
z/VM
7.3

VMSES/E Introduction and Reference

IBM

GC24-6336-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
789.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-05-16
© Copyright International Business Machines Corporation 1990, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. xv

Tables..xxvii

About this Document...xxix
Intended Audience.. xxix
Syntax, Message, and Response Conventions..xxix
Where to Find More Information.. xxxii

How to provide feedback to IBM.. xxxiii

Summary of Changes for z/VM: VMSES/E Introduction and Reference................xxxv
GC24-6336-73, z/VM 7.3 (May 2023)... xxxv
GC24-6336-73, z/VM 7.3 (September 2022)..xxxv
GC24-6336-01, z/VM 7.2 (August 2021)... xxxvi
GC24-6336-01, z/VM 7.2 (September 2020)...xxxvi

Part 1. Introduction... 1

Chapter 1. Introducing VMSES/E...3
Installing Products... 4
Servicing Products..4
Servicing Non-VMSES/E Products..4
Managing Saved Segments.. 4
Managing Product Inventories... 5
Selecting the Correct Method for Installation and Service... 5
Finding Out Where to Begin... 5

Part 2. Installing, Migrating, Building, and Deleting Products..................................7

Chapter 2. Introducing the VMFINS EXEC.. 9
Overview... 9

VMFINS INSTALL...9
VMFINS MIGRATE...10
VMFINS BUILD..10
VMFINS DELETE..10

Who Can Use VMFINS?.. 10
What Tape Formats Does VMFINS Support?... 10
What Type of Processing Does VMFINS Provide?... 11
What Is the Software Inventory?... 11

Where Does It Reside?... 12
Files Shipped on the Product Installation Media...13
Files Created and Updated during Installation and Migration...13

Chapter 3. Using the VMFINS EXEC.. 17
Determining Which Operand to Use: INSTALL, MIGRATE, BUILD, or DELETE?..................................17

Installing a Product...17
Migrating a Product...17
Building a Product...17

 iii

Deleting a Product.. 17
Installing a Recommended Service Upgrade (RSU).. 18

Using the INFO Operand.. 18
The VMFINS PRODLIST File... 18
Which Products Can You Install?..19
Which Products Can You Migrate?..20

Using the PROD Operand... 20
Using the PPF Operand.. 20
Using the LIST Operand... 20

Using the LIST Operand with the PLAN Option..21
Printing the Memo-to-Users.. 21

Using the INFO Operand and the MEMO Option..21
Using the PLAN Option...23

Missing Requisites.. 24
Determining Whether a Product Can Be Installed...24
Determining Whether a Product Can Be Migrated... 27
Determining Whether a Product Can Be Deleted...30

Calculating Space Requirements for Installation and Migration.. 33
Overriding Product Installation Defaults... 33
Using the Make Override Panel.. 33

Where Do the Product Installation Parameters Come From?... 33
Understanding the Make Override Panel Information...34
Using the Function Keys... 35
Using the Action Bar... 37
Understanding the File Options..38
Saving a Product Parameter File Override... 38
Understanding the Help Options..42
Getting Help on Help.. 43
Getting Help on the Function Keys...44
Getting Basic Instructions on the Make Override Panel..45
Online Help... 45
Changing from Minidisk to SFS Directory Entry Format...46
The Default Shared File System Directory Name...46
Changing the Shared File System Directory File Pool Name... 47

Controlling the VMFINS Prompts...48
Changing the VMFINS Command Defaults..48
Moving a Product from Test Mode to Production Mode.. 48

Chapter 4. Installing Products with VMFINS.. 49
Adding Products to Your System... 49

Adding a Single Product..49
Adding Several Products...50

Replacing Products on Your System.. 51
Replacing a Single Product... 51
Replacing Several Products..52

Changing the Product Installation Defaults...53
Scenario 1: Installing a Product with the PPF Operand.. 54

Step 1. Create the VMFINS PRODLIST File and Print Memo-to-Users... 54
Step 2. Find the Product Identifiers for IBM XL C/C++ for z/VM Compiler................................... 55
Step 3. Determine if You Have a Usable Form PPF..55
Step 4. Run the PLAN Option..55
Step 5. Review the 5654A22C PLANINFO File.. 56
Step 6. Install CCXX..57
Step 7. Review the Output Files... 58
Summary... 60

Using the VMFSIM EXEC during an Installation.. 61

Chapter 5. Migrating Products with VMFINS.. 63

iv

Adding a New Release of a Product to Your System... 63
Adding a Single Product..64
Adding Several Products...65

Replacing Products on Your System.. 65
Replacing a Product.. 66
Replacing Several Products..67

Changing the Current Product Installation Settings..68
Retailoring Your Product Files..68

Split-Screen XEDIT Session..70
View-Screen Session.. 74

Using the VMFSIM EXEC during a Migration..76

Chapter 6. Building Products with VMFINS.. 77
When Should You Perform a Build?... 77
Building Products on Your System...77
Scenario 1: Building a Product with the PPF Operand.. 77

Step 1. Find the ppfname for the Product..78
Step 2. Build CCXX..78
Step 3. Review the Output Files... 79
Summary... 80

Chapter 7. Deleting Products with VMFINS.. 81
Deleting Products from Your System...81
Scenario 1: Deleting a Product with the PPF Operand..81

Step 1. Find the ppfname for the Copy We Want to Delete... 81
Step 2. Run the PLAN Option..82
Step 3. Review the 5654A22C PLANINFO and 5654A22C ERASE Files...................................... 83
Step 4. Delete CCXX..83
Step 5. Review the Output Files... 84
Summary... 85

Part 3. Servicing Products..87

Chapter 8. z/VM Service Concepts.. 89
What is z/VM Product Service?.. 89

Correcting a Problem.. 89
Circumventing a Problem... 89
Adding Function.. 89
Applying Local Service or Modifications...89

Product and Service Structure... 89
Usable Forms.. 90
Serviceable Parts.. 90
Updates... 90
Program Temporary Fixes (PTFs)... 90
Relationship Between Serviceable Parts and the Usable Form.. 90

Types of Service Supported by VMSES/E.. 92
Product Service Upgrade (PSU)..92
Corrective Service (COR).. 92
Expanded Service Option (ESO)... 93

Chapter 9. Installing Corrective Service..95

Chapter 10. Using the Product Service Upgrade (PSU).. 97

Chapter 11. Installing Local Service and Modifications... 101
Introduction... 101
Overview for Local Service Procedure... 102

 v

Overview for Rework Local Service Procedure..103
Obtaining File Type Abbreviations... 103

Chapter 12. Using VMSES/E for Service..105
The VMSES/E Database... 105
Servicing a Product with VMSES/E.. 106

Receiving Service..107
Applying Service... 107
Reapplying Local Service..107
Building New Levels..108
Placing the Serviced Components into Production... 108

A Closer Look at the VMFREC EXEC...108
Processing Multiple Service Tapes at One Time.. 108
Part Handlers.. 108
Software Inventory Files Used by the VMFREC EXEC... 109

A Closer Look at the VMFAPPLY EXEC...109
Applying a PTF.. 110
Software Inventory Files Used by the VMFAPPLY EXEC..111

A Closer Look at the VMFBLD EXEC...112
Requisite Processing.. 112
Software Inventory Files Used by the VMFBLD EXEC... 112

Other VMSES/E EXECs... 113
Consolidating Levels of the Database.. 114

Managing Product Parameter Files..115
The VMFOVER EXEC... 115
The VMFPPF EXEC.. 115

Managing Disks for the Service Database... 116
The VMFSETUP EXEC... 116
The VMFQMDA EXEC.. 116

Managing Objects...116
The VMFQOBJ EXEC... 116

Managing Saved Segments.. 116
The VMFSGMAP EXEC.. 116

Other VMSES/E Functions..117
Regenerating Parts Locally...117
Viewing Message Logs..117

How VMSES/E Uses Control Files.. 117
Control Files..117
Control File Extensions...119
Auxiliary Control Files...120
Version Vector Tables... 121
Patch Update Files..121
Creating Updated Source Files...122
Selecting the Latest Version of the Serviceable Part...123
Creating Text Decks.. 124
Identifying MACLIBs...124
Determining Local Modifications Requiring Rework..124

Chapter 13. Other Files Used in the Service Process... 125
The Tape Document... 125
The Tape Descriptor File.. 125

For Installation, RSU, and COR Descriptor File..125
For Installation and RSU Descriptor File..126
For COR Descriptor File.. 126

The Product Contents Directory.. 127
The Memo-to-Users... 127
The Program Level File...127
The Select Data File... 128

vi

File Syntax...128
Example.. 129
Select Data File Used for System Objects..130

The VMSESE PROFILE..131
File Syntax...131
Example.. 132

The Apply List... 133
File Syntax...133
Example.. 133

The Exclude List... 134
File Syntax...134
Example.. 134

Place Into Production Files..135
The SERVICE $PRODS File .. 135
The systemid $PRODS file.. 137

The Message Log..137
The VMFINS DEFAULTS File...139

Syntax... 139
Example.. 140
Usage Notes..141

Build Lists... 141
Syntax Notation.. 142
Format 1 Build List Syntax..142
Format 1 Build List Example.. 144
Format 2 and 3 Build List Syntax... 144
Format 2 Build List Examples...152
Format 3 Build List Example.. 154

The National Language Support Table (VMFNLS LANGLIST)... 154
File Syntax...154
Example.. 155

Part 4. Planning and Managing Your Software Inventories.................................. 157

Chapter 14. Introduction to the Product Parameter File... 159
Types of Product Parameter Files..159

Source Product Parameter Files.. 159
Override Product Parameter Files..160
Temporary Product Parameter Files.. 160
Usable Form Product Parameter Files... 160

Sections of the Product Parameter File...160
The Control Options Section.. 161
The Variable Declarations Section... 161
The Minidisk/Directory Assignments Section..161
The Receive Installation Tape Definition Section.. 161
The Receive Service Media Definition Section...161
The Build Product Definitions Section... 161
The File Type Abbreviations Extensions Section... 161

Syntax of the Product Parameter File..161

Chapter 15. Introduction to the Software Inventory..163
Overview of the System-Level Software Inventory...164

Types of Information Provided...165
The Contents of the System-Level Software Inventory...166

Overview of the Service-Level Software Inventory...171
Types of Information Provided...172
The Contents of the Service-Level Software Inventory...173

 vii

Chapter 16. Introduction to the VMFSIM EXEC..177
Providing Input to VMFSIM..177
Receiving Output from VMFSIM...177
Querying the Software Inventory...177

Querying the System-Level Software Inventory after Receive Processing.................................177
Querying the System-Level Software Inventory after Apply Processing.................................... 178
Querying the System-Level Software Inventory after Build Processing..................................... 178
Performing Additional Queries on the System-Level Software Inventory.................................. 179
Querying the Service-Level Software Inventory after Receive Processing.................................180
Querying the Service-Level Software Inventory after Apply Processing.................................... 181
Querying the Service-Level Software Inventory after Build Processing..................................... 183
Performing Additional Queries on the Service-Level Software Inventory.................................. 184

Updating the Software Inventory.. 186
Adding A Product to the System-Level Software Inventory..186
Updating the SRVBLDS Table after Manual Build Processing... 187

Comparing the Version Vector Table to the AUX File Structure..188
Checking that the AUX Files and Version Vector Table Match.. 188
Adding Local AUX File Entries to the Service-Level Software Inventories................................. 188

Identifying the Latest Version of a Part... 189
Determining the Current Service Level of a Part..189

Comparing Two Software Inventory Tables.. 189
Building an APPLY List of All PTFs Received and Not Applied...189
Creating an APPLY List from Two SRVAPPS Tables... 190

Building Apply and Exclude Lists after Receive Processing..190
Building an APPLY List Containing All Requisites of a PTF.. 190
Building an EXCLUDE List Containing All Dependents of a PTF.. 191

Listing the Requisites for PTFs...191
Determining the Prerequisites for a PTF..191

Listing the Requisites for a Product...192
Determining the Prerequisites for a Product... 192

Listing the Dependent PTFs for Another PTF.. 192
Determining the PTFs Dependent on a PTF...193

Listing the Dependent Products for Another Product... 193
Determining the Dependents of a Product.. 193

Adding Local Modifications to the Software Inventory... 193
Adding Local Source Update Modifications to Service-Level Software Inventories...................194
Adding Local Replacement Files to Service-Level Software Inventories....................................194

Initializing and Recovering the Software Inventory Tables.. 195
Recovering the System-Level Software Inventories..195
Recovering Service-Level Software Inventories.. 196

Chapter 17. Using the VMFINFO Panels... 199
Where Does the Information Come From?..199

Understanding the VMFINFO Panel Information...199
Getting Started... 201

Selection Panels... 201
VMFINFO Main Panel..203
Product Description Query... 204
Product Status Query... 204
Product Requisites Query...205
Product Dependencies Query.. 205
PTF/APAR Query Panel... 206
Serviceable Parts/Usable Forms Query Panel... 211
Miscellaneous Queries Panel... 216
Compare Table Contents Panel..218
File Type Abbreviations Panel.. 219

viii

Chapter 18. Changing the Software Inventory to an SFS Directory... 221
Create the SFS Directory..221
Initialize the VMPSFS:MAINTvrm.SIDISK Directory... 221
Change the Software Inventory Default from Minidisk to SFS Directory..221
Enroll Users and Give Them Access Authority.. 223

Part 5. Reference...225

Chapter 19. Using the VMSES/E Reference Information..227
Understanding Syntax Diagrams... 227
Using the Online HELP Facility...227
Using the VMSES/E Commands... 227

Chapter 20. VMSES/E EXEC and Command Format Summaries... 229
Using Tools for Service and System Generation... 229
CHKAPARS EXEC.. 234
GENCPBLS EXEC.. 237
LOCALMOD EXEC..245
PRODUTL EXEC.. 249

PRODUTL File Exclusion Support... 250
Messages and Return Codes.. 251
CATALOG Files.. 252

PUT2PROD EXEC..258
SERVICE EXEC..261
SERVMGR EXEC..269
SERVMGR INITIALIZE..271
SERVMGR SYSTEM... 274
SERVMGR SRVLVL.. 281
SERVMGR REMOVE.. 288
SERVMGR MANAGED... 291
VMFAPPLY EXEC...294
VMFASM EXEC..300

ASSEMBLE Options Supported by VMFASM.. 306
VMFBLD EXEC.. 308

VMFBLD BLDDATA File... 314
Build List Options..315
Usage Notes..323
Examples.. 324
Input and Output Files... 325
Messages and Return Codes.. 328
Recovery Information...328
Creating Objects with VMFBLD.. 328
Callable Services Libraries (CSL)..329
Restore from DDR Image Files...333
CMS/DOS Phase Libraries (DOSLIB).. 334
Generated Objects..336
Load to the Byte File System..339
Objects Serviced by Complete Replacement.. 340
Text Objects Serviced by Complete Replacement (Format 1 Build List).................................... 343
LOADLIBs.. 344
MACLIBs..347
Executable Modules... 350
Nuclei.. 355
Identifying System Objects to be Built.. 357
Saved Segments... 358
TXTLIBs...362

 ix

SMAPI Appliance Servers and Stand-Alone Dump Utility... 365
VMFBTMAP EXEC... 367

The BITMAP File Structure...368
VMFCNVT EXEC.. 370
VMFCOPY EXEC..372
VMFENRPT EXEC..376
VMFERASE EXEC.. 380
VMFEXUPD EXEC..384

EXECUPDT Options Supported by VMFEXUPD.. 389
UPDATE Options Supported by VMFEXUPD...389

VMFHASM EXEC... 390
VMFHLASM EXEC... 397
VMFINFO EXEC.. 405
VMFINS EXEC... 407
VMFINS BUILD Command... 408
VMFINS DELETE Command... 415
VMFINS DISABLE Command... 420
VMFINS ENABLE Command.. 424
VMFINS INSTALL Command..428
VMFINS MIGRATE Command.. 436

Step 1. Re-IPL CMS...443
Step 2. Try to Determine What Stopped Your Migration..443
Step 3. Correct the Problem...444
Step 4. Finish Your Migration..444
Step 5. Manually Complete Your Migration (Optional).. 445

VMFMRDSK EXEC...447
VMFNLS EXEC...451
VMFOVER EXEC..459
VMFPPF EXEC...461
VMFPSU EXEC.. 465
VMFQMDA EXEC...472
VMFQOBJ EXEC..475
VMFREC EXEC.. 480

Filespec Operands..487
VMFREM EXEC..488
VMFREPL EXEC...496
VMFSETUP EXEC.. 503
VMFSGMAP EXEC...509
VMFSIM EXEC...528
VMFSIM: Tagged Data (TDATA)..530

Using File Input...530
Querying Multiple Tables Using the File Option...530
Using the STEM Variable...531
Considerations for Using Stem Input and Output... 533

VMFSIM CHKLVL.. 534
VMFSIM COMPTBL... 541
VMFSIM GETLVL...546
VMFSIM INIT..553
VMFSIM LOGMOD.. 559
VMFSIM MODIFY..565
VMFSIM QUERY..570
VMFSIM SRVDEP..576
VMFSIM SRVREQ..582
VMFSIM SYSDEP.. 588
VMFSIM SYSREQ.. 594
VMFSUFIN EXEC.. 600
VMFSUFTB EXEC.. 605
VMFUPDAT EXEC..607

x

VMFVIEW EXEC.. 617

Chapter 21. Product Parameter File Syntax... 623
Structure of the Data in Product Parameter Files... 623

Data Records...623
Comments...623

File Structure of Product Parameter Files... 623
Product Parameter File Processing..624

Source Product Parameter File Syntax..625
Header Area.. 625
Component Area...626
Control Options Section..627
Variable Declarations Section.. 633
Minidisk/Directory Assignments Section... 635
Place Into Production Section..637
Receive Installation Tape Definition Section... 639
Receive Service Media Definition Section..641
Build Product Definition Section.. 643
File Type Abbreviations Extensions Section.. 646
Override Area..646

Override Product Parameter File Syntax... 655
Header Area.. 655
Override Area..655

Temporary Product Parameter File Syntax... 656
Usable Form Product Parameter File Syntax.. 656

Component Area...656
Examples of Overrides... 657

Inserting a Record.. 657
Deleting Records...658
Updating a Record - Single-Level Override..658
Updating a Record - Multi-Level Override..659

Chapter 22. Software Inventory Syntax..661
Structure of the Data in the Software Inventory Tables..661

Delimiters..661
The System-Level Software Inventory.. 661

The Software Inventory Defaults... 662
Changing the Software Inventory Defaults..662
The Product Parts (PRODPART) File.. 662
The Saved Segment Data (SEGDATA) File..679
The Migration Parts Table (prodid MIGPvrm).. 684
The System-Level Description Table (VM SYSDESCT)...686
The System-Level Memo Table (VM SYSMEMO)..687
The System-Level Requisite Table (VM SYSREQT).. 688
The System-Level Receive Status Table (VM SYSRECS)... 690
The System-Level Apply Status Table (VM SYSAPPS)...692
The System-Level Build Status Table (VM SYSBLDS)..694
The System-Level Service Update Facility Table (VM SYSSUF).. 695
The System-Level Product Inventory Table (VM SYSPINV).. 698
The System-Level Restart Table (VM SYSREST).. 698
The System-Level Local Modification Table (VM SYSLMOD)...701
The System-Level Base APAR Table (VM SYSAPARS)... 703
The File Type Abbreviation Table (VM SYSABRVT)..704
The Parts Catalog (VMSES PARTCAT).. 705

The Service-Level Software Inventory.. 706
The PTF Parts ($PTFPART) File.. 707
The Service-Level Description Table (recid SRVDESCT)... 714
The Service-Level Requisite Table (recid SRVREQT)...715

 xi

The Service-Level Receive Status Table (recid SRVRECS).. 717
The Service-Level Apply Status Table (appid SRVAPPS)...718
The Service-Level Build Status Table (bldid SRVBLDS)...719
The Service-Level Production Status Table (prodid SRVPROD).. 722
The Version Vector Table (appid VVTlvlid)...723

Appendix A. Related Commands and EXECs... 725
INSTFPP EXEC... 725
The Patch Facility...730

Controlling Patches.. 730
SNTINFO EXEC.. 735

Appendix B. Input/Output Files... 737

Appendix C. VMSES/E Sample Files..749

Appendix D. Module Identifiers for VMSES/E Messages.......................................751

Appendix E. Tape Formats Supported by VMSES/E..755
VMSES/E Product Media Format... 755
z/VM System Delivery Offering Format... 756
VMSES/E Service Tape Formats.. 756

Appendix F. Servicing Non-VMSES/E SNA Products...759
Types of Disks.. 759
Service Control File..760
Product Parameter File..761

How VMFMERGE, VMFREMOV, and VMFZAP Use the PPF... 762
Merge Log...762
ZAP Log.. 763
Reqby Log...764
Service Log...764
Apply List..765
Remove List..765
Exclude List..766
ZAP List.. 766
Object Code Service Processing..767
Applying Emergency Fixes Using ZAPs... 767
Applying Corrective Service to Object Code... 767
Applying Preventive Service to Object Code...769
Merge Service.. 769

Merging a Single PTF (No Dependents or Supersedes).. 769
Merging Multiple PTFs (with Dependents and Supersedes)... 770

Remove Service... 772
Removing a Single PTF (No Dependents or Supersedes)... 772
Removing Multiple PTFs (with Dependents and Supersedes)..774

Prevent Regression..775
Removing a Fix-in-Error...776
VMFMERGE EXEC...776
VMFREMOV EXEC.. 779
VMFZAP EXEC.. 781
ZAPTEXT EXEC...783
EXPAND Command.. 785

Notices..789
Programming Interface Information...790

xii

Trademarks.. 790
Terms and Conditions for Product Documentation.. 790
IBM Online Privacy Statement.. 791

Bibliography.. 793
Where to Get z/VM Information.. 793
z/VM Base Library..793
z/VM Facilities and Features... 794
Prerequisite Products.. 796
Related Products... 796

