184
defining handlers, examples 182
deleting an I/O interrupt handler 185
entry and exit linkage 183, 184
handling overview 179

IBM Personal Computer Enhanced Connectivity Facilities 6
IBM standard labeled tapes

reading backward 379
IBM standard user labeled tapes

reading backward 379
user label exit 387

Identify system service (*IDENT)
connecting to 295
overview 295
severing connection to 295

identifying
macro libraries 220
macro libraries to search in CMS/DOS 417
master catalog for VSAM in CMS/DOS 454
multivolume VSAM files in CMS/DOS 458
multivolume VSAM files in OS 465
VSAM master catalog in OS 462

IIP (ISAM Interface Program) 474
IJSYSCL ddname defined in CMS/DOS 412
IJSYSCT ddname 461
IJSYSRL ddname defined in CMS/DOS 412
IJSYSSL ddname defined in CMS/DOS 412
IMMCMD macro

creating immediate commands 200
deleting immediate commands 202
querying immediate commands 202
register contents 200
rules for creating immediate commands 201

immediate commands
creating 200
definition of 200
deleting 202

526 z/VM: 7.4 CMS Application Development Guide for Assembler

immediate commands (continued)
querying 202
rules for creating 201

imperative macros 441
IMPORT access method services function 470
importing VSAM data sets 470
INCLUDE command

resolving external references 225
VSE linkage editor control statement, specifying in 422

Include Control Section loader control statement 226
input descriptors of LRDDs 96
input/output 83
instructions, assembler

AMODE pseudo-op 27
RMODE pseudo-op 27

instructions, privileged 16
insufficient virtual machine storage size 71
INTBLOK macro 184
interface, alternate VSAM emulator 480
interfaces, application 117
internal I/O buffer 150
interrupt handling

CMS default handler 176
console interrupts 84
defining a dummy handler 176
defining a specific interrupt handler 176
external interrupts

CMS default external interrupt handler 176
creating a default handler 179
deleting a handler 179
enabling and disabling 175
entry and exit linkage 177
handling specific interrupts, examples 176
overview 174
register contents 177
types of 174

first-level interrupt handler 175
FLIH 175
for a 3270 device 84
I/O interrupts

defining handlers, considerations 181
defining handlers, conventions 183, 184
defining handlers, examples 182
deleting an I/O interrupt handler 185
entry and exit linkage 183, 184
overview 179

immediate notification 182
machine check interrupts

overview 188
manipulating the PSW mask 173
no ECD processing, example 177
optional ECD posting, example 177
program interrupts 188
saving across abends 182
saving across end-of-command 182
second-level interrupt handler 175
SLIH 175
SVC interrupts

creating an SVC interrupt handler 186
deleting an SVC interrupt handler 187
entry and exit linkage 187

synchronizing interrupt processing 182
unsolicited interrupts 84
user-defined 175

interrupt handling (continued)
using a dummy handler 183
waiting for unsolicited interrupts 183
with the CONSOLE macro 84

interrupt mask settings 48
interrupts

connection complete 289
connection pending 289
function complete 290
message pending 289
SENDREQ 289
SEVER 289
waiting for console interrupts 86

interrupts, handling console 84
introduction 1
INTTYPE parameter on NUCEXT 192
INTTYPE parameter on SUBCOM macro 198
IPBACK return code value 309
IPSABEND return code value 309
IPSNORMD return code value 309
IPWHATRC=IPBACK return code 309
ISAM

CMS restriction 384
CMS/DOS restriction 407

ISAM Interface Program (IIP)) 474
IUCV functions

APPC/VM functions not supported on IUCV paths 303
APPC/VM, IUCV functions that work differently 303
assembler macros 305
CMS IUCV to communicate between two virtual
machines 280
CMS support 279
CMS, between two virtual machines 280
CONNECT 295
differences from APPC/VM 303
IUCV functions not supported on APPC/VM paths 303
relate to both APPC/VM and IUCV paths 290
SEVER 295
severing a path 292
shared APPC/VM and IUCV functions 303
what your partner can issue after a sever 292
when to sever 292

IUCV SEVER 309
IUCVCOM macro 293
IUCVINI macro 293

J
JCL 348
job control language equivalent in CMS 348
job step 348
JOBCAT 348
JOBLIB 348

K
KEY parameter on NUCEXT 192
KEY parameter on SUBCOM macro 198

L
LA instruction

conversion considerations 31

Index 527

label
DOS disks 455
OS VSAM disks, determining for AMSERV 462
using VSAM tapes in CMS/DOS 460
using VSAM tapes in OS 466

Label Processing Using CMS Macros and Commands 166
label processing, general description 152
LABELDEF command

description 169
use of 169

LABOFF (label off) processing 160
last change date 112
last change time 112
levels, SVC 17
libraries

automatic library search 346
CMS/DOS 442
concatenating files 344
copying modules from 414
DOS core image 416
DOS libraries in CMS/DOS 413
DOS/VSE source statement used in CMS 413
identifying an OS/MVS object library 345
LOADLIBs, executing and creating 343
maintaining CMS LOADLIBs 343
programs, CMS/DOS 443
types

LOADLIBs 342
MACLIBs 342
TXTLIBs 342

using directories 415
LIBRARY loader control statement 226
limitations for APPC/VM in CMS 294
limitations of CMS IUCV 283
LINEDIT macro

replace with APPLMSG 92
LINERD macro

example 103
FORM=MULTIPLE parameter 94
input descriptors 96
LRDDs 96
mapping, LRDDs 99
multiple inputs 96
reading lines from a terminal 94

LINEWRT macro
example 103
FORM=MULTIPLE parameter 94
LWRDs 95
mapping, LWRDs 97
multiple outputs 95
output descriptors 95
writing lines from a terminal 94

link edit
in CMS/DOS 420
modules form DOS relocatable libraries 422
output 422
specifying control statements 421
TEXT files 422

link-editing 348
linkage editor map

created by DOS/VSE linkage editor 423
option of VSE ACTION control statement, effect in
CMS/DOS 423

linking to a program 39

list format, macros 22
LISTCAT access methods services function 448
LISTCRA access methods services function

calling AMS from an application program 448
LISTDS command

listing
DOS files 406
extents occupied by VSAM files 451
free space extents 451
OS and DOS disks 451
OS and DOS files 451

used with OS/MVS data sets 368
listing

input/output assignments 410
logical unit assignments in CMS/DOS 410

LISTING file
changing file name 448
created by AMSERV command 447
created by ESERV command 415

listing macros in libraries 220
LISTIO command

listing device assignments 410
LKED command

description 368
specifying input to 344
using 344

LOAD command
determining where files get loaded 222
executing TEXT files 224
generating relocatable modules 227
generating transient modules 228
how long does your program stay in storage 213
program life 213
setting addressing mode 27

LOAD macro, OS/MVS
how long does your program stay in storage 214
program life 214

load module 348
loader control statements 226
loading

core image phases into storage for execution 423
loading a private copy of a segment 76
loading a shared copy of a segment 76
loading text files

determining program entry points 226
determining where files get loaded 222
loader control statements 226
resolving external references 225
TEXT file libraries 227

loading VMLIB 221
LOADLIBs 342
LOADMOD command

how long does your program stay in storage 213
program life 213

local resource
revoking your own 295

Locate mode in OS simulation 383, 386
locating saved segments 77
log data 307
logical record interface

BFTEK=A 377
DCB macro, specifying 377
description 376
putting variable spanned records 387

528 z/VM: 7.4 CMS Application Development Guide for Assembler

logical record interface (continued)
QSAM Locate mode 387
QSAM Update mode 387
specifying with BUILDRCD macro 376

logical record length
determining on CMS DASD 380
specifying with DCB macro 377
specifying with FILEDEF command 377

logical record length of FILEDEF command 361
logical saved segments

contents 75
description 75
how CMS handles objects 78
nucleus extensions 193
subcommand processors 199

logical units
assigning in CMS/DOS 408

logically sparse file 114
loop, command 17
LRDDs

example 99
input descriptors 96
mappings 99

LRECL
determining on CMS DASD 380
specifying with DCB macro 377
specifying with FILEDEF command 377

LRI
BFTEK=A 377
DCB macro, specifying 377
description 376
putting variable spanned records 387
QSAM Locate mode 387
QSAM Update mode 387
specifying with BUILDRCD macro 376

LU 6.2 287
LWRDs

example 99
mappings 97
output descriptors 95

M
machine check interrupts

overview 188
MACLIB command

ADD function 490
adding macro to a CMS macro library 415
creating a macro library 490
example 487
listing macros in libraries 220
MAP function 220

MACLIBs
creating 417
DMSGPI MACLIB 15, 21, 220
DMSOM MACLIB 15, 21
HCPGPI MACLIB 21, 220
HCPPSI MACLIB 21, 220
MVSXA MACLIB 220, 319, 334
OSMACRO MACLIB 220, 319, 334
OSMACRO1 MACLIB 220, 319
OSVSAM MACLIB 220, 319
using 416
VSE assembler language restricted use in CMS/DOS 420

MACLIST command 220
macro libraries

creating 417
DMSGPI MACLIB 15, 21, 220
DMSOM MACLIB 15, 21
HCPGPI MACLIB 21, 220
HCPPSI MACLIB 21, 220
identifying 220
MVSXA MACLIB 220, 319, 334
OSMACRO MACLIB 220, 319
OSMACRO1 MACLIB 220, 319, 337
OSVSAM MACLIB 220, 319
using 416
VSE assembler language restricted use in CMS/DOS 420

macros
AMODESW 35
CMS compatibility macros 10
CMS preferred macros 6
CMSDEV macro 148
CMSIUCV macro 292
coding 21
compatibility macros, CMS 10
complex list format, macros 22
declarative 434
DMSABEXP macro 390
ERROR= parameter 21
execute macros 22
formats of macros 22
HNDEXT macro 174
HNDIUCV macro 292
how CMS macros work 22
imperative 441
LINERD 94
LINEWRT 94
list format, macros 22
NUCEXT macro

general formats 191
OPEN 361
OS/MVS 365
OS/MVS simulated macros 320
preferred macros, CMS 6
PRINTL macro 147, 148
PUNCHC macro 150
RDCARD macro 150
SAM 434, 441
standard format, macros 22
STIMERM 342
supervisor 427
VSAM, supported under CMS 475
VSE assembler language macros supported in CMS 417
VSE macros supported by CMS/DOS 427
WAITECB macro 178

macros working on SFS files
DOS macros 127
OS macros 127
using FS macros or CSL routines 127

managing a resource in APPC/VM 295
manipulating BFS file 116
manipulating CMS file 113
manipulating SFS files 123
MAP files

created by DOSLKED command 423
created by DSERV command 416

master catalog sharing 449

Index 529

MEMBER option of FILEDEF command 362
merging collections

revoking gateways in 295
revoking resources in 295

message pending interrupts 289
message repository

sample 92
using with APPLMSG 93

messages
displaying at your terminal 92
retrieving from a buffer 92

migrating from SSM instruction to ENABLE macro 173
migration, Shared File System

Existing programs on shared SFS files
changing for files shared through aliases 121
changing for new return codes 121
changing for reading shared files that are locked
122
replacing shared files 122