Index.. 797

 xiii

xiv

Figures

1. Introducing VMSES/E.. 1

2. VMSES/E Overview.. 3

3. VMSES/E - Installing, Migrating, Building, and Deleting Products...7

4. The System-Level and Service-Level Software Inventories.. 12

5. A VMFINS PRODLIST File..18

6. The VMFINS PRODLIST File after Updates by the LIST Operand and PLAN Option................................. 21

7. Selecting the Memo-to-Users for Printing..22

8. PLANINFO File Created by a VMFINS INSTALL Command with the PLAN Option....................................26

9. PLANINFO File Created by a MIGRATE with the PLAN Option.. 29

10. PLANINFO File Created by a VMFINS DELETE with the PLAN Option...32

11. Make Override Panel... 33

12. Reading the Make Override Panel...34

13. The Function Keys on the Make Override Panel...35

14. Using the Action Bar on the Make Override Panel... 37

15. Using the Action Bar to Save Product Parameter File Overrides...38

16. The Options for File...39

17. Selecting a File Option.. 40

18. The Save as… Window.. 40

19. Saving the New Product Parameter File Override with a New Name.. 41

20. Returning to the Make Override Panel..41

21. The Options for Help... 42

22. Selecting an Option in Help.. 43

23. Help on Help Window..43

 xv

24. Help on Function Keys Window.. 44

25. Selecting Help on the F6=Mdisk or SFS Dir Function Key..44

26. Help Description for the F6=Mdisk or SFS Dir Function Key..45

27. Selecting Basic Instructions... 45

28. Changing from Minidisk to Shared File System Directory Entry.. 46

29. Expand Dirid Window.. 47

30. Entering the Complete Shared File System Directory ID...47

31. The Make Override Panel.. 53

32. Printing the Memo-to-Users... 54

33. VMFINS PRODLIST File...55

34. Finding the Usable Form Product Parameter File for CCXX...55

35. 5654A22C PLANINFO File Created by the PLAN Option (1 of 2).. 56

36. 5654A22C PLANINFO File Created by the PLAN Option (2 of 2).. 57

37. $VMFINS $MSGLOG Created during Installation Processing..59

38. The VMFINS CONSOLE File Created during Installation Processing...60

39. Sample Make Override Panel..68

40. The VMFINS MIGRATE Restore Tailorings Phase Screen.. 69

41. The VMFINS MIGRATE Message Screen Asking You If You Want to Tailor Your Customized Files........69

42. Sample Split-Screen XEDIT Session...70

43. Using the CUTC Prefix Command in a Split-Screen File...71

44. Using the PLACE Prefix Command in a Split-Screen File... 72

45. Split-Screen File after a CUTC and PLACE..72

46. Final Tailorings Phase Screen... 73

47. Final Tailorings Phase Screen... 73

48. Final Tailorings Phase Screen... 74

xvi

49. Sample View-Screen Session... 75

50. Final Tailorings Phase Screen... 75

51. Final Tailorings Phase Screen... 76

52. PPF Fileid - Help Panel..78

53. The $VMFINS $MSGLOG File Created during BUILD Processing.. 79

54. The VMFINS CONSOLE File Created during BUILD Processing... 80

55. PPF Fileid - Help Panel..82

56. 5654A22C ERASE File Created during the PLAN Processing.. 83

57. The $VMFINS $MSGLOG File Created during DELETE Processing.. 84

58. The VMFINS CONSOLE File Created during DELETE Processing...85

59. VMSES/E - Servicing Your System.. 87

60. Serviceable Part to Usable Form Relationship...90

61. CMS MODULE Example (Serviced by Updates).. 91

62. CMS MODULE Example (Serviced by Text Replacement).. 91

63. CMS MODULE Example (Serviced by Module Replacement)...91

64. MACRO Example (Parts Serviced by Updates Only).. 92

65. Installing Corrective Service...96

66. Recommended Service Upgrade, Files...97

67. Service Application Flowchart using PSU...98

68. Servicing a Product... 107

69. The Apply Algorithm... 110

70. Software Inventory Tables Updated During VMFAPPLY Processing..111

71. VMFMRDSK EXEC Example.. 114

72. VMFPPF EXEC Examples.. 115

73. Example of a Patch Update File, DMKMNT VM12345... 121

 xvii

74. Control File Structure..122

75. Control File Structure Using Version Vector Tables... 123

76. Example of a Program Level File - 1VMVMC23 0123081..128

77. A Sample Select Data File...130

78. Example of the VMSBR $SELECT File...130

79. Example of the SEGBLD $SELECT File... 130

80. Example of an Apply List–DMSVM $APPLIST.. 134

81. Example of an Exclude List–DMSVM $EXCLIST...135

82. A Sample Message Log: $VMFREC $MSGLOG... 139

83. The VMFINS DEFAULTS File... 141

84. Example of a Format 1 Build list...144

85. Example of Format 3 Build List for TXTLIB.. 147

86. Format 2 Build List Example...153

87. System Saved Segment Build List Example...153

88. Product Saved Segment Build List Example.. 153

89. Format 3 Build List Example...154

90. The VMFNLS LANGLIST File... 155

91. VMSES/E - Software Inventory Management...158

92. Product Parameter File Relationship... 159

93. Software Inventory Files in the VMSES/E Database.. 164

94. System-Level Description Table Example..167

95. System-Level Requisite Table Example... 167

96. System-Level Receive Status Table Example.. 168

97. System-Level Apply Status Table Example..168

98. System-Level Build Status Table Example...169

xviii

99. System-Level Service Update Facility Table.. 169

100. System-Level Restart Table Example.. 170

101. File Type Abbreviation Table Example... 170

102. Parts Catalog Table Example..171

103. Service-Level Description Table Example..173

104. Service-Level Requisite Table Example... 174

105. Service-Level Receive Status Table Example.. 174

106. Service-Level Apply Status Table Example..175

107. Service-Level Build Status Table Example...175

108. Version Vector Table Example..176

109. Reading the VMFINFO Main Panel... 199

110. The Function Keys on the VMFINFO Panel.. 200

111. PPF Fileid - Help Panel... 202

112. Component Name - Help Panel..202

113. VMFINFO Main Panel..203

114. Product Description Query Output...204

115. Product Status Query Output... 204

116. Product Requisite Query Output.. 205

117. Product Dependencies Query Output.. 206

118. PTF/APAR Query Panel... 206

119. PTF Status Query Output..208

120. PTF Requisites/Supersedes Query Output.. 208

121. PTF Dependencies/Superseding Query Output...209

122. PTF User Memo Query Output... 209

123. PTF Serviceable Parts Query Output..210

 xix

124. APAR Abstract Query Output..210

125. Serviceable Parts/Usable Forms Query Panel... 211

126. Object Status Query Output... 214

127. Object Build Requisites Query Output... 214

128. Object Build Dependencies Query Output...215

129. Object Part Handler/Target Query Output... 215

130. Part Service Level Query Output.. 216

131. Part Service History Query Output... 216

132. Miscellaneous Queries Panel... 217

133. Minidisk/Directory Access Query Output...217

134. Compare Table Contents.. 218

135. Compare Table Contents Query Output...219

136. Build Requirements Query Output...219

137. File Type Abbreviations Panel.. 220

138. File Type Abbreviations Query Output... 220

139. VMSES/E - Reference Information... 225

140. Syntax for VMFBLD LIST Input File (VMFBLD BLDDATA).. 314

141. Example Build List Used by VMFBDCLB...330

142. Example Build List Used by VMFBDDDR..333

143. Example Build List Used by VMFBDDLB.. 334

144. Example Build List Used by VMFBDGEN..337

145. Example Build List Used by VMFBDBFS...339

146. Example Build List Used by VMFBDCOM... 341

147. Example Build List Used by VMFBDCPY.. 343

148. Example Build List Used by VMFBDLLB... 344

xx

149. Example Build List Used by VMFBDMLB..347

150. Example Build List Used by VMFBDMOD... 350

151. Example Build List Used by VMFBDPMD... 352

152. Example Build List Used by VMFBDNUC..355

153. Example Product Saved Segment Build List Used by VMFBDSBR and VMFBDSEG........................... 357

154. Example System Saved Segment Build List Used by VMFBDSEG...358

155. Example Build List Used by VMFBDTLB...363

156. Example of Format 3 Build List for TXTLIB..363

157. Example Build List Used by VMFBDSSP...366

158. Product Enablement Report...378

159. PSUPLAN File..468

160. VMFQMDA Sample Output... 472

161. VMFSETUP Sample Output...506

162. VMFSGMAP Segment Map Panel with Status Codes...511

163. VMFSGMAP Segment Map Panel with Spool File Classes...514

164. VMFSGMAP Segment Definition Panel...517

165. VMFSGMAP Query NSS Map Panel...524

166. Example of the VMFSGMAP Segment Map Panel..526

167. Example of the VMFSGMAP Change Segment Definition Panel..526

168. Software Inventory Data Structure.. 528

169. Tree Structure Format.. 533

170. VMFUPDAT Function Selection Panel.. 609

171. SRVBLDS Update Panel.. 610

172. SYSSUF Update Panel...611

173. SYSLMOD Update Panel... 612

 xxi

174. SYSREST Update Panel...613

175. SYSMEMO Update Panel...614

176. Product Parameter File Relationship... 624

177. Sample Header Area of a Source PPF.. 626

178. Sample Component Area of a Source PPF... 627

179. Sample :CNTRLOP Section of a PPF...633

180. Sample :DCL Section of a PPF.. 635

181. Sample :MDA Section of a Source PPF...637

182. Sample :MDA Section of a Usable Form PPF... 637

183. Sample :P2P Section of a PPF.. 639

184. Sample :RECINS Section of a PPF..641

185. Sample :RECSER Section of a PPF... 643

186. Sample :BLD Section of a PPF.. 645

187. Sample :DABBV Section of a PPF... 646

188. Source Product Parameter File ($PPF), MDA Section Override Syntax.. 651

189. Sample Header Area of an Overrride PPF.. 655

190. Sample Component Area of a Usable Form PPF..657

191. Software Inventory Data Structure.. 661

192. Requisite OR Format Syntax...667

193. :PREREQ Tag Using OR Format...667

194. System-Level Requisite Table Example... 690

195. System-Level Receive Status Table Example.. 692

196. System-Level Apply Status Table Example..694

197. System-Level Build Status Table Example...695

198. System-Level Service Update Facility Table Example... 697

xxii

199. System-Level Product Inventory Table Example...698

200. System-Level Restart Table Example.. 701

201. System-level Base APAR Table Example... 704

202. File Type Abbreviation Table Example... 705

203. Parts Catalog Table Example..706

204. $PTFPART File Header Section Example... 708

205. $PTFPART File Requisite Section Example..710

206. $PTFPART File Parts Section Example...713

207. Example $PTFPART File... 714

208. Service-Level Description Table Example..715

209. Service-Level Requisite Table Example... 717

210. Service-Level Receive Status Table Example.. 718

211. Service-Level Apply Status Table Example..719

212. Service-Level Build Status Table Example...722

213. Service-Level Apply Status Table Example..723

214. Version Vector Table Example..724

215. Version Vector Table Local Modification Entry Example... 724

216. INSTFPP Installation Options Panel.. 727

217. A Sample INSTFPP Product Selection Panel... 728

218. Sample PROD LEVEL File Entries... 728

219. Example of a Service Control File (UV00006 SCF).. 760

220. Example of a Product Parameter File...761

221. Example of a Merge Log Produced by VMFMERGE..763

222. Example of a ZAP Log (5664175 VMFZPLOG)... 763

223. Example of a Reqby Log (5664167 VMFREQBY)...764

 xxiii

224. Example of a Service Log (5664175 VMFSVLOG)..765

225. Example of an Apply List (5664175 APPLIST).. 765

226. Example of a Remove List (5664175 REMLIST)..766

227. Example of an Exclude List (5664175 EXCLIST)...766

228. Example of a Zap List (5664175 ZAPLIST)..766

229. Merge Single PTF—Sample Merge Log for 5664167... 769

230. Merge Single PTF—Sample Exclude List for 5664167...769

231. Merge Single PTF—Sample SCF for UV00001..770

232. Merge Single PTF—Sample SCF for UV00002..770

233. Merge Single PTF—Changed merge log for 5664167..770

234. Merge Multiple PTFs—Sample Merge Log for 5664167.. 770

235. Merge Multiple PTFs—Sample SCF for UV00001...770

236. Merge Multiple PTFs—Sample SCF for UV00002...771

237. Merge Multiple PTFs—Sample SCF for UV00003...771

238. Merge Multiple PTFs—Sample SCF for UV00004...771

239. Merge Multiple PTFs—Sample SCF for UV00005...771

240. MYLIST APPLIST...771

241. Merge Multiple PTFs—Sample Changed Merge Log for 5664167... 772

242. Merge Multiple PTFs—Changed Reqby Log for 5664167.. 772

243. Remove Single PTF—Merge Log for 5664167..772

244. Remove Single PTF—SCF for UV00001..772

245. Remove Single PTF—SCF for UV00004..773

246. Remove Single PTF—SCF for UV00005..773

247. Remove Single PTF—SCF for UV00006..773

248. Remove Single PTF—SCF for UV00007..773

xxiv

249. Remove Single PTF—SCF for UV00008..773

250. Remove Single PTF—SCF for UV00009..773

251. Remove Single PTF—Sample Reqby Log for 5664167.. 774

252. Remove Single PTF—Changed Merge Log for 5664167.. 774

253. Remove Single PTF—Changed Reqby Log for 5664167.. 774

254. MYLIST REMLIST.. 775

255. Remove Multiple PTFs—Changed Merge Log for 5664167... 775

256. Remove Multiple PTFs—Changed Reqby Log for 5664167... 775

 xxv

xxvi

Tables

1. Examples of Syntax Diagram Conventions... xxix

2. Methods of Installation and Service... 5

3. Processing by Product Format.. 11

4. Function Key Assignments for the Make Override Panel... 35

5. Program Function (PF) Keys for Split-Screen XEDIT Session.. 70

6. Program Function (PF) Keys for View-Screen Session...75

7. The VMSES/E Database Defaults..105

8. Tape Descriptor Files.. 126

9. Product Contents Directory.. 127

10. VMSES $MSGLOG Message Codes... 138

11. Build List Formats Used by the VMFBLD Part Handlers.. 141

12. Function Key Assignments for the VMFINFO Panels... 200

13. Example PTF/APAR Query Inputs and Results.. 207

14. Serviceable Parts/Usable Forms Query Inputs and Results for Objects...211

15. Serviceable Parts/Usable Forms Query Inputs and Results for Parts...212

16. z/VM Service and System Generation Tools.. 229

17. Additional z/VM Service and System Generation Tools...231

18. VMFBLD EXEC Parameter Specifications and Objects Built.. 312

19. Build List Options..315

20. VMFBLD EXEC Parameter Specifications and Objects Built.. 411

21. Valid Tags for VMFQOBJ... 477

22. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Map Panel.. 514

23. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Definition Panel............................... 522

 xxvii

24. Program Function (PF) Keys on the VMFSGMAP EXEC Query NSS Map Panel..................................... 524

25. Program Function (PF) Keys on the VMFUPDAT Function Update Panel.. 610

26. Program Function (PF) Keys on the VMFUPDAT EXEC SRVBLDS Update Panel................................... 610

27. Program Function (PF) Keys on the VMFUPDAT EXEC SYSSUF Update Panel......................................611

28. Program Function (PF) Keys on the VMFUPDAT EXEC SYSLMOD Update Panel...................................612

29. Program Function (PF) Keys on the VMFUPDAT EXEC SYSREST Update Panel....................................613

30. Program Function (PF) Keys on the VMFUPDAT EXEC SYSMEMO Update Panel..................................614

31. Default Program Function (PF) Key Assignments for the VMFVIEW EXEC... 621

32. Control Structure Containing Patches at Multiple Levels.. 734

33. Control Structure Containing Temporary Patch Over Local Source Update..735

34. Input/Output Files.. 737

35. Message IDs..751

xxviii

About this Document

This document introduces you to the Virtual Machine Serviceability Enhancements Staged/Extended
(VMSES/E) installation and service tool for IBM z/VM 7.3. It is intended to supplement information about
the specific product you are installing or servicing. Reference information about servicing non-VMSES/E
products is also included.

VMSES/E provides tools for installing, migrating, building, deleting, and servicing software on your
system. VMSES/E also provides tools to help you manage your system software.

Intended Audience
This information is intended for anyone responsible for installing, migrating, building, deleting, or
servicing products on z/VM and those managing the z/VM software inventory.

A general knowledge of the z/VM operating system and z/VM commands is required for getting the most
out of this information. It should also be understood and that the word "product" refers to both products
and components, unless otherwise specified.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xxix.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

© Copyright IBM Corp. 1990, 2023 xxix

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

xxx About this Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

About this Document xxxi

Where to Find More Information
For information about related documents, see “Bibliography” on page 793.

xxxii z/VM: 7.3 VMSES/E Introduction and Reference

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1990, 2023 xxxiii

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xxxiv z/VM: 7.3 VMSES/E Introduction and Reference

Summary of Changes for z/VM: VMSES/E Introduction and
Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

GC24-6336-73, z/VM 7.3 (May 2023)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.3.

[VM66453, VM66457, PH51239] z/VM Centralized Service Management Use of CMS
Keyvault
With the PTFs for APARs VM66453 (CMS), VM66457 (VMSES/E), and PH51239 (TCP/IP), z/VM 7.3
provides support for a CMS password/key management utility called KEYVAULT, which allows applications
to securely store and retrieve user ID keys (logon passwords). z/VM Centralized Service Management
(z/VM CSM) and the TCP/IP FTP client are updated to use the new KEYVAULT utility for automated remote
host login procedures.

The following information is new:

• “Using a KEYVAULT Database with the SERVMGR Command” on page 269
• A new usage note is added to “SERVMGR INITIALIZE” on page 271, “SERVMGR SYSTEM” on page 274,

“SERVMGR SRVLVL” on page 281, and “SERVMGR REMOVE” on page 288
• Return code 90 is added to the Return Code sections of the SERVMGR subcommands

GC24-6336-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

z/VM Centralized Service Management enhancements
z/VM Centralized Service Management (z/VM CSM) includes the following usability enhancements:

• QUERY processing for service levels now allows queries that are specific to individual components in a
service level.

• Wildcard support is added to the SERVMGR SRVLVL QUERY command.
• The ability to query z/VM CSM managed systems for current PUT2PROD status is added.
• Additional details are provided when querying local modifications.

The following topics are updated:

• “SERVMGR SYSTEM” on page 274
• “SERVMGR SRVLVL” on page 281

Language Environment upgrade
The z/VM Language Environment runtime libraries have been upgraded to z/OS® 2.5 equivalence.

The following topics are updated:

• “Step 1. Find the ppfname for the Product” on page 78

© Copyright IBM Corp. 1990, 2023 xxxv

• “Step 1. Find the ppfname for the Copy We Want to Delete” on page 81
• “VMFSETUP EXEC” on page 503

System APAR Evaluation Utility: CHKAPARS EXEC
The CHKAPARS EXEC evaluates system APAR data for a selected z/VM component or all components.
APAR data for the subject z/VM system is acquired by using the VMSES/E SERVICE STATUS ALLAPARS
command. The acquired data is compared to APAR reference data that is acquired from a specified CMS
file. A report of the evaluation is produced in a program-created report file.

The following topic is new:

• “CHKAPARS EXEC” on page 234

The following topics are updated:

• “Step 1. Find the ppfname for the Product” on page 78
• “Step 1. Find the ppfname for the Copy We Want to Delete” on page 81
• “VMFSETUP EXEC” on page 503

Miscellaneous updates for z/VM 7.3
The following topic is new:

• “SERVMGR REMOVE” on page 288

The following topics are updated:

• “SERVMGR EXEC” on page 269
• “Object Parameters (Replacement Objects)” on page 342
• “Part Options (Replacement Objects)” on page 342
• Appendix B, “Input/Output Files,” on page 737

GC24-6336-01, z/VM 7.2 (August 2021)
This edition includes terminology, maintenance, and editorial changes.

The following topic is updated:

• “SERVMGR SRVLVL” on page 281

GC24-6336-01, z/VM 7.2 (September 2020)
This edition includes changes to support the general availability of z/VM 7.2.

z/VM Centralized Service Management (z/VM CSM) for non-SSI environments
z/VM provides support to deploy service to multiple systems, regardless of geographic location, from a
centralized primary location that manages distinct levels of service for a select group of traditional z/VM
systems. One system is designated as a principal system and uses the z/VM Shared File System (SFS) to
manage service levels for a set of defined managed systems. The principal system builds service levels
using the new service management command, SERVMGR, and existing VMSES/E SERVICE commands.
This centralized service process keeps track of available service levels and manages the files needed to
supply a customer-defined service level to a managed system.

xxxvi z/VM: 7.3 VMSES/E Introduction and Reference

Attention:

Before you initialize z/VM CSM, the PTF for APAR VM66428 must be:

1. Installed on the principal system and all remote systems in your z/VM CSM environment
2. Applied to any customer-defined z/VM CSM service level that is based on the BASE z/VM CSM service

level (the service level that incorporates the initial z/VM 720 RSU).

See the z/VM: Service Guide for more information.

The following topics are new:

• “SERVMGR EXEC” on page 269
• “SERVMGR INITIALIZE” on page 271
• “SERVMGR SYSTEM” on page 274
• “SERVMGR SRVLVL” on page 281
• “SERVMGR MANAGED” on page 291
• Appendix C, “VMSES/E Sample Files,” on page 749

The following topics are updated:

• “Viewing Message Logs” on page 117
• “The Message Log” on page 137
• “Using Tools for Service and System Generation” on page 229
• “SERVICE EXEC” on page 261
• “VMFSUFIN EXEC” on page 600
• “VMFVIEW EXEC” on page 617
• “The System-Level Service Update Facility Table (VM SYSSUF)” on page 695
• Appendix B, “Input/Output Files,” on page 737
• Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751

Miscellaneous updates for z/VM 7.2
The following topics are updated:

• “The SERVICE $PRODS File ” on page 135
• “PUT2PROD EXEC” on page 258

Summary of Changes for z/VM: VMSES/E Introduction and Reference xxxvii

xxxviii z/VM: 7.3 VMSES/E Introduction and Reference

Part 1. Introduction

In this part of the book, you will learn about the z/VM Installation and Service Tool (VMSES/E). VMSES/E
consists of two user interfaces, the VMFINS and VMFSIM EXECs; enhanced service execs, for example,
VMFREC and VMFBLD; and the system-level and service-level Software Inventories. Figure 1 on page 1
shows a high-level overview of VMSES/E.

Figure 1. Introducing VMSES/E

In each part of this book, you will learn about a different aspect of VMSES/E. To help you, this figure
appears at the beginning of each part of the book. We have highlighted the features and functions in the
diagram that are discussed in each part.

© Copyright IBM Corp. 1990, 2023 1

2 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 1. Introducing VMSES/E

Figure 2. VMSES/E Overview

VMSES/E is a component of z/VM. VMSES/E provides:

• An exec for installing, migrating, building, and deleting products. Part 2, “Installing, Migrating, Building,
and Deleting Products,” on page 7 describes this aspect of VMSES/E.

• Execs for receiving service, applying service, and building the serviced usable forms, files to direct the
operation of these execs and to save the status of their execution, and a database structure that isolates
executable code from the control structure used to manage it. Part 3, “Servicing Products,” on page 87
describes this aspect of VMSES/E.

Introducing VMSES/E

© Copyright IBM Corp. 1990, 2023 3

• A Software Inventory that stores information on the status of installed products, the Program
Temporary Fixes (PTFs) applied to products, the requisite relationships among products and PTFs,
information about saved segments, as well as other information. Part 4, “Planning and Managing Your
Software Inventories,” on page 157 describes this aspect of VMSES/E.

• An exec for managing saved segments. The supporting structure for saved segments in VMSES/E is
described in Part 3, “Servicing Products,” on page 87 and Part 4, “Planning and Managing Your
Software Inventories,” on page 157. Saved segment management tasks using the VMSES/E function are
described in z/VM: CP Planning and Administration.

Installing Products
In Figure 2 on page 3, the VMFINS EXEC helps you install products. The VMFINS EXEC can also be used
to:

• Migrate products while keeping previously tailored files
• Build products and update the Software Inventory tables
• Delete products you no longer need on your system

The VMFINS EXEC provides a planning option to help you check product requisites and resource
requirements before you install, migrate, and delete products. The VMFINS planning option also lets
you:

• Specify the installation location for a product
• Specify installation related parameters

The VMFINS EXEC can process products from installation media formatted for:

• VMSES/E
• z/VM System Delivery Offering

The command syntax for the VMFINS EXEC is consistent across functions, yet flexible, to provide for
ease-of-use and personal preference in how a task is completed. For more information on the VMFINS
EXEC, see Part 2, “Installing, Migrating, Building, and Deleting Products,” on page 7.

Servicing Products
In Figure 2 on page 3, the VMSES/E EXECS, VMFREC, VMFAPPLY, and VMFBLD, help you service products.
For more information on servicing products with VMSES/E, see Part 3, “Servicing Products,” on page 87.

Servicing Non-VMSES/E Products
Use the VMFMERGE EXEC to apply service to Systems Network Architecture products. For more
information on servicing these products, see Appendix F, “Servicing Non-VMSES/E SNA Products,” on
page 759.

Managing Saved Segments
The VMFSGMAP EXEC is a saved segment mapping and management interface. VMFSGMAP provides a
full-screen segment map that shows you the saved segments defined on your system and in the Software
Inventory. Using VMFSGMAP, you can change, add, and delete saved segment definitions and display the
results. You can then use the VMFBLD EXEC to build or delete the saved segments.

For information about VMFSGMAP, see “The Source Product Parameter File” on page 13. For information
about VMFBLD, see “VMFBLD EXEC” on page 308. For information about defining, building, and managing
saved segments, see z/VM: CP Planning and Administration.

Introducing VMSES/E

4 z/VM: 7.3 VMSES/E Introduction and Reference

Managing Product Inventories
The VMFSIM EXEC is the single interface between you, the end user who is installing, migrating, building,
deleting, and servicing products, and the system-level and service-level Software Inventories. The
Software Inventory contains control and status information which is used when products are installed,
migrated, built, deleted, and serviced. The service-level Software Inventory contains information on the
service applied to each product on the system, if it is serviced with VMSES/E. The Software Inventory
information resides in a series of tables on the Software Inventory minidisk or Shared File System
directory.

With VMFSIM, you can easily manage the Software Inventories on your systems. The VMFSIM EXEC
creates and updates the Software Inventory and provides queries so you can check the status of products
and service at any time. For more information on Software Inventory management with VMSES/E, see Part
4, “Planning and Managing Your Software Inventories,” on page 157.

Selecting the Correct Method for Installation and Service
With the many products available today, it is sometimes difficult to know which installation or service
process to use for each type of product. The following table is provided to help you select the appropriate
method of installation and service for each product type.

In Table 2 on page 5:

• VMSES/E refers to products that are in VMSES/E install and service format.
• INSTFPP refers to products that use the VMFINS command but not all of the VMFINS capabilities. They

are not in VMSES/E service format.
• SNA refers to products that use the VMFINS command but not all of the VMFINS capabilities. SNA

products are not in VMSES/E install or service format.
• Other refers to products that are not in VMSES/E install or service format.

Note: Before you install or service products using VMSES/E, you should always see the documentation for
the product.

Table 2. Methods of Installation and Service

Product Type Install Service

VMSES/E VMFINS VMFREC, VMFAPPLY, VMFBLD

INSTFPP VMFINS or INSTFPP Method defined by product

SNA VMFINS, INSTFPP, or Method
defined by product

See Appendix F, “Servicing Non-VMSES/E SNA
Products,” on page 759

Other Method defined by product Method defined by product

Finding Out Where to Begin
The following information can help you get started with VMSES/E.

• For changes to VMSES/E, see z/VM: Migration Guide for information on what is new in this release.
• To learn how to use the VMFINS EXEC to install, migrate, build, and delete products on your z/VM

system and perform related tasks, see Part 2, “Installing, Migrating, Building, and Deleting Products,”
on page 7.

• If you are using VMSES/E to install a product on your z/VM system, see Chapter 4, “Installing Products
with VMFINS,” on page 49 and the documentation for that product.

• If you are using VMSES/E to migrate a product on your z/VM system, see Chapter 5, “Migrating Products
with VMFINS,” on page 63 and the documentation for that product.

Introducing VMSES/E

Chapter 1. Introducing VMSES/E 5

• If you are using VMSES/E to build products you have installed on your z/VM system, see Chapter 6,
“Building Products with VMFINS,” on page 77 and the documentation for that product. You may also
want to see “VMFBLD EXEC” on page 308.

• If you are using VMSES/E to delete a product from your z/VM system, see Chapter 7, “Deleting Products
with VMFINS,” on page 81.

• To learn about service concepts and how VMSES/E is used for service, see Part 3, “Servicing Products,”
on page 87.

• To learn about the product parameter file, Software Inventory, the VMFSIM EXEC, and the VMFINFO
EXEC and how you can use them to manage the software on your system, see Part 4, “Planning and
Managing Your Software Inventories,” on page 157.

• If you are servicing licensed program products, such as Systems Network Architecture (SNA) products,
see Appendix F, “Servicing Non-VMSES/E SNA Products,” on page 759.

• If you are defining, building, or deleting saved segments, see z/VM: CP Planning and Administration.

Introducing VMSES/E

6 z/VM: 7.3 VMSES/E Introduction and Reference

Part 2. Installing, Migrating, Building, and Deleting
Products

In this part of the book, you will learn how VMSES/E can be used to install, migrate, build, and delete
products and components on your z/VM system.

Figure 3. VMSES/E - Installing, Migrating, Building, and Deleting Products

© Copyright IBM Corp. 1990, 2023 7

8 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 2. Introducing the VMFINS EXEC

The VMFINS EXEC provides a single, consistent, and flexible process for installing the z/VM base product,
the licensed programs and components that run on z/VM, and preventive service by product replacement.
VMFINS combines resource allocation, requisite checking, and service level support to allow you to:

• Print the Memo-to-Users for each product on the installation media.
• Plan to install, migrate, and delete products.

With VMFINS, you can use the PLAN option to perform requisite checks, determine the amount of
minidisk space required to install or migrate a product, and change the default product installation
parameters

• Install new products.
• Upgrade previously installed products and components to a new version, new release, or a current

release at a new service level by replacing the current copy or installing an additional copy.

This means you can maintain multiple levels of products and components on a system in production
mode, test mode, or multiple production environments.

• Migrate products from one version or release to another.

This includes new versions, new releases, or current releases at a new service level.
• Build products and components.
• Delete previously installed products and components that you no longer need or want.

• Create product parameter file overrides for products that are in VMSES/E format.

When you create a product parameter file override, you can:

– Specify the product installation location.
– Specify installation related parameters.
– Install multiple copies of a product.
– Select a default installation path.

Overview
“High-Level Overview of the VMFINS Command” on page 9 shows a high-level overview of the VMFINS
command syntax. To use the VMFINS EXEC, you must select either the INSTALL, MIGRATE, BUILD, or
DELETE operand.

High-Level Overview of the VMFINS Command
VMFINS INStall

MIGrate

BUIld

DELete

For help reading the syntax diagram, see “Understanding Syntax Diagrams” on page 227.

VMFINS INSTALL
When you select the INSTALL operand, you can add new copies of a product to your system. You can also
add a new copy of a product and replace the existing copy of that product. You cannot, however, save the
existing files that have been tailored for the copy that is already on your system.

Introducing VMFINS

© Copyright IBM Corp. 1990, 2023 9

VMFINS MIGRATE
When you select the MIGRATE operand, you can add a new copy of a product to your system and use the
files that have been tailored for an existing copy of the product. You can also add a new copy of a product
and replace the existing copy of that product and keep the files that have been tailored for the copy you
are replacing.

VMFINS BUILD
When you select the BUILD operand, you can build a product you have added to your system by either
a VMFINS INSTALL or MIGRATE. The BUILD operand updates the Software Inventory tables to show the
product has been built.

VMFINS DELETE
When you select the DELETE operand, you can remove a product from your system if it was installed using
VMSES/E. The DELETE operand updates the Software Inventory tables to show the product has been
removed from the system.

Who Can Use VMFINS?
The VMFINS EXEC can be used by any user who wants to install, migrate, build, or delete licensed
products on a z/VM system and has:

• The installation documentation for the products being installed or migrated.
• A running z/VM 6.4 (or later) system. For information on installing a z/VM operating system, see z/VM:

Installation Guide.
• Installation media in acceptable format. See “What Tape Formats Does VMFINS Support?” on page 10

to find the tape formats you can use.
• Access to a tape drive.
• Read access to the VMSES/E build disk (MAINTvrm 5E5 by default).
• Read-write access to the Software Inventory minidisk or Shared File System directory (MAINTvrm 51D

by default).
• Access to the product resources for the product you are installing.

If you are migrating a product, you must:

• Have administrative authority for the VMFINS default Shared File System directory
(filepoolid:userid.VMFINS) for the user ID running the VMFINS MIGRATE command. VMPSFS: is the
default file pool ID for VMFINS. userid is the user ID of the person using VMFINS. You can use another
SFS file pool during a VMFINS MIGRATE, as long as you have administrative authority for that file pool.

• Make sure the file pool is available in interactive mode.
• Create the filepoolid:userid.VMFINS directory or enroll a user in the file pool. This directory is used to

store migration information.

What Tape Formats Does VMFINS Support?
VMFINS can install and migrate products from product tapes in the following formats:

• VMSES/E

VMSES/E tapes contain only products that are formatted for VMSES/E.
• INSTFPP

INSTFPP tapes can contain products that are formatted for VMSES/E and INSTFPP. INSTFPP tapes can
be received as part of the z/VM System Delivery Offering (SDO). They can also be received as stand
alone tapes.

Introducing VMFINS

10 z/VM: 7.3 VMSES/E Introduction and Reference

If you have questions on the format of your product tape, contact your IBM representative.

What Type of Processing Does VMFINS Provide?
Table 3 on page 11 shows the amount of processing performed for each product format. The tasks you
may need to complete manually are listed in the You Must Manually column. In this table, prodid is the 7-
or 8-alphanumeric identifier assigned to the product by IBM.

Table 3. Processing by Product Format

Product
Format

Processing Performed You Must Manually VMSES/E Files for Product Control and
Management

VMSES/E Plans, installs, migrates,
builds, and deletes;
updates system-level and
service-level Software
Inventories

Compares service levels
if product serviced by
VMSES/E

Manages multiple copies of
products

Tailor files and
allocate or delete
product resources

prodid $PPF

prodid PRODPART

INSTFPP Plan: None. See the
product documentation for
minidisk requirements.

Install: Calls INSTFPP to
install the product. See the
product documentation for
resource requirements.

Build: Updates system-
level Software Inventory
tables only; does not
perform build

Migrate: None

Delete: None

Plan, generate and
allocate resources,
migrate, and delete

Compare service
levels

Tailor files

Manage multiple
copies of products

Service product
using method
defined by
the product (non-
VMSES/E service)

There are no $PPF or PRODPART files for
INSTFPP products.

Note: Previously, some products were packaged in Parameter Driven Installation (PDI) format, which
was a subset of the VMSES/E product format. PDI-formatted products were found on VMSES/E- or
SDO-formatted installation media. Products in this format are still supported by VMSES/E, but they are
not used widely.

What Is the Software Inventory?
Managing a wide variety of products and levels of products on a system can be quite a job. VMSES/E can
help you manage your system software.

The data required by VMFINS to process a product is distributed with each product on the product
installation media. When products are installed or migrated, VMSES/E creates a series of tables to identify
the products, the levels of the products, and the status of the products on your system. These tables,
known as the Software Inventory tables, are stored on the Software Inventory minidisks or Shared File
System directories. The following information can be found in the Software Inventory tables:

Introducing VMFINS

Chapter 2. Introducing the VMFINS EXEC 11

• The requisite relationships between the products and components
• How product identifiers, the 7 or 8 alphanumeric identifier assigned to a product by IBM (also known

as the prodid by VMSES/E execs), map to the names of the product parameter files and descriptions
created and used during installation and migration

• The status of each product or component on the system.

In Figure 4 on page 12, there are two levels to the Software Inventory. There is a system-level Software
Inventory and a service-level Software Inventory.

The Software Inventory minidisks and Shared File System directories are managed by the VMFSIM EXEC.
The VMFSIM EXEC is the single interface between the users and the Software Inventory minidisks and
Shared File System directories. To see how you can use the VMFSIM EXEC to manage your Software
Inventory, see Chapter 16, “Introduction to the VMFSIM EXEC,” on page 177.

Where Does It Reside?

Figure 4. The System-Level and Service-Level Software Inventories

When products are installed or migrated, the system-level Software Inventory tables are created and
stored on the system-level Software Inventory minidisk, the MAINTvrm 51D minidisk by default. The
system-level Software Inventory tables are updated when install, migrate, build, and delete processing
are successfully completed. As you can see in Figure 4 on page 12, there can be a number of system-level
Software Inventory minidisks. There is a system-level Software Inventory minidisk for each system the

Introducing VMFINS

12 z/VM: 7.3 VMSES/E Introduction and Reference

user maintains. See Chapter 15, “Introduction to the Software Inventory,” on page 163 for additional
information on the system-level Software Inventory tables.

The service-level Software Inventory tables reside on the DELTA and APPLY minidisks for each product
(shown in the lower right of Figure 4 on page 12). There can be multiple sets of these minidisks, and
they can contain either the tables for other products or the tables for additional copies of a product.
See “Overview of the Service-Level Software Inventory” on page 171 for more information on the service-
level Software Inventory tables. For more information on the DELTA and APPLY minidisks, see “The
VMSES/E Database” on page 105.

Files Shipped on the Product Installation Media
To process a VMSES/E-formatted product with VMFINS, certain files are shipped on the installation media
with the product. The following files are the most important.

The Product Parts File
The product parts file contains important information that is used during VMFINS processing. This
information includes requisites, tailorable files, and product resources such as:

• Product user IDs, including the directory statements to define a user ID such as IPL options, link
statements, and spool statements

• Minidisk size requirements
• Shared File System requirements
• Saved segment definitions

The file name and file type of the product parts file is prodid PRODPART. prodid is the 7- or 8-
alphanumeric identifier assigned to the product by IBM. For more information on the contents of the
file, see “The Product Parts (PRODPART) File” on page 662.

The Source Product Parameter File
Products in VMSES/E format are shipped with a source product parameter file, the prodid $PPF file. prodid
is the 7 or 8 alphanumeric identifier assigned to the product by IBM. The prodid $PPF file is used during
VMFINS processing, and it defines the:

• Information necessary to build the usable form of the product
• Variables used in the $PPF and PRODPART files
• Symbolic names for the target minidisks
• Target minidisk or SFS directory for each tape file and the part handler that transfers the files from the

tape to the target
• Product processing exits to execute during the loading of a product

Product processing exits perform installation related product customization or enable products and
components. An example of a product processing exit task is copying and renaming sample files.

You may also receive a usable form product parameter file (ppfname PPF) that has been compiled for you
by IBM. For more information on product parameter files, see Chapter 14, “Introduction to the Product
Parameter File,” on page 159. For a complete description of the contents of the file, see Chapter 21,
“Product Parameter File Syntax,” on page 623.

Files Created and Updated during Installation and Migration
The following files are created and updated during installation and migration to record completed
processing and additional information for problem determination.

Within the file identifiers below, prodid is the 7 or 8 alphanumeric identifier assigned to the product by
IBM. ppfname is the unique name assigned to the product parameter file override for a specific copy of a
product.

Introducing VMFINS

Chapter 2. Introducing the VMFINS EXEC 13

Product-Level Files
When you install or migrate a VMSES/E-formatted product with the VMFINS EXEC, you can create a
product parameter file override for each copy of the product that is installed or migrated. The product
parameter file override may contain either the default product installation parameters that are provided
with the product by IBM or new product installation parameters you have entered.

The following files are created during VMFINS install and migrate processing:

ppfname $PPF
The ppfname $PPF file contains the user's overrides to the product supplied source product
parameter file (prodid $PPF).

ppfname PPF
The ppfname PPF file is the usable form of the product parameter file with all overrides applied.

Note: The ppfname PPF and $PPF files represent only one copy of a product, and they may or may not
reflect the product installation defaults that were originally shipped with the product.

Once install and migrate processing is complete, the ppfname PPF and ppfname $PPF files are moved
to the Software Inventory minidisks or SFS directories. If processing ends unsuccessfully, you may find
ppfname PPF and ppfname $PPF files on your A-disk.

For more information on the product parameter file, see Chapter 14, “Introduction to the Product
Parameter File,” on page 159.

Files for Your Information and Use
The following files are created by VMFINS during INSTALL, MIGRATE, BUILD, and DELETE processing.

$VMFINS $MSGLOG
The $VMFINS $MSGLOG is created during VMFINS processing and stored on your A-disk. The
$VMFINS $MSGLOG contains a record of the VMFINS commands that have been entered and the
results of the VMFINS processing. The information from the latest session appears at the top of the
file.

You can use the VMFVIEW command to view messages in the $VMFINS $MSGLOG file by entering:

vmfview install

For more information on the VMFVIEW command, see “VMFVIEW EXEC” on page 617.

An example of a $VMFINS $MSGLOG file can be found in “Scenario 1: Installing a Product with the
PPF Operand” on page 54.

VMFINS CONSOLE
The VMFINS CONSOLE file contains the console log listing that is created during VMFINS processing.
If you have not previously spooled your console, it is automatically spooled to your reader when
VMFINS processing ends. If you have already spooled the console, VMFINS does not close the
console; and the VMFINS CONSOLE file is not created. The VMFINS CONSOLE file contains a record
of the entries you made, the system prompts you received, and the messages that were issued. The
CONSOLE file can be helpful if you need to determine where an error may have occurred. An example
of a VMFINS CONSOLE file can be found in “Scenario 1: Installing a Product with the PPF Operand” on
page 54.

The following files may be created when a VMFINS INSTALL, MIGRATE, or DELETE command is entered
with the PLAN option:

prodid PLANINFO
The prodid PLANINFO file contains important information on product dependencies and requisites, as
well as information on system resource requirements. The prodid PLANINFO file is created when you
use the PLAN option, and it is stored on your A-disk. For more information on using the PLAN option
and the prodid PLANINFO file, see “Using the PLAN Option” on page 23. See “5654A22C PLANINFO

Introducing VMFINS

14 z/VM: 7.3 VMSES/E Introduction and Reference

File” on page 25, “5654A22C PLANINFO File” on page 28, and “5654A22C PLANINFO File” on
page 31 for prodid PLANINFO file examples.

ppfname ERASE
The ppfname ERASE file is created when you enter a:

• VMFINS INSTALL command with the REPLACE and PLAN options
• VMFINS MIGRATE command with the REPLACE and PLAN options
• VMFINS DELETE command with the PLAN option

The ppfname ERASE file contains a list of the files that will be erased when the actual processing
occurs, and it is stored on your A-disk. An example of a ppfname ERASE file can be found in “Scenario
1: Deleting a Product with the PPF Operand” on page 81.

prodid $APPLIST
The prodid $APPLIST file contains a list of program temporary fixes (PTFs) that need to be reapplied.
This file is only created during a VMFINS MIGRATE when reach-ahead service has been applied to the
copy of the product already on your system. Reach-ahead service is corrective service that has been
applied to a product but is not on the preventive service vehicle.

The files just mentioned are not the only files used during VMFINS EXEC processing. For more information
on the files used and created by VMFINS, see “VMFINS EXEC” on page 407. For a list of the files used and
created by other VMSES/E EXECs, see Part 5, “Reference,” on page 225.

Introducing VMFINS

Chapter 2. Introducing the VMFINS EXEC 15

Introducing VMFINS

16 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 3. Using the VMFINS EXEC

In this chapter you will see how you can use VMFINS commands to install, migrate, build, and delete
products. The VMFINS command syntax is flexible, and it can be used in many combinations. The
commands in this chapter are examples only, and they may not reflect the way you would organize your
tasks.

Although VMFINS has defined many command defaults, the commands in the following examples have
been entered in their longest form to show you exactly which options to use. The complete command
syntax for VMFINS can be found in “VMFINS EXEC” on page 407. Information on changing the VMFINS
command option defaults can be found in “Changing the VMFINS Command Defaults” on page 48.

Determining Which Operand to Use: INSTALL, MIGRATE, BUILD, or
DELETE?

The first thing you need to do is decide whether you are installing, migrating, building, or deleting a
product. The following information can help you make that decision.

Installing a Product
You choose INSTALL when you are:

• Adding the first copy of a product to the system or adding a new copy of a product to the system
and you do not want to copy tailorings from a previously installed copy of the product. Tailorings are
the changes you add to tailorable files to customize them for your own environment or reach-ahead
service. Reach-ahead service is corrective service that has been applied to a product that is not on
the preventive service vehicle. If you want to preserve tailorings, you should use MIGRATE instead of
INSTALL.

• Replacing a currently installed version of a product and you do not want to save tailorings from a
previously installed copy of the product.

• Installing a new version or release of a product and keeping an existing version or release of the same
product.

For example, you might want to install a new version in test mode and keep the existing copy in
production mode.

Migrating a Product
You choose MIGRATE when you are:

• Adding a new copy of a product to the system and you want to copy tailorings from a previously installed
copy of the product (that was installed using VMSES/E).

• Replacing a currently installed version of a product (that was installed using VMSES/E) and you want to
save tailorings from the copy of the product you are replacing.

Building a Product
You choose BUILD when you are:

• Building a product on your system and you want to update the Software Inventory tables to show the
current status.

Deleting a Product
You choose DELETE when you are:

Using VMFINS

© Copyright IBM Corp. 1990, 2023 17

• Removing a copy of a product (that was installed using VMSES/E) from your system.

Installing a Recommended Service Upgrade (RSU)
You choose INSTALL when you are:

• When you install an RSU with the VMFINS INSTALL command, tailorings are saved.

Using the INFO Operand
You can use the INFO operand to obtain information for a number of decisions. For example, you can
use the INFO operand with the VMFINS INSTALL command to get a list of the products on the product
installation media and decide which ones to install. You can also use the INFO operand with the VMFINS
MIGRATE command to get a list of products that are on the installation media and on your system and are
available to be migrated.

The list created by the INFO operand is stored on your A-disk in a file called VMFINS PRODLIST by
default. The VMFINS PRODLIST file is rewritten each time you use the INFO operand.

You can pass the VMFINS PRODLIST file to a VMFINS INSTALL or VMFINS MIGRATE command by using
the LIST operand. For more information on the LIST operand, see “Using the LIST Operand” on page 20.

The VMFINS PRODLIST File
The VMFINS PRODLIST file in Figure 5 on page 18 was created when we entered this command:

vmfins install info (add

This file shows us which products are on our product installation media.

VMFINS PRODLIST A1 V 84 Trunc=84 Size=7 Line=0 Col=1 Alt=0
====>
* * * Top of File * * *
PPF 5654A22C CCXX PRODID 5654A22C%CCXX IBM XL C/C++ for z/VM Compiler
PPF 5654A22C CCXXSFS PRODID 5654A22C%CCXXSFS IBM XL C/C++ for z/VM Compiler in SFS
PPF 5654A22C CCXXK PRODID 5654A22C%CCXXK IBM XL C/C++ for z/VM Compiler
PPF 5654A22C CCXXKSFS PRODID 5654A22C%CCXXKSFS IBM XL C/C++ for z/VM Compiler in SFS
PROD 5668812 NONE GDDM-PGF
PPF 5684100E PVMINS PRODID 5684100E%PVMINS Installing PVM 2.1.1
PPF 5684100E PVMUCENG PRODID 5684100E%PVMUCENG Servicing PVM 2.1.1 Upper Case English help
PPF 5684100E PVMSRC PRODID 5684100E%PVMSRC Installing PVM 2.1.1 Optional source
PPF 5684100E PVMISFS PRODID 5684100E%PVMISFS Installing PVM 2.1.1 using SFS directories
PPF 5684100E PVMUSFS PRODID 5684100E%PVMUSFS Servicing PVM 2.1.1 Upper Case English help
using SFS directories
PPF 5684100E PVMSSFS PRODID 5684100E%PVMSSFS Installing PVM 2.1.1 Optional source using SFS
directories
.
.
.
* * * End of File * * *

Figure 5. A VMFINS PRODLIST File

Product Parameter File Entries
When you see the PPF keyword, it means a usable form product parameter file has been shipped with
the product by IBM. The usable form product parameter file is a product parameter file that has been
compiled for you by IBM, and it contains the recommended installation parameters for the product. For
example, here is one line from the file.

PPF 1 5654A22C 2 CCXX 3 PRODID 4 5654A22C%CCXX 5 IBM XL C/C++ for z/VM Compiler 6

In this example:

Using VMFINS

18 z/VM: 7.3 VMSES/E Introduction and Reference

• The first field contains the PPF keyword (1).
• The second field of information is the 7- or 8-character alphanumeric identifier (the ppfname) assigned

to the usable form product parameter file for the product (2).
• The third field contains the name assigned to the component by IBM (3). In this example, the

component name is CCXX. In the remainder of this book, you may see the component name referred to
as the compname.

• The fourth field contains the keyword PRODID (4) to indicate the next field contains the product
identifier.

• The fifth field contains the product identifier (prodid) followed by a percent sign (a delimiter) and the
component name (5).

• The last field contains a description for the product (6).

PPF level entries can be entered in the PRODLIST file by VMFINS when you enter a VMFINS INSTALL with
the INFO operand. They can also be automatically entered in the VMFINS PRODLIST file when you enter
a VMFINS INSTALL or VMFINS MIGRATE command with the LIST operand and the PLAN option. You can
also enter them manually.

Let's take a look at another example. In Figure 5 on page 18, you can see there are six entries for
prodid 5684100E. Look to the right of each entry to see the component name for each. On this particular
installation media, product 5684100E has six components - PVMINS, PVMUCENG, PVMSRC, PVMISFS,
PVMUSFS, and PVMSSFS. The description to the right of the component name tells you that PVMINS is
for the installation of PVM 2.1.1, whereas PVMISFS is for the installation of PVM 2.1.1 in the Shared File
System. The descriptions for the other components likewise convey the content that is associated with
each one.

If a product has multiple components on the installation media, you can specify that only certain
components be processed. If you do not specify a component, VMFINS will prompt you to select one.

Product-Level Entries
In Figure 5 on page 18, you can also see lines of information that begin with the keyword PROD. The
PROD keyword tells you the information is base-level product information. This information does not
change as long as you are working with a new copy of the product each time.

Let's look at one line from the file shown in Figure 5 on page 18 to see what each field represents.

PROD 1 5668812 2 NONE 3 GDDM-PGF 4

The first field of information is the PROD keyword (1).

The second field of information is the 7 or 8 alphanumeric product identifier assigned to the product by
IBM, the prodid (2).

The third field of information is the component name (3). If you see the word, NONE, the product is not in
VMSES/E format; and it is installed by VMFINS using the INSTFPP EXEC.

The description of the product (4) appears last.

Now, let's see how you can use the INFO operand with the different VMFINS commands.

Which Products Can You Install?
To create a list of the products on the installation media, you can enter the following VMFINS INSTALL
command:

vmfins install info (add

You see some messages; and, when processing is complete, VMFINS creates a file called VMFINS
PRODLIST and stores it on your A-disk.

You can also enter this command:

Using VMFINS

Chapter 3. Using the VMFINS EXEC 19

vmfins install info (replace

to find out which products on the system can be replaced by products on the installation media. The
format of the VMFINS PRODLIST file does not change for the different options. Figure 5 on page 18 shows
you what a typical VMFINS PRODLIST file looks like.

Which Products Can You Migrate?
Even though we used the INFO operand with the INSTALL operand in the previous example, the INFO
operand can also be used with the MIGRATE operand. Because a product must already be installed on
your system to be able to migrate it, the INFO operand can tell you which products are installed and
available for processing.

When you use the INFO operand with the MIGRATE operand, you receive a list of products on the
installation media that can be used to migrate products on the system.

Using the PROD Operand
You can use the PROD operand to install, migrate, build, and delete a product. You specify which product
to process by entering the PROD operand and the prodid, the 7- or 8-character alphanumeric identifier
assigned to the product by IBM. For example, 5684100E is the prodid for PVM 2.1.1.

You can find the prodid for products on the product installation media in the VMFINS PRODLIST file, which
is created when you enter a VMFINS INSTALL or VMFINS MIGRATE command with the INFO operand.

As an example, to install a product using the PROD operand, you can enter:

vmfins install prod prodid (options...

The format is the same for VMFINS BUILD, MIGRATE, and DELETE.

Using the PPF Operand
You can use the PPF operand to install, migrate, build, and delete a specific copy of a single product.
Before you can use the PPF operand, however, you must have a usable form product parameter file for the
copy of the product you are installing, migrating, building, or deleting. The usable form product parameter
file is a product parameter file after all overrides have been applied and variables have been resolved. The
usable form product parameter file can be:

• Shipped with the product by IBM
• Created manually using the VMFPPF EXEC

The usable form product parameter file contains the product installation parameters for one copy of the
product. A usable form product parameter file also has a unique name, which you may assign, to identify
the specific product installation parameters for this copy of the product. In the VMFINS command syntax,
this unique name is referred to as the ppfname.

As an example, to install a product using the PPF operand, you can enter:

vmfins install ppf ppfname (options

The format is the same for build, migrate, and delete. For examples of how to use the PPF operand, see
“Scenario 1: Installing a Product with the PPF Operand” on page 54, “Scenario 1: Building a Product with
the PPF Operand” on page 77, and “Scenario 1: Deleting a Product with the PPF Operand” on page 81.

Using the LIST Operand
You can use the LIST operand with the INSTALL or MIGRATE operand to process a product or group of
products. If you are processing a number of products, it is easier and faster to use the LIST operand. With

Using VMFINS

20 z/VM: 7.3 VMSES/E Introduction and Reference

the LIST operand, you only have to enter a command once; you do not have to enter the command for
each product.

The LIST operand uses the VMFINS PRODLIST file as input. You can use other files as input by entering
the file name (fn), file type (ft), and file mode (fm) after the LIST operand. These files, however, must be in
the proper format and contain the required information. See “The VMFINS PRODLIST File” on page 18 for
more information on the correct format for and contents of the VMFINS PRODLIST file.

The z/VM SDO stacked product tapes and related products are created so requisites are installed prior to
the products requiring them. The VMFINS PRODLIST file lists the products in the order that they appear
on the product tape. If you edit the VMFINS PRODLIST file and remove products, you may be removing a
requisite for another product. If a requisite is missing, processing is interrupted; and you are asked if you
want to continue the installation even though all requisites are not installed. For an example, see “Missing
Requisites” on page 24.

Using the LIST Operand with the PLAN Option
When you enter a VMFINS INSTALL or MIGRATE command with the LIST operand and the PLAN option,
VMFINS automatically updates the VMFINS PRODLIST file to include the new product parameter file
override names that are assigned during PLAN processing. For example, in Figure 6 on page 21, a
product parameter file override was created for the IBM XL C/C++ for z/VM Compiler product, and it
was given the ppfname MYCCXX. VMFINS comments out the existing PPF-level entry and enters the new
product parameter file override information on the line below.

VMFINS PRODLIST A1 V 82 Trunc=82 Size=1 Line=0 Col=1 Alt=1
====>
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7..
* * * Top of File * * *
*PPF 5654A22C CCXX PRODID 5654A22C%CCXX IBM XL C/C++ for z/VM Compiler
PPF MYCCXX CCXX PRODID 5654A22C%CCXX IBM XL C/C++ for z/VM Compiler (Copy1)

Figure 6. The VMFINS PRODLIST File after Updates by the LIST Operand and PLAN Option

Printing the Memo-to-Users
Before you install or migrate products, you should read the Memo-to-Users for each product. The Memo-
to-Users contains important information that can help you as you prepare to install or migrate a product.
All Memo-to-Users files are stored on the Software Inventory disk when you enter a VMFINS INSTALL or
MIGRATE command.

You can print the Memo-to-Users for a group of products or a single product. To print the Memo-to-Users,
you can use any of the following operands with the MEMO option:

• INFO
• LIST
• PROD
• PPF

When you enter the MEMO option, you are asked to select the Memo-to-Users you want to print; and they
are sent to the system-designated printer.

Using the INFO Operand and the MEMO Option
You can print the Memo-to-Users and create a list of the products that are on the installation media at the
same time. You simply enter:

vmfins install info (memo

Using VMFINS

Chapter 3. Using the VMFINS EXEC 21

When you enter this command, the Memo-to-Users for each product on the installation media are listed;
and you can select the ones you would like to print. For example, in Figure 7 on page 22, there are 3
Memo-to-Users on the product installation media.

VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFINS1909I VMFINS PRODLIST created on your A-disk 1
VMFINS2602R The following memos are available to be printed 2
 Enter the numbers of your choices separated by blanks
(0) Do not print any memos
(1) I5664281 MEMO D1 Description: AMERICAN ENGLISH
(2) I5686037 MEMO D1 Description: AMERICAN ENGLISH
(3) 5684100E MEMO D1 Description: AMERICAN ENGLISH
1 2 3
PRT FILE 0028 TO MAINTvrm COPY 001 NOHOLD 4
PRT FILE 0029 TO MAINTvrm COPY 001 NOHOLD

Figure 7. Selecting the Memo-to-Users for Printing

When you look at Figure 7 on page 22, you can see:

• The VMFINS PRODLIST file has been created and stored on your A-disk (1). The VMFINS PRODLIST file
contains a list of the products on the installation media.

• The Memo-to-Users that are available for printing (2).

For example, in this line:

(3) 5684100E MEMO D1 Description: AMERICAN ENGLISH

5684100E is the prodid for PVM 2.1.1.. The American English version of the Memo-to-Users for PVM
2.1.1. is stored in a file, 5684100E MEMO, on the D-disk.

• You select the Memo-to-Users to print by entering the corresponding number. As you can see in the
example, you can select as many as you like (3).

• The files containing the Memo-to-Users are sent to the system-designated printer (4).

Using the LIST Operand and the MEMO Option
You can use the LIST operand to print the Memo-to-Users for a single product or many products. Before
you can use the LIST operand, however, you need to create the file that will be used as input to the LIST
operand.

Use the INFO operand to create a list of the products that are on the product installation media. You can
name the output file anything you like, or you can use the default name, VMFINS PRODLIST. To create the
list of the products on the installation media and use the default file identifier, enter this command:

vmfins install info

Next, edit the VMFINS PRODLIST file and comment out the products for which you do not want to print
the Memo-to-Users. (You comment out a line by putting an asterisk (*) in column 1.) Save the file.

To print the Memo-to-Users, enter this command:

vmfins install list (memo plan

It's important to remember to include the PLAN option when you use the LIST operand to print the
Memo-to-Users. If you do not include the PLAN option, VMFINS automatically installs the products
listed in the VMFINS PRODLIST file.

Note: When you run the PLAN option, you can also create a product parameter file override for this copy
of the product.

The MEMO option can also be used with the VMFINS MIGRATE command.

Using VMFINS

22 z/VM: 7.3 VMSES/E Introduction and Reference

Using the PROD Operand and the MEMO Option
To print the Memo-to-Users for only a certain product or component, enter:

vmfins install prod prodid (memo plan

You can find the prodid (the 7 or 8 alphanumeric identifier assigned to the product by IBM) in the output
file created by the VMFINS INSTALL INFO command. For an example of this file, see “The VMFINS
PRODLIST File” on page 18.

If there is more than one Memo-to-Users for the product, a list of available Memo-to-Users is displayed,
and you can select the one to print.

The MEMO option can also be used with the VMFINS MIGRATE command.

Using the PPF Operand and the MEMO Option
When you use the PPF operand, you must enter the name of a usable form product parameter file
(ppfname). The ppfname identifies a specific copy of a product. The usable form product parameter
file is either shipped with the product by IBM or created manually using the VMFPPF EXEC. For more
information, see “VMFPPF EXEC” on page 461.

When you have the name of the usable form product parameter file, you can print the Memo-to-Users
using the PPF operand and the ppfname by entering:

vmfins install ppf ppfname (memo plan

The MEMO option can also be used with the VMFINS MIGRATE command.

Using the PLAN Option
You can use the PLAN option before you install, migrate, or delete products to:

• Determine if you have the necessary requisites to install or migrate a product.
• Determine how much minidisk or Shared File System directory space you need to install or migrate a

product.
• Determine reach-ahead corrective service for the product you want to migrate to a new service level

within the same release.
• Determine if any products depend on the product you want to delete.
• Determine the resources currently being used by the product you want to delete.
• Determine how deleting a product or component will affect other products installed on the system and

the system resources.
• Decide if you want to install, migrate, or delete the product based on the output provided.

This information is stored in a file, called prodid PLANINFO, on your A-disk. The prodid is the 7- or
8-character alphanumeric identifier assigned to each product by IBM. For example, 5684100E is the
prodid for PVM 2.1.1.

Each time you run the PLAN option for a specific product, the current information is placed at the top of
the existing prodid PLANINFO file. For example, if you run the command:

vmfins install ppf 5684100E pvmins (plan nomemo

three times and you name the default override something different each time, you will find the planning
information in the same file, 5684100E PLANINFO. Each entry to the PLANINFO file includes the name
of the ppfname $PPF file that was used to create it. The PLAN option does not generate, allocate, or
commit resources.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 23

Missing Requisites
The VMFINS command performs requisite checking during PLAN processing, as well as during INSTALL
and MIGRATE processing.

During PLAN Processing
If the product is in VMSES/E format, the PLAN option checks the requisites for the products you are
installing or migrating. If requisites are missing, a list of the missing products is displayed.

During Installation and Migration Processing
If you are installing or migrating a product and requisites are missing, a list of missing products is
displayed; and you are asked if you want to continue.

As you can see by the following sample messages, which are displayed on the screen during VMFINS
processing, the requisites for this product are not satisfied.

VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2767I Reading VMFINS PRODLIST A for list of products to process
VMFINS2760I VMFINS processing started
⋮
VMFREQ2806W The following requisites for product :PPF ABC0001 ABCTEXT :PRODID
 ABC0001%ABCTEXT are not satisfied:

VMFREQ2806W Type Product Component PTF
 ---------- ---------- ---------- ----------
VMFREQ2806W Requisite ABC0001 ABC

VMFINS2604W Product :PPF ABC0001 ABCTEXT :PRODID ABC0001%ABCTEXT cannot be
 processed because its requisites are not satisfied

VMFINS2605R How would you like to proceed? Enter the number of your choice:
(0) Bypass this product
(1) Install this product without its requisites
(2) Exit

To continue, you enter 1. VMFINS loads the product to the system even though requisites are missing.
VMFINS does not build any portion of the product that is not already built when it is received on the
installation media.

To complete the installation or migration, you should install the missing requisite and enter the VMFINS
BUILD command to build the product on the system. See Chapter 6, “Building Products with VMFINS,” on
page 77 to see how to use the VMFINS BUILD command.

Determining Whether a Product Can Be Installed
You can use the PLAN option with the VMFINS INSTALL command to obtain information to help you
decide if you can install a product on your system.

When you use the PLAN option with the VMFINS INSTALL … (ADD command, VMFINS:

• Checks the product requisites
• Creates a PPF override file for products in VMSES/E format, if you choose to create one
• Determines the requirements for the product resources, for example, the user IDs, the SFS directory

and minidisk addresses, and the amount of space required on the minidisks and SFS directories

When you use the PLAN option with the VMFINS INSTALL … (REPLACE command, VMFINS:

• Checks the product requisites
• Determines which copy of the product you wish to replace
• Creates a PPF override file for products in VMSES/E and PDI format, if you choose to create one
• Determines the resources being used for the copy of the product you are replacing

Using VMFINS

24 z/VM: 7.3 VMSES/E Introduction and Reference

• Determines the resource requirements for the product you are installing, for example, the user IDs,
the SFS directory and minidisk addresses, and the amount of space required on the minidisks and SFS
directories

• Determines which files to delete for the product being replaced

The PLAN option also creates a prodid PLANINFO file for each product specified and stores the file on
your A-disk.

What Information Does the PLANINFO File Provide?
The following example shows you the type of information you can find in the prodid PLANINFO file. In this
example, we entered:

vmfins install prod 5654a22c ccxx (add plan nomemo

We created a PPF override file for the CCXX component of product 5654A22C and we named the PPF
override file MYCCXX.

5654A22C PLANINFO File
Figure 8 on page 26 shows the PLANINFO file created for prodid 5654A22C during the PLAN processing.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 25

**
**** VMFINS INSTALL USERID: 5654A22C ****
**
**** Date: 2022-06-28 Time: 16:25:07 ****
**
VMFINS2195I VMFINS INSTALL PPF 5654A22C CCXX (SYSTEM VM SIDISK 51D SIMODE
 D PLAN NORESOURCE LINK DFNAME USER DFTYPE DIRECT DFMODE *
 NOMEMO ADD ENV 5654A22C SETUP
**
* Requisite Planning Information *
**
* PPF: MYCCXX CCXX PRODID: 5654A22C%CCXX * 1
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
VMFREQ2805I Product :PPF MYCCXX CCXX :PRODID 5654A22C%CCXX has passed 2
 requisite checking
**
* Resource Allocation Planning Information *
**
* PPF: MYCCXX CCXX PRODID: 5654A22C%CCXX *
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
**
 Resource requirements for product 5654A22C component CCXX 3
**
OWNER: 5654A22C 4
 TARGID: 191 5
 SIZE: 22500 6
 BLKSIZE: 4K 7
 FORMAT: CMS 8
 RECOMPED: NO 9
 PREFERRED: NO 10
 SEPARATED: NONE 11

 TARGID: 2C2
 SIZE: 900
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE
.
.
.
REPLACE USER: 5654A22C 12
 USER 5654A22C XXXXX 256M 2G EG
 ACCOUNT xxxxx
 IPL CMS
 MACHINE ESA
 CONSOLE 009 3215 T
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 LINK MAINT 51D 51D MR
 LINK MAINT 5E5 5E5 RR

Figure 8. PLANINFO File Created by a VMFINS INSTALL Command with the PLAN Option

In Figure 8 on page 26, the information that is most important to you is numbered for reference purposes.

 1 shows where you can find the name of the product parameter file that was created when the PLAN
option was run (PPF: MYCCXX CCXX).

 2 identifies the section in the PLANINFO file that tells you if all of the requisites have been met for
this product. VMFREQ2805I Product :PPF MYCCXX CCXX :PRODID 5654A22C%CCXX has passed
requisite checking means all of the requisites necessary to install this product are met. There are no
missing requisites to report.

 3 identifies the section in the PLANINFO file that tells you what this file contains. For example,
Resource requirements for product 5654A22C component CCXX tells you the resources
required to install this product are listed below.

Using VMFINS

26 z/VM: 7.3 VMSES/E Introduction and Reference

 4 identifies the user ID of the owner of the target minidisks. OWNER: 5654A22C, in our example, tells us
the minidisks are owned by the 5654A22C user ID.