Modifying programs that replace SFS files
COPYFILE or DMSFILEC 123
FSOPEN macro with OPENTYPE=REPLACE 123
SFS routines 123
temporary, private files 123

Non-SFS statements or macros on SFS files
determining which method you should use 127
FS macros on SFS files 123
high-level language statements on SFS files 123
mixing SFS and non-SFS statements 126
OS and DOS macros on SFS files 125

non-shared SFS files, using programs written for
minidisks 119
programs written for minidisks on non-shared SFS files
119
replacing shared files 122
shared SFS files, using programs written for minidisks
120

minidisks
caching 119
description 107
EDF data integrity 115
extents 461
restriction on using EXPORT/IMPORT with VSAM 470
temporary 452
transporting to OS system after using with CMS VSAM
451
using with VSAM data sets 450

MNOTEs 21
MODIFY parameter for CONSOLE macro 85
modifying a file system control block 135
modifying existing programs that replace SFS files 123
modifying parameter lists 44, 45
modules

DOS/VSE relocatable, copying into CMS files 414
relocatable, link-editing in CMS/DOS 422

modules, generating and executing
relocatable modules 227
restricting a module to a particular mode 228
saving historic information for a module 229
specifying a residency mode for a module 228
specifying an addressing mode for a module 228
transient modules 228

modules, relocatable 227
modules, transient 228

Move mode in OS simulation 383, 386
MOVEFILE command

copying OS/MVS data sets 371
description 168
options

PDS 371
PDS option 371
use of 168
used with OS/MVS data sets 369

MSG option on STDEBUG command 67
MULT option

in CMS/DOS 454
of the DLBL command 460

multiple extents 458, 465
multiple resources, making updates to 309
multivolume extents 458, 465
MVS task control block 340
MVS/XA data management macros 320
MVS/XA supervisor macros 328
MVSXA MACLIB 220, 319, 334

N
NEW option on FSOPEN macro 136
NEW parameter on FSOPEN macro 124
no-ops in OS/MVS simulation 335
NOCLEAR option on CONSOLE WRITE 86
non-CMS environment 303
non-SFS statements or macros to manipulate SFS files 123
NONE option on FSOPEN macro 136
nonreentrant code

definition 139
nonrelocatable modules 227
nonstandard label processing, tapes 160
nonstandard label routine, writing 160
nonstandard labeled tapes, defining 164
NOWAIT option on CONSOLE READ 86
NSL (nonstandard label) processing 160
NUCEXT macro

creating immediate commands 200
defining nucleus extensions 191
deleting nucleus extensions 194
example, defining nucleus extensions 191
general formats 191
other parameters 192
querying nucleus extensions 194
register contents 193

nucleus extensions
anchor point, obtaining 194
creating 191
defining in logical saved segment 193
definition of 191
deleting 194
displaying information about 229
end-of-command nucleus extensions 192
immediate command nucleus extensions 192
in 31-bit mode 192
obtaining an anchor point 194
querying 194
specifying values at execution time 192

NUCLEUS subpool 57
NUCXLOAD command

how long does your program stay in storage 213
program life 213

530 z/VM: 7.4 CMS Application Development Guide for Assembler

NUCXMAP command 229
null segments 356
NUM parameter on APPLMSG macro 93
number of data blocks 110
number of pointer block levels 110
number of records in the file 111

O
object module 348
OBTAIN option on STDEBUG command 67
obtaining free storage 55
obtaining information about paths 87
open intent 118
OPEN macro

adding records to the end of a file 379
allocating a record area 377
data set label information 382
EXTEND parameter 379
filling in the DCB fields 382
logical record interface (LRI) 377
open processing 381
opening data sets 378
RDBACK parameter 378
reading tape files backward 378
specifying an input data file 378
specifying an output data file 379
testing to see is completed successfully 381

Open routine (DMSOPEN)
open intent 118

opening CMS file 136
OPENTYP parameter on FSOPEN macro 124, 136
operating characteristics 15
Operating System (OS)

CMS support for 445
data sets 349
disks

compatibility with DOS disks 450
determining free space 451
extents 461
formatting using DSF 452
using with AMSERV 449

files
handling files on CMS disks 365
handling files on OS/MVS disks 368
using the GLOBAL command 370
using with XEDIT 370

formatted files 373
macro simulation 319
macros

GET 373
PUT 373
PUTX 373
READ 374
WRITE 374

reading data sets 384
simulated data sets 364, 365
simulated OS/MVS supervisor services 335
simulation in CMS 317
supervisor services 335
tape volume switching 397, 399
terminal sessions 483

OPSECT 363
OPTION command 405

option mask on DCB abend exit 390
ORB parameter on CONSOLE macro 88
order of functions in CMS IUCV 280
ORIGIN parameter on NUCEXT 192
OS (Operating System)

access method service operands not supported in CMS
473
CMS support for 445
data sets 349, 384
disks

compatibility with DOS disks 450
determining free space 451
extents 461
formatting using DSF 452
using with AMSERV 449

files
handling files on CMS disks 365
handling files on OS/MVS disks 368
using the GLOBAL command 370
using with XEDIT 370

formatted files 373
macro simulation 319
macros

GET 373
PUT 373
PUTX 373
READ 374
WRITE 374

reading data sets 384
simulated data sets 364, 365
simulated OS/MVS supervisor services 335
simulation in CMS 317
supervisor services 335
tape volume switching 397, 399
terminal sessions 483

OS macros 125
OS simulated macros

accessing data 373
BUILDRCD macro 376
ESPIE 334
macro expansion 335
macro libraries 319
parameters supported by CMS 320
simulation of OS/MVS macros 318
SPIE 334
STAE 334
table of macros 320
using OS/MVS simulated data sets in CMS 363

OS/MVS macro expansion 335
OS/MVS macros for assembly only 337
OS/MVS simulation

accessing data 373
buffering techniques 375
cleaning up storage 338
considerations for files on shared directories 367
creating LOADLIBs 343
data sets 349
end-of-file marker 366
executing LOADLIBs 343
exit availability 340
GETMAIN storage 339
history 317
how CMS performs 317
LOADLIBs 342

Index 531

OS/MVS simulation (continued)
logical record interface (LRI) support 376
macro libraries 319
module libraries 342
MVS task control block 340
MVSXA MACLIB

contents of 319
on SFS files 125
open processing 381
OS/MVS macros for assembly only 337
OSMACRO MACLIB

contents of 319
OSMACRO1 MACLIB

contents of 319
OSVSAM MACLIB

contents of 319
program boundaries 340
programming considerations 318
record formats 350
resource management 338
simulated macros 320
specifying OS/MVS simulated data files 366
specifying OS/MVS simulated data set 359
storage clean-up 340
subpools 339
Tape Library Dataserver, using 170
terminology

CMS equivalents 347
timer support 342

OS/QSAM use with SFS files 368
OS/VSAM

error codes 476
macros

ACB 475
CHECK 475
ENDREQ 475
ERASE 475

VSAM macros not supported in CMS 475
OSMACRO MACLIB

OSMACRO MACLIB 334
OSMACRO1 MACLIB 220, 319, 337
OSRUN command 342, 343
OSVSAM MACLIB 220, 319
output

controlling the file name 448
devices restricted in CMS/DOS 411
file produced by ASSEMBLE command 420
linkage edit CMS DOSLIBs 422
listings from AMSERV command 447
printed access method service listing 448

output descriptors of LWRDs 95
overwrite file attribute

description 111
in SFS 123

P
parameter lists

copying and modifying plists 44
example of using SCAN macro 41
extended 41
format 41
modifying parameter lists 45
specifying 44

parameter lists (continued)
specifying an extended plist 44
tokenized 41
using the SCAN macro 44
using the SCAN macro to build 41

parameters
modifying CONSOLE parameters 85

parameters lists
extended 39
SCAN macro 39
setting them up 39
tokenized 39

PARM operand on OSRUN command 342
partition size specified for execution in CMS/DOS 425
partitioned data set

description 349
record formats 350

partitioned data set (PDS)
copying into CMS files 371
specifying members with FILEDEF command 371

password
defining for VSAM catalogs 456
for VSAM catalogs in CMS/DOS 456
for VSAM catalogs in OS 464

paths 287
paths, console 83, 85
PERM option of FILEDEF command 361
Personal Computer Enhanced Connectivity Facilities 6
physical saved segments

description 75
PIP

before accepting the connection 291
description 308
uses of 308

PLISTs, determining storage for 42
PLU (programmer logical units) assigned in CMS/DOS 408
portability of OS programs 335
preferred functions, CMS 10
preferred interface group

advantages of
370 virtual machine 5
XA virtual machine 5
XC virtual machine 5

components of 6
preferred interface I/O macros 29
preferred macros, CMS 6
preferred routines, CMS 9
PRINT access methods services function 448
printing

access method services listings 448
obtaining device information 148
overview 147
using the PRINTL macro 148

printing bytes, determining how many 147
PRINTL macro 147, 148
private resource manager programs

used in assembler scenario 299
PRIVATE subpools 57
privileged instructions 16
procedures, DOS/VSE, copying into CMS files 414
PROFILE EXEC file