 5 identifies the first target minidisk for this product. TARGID: 191 means some of the code for this
product will be loaded to the 5654A22C 191 minidisk. If we were using the Shared File System, the SFS
directory ID would be after TARGID.

 6 and 7 tell us how much space we need on the minidisk to install the product. For example:

SIZE: 22500
BLKSIZE: 4K

tells us we need 22500 4K blocks available on this minidisk to be able to install the necessary code and
information for this product.

You can use the VMFCNVT command to convert this information into the space requirements for the type
of DASD you are using. See “VMFCNVT EXEC” on page 370 for more information on using the VMFCNVT
command.

If you are installing a product into a Shared File System file pool, the SIZE and BLKSIZE represent the
amount of physical space you need in the file pool.

 8 identifies how this minidisk must be formatted. FORMAT: CMS tells us the minidisk must be formatted
for CMS.

 9 specifies if this minidisk is recomped. In our example, RECOMPED: NO tells us the minidisk has not
been recomped. If the minidisk has been recomped, the number of blocksize blocks that are recomped
will appear here. In most cases, this will be NO.

 10 specifies whether the minidisk will be stored in a preferred location on the full-pack DASD. The
middle one third of a full-pack DASD is considered to be a preferred location because information can be
retrieved faster by the hardware if it is stored in this location. In our example, PREFERRED: NO, indicates
this product will not be stored in a preferred location.

 11 specifies whether a minidisk should be separated from another minidisk. If an entry in this format,
user ID address, appears after the word SEPARATED, the product should not be put on the same
DASD volume with user ID address. In our example, SEPARATED: NONE means we do not have to
worry about placing this minidisk on a DASD volume with any other minidisk.

 12 provides information on the server machine, 5654A22C, that is required by the IBM XL C/C++ for
z/VM Compiler product. This information is used to update the CP directory during VMFINS processing.
If this is a new installation, this information is added to the CP directory to define the 5654A22C
server machine. If another version of this server machine is already defined, it will be redefined by the
information in this section.

Note: If we had changed the defaults on the override panel and saved them, the 5654A22C PLANINFO
file would contain the new values defined on the Make Override Panel.

Determining Whether a Product Can Be Migrated
You can use the PLAN option with the VMFINS MIGRATE command to obtain information to help migrate
a product on your system. When you use the PLAN option with the MIGRATE operand, VMFINS reads
the product installation media, compares the list of products with the Software Inventory tables, and
determines which products can be migrated. To migrate a product with VMFINS, the product must be in
VMSES/E format.

When you use the PLAN option with the VMFINS MIGRATE … (ADD command, VMFINS:

• Determines which tailorings to use for the product you are adding
• Checks the product requisites
• Determines reach-ahead service for the product being migrated
• Creates a product parameter file override file, if you choose to create one

Using VMFINS

Chapter 3. Using the VMFINS EXEC 27

• Determines the requirements for the product resources, for example, the user IDs, the SFS directory
and minidisk addresses, and the amount of space required on the minidisks and SFS directories

When you use the PLAN option with the VMFINS MIGRATE … (REPLACE command, VMFINS:

• Determines which copy of the product you want to replace
• Checks the product requisites
• Determines reach-ahead service for the product being replaced
• Creates a product parameter file override file, if you choose to create one
• Determines the resources being used for the copy of the product you are replacing
• Determines the resource requirements for the product you are installing, for example, the user IDs,

the SFS directory and minidisk addresses, and the amount of space required on the minidisks and SFS
directories

• Determines which files to delete for the product being replaced

The PLAN option also creates a prodid PLANINFO file and a ppfname ERASE file for each product
specified and stores the files on your A-disk.

What Information Does the PLANINFO File Provide?
The following example shows a typical prodid PLANINFO file. We entered:

vmfins migrate prod 5654a22c ccxx (add plan nomemo

We created a PPF override file for the CCXX component of product 5654A22C and we named the PPF
override file CCXXMIG.

5654A22C PLANINFO File
Figure 9 on page 29 shows the PLANINFO file created for prodid 5654A22C during the PLAN processing.

Using VMFINS

28 z/VM: 7.3 VMSES/E Introduction and Reference

**** VMFINS MIGRATE USERID: 5654A22C ****
**
**** Date: 2022-06-28 Time: 16:25:07 ****
**
VMFINS2195I VMFINS MIGRATE PPF 5654A22C CCXX (SYSTEM VM SIDISK 51D
 SIMODE D PLAN NORESOURCE LINK DFNAME USER DFTYPE DIRECT
 DFMODE * NOMEMO ADD ENV 5654A22C SETUP
**
* Requisite Planning Information *
**
* PPF: CCXXMIG CCXX PRODID: 5654A22C%CCXX * 1
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
VMFREQ2805I Product :PPF CCXXMIG CCXX :PRODID 5654A22C%CCXX has passed 2
 requisite checking
**
* Reconciliation Planning Information *
**
* PPF: CCXXMIG CCXX PRODID: 5654A22C%CCXX *
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
VMFREO2770I No PTF's need to be re-applied to 5654A22C 3
**
* Resource Allocation Planning Information *
**
* PPF: CCXXMIG CCXX PRODID: 5654A22C%CCXX *
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
 Resource requirements for product 5654A22C component CCXX 4
**
OWNER: 5654A22C 5
 TARGID: 191 6
 SIZE: 22500 7
 BLKSIZE: 4K 8
 FORMAT: CMS 9
 RECOMPED: NO 10
 PREFERRED: NO 11
 SEPARATED: NONE 12

 TARGID: 2C2
 SIZE: 900
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE
...
 TARGID: 2B2
 SIZE: 45000
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

REPLACE USER: 5654A22C 13
 USER 5654A22C XXXXX 256M 2G EG
 ACCOUNT xxxxx
 IPL CMS
 MACHINE ESA
 CONSOLE 009 3215 T
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 LINK MAINT 51D 51D MR
 LINK MAINT 5E5 5E5 RR

REPLACE USER: CCXXESA
 USER CCXXESA XXXXX 256M 2G EG
 ACCOUNT xxxx
 IPL CMS
 MACHINE ESA
 CONSOLE 0009 3215 T
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK 5654A22C 401 191 MR

Figure 9. PLANINFO File Created by a MIGRATE with the PLAN Option

In Figure 9 on page 29, the information that is most important to you is numbered for reference purposes.

 1 tells you the CCXXMIG $PPF file was created during PLAN processing.

 2 is the section that tells you if all the requisites have been met for this product. VMFREQ2805I
Product :PPF CCXXMIG CCXX :PRODID 5654A22C%CCXX has passed requisite checking
means you have all the necessary requisites to migrate the product.

 3 tells you there is no service to be reapplied. If there was service to reapply, a file (prodid $APPLIST)
would be created on your A-disk. This file contains information on the service that needs to be reapplied.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 29

 4 tells you the resource requirements for the product you want to migrate. The sample PLANINFO file
lists all of the target minidisks or SFS directories that CCXX requires and gives the individual requirements
for each minidisk or directory.

 5 is the user ID of the owner of the minidisks and SFS directories. In this example, OWNER: 5654A22C,
tells you the minidisks and directories are owned by the 5654A22C user ID.

 6 tells you the first target minidisk or SFS directory for this product. In this example, TARGID: 191 tells
you CCXX needs the 191 minidisk to migrate some of the product code.

 7 and 8 tell you how much space you need on the minidisk or SFS directory to migrate your product. For
example,

SIZE: 22500
BLKSIZE: 4K

tells you that you need 22500 4K blocks on this minidisk to migrate the product code and information.

You can use the VMFCNVT command to convert this information into the space requirements for the
type of DASD you are using. See “VMFCNVT EXEC” on page 370 for more information about using the
VMFCNVT command.

If you are migrating a product into a Shared File System file pool, the SIZE and BLKSIZE represent the
amount of physical space you need in the file pool. For more information about determining the amount of
available space in a SFS file pool, see z/VM: CMS User's Guide.

 9 tells you how the minidisk must be formatted. FORMAT: CMS tells you the minidisk needs to be
formatted for CMS.

 10 tells you whether the minidisk has been recomped. In our example, RECOMPED: NO tells us the
minidisk had not been recomped. If the minidisk has been recomped, the number of blocks that were
recomped will appear here. In most cases, this will be NO.

 11 tells you whether the minidisk will be stored in a preferred location on the full-pack DASD. The middle
one-third of the full-pack DASD is considered to be preferred because information can be retrieved faster
by the hardware if it stored in this location. In our example, PREFERRED: NO indicates this product will
not be stored in a preferred location.

 12 tells you whether a minidisk should be separated from other minidisks. If you see SEPARATED:
userid address, the minidisk should not be defined on the same DASD volume with userid
address. In our example, SEPARATED: NONE means we do not need to worry about placing this
minidisk on a DASD volume with another product.

 13 tells you the CP directory information for the server machine for this product. This information is used
to update the CP directory when you use VMFINS. If this information is different from what was defined
for the old version of the product, it is replaced with the new information in this section.

Note: If we had changed any product installation parameters during our PLAN, the new parameter
installation defaults would appear in the PLANINFO file.

Determining Whether a Product Can Be Deleted
You can use the PLAN option with the VMFINS DELETE command to obtain information to help you decide
if you want to delete a product from your system.

When you use the PLAN option with the VMFINS DELETE command, VMFINS:

• Checks the Software Inventory tables to see which products are installed
• Determines the resources being used by the product you are deleting
• Determines product dependencies
• Determines which files to delete for the product you are removing

VMFINS also creates a prodid PLANINFO file and a ppfname ERASE file on your A-disk.

Using VMFINS

30 z/VM: 7.3 VMSES/E Introduction and Reference

The ppfname ERASE file shows you the files that will be erased when you delete the product. The prodid
PLANINFO file shows you how much minidisk or SFS directory space will be available when the product is
deleted. It also tells you if other products depend on the product you want to delete.

What Information Does the PLANINFO File Provide?
The following example shows a typical prodid PLANINFO file. We entered:

vmfins delete ppf myccxx ccxx (plan

5654A22C PLANINFO File
Figure 10 on page 32 shows the PLANINFO file created for the MYCCXX copy of prodid 5654A22C.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 31

**** VMFINS DELETE USERID: 5654A22C ****
**
**** Date: 2022-06-28 Time: 16:25:07 ****
**
VMFINS2195I VMFINS DELETE PPF MYCCXX CCXX (SYSTEM VM SIDISK 51D SIMODE
 D PLAN NORESOURCE NOLINK
**
* Requisite Planning Information *
**
* PPF: MYCCXX CCXX PRODID: 5654A22C%CCXX * 1
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
VMFDEP2805I No other products depend on product :PPF 5654A22C CCXX :PRODID
 5654A22C%CCXX 2
**
* File Deletion Planning Information *
**
* PPF: MCCXX CCXX PRODID: 5654A22C%CCXX *
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
VMFDEF1909I MYCCXX ERASE created on your A-disk 3
**
* Resource Allocation Planning Information *
**
* PPF: MYCCXX CCXX PRODID: 5654A22C%CCXX *
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
 Resource requirements for product 5654A22C component CCXX 4
**
OWNER: 5654A22C
 TARGID: 191 5
 SIZE: 22500
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 2C2
 SIZE: 900
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 2D2
 SIZE: 81000
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE
...
REPLACE USER: 5654A22C
 USER 5654A22C XXXXX 256M 2G EG
 ACCOUNT xxxxx
 IPL CMS
 MACHINE ESA
 CONSOLE 009 3215 T
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 LINK MAINT 51D 51D MR
 LINK MAINT 5E5 5E5 RR

Figure 10. PLANINFO File Created by a VMFINS DELETE with the PLAN Option

The important parts of the 5654A22C PLANINFO file are noted in Figure 10 on page 32.

 1 tells you this is the PLANINFO file for the MYCCXX copy of the IBM XL C/C++ for z/VM Compiler
product.

 2 lists the products that depend on the product you are deleting. In this example, no other products
depend on product 5654A22C, component CCXX.

 3 tells you the MYCCXX ERASE file has been created on your A-disk. This file contains a list of the
product files that will be deleted.

 4 tells you what the resource requirements currently are for the product you are deleting. This
sample PLANINFO file lists all the target minidisks or SFS directories that 5654A22C owns and gives
the individual requirements set up for each minidisk or directory.

Using VMFINS

32 z/VM: 7.3 VMSES/E Introduction and Reference

 5 tells you the first target minidisk or SFS directory for this product. This example, TARGID: 191, tells
you that some of the product code will be deleted from the 191 minidisk.

Note: You should note each of the minidisks and SFS directories that will be affected by the delete.

Calculating Space Requirements for Installation and Migration
You can use the VMFCNVT EXEC to convert the size and blocksize information from the prodid PLANINFO
file into the number of cylinders that are required to install or migrate a product. For more information on
the VMFCNVT EXEC, see “VMFCNVT EXEC” on page 370.

Overriding Product Installation Defaults
When you use VMFINS to install and migrate products in VMSES/E format, you have an opportunity to
override the default installation parameters that have been provided for each product by IBM. The Make
Override Panel is displayed (Figure 11 on page 33), and you can change the information on the panel.

The Make Override Panel shows you the default minidisks, user IDs, or Shared File System directories that
will be used when the product is installed or migrated, unless you choose to override them.

 File Help
 __
 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 11. Make Override Panel

You can also use the Make Override Panel to change product parameter file overrides that you have
created during previous product installations and migrations.

Using the Make Override Panel
When the Make Override Panel is displayed, you can enter new product installation parameters by typing
over the parameters that appear on the panel (Figure 12 on page 34).

Where Do the Product Installation Parameters Come From?
When you enter a VMFINS INSTALL or VMFINS MIGRATE command with the ADD option, the product
installation parameters are taken from the source product parameter file.

When you enter a VMFINS INSTALL or VMFINS MIGRATE command with the REPLACE option, the product
installation parameters are taken from the product parameter file for the copy of the product you are
replacing.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 33

Understanding the Make Override Panel Information

 File Help
__
 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 12. Reading the Make Override Panel

In Figure 12 on page 34, The default product installation parameters are shown to the right of the
descriptions of the input fields. For example, 59F is the default production installation parameter for the
COMP Samp & Loadlibs field.

Keep the following information in mind when you use the Make Override Panel:

• When a colon (:) precedes an input field, you cannot make changes to the information in that field.
• When a period (.) precedes an input field, you may change the information in that field.
• When an ellipsis (…) follows an option, you will need to provide additional information to complete the

action.
• When using variables and their values as defined in the VMSESE PROFILE, they must follow the CMS

naming conventions and lengths defined for the field you are changing.
• Entering an asterisk (*) in the PRODUCT Userid input field tells VMFINS to use the user ID on which

you are currently logged on.
• On color displays:

– Fields highlighted in white are in conflict with information in an existing product parameter file and
should be changed.

– Fields highlighted in yellow are in error and must be changed.
• On monochrome displays:

– Fields highlighted with high-intensity characters contain either errors or information that is in conflict
with information in another product parameter file override on your system. If there is an error,
the information must be changed. High-intensity characters appear to be brighter than the other
characters on the display.

• When you see More: + in the upper right corner of the panel, there is more information available. You
may scroll through it with the F8=Forward key.

Using VMFINS

34 z/VM: 7.3 VMSES/E Introduction and Reference

• When you see More: - in the upper right corner of the panel, there is more information available. You
may scroll through it with the F7=Backward key.

• Any valid CP or CMS command can be entered on the command line.
• If you are using F1=Help on the Make Override Panel:

– And the cursor is on an input field, F1=Help tells you if the characters you entered are valid for that
field

– And the cursor is on an area other than an input field, F1=Help provides general help on the Make
Override Panel.

• The F12=Cancel key closes the window and returns to the previous window or panel. The F12=Cancel
key can be used in any pull-down or pop-up window.

For HELP on the Make Override Panel, enter:

help vmses vmfmkovr

on the Make Override Panel command line or the CMS command line.

Using the Function Keys

⋮

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 13. The Function Keys on the Make Override Panel

Figure 13 on page 35 shows the Function key assignments. Table 4 on page 35 explains the function
each key provides.

Table 4. Function Key Assignments for the Make Override Panel

Function Key Function Provided

F1=Help Indicates if the information entered is valid for that input field. Move the
cursor to the input field in question and press the F1 key. For example, if
=39F is entered as a minidisk address, F1=Help tells you the entry is incorrect
because ‘=’ is not a valid character for a minidisk address.

If the cursor is not on an input field when you press F1=Help, general help on
the Make Override Panel is provided.

F2=Command Moves the cursor to the command line and moves the cursor from the
command line to its previous position.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 35

Table 4. Function Key Assignments for the Make Override Panel (continued)

Function Key Function Provided

F3=Exit Exits from the Make Override Panel.

If the information on the Make Override Panel has been changed and the
changes have not been saved, F3=Exit gives you an Exit Confirmation window
with the following options:

1. Save
2. Save as
3. Quit

Option 1 (Save) and option 2 (Save as…) allow you to save the product
installation parameters, exit from the Make Override Panel, and continue
VMFINS processing.

Option 3 (Quit) exits from VMFINS processing and does not save changes or
allow you to provide a product parameter file override name.

If you do not change the product installation parameters and you do not
save the original product installation defaults in a product parameter file
override, F3=Exit exits from the Make Override Panel. You are asked how you
would like to proceed. You can bypass processing for the product, you can exit
immediately, or you can continue processing the product.

• If you used the PPF operand, you continue to process the product using the
existing product parameter file override (PPF).

• If you used the PROD operand, you continue to process the product using
the product parameter file ($PPF) that was shipped with the product.

There must be a product parameter file override for each copy of the product
you install or migrate. The product parameter file override can contain either
the original product installation parameter defaults provided by IBM or new
product installation parameters that you have entered.

F4=Expand dirid Either provides more space to enter a Shared File System directory ID, or
displays an existing Shared File System directory ID. Shared File System
directory IDs can be up to 153 characters long, and they typically include the
file pool, user ID, and subdirectory names.

F5=Save as... Lets you save the updated information in a new file with a name you assign.
The Save as... panel is displayed, just as it would be if you selected Save
as... from the action bar File option.

F6=Mdisk or SFS dir Changes the entry format for the input field from minidisk format to Shared
File System directory format. When you select Shared File System directory
format, VMFINS provides a default SFS directory name. See “Changing from
Minidisk to SFS Directory Entry Format” on page 46 for more information
on entering Shared File System directory information and the default SFS
directory names provided by VMFINS. F6=Mdisk or SFS dir is a toggle key.

F7=Backward Moves backward through the information. More: - in the upper right corner
of the panel means there is more information, and you may scroll backward
through it.

F8=Forward Moves forward through the information. More: + in the upper right corner
of the panel means there is more information to display; and you may scroll
forward through it.

Using VMFINS

36 z/VM: 7.3 VMSES/E Introduction and Reference

Table 4. Function Key Assignments for the Make Override Panel (continued)

Function Key Function Provided

F9=Retrieve Retrieves up to 5 previous entries for the input field indicated by the cursor
position. When a blank entry is displayed, you have either retrieved all
previous entries (if there were less than 5) or you have already retrieved the
fifth entry. If you press F9=Retrieve after a blank entry, you can cycle through
the previous entries again.

F10=Action Moves the cursor to the action bar at the top left of the panel or moves the
cursor from the action bar to the previous cursor position.

F11=Conflict Takes you to the first highlighted field that was found to be in conflict with
a value in an existing product parameter override file. A message, which is
displayed at the bottom of the panel, tells you which product parameter
file override (ppfname) contains the information that is in conflict with the
information currently on the panel.

F12=Cancel Exits from the Make Override Panel and ends VMFINS processing or cancels
the current window.

Using the Action Bar
In Figure 14 on page 37, on the upper left of the panel, you see the words Fileand Help and a line that
runs all the way across the panel. The area above the line is called the action bar. To move the cursor to
the action bar, press F10=Action. To move the cursor back to its previous position, press F10 again.

To select an action, move the cursor to the word that indicates the action you would like to perform.
For example, if you want to save the changes you made, move the cursor to File. The tab key, which is
located on your keyboard, can be used to move between the selections on the action bar. To activate your
selection, press Enter.

 File Help
 -

 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 14. Using the Action Bar on the Make Override Panel

Using VMFINS

Chapter 3. Using the VMFINS EXEC 37

Understanding the File Options
To see the options available under the File action key, move the cursor to File and press Enter. A
pull-down window is displayed (Figure 15 on page 38).

 File Help

 | _ *. Save | ke Override Panel
 | 2. Save as... F5 | More:
 S | 3. Refresh | 4567 component COMP
 | 4. Exit F3 |
 |___________________________| Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> ___

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 15. Using the Action Bar to Save Product Parameter File Overrides

To select an option, either:

• Enter the number of the option in the blank which appears to the left of the first option in the window.
• Move the cursor so it appears on the number of the option and press Enter.

If you want to use the Save as... option, you may also press F5=Save as.... To select the Exit option, you
may also use the F3 key.

Saving a Product Parameter File Override
As you can see in Figure 16 on page 39, there are a number of options available to you within File. Any
option preceded by an asterisk (*), however, is not available at the present time. In Figure 16 on page
39, there is an asterisk (*) to the left of Save.

Using VMFINS

38 z/VM: 7.3 VMSES/E Introduction and Reference

 File Help
 __
 | _ *. Save | ke Override Panel
 | 2. Save as... F5 | More:
 S | 3. Refresh |34567 component COMP
 | 4. Exit F3 |
 |___________________________| Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 16. The Options for File

Option 1, Save, lets you save the information on the Make Override Panel in a current working file. New
information that has been entered overwrites the existing information, and you reuse the existing current
working file name. Save assumes you are working with an existing product parameter file for one copy of
the product.

In this example, we are working with this product for the first time; and we have not created a current
working PPF override file. Save, therefore, is not an available option at this time; and it is preceded by an
asterisk (*).

Option 2, Save as..., lets you save the information updated on the override panel in another file with
a new name. When you select this option, the Save as... window opens; and you can name the new PPF
override file. You may also decide to keep the existing name. If you do, the updated information, which is
currently shown on the panel, is saved in the existing file; and it overwrites the existing information.

Option 3, Refresh, erases all new entries on the panel and returns it to its original form.

Option 4, Exit, lets you exit from the Make Override Panel. If the information on the Make Override Panel
has been changed and the changes have not been saved, F3=Exit gives you an Exit Confirmation window
with the following options:

1. Save
2. Save as …
3. Quit

In the Exit Confirmation window, option 3 (Quit) exits from VMFINS processing and does not save changes
or allow you to provide a product parameter file override name.

Note
If you do not change the product installation parameters and you do not save the original product
installation defaults in a product parameter file override, F3=Exit ends VMFINS processing. There must be
a product parameter file override for each copy of the product you install or migrate.

In Figure 17 on page 40, option 2, Save as..., is selected.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 39

 File Help

 | 2 *. Save | ke Override Panel
 | 2. Save as... F5 | More:
 S | 3. Refresh | 4567 component COMP
 | 4. Exit F3 |
 |___________________________| Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 17. Selecting a File Option

In Figure 18 on page 40, the Save as... window is open; and you see the information you need to
provide to save the new product parameter override file.

 File Help

 MKOVR1 Make Override Panel
 More:
 Stora ___
 PR | Save as... |
 | |
 | File name...... |
 | File type.....: $PPF |
 | File mode.....: A |
 | Description.... Licensed Product 1.1.0 |
 | |
 | |
 | F12=Cancel |
 |___|

 COMP Service Machine... COMP

Command===> __

 F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 18. The Save as… Window

In Figure 18 on page 40, there is a colon (:) to the left of $PPF, the file type, and A, the file mode.
We cannot change the information in these fields. We can, however, enter a new file name and a new
description.

In Figure 19 on page 41, we entered a new file name (LP110CP1) for the product parameter override
file.

Using VMFINS

40 z/VM: 7.3 VMSES/E Introduction and Reference

 File Help

 MKOVR1 Make Override Panel
 More:
 Stora ___
 PR | Save as... |
 | |
 | File name...... LP110CP1 |
 | File type.....: $PPF |
 | File mode.....: A |
 | Description.... Licensed Product 1.1.0 Copy 1 |
 | |
 | |
 | F12=Cancel |
 |___|

 COMP Service Machine... COMP

Command===> ___

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 19. Saving the New Product Parameter File Override with a New Name

Once you save the new override file, you return to the Make Override Panel (Figure 20 on page 41). If you
look at the bottom left of the panel, you see two messages. One tells you the product parameter file has
been saved as LP110CP1 $PPF on the A-disk. The other message tells you that you are now working with
the LP110CP1 $PPF file, which is the name of the new product parameter override file you just created.

 File Help

 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

 Override Filename: LP110CP1 $PPF A
VMFMKO2912I Product parameter file override file saved as LP110CP1 $PPF A
Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 20. Returning to the Make Override Panel

From this point on, all processing is completed using the LP110CP1 $PPF file. VMFINS uses the last
override file created, unless otherwise specified.

If you enter F3=Exit at this point, you leave the Make Override Panel; and processing continues.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 41

If you enter F12=Cancel, you have an opportunity to confirm your selection. The Exit Confirmation
window is displayed, and you may select:

1. Save
2. Save as …
3. Quit

Option 1, Save, lets you save the current working file and end VMFINS processing.

Option 2, Save as ..., lets you save the current working file with a new file name and end VMFINS
processing.

Option 3, Quit, ends VMFINS processing and does not save the current working file.

Understanding the Help Options
To get to the Help options, use F10=Action to move the cursor to the action bar. Place the cursor under
Help and press Enter. As shown in Figure 21 on page 42, a window opens, and the options available
within Help are displayed.

 File Help

 MKOVR1 | _ 1. Help on Help | anel
 | 2. Help on Function Keys | More:
 Storage r | 3. Basic Instructions | t COMP
 PRODUC |________________________________|
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 21. The Options for Help

To select an option, either:

• Enter the number of the option in the blank which appears to the left of the first option in the window.
• Move the cursor so it appears on the number of the option and press Enter.

In Figure 22 on page 43 , we select option 1, Help on Help.

Using VMFINS

42 z/VM: 7.3 VMSES/E Introduction and Reference

 File Help
 __
 MKOVR1 | 1 1. Help on Help | anel
 | 2. Help on Function Keys | More:
 Storage r | 3. Basic Instructions | t COMP
 PRODUC |________________________________|
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 22. Selecting an Option in Help

Getting Help on Help
When you select option 1, the following window is displayed.

 File Help

 MKOVR1 Make Override Panel
 More:

| Help on Help |
| More: |
|VMFMKO8141 |
| When you use VMFINS to install and migrate products|
| and components in Parameter Driven Installation PDI|
| format, you have an opportunity to override the |
| default installation parameters that have been |
| provided for each product by IBM. |
| The Make Override Panel shows you the default |
| minidisks, user IDs, or Shared File System |
| directories that will be used when the product is |
| installed or migrated, unless you choose to |
| override them. |
| |
| |
|F7=Backward F8=Forward F12=Cancel |
|___|

Command===> __________________

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 23. Help on Help Window

Help on Help gives you general help information on the Make Override Panel and includes:

• The purpose of the Make Override Panel
• Instructions for creating an override file using this panel
• Instructions on saving files.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 43

Getting Help on the Function Keys
To get help on a Function Key, select option 2. The Help on Function Keys window is displayed (Figure 24
on page 44).

 File Help

 MKOVR1 Make Override Panel
 More:
 Stora __
 Us | Help on Function Keys |
 | |
 | Select an item by typing '/' to the left of each option |
 | _ F1=Help _ F2=Command |
 | _ F3=Exit _ F4=Expand Dirid |
 | _ F5=Save as... _ F6=Mdisk or Dirid |
 | _ F7=Backward _ F8=Forward |
 | _ F9=Retrieve _ F10=Action |
 | _ F11=Conflict _ F12=Cancel |
 | |
 | |
 Us |__|

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 24. Help on Function Keys Window

You can select help on an individual function key by placing a slash (/) to the left of the function key in
question. For example, in Figure 25 on page 44, we have asked for help on the F6 function key.

 File Help
 __
 MKOVR1 Make Override Panel
 More:
 Stora ___
 Us | Help on Function Keys |
 | |
 | Select an item by typing '/' to the left of each option |
 | _ F1=Help _ F2=Command |
 | _ F3=Exit _ F4=Expand Dirid |
 | _ F5=Save as... / F6=Mdisk or Dirid |
 | _ F7=Backward _ F8=Forward |
 | _ F9=Retrieve _ F10=Action |
 | _ F11=Conflict _ F12=Cancel |
 | |
 | |
 Us |___|

Command===> ___

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 25. Selecting Help on the F6=Mdisk or SFS Dir Function Key

Figure 26 on page 45 shows you the help information for the F6=Mdisk or SFS dir function key.

Using VMFINS

44 z/VM: 7.3 VMSES/E Introduction and Reference

 File Help

 MKOVR1 __
 | Help on Function Keys |

 | Help on Function Key F6 |
 | More: |
 | VMFMKO8134 Changes the entry format for the input field from |
 | minidisk format to Shared File System directory |
 | format. When you select Shared File System |
 | directory format, VMFINS provides a default SFS |
 | directory name. F6=Mdisk or SFS dir is a toggle key. |
 | |
 | |
 | |
 | F7=Backward F8=Forward F12=Cancel |
 |___|
 | |
 |__|

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 26. Help Description for the F6=Mdisk or SFS Dir Function Key

Getting Basic Instructions on the Make Override Panel
To get general help on using the Make Override Panel, select option 3, Basic Instructions, from the Help
options pull-down window (shown in Figure 27 on page 45). To see the general help provided by the
Basic Instructions option, see “Understanding the Make Override Panel Information” on page 34.