CMS/DOS VSAM user 454
OS VSAM user 461

PROGMAP command 230

532 z/VM: 7.4 CMS Application Development Guide for Assembler

program attribute default values 215
program boundaries 18
program entry points, determining 226
program handling

abend processing 203, 206
Program Initialization Parameters (PIP)

before accepting the connection 291
description 308
uses of 308

program interrupts 188
program invocation

addressing mode 39
call types 44
CMSCALL macro 39
supervisor assisted linkage

CMSCALL call-type values 43
CMSCALL parameter list handling 45
making the call 43
overview 39
receiving control 46
register usage 47
returning to the calling program 51
setting up a parameter list 41
SVC 202 call type values 49
SVC 202 parameter list handling 46
USERSAVE control block 49

SVC 202 39
program invocation call type options 44
program management

a sample scenario 212
addressing mode attributes 214
assembling programs

file definitions 218
identifying macro libraries prior to assembly 220

default program attributes 215
determining program entry points 226
displaying information about programs in storage 229
executing text files 221, 227
executing TEXT files 224
generating and executing modules

relocatable modules 227
restricting a module to a particular mode 228
saving historic information for a module 229
specifying a residency mode for a module 228
specifying an addressing mode for a module 228
transient modules 228

loader control statements 226
loading text files

determining where files get loaded 222
overview 211
packaging considerations 211
residency mode attributes 214
resolving external references 225
TEXT file libraries 227

program packaging
assemble files 211
immediate commands 211
modules 211
nucleus extensions 211
scenario 212
subcommands 211
text files 211

programming scenarios
coordinating resources with CRR 311

programming scenarios (continued)
user and global resource manager

assembler 295, 298
user and private resource manager

assembler 299, 302
programs

input and output files, identifying 357
libraries 342
specifying virtual partition size 425

programs written for minidisks on non-shared SFS files 119
programs written for minidisks on shared SFS files 120
PSCREEN REFRESH, moving text from the queue 95
PSERV command

description of 405
using 414

PSW mask, manipulating 173
PSWs

comparison among architectures 23
PUNCHC macro 150
punching 150
PURGE parameter on SEGMENT macro 77
purging a save segment 77
PUT macro

fixed length records 386
modes 386
variable spanned records 387
variable-length records 386

PUTX macro 373

Q
QSAM access method

adding records to the end of a file 379
blocking 365
deblocking 365
EXTEND parameter on the OPEN macro 379
Locate mode 386
logical record interface (LRI) support 376
PUT macro 386
reading a tape backward 378
specifying an input data file 378
specifying an output data file 379
using the GET macro 383
variable spanned ASNI records 356
variable-length ANSI records 353

QUERY command
description of 405

QUERY FILEDEF command
determining what file definitions are in effect 219

QUERY MACLIB command 220
QUERY parameter on ANCHOR macro 195
QUERY SEGMENT command

displaying information about 79

R
RCW

description 353
illustration 353
variable-length ANSI records 353

RDBACK parameter on OPEN macro 378
RDBUF option on CONSOLE READ 86
RDCARD macro

Index 533

RDCARD macro (continued)
description 150
RDHEAD parameter 150

RDHEAD parameter on RDCARD macro 150
RDMOD option on CONSOLE READ 86
RDW

assembling records into blocks 386
breaking blocks into logical records 383
description 352
illustration 352
putting fixed length records 387
putting variable-length records 387
replacing with the SDW 354

READ macro
data event control block (DECB) 383
fixed-length records 383
register contents on completion 383
retrieving data 383
using the CHECK macro 383
variable spanned records 383
variable-length records 383

READ option on FSOPEN macro 136
READ parameter on CONSOLE macro 86
READ parameter on FSOPEN macro 124
reading

DOS files 407
OS/MVS data sets 384
restrictions

OS/MVS data sets 384
SAM files 407

SAM files 407
tapes 466
VSAM tape files 460

reading files that are locked 122
reading from a console 86
reading multiple inputs with LINERD 96
RECEIVE function (IUCV macro)

overview 291
Receive state 288, 291
receiving data 291
receiving data on the conversation 291
RECFM option of FILEDEF command 361
RECFM option on DCB macro 350
RECFM option on FILEDEF command 350
record

OS simulated block vs. CMS record 366
record area

default for a CMS disk 377
default for a console 377
default for a printer 377
default for a punch 378
default for a reader 377
default for a tape 377
default for an OS disk 377
default values for the record area 377
dummy device type 378

record control word
description 353
illustration 353
variable-length ANSI records 353

record descriptor word
assembling records into blocks 386
breaking blocks into logical records 383
description 352

record descriptor word (continued)
illustration 352
putting fixed length records 387
putting variable-length records 387
replacing with the SDW 354

record format
access methods. 351
description 110, 350
determining BLKSIZE 380
determining LRECL 380
DOS files 408
example 350
F-format 110
logical record interface (LRI) 376
program input and output files 361
RECFM option 350, 351
specifying 350, 351
V-format 110

record number 111
records, reading files 138
recoverability file attribute 111
reentrant code

definition 139
sample program 141

reg option on CONSOLE WRITE 86
registers

contents from SEGMENT macros 76
contents when called routine starts 48
contents when calling a nucleus extension 193
contents when calling anchor facility 196
contents when calling IMMEMD macro 200
contents when calling SUBCOM 198
interrupt handler conventions 184
usage 47

RELEASE command
used with OS/MVS disks 369

RELEASE option on STDEBUG command 67
releasing a specific storage block 60
releasing specific private subpools 60
relocatable files

modules, link-editing in CMS/DOS 422
relocatable modules 227
REP function on HDNIUCV 292
Replace loader control statement 226
REPLACE option on FSOPEN macro 136
REPLACE parameter on FSOPEN macro 124
replacements CMS for compatibility macros 10
replacements for CMS compatibility functions 11
replacing BALR 37
replacing records 115
replacing shared files 122
REPRO access method services function 470
request-to-send interrupts 289
RES function on HDNIUCV 292
Reset state 288
RESID parameter of APPCVM CONNECT 297, 301
residency mode

default values 215
setting 26
setting at assembly time 215
setting at load time 215
setting at module generation time 215
when to specify 214

resource

534 z/VM: 7.4 CMS Application Development Guide for Assembler

resource (continued)
revoking your own 295
virtual machines connecting to 295

resource manager programs
scenarios

assembler 295, 302
responding to prompting messages from AMSERV in an EXEC
471
responsibilities of user for CMS/DOS 442
restoring and saving addressing modes 36
restrictions

BDAM 375
CMS/DOS 443
ddnames in OS VSAM programs 460
reading

OS/MVS data sets 384
SAM files 407

using
DOS macro libraries in CMS/DOS 416
minidisks with VSAM data sets 451
OS/MVS programs in CMS/DOS 404

return code on DCB abend exit 390
return codes

for SEGMENT macro 76
from access method services 447

returning file characteristics 128
returning to a program 51
revoking

resources you do not own 295
your own resources 295

revoking a resource in APPC/VM 295
RMODE pseudo-op 27
RMS (Removable Media Services) 170
rolling back changes 309
routines, CSL

advantages 127
CMS preferred routines 9
CSL preferred routines 9
DMSCATTR 123
DMSCOMM 125
DMSFILEC 123
DMSOPEN 118
DMSPUSHA 123
DMSQFMOD 126
interface to SFS 117
preferred routines, CMS 9
VMLIB 221

RSERV command
description of 405
examples 414

RTNLOAD 221

S
SAM (Sequential Access Method)

declarative macros 434, 441
I/O macros 434, 441
reading 407

sample terminal sessions
for DOS programmers 487
for OS programmers 483
using access method services 493

saved segments
displaying information about 79

saved segments (continued)
finding the ending address of a saved segment 76
finding the starting address of a saved segment 76
logical saved segments 75
physical saved segments 75
segment space 75

saving and restoring addressing modes 36
scalar data types in CSL routines 240
SCAN macro

example 43
example using SCAN TRANS 42
setting up parameter lists 41
TRANS parameter 42

scenarios for programming
user and global resource manager

assembler 295, 298
user and private resource manager

assembler 299, 302
SCRIPT command execution restrictions in CMS/DOS 404
SDW

breaking blocks into logical records 383
description 354
illustration 354
illustration of variable spanned ANSI records 355
null segments 356
putting variable spanned records 387
QSAM output 387
replacing the RDW 354
segment control code 354
variable spanned ANSI records 355
variable spanned records 386

search order
for CMS commands 15
for executable phases in CMS/DOS 424
used by ASSEMBLE command 420

search order, abend exit routines 203
searching libraries 220
second-level interrupt handler

I/O processing 181
returning to an FLIH 185
types 175

SEGMENT command
reserving storage areas 77

segment descriptor word
breaking blocks into logical records 383
description 354
illustration 354
illustration of variable spanned ANSI records 355
null segments 356
putting variable spanned records 387
QSAM output 387
replacing the RDW 354
segment control code 354
variable spanned ANSI records 355
variable spanned records 386

segment interface
description 376
GET/PUT macros 376
putting variable spanned records 387
READ/WRITE macros 376

SEGMENT macro
determining the SHARE attribute 76
FIND parameter

description 76

Index 535

SEGMENT macro (continued)
FIND parameter (continued)

example 76
register contents 76

loading a saved segment 76
locating saved segments 77
PURGE parameter

deleting a saved segment 77
example 77
register contents 77

register contents 76
segment space 75
Send state 288, 291
SENDCNF function (APPCVM macro)

overview 307
SENDCNFD function (APPCVM macro)

overview 307
SENDDATA function (APPCVM macro)

overview 291
scenario 297, 302

SENDERR function (APPCVM macro)
overview 307

sending data
overview 291

sending data on the conversation 291
sending early information in APPC/VM 308
sending error information 307
SENDREQ function (APPCVM macro)

overview 307
SENDREQ interrupts 289
SENDREQ macro 6
sequence of functions in CMS IUCV 280
sequential data set

description 349
record formats 350

sequential reads 137
Server-Requester Programming Interface for VM 6
SET CMS370AC 4
SET command

description 405
DOSPART operand 425

SET DOS command used to enter or exit DOS environment
404
SET function on HNDIUCV 292
SET GEN370 4
SET GETMAIN command 339
SET LOADAREA command

determining where files get loaded 222
Set Location Counter loader control statement 226
SET parameter on ANCHOR macro 195
SET parameter on SUBCOM macro 197
SET STORECLR command 338
setting up a conversation in APPC/VM 305
setting UPSI byte 425
settings when a called routine starts 48
SEVER function (APPCVM macro)

overview 291
revoking your own resources 295
severing a path 292
what your partner can issue after a sever 292
when to sever 292

Sever state 288
severing a path 292
severing connection to your partner

severing connection to your partner (continued)
using assembler APPC/VM 291

SFS (Shared File System)
architecture 107
caching 119
committing changes 125
CSL routines 117
data integrity 116
DOS macros 127
file directory 108
FS macros 118
FS macros on SFS files 123
FSCLOSE macro 124
FSOPEN macro 124
FSWRITE macro 124
mixing CSL routines and FS macros 126
open intent 118
OS and DOS macros 125
OS macros 127
OS simulation 125
return codes 121
specifying open intent 118
update-in-place processing 116
using FS macros or CSL routines 127

SFS files and OS/MVS QSAM 368
Shared File System

architecture 107
caching 119
committing changes 125
CSL routines 117
file directory 108
FS macros 118
FS macros on SFS files 123
FSCLOSE macro 124
FSOPEN macro 124
FSWRITE macro 124
mixing CSL routines and FS macros 126
open intent 118
OS and DOS macros 125
OS simulation 125
return codes 121
specifying open intent 118

Shared File System (SFS) migration
Existing programs on shared SFS files

changing for files shared through aliases 121
changing for new return codes 121
changing for reading shared files that are locked
122
replacing shared files 122

Modifying programs that replace SFS files
COPYFILE or DMSFILEC 123
FSOPEN macro with OPENTYPE=REPLACE 123
SFS routines 123
temporary, private files 123

Non-SFS statements or macros on SFS files
determining which method you should use 127
FS macros on SFS files 123
high-level language statements on SFS files 123
mixing SFS and non-SFS statements 126
OS and DOS macros on SFS files 125

non-shared SFS files, using programs written for
minidisks 119
programs written for minidisks on non-shared SFS files
119

536 z/VM: 7.4 CMS Application Development Guide for Assembler

Shared File System (SFS) migration (continued)
replacing shared files 122
shared SFS files, using programs written for minidisks
120

shared SFS files, using programs written for minidisks 120
SHARED subpools 57
SID (subchannel-identification word) 30
signaling an error 307
simulated OS/MVS macros 11
simulated OS/MVS supervisor calls 335
simulated OS/MVS supervisor services 335
simulation

of VSE functions by CMS 426
OS/MVS macro 319

SL tapes
reading backward 379

SLC loader control statement 226
SLIH

I/O processing
181
types 175

SNA
definition 287

sorting directories of DOS/VSE private libraries 415
sparse files

logically 114
structurally 114

SPIE macro 334
SSERV command

description of 405
examples 413
using 413

SSM instruction
converting to ENABLE macro 173

SSM instruction, converting to the ENABLE macro 173
STAE macro 334
standard format, macros 22
standard label processing, CMS/DOS 165
standard labels, OS simulation 152
START command

executing TEXT files 224
used with FETCH command 423

STATE command used with OS/MVS data sets 369
states, APPC/VM

Receive 291
Send 291
switching 297, 302

STDEBUG command
controlling address ranges traced 67
debugging storage problems 62
description 62
detecting storage fragmentation 69
limiting a trace 67
MSG option 67
OBTAIN option 67
pairing obtain requests 68, 69
pairing release requests 68, 69
RELEASE option 67
STOP option 72
tracing calls to storage 66
tracing obtain requests 62
tracing release requests 62
USERID option 73
using the MSG option 67

STDEBUG command (continued)
using the OBTAIN option 68, 69
using the RELEASE option 68, 69

STEPCAT 348
STEPLIB 348
STIMERM macro 342
STOP option on STDEBUG command 72
storage available in your virtual machine calculated by CMS
425
storage configuration

for a virtual machine equal to 17 MB 54
for a virtual machine greater than 17 MB 54
for a virtual machine less than 16 MB 54

storage errors related to data spaces 188
storage fragmentation 65, 69
storage key settings 48
storage layout, CMS 54
storage, virtual machine

addressing mode (AMODE)
setting 26
when to specify 214

bimodal addressing 24
comparison of addressing in different architectures 24
creating subpools 57
free storage management 53, 60
limitations 24
residency mode (RMODE)

definition of 25
setting 26
when to specify 214

sample storage layout 54
saved segments 75, 78

STORMAP command
controlling storage to be mapped 62
debugging storage problems 62
determining amount of unallocated storage 61
determining current utilization of free storage 60
determining if contiguous free storage exists 61
determining is storage fragmentation exists 65
example 61, 63, 65
EXTSET option 63
FILE APPEND option 65
information about allocated free storage 60
information about size of largest contiguous block 60
information about unallocated free storage 60

STRINIT macro 339
structurally sparse files 114
suballocated VSAM cluster, defining 467
subchannel-identification word (SID) 30
SUBCOM interface, using 128
SUBCOM macro

defining subcommands 197
deleting subcommands 199
entry conditions 198
examples 197
general formats 197
other parameters 198
querying subcommands 191, 199

subcommand processors
defining in logical saved segment 199

subcommands
creating 197
definition of 197
deleting 199

Index 537

subcommands (continued)
querying 199

SUBPMAP command
checking remaining storage 66
debugging storage problems 62
description 62
determining allocation of pages to storage subpool 62
determining pages of storage allocated to a subpool 62
ENDCMD option 66
example 62, 66
EXTSET option 66

subpool integrity checking 60
SUBPOOL macro

31-bit programs 53
creating subpools 57
examples

creating a global subpool 58
creating a private subpool 58
creating a shared subpool 58
creating a subpool in nucleus storage 58
saving global subpools across abends 58

general formats 53
releasing free storage 59

subpool management
description 53
determining amount of unallocated storage on a subpool
61
determining pages of storage allocated to a subpool 62
determining remaining storage in a subpool 66
SUBPMAP command 62
SUBPOOL macro 53

subpools
creating 58
creating a global subpool 58
creating a private subpool 58
creating a shared subpool 58
creating a subpool in nucleus storage 58
naming 58
saving global subpools across abends 58
types of

GLOBAL subpools 57
PRIVATE subpools 57
SHARED subpools 57

subpools, free storage 57
SUL tapes

reading backward 379
user label exit 387

supervisor assisted linkage
CMSCALL call-type values 43
CMSCALL parameter list handling 45
making the call 43
overview 39
receiving control 46
register usage 47
returning to the calling program 51
setting up a parameter list 41
SVC 202 call type values 49
SVC 202 parameter list handling 46
USERSAVE control block 49

supervisor calls 335
supervisor state 16
SVC

call type values 49
CMS/DOS support routines 428–434

SVC (continued)
interrupt mask settings 48
parameter list handling 46
register usage 48
return codes 50
storage key settings 48

SVC 202
call type values 49
parameter list handling 46
parameter lists 45
program invocation 39
XEDIT interface 128

SVC interrupts
addressing mode of trap routines 187
creating an SVC interrupt handler 186
deleting an SVC interrupt handler 187
entry and exit linkage 187

SVC levels 17
SVC support routines 428–434
switching addressing mode inline 36
switching states 297, 302
switching, CMS tape volume 397
SYNAD exit routine

description 388
FEOV macro 396
option on DCB macro 387
parameter on the DCB macro 388
spanned records, error handling 357

synchronizing updates to multiple resources 309
synchronous communications

compared with asynchronous 308
functions 308

SYSCAT system logical unit
assigning in CMS/DOS 454

SYSCLB system logical unit
assigning in CMS/DOS 409
unassigning 424

SYSIN system logical unit
assigning in CMS/DOS 409
input for ESERV command 415

SYSIPT system logical unit 409
SYSLOG system logical unit 409
SYSLST system logical unit

assigning in CMS/DOS 409
output from ESERV program 415

SYSPCH system logical unit
assigning in CMS/DOS 409
output from ESERV program 415

SYSRDR system logical unit 409
SYSRLB system logical units assigned in CMS/DOS 409
SYSSLB system logical units assigned in CMS/DOS 409
system completion code on DCB abend exit 390
system logical units

SYSCLB 409
SYSIN 409
SYSIPT 409
SYSLOG 409
SYSLST 409
SYSPCH 409
SYSRDR 409
SYSRLB 409
SYSSLB 409

System Network Architecture
definition 287

538 z/VM: 7.4 CMS Application Development Guide for Assembler

SYSTEM parameter on NUCEXT 192
system save area 39
System/370 architecture

assembler instructions
AMODE pseudo-op 27
RMODE pseudo-op 27

assembler instructions, comparison to 370-XA
31
assembler language I/O instructions 29
CMS I/O support

DIAGNOSE X'A4' 29
DIAGNOSE X'A8' 29
overview 28
preferred interface I/O macros
29

SYSxxx (programmer logical units)
programmer logical units, assigning 409

T
TAPE command 167
tape handling macros 151
tape I/O 151
tape label processing, IBM standard 153
Tape Library Dataserver, using 170
tape volume switching in CMS 397
TAPECTL macro used in tape label process 167
TAPEMAC command 167
tapes

considerations for CMS/DOS 408
end-of-tape processing in CMS/DOS 165
end-of-volume processing in CMS/DOS 165
in CMS/DOS 164
input 466
label processing 151
layout for ANSI tape 395
layout for IBM standard tape 395
output 466
reading 466
reading a tape backward 378
reading AL tapes backward 379
reading AUL tapes backward 379
reading SL tapes backward 379
reading SUL tapes backward 379
tape position with FEOV macro 395
used for AMSERV input and output 459

TAPESL Macro 167
TAPPDS command 167
TCLOSE command in tape label processing 164
template files for CSL 237
temporary disks

formatting using DSF 452
using for VSAM data sets 452

TEOVEXIT macro
CMS multivolume switching 396
FEOV macro 396

terminals
sample sessions for DOS programmers 487
sample sessions for OS programmers 483
sample sessions using access method services 493

terminology
CMS/DOS 403
OS/MVS

CMS equivalents of 347

TEXT file libraries 227
TEXT files

link-editing in CMS/DOS 422
text files, loading and executing

determining program entry points 226
determining where files get loaded 222
loader control statements 226
resolving external references 225
starting 224
TEXT file libraries 227

time file attribute 111
time of file creation 112
time of last change 112
timer interval support 342
timer support 342
tokenized parameter list 41
tracing calls to storage 66
tracing obtain requests 62
tracing release requests 62
transient area

location in CMS storage 54
transient modules 228
transporting VSAM data sets 451
TSO macros 335
TSO macros simulated 501
TVSPARMS macro 398
typewriter-type device (TTY) 84