 File Help

 MKOVR1 | 3 1. Help on Help | anel
 | 2. Help on Function Keys | More:
 Storage r | 3. Basic Instructions | t COMP
 PRODUC |________________________________|
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 27. Selecting Basic Instructions

Online Help
To get HELP online, enter help vmses vmfmkovron the Make Override Panel command line or the CMS
command line.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 45

Changing from Minidisk to SFS Directory Entry Format
You can use the F6=Mdisk or SFS dir function key to change the format of the input fields from minidisk
format to Shared File System directory format. To change the format of the input field, move the cursor
to the field in question, and press F6. F6 removes the existing entry and provides a default Shared File
System directory name, which you may use or change.

The Default Shared File System Directory Name
The default SFS directory name is defined by the file pool name, the user ID that owns the target minidisk,
and the target minidisk address prefixed by the letter D. (VMPSFS: is the default file pool name defined for
VMSES/E, but you can change the default.) As you can see in Figure 28 on page 46, the field after COMP
Text has a default Shared File System directory name and space for additional input.

 File Help
 __
 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ VMPSFS:LPUSERID.D049F__________________
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 28. Changing from Minidisk to Shared File System Directory Entry

If you need more space to enter the complete Shared File System directory ID, press F4=Expand Dirid.
Figure 29 on page 47 shows the Expand Dirid window which provides additional space for your input.

Using VMFINS

46 z/VM: 7.3 VMSES/E Introduction and Reference

 File Help
 __
 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ VMPSFS:LPUSERID.

 | Expand Dirid |
 | |
 | VMSFS:LPUSERID.D049F |
 | |
 | |
 | |
 | F12=Cancel |
 |___|

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or D
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 29. Expand Dirid Window

To complete the SFS directory ID, just type the remainder of the information in the window provided. You
can enter up to 153 characters, including the colon and the periods. Figure 30 on page 47 shows you an
example of an SFS directory ID entry.

 File Help

 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ VMPSFS:MAINTvrm.

 | Expand Dirid |
 | |
 | VMPSFS:LPUSERID.D049F.NETWORKING.TESTCOPY.LP220CP1.MYC |
 | OPY1.JANUARY |
 | |
 | |
 | F12=Cancel |
 |___|

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or D
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 30. Entering the Complete Shared File System Directory ID

To save the new Shared File System directory name, select File from the action bar or press F5=Save
as.... See “Saving a Product Parameter File Override” on page 38 for details on using File.

Changing the Shared File System Directory File Pool Name
You can change the Shared File System directory file pool name by:

• Entering the FILEPOOL option on the VMFINS command.
• Changing the value for the FILEPOOL option in the VMFINS DEFAULTS file.

Using VMFINS

Chapter 3. Using the VMFINS EXEC 47

• Using the F6 key on the Make Override Panel. Figure 28 on page 46 shows the Make Override Panel
after using the F6 key. If ALTSYS: had been entered as the file pool ID on the VMFINS command, the
panel in Figure 28 on page 46 would show ALTSYS:LPUSERID.D049F instead.

When you change the SFS directory file pool, make sure:

• The file pool you are specifying is available in interactive mode.
• You have administrative authority for the file pool for the user ID performing the VMFINS operation.

You need administrative authority to enroll yourself in the file pool or increase the amount of space
allocated.

• You create the filepoolid:userid.VMFINS directory or enroll a user in the file pool.

Controlling the VMFINS Prompts
You can change the way prompts are issued during VMFINS INSTALL and MIGRATE processing by using
the OVERRIDE option when you issue a VMFINS INSTALL or MIGRATE command. You can also change
the way the prompts are issued by changing the default for OVERRIDE in the VMFINS DEFAULTS file. For
more information on the OVERRIDE option, see “VMFINS INSTALL Command” on page 428 and “VMFINS
MIGRATE Command” on page 436. For more information on changing the VMFINS DEFAULTS file, see
“Changing the VMFINS Command Defaults” on page 48.

Changing the VMFINS Command Defaults
The VMFINS EXEC has established defaults for each command option, as described in “VMFINS EXEC” on
page 407. These defaults are obtained from the definitions in the VMFINS DEFAULTS file (a copy of which
is supplied with VMSES/E).

VMFINS command defaults can be changed to meet requirements for your specific environment, either
by supplying appropriate options and values directly as part of a VMFINS command, or via customized
definitions within a VMFINS DEFAULTS file. For more information about supported statements, syntax,
and the use of the VMFINS DEFAULTS file for configuration purposes, see “The VMFINS DEFAULTS File”
on page 139.

Moving a Product from Test Mode to Production Mode
You may want to establish a test environment to test new products and new levels of products before
you put them into production. Once you are satisfied with the product's performance, manually move the
product from test mode to production mode to make it available to your users.

For more information on specific tasks that may need to be completed when you move a product from
test mode to production mode, see the documentation for that product.

Using VMFINS

48 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 4. Installing Products with VMFINS

This chapter describes, in general terms, what happens when you use the VMFINS INSTALL command to
install new products formatted for VMSES/E on your system or replace products that are already on your
system. It is intended as an overview only. See the documentation for the product you are installing for
specific installation instructions.

The topics covered in this chapter include:

• Adding new products to your system
• Replacing products on your system
• Changing the Parameter Driven Installation defaults
• Installing a product with the PPF operand (scenario)
• Using the VMFSIM EXEC during an installation

Adding Products to Your System
When you use the VMFINS INSTALL command with the ADD option to install products,

• The VMSES/E product management files (for example, the Memo-to-Users, product parameter files, and
PRODPART files) are loaded from the product tape to the Software Inventory disk.

• The system-level requisite and description Software Inventory tables are updated.
• If the product is in VMSES/E format:

– The requisites for the product are checked.

- If the requisites are not satisfied, a list of missing products is displayed; and you are asked if you
want to continue. To see a sample message, see “Missing Requisites” on page 24. (You should
install any missing requisite products.)

- If you want to continue, VMFINS loads the product to the system even though requisites are
missing.

– You are given an opportunity to use the current product-defined installation parameters or change
them in the product parameter file. If you choose to change them, the Make Override Panel is
displayed. On the Make Override Panel, you see the parameters that may be changed.

• The product is installed, using the information from the product parameter file.
• The Software Inventory is updated to show the files have been received and the product is installed.

For more information on VMFINS processing for products in different formats, see Table 3 on page 11.

Adding a Single Product
The easiest way to install a single product is to use the VMFINS INSTALL command with the PPF operand.
This section provides an overview of the steps involved when you use the PPF operand and the ADD
option.

Note: For specific instructions, see the documentation for the product you are installing.

Before you can install a product, you should enter:

vmfins install info (add

to find out which products are on the installation tape. As you saw in Chapter 3, “Using the VMFINS
EXEC,” on page 17, the INFO operand creates a list of the products on the installation tape. It also stores
the Memo-to-Users, which you should read, on the Software Inventory disk.

Installing Products

© Copyright IBM Corp. 1990, 2023 49

Next, look in the VMFINS PRODLIST file (on your A-disk) that was created when you used the INFO
operand. Find the product parameter file name (ppfname), the product identifier (prodid), and the
component name (compname) for the product you want to install. These identifiers are explained in
“The VMFINS PRODLIST File” on page 18.

When you have the ppfname, run the VMFINS INSTALL command with PPF operand and the PLAN option
to check the product requisites and see what resources are required to install the product. To run the
PLAN option, enter:

vmfins install ppf ppfname compname (add plan

You are asked if you want to create an override for the product you are installing. If you answer yes, you
are asked if you want to use the default product installation parameters that have been supplied by IBM.
You may change the installation parameters if the product is in VMSES/E format. The Make Override Panel
provides, for your review, the specific product resource user IDs and minidisk addresses supplied by IBM,
and you can enter new addresses and user IDs each time you install a copy of the product. You must
always provide a name for the product parameter file installation defaults, however, even if you do not
make any changes. This is how VMFINS identifies each copy of a product and maintains multiple copies of
a product on one system.

When the PLAN processing is complete, a prodid PLANINFO file is stored on your A-disk.

Check the prodid PLANINFO file on your A-disk to see if you are missing any requisites and to see how
much minidisk space is required to install the product you have identified. You must check the minidisk
space yourself and allocate the required amount of available space.

Once you have reviewed the PLANINFO file, you can install the product using the VMFINS PPF operand
and the installation parameters that were entered during PLAN processing. You can also change the
installation parameters that were entered during PLAN processing, if you want to.

To install the product using the PPF operand, enter:

vmfins install ppf ppfname compname (add noplan nomemo

The options used in this command are:

add
ADD puts a new copy of a product on the system.

noplan
NOPLAN installs the product.

nomemo
NOMEMO does not ask you if you want to print the Memo-to-Users.

For more information on the VMFINS options, see “VMFINS INSTALL Command” on page 428.

When install processing is complete, you should run the VMFINS BUILD command to build the product on
the system and update the Software Inventory tables.

Adding Several Products
You might want to use the LIST operand if you are installing several products at the same time. The basic
steps are the same. You would:

• Enter the VMFINS INSTALL command with the INFO operand.
• Read the Memo-to-Users for the products you are installing.
• Edit the VMFINS PRODLIST file and comment out the products you do not want to install.
• Enter the VMFINS INSTALL command with the LIST operand and the ADD and PLAN options.
• Enter the new PPF override file names when you are asked to supply them during PLAN processing

(optional).
• Review the prodid PLANINFO files that are created and stored on your A-disk.

Installing Products

50 z/VM: 7.3 VMSES/E Introduction and Reference

• Review the VMFINS PRODLIST file to see where the new PPF override names have been entered to aid
in further processing with the LIST operand.

• Enter the VMFINS INSTALL command with either:

– The LIST operand (to install all of the products in the VMFINS PRODLIST file)
– The PPF operand, a ppfname, and a compname (to install only one of the products in the VMFINS

PRODLIST file).

If you use the PPF operand, you must enter the VMFINS INSTALL command with the PPF operand
and the ppfname for each product in the VMFINS PRODLIST file that you want to install.

• Run the VMFINS BUILD command for each product to build the products and update the Software
Inventory tables.

See “Scenario 1: Installing a Product with the PPF Operand” on page 54 for an example of how to use
VMFINS to install products.

Replacing Products on Your System
When you enter the VMFINS INSTALL command with the REPLACE option:

• The VMSES/E product management files (for example, the Memo-to-Users, PRODPART file, and product
parameter files) are loaded from the product tape to the Software Inventory disk.

• The system requisite and description tables are updated.
• If the product is in VMSES/E format, the requisites for the product are checked.

– If the requisites are not satisfied, a list of missing products is displayed; and you are asked if you
want to continue. To see a sample message, see “Missing Requisites” on page 24.

– If you want to continue, VMFINS loads the product to the system even though requisites are missing.
• The Software Inventory is checked to see which copies of the product are installed.
• You are asked which copy you want to replace.
• If the product is in VMSES/E format:

– You are given an opportunity to change the product installation parameters.

The Make Override Panel is displayed, and the product installation parameters for the product you
are replacing are provided. You can enter new addresses and user IDs if new minidisks or SFS
directories have been added for the copy of the product you are installing.

• The files for the product being replaced are erased.
• The product is installed, using the information in the product parameter file.
• The Software Inventory is updated to show the files have been received and the product is installed.

Replacing a Single Product
The easiest way to install a single product and replace an existing copy is to use the VMFINS INSTALL
command with the PPF operand. This section provides an overview of the steps you complete when you
replace a product using VMFINS.

Note: For specific instructions, see the documentation for the product you are installing.

Before you enter the VMFINS INSTALL command with the PPF operand, you need to complete a few
simple steps. Begin by entering:

vmfins install info (replace

to get a list of the products you can replace. As you saw in Chapter 3, “Using the VMFINS EXEC,” on
page 17, the INFO operand creates a list of the products that are on the installation tape and also on the
system. Details on using the INFO operand can be found in “Which Products Can You Install?” on page 19.

Installing Products

Chapter 4. Installing Products with VMFINS 51

Check the prodid PLANINFO file on your A-disk to see if you are missing any requisites and to see how
much minidisk space is required to install the product you have identified. You must check the minidisk
space yourself and create the required amount of available space.

Once you have this information, run the VMFINS INSTALL command with PPF operand and the PLAN
option to check the product requisites and see what resources are required to install the product. The
PLAN option will tell you if you are missing any requisites. (You may also want to include the MEMO option
to print the Memo-to-Users). To run the PLAN option, enter:

vmfins install ppf ppfname compname (replace plan memo

During the PLAN processing, the Make Override Panel is displayed, and the specific product resource user
IDs and minidisk addresses for the copy of the product you are replacing are provided. You can enter new
addresses and user IDs if new minidisks or SFS directories have been added for the copy of the product
you are installing. You should always provide a name for the product parameter file installation defaults
even if you do not make any changes. This is how VMFINS identifies each copy of a product and maintains
multiple copies of a product on one system.

When the PLAN processing is complete, a prodid PLANINFO file and a ppfname ERASE file are stored on
your A-disk. The ppfname ERASE file lists the files that will be erased when you replace this copy of the
product.

Check the prodid PLANINFO file on your A-disk to see if you are missing any requisites and to see how
much minidisk space is required to install the product you have identified. If you are going to use the
NORESOURCE option when you install the product, you must check the minidisk space yourself and
create the required amount of available space.

Once you have reviewed the PLANINFO file, you can install the product using the PPF operand. With
the PPF operand, you can use the PPF installation default overrides that were entered during PLAN
processing. You can also change the installation parameters that were entered during PLAN processing, if
you want to.

To install the product using the PPF operand, enter:

vmfins install ppf ppfname compname (replace noplan nomemo

The options used in this command are:

replace
REPLACE puts a new copy of a product on the system and replaces the existing copy.

noplan
NOPLAN installs the product.

nomemo
NOMEMO does not ask you if you want to print the Memo-to-Users.

For more information on the VMFINS options, see “VMFINS INSTALL Command” on page 428.

When install processing is complete, you should run the VMFINS BUILD command to build the product on
the system and update the Software Inventory tables.

Replacing Several Products
You may want to use the LIST operand if you are installing several products at once and replacing existing
copies. The basic steps are:

• Enter the VMFINS INSTALL command with the INFO operand and the REPLACE option.
• Edit the VMFINS PRODLIST file and comment out the products you do not want to install.
• Enter the VMFINS INSTALL command with the LIST operand and the REPLACE, PLAN, and MEMO

options.
• Answer yes (1) when you are asked if you want to create an override.

Installing Products

52 z/VM: 7.3 VMSES/E Introduction and Reference

• Enter new product installation parameters for any new minidisk or SFS directory requirements when
the Make Override Panel is displayed. When the Make Override Panel is displayed for each product, the
product installation parameters for the copy of the product you are replacing are provided. You may only
change parameters for minidisk or SFS directory requirements that have changed or been added since
the previous copy was installed.

• Enter the new PPF override file names when you are asked to supply them during the PLAN processing.
• Review the prodid PLANINFO files and the ppfname ERASE files that were created and stored on your

A-disk.
• Review the VMFINS PRODLIST file to see where the new PPF override names have been entered to aid

in further processing with the LIST operand.
• Enter the VMFINS INSTALL command with either:

– The LIST operand and the REPLACE option (to install all of the products in the VMFINS PRODLIST file)
– The PPF operand, a ppfname, and the REPLACE option (to install only one of the products in the

VMFINS PRODLIST file).

If you use the PPF operand, you must enter the VMFINS INSTALL command with the PPF operand
and the ppfname for each product in the VMFINS PRODLIST file.

• Specify which products you want to replace when you are asked to do so.
• Run the VMFINS BUILD command to build the products and update the Software Inventory tables.

For a complete description of the command syntax, see “VMFINS INSTALL Command” on page 428.

Changing the Product Installation Defaults
When you use VMFINS to install products in VMSES/E format, you have an opportunity to override the
product installation defaults that have been provided for each product by IBM. The Make Override Panel,
shown in Figure 31 on page 53, is displayed; and you can change the information on the panel.

The Make Override Panel shows you the default minidisks, user IDs, or Shared File System directories that
will be used when the product is installed, unless, of course, you override them.

 File Help
 __
 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===> __

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS dir
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 31. The Make Override Panel

For more information on using the Make Override Panel, see “Overriding Product Installation Defaults” on
page 33.

Installing Products

Chapter 4. Installing Products with VMFINS 53

Scenario 1: Installing a Product with the PPF Operand
In this scenario we show you how to use the PPF operand with the VMFINS INSTALL command to install a
single product. We also show you examples of the types of output we receive. The information you receive
will depend on the products and system you are using.

Note:
This scenario is only an example. When you install a product, you should always refer to the installation
instructions for that product.

Before we can install a product using the PPF operand, we must have a usable form product parameter
file for this particular copy of the product. The product parameter file can be:

• Shipped with the product by IBM
• Created using the VMFPPF command

We have a z/VM system installed and running. The product installation tape is mounted and attached as
virtual address 181. We check “Who Can Use VMFINS?” on page 10 to make sure we have everything we
need. Now we want to install the IBM XL C/C++ for z/VM Compiler product for the first time. We are going
to use the NORESOURCE option.

Step 1. Create the VMFINS PRODLIST File and Print Memo-to-Users
The first thing we need to do is find the information we need to install this product. We can use the
INFO operand with the VMFINS INSTALL command to create a file containing a list of the products on the
installation media.

With VMFINS, we can print the Memo-to-Users and run the INFO operand at the same time. To create the
list of products, which will be stored in the VMFINS PRODLIST file, and print the Memo-to-Users, we enter:

vmfins install info (memo

VMFINS reads the product installation media, creates the VMFINS PRODLIST file, and stores it on our
A-disk. As you can see from the VMFINS CONSOLE file shown in Figure 32 on page 54, we are asked if
we want to print the Memo-to-Users for each product on the installation media, if one is available.

VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS1909I VMFINS PRODLIST created on your A-disk
VMFINS2601R The following memos are available to be printed
 Enter the numbers of your choices separated by blanks
(0) Do not print any memos
(1) 5654A22C MEMO D1 Description: AMERICAN ENGLISH
1
PRT FILE 0028 TO 5654A22C COPY 001 NOHOLD
VMFINS2760I VMFINS processing completed successfully

Figure 32. Printing the Memo-to-Users

We enter 1 to print the Memo-to-Users for CCXX. There is information in this document to help us during
our installation. The Memo-to-Users prints on our system printer. Figure 33 on page 55 shows the
VMFINS PRODLIST file that was created when we entered this command.

Installing Products

54 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINS PRODLIST A1 V 85 Trunc=85 Size=4 Line=0 Col=1 Alt=0
====>
* * * Top of File * * *
PPF 5654A22C CCXX PRODID 5654A22C%CCXX IBM XL C/C++ for z/VM Compiler
PPF 5654A22C CCXXSFS PRODID 5654A22C%CCXXSFS IBM XL C/C++ for z/VM Compiler in SFS
PPF 5654A22C CCXXK PRODID 5654A22C%CCXXK IBM XL C/C++ for z/VM Compiler
PPF 5654A22C CCXXKSFS PRODID 5654A22C%CCXXKSFS IBM XL C/C++ for z/VM Compiler in SFS
* * * End of File * * *

Figure 33. VMFINS PRODLIST File

Step 2. Find the Product Identifiers for IBM XL C/C++ for z/VM Compiler
In this scenario, we are going to install the CCXX component. We look in the VMFINS PRODLIST
file (shown in Figure 33 on page 55. Following the keyword PPF, we find 5654A22C. This is the
file name of the product parameter file, ppfname, for CCXX. Following the PRODID keyword, we find
5654A22C%CCXX. The characters before the %, 5654A22C, are the product ID, prodid, for CCXX. The
characters after the %, CCXX, are the component name, compname, for CCXX.

Step 3. Determine if You Have a Usable Form PPF
When we entered the VMFINS INSTALL command with the INFO operand, the product parameter files
were saved on the D-disk. To determine if we have a usable form product parameter file for CCXX (file
type is PPF), we enter:

filelist 5654a22c ppf d

As you can see in Figure 34 on page 55, we have a usable form product parameter file for CCXX.

5654A22C FILELIST A0 V 169 Trunc=169 Size=1 Line=1 Col=1 Alt=0
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
 5654A22C PPF D1 V 73 637 12 8/29/11 9:52:20

Figure 34. Finding the Usable Form Product Parameter File for CCXX

When the usable form product parameter file is shipped with the product by IBM, we can use the PPF
operand to run the PLAN option. If the usable form product parameter file is not shipped with the product
by IBM, we need to use the VMFPPF command to create one before we can run the VMFINS INSTALL
command with the PPF operand. For more information on this command, see “VMFPPF EXEC” on page
461.

Step 4. Run the PLAN Option
To run PLAN, we enter:

vmfins install ppf 565aA22c ccxx (nomemo plan

We are asked if we want to create an override for this copy of CCXX. We answer no (0) to use the product
installation parameters provided in the usable form product parameter file.

When PLAN processing is complete, 5654A22C PLANINFO file is stored on our A-disk. We need to review
this file to see if there are any missing requisites, which minidisks will be affected, and how much space is
required on each. The 5654A22C PLANINFO file is shown in Figure 35 on page 56.

Installing Products

Chapter 4. Installing Products with VMFINS 55

Step 5. Review the 5654A22C PLANINFO File
We check the contents of the 5654A22C PLANINFO file to make sure all of the requisites are satisfied and
we have the correct minidisks to install this product.

5654A22C PLANINFO File
Figure 35 on page 56 and Figure 36 on page 57 show the PLANINFO file created for 5654A22C (prodid
5654A22C) during the PLAN processing.

**
**** VMFINS INSTALL USERID: 5654A22C ****
**
**** Date: 2022-06-28 Time: 16:25:07 ****
**
VMFINS2195I VMFINS INSTALL PPF 5654A22C CCXX (SYSTEM VM SIDISK 51D SIMODE
 D PLAN NORESOURCE LINK DFNAME USER DFTYPE DIRECT DFMODE *
 NOMEMO ADD ENV 5654A22C SETUP
**
* Requisite Planning Information *
**
* PPF: 5654A22C CCXX PRODID: 5654A22C%CCXX * 1
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
VMFREQ2805I Product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX has passed
 requisite checking 2
**
* Resource Allocation Planning Information *
**
* PPF: 5654A22C CCXX PRODID: 5654A22C%CCXX *
* DATE: 06/28/22 TIME: 16:25:07 USERID: 5654A22C *
**
**
 Resource requirements for product 5654A22C component CCXX
**
OWNER: 5654A22C 3
 TARGID: 191
 SIZE: 22500
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 2C2
 SIZE: 900
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 2D2
 SIZE: 81000
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 2A6
 SIZE: 900
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

Figure 35. 5654A22C PLANINFO File Created by the PLAN Option (1 of 2)

Installing Products

56 z/VM: 7.3 VMSES/E Introduction and Reference

 TARGID: 2A2
 SIZE: 900
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 29E
 SIZE: 81000
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

 TARGID: 2B2
 SIZE: 45000
 BLKSIZE: 4K
 FORMAT: CMS
 RECOMPED: NO
 PREFERRED: NO
 SEPARATED: NONE

REPLACE USER: 5654A22C 4
 USER 5654A22C XXXXX 256M 2G EG
 ACCOUNT xxxxx
 IPL CMS
 MACHINE ESA
 CONSOLE 009 3215 T
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK MAINT 190 190 RR
 LINK MAINT 19D 19D RR
 LINK MAINT 19E 19E RR
 LINK MAINT 51D 51D MR
 LINK MAINT 5E5 5E5 RR

Figure 36. 5654A22C PLANINFO File Created by the PLAN Option (2 of 2)

We have checked the 5654A22C PLANINFO file and see we are not missing any requisites. VMFREQ2805I
Product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX has passed requisite checking
(2) says there are no missing requisites to report.

If we were missing requisites, we could still install the product. We would, however, receive messages
during the installation telling us which products we were missing and asking if we wanted to continue. See
“Missing Requisites” on page 24 for more information on installing a product when a requisite is missing.

In 5654A22C PLANINFO, we can also see where:

• The 5654A22C product parameter file was created (1).
• The target minidisks belong to the 5654A22C user ID (3). You may have to update the CP directory

with these minidisks. If you do, make sure you put the directory online after you update it.
• A server machine is required by CCXX (4).

You must allocate and generate the resources before you begin the installation. You must also add the
server machine information to the CP directory.

Step 6. Install CCXX
Before we enter the install command, we make sure our CP directory is updated and online. Then, to
install CCXX, we enter the PPF operand and the ppfname (5654A22C) in the following command:

vmfins install ppf 5654a22c ccxx (add nolink nomemo

We have entered the ADD option, even though it is the default, for illustrative purposes.

When VMFINS INSTALL processing begins, we see the following message:

VMFINS2760I VMFINS processing started

Installing Products

Chapter 4. Installing Products with VMFINS 57

We are prompted for additional information during the installation processing. For example, we are asked
if we want to create an override. We answer no (0). We could have answered yes (1), however, if we
wanted to change any of the installation parameters that were saved during PLAN processing.

For a complete list of the messages issued by VMFINS, we can check the $VMFINS $MSGLOG, which
is created during the installation processing and stored on our A-disk. For a complete listing of the
commands we enter, the responses we made to system prompts, and the messages issued during install
processing, we can check the VMFINS CONSOLE file that is spooled to our reader when processing is
complete.

Figure 38 on page 60 shows the console listing that was created when we installed this copy of CCXX.

When processing is complete, we see the message:

VMFINS2760I VMFINS processing completed successfully

Step 7. Review the Output Files
Now that we have completed our installation, we review the $VMFINS $MSGLOG and VMFINS CONSOLE
files to see if we need to perform additional tasks.

The $VMFINS $MSGLOG File
The $VMFINS $MSGLOG is created by VMFINS during the installation. The status of the installation can be
found in this file, as well as information for determining where an error may have occurred. The $VMFINS
$MSGLOG that was created during our example installation is shown in Figure 37 on page 59. Table 10
on page 138 explains the different types of messages in a message log.

Installing Products

58 z/VM: 7.3 VMSES/E Introduction and Reference

**
**** VMFINS INSTALL USERID: 5654A22C ****
**
**** Date: 2022-09-12 Time: 16:30:34 ****
**
ST:VMFINS2195I VMFINS INSTALL PPF 5654A22C CCXX (SYSTEM VM SIDISK 51D SIMODE
ST: D NOPLAN NORESOURCE NOLINK DFNAME USER DFTYPE DIRECT DFMODE *
ST: NOMEMO ADD SETUP 1
ST:VMFINS2760I VMFINS processing started
ST:VMFINS2603I Processing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
ST:VMFREQ2805I Product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX has passed
ST: requisite checking
ST:VMFINT2603I Installing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
ST:VMFSET2760I VMFSETUP processing started for 5654A22C CCXX
ST:VMFUTL2205I Minidisk|Directory Assignments: 2
ST: String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
ST: -or- SFS Directory Name
ST:VMFUTL2205I LOCALSAM E R/W 2C2 CCX2C2 (5654A22C 02C2 : 5/01)
ST:VMFUTL2205I APPLY F R/W 2A6 CCX2A6 (5654A22C 02A6 : 5/01)
ST:VMFUTL2205I G R/W 2A2 CCX2A2 (5654A22C 02A2 : 5/01)
ST:VMFUTL2205I DELTA H R/W 2D2 CCX2D2 (5654A22C 02D2 : 450/00)
ST:VMFUTL2205I BUILD0 I R/W 29E CCX29E (5654A22C 029E : 450/00)
ST:VMFUTL2205I BASE1 J R/W 2B2 CCX2B2 (5654A22C 02B2 : 250/00)
ST:VMFUTL2205I -------- A R/W 191 CCX191 (5654A22C 0191 : 125/01)
ST:VMFUTL2205I -------- B R/O 5E5 MNT5E5 (MAINT730 05E5 : 18/48)
ST:VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/36)
ST:VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/64)
ST:VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/38)
ST:VMFSET2760I VMFSETUP processing completed successfully
ST:VMFREC2760I VMFREC processing started
ST:VMFREC1852I Volume 1 of 1 of INS ENVELOPE 1100
ST:VMFREC1851I (1 of 8) VMFRCAXL processing AXLIST
ST:VMFRCX2159I Loading 0 part(s) to DELTA 2D2 (H)
ST:VMFREC1851I (2 of 8) VMFRCPTF processing PARTLST
ST:VMFRCP2159I Loading 0 part(s) to DELTA 2D2 (H)
ST:VMFREC1851I (3 of 8) VMFRCCOM processing DELTA
ST:VMFRCC2159I Loading 0 part(s) to DELTA 2D2 (H)
ST:VMFREC1851I (4 of 8) VMFRCALL processing APPLY
ST:VMFRCA2159I Loading part(s) to APPLY 2A6 (F)
ST:VMFRCA2159I Loaded 1 part(s) to APPLY 2A6 (F)
ST:VMFREC1851I (5 of 8) VMFRCALL processing BASE
ST:VMFRCA2159I Loading part(s) to BASE1 2B2 (J)
ST:VMFRCA2159I Loaded 66 part(s) to BASE1 2B2 (J)
ST:VMFREC1851I (6 of 8) VMFRCALL processing SAMPLE
ST:VMFRCA2159I Loading part(s) to LOCALSAM 2C2 (E)
ST:VMFRCA2159I Loaded 180 part(s) to LOCALSAM 2C2 (E)
ST:VMFREC1851I (7 of 8) VMFRCALL processing BUILD
ST:VMFRCA2159I Loading part(s) to BUILD0 29E (I)
ST:VMFRCA2159I Loaded 24 part(s) to BUILD0 29E (I)
ST:VMFREC1851I (8 of 8) VMFRCALL processing BUILDENG
ST:VMFRCA2159I Loading part(s) to BUILD0 29E (I)
ST:VMFRCA2159I Loaded 6 part(s) to BUILD0 29E (I)
ST:VMFREC2760I VMFREC processing completed successfully
ST:VMFINT2603I Product installed
ST:VMFINS2760I VMFINS processing completed successfully

Figure 37. $VMFINS $MSGLOG Created during Installation Processing

We check the $VMFINS $MSGLOG and see:

• The complete VMFINS command that was processed (1)
• The required minidisks are accessed (2).