U
UFLAGS option on CMSCALL 45
UFLAGS parameter on NUCEXT 192
UFLAGS parameter on SUBCOM macro 198
unassigning logical unit assignments in CMS/DOS 410
unique clusters, defining 468
unit record I/O

obtaining device information 148
printing 147
punching 150
reading 150
using the PRINTL macro 148

unlabeled tapes, defining 164
update-in-place processing

description 123
EDF files 115
in SFS 123
on SFS files 116

updating
VSE 442

UPSI (user program switch indicator)
byte, setting in CMS/DOS 425
operand, of CMS SET command, example 425
setting 425

user free storage 54
User free storage

location in CMS storage 54
user program

scenarios
assembler 295, 302

user responsibilities for CMS/DOS 442
USER subpool 57
USERID option on STDEBUG command 73
USERSAVE control block 49
Using BAL/BALR with AMODE ANY Programs 35

Index 539

Using SUBCOM to access files in storage 128
UWORD parameter on NUCEXT 192
UWORD parameter on SUBCOM macro 198

V
V-format, record format 110
variable length record format

ANSI records 353
BLKSIZE for variable-length ANSI records 353
block descriptor word 352
D option for ANSI records 353
DB option for ANSI records 353
description 352
getting data 383
illustration 352
illustration of variable-length ANSI record 353
nonspanned, format-D records for ANSI tapes 353
nonspanned, format-V records 352
PUT macro 386
reading data 383
record descriptor word 352
writing data 386

variable length records, reading 137
variable length spanned record format

DCB macro 354
description 354
error handling 357
example of moving 357
FILEDEF command 354
getting data with LRI 384
getting data with segment interface 384
illustration 354
illustration of variable spanned ANSI records 355
logical record length 354
moving spanned records 357
PUT macro 387
reading data 383
unit record devices 354
variable spanned ANSI records 355
writing data 386

virtual machine assignments 411
virtual machine environments, CMS 3
virtual machine storage

addressing mode (AMODE)
setting 26

bimodal addressing 24
comparison of addressing in different architectures 24
creating subpools 57
free storage management 53, 60
limitations 24
residency mode (RMODE)

definition of 25
setting 26
when to specify 214

sample storage layout 54
saved segments 75, 78

Virtual Storage Access Method (VSAM)
catalog

defining in CMS/DOS 454, 461
sharing 449
structure 457

CMS support for 445
data sets

Virtual Storage Access Method (VSAM) (continued)
data sets (continued)

exporting 470
identifying 460
importing 470
manipulating with AMSERV command 445

defining
catalogs in CMS/DOS 454
clusters 467
master catalog in OS 462
unique clusters 468
user catalogs in CMS/DOS 455

devices supported under CMS 480
disks 451
extent, multiple, information in CMS/DOS 458
extent, multivolume, information in CMS/DOS 458
files

in CMS/DOS 457
in OS 464

identifying multivolume files
in CMS/DOS 458
in OS 465

macros supported under CMS 475
master catalogs 454
multivolume extents 465
reading tape files 460
support of 365, 373
using in CMS 445
writing EXECs 471

VMFDOS command 408
VMLIB library 221
VMSIZE 54
volume table of contents (VTOC) 348
Volume Table of Contents (VTOC) 373
VSAM (Virtual Storage Access Method)

catalog
defining in CMS/DOS 454, 461
sharing 449
structure 457

CMS support for 445
data sets

compatibility considerations 475
exporting 470
identifying 460
importing 470
manipulating with AMSERV command 445

defining
catalogs in CMS/DOS 454
clusters 467
master catalog in OS 462
unique clusters 468
user catalogs in CMS/DOS 455

devices supported under CMS 480
disks 451
extent, multiple, information in CMS/DOS 458
extent, multivolume, information in CMS/DOS 458
files

in CMS/DOS 457
in OS 464

functions not supported in CMS 472
identifying multivolume files

in CMS/DOS 458
in OS 465

macros supported under CMS 475

540 z/VM: 7.4 CMS Application Development Guide for Assembler

VSAM (Virtual Storage Access Method) (continued)
master catalogs 454
multivolume extents 465
reading tape files 460
support of 365, 373
using in CMS 445
VSAM macros not supported in CMS 475
writing EXECs 471

VSAM emulator 480
VSAM option

of DLBL command 460
of DLBL command in CMS/DOS 453

VSCREEN WAITREAD, moving text from the queue 95
VSCREEN WAITT, moving text from the queue 95
VSE

assembler language macros supported in CMS 417
differences between CMS/DOS tape label processing
165
hardware devices supported 426
I/O macros 427
libraries 442
macros supported under CMS 418
macros, supervisor 427
supervisor macros 427
system residence volume, using in CMS/DOS 403
TLBL card in label tape processing 165
z/VM directory entries 442

VTOC 348
VTOC (Volume Table of Contents) 373

W
W option on CONSOLE WRITE 86
WAIT option on CONSOLE READ 86
WAIT parameter on CONSOLE macro 86
WAIT state 308
WAITECB macro 178
waiting for console interrupts 86
when to set addressing mode 215
when to set residency mode 215
Where CMSSTOR gets storage 55
who should read this book xxi
WRITE macro

ASCII/EBCDIC translation 386
description 386
fixed-length records 386
making sure the write completes 386
variable spanned records 386
variable-length records 386

WRITE option on FSOPEN macro 136
WRITE parameter of CONSOLE macro 86
WRITE parameter on FSOPEN macro 124
writing multiple outputs with LINEWRT 95
writing to a console 86
WSF option on CONSOLE WRITE 86
WVOL1 function in tape command processing 167

X
XA virtual machine

attributes 214
branching to a subroutine 36
I/O interrupts 173

XA virtual machine (continued)
nucleus extensions 192
program interrupts 188
PSWs 173

XC virtual machine
attributes 214
ESA/XC 3
I/O interrupts 173
program interrupts 188
PSWs 173
z/XC 3

XEDIT interface to files in storage
calling program to XEDIT storage 129
description 128
DMSXFLPT 129
DMSXFLRD 129
DMSXFLST 128
DMSXFLWR 129
example 130
moving the current line pointer 129
returning file characteristics 128
XEDIT storage to calling program 129

Z
z/Architecture

assembler language I/O instructions
29

z/Architecture CMS 3
z/CMS 3
z/XC

assembler language I/O instructions
29

z/XC architecture 3

Index 541

542 z/VM: 7.4 CMS Application Development Guide for Assembler

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6257-74

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: CMS Application Development Guide for Assembler
	SC24-6257-74, z/VM 7.4 (September 2024)
	SC24-6257-73, z/VM 7.3 (December 2023)
	SC24-6257-73, z/VM 7.3 (September 2022)
	SC24-6257-02, z/VM 7.2 (March 2021)
	SC24-6257-01, z/VM 7.2 (September 2020)

	Part 1. Introduction
	Chapter 1. The CMS Programming Interface
	Overview of the CMS Programming Interface
	CMS Virtual Machine Environments

	CMS Programming Interface Groups
	CMS Preferred Interface
	CMS Preferred Macros
	CMS Preferred Routines
	CMS Preferred Functions

	CMS Compatibility Interface
	CMS Compatibility Macros and Suggested Replacements
	CMS Compatibility Functions and Suggested Replacements
	Simulated OS/MVS Macros

	Chapter 2. CMS Operating Characteristics
	Overview of CMS Operating Characteristics
	CMS Command Search Order
	CMS Runs in Supervisor State
	How CMS Command Processing Works
	Explicitly Releasing Resources
	Letting CMS Clean Up After You

	The CMS Command Loop
	SVC Levels
	Abend Processing

	Determining When CMS Reclaims Resources
	Saving Resources across Boundaries
	Using Macro Libraries
	Coding CMS Macros
	How CMS Macros Work
	CMS Macro Formats

	Chapter 3. Architecture
	ESA/390, ESA/XC, z/Architecture, and z/XC Architecture
	ESA/390, ESA/XC, z/Architecture, z/XC, and System/370 PSWs
	31 Bit Addressing
	Conventions for 31-Bit Programs
	Bimodal Addressing
	Addressing Mode (AMODE)
	Residency Mode (RMODE)
	Setting the Addressing and Residency Modes
	Default values
	AMODE and RMODE instructions
	LOAD command
	GENMOD command
	SUBCOM and NUCEXT macros
	The MVS/XA Linkage Editor

	Calling Other Programs

	I/O Considerations
	CMS Preferred Interface I/O Support
	Using Diagnose Codes for I/O
	I/O Instructions
	The GETSID Macro
	Example

	Assembler Instructions That Work Differently
	Instructions That Are Sensitive to Addressing Mode
	Instructions That Are Not Supported

	Part 2. Using CMS Services
	Chapter 4. Program Invocation - Direct Branch Linkage
	Overview of Direct Branch Linkage
	Using BAL/BALR with AMODE ANY Programs
	Switching the Addressing Mode
	AMODESW Formats
	Using AMODESW - Examples
	Example 1 - Switch Addressing Mode Inline
	Example 2 - Branch to a Subroutine in 31-Bit Addressing Mode
	Example 3 - Save and Restore Addressing Mode
	Example 4 - Using AMODESW as an Alternative for BALR
	Example 5 - Set Addressing Mode According to a VCON
	Example 6 - Set Addressing Mode According to an ADCON

	Chapter 5. Program Invocation - Supervisor Assisted Linkage
	Overview of CMS Supervisor Assisted Linkage
	Supervisor Assisted Linkage — An Overview
	Setting Up a Parameter List
	Using the SCAN Macro
	Parameter List Format
	The Extended Parameter List
	The Tokenized Parameter List
	Determining Storage Needed for Parameter Lists
	Determining the Number of Arguments
	Translation Values
	Defining Translation Values
	Example

	Making the Call
	Specifying a Call Type
	Specifying a Parameter List
	Specifying an Extended Parameter List

	Copying and Modifying Parameter Lists
	When to Specify COPY=NO
	Modifying Parameter Lists

	Other CMSCALL Options

	Call Charts

	Receiving Control
	Register Usage
	Interrupt Mask and Storage Key Settings

	USERSAVE Control Block
	SVC 202 Call Type Values
	Return Codes

	Returning To a Program
	Example 1 — A Simple Return
	Example 2 — Setting a Return Code
	Example 3 — Returning Register Contents

	Chapter 6. Using Free Storage
	Overview of Free Storage
	CMSSTOR and SUBPOOL Macros
	CMS Storage Layout

	Obtaining Free Storage
	Where CMSSTOR Gets Storage
	CMSSTOR Error Processing
	Where You Can Allocate Free Storage
	Example 1 — Specific Address
	Example 2 — Below 16 MB
	Example 3 — Above 16 MB
	Example 4 — On a Page Boundary

	Other Things You Can Specify on CMSSTOR

	Creating Subpools
	Types of Subpools
	Naming Subpools
	Subpool Examples
	Example 1 — Creating a Private Subpool
	Example 2 — Creating a Shared Subpool
	Example 3 — Creating a Global Subpool
	Example 4 — Creating a Subpool in Nucleus Storage
	Example 5 — Saving Global Subpools Across Abends

	Releasing Free Storage
	Examples of Releasing Free Storage
	Example 1 — Releasing a Specific Storage Block
	Example 2 — Subpool Integrity Checking
	Example 3 — Releasing or Deleting a Specific Private Subpool
	Example 4 — Releasing or Deleting a Specific Shared or Global Subpool

	Determining How Much Free Storage Is Available
	Using the STORMAP Command
	Example - Determining If a Piece of Contiguous Free Storage Exists
	Example - Determining the Total Amount of Unallocated Storage on a Subpool

	Using the SUBPMAP Command
	Example - Determining How Many Pages of Storage are Allocated to a Subpool

	Debugging Storage Problems
	Using the STORMAP Command
	Example - Using STORMAP with the EXTSET Option
	Example - Using STORMAP to Determine if Storage Fragmentation Exists

	Using the SUBPMAP Command
	Example - Using SUBPMAP

	Using the STDEBUG Command
	Out of Storage Conditions
	Determining Causes for Storage Not Being Released
	Example - Using the MSG Option on STDEBUG
	Example - Using the OBTAIN and RELEASE Options on STDEBUG and Pairing Obtain and Release Requests
	Example - Using the OBTAIN and RELEASE Options on STDEBUG and Pairing Obtain and Release Requests
	Storage Fragmentation
	Example - Using STDEBUG to Detect Storage Fragmentation
	Insufficient Virtual Machine Storage Size

	Storage Overlays
	Redirecting Console Messages Using the STDEBUG Command

	Obtaining and Releasing Storage above 2 GB

	Chapter 7. Using Saved Segments
	Physical and Logical Saved Segments
	Using the SEGMENT Macro
	Loading a Saved Segment
	Example 1
	Example 2
	Determining the SHARE Attribute

	Finding the Starting and Ending Address of a Saved Segment
	Purging a Saved Segment
	How CMS Locates Saved Segments
	How CMS Handles Objects in Logical Saved Segments

	Using the SEGMENT Command
	Reserving Storage Space for Saved Segments
	Releasing Segment Storage Spaces
	Assigning Logical Saved Segments to Physical Saved Segments

	Displaying Information about Saved Segments

	Chapter 8. Console and Terminal I/O
	Performing 3270 Full-Screen I/O Operations
	CONSOLE Macro Functions
	Opening a Path to a Console
	Handling Console Interrupts
	Console Exit Routine Entry Conditions

	Modifying Parameters of a CONSOLE OPEN
	Writing to and Reading from a Console
	CONSOLE WRITE Options
	CONSOLE READ Options
	Waiting for Console Interrupts
	Example

	Completing an I/O Operation

	Obtaining Information about a Console Path
	Example 1
	Example 2
	Example 3
	Using a Buffer

	Disconnecting and Reconnecting
	Writing Your Own Channel Programs
	Example 1
	Example 2

	Closing a Console Path
	Example
	Notes on the CONSOLE Macro

	A Sample Program

	APPLMSG
	Example of a Message Repository
	Sample Program Using a Message Repository

	LINERD and LINEWRT Macros
	Example
	Reading and Writing Multiple Lines
	Using the LINEWRT Macro for Multiple Outputs
	Using the LINERD Macro for Multiple Inputs
	Descriptor Mappings
	LWRD Mapping
	LRDD Mapping

	Example of Creating a Panel

	Considerations for Writing Applications in Full-Screen CMS

	Chapter 9. CMS File System
	Overview of the CMS File System
	What Is a CMS File?
	Other Architectures

	What is a BFS File?
	What File Information Does CMS Maintain?
	File Attributes
	File Name, File Type, File Mode
	File Mode Number 0
	File Mode Number 1
	File Mode Number 2
	File Mode Number 3
	File Mode Number 4
	File Mode Number 5
	File Mode Number 6
	File Mode Numbers 7-9

	Record Formats
	F-Format
	V-Format

	Logical Record Length
	File Origin Pointer, Number of Data Blocks and Pointer Levels
	Record Number and Number of Records
	Date and Time of Last Update
	Recoverability
	Overwrite
	Date of Last Reference
	Creation Date
	Creation Time
	Date and Time of Last Change

	How CMS Manages Files

	Manipulating CMS Files
	Empty Files
	Logically Sparse Files
	Structurally Sparse Files
	Replacing Records
	EDF Data Integrity
	SFS Data Integrity

	Manipulating BFS Files in CMS
	Empty or Sparse BFS Files
	Using Multiple Work Units
	BFS Data Integrity

	Application Interfaces
	Record File System CSL Routines
	FS Macros
	OpenExtensions CSL Routines
	Open Intent
	Extended File Attributes
	Caching
	Compatibility Issues Between Interfaces
	Using Programs on Non-Shared SFS Files
	Using Programs Written for Minidisks on Shared SFS Files
	New Return Codes
	File Space Usage Considerations:
	Files Shared through Aliases
	Other User's Directories Accessed as Read/Write
	Reading Shared Files That Are Locked
	Replacing Shared Files
	Modifying Programs That Replace Files
	Update-in-Place Processing

	Using Non-CSL Statements or Macros with SFS Files
	Using High-Level Languages with SFS Files
	Using FS Macros with SFS Files
	FSOPEN
	FSWRITE
	FSCLOSE

	Using OS and DOS Macros with SFS Files
	OS Simulation Usage Notes

	Using Record File CSL Routines with BFS Files

	Committing Changes
	Mixing CSL and Non-CSL Statements
	Which Method Should You Use?

	Using XEDIT to Access Files in Storage
	Example

	Chapter 10. Using the File System Macros
	File I/O Using FS Macros — A Typical Scenario
	Creating a File System Control Block
	Contents of the File System Control Block
	Mapping the File System Control Block
	Using FSCBD DSECT Labels

	Modifying Fields in the File System Control Block
	Using the File System Control Block

	Opening CMS Files
	Reading and Writing CMS Files
	Single Reads and Writes
	Multiple Reads and Writes to a Fixed File
	Variable Length Records
	Reading Specific Records
	End-of-File Checking
	Monitoring SFS Filespace Threshold

	Closing Files and Committing Changes
	Note For EXEC Writers

	Erasing Files
	Sample Programs
	Nonreentrant
	Reentrant

	Chapter 11. Unit Record Devices and Tapes
	Printing
	Determining How Many Bytes You Can Print
	Using PRINTL
	Carriage Control Characters
	Obtaining Device Information

	Punching
	Reading
	Using the CMS Internal I/O Buffer
	Usage Notes

	Tape Handling Macros
	Tape Labels in CMS
	Limitations
	Initiating Label Processing
	Label Processing in OS Simulation
	Types of Label Processing
	IBM Standard Label Processing
	Writing VOL1 Tape Information
	Displaying VOL1 Tape Information
	Checking the Volume Serial Number
	Positioning Your Tape
	Writing HDR1 Information on Output
	Checking HDR1 Information on Input
	Specifying Multiple Tapes

	ANSI Label Processing
	Translating Between ASCII and EBCDIC Code
	Writing, Displaying, Checking ANSI Tape Labels
	Protecting Data

	Considerations for Standard Label Processing
	Considerations for User Label Processing
	Volume Label and Header Label Processing for OS
	For Input Files on ANSI or IBM Standard Labeled Tapes:
	For Output Files on ANSI or IBM Standard Labeled Tapes:

	End-of-Volume and End-of-File Label Processing for OS
	For Input Files on ANSI or IBM Standard Labeled Tapes:
	For Output Files on ANSI or IBM Standard Labeled Tapes:

	End-of-Tape Processing
	No Label (NL) Processing
	Bypass Label (BLP) Processing
	Label Off (LABOFF) Processing
	Nonstandard Label (NSL) Processing
	Tape Label Processing Differences

	Label Processing in CMS/DOS
	Unlabeled and Nonstandard Labeled Tapes
	Standard Labeled Tapes
	End-of-Volume and End-of-Tape Processing in CMS/DOS
	For Input Files
	For Output Files

	Tape Label Processing Differences

	Label Processing Using CMS Macros and Commands
	TAPESL Macro
	TAPEMAC and TAPPDS Commands
	TAPE Command
	Examples of DVOL1 and WVOL1

	MOVEFILE Command
	Moving Labeled Tape Files
	Copying Sequential Files into CMS Files

	LABELDEF Command

	Error Processing

	Using Tape Library Dataservers under CMS OS Simulation

	Chapter 12. Interrupt Handling
	Manipulating the PSW Interrupt Mask
	Converting from the SSM Instruction to ENABLE
	Examples
	Example 1
	Example 2
	Example 3

	External Interrupt Handling
	External Interrupt Handling Overview
	Other External Interrupt Sources
	Enabling and Disabling External Interrupts

	How External Interrupt Handling Works

	The CMS Default External Interrupt Handler
	Handling Specific External Interrupts
	Defining a Dummy Handler
	Defining a Specific Interrupt Handler
	Example — No ECB Processing
	Example — Optional ECB Posting