The VMFINS CONSOLE File
The following console file was created during VMFINS INSTALL processing and spooled to our reader.
VMFINS spools the console so the information can be saved.

If you encounter an error during processing, you can use the VMFINS CONSOLE file and the $VMFINS
$MSGLOG file to find where the error occurred. The console file contains a record of the entries we made,
the system prompts, and the messages that were issued.

Installing Products

Chapter 4. Installing Products with VMFINS 59

vmfins install ppf 5654A22C CCXX (add nolink nomemo
VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS2601R Do you want to create an override for :PPF 5654A22C CCXX :PRODID
 5654A22C%CCXX? 1
 Enter 0 (No), 1 (Yes) or 2 (Exit)
0
VMFINS2603I Processing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
VMFREQ2805I Product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX has passed
 requisite checking 2
VMFINT2603I Installing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
VMFSET2760I VMFSETUP processing started for 5654A22C CCXX
VMFUTL2205I Minidisk|Directory Assignments:
 String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
 -or- SFS Directory Name
VMFUTL2205I LOCALSAM E R/W 2C2 CCX2C2 (5654A22C 02C2 : 5/01)
VMFUTL2205I APPLY F R/W 2A6 CCX2A6 (5654A22C 02A6 : 5/01)
VMFUTL2205I G R/W 2A2 CCX2A2 (5654A22C 02A2 : 5/01)
VMFUTL2205I DELTA H R/W 2D2 CCX2D2 (5654A22C 02D2 : 450/00)
VMFUTL2205I BUILD0 I R/W 29E CCX29E (5654A22C 029E : 450/00)
VMFUTL2205I BASE1 J R/W 2B2 CCX2B2 (5654A22C 02B2 : 250/00)
VMFUTL2205I -------- A R/W 191 CCX191 (5654A22C 0191 : 125/01)
VMFUTL2205I -------- B R/O 5E5 MNT5E5 (MAINT730 05E5 : 18/48)
VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/36)
VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/64)
VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/38)
VMFSET2760I VMFSETUP processing completed successfully
VMFREC2760I VMFREC processing started
VMFREC1852I Volume 1 of 1 of INS ENVELOPE 1100
VMFREC1851I (1 of 8) VMFRCAXL processing AXLIST
VMFRCX2159I Loading 0 part(s) to DELTA 2D2 (H)
VMFREC1851I (2 of 8) VMFRCPTF processing PARTLST
VMFRCP2159I Loading 0 part(s) to DELTA 2D2 (H)
VMFREC1851I (3 of 8) VMFRCCOM processing DELTA
VMFRCC2159I Loading 0 part(s) to DELTA 2D2 (H)
VMFREC1851I (4 of 8) VMFRCALL processing APPLY
VMFRCA2159I Loading part(s) to APPLY 2A6 (F)
VMFRCA2159I Loaded 1 part(s) to APPLY 2A6 (F)
VMFREC1851I (5 of 8) VMFRCALL processing BASE
VMFRCA2159I Loading part(s) to BASE1 2B2 (J)
VMFRCA2159I Loaded 66 part(s) to BASE1 2B2 (J)
VMFREC1851I (6 of 8) VMFRCALL processing SAMPLE
VMFRCA2159I Loading part(s) to LOCALSAM 2C2 (E)
VMFRCA2159I Loaded 180 part(s) to LOCALSAM 2C2 (E)
VMFREC1851I (7 of 8) VMFRCALL processing BUILD
VMFRCA2159I Loading part(s) to BUILD0 29E (I)
VMFRCA2159I Loaded 24 part(s) to BUILD0 29E (I)
VMFREC1851I (8 of 8) VMFRCALL processing BUILDENG
VMFRCA2159I Loading part(s) to BUILD0 29E (I)
VMFRCA2159I Loaded 6 part(s) to BUILD0 29E (I)
VMFREC2760I VMFREC processing completed successfully
VMFINT2603I Product installed
VMFINS2760I VMFINS processing completed successfully

Figure 38. The VMFINS CONSOLE File Created during Installation Processing

We look at the VMFINS CONSOLE file, shown in Figure 38 on page 60, and see:

• We are asked if we want to create an override for the 5654A22C product parameter file override (1).
• All of the requisites have been met for this product (2).

Summary
We have just installed CCXX using the VMFINS INSTALL command with the PPF operand. After you
complete an installation, you need to perform two additional tasks.

Second, run the VMFINS BUILD command after each product installation even if there is nothing to build.
Running the VMFINS BUILD command:

• Updates the build status table to show the product has been built.

Installing Products

60 z/VM: 7.3 VMSES/E Introduction and Reference

• Runs the Bponum EXEC, which is a product-specific build exec that may be shipped with the product.
(ponum is the product order number.)

• Runs the Vponum EXEC, which is a product-specific verification exec that may also be shipped with the
product.

See Chapter 6, “Building Products with VMFINS,” on page 77 for more information on using the VMFINS
BUILD command.

Using the VMFSIM EXEC during an Installation
The VMFSIM EXEC:

• Maintains system level inventories of all products installed on the system.
• Maintains service level inventories of all maintenance installed to products supported by VMSES/E.
• Allows queries of both the system-level and service-level Software Inventories to identify products and

maintenance installed on the system.

If you have questions on the status or levels of products during an installation, you can use the VMFSIM
QUERY command to access the information in the Software Inventory. See “Querying the Software
Inventory” on page 177 for examples of how to use the VMFSIM QUERY command. You can also use
the VMFINFO EXEC to query the Software Inventory tables. For example, you can use VMFINFO to get a
list of the product parameter files for the products on your system. VMFINFO provides easy-to-use panels
and a variety of predefined queries for both product and service information. For more information on the
VMFINFO EXEC, see Chapter 17, “Using the VMFINFO Panels,” on page 199.

For more information on the Software Inventory, see Chapter 15, “Introduction to the Software
Inventory,” on page 163 and Chapter 22, “Software Inventory Syntax,” on page 661.

Installing Products

Chapter 4. Installing Products with VMFINS 61

Installing Products

62 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 5. Migrating Products with VMFINS

This chapter tells you, in general terms, what happens when you use the VMFINS MIGRATE command to
migrate products in VMSES/E format.

The topics covered in this chapter include:

• Adding a copy of a product to your system while preserving the tailored files from an existing copy
• Replacing products on your system while preserving the tailorings from older versions of the products
• Changing the product installation defaults
• Retailoring your product files and Shared File System (SFS) attributes and aliases
• Using the VMFSIM commands during a migration.

After you have used VMFINS to install a product, you can use VMFINS MIGRATE to put additional copies
of the product on your system and preserve the tailorable files that were modified for special features,
SFS file authorizations, and SFS aliases so you can use them with the new copies of the product.

With the VMFINS MIGRATE command, you can also add new products to your system and replace
products that are already on your system, while preserving the tailorings for the current copy on your
system. VMFINS lets you work with your tailored files, files you have modified for your system, and gives
you the chance to transfer the tailorings to a new copy of a product.

The VMFINS MIGRATE command uses a Shared File System file pool directory (filepoolid:userid.VMFINS)
for its migration save area. The default SFS name (shipped with VMSES/E) is VMPSFS:userid.VMFINS
(userid is the user ID of the person running VMFINS). You can change the Shared File System file pool
using the FILEPOOL option on the VMFINS MIGRATE command. Or, you can redefine the file pool by
changing the value specified in the VMFINS DEFAULTS file. For more information, see “Changing the
Shared File System Directory File Pool Name” on page 47.

Also, the product tape must be in VMSES/E or INSTFPP format. For more information on tape formats and
VMFINS processing for those tape formats, see “What Tape Formats Does VMFINS Support?” on page 10.

If you have no tailored files or you do not want to keep the tailored files, use the VMFINS INSTALL
command to install your product. See Chapter 4, “Installing Products with VMFINS,” on page 49 for
information on how to install a product.

Adding a New Release of a Product to Your System
When you use the VMFINS MIGRATE command to migrate VMSES/E-formatted products, VMFINS:

• Loads the first tape file from the product tape
• Checks the requisites

– If the requisites are not satisfied, a list of the missing products is displayed; and you are asked if you
want to continue

– Loads the product to the system even though requisites may be missing
• Queries the Software Inventory for all previously installed or migrated copies of the product
• Asks you which copy of the product tailorings you want to use, if there is more than one copy of the

product on your system
• Gives you the opportunity to change installation parameters

– The Make Override Panel is displayed. On the Make Override Panel, you see the parameters that may
be changed.

– When you use the VMFINS MIGRATE command with the ADD option, you must change the default
product installation parameters to install additional copies of the product.

• Calculates the space requirements for the new product

Migrating Products

© Copyright IBM Corp. 1990, 2023 63

• Preserves any tailored files, SFS file authorizations, and SFS aliases and determines reach-ahead
service

– Lets you customize, with a split screen XEDIT session, any tailorable files that have changed since the
previous version or release of that product. You are shown the new file and the current file on your
system, so you can compare and update the new file with the data from your file.

– Lets you see other tailored files on the system you have changed, with a view screen session, so you
can save them. These files may no longer be needed by the new version or release of the product.

– Copies the tailored files that have not been changed by the product to the new product minidisk or
SFS directory and logs message VMFRES2818I in the $VMFINS $MSGLOG file for each preserved file.

• Updates the Software Inventory to show the files were received and the product was migrated

Adding a Single Product
The easiest way to migrate a single product is to use the VMFINS MIGRATE command with the PPF
operand. This section provides an overview of the steps involved in migrating a product using the PPF
operand.

Note: For specific instructions, see the install documentation for the product you are migrating.

Before you enter the VMFINS MIGRATE command with the PPF operand, you need to complete a few
simple steps. Begin by entering:

vmfins migrate info (add

As you saw in Chapter 3, “Using the VMFINS EXEC,” on page 17, the INFO operand creates a list of
the products that are on the installation tape and also on the system. This list is stored in the VMFINS
PRODLIST file on your A-disk. Details on using the INFO operand can be found in“Which Products Can You
Install?” on page 19.

Look in the VMFINS PRODLIST file to find the product identifier (prodid), product parameter file name
(ppfname), and the component name (compname).

Next, use the PLAN option to see how much minidisk space is required to migrate the product. The
PLAN option also tells you whether you are missing any requisites and whether you need to reapply any
reach-ahead service.

To run the PLAN option, enter:

vmfins migrate ppf ppfname compname (plan add

During plan processing:

• You are asked to select the copy of the product from which you want to migrate.
• You are also asked to select a product parameter file ($PPF) to use to create the PPF override for the

new copy of the product to which you are migrating.

When you add a new copy of a product, you should change the installation parameters so you do not
overlay the existing copy of the product with the new copy of the product. The Make Override Panel
provides the specific product resource user IDs, minidisks addresses, and SFS directory names used for
the current copy of the product. You must enter new user IDs, addresses, and SFS directory names. You
are asked to provide a name for the new PPF override (the usable form product parameter file). VMFINS
identifies each copy of a product and maintains multiple copies of a product on one system with the
usable form product parameter files.

• A prodid PLANINFO file is created for the product listed in the VMFINS PRODLIST file.

Check the prodid PLANINFO file on your A-disk to see if you are missing any requisites, if you need to
reapply reach-ahead service, and to see how much minidisk space is required to migrate the product.

Migrating Products

64 z/VM: 7.3 VMSES/E Introduction and Reference

After you have reviewed the PLANINFO file, you can migrate the product using the VMFINS MIGRATE
command with the PPF operand. With the PPF operand, you can use the PPF override information that
was entered during PLAN processing. You can also change the PPF override information, if you want to.

To migrate a single product using the PPF operand, enter:

vmfins migrate ppf ppfname compname (add noplan nomemo

The options are:

add
ADD puts a new copy of a product on the system.

noplan
NOPLAN migrates the product.

nomemo
NOMEMO does not ask you if you want to print the Memo-to-Users.

You may need to retailor some of the tailored files for the product near the end of the migration
processing. SFS file authorizations and aliases are restored automatically.

When migrate processing is complete, you should run the VMFINS BUILD command to build the product
on the system and update the Software Inventory tables.

See Chapter 6, “Building Products with VMFINS,” on page 77 for more information on using the VMFINS
BUILD command.

Adding Several Products
You may want to use the LIST operand if you are migrating several products at the same time. The basic
steps are:

• Enter the VMFINS MIGRATE command with the INFO operand.
• Edit the VMFINS PRODLIST file and comment out the products you do not want to migrate.
• Enter the VMFINS MIGRATE command with the LIST operand and the ADD, PLAN, and MEMO options.
• Enter the new PPF override file names when you are asked to supply them during the plan processing.
• Review the prodid PLANINFO files that are created and stored on your A-disk.
• Review the VMFINS PRODLIST file to see where the new PPF override names have been entered to aid

in further processing with the LIST operand.
• Enter the VMFINS MIGRATE command with either:

– The LIST operand (to migrate all the products in the VMFINS PRODLIST file).
– The PPF operand, a ppfname, and a compname (to migrate only one of the products in the VMFINS

PRODLIST file). When you use the PPF operand, you must enter the VMFINS MIGRATE command for
each product in the VMFINS PRODLIST file you want to migrate.

• Retailor the product files with the new information from the product default files, and restore SFS file
authorizations and aliases.

• Reaccess the minidisk with the CP Directory.
• Reapply any reach-ahead service that was identified during the VMFINS processing.
• Run the VMFINS BUILD command to build the products and update the Software Inventory tables.

For specific instructions, see the documentation for the products you are migrating.

Replacing Products on Your System
When you enter VMFINS MIGRATE command with the REPLACE option, VMFINS:

• Loads the first tape file from the product tape.
• Checks the requisites.

Migrating Products

Chapter 5. Migrating Products with VMFINS 65

– If the requisites are not satisfied, a list of the missing products is displayed; and you are asked if you
want to continue.

– VMFINS will load the product to the system, even though requisites may be missing.
• Queries the Software Inventory for all previously installed or migrated copies of your product.
• Asks which copy of the product tailorings you want to use, if there is more than one copy of the product

on your system.
• Gives you a chance to override the current product parameter file.

Note: You do not want to change these settings because you are replacing the new version or release of
the product, but you may want to review them.

• Gives you the opportunity to review product installation parameters.

– The Make Override Panel is displayed. On the Make Override Panel, you see the parameters that will
be used for this migration. Parameters that may not be changed are preceded by a colon (:).

– The product installation parameters should be the same as the ones for the existing copy of the
product you are replacing, so the new copy will overlay the old copy.

– If you realize you did not want to migrate and replace your product, you can exit from the migration
while in the Make Override Panel.

• Calculates the space requirements for the new product.
• Erases the files for the copy of the product you are replacing.
• Loads the files for the copy of the product you are installing.
• Copies over any tailored files, SFS file authorizations and SFS aliases, and determines any reach-ahead

service.

– Lets you customize any of the product tailored files that have changed with a split screen XEDIT
session. You are shown the new file and the current file on your system so you can compare and
update the new file with the data in your file.

– Lets you see, with a view screen session, the other tailored files on your system you have changed so
you can save them. These files may no longer be needed by the new version or release of the product.

– Copies the tailored files that have not been changed by the product to the new product minidisk or
SFS directory and logs message VMFRES2818I in the $VMFINS $MSGLOG file for each file copied
over.

• Updates the Software Inventory to show the files were received and the product was migrated.

Replacing a Product
The easiest way to migrate a single product and replace the existing copy is to use the VMFINS MIGRATE
command with the PPF operand and the REPLACE option. This section provides an overview of the steps
involved when you migrate a product and replace the existing copy.

Note: For specific instructions, see the install documentation for the product you are migrating.

Before you can enter the VMFINS MIGRATE command with the PPF operand and the REPLACE option, you
need to complete a few simple steps. To begin, you enter:

vmfins migrate info (replace

As you saw in Chapter 3, “Using the VMFINS EXEC,” on page 17, the INFO operand creates a list of the
products on the system that can be replaced by a product on the installation tape. Details on using the
INFO operand can be found on page “Which Products Can You Install?” on page 19.

Next, look in the VMFINS PRODLIST file on your A-disk. The VMFINS PRODLIST file was created when you
used the INFO operand. Find the ppfname, prodid, and compname for the product you want to migrate.

After you have found the prodid, ppfname, and compname, run the VMFINS MIGRATE command with the
PLAN option to check the product requisites and see what resources are required to migrate the product.

Migrating Products

66 z/VM: 7.3 VMSES/E Introduction and Reference

The PLAN option will tell you if you are missing any requisites. You may also want to include the MEMO
option to print the Memo-to-Users. To run the PLAN option, enter:

vmfins migrate ppf ppfname compname (replace plan memo

During the plan processing, you are asked to select the copy of the product (and its tailorings) you are
replacing, if there is more than one copy of the product on your system. You are asked if you want to
create an override for the copy you are replacing. You should answer no (0), so you can overlay the current
copy of the product.

When plan processing is complete, a prodid PLANINFO file is stored on your A-disk.

Check the prodid PLANINFO file on your A-disk to see if you are missing any requisites, whether there is
any reach-ahead service, and to see how much minidisk space is required to migrate the product you have
identified. You must check the minidisk space yourself and create the required amount of available space.

After you have reviewed the PLANINFO file, you can migrate the product using the PPF operand. With the
PPF operand, you can use the PPF installation overrides that were entered during PLAN processing. You
can also change the installation overrides, if you want to.

To migrate the product using the PPF operand, enter:

vmfins migrate ppf ppfname compname (replace noplan nomemo

The options used in this command are:

replace
REPLACE puts a new copy of a product on the system by replacing the existing copy and keeps the
current product tailorings.

noplan
NOPLAN migrates the product.

nomemo
NOMEMO does not ask you if you want to print the Memo-to-Users.

When migrate processing is complete, you should run the VMFINS BUILD command to build the product
on the system and update the Software Inventory tables.

See Chapter 6, “Building Products with VMFINS,” on page 77 for more information on using the VMFINS
BUILD command.

Replacing Several Products
You may want to use the LIST operand, if you are migrating several products at one time and replacing
existing copies and you want to keep the product tailorings for the current copies on your system. The
basic steps are:

• Enter the VMFINS MIGRATE command with the INFO operand and the REPLACE option.
• Edit the VMFINS PRODLIST file and comment out the products you do not want to migrate.
• Enter the VMFINS MIGRATE command with the LIST operand and the REPLACE, PLAN, and MEMO

options.
• Enter the new PPF override file names when you are asked to supply them during the plan processing.
• Review the prodid PLANINFO files that were created and stored on your A-disk.
• Review the VMFINS PRODLIST file to see where the new PPF override names have been entered.
• Enter the VMFINS MIGRATE command with either:

– The LIST operand (to migrate all of the products in the VMFINS PRODLIST file)
– The PPF operand, a ppfname, and a compname (to migrate only one of the products in the VMFINS

PRODLIST file). When you use the PPF operand, you must enter the VMFINS MIGRATE command for
each product in the VMFINS PRODLIST file that you want to replace.

• Specify which products you want to replace when you are asked to do so.

Migrating Products

Chapter 5. Migrating Products with VMFINS 67

• Retailor the product files with the new information from the product default files and restore the SFS file
authorizations and aliases.

• Reaccess the minidisk where the CP Directory resides.
• Reapply any reach-ahead service that was identified during the VMFINS processing.
• Run the VMFINS BUILD command to build the products and update the Software Inventory tables.

Note: For specific instructions, see the documentation for the products you are migrating. For a complete
description of the VMFINS MIGRATE command syntax, see “VMFINS MIGRATE Command” on page 436.

Changing the Current Product Installation Settings
When you use VMFINS to migrate products in VMSES/E format, you have an opportunity to override the
current installation settings that have been provided for each product. The Make Override Panel, shown in
Figure 39 on page 68 is displayed, and you can change the information on the panel.

If you are adding a new copy, the current settings displayed on the Make Override Panel are the defaults
for the product. You may change these settings. If you are replacing a product, the settings displayed are
the current ones for the product, and you cannot change them.

The Make Override Panel shows you the minidisks, user IDs, or Shared File System directories that will be
used when the product is migrated, unless you override them.

 File Help
 __
 MKOVR1 Make Override Panel
 More:
 Storage resource for product 1234567 component COMP
 PRODUCT Userid......... LPUSERID
 COMP Samp & Loadlibs. 59F Link as......... 59F
 COMP Text............ 49F Link as......... 49F
 IPCS Text............ 193 Link as......... 193
 COMP Source.......... 39F Link as......... 39F
 COMP CMS Help Files.. 19D Link as......... 19D
 COMP Service Disk.... 29F Link as......... 29F

 COMP Service Machine... COMP

Command===>

F1=Help F2=Command F3=Exit F4=Expand Dirid F5=Save as... F6=Mdisk or SFS dir
F7=Backward F8=Forward F9=Retrieve F10=Action F11=Conflict F12=Cancel

Figure 39. Sample Make Override Panel

For more information on using the Make Override Panel, see “Overriding Product Installation Defaults” on
page 33.

Retailoring Your Product Files
First, you need to understand how to identify a tailorable file. A tailorable file is any source-level product
file that requires your input to work correctly. After you have modified a tailorable file, it is considered
tailored. An example of a source-level file is your PROFILE EXEC. You can add information to these files in
several ways by using:

• Data entry panels
• File editing
• Template files

Migrating Products

68 z/VM: 7.3 VMSES/E Introduction and Reference

The VMFINS MIGRATE process identifies only tailorable files found in the :PARTS section of the
PRODPART file. For more information on the PRODPART file, see “The Product Parts (PRODPART) File” on
page 662.

If you tailored files for a product and they were not changed by the product for this new version or
release, the files are automatically copied to the new product minidisk or SFS directory; and message
VMFRES2818I is logged in the $VMFINS $MSGLOG file to tell you this was done.

If any of the tailorable files were changed by you or the product, you may see a screen, like the one in
Figure 40 on page 69, near the end of the migration process.

 Restore Tailorings Phase

 In installing and administering your system, you may have
tailored some of the IBM-supplied files. You can retailor the
files so that both IBM's and your changes are incorporated
into the new file. That is the purpose of this phase.

 Both your current version and the new IBM version of the file
are displayed on a split screen. You can modify your old version to
incorporate the IBM changes or tailor the IBM file with your changes.

 If you are unsure how to proceed with a file, STORE it and
FILE the IBM version. You can go back to this file later and
decide how to proceed.

 Occasionally only one version, your old one, is displayed on
the screen. This usually means that the file is no longer used by
the new system. You may STORE these files if you wish to keep them.

Press ENTER to continue.

Figure 40. The VMFINS MIGRATE Restore Tailorings Phase Screen

This screen tells you there are one or more tailored files on the system for your product.

You should read this initial screen and press the Enter key. Now you see a screen like the one in Figure 41
on page 69.

VMFRES2870I The following files will now be processed

VMFRES2121I RSCS CONFIG VMPSFS:MAINTvrm.VMFINS
VMFRES2121I PROFILE GCS VMPSFS:MAINTvrm.VMFINS

VMFRES2790I Do you want to continue?
VMFRES2791R Enter 0 (No) or 1 (Yes)

Figure 41. The VMFINS MIGRATE Message Screen Asking You If You Want to Tailor Your Customized Files

This screen lists the tailored files on your system that are associated with your copy of the product and
asks if you want to continue. We recommend you choose yes (1).

If you choose no (0), the files will be left unchanged in the migration save area (usually the
VMPSFS:userid.VMFINS directory with file mode C); and the default product files are installed and used
with this copy of the product. If you say no (0), but you realize afterward that you wanted to tailor your
files, see “Step 5. Manually Complete Your Migration (Optional)” on page 445 for information on how to
recover your tailored files from the migration save area.

If you choose yes (1), you are automatically put into either a split screen XEDIT session (see “Split-Screen
XEDIT Session” on page 70) or a view screen session (see “View-Screen Session” on page 74). The
files will be processed in the order they appear in the list shown in Figure 41 on page 69.

After VMFINS MIGRATE has processed all the tailored files, the migration process is complete.

Migrating Products

Chapter 5. Migrating Products with VMFINS 69

Split-Screen XEDIT Session
You are placed in a split-screen XEDIT session because you have tailored the file and the file provided
with the product for this version or release has also changed. See Figure 42 on page 70 for an example
of a session.

You can get online help for the split-screen XEDIT session by entering:

help vmses vmfsplit

 RSCS CONFIG (IBM Version - Unmodified) Trunc= 80 Size= 379

00000 * * * Top of File * * *
00001 **
00002 *
00003 * Following are the "rules" for defining an RSCS Configuration File:
00004 *
00005 * 1. The LOCAL statement, if included, MUST be the FIRST valid
00006 * (non-commented, non-blank) statement in the Configuration File.
 --
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>
 RSCS CONFIG (Your Version - Modified) Trunc= 80 Size= 244

00000 * * * Top of File * * *
00001 **
00002 *
00003 * modified by system programmer
00004 *
00005 *
00006 * Following are the "rules" for defining an RSCS Configuration File:
--
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>

Figure 42. Sample Split-Screen XEDIT Session

The split-screen editing session lets you retailor the files so that both your changes and the product
changes can be incorporated into one file. In this task, you can either merge your changes into the new
product files or modify your files to contain the product changes. We recommend you modify and save
the product version of the file so you have the new changes for the product for that file.

When you are in the split-screen XEDIT session, use the PF keys (explained in Table 5 on page 70) to
work with the file.

Table 5. Program Function (PF) Keys for Split-Screen XEDIT Session

PF Keys Function Explanation

PF1 / PF13 Help Displays online help information.

PF2 / PF14 Jump Moves the cursor between the two files' command lines.

PF3 / PF15 Quit Quits the XEDIT session without saving your changes.

PF4 / PF16 Zoom Expands the screen in which the cursor is positioned to full screen mode.
Press PF4 (ZOOM) again to return the split-screen session.

PF5 / PF17 BBack Scrolls both files in split-screen mode backward one screen image.

PF6 / PF18 BNext Scrolls both files in split-screen mode forward one screen image.

PF7 / PF19 Back Scrolls the file where the cursor is positioned backward one screen
image. Leaves the other screen as is.

PF8 / PF20 Next Scrolls the file where the cursor is positioned forward one screen image.
Leaves the other screen as is.

Migrating Products

70 z/VM: 7.3 VMSES/E Introduction and Reference

Table 5. Program Function (PF) Keys for Split-Screen XEDIT Session (continued)

PF Keys Function Explanation

PF9 / PF21 Undefined PF key.

PF10 / PF22 Store Saves a copy of either file to your A-disk or your reader.

PF11 / PF23 Splits or joins the line at the position of the cursor. (This PF key is not
displayed with the other PF key settings.)

PF12 / PF24 File Copies either file to the product disk and exits the XEDIT session.

When you are in the split-screen session, you can use the CUT, CUTC, and PLACE prefix commands. The
commands are similar to the XEDIT COPY prefix commands.
CUT

Selects a single line to be copied to another file.
CUTC

Selects a block of lines to be copied to another file.
PLACE

Specifies where to place the selected lines from a CUT or CUTC.

For example, assume you are editing both versions of the RSCS CONFIG file on a split screen in XEDIT
mode and you want to change the product version of the file. You have added three lines to your version of
the file and you would like to copy them to the product version.

In your version of the file, type cutc in the prefix area of the first line you would like to copy and cutc in
the prefix area of the last line you would like to copy. Press Enter or PF2 (JUMP) to move the cursor to the
other file. It should look like the split-screen file in Figure 43 on page 71.

 RSCS CONFIG (IBM Version - Unmodified) Trunc= 80 Size= 379

00000 * * * Top of File * * *
00001 **
00002 *
00003 * Following are the "rules" for defining an RSCS Configuration File:
00004 *
00005 * 1. The LOCAL statement, if included, MUST be the FIRST valid
00006 * (non-commented, non-blank) statement in the Configuration File.
 --
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>
 RSCS CONFIG (Your Version - Modified) Trunc= 80 Size= 244

00000 * * * Top of File * * *
00001 **
00002 *
CUTC* * modified by system programmer
00004 *
 CUTC* *
CUTC* *
00006 * Following are the "rules" for defining an RSCS Configuration File:
--
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>

Figure 43. Using the CUTC Prefix Command in a Split-Screen File

Then, in the product version of the file, type place in the prefix area of the line before the line you want
the new lines to be copied to. It should look the screen in Figure 44 on page 72.

Migrating Products

Chapter 5. Migrating Products with VMFINS 71

 RSCS CONFIG (IBM Version - Unmodified) Trunc= 80 Size= 379

00000 * * * Top of File * * *
00001 **
place *
00003 * Following are the "rules" for defining an RSCS Configuration File:
00004 *
00005 * 1. The LOCAL statement, if included, MUST be the FIRST valid
00006 * (non-commented, non-blank) statement in the Configuration File.
 --
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>
 RSCS CONFIG (Your Version - Modified) Trunc= 80 Size= 244

00000 * * * Top of File * * *
00001 **
00002 *
CUTC* * modified by system programmer
00004 *
CUTC* *
00006 * Following are the "rules" for defining an RSCS Configuration File:
--
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>

Figure 44. Using the PLACE Prefix Command in a Split-Screen File

When you press Enter, the lines you specified in your version are copied to the specified location in the
product version. After you have completed the CUTC and PLACE commands, your split-screen file should
look like the one in Figure 45 on page 72.