	Entry and Exit Linkage
	Address Translation Mode Consideration

	Using the WAITECB Macro
	OS Format
	VSE Format

	Example 1
	Example 2
	Example 3

	Creating Your Own Default Handler
	Example

	Deleting an External Interrupt Handler
	Example 1
	Example 2

	Handling I/O Interrupts
	I/O Interrupt Handling — An Overview
	Enabling and Disabling I/O Interrupts

	First-Level I/O Interrupt Processing
	Second-Level I/O Interrupt Processing
	Defining an I/O Interrupt Handling Procedure
	Handling Interrupts — Examples
	Immediate Notification
	Synchronizing Interrupt Processing
	Saving the Handler Across Abend and End-of-Command Processing
	Using a Dummy Handler — Ignoring Interrupts
	Using a Dummy Handler — Notification Only
	Waiting For Unsolicited Interrupts

	Interrupt Handler Conventions
	Address Translation Mode Consideration
	Linkage Entry Conventions
	Linkage Exit Conventions

	Clearing an Interrupt Handler
	Example — Clearing a Specific Interrupt Handler
	Example — Clearing Interrupt Handlers for a List of Devices

	Second-Level Handler Returns to First-Level

	SVC Interrupts
	Creating SVC Handlers
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	HNDSVC Entry and Exit Linkage
	Address Translation Mode Consideration

	Controlling the Addressing Mode of SVC Trap Routines

	Deleting SVC Handlers
	Example 1
	Example 2

	Machine Check Interrupts
	Data Space Machine Checks
	Storage Errors
	I/O Errors

	Program Interrupt Handling
	CMS First-Level Program Interrupt Processing
	Address Translation Mode Consideration

	Defining Program Interrupt Handlers

	Chapter 13. Nucleus Extensions and Commands
	Nucleus Extensions
	The NUCEXT Macro
	Should Your Program Be a Nucleus Extension?
	Defining Nucleus Extensions
	Example 1
	Example 2 — Specifying an Addressing Mode
	Example 3 — End-of-Command Nucleus Extensions
	Example 4 — Immediate Command Nucleus Extensions
	Example 5 — Service Call Nucleus Extensions
	Specifying Values at Execution Time

	Other Parameters You Can Specify on NUCEXT
	Defining Nucleus Extensions in Logical Saved Segments
	Example 1
	Example 2 — End-of-Command Nucleus Extensions
	Example 3 — Immediate Command Nucleus Extensions
	Example 4 — Service Call Nucleus Extensions
	Nucleus Extension Entry Conditions

	Obtaining the Anchor Point of the SCBLOCK List
	Deleting Nucleus Extensions
	Obtaining Information about Nucleus Extensions
	Renaming Nucleus Extensions

	ANCHOR Words
	The ANCHOR Macro
	What Types of Programs Should Use the ANCHOR Macro?
	Defining ANCHOR Words
	Anchor Entry Conditions

	Using ANCHOR

	Subcommand Environments
	SUBCOM Macro
	Defining Subcommands
	Example 1
	Example 2
	Example 3 — Saving a Subcommand Processor Across an Abend
	Subcommand Processor Entry Conditions
	Other Parameters You Can Specify on SUBCOM

	Defining Subcommands in Logical Saved Segments
	Example

	Deleting Subcommand Processors
	Determining if a Subcommand Processor Is Defined
	Obtaining the Anchor Point of the SCBLOCK List

	Immediate Commands
	Creating Immediate Commands

	Using NUCEXT to Create Immediate Commands
	Using the IMMCMD Macro to Create Immediate Commands
	Example 1

	Entry Conditions
	Other Rules for Creating Immediate Commands

	Defining Immediate Commands in Logical Saved Segments
	Example

	Deleting Immediate Commands
	Obtaining Information about Immediate Commands

	Chapter 14. Abend Processing
	Overview of CMS Abend Processing
	Macros That Define Abend Exit Routines
	Abend Exit Routine Search Order
	What You Can Save Across a CMS Abend

	Creating Abend Exit Routines
	Creating Abend Exits
	Entry Conditions
	Exit Options
	Resetting Abend Exits

	Deleting Abend Exits

	Abending a Program (DMSABN Macro)
	Examples
	Example 1
	Example 2
	A Sample Program

	Part 3. Managing CMS Programs
	Chapter 15. Program Packaging
	Program Packaging Considerations
	Program Packaging Overview
	Program Packaging — A Simple Scenario

	Program Life - Determining How Long Your Program Stays in Storage
	Addressing and Residency Modes
	When You Can Set Addressing and Residency Modes
	Program Attribute Default Values
	Switching Addressing Mode from within a Program

	Chapter 16. Assembling, Loading, and Executing Programs
	Assembling Programs
	Example 1
	Example 2

	Identifying Files
	Default File Definitions
	Determining What File Definitions Are in Effect
	Overriding Default File Definitions — Examples

	Identifying Libraries
	Macro Libraries
	CSL Routines
	Text Libraries and Load Libraries

	Loading and Executing Text Files
	File Loading Techniques
	Loading Text Files into Storage
	Other LOAD and INCLUDE Options
	Executing TEXT Files
	Example — Loading and Starting a Program
	Example — Starting a Program at a Specific Entry Point
	Example — Passing a Parameter List on the START Command
	Resolving External References
	Loader Control Statements
	Determining Program Entry Points

	Text File Libraries (TXTLIBs)

	Generating and Executing Modules
	Relocatable Modules
	Example — Creating a Module That Is Relocatable
	Example — Creating a Module That Is Not Relocatable

	Creating a Module to Run in the Transient Program Area
	Specifying Addressing and Residency Modes for a Module
	Restricting a Module to a Specific Virtual Machine Mode
	Saving History Information for Modules
	Loading Modules
	Loading a MODULE into a Saved Segment

	Displaying Information about Programs in Storage
	The NUCXMAP Command
	Example 1
	Example 2
	The PROGMAP Command
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 17. Creating and Using a Callable Services Library
	CSL Routines
	Writing CSL Routines
	Using Macros When Writing CSL Routines
	Defining an Entry Point—CSLENTRY
	Getting Information about Passed Parameters—CSLGETP
	Defining an Exit Point—CSLEXIT

	Rules for Coding CSL Routines
	Types of Data Supported
	Creating Template Files
	Defining Parameters with Scalar Data Types
	Binary Integer Parameters
	Character String Parameters
	Bit String Parameters

	Specifying Parameter Lengths
	Declaring Multi-Value Data Types in Template Files
	Arrays and Tables
	Specifying Lengths of Column Entries

	Pointer (Indirection)

	Defining Return Parameters for OPENVM Routines
	Return Value Parameter
	Return Code Parameter
	Return Reason (Reason Code) Parameter

	Creating a Callable Services Library
	Creating CSL Control Files
	ROUTINE Line Format
	ALIAS Line Format:
	CSLCNTRL Line Format
	TXTLIB Line Format
	TEXT Line Format:
	INCLUDE Line Format:
	Comment Line Format

	Building the Library
	The LIBMAP and SEGMAP Files
	Building a Library Using Alternate TEXT File Types
	Using INCLUDE Statements to Substitute TXTLIB Members
	Protecting Routines
	Path Description and Choosing a Path
	Library Subgroups
	Using Template Libraries in Place of Individual Template Files

	Invoking CSL Routines

	CSL Summary and Example
	CALC: Example CSL Assembler Routine #1
	Template File for CALC Routine Parameters
	TBSUM: Example CSL Assembler Routine #2
	Template Files for TBSUM and TBSORT Routine Parameters
	Control File for Building the Library
	Command to Build the Library
	Commands to Make the Library Accessible
	APPL1: Application Program #1
	APPL2: Example Application Program #2

	Chapter 18. Using Auxiliary Directories
	Overview of an Auxiliary Directory
	Adding an Auxiliary Directory
	Generating the Auxiliary Directory
	Initializing the Auxiliary Directory
	Establishing the Proper Linkage
	Error Handling and Return Codes

	Creating an Auxiliary Directory

	Part 4. Connectivity Programming in CMS
	Chapter 19. CMS Support of IUCV
	Using IUCV in CMS to Communicate Between Two Virtual Machines
	Understanding Exit Routines
	Guidelines for Using the CMS Support of IUCV

	Chapter 20. APPC/VM Assembler Interface
	Overview of APPC/VM Assembler Interface
	Basics of APPC/VM
	APPC/VM Paths
	APPC/VM States
	APPC/VM Interrupts
	Connection Pending External Interrupt
	Message Pending External Interrupt
	Request-to-Send External Interrupt
	Sever External Interrupt
	Connection Complete External Interrupt
	Function Complete External Interrupt

	Invoking APPC/VM Communication Functions
	Using Basic APPC/VM Functions
	Starting a Conversation
	Sending and Receiving Data on the Conversation
	Ending a Conversation
	APPCVM SEVER
	IUCV SEVER

	Using the CMS Interface to APPC/VM
	Errors and Interrupts for APPC/VM in CMS
	Guidelines for Using the CMS Interface to APPC/VM

	Managing a Resource
	Revoking a Resource
	Scenario 1: Request for Global Resource
	Scenario 2: Request for Private Resource
	Virtual Machine Preparations
	Program Functions

	How APPC/VM Relates to General IUCV
	CMS Support of APPC/VM

	Summary of APPC/VM Assembler Macro Functions

	Chapter 21. Using Advanced APPC/VM Functions
	Requesting Confirmation
	Signaling an Error
	Requesting to Send
	Sending and Receiving Early Information
	Using Synchronous Functions
	Synchronizing Updates to Multiple Resources
	Determining When a Sever Requires a Rollback
	Scenario 3: Coordinating Resources

	Part 5. OS/MVS Simulation
	Chapter 22. Developing OS/MVS Programs under CMS
	OS/MVS Simulation History
	How CMS Performs OS/MVS Simulation

	Using OS/MVS Macros in CMS Programs — Some Considerations
	OS/MVS Macro Libraries

	OS/MVS Macros That CMS Simulates
	MVS/XA Data Management Macros
	MVS/XA Supervisor Macros
	TSO Macros
	Simulated OS/MVS Supervisor Calls