 RSCS CONFIG (IBM Version - Unmodified) Trunc= 80 Size= 379

00000 * * * Top of File * * *
00001 **
00002 *
00003 * modified by system programmer
00004 *
00005 *
00006 * Following are the "rules" for defining an RSCS Configuration File:
 --
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>
 RSCS CONFIG (Your Version - Modified) Trunc= 80 Size= 244

00000 * * * Top of File * * *
00001 **
00002 *
00003 * modified by system programmer
00004 *
00005 *
00006 * Following are the "rules" for defining an RSCS Configuration File:
 --
 1-Help 2-Jump 3-Quit 4-Zoom 5-BBack 6-BNext 7-Back 8-Next 10-Store 12-File
====>

Figure 45. Split-Screen File after a CUTC and PLACE

You can ask for help at any time by pressing the PF1 key. You will get an explanation of how to use the
split-screen editor.

If you want to go back to the original file that you began with, you can press PF3 (QUIT); and you can
restore both files to their original condition. When you press PF3, you see the screen in Figure 46 on page
73.

Migrating Products

72 z/VM: 7.3 VMSES/E Introduction and Reference

VMFRES2858R Choose an option and enter the corresponding number
VMFRES2854I (0) Return to edit session without saving
VMFRES2854I any changes made in this session
VMFRES2854I (1) Return to edit session saving
VMFRES2854I all changes made this session
VMFRES2854I (2) File IBM version with changes
VMFRES2854I and continue migration processing
VMFRES2854I (3) File your version with changes
VMFRES2854I and continue migration processing

Figure 46. Final Tailorings Phase Screen

You need to choose an option.

Choosing:
0

brings you back into the split-screen XEDIT session and saves none of the changes you made in either
file.

1
brings you back into the split-screen XEDIT session and saves all the changes you made to both files.

2
files the product version of the tailored file with the changes you made to the product disk, erases the
copy of the old version of the tailored file from the migration save area, and continues the migration
processing.

3
files your version of the tailored file with the changes you made to the product disk, erases the
copy of the old version of the tailored file from the migration save area, and continues the migration
processing.

If you would like to save a copy of the file after you have made changes to it, but you are not finished
making all the changes, press PF10 (STORE) to save a copy of either file to your A-disk or your reader.
When you press PF10, you see the screen in Figure 47 on page 73.

VMFRES2858R Choose an option and enter the corresponding number
VMFRES2854I (1) Return to edit session saving
VMFRES2854I all changes made this session
VMFRES2854I (2) Send IBM version with changes to reader
VMFRES2854I and return to edit session
VMFRES2854I (3) Send your version with changes to reader
VMFRES2854I and return to edit session
VMFRES2854I (4) Copy IBM version with changes to filemode A
VMFRES2854I and return to edit session
VMFRES2854I (5) Copy your version with changes to filemode A
VMFRES2854I and return to edit session

Figure 47. Final Tailorings Phase Screen

You need to choose an option.

Choosing:
1

brings you back into the split-screen XEDIT session and saves all the changes you made in both files.
2

sends a copy of the product version of the tailored file, with the changes you made, to your reader and
puts you back into the editing session.

3
sends a copy of your version of the tailored file, with the changes you made, to your reader and puts
you back into the editing session.

Migrating Products

Chapter 5. Migrating Products with VMFINS 73

4
copies the product version of the tailored file, with the changes you made, to your A-disk and returns
you to the editing session.

5
copies your version of the tailored file, with the changes you made, to your A-disk and returns you to
the editing session.

Once you have finished making any changes to the files, press PF12 to save your changes and keep one
of the files for your new migrated copy of the product to use. If you press PF12, you will see the screen in
Figure 48 on page 74.

VMFRES2858R Choose an option and enter the corresponding number
VMFRES2854I (1) Return to edit session saving
VMFRES2854I all changes made this session
VMFRES2854I (2) File IBM version with changes
VMFRES2854I and continue migration processing
VMFRES2854I (3) File your version with changes
VMFRES2854I and continue migration processing

Figure 48. Final Tailorings Phase Screen

You need to choose an option.

Choosing:
1

brings you back into the split-screen XEDIT session and saves all the changes you made to both files.
2

files the product version of the tailored file with the changes you made to the product disk, erases the
copy of the old version of the tailored file from the migration save area, and continues the migration
processing.

3
files your version of the tailored file with the changes you made to the product disk, erases the
copy of the old version of the tailored file from the migration save area, and continues the migration
processing.

You will get a chance to retailor each of the product files you tailored and each file that has been changed
by the product for this new version or release.

View-Screen Session
If you have tailored files associated with your product and the product has packaged these files a
different way for this new version or release, you are placed in this view-screen session. See Figure 49 on
page 75 for an example of a session.

You can get online help for the view-screen session by entering:

help vmses vmfbrwse

Migrating Products

74 z/VM: 7.3 VMSES/E Introduction and Reference

 PROFILE GCS (Your Version - Modified) Trunc= 80 Size= 32

00000 * * * Top of File * * *
00001 /* Procedure to load and initialize RSCS */
00002 'CP SET IMSG OFF'
00003 'CP SET EMSG ON'
00004 'CP SP CON START'
00005
00006 /****************************
00007 customer added tailorings
00008 ****************************/
00009
00010 'GLOBAL LOADLIB RSCS' /* LOADLIB where RSCS lives */
00011 'FILEDEF CONFIG DISK RSCS CONFIG *' /* RSCS configuration file */
00012 'FILEDEF EVENTS DISK EVENTS CONFIG *' /* RSCS events file */
00013 'LOADCMD RSCS DMTMAN' /* Load RSCS module */
00014
00015 'RSCS INIT' /* RSCS initialize command */
00016 if rc ¬= 0 then exit rc /* If failed then exit */
00017
00018 'RSCS ENABLE 125' /* Enable auto-answer */

 1-Help 3-Quit 7-Back 8-Next 10-Store
====>

Figure 49. Sample View-Screen Session

The files might no longer be needed by the new copy of the product, but this session allows you to see the
files so you can save them if you do not want them erased from your system.

When you are in the view-screen session, use the PF keys (explained in Table 6 on page 75) to work with
the file.

Table 6. Program Function (PF) Keys for View-Screen Session

PF Keys Function Explanation

PF1 / PF13 Help Displays online help information.

PF3 / PF15 Quit Quits the view session without saving the file.

PF7 / PF19 Back Scrolls the file backward one screen image.

PF8 / PF20 Next Scrolls the file forward one screen image.

PF10 / PF22 Store Saves a copy of the file to your A-disk or your
reader.

Note: The other PF keys are not defined during the view-screen session.

You can ask for help at any time by pressing the PF1 key. You will get an explanation of how to use the
view screen.

If you no longer need the file and want to erase it from your system, you can press PF3 (QUIT); and it will
be erased from the migration save area. When you press PF3, you see the screen in Figure 50 on page
75.

VMFRES2858R Choose an option and enter the corresponding number
VMFRES2855I (0) Return to view session
VMFRES2855I (1) Erase the saved version and continue
VMFRES2855I the migration processing

Figure 50. Final Tailorings Phase Screen

You need to choose an option.

Migrating Products

Chapter 5. Migrating Products with VMFINS 75

Choosing:
0

brings you back into the view-screen session and allows you to continue viewing the file.
1

erases the file from the migration save area and continues the migration processing.

If you are finished viewing the file and you would like to save a copy, press PF10 (STORE). A copy of the
file is stored on your A-disk or in your reader. If you press PF10, you will see the screen in Figure 51 on
page 76.

VMFRES2858R Choose an option and enter the corresponding number
VMFRES2855I (0) Return to view session
VMFRES2855I (1) Send the saved version to the reader
VMFRES2855I and continue migration processing
VMFRES2855I (2) Copy the saved version to filemode A
VMFRES2855I and continue migration processing

Figure 51. Final Tailorings Phase Screen

You need to choose an option.

Choosing:
0

brings you back into the view-screen session and allows you to continue viewing the file.
1

sends a copy of the file to your reader, erases the file from the migration save area, and continues your
migration.

2
Copies the file to your A-disk, erases the file from the migration save area, and continues your
migration.

You will get a chance to view each of the product files that you have tailored, but the product may no
longer need them.

Using the VMFSIM EXEC during a Migration
If you have questions on the status or levels of products during a migration, you can use the VMFSIM
queries to access the information in the system-level Software Inventory. The VMFSIM EXEC:

• Maintains system-level inventories of all products installed or migrated on the system.
• Maintains service-level inventories of all maintenance installed to products supported by VMSES/E.
• Allows queries of both the service-level and system-level Software and Service Inventories to identify

products and maintenance installed on the system.

You can also use the VMFINFO EXEC to query the software inventory tables. For example, you can
use VMFINFO to get a list of the product parameter files for the products on your system. VMFINFO
provides easy-to-use panels and a variety of predefined queries for both product information and service
information. For more information, see Chapter 17, “Using the VMFINFO Panels,” on page 199.

For more information on the Software Inventory tables, see Chapter 15, “Introduction to the Software
Inventory,” on page 163 and Chapter 22, “Software Inventory Syntax,” on page 661. Chapter 16,
“Introduction to the VMFSIM EXEC,” on page 177 shows you how to use the VMFSIM EXEC to query
the Software Inventory tables.

Migrating Products

76 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 6. Building Products with VMFINS

This chapter tells you, in general terms, what happens when you use the VMFINS BUILD command to
build products you have installed or migrated using VMSES/E.

The topics covered in this chapter include:

• When you would build a product
• Building a product using the PPF operand (scenario)

When Should You Perform a Build?

You should perform a build on any product you install or migrate. VMFINS BUILD:

• Builds the product
• Updates the Software Inventory
• Verifies the product was installed or migrated and built correctly

Even if the product does not need to be built, it is important to update the Software Inventory. Other
functions you perform on the system with VMFINS need to know the product was built.

Building Products on Your System
Before you can build a product, you must install or migrate that product using VMSES/E. After you have
installed or migrated the product, use the VMFINFO EXEC or look through the VMFINS PRODLIST file to
find the product identifiers (ppfname and prodid) for the product you want to build. For more information
on the VMFINFO EXEC, see Chapter 17, “Using the VMFINFO Panels,” on page 199. For more information
on how to read the VMFINS PRODLIST file, see “The VMFINS PRODLIST File” on page 18.

To build a product on your system, enter:

vmfins build ppf ppfname compname (serviced

See “Scenario 1: Building a Product with the PPF Operand” on page 77 for an example of how to use
VMFINS to build products.

Two execs, Bponum and Vponum, may also be sent as part of the product and are handled by VMFINS
(ponum is the product order number). The Bponum EXEC is a product-specific build exec and the Vponum
EXEC is a product-specific verification exec. VMFINS does not need these files to run, but it does call
these execs as part of its process, if they exist. For more information on these execs, see the installation
documentation for the specific product. For a complete description of the VMFINS BUILD command
syntax, see “VMFINS BUILD Command” on page 408.

Scenario 1: Building a Product with the PPF Operand
In this scenario, we show you how to use the PPF operand to build a product. We also show you examples
of the types of output we receive. The information you receive will depend on the products and system
you are using. In this scenario, we use the SERVICED option to build the products. The default, STATUS,
only provides information and does not build the product.

A z/VM system is installed and running. A copy of IBM XL C/C++ for z/VM Compiler has been installed on
the system. We check “Who Can Use VMFINS?” on page 10 to make sure we have everything we need. We
are ready to build our product.

Building Products

© Copyright IBM Corp. 1990, 2023 77

Step 1. Find the ppfname for the Product
First, we need to find the ppfname for the copy of the product we want to build. We use the VMFINFO
EXEC to get a list of the product parameter file names for the products installed on our system. We enter:

vmfinfo

As we can see in Figure 52 on page 78, the PPF Fileid - Help panel provides us with a list of the PPFs for
the products installed.

 PPF Fileid - Help

 More: +
Product parameter files (PPFs) define the environment and key variables
required to process the queries. The following is a list of all PPFs
found on all accessed disks. Select one to continue. The View function
can be used to examine one or more PPFs.

Type a "V" next to one or more PPFs to view their contents, or type an
"S" next to one PPF to select.

 Options: S - select V - view

Option PPF Fileid
 _ $5654260 PPF D1
 _ SEGBLD PPF D2
 _ SERVP2P PPF D1
 _ UCENG PPF D2
 _ 5654A22C PPF D1
 _ 5684042J PPF D1
 _ 7VMDIR30 PPF D1
 _ 7VMHCD30 PPF D1
 _ 7VMLEN30 PPF D2
 _ 7VMPTK30 PPF D1
 _ 7VMRAC30 PPF D1
 _ 7VMRSC30 PPF D1

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 52. PPF Fileid - Help Panel

We can see the ppfname for the copy of CCXX that we installed (5654A22C) is in the list. We want to build
this copy of CCXX, 5654A22C PPF.

Note: If we wanted to find the prodid for any entry, we could enter an "S" in the blank to the left of the
entry and press Enter. The prodid would appear on the upper left side of the next panel displayed.

In this scenario, the ppfname is 5654A22C and the compname is CCXX.

Step 2. Build CCXX
Now we are ready to build CCXX. We enter:

vmfins build ppf 5654a22c ccxx (link serviced

We specify the LINK option because we need to link to the minidisks, and access the minidisks and SFS
directories necessary to build the product.

As the build process begins, we see the message:

Building Products

78 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINS2760I VMFINS processing started

We see several messages during the build, and when build processing has completed successfully, we see
the message:

VMFINS2760I VMFINS processing completed successfully

Step 3. Review the Output Files
Now that we have completed the build, we review the $VMFINS $MSGLOG and VMFINS CONSOLE files to
see if we need to perform additional tasks.

The $VMFINS $MSGLOG File
A log of the commands and the messages issued during the build processing is created and stored in the
$VMFINS $MSGLOG file on our A-disk. Figure 53 on page 79 shows the $VMFINS $MSGLOG file. Table
10 on page 138 explains the different types of messages in a message log.

**
**** VMFINS BUILD USERID: 5654A22C ****
**
**** Date: 2022-09-12 Time: 16:45:14 ****
**
ST:VMFINS2195I VMFINS BUILD PPF 5654A22C CCXX (SYSTEM VM SIDISK 51D SIMODE D
ST: SERVICED LINK
ST:VMFINS2760I VMFINS processing started
ST:VMFINS2603I Processing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
ST:VMFREQ2805I Product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX has passed
ST: requisite checking
ST:VMFINB2603I Building product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
ST:VMFSET2760I VMFSETUP processing started for 5654A22C CCXX
ST:VMFUTL2205I Minidisk|Directory Assignments:
ST: String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
ST: -or- SFS Directory Name
ST:VMFUTL2205I LOCALSAM E R/W 2C2 CCX2C2 (5654A22C 02C2 : 5/23)
ST:VMFUTL2205I APPLY F R/W 2A6 CCX2A6 (5654A22C 02A6 : 5/01)
ST:VMFUTL2205I G R/W 2A2 CCX2A2 (5654A22C 02A2 : 5/01)
ST:VMFUTL2205I DELTA H R/W 2D2 CCX2D2 (5654A22C 02D2 : 450/00)
ST:VMFUTL2205I BUILD0 I R/W 29E CCX29E (5654A22C 029E : 450/54)
ST:VMFUTL2205I BASE1 J R/W 2B2 CCX2B2 (5654A22C 02B2 : 250/97)
ST:VMFUTL2205I -------- A R/W 191 CCX191 (5654A22C 0191 : 125/01)
ST:VMFUTL2205I -------- B R/O 5E5 MNT5E5 (MAINT730 05E5 : 18/48)
ST:VMFUTL2205I -------- C R/W 1700 MJD700 (5654A22C 1700 : 3330/30)
ST:VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/36)
ST:VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/64)
ST:VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/38)
ST:VMFSET2760I VMFSETUP processing completed successfully
ST:VMFSET2760I VMFSETUP processing completed successfully
ST:VMFBLD2760I VMFBLD processing started
ST:VMFBLD1851I Reading build lists
ST:VMFBLD2182I Identifying new build requirements
ST:VMFBLD2182I No new build requirements identified
ST:VMFBLD2179I There are no build requirements matching your request at this
ST: time. No objects will be built
BD:VMFBLD2180I There are 0 build requirements remaining
ST:VMFBLD2760I VMFBLD processing completed successfully
ST:VMFINB2603I Product built
ST:VMFINB2173I Executing verification exec V5654A22
ST:VMFINS2760I VMFINS processing completed successfully 1

Figure 53. The $VMFINS $MSGLOG File Created during BUILD Processing

As we can see in Figure 53 on page 79, the VMFINS processing completed successfully (1).

The VMFINS CONSOLE File
We can also look in the VMFINS CONSOLE file (Figure 54 on page 80), which is spooled to our reader, for
any system messages and the responses we made during the build.

Building Products

Chapter 6. Building Products with VMFINS 79

vmfins build ppf 5654a22c ccxx (link serviced
VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS2603I Processing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
VMFREQ2805I Product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX has passed
 requisite checking
VMFINB2603I Building product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
VMFSET2760I VMFSETUP processing started for 5654A22C CCXX
VMFUTL2205I Minidisk|Directory Assignments:
 String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
 -or- SFS Directory Name
VMFUTL2205I LOCALSAM E R/W 2C2 CCX2C2 (5654A22C 02C2 : 5/23)
VMFUTL2205I APPLY F R/W 2A6 CCX2A6 (5654A22C 02A6 : 5/01)
VMFUTL2205I G R/W 2A2 CCX2A2 (5654A22C 02A2 : 5/01)
VMFUTL2205I DELTA H R/W 2D2 CCX2D2 (5654A22C 02D2 : 450/00)
VMFUTL2205I BUILD0 I R/W 29E CCX29E (5654A22C 029E : 450/54)
VMFUTL2205I BASE1 J R/W 2B2 CCX2B2 (5654A22C 02B2 : 250/97)
VMFUTL2205I -------- A R/W 191 CCX191 (5654A22C 0191 : 125/01)
VMFUTL2205I -------- B R/O 5E5 MNT5E5 (MAINT730 05E5 : 18/48)
VMFUTL2205I -------- C R/W 1700 MJD700 (5654A22C 1700 : 3330/30)
VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/36)
VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/64)
VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/38)
VMFSET2760I VMFSETUP processing completed successfully
VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFBLD2760I VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I No new build requirements identified
VMFBLD2179I There are no build requirements matching your request at this
 time. No objects will be built
VMFBLD2180I There are 0 build requirements remaining
VMFBLD2760I VMFBLD processing completed successfully
VMFINB2603I Product built
1
VMFINB2173I Executing verification exec V5654A22 2
*** V5654A22: Installation Verification Beginning...

C/C++ for z/VM Installation Verification Test, for OPT(0) RENT
Product Name: 5694A01
Version 01 Release 12 Modification 00
Text Creation Date: 22:179
VALIDATION SUCCESSFUL

C/C++ for z/VM Installation Verification Test, for OPT(1)
Product Name: 5694A01
Version 01 Release 12 Modification 00
Text Creation Date: 22:179
VALIDATION SUCCESSFUL
VMFINS2760I VMFINS processing completed successfully

Figure 54. The VMFINS CONSOLE File Created during BUILD Processing

In Figure 54 on page 80, we check to see whether the product was built (1) and whether a product
verification exec was called (2).

Note: If something goes wrong during a build, you should check the previous two files to see where the
error occurred.

See online help or the appropriate messages documentation for additional information on error messages
and recommendations for fixing the errors. Then, rerun the VMFINS BUILD command as you originally
entered it.

Summary
We have just built CCXX using the VMFINS BUILD command with the PPF operand.

Building Products

80 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 7. Deleting Products with VMFINS

This chapter tells you, in general terms, what happens when you use the VMFINS DELETE command to
delete products in VMSES/E format from your system. It also provides a detailed scenario to show you
how to delete a product using the PPF operand.

Deleting Products from Your System
You can delete products from your system if they were installed using VMSES/E. When you use the
VMFINS DELETE command to delete products, VMFINS:

• Asks you which copy of the product you want to delete, if there is more than one copy on your system.
• Checks to see which products depend on the product you are deleting. If other products rely on the

product, a list of products affected by the delete is displayed.

Note: When you are deleting licensed programs, you will have to manually delete files if they reside on
a minidisk that is listed in the :MDA section of the product parameter file with a label beginning with
‘LOCAL’.

Scenario 1: Deleting a Product with the PPF Operand
In this scenario we show you how to use the PPF operand to delete a single product. We also show
examples of the types of output we receive. The information you receive will depend on the products and
system you are using.

We have a z/VM system installed and running, and there is a copy of IBM XL C/C++ for z/VM Compiler on
our system. We want to delete this product, but not its resources, from the system. We check “Who Can
Use VMFINS?” on page 10 to make sure we have everything we need.

Step 1. Find the ppfname for the Copy We Want to Delete
The first thing we need to do is find the ppfname for the copy of CCXX that we want to delete.

We use the VMFINFO EXEC to get a list of the product parameter files for the products installed on our
system. We enter:

vmfinfo

As we can see in Figure 55 on page 82, the PPF Fileid - Help panel provides us with a list of the PPFs for
the products installed.

Deleting Products

© Copyright IBM Corp. 1990, 2023 81

 PPF Fileid - Help

 More: +
Product parameter files (PPFs) define the environment and key variables
required to process the queries. The following is a list of all PPFs
found on all accessed disks. Select one to continue. The View function
can be used to examine one or more PPFs.

Type a "V" next to one or more PPFs to view their contents, or type an
"S" next to one PPF to select.

 Options: S - select V - view

Option PPF Fileid
 _ $5654260 PPF D1
 _ SEGBLD PPF D2
 _ SERVP2P PPF D1
 _ UCENG PPF D2
 _ 5654A22C PPF D1
 _ 5684042J PPF D1
 _ 7VMDIR30 PPF D1
 _ 7VMHCD30 PPF D1
 _ 7VMLEN30 PPF D2
 _ 7VMPTK30 PPF D1
 _ 7VMRAC30 PPF D1
 _ 7VMRSC30 PPF D1

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 55. PPF Fileid - Help Panel

We can see the ppfname for the copy of CCXX that we installed (5654A22C) is in the list. We want to build
that copy of CCXX, 5654A22C PPF.

Note: If we wanted to find the prodid for any entry, we could enter an "S" in the blank to the left of that
entry and hit enter. The prodid would appear on the upper left side of the next panel displayed.

Step 2. Run the PLAN Option
Now, we run the PLAN option. PLAN processing creates two files, 5654A22C PLANINFO and 5654A22C
ERASE.

The 5654A22C PLANINFO file shows us:

• Minidisks, user IDs, and Shared File System (SFS) directories used by the product, as well as the
amount of space the product is currently using

• Products that depend on the product we want to delete

The 5654A22C ERASE file lists the names of the files that will be erased when we delete the product.
5654A22C is the name that was given to the product parameter file when the product was installed.

We want to plan for the deletion of the product, so we enter:

vmfins delete ppf 5654a22c ccxx (plan nolink

When PLAN processing is complete, two files, 5654A22C PLANINFO and 5654A22C ERASE, are stored on
our A-disk.

Deleting Products

82 z/VM: 7.3 VMSES/E Introduction and Reference

Step 3. Review the 5654A22C PLANINFO and 5654A22C ERASE Files
We check the contents of the 5654A22C PLANINFO file to make sure no products depend on this product
and to see which minidisks, user IDs, and SFS directories can be deleted.

We also make sure the 5654A22C ERASE file was created on our A-disk. This file shows a list of the files
owned by the product we want to delete. VMFINS gets this information from the VMSES PARTCAT tables
on each target minidisk and SFS directory owned by CCXX. (For more information on the VMSES PARTCAT
table, see “The Parts Catalog (VMSES PARTCAT)” on page 170.)

Figure 56 on page 83 shows portions of the 5654A22C ERASE file.

* VMFDEF2716I The following files can be erased from 2A6
TDATA
:PARTID DUMMY FILE
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:30:49.5654A22C
* VMFDEF2716I The following files can be erased from 29E
TDATA
:PARTID CCNDRVR MODULE
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:33.5654A22C
TDATA
:PARTID CCNEP MODULE
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:33.5654A22C
TDATA
:PARTID CCNETBY MODULE
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:33.5654A22C
TDATA
:PARTID CBXFINIT MODULE
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:33.5654A22C
.
.
.
* VMFDEF2716I The following files can be erased from 2B2
TDATA
:PARTID 5654A22C $PPF
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:07.5654A22C
TDATA
:PARTID CBXFINIT TEXT
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:07.5654A22C
TDATA
:PARTID CBXIDYNA TEXT
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:07.5654A22C
TDATA
:PARTID CBXIDYNF TEXT
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:07.5654A22C
TDATA
:PARTID CBXIFOPN TEXT
:PRODID 5654A22C%CCXX
:STAT VMFREC.06/28/22.16:31:07.5654A22C
.
.
.

Figure 56. 5654A22C ERASE File Created during the PLAN Processing

Now that we have checked the necessary files and we know that our files contain the right information,
we can delete the product.

Step 4. Delete CCXX
To delete CCXX, we enter:

vmfins delete ppf 5654a22c ccxx (noplan nolink

As the delete process begins, we see the message:

VMFINS2760I VMFINS processing started

We are asked if we want to delete this product. We answer yes (1).

Deleting Products

Chapter 7. Deleting Products with VMFINS 83

When delete processing completes successfully, we see the message:

VMFINS2760I VMFINS processing completed successfully

Note: When you are deleting licensed programs, you will have to manually delete files if they reside on
a minidisk that is listed in the :MDA section of the product parameter file with a label beginning with
"LOCAL".

Step 5. Review the Output Files
Now that we have completed our delete, we review the $VMFINS $MSGLOG and VMFINS CONSOLE files
to see if we need to perform additional tasks.

The $VMFINS $MSGLOG File
The $VMFINS $MSGLOG file contains a list of the commands we entered and the messages issued by
VMFINS during the delete process. This file is stored on our A-disk. Figure 57 on page 84 shows the
$VMFINS $MSGLOG file that was created during the delete process. Table 10 on page 138 explains the
different types of messages in a message log.

**
**** VMFINS DELETE USERID: 5654A22C ****
**
**** Date: 2022-09-12 Time: 16:58:46 ****
**
ST:VMFINS2195I VMFINS DELETE PPF 5654A22C CCXX (SYSTEM VM SIDISK 51D SIMODE
ST: D NOPLAN NORESOURCE NOLINK DFNAME USER DFTYPE DIRECT DFMODE * 1
ST:VMFINS2760I VMFINS processing started
ST:VMFINS2603I Processing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
ST:VMFDEP2805I No other products depend on product :PPF 5654A22C CCXX :PRODID
ST: 5654A22C%CCXX
ST:VMFDEL2603I Deleting product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
ST:VMFSET2760I VMFSETUP processing started for 5654A22C CCXX
ST:VMFUTL2205I Minidisk|Directory Assignments:
ST: String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
ST: -or- SFS Directory Name
ST:VMFUTL2205I LOCALSAM E R/W 2C2 CCX2C2 (5654A22C 02C2 : 5/23)
ST:VMFUTL2205I APPLY F R/W 2A6 CCX2A6 (5654A22C 02A6 : 5/01)
ST:VMFUTL2205I G R/W 2A2 CCX2A2 (5654A22C 02A2 : 5/01)
ST:VMFUTL2205I DELTA H R/W 2D2 CCX2D2 (5654A22C 02D2 : 450/00)
ST:VMFUTL2205I BUILD0 I R/W 29E CCX29E (5654A22C 029E : 450/54)
ST:VMFUTL2205I BASE1 J R/W 2B2 CCX2B2 (5654A22C 02B2 : 250/97)
ST:VMFUTL2205I -------- A R/W 191 CCX191 (5654A22C 0191 : 125/01)
ST:VMFUTL2205I -------- B R/O 5E5 MNT5E5 (MAINT730 05E5 : 18/48)
ST:VMFUTL2205I -------- C R/W 1700 MJD700 (5654A22C 1700 : 3330/30)
ST:VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/36)
ST:VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/64)
ST:VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/38)
ST:VMFSET2760I VMFSETUP processing completed successfully
ST:VMFSET2760I VMFSETUP processing completed successfully
ST:VMFDEF2739I No files to erase from 2D2
ST:VMFDEF2739I Erasing files from 2A6 2
ST:VMFSIP2480I Results for
ST: TDATA :PRODID 5654A22C%CCXX
ST:VMFSIP2462I Table VMSES PARTCAT F is empty, it will be erased
ST:VMFDEF2739I No files to erase from 2A2
ST:VMFDEF2739I Erasing files from 29E
ST:VMFSIP2480I Results for
ST: TDATA :PRODID 5654A22C%CCXX
ST:VMFSIP2462I Table VMSES PARTCAT I is empty, it will be erased
ST:VMFDEF2739I Erasing files from 2B2
ST:VMFSIP2480I Results for
ST: TDATA :PRODID 5654A22C%CCXX
ST:VMFSIP2462I Table VMSES PARTCAT J is empty, it will be erased
ST:VMFDEL2725I Product files have been deleted
ST:VMFDEL2603I Product deleted
ST:VMFINS2760I VMFINS processing completed successfully

Figure 57. The $VMFINS $MSGLOG File Created during DELETE Processing

Deleting Products

84 z/VM: 7.3 VMSES/E Introduction and Reference

When we look at Figure 57 on page 84, we can see the command we entered (1), including the default
values. We can also see when VMFINS began to delete the files (2).