	OS/MVS Macros for Assembly Only
	OS/MVS Resource Management
	Cleaning Up GETMAIN Storage
	CMS Storage Management
	CMS Simulation of OS/MVS Subpools
	How CMS Handles GETMAIN Storage
	Program Management
	Program Boundaries in OS/MVS Simulation
	OS/MVS Exit Availability and Clean-Up Behavior
	Abnormal Termination
	Timer Support

	Using CMS Libraries
	OS/MVS Module Libraries and CMS LOADLIBS
	Executing OS/MVS Module Libraries
	Creating and Executing CMS LOADLIBs
	Maintaining CMS LOADLIBs
	Concatenating Files

	The LKED Command
	Example of identifying an OS/MVS object library and CMS TXTLIB
	Example of automatic library search and concatenating CMS TXTLIBs
	Example of linking a program that requires more than one library
	Method 1
	Method 2

	OS/MVS and CMS Terminology

	Chapter 23. Using OS/MVS Simulated Data Sets in CMS
	Overview of OS/MVS Simulated Data Sets
	Data Set Organization
	Record Formats in OS Simulation
	Fixed-Length Records
	Fixed-Length ANSI Records

	Variable-Length Records
	Block descriptor word
	Record descriptor word

	Variable-Length ANSI Records
	Variable Spanned Records
	Segment descriptor word

	Variable Spanned ANSI Records
	Null Segments
	Moving Variable Spanned Records
	Error Handling for Spanned Records

	Identifying I/O Files and Devices to OS Simulation
	Specifying the ddname
	Specifying the Device Type
	For input files
	For output files
	For DUMMY files
	For clearing existing ddname:

	Entering File Identifications
	Using a CMS file
	Using an OS/MVS simulated data set
	Using an OS/MVS data set

	Specifying CMS Tape Label Processing
	Specifying Options
	Supplying File Format Information
	Removing and Retaining File Definitions
	Adding Records to a File
	Specifying a Member Name of a Data Set
	Receiving Control during I/O Operation
	Passing Information to the DMSTVI Routine

	Using OS/MVS Simulated Data Sets in CMS
	Storing OS/MVS Data in CMS Format DASD Files
	Specifying CMS Data Files
	Blocking for CMS Format Files

	Storing OS/MVS Data in OS/MVS Simulated DASD Files
	Specifying OS/MVS Simulated Data Files
	End-of-file marker

	Considerations for Files in Shared File System Directories

	Using OS/MVS Data Sets in CMS
	CMS Commands You Can Use with OS/MVS Data Sets
	Accessing OS/MVS Data Sets

	Using OS Format Disks on CMS
	Listing Information about OS Disks with the LISTDS Command
	Using the GLOBAL Command with OS Files
	Using XEDIT with OS Files
	Creating CMS Files from OS/MVS Data Sets
	Copying Sequential Data Sets from Disk
	Copying Partitioned Data Sets from Disk
	Summary

	Accessing Data through OS/MVS Simulation
	Accessing Data with OS/MVS Macros
	Special Considerations for Blocked Data
	Fixed Blocked Files
	Variable Blocked Files

	BDAM Restrictions

	Using the OS/MVS Simulated Buffering Techniques
	Obtaining I/O Buffers
	Determining the Minimum Buffer Size
	Segment Interface
	Logical Record Interface
	Specifying LRI with the BUILDRCD Macro
	Specifying LRI with the DCB Macro
	Determining Record Area Size

	Opening Data Sets
	Specifying an Input Data File
	Reading tape files backward
	Specifying an Output Data File
	Adding records to the end of an existing file

	Determination of BLKSIZE and LRECL on CMS DASD
	Open Processing
	Filling in the DCB information

	Reading Data
	Reading OS/MVS Simulated Data Sets
	Using the READ macro
	For fixed and variable-length records
	For variable spanned records

	Using the GET macro
	For fixed and variable-length records
	For variable spanned records under the segment interface
	For variable spanned records under the logical record interface

	Reading OS/MVS Data Sets
	Restrictions for Reading OS/MVS Data Sets
	Using the CHECK macro

	Writing OS/MVS Simulated Data Sets
	Using the WRITE Macro
	For fixed and variable-length records
	For variable spanned records
	Checking for I/O completion

	Using the PUT Macro
	For fixed and variable-length records
	For variable spanned records under the segment interface
	For variable spanned records under the logical record interface

	Closing Data Files
	Exit Routines
	End-of-Data-Set Exit Routine (EODAD)
	Synchronous Error Routine Exit (SYNAD)
	Exit List (EXLST)
	DCB Abend Exit (DCB EXLST Entry Code X'11')
	Option Mask Values
	Example Using the DCB Abend Exit (X'11')
	DCB Abend Exit System Completion Code Values
	OPEN Error Codes
	CLOSE Error Codes
	EOV Error Codes

	End-of-Volume Processing
	Forced End-of-Volume Support
	Positioning Tapes with the REWIND and LEAVE Options
	Processing Files for Forced End of Volume

	Error Handling during FEOV Processing
	Input/output errors
	Tape volume switching errors

	OS/MVS Tape Volume Switching
	Usage Notes for DMSTVS Tape Volume Switching

	Passing Information to the DMSTVI Routine

	Part 6. DOS/VSE, Access Method Services, and VSAM
	Chapter 24. Developing VSE Programs under CMS
	Overview of CMS/DOS
	Entering the CMS/DOS Environment
	DL/I in the CMS/DOS Environment

	Using DOS Files on DOS Disks
	Reading DOS Files
	Creating CMS Files from DOS Libraries
	Copying DOS Files and Tape Data Files
	Copying Modules from VSE Library or SYSIN Tapes
	Reading in Real Card Decks
	Using Tapes in CMS/DOS

	The ASSGN Command
	Assigning System Logical Units
	SYSIPT, SYSRDR, SYSIN
	SYSLST
	SYSLOG
	SYSPCH
	SYSCLB, SYSRLB, SYSSLB

	Compiler I/O Assignments
	Manipulating Device Assignments
	Listing I/O Assignments
	Virtual Machine Assignments

	The DLBL Command
	Entering File Identifications
	Clearing and Displaying File Definitions

	Using DOS Libraries in CMS/DOS
	The SSERV Command
	The RSERV Command
	The PSERV Command
	The ESERV Command
	The DSERV Command
	The DOSLKED Command
	DOS Core Image Libraries

	Using Macro Libraries
	Creating CMS MACLIBs

	VSE Assembler Language Macros Supported
	Assembling Source Programs
	Link-Editing Programs in CMS/DOS
	Linkage Editor Input
	Link-editing TEXT Files

	Linkage Editor Output: CMS DOSLIBs
	Linkage Editor Maps

	Executing Programs in CMS/DOS
	Executing DOS Phases
	Search Order for Executable Phases
	Making I/O Device Assignments
	Specifying a Virtual Partition Size
	Setting the UPSI Byte
	Debugging Programs in CMS/DOS
	Using Exec Procedures in CMS/DOS

	Hardware Devices Supported
	VSE Supervisor and I/O Macros Supported by CMS/DOS
	Supervisor Macros
	Declarative Macros (Sequential Access Method I/O Macros)
	DTFCD Macro — Defines the File for a Card Reader
	DTFCN Macro — Defines the File for a Console
	DTFDI MACRO — Defines the File for Device Independence for System Logical Units
	DTFMT Macro — Defines the File for a Magnetic Tape
	DTFPR Macro — Defines the File for a Printer
	DTFSD Macro — Defines the File for a Sequential DASD

	Imperative Macros (Sequential Access Method I/O Macros)

	EXCP Support in CMS/DOS
	CMS/DOS User Considerations and Responsibilities
	VSE System Generation and Updating Considerations
	z/VM Directory Entries
	When the VSE System Must Be Online
	Execution Considerations and Restrictions

	Chapter 25. Using Access Method Services and VSAM
	Overview of VSAM under CMS
	Executing VSAM Programs under CMS
	The AMSERV Command
	AMSERV Output Listings
	Controlling AMSERV Command Listings
	Controlling the File Name of the Output Listing

	Calling AMS from an Application Program

	Manipulating OS and DOS Disks for Use with AMSERV
	Data and Master Catalog Sharing
	Disk Compatibility
	Allocating Space
	Using Minidisks
	The LISTDS Command
	Using Temporary Disks
	Formatting a Temporary Disk

	Defining DOS Input and Output Files
	Using VSAM Catalogs
	Defining a Master Catalog
	Defining User Catalogs

	Using Job Catalogs
	Catalog Passwords
	Verifying a Catalog Structure
	Defining and Allocating Space for VSAM files
	Specifying Multiple Extents
	Specifying Multivolume Extents
	Identifying Existing Multivolume Files

	Using Tape Input and Output
	Reading VSAM Tape Files

	Defining OS Input and Output Files
	Allocating Extents on OS Disks and Minidisks
	Using VSAM Catalogs
	Defining a Master Catalog
	Defining User Catalogs

	Using a Job Catalog
	Catalog Passwords
	Verifying a Catalog Structure
	Defining and Allocating Space for VSAM files
	Specifying Multiple Extents
	Specifying Multivolume Extents
	Identifying Existing Multivolume Files

	Using Tape Input and Output
	Reading Tapes

	Using AMSERV under CMS
	The DEFINE and DELETE Functions
	Defining a Suballocated Cluster
	Defining a Unique Cluster
	Deleting Clusters, Spaces, and Catalogs

	Using Data Compression Services
	Creating a Compressed CLUSTER
	Application Migration Considerations
	Compression control data set example
	KSDS with the COMPRESS parameter example

	The REPRO, IMPORT, and EXPORT Functions
	Copying a CMS Sequential File into a VSAM File
	EXPORTing a VSAM File to a Tape

	Writing Execs for AMSERV and VSAM

	VSE/VSAM Functions Not Supported in CMS
	Access Method Services Not Supported in CMS
	ISAM Interface Program (IIP)
	VSE/VSAM Macros Supported
	VSE Supervisor Macros and Logical Transients Support

	OS/VSAM Macros Supported in CMS
	VSAM Macro Options Not Supported in CMS
	OS/VSAM Error Codes

	Hardware Devices Supported
	Interface to an Alternate VSAM Emulator

	Appendix A. Sample Terminal Session for OS Programmers
	Appendix B. Sample Terminal Session for DOS Programmers
	Appendix C. Sample Terminal Session Using Access Method Services
	Appendix D. TSO Macros Simulated in CMS
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