The VMFINS CONSOLE File
We can also look in the VMFINS CONSOLE file (Figure 58 on page 85), which is spooled to our reader, for
any system messages and the responses we entered during the delete processing.

vmfins delete ppf 5654a22c ccxx (noplan nolink
VMFUTL2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS2601R Do you want to delete :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX?
 Enter 0 (No), 1 (Yes) or 2 (Exit) 1
1
VMFINS2603I Processing product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
VMFDEP2805I No other products depend on product :PPF 5654A22C CCXX :PRODID
 5654A22C%CCXX
2
VMFDEL2603I Deleting product :PPF 5654A22C CCXX :PRODID 5654A22C%CCXX
VMFSET2760I VMFSETUP processing started for 5654A22C CCXX
VMFUTL2205I Minidisk|Directory Assignments:
 String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
 -or- SFS Directory Name
VMFUTL2205I LOCALSAM E R/W 2C2 CCX2C2 (5654A22C 02C2 : 5/23)
VMFUTL2205I APPLY F R/W 2A6 CCX2A6 (5654A22C 02A6 : 5/01)
VMFUTL2205I G R/W 2A2 CCX2A2 (5654A22C 02A2 : 5/01)
VMFUTL2205I DELTA H R/W 2D2 CCX2D2 (5654A22C 02D2 : 450/00)
VMFUTL2205I BUILD0 I R/W 29E CCX29E (5654A22C 029E : 450/54)
VMFUTL2205I BASE1 J R/W 2B2 CCX2B2 (5654A22C 02B2 : 250/97)
VMFUTL2205I -------- A R/W 191 CCX191 (5654A22C 0191 : 125/01)
VMFUTL2205I -------- B R/O 5E5 MNT5E5 (MAINT730 05E5 : 18/48)
VMFUTL2205I -------- C R/W 1700 MJD700 (5654A22C 1700 : 3330/30)
VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/36)
VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/64)
VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/38)
VMFSET2760I VMFSETUP processing completed successfully
VMFDEF2739I No files to erase from 2D2
VMFDEF2739I Erasing files from 2A6
VMFDEF2739I No files to erase from 2A2
VMFDEF2739I Erasing files from 29E
VMFDEF2739I Erasing files from 2B2
VMFDEL2725I Product files have been deleted
VMFDEL2603I Product deleted
VMFINS2760I VMFINS processing completed successfully

Figure 58. The VMFINS CONSOLE File Created during DELETE Processing

We check the VMFINS CONSOLE file (Figure 58 on page 85) to see the system prompts and the responses
we entered during delete processing (1) and to see if any other products depend on the product we
deleted (2).

Note
If something goes wrong during the delete, you should check these two files first to see where the error
occurred.

See online help or the appropriate messages book for additional information on error messages and
recommendations for fixing the errors. For more information on what to do when something goes wrong
during a delete, see “Recovery Information” on page 419.

Summary
We have just deleted 5654A22C from our system using the VMFINS DELETE command with the PPF
operand.

If any files are left on minidisks or SFS directories after a delete, you may want to look at those files to see
if you can delete them.

Deleting Products

Chapter 7. Deleting Products with VMFINS 85

Deleting Products

86 z/VM: 7.3 VMSES/E Introduction and Reference

Part 3. Servicing Products

In this part of the book, you will learn concepts you need to know to service your z/VM system (and
related products) and how VMSES/E supports the service task. You will learn about the primary VMSES/E
execs, the control and database structures, the files used for input and output, and other VMSES/E execs
that support the service process.

Figure 59. VMSES/E - Servicing Your System

Note: See the inside of the front cover for other sources of information you may need when you service
products.

© Copyright IBM Corp. 1990, 2023 87

88 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 8. z/VM Service Concepts

This chapter introduces concepts and terminology you need to know to understand how products are
serviced using VMSES/E.

What is z/VM Product Service?
Service is the process of changing a particular release of a software product. There are a number of
reasons for servicing a product, such as:

• Correcting a problem
• Circumventing a problem
• Adding function
• Applying local service or modifications

Correcting a Problem
Problems that you report to IBM are called authorized program analysis reports (APARs). APARs provide
a formal method of tracking problems for a specific version of a product. An APAR can also affect several
releases of a product. IBM fixes these problems for a particular release through program temporary fixes
(PTFs). A PTF contains fixes for one or more problems (APARs) on a particular release. Each release of a
product has a unique set of PTFs, because the fixes may be different on each release.

Circumventing a Problem
For expediency, IBM may provide a circumvention for a problem until a PTF can be developed. A
circumvention is meant to be a temporary solution to the problem, and it may be in the form of a
procedural or software change. The method for delivery depends on the form of the solution, and it is
determined by you and the IBM support center. Once the APAR number is established for the problem,
you can use that number to track the fix and see when a PTF is available.

Adding Function
New functions can be delivered in a new release or version of a product or as service. When new function
is delivered as service it is referred to as a small programming enhancement (SPE).

SPEs are delivered and tracked the same way as problems. An authorized program analysis report
number (APAR number) is assigned to the SPE, and it is delivered as a program temporary fix (PTF).

Applying Local Service or Modifications
Local service and local modifications are defined as any service or software change that is applied to your
z/VM system that was not supplied by IBM as a COR or as part of an RSU.

When it is absolutely necessary to apply service from IBM before it is available as a COR, or when you
need a local modification to tailor your system environment, you must apply the service locally. This
includes updates supplied to you by other vendors or licensed products.

You should assign a unique local tracking number to each local modification. As subsequent PTFs are
installed, circumventions and local modifications might require rework. For more information about
adding local modifications, see Chapter 11, “Installing Local Service and Modifications,” on page 101.

Product and Service Structure
In terms of service, when we speak about a product, we are referring to the software entity that is
serviced with a unique set of PTFs. This may be a separately orderable product (such as PVM), a

z/VM Service Concepts

© Copyright IBM Corp. 1990, 2023 89

component within a product (such as CMS in z/VM), or a feature of a product (such as DFSMS/VM in
z/VM).

Usable Forms
A product consists of usable forms. Usable forms are the objects that make up the running software of a
product, such as MODULEs, execs, LOADLIBs, and nuclei. Usable forms are created using:

• One or more serviceable parts
• A build process (for example, GENMOD, LOAD, HCPLDR, or COPYFILE)

Serviceable Parts
Serviceable parts are the individual parts of a product that can be serviced separately. Serviceable parts
have the file name of the source or replacement part and a file type that includes the PTF number and
a unique three character abbreviation that describes the part type. Examples of serviceable part file
identifiers are DMSABC TXT12345, SENDFILE EXC12345, and VMFLDS MOD12345.

Serviceable parts are maintained by both source updates and replacement service. When serviceable
parts are maintained with source updates, the usable form can be generated using an update/compile
facility, such as the VMFHLASM EXEC.

Updates
Updates are changes to the original source code that is provided with a product. There is an update for
each problem or APAR that is fixed by a PTF. The APAR number is included in the file type for updates.

Program Temporary Fixes (PTFs)
PTFs contain serviceable parts, updates, and information on the PTF. PTFs do not contain usable forms.
The usable forms are built by VMSES/E from the serviceable parts and updates.

Relationship Between Serviceable Parts and the Usable Form
Figure 60 on page 90 shows the general relationship between updates, serviceable parts, and usable
forms.

Figure 60. Serviceable Part to Usable Form Relationship

In Figure 60 on page 90, parts shown in parentheses (source part and usable form) are not shipped
with service. Source parts are delivered as part of the initial installation of a product. (An exception is
when a new part is shipped as part of service).

Updates are applied to the source part to create serviceable parts. Updates are named filename
XaaaaaZZ, where filename is the file name of the source part, aaaaa is an APAR number, and X/ZZ
identify the release of the product. The value of X/ZZ is taken from the :SLVI tag in the product parameter
file. (See Chapter 21, “Product Parameter File Syntax,” on page 623 for more information).

The serviceable parts are then processed by a build function to generate the usable form. Serviceable
parts are named filename XXXppppp, where filename is the name of the source/replacement part,
XXX is a unique 3-character abbreviation that describes the part type, and ppppp is the PTF number.
The 3-character file type abbreviation is defined in the file type abbreviation table. See Chapter 15,

z/VM Service Concepts

90 z/VM: 7.3 VMSES/E Introduction and Reference

“Introduction to the Software Inventory,” on page 163 and Chapter 22, “Software Inventory Syntax,” on
page 661 for more information.

Note: You do not have to execute the update/compile function if the serviceable parts are shipped with
the PTF.

Usable Forms Serviced by Updates
Figure 61 on page 91 shows a usable form that is serviced by updates.

Figure 61. CMS MODULE Example (Serviced by Updates)

The usable form, ABC MODULE, is created using a VMSES/E build function that uses the CMS LOAD and
GENMOD functions. Serviceable parts (text decks with PTF numbered file types, for example DMSAAA
TXT88888) are the inputs to the MODULE build function. To conserve space, only the highest version of
these serviceable parts is shipped as part of a service deliverable along with the source update files.
Source updates allow you to examine, modify, and create different versions of the serviceable part using
the VMFHLASM function.

Usable Forms Serviced by Text Replacement
Figure 62 on page 91 shows a usable form that is serviced by text replacement.

Figure 62. CMS MODULE Example (Serviced by Text Replacement)

The usable form, DEF MODULE, is created using a VMSES/E build function that uses the CMS LOAD and
GENMOD functions. Serviceable parts (text decks with PTF numbered file types, for example DMSCCC
TXT88888) are the inputs to the MODULE build function. These serviceable parts are shipped as part of
the PTFs.

Usable Forms Serviced by Module Replacement
Figure 63 on page 91 shows a usable form that is serviced by module replacement.

Figure 63. CMS MODULE Example (Serviced by Module Replacement)

The usable form, GHI MODULE, is created using a VMSES/E build function that copies the highest version
serviceable part to a target minidisk with a file type of MODULE.

Usable Forms Serviced by Parts that are Serviced by Updates Only
Figure 64 on page 92 shows a usable form that is serviced by a part that is serviced by updates only.

z/VM Service Concepts

Chapter 8. z/VM Service Concepts 91

Figure 64. MACRO Example (Parts Serviced by Updates Only)

The usable form, XYZ MACLIB, is created using the VMSES/E build function which uses the CMS UPDATE
and MACLIB functions. In this case, the serviceable parts are not shipped with the service. They are
dynamically generated at build time. This is a trade-off of space versus time. Service media and DASD
space is conserved at the expense of generation time (MACROs and COPY files tend to be large files).
For information on the CMS UPDATE and MACLIB commands, see z/VM: CMS Commands and Utilities
Reference.

Types of Service Supported by VMSES/E
VMSES/E provides automated functions to process service provided in the following packages:

• Product Service Upgrade (PSU)
• Corrective service (COR)
• Expanded Service Option (ESO)

Product Service Upgrade (PSU)
The PSU is a nondestructive procedure in which a preventive service vehicle, such as a Recommended
Service Upgrade (RSU) or a refreshed product deliverable, is used as the source of new service. It
contains preapplied service, which includes service level information, PTFs, serviceable parts, and usable
forms. The following steps are required and use the automated VMSES/E.

1. Load the service (service information and PTFs and usable forms)
2. Reapply any reach-ahead service
3. Rebuild usable forms affected by the reach-ahead service

Given that you meet the criteria of the intended environment, there should be very little processing
required for steps 2 and 3. Because a significant amount of the service processing time is for the
generation of usable forms, this option can save considerable time.

Corrective Service (COR)
The corrective service (COR) deliverable contains PTFs that you request. You control the contents of this
deliverable. By default, IBM delivers service media that contains the requested PTFs and all requisite
PTFs that are not on the most recent service level. However, you can specify:

• The requisites supplied. If "no requisites" is specified, you receive only the specified PTFs.
• The service level to be delivered. If you have not installed the latest service level, you can specify the

last service level, or equivalent set of PTFs installed, and receive the requisite PTFs back to this service
level.

For more information, see Chapter 9, “Installing Corrective Service,” on page 95.

z/VM Service Concepts

92 z/VM: 7.3 VMSES/E Introduction and Reference

Expanded Service Option (ESO)
The Expanded Service Option (ESO) is a defined collection of PTFs delivered in VMSES/E corrective
service format. ESO allows you to choose the starting and ending service levels. You can also select to
receive the ESO with:

• Requested products or customized to your profile
• PEs resolved
• Look ahead service
• IFREQs
• Supercede screen-out
• VMSES/E products only
• Service-on-Request only

z/VM Service Concepts

Chapter 8. z/VM Service Concepts 93

z/VM Service Concepts

94 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 9. Installing Corrective Service

Corrective service is shipped on a corrective (COR) service tape or in an electronic envelope, and you
install it bycomponent.

You install corrective (COR) service by:

• Receiving the service documentation
• Preparing the system for service
• Servicing the component
• Placing the newly-serviced components into production

Figure 65 on page 96 shows the usual steps in applying service to a product.

To service a product, you need to:

• Receive the service for the product.

1. Read the Memo-to-Users for the product.
2. Use the VMFREC command to receive the service.
3. Review the receive message log and correct any errors.

• Apply the service to the component parts.

1. Verify the component's alternate apply disk is ready to apply service for the component and
determine whether merge processing is required.

2. Use the VMFAPPLY command to apply the service.
3. Review the apply message log and correct any errors.

• Rebuild the component.

1. Perform any tasks that are required to rebuild the component.
2. Review the build message log and correct any messages.
3. Test the new level of the component and correct any errors.

To put serviced components into production, you:

• Build any saved segments.
• Merge the intermediate apply disk, with the tested service, to the production disk.

For more detailed examples, see the documentation for the product. A good reference is z/VM: Service
Guide.

Installing Corrective Service

© Copyright IBM Corp. 1990, 2023 95

Figure 65. Installing Corrective Service

Installing Corrective Service

96 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 10. Using the Product Service Upgrade (PSU)

You can upgrade your existing licensed programs using the service files from the IBM Product
Recommended Service Upgrade (RSU). The procedure for performing a Product Service Upgrade from
the Recommended Service Upgrade media is outlined in this chapter.

Note: This procedure is not intended for use by customers migrating from a previous release. It should
only be used to upgrade from a previous service level of a licensed program.

The Recommended Service Upgrade media that is processed using the PSU procedure has the following
logical structure for each product. This example shows the RSU as a tape, but it could instead be on
another media such as a CDROM.

Figure 66. Recommended Service Upgrade, Files

The PSU procedure installs all PTFs included on the RSU plus the tape files containing the preapplied
service and prebuilt objects. All PTF-related files are loaded to the delta disk. The file containing the
preapplied service (the results of VMFAPPLY) is loaded to the alternate apply disk, and the contents of the
files containing prebuilt objects are loaded to the appropriate build disks.

Points to consider about using the Product Service Upgrade procedure are:

• This process will not alter any of your tailored files in any way.
• It only pertains to z/VM and licensed programs using VMSES/E.
• Planning must be done (such as determining disk sizes, and determining what service, if any, on your

existing system is not contained on the RSU) prior to actually loading the service from the RSU.

Using Product Service Upgrade

© Copyright IBM Corp. 1990, 2023 97

Figure 67. Service Application Flowchart using PSU

The following outline is an overview of the tasks you need to perform during the PSU procedure.

1. Receive Documentation

In this task you receive the documentation contained on the RSU and determine the DASD required to
install the RSU.

2. Prepare to Receive a Product

Using Product Service Upgrade

98 z/VM: 7.3 VMSES/E Introduction and Reference

Use the VMFPSU EXEC to obtain information to help you plan. For more information, see “VMFPSU
EXEC” on page 465.

3. Process Preapplied, Prebuilt Service

a. Receive Preapplied, Prebuilt Service. Load the contents of the RSU to the service disks.
b. Process Additional Service for a Product

Reapply additional service for the product that is not contained on the RSU, including local
modifications.

c. Rebuild Product

Build all objects that were affected by reach-ahead service that was reapplied or by local
modifications. After you complete the build steps for the product, continue with the next product to
be processed.

4. Service Another Product?

If you have another product to service, repeat the steps in this outline, beginning with step 2.
5. Test and Put All Products into Production

Place the new service into production. This is the last step in the PSU Procedure.

Using Product Service Upgrade

Chapter 10. Using the Product Service Upgrade (PSU) 99

Using Product Service Upgrade

100 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 11. Installing Local Service and
Modifications

This chapter contains an overview of the step-by-step procedures for applying local service to z/VM
components. Local service and local modifications are defined as any service that is applied to your z/VM
system that was not supplied by IBM as a COR or as part of an RSU. For step-by-step instructions, see
z/VM: Service Guide.

This chapter also contains an overview of the step-by-step procedures for reworking local service.
Existing local service can be affected by new IBM service which creates the need to rework the local
service.

Examples for applying local modifications to the CP load list and CMSINST can be found in z/VM: Service
Guide.

The local modification procedure has been automated by the LOCALMOD EXEC. For step-by-step
instructions on using the LOCALMOD EXEC, see z/VM: Service Guide.

Introduction
Local service and local modifications are defined as any service or software change that is applied to your
z/VM system that was not supplied by IBM as a COR or as part of an RSU.

Attention
The application of local service can be a complicated and error-prone procedure because of the many
variables that are involved. IBM strongly advises its customers to order service media through the IBM
Support Center whenever possible.

When it is absolutely necessary to apply service from IBM before it is available as a COR, or when you
need a local modification to tailor your system environment, you must apply the service locally. This
includes updates supplied to you by other vendors.

The local Version Vector Table must be updated in order for VMSES/E to process your local modifications.

Local service can be placed in two categories: IBM local service and customer local modifications.

IBM local service includes any service that you receive from IBM that is not part of a COR or RSU
deliverable.

When a severe problem arises and you cannot wait for a COR or an RSU, you can get emergency service
from the change team. This service can be sent to you electronically or on a tape, or read to you over
the phone. In some cases, a member of the change team can place the fix in the library that is accessed
by the APARFIX command on ServiceLink. In any case, the service is not in the format required by the
VMFREC and VMFAPPLY EXECs. To receive and apply this service, you must do it manually, using the
instructions in this chapter.

Customer local modifications include any software changes that a customer makes to tailor their z/VM
system. These updates can be supplied by IBM licensed products or by other vendor products. For
example, if you have RACF® Security Server for z/VM, you have a customer local modification because
RACF has a "mod" to CP.

There are three ways that parts can be serviced. Source-maintained parts are serviced by changing the
source, with an update file, an AUX file, and a CNTRL file. Replacement-maintained parts are serviced
by replacing the part with an updated version. Thirdly, when necessary, some parts (such as text files)
can be serviced by directly changing the object code they contain. Local service for source-maintained
and replacement-maintained parts is described in this chapter. The procedure for changing object code is
described in the section "Apply Changes Directly to Object Code" in the z/VM: Service Guide.

Installing Local Service and Modifications

© Copyright IBM Corp. 1990, 2023 101

A rework of local service might be necessary if the service you receive from IBM affects the existing
local service. You will be notified of this possibility when you install a COR or an RSU. If this happens,
re-evaluate the local service and then, if needed, rework and rebuild the affected parts.

Overview for Local Service Procedure
The following is an overview of the steps in the local service procedure.

For each modified part in a component:

1. Prepare for Local Service or Modifications.

Access the component's service disks and the VMSES/E BUILD disk (5E5 by default). If necessary,
modify the CNTRL file.

2. Receive Local Service or Modifications.

If you have IBM local service, load the service to the LOCALMOD disk for your product.
3. Apply Local Service to Source-Maintained parts.

a. Add an Update Record to the AUX file.
b. Create an Update File if it is not shipped.
c. Special Processing for MACROs with ASSEMBLE files.

i) Update the local version vector table with the VMFSIM CHKLVL command and the LOGMOD
option.

ii) Determine what MACLIBs need to be rebuilt.
iii) For each ASSEMBLE file which uses the updated macro and does not have another change in

this local service, create a dummy update for the ASSEMBLE file.
4. Apply Local Service to Replacement-Maintained parts.

a. Create or Copy the Replacement Part.
b. Special Processing for MACROs with ASSEMBLE files.

i) Determine what MACLIBs need to be rebuilt.
ii) For each ASSEMBLE file which uses the updated macro and does not have another change in

this local service, create a dummy update for the ASSEMBLE file.

For each modified part in this component, repeat step “3” on page 102 and or step “4” on page 102.
5. Rebuild Objects.

a. Rebuild Source files.
b. Create compiled REXX™ parts.
c. Create a Replacement Part from $Source files. Create a replacement part with the VMFEXUPD

command. This command will place the output on the LOCALMOD disk, update the local Version
Vector Table (VVT) and add an entry to the $SELECT file.

d. Rebuild MACLIBs with the VMFBLD command.
e. Create a replacement part from updated ASSEMBLE files. Rebuild ASSEMBLE files with the

VMFHLASM command. This command will place the output on the LOCALMOD disk, update the
local Version Vector Table (VVT) and add an entry to the $SELECT file.

f. Create a replacement part from replaced ASSEMBLE files.
g. Create a replacement part from modified National Language files with the VMFNLS command. This

command will place the output on the LOCALMOD disk, update the local Version Vector Table (VVT)
and add an entry to the $SELECT file.

h. Rebuild any remaining objects.

Installing Local Service and Modifications

102 z/VM: 7.3 VMSES/E Introduction and Reference

Overview for Rework Local Service Procedure
The following is an overview of the steps for the rework local service procedure. For the instructions see
section "Reworking Local Service and Modifications" in z/VM: Service Guide.

1. Prepare to rework local service or modifications.
2. Rework Local Service to Source-Maintained parts.
3. Rework Local Service to Replacement-Maintained parts.
4. Rebuild the Objects.

Obtaining File Type Abbreviations
To obtain a file type abbreviation, enter the following VMFSIM command:

vmfsim query vm sysabrvt tdata :realft ft

The abbreviation on the :ABBRFT tag is returned. If more than one abbreviation is returned, you must use
the one that is used by the part that you are modifying. To determine if an abbreviation is the correct one
for a particular part, enter the following command:

vmfqobj ppfname compname tdata :part fn ftabbrev

Installing Local Service and Modifications

Chapter 11. Installing Local Service and Modifications 103

Installing Local Service and Modifications

104 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 12. Using VMSES/E for Service

VMSES/E provides EXECs to perform the primary service functions, files to direct the operation of these
execs and save the status of their execution, and a database structure that isolates executable code from
the control structure used to manage it.

When you service a product, you use a number of EXECs and execute a series of commands to accomplish
the primary service tasks:

• Receiving service for the product

When you receive service, the receive function (“VMFREC EXEC” on page 480) reads the raw materials
from the delivery media and places them into the VMSES/E database.

• Applying service to the product's serviceable parts

When you apply service, the apply function (“VMFAPPLY EXEC” on page 294) defines new maintenance
levels based on the contents of the VMSES/E database.

• Building the serviced usable forms.

When you build the serviced parts, the build function (“VMFBLD EXEC” on page 308) uses the defined
maintenance levels to select the correct level of the raw materials database to build the running
product.

The Software Inventories are updated automatically after receiving, applying, and building service.

All of the above steps are automated by the SERVICE EXEC.

The VMSES/E Database
The VMSES/E database is made up of minidisks and Shared File System (SFS) directories to separate the
various types of files for each product into logical strings. The default minidisks and SFS directories are
shown in Table 7 on page 105.

Table 7. The VMSES/E Database Defaults

Disk/Directory Contents

A-disk (191) VMSES/E work disk

B-disk (5E5) VMSES/E build disk

C-disk Reserved for user

D-disk (51D) System-level Software Inventory

TASK Minidisks accessed before the database

LOCAL Customized files

• Local modifications
• Circumventive service

DELTA PTFs (raw materials)

• PTF parts
• PTF part lists
• Receive status table
• Requisite table
• Description table

Using VMSES/E for Service

© Copyright IBM Corp. 1990, 2023 105

Table 7. The VMSES/E Database Defaults (continued)

Disk/Directory Contents

APPLY Defines maintenance level

• AUX files
• Version vector tables
• Apply status table
• Select data file
• Build status table

BUILD The final usable system

• Usable forms

BASE Product (raw materials)

• Source files
• Base object files

SYSTEM Running system disks accessed after the database

The A-disk (usually 191) is the VMSES/E work disk. The B-disk (5E5) contains the production level
VMSES/E tools. The C-disk is reserved for the user. The D-disk contains the system-level Software
Inventory and product parameter files.

The TASK string contains the minidisks that are accessed before the database, for example, local tools
disks.

The LOCAL string contains customized files, local modifications, and circumventive service.

The DELTA string is the PTF raw materials repository. All PTF parts reside on this string. All parts must,
therefore, contain a PTF or APAR number in their file name or file type. (For example, replacement parts
contain a PTF number in their file type, update files contain an APAR number in their file type, and PTF
parts lists contain a PTF number in their file name). The DELTA string also contains the Software Inventory
files that describe the PTFs (receive status table, requisite table, and description table).

The APPLY string describes maintenance levels. Only files that are used to define maintenance levels (the
apply status table, AUX files, version vector tables, the select data file, and the build status table) are on
this string.

The BUILD disks contain the running code for the product being serviced, BASE disks contain the original
product code, and SYSTEM disks contain the running code for other products that are required during
service.

Given this database, it is easy to generate multiple systems from a single database. Because the parts
on the DELTA string are all numbered, they can be used repeatedly and in different combinations. Using
different APPLY strings, multiple service levels can be defined; and using different BUILD disks, multiple
images of the product can be built.

Servicing a Product with VMSES/E
Figure 68 on page 107 shows how products are serviced using the three primary service commands:
VMFREC, VMFAPPLY, and VMFBLD, which are all used by the SERVICE EXEC. For a complete, step-by-step
example of how to service a product, see z/VM: Service Guide or the documentation for the product you
are servicing. For information on the automated service process, see z/VM: Installation Guide.

Using VMSES/E for Service

106 z/VM: 7.3 VMSES/E Introduction and Reference

Figure 68. Servicing a Product

The number of apply disks may vary from product to product.

Receiving Service
The VMFREC command receives service from the delivery media and places it on the DELTA disk. Before
you receive new service, however, you can use the VMFMRDSK command to clear the alternate APPLY
disk. This lets you easily remove the new service if you find a serious problem. For more information on
these commands, see “VMFMRDSK EXEC” on page 447 and “A Closer Look at the VMFREC EXEC” on page
108.

Applying Service
The VMFAPPLY command updates the version vector table (VVT), which identifies the service level of all
serviced parts. In addition, AUX files are generated from the version vector table for parts that require
them. VMFAPPLY only modifies the alternate APPLY disk. All lower level APPLY disks are unaffected. For
more information, see “A Closer Look at the VMFAPPLY EXEC” on page 109.

Reapplying Local Service
To allow VMSES/E to track the changes and build them into the system, you must enter all local
service into the Software Inventory. If you do not add a local modification to the Software Inventory,

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 107

VMSES/E does not build it into the system. To add a local modification to the Software Inventory, use the
LOCALMOD EXEC, use the “VMFSIM LOGMOD” on page 559 command, or specify the LOGMOD option on
the VMFASM, VMFHASM, VMFHLASM, VMFNLS, VMFREPL, or VMFEXUPD command.

For more information on applying local modifications, see Chapter 11, “Installing Local Service and
Modifications,” on page 101.

Building New Levels
To generate a serviced level of an object on a build list, you need to use the appropriate command or set
of commands. When you run any build command, you must access all local and service disks to ensure
that the highest level parts are used to generate an object. The generated object is placed on a BUILD
disk. For more information, see “A Closer Look at the VMFBLD EXEC” on page 112.

Placing the Serviced Components into Production
Once you have tested the new service and are satisfied with the results for all serviced components, you
can put them into production.

A Closer Look at the VMFREC EXEC
The VMFREC EXEC reads PTFs from service tapes or envelopes and deposits them on the DELTA string.
VMFREC only loads PTF parts that are numbered with the APAR or PTF number.

In addition to PTFs, VMSES/E-formatted service tapes contain header information which is used by
VMFREC to position the tape. Once positioned to the beginning of the product, VMFREC calls part
handlers to load the tape files that contain the PTFs. The part handlers use the Software Inventory and
the existing parts to determine which PTFs and parts should be loaded and which ones should not. Once
all of the new PTFs and parts are loaded, the Software Inventory is updated with the results.

Processing Multiple Service Tapes at One Time
Frequently, multiple service tapes need to be processed at the same time. The VMFREC EXEC automates
the process of receiving multiple service tapes by appending the apply and exclude lists (the lists that tell
VMFAPPLY which PTFs to process) from each tape. This works with multiple COR tapes, PUTs, and even
combinations of the two.

Part Handlers
The “VMFREC EXEC” on page 480 uses a number of part handlers:

• VMFRCALL load parts unconditionally. It is primarily used during product installation when selectivity is
not necessary.

• VMFRCAXL is used to load apply and exclude lists. This is the part handler that will append the contents
of the apply and exclude lists when multiple tapes are being processed.

• VMFRCCOM loads parts of PTFs. It is very selective about which parts it loads. It does not load usable
form parts. It also does not load parts of committed PTFs unless specifically asked to.

Note: When a PTF ages and its parts are no longer needed because other PTFs have been added to the
same parts, the PTF can be flagged as committed. This means that the obsolete parts can be discarded.
The VMFREC EXEC does not receive the discarded parts from future tapes when a PTF is designated as
committed.

• VMFRCPTF loads PTF parts lists. The contents of these files are the building blocks for all of the
service-level Software Inventory.

• VMFRCUPP loads a tape file unconditionally to a target disk and changes each file loaded to upper case.

Using VMSES/E for Service

108 z/VM: 7.3 VMSES/E Introduction and Reference

Software Inventory Files Used by the VMFREC EXEC
The VMFREC EXEC uses the following files in the Software Inventory:

• PTF part file
• Receive status table
• Requisite table
• Description table

PTF Part File
The PTF part file is the source for all PTF information. It is this file that makes it possible to avoid the
excessive I/O involved in reading all of the serviceable parts and update files required to obtain the PTF/
APAR history and requisite information for parts and PTFs. The file consists of three sections: a header
section, a requisite section, and a parts section:

• The header section includes the PTF number and any associated APAR numbers. It also includes the
APAR descriptions and APAR abstracts. Finally, it includes a user memo section which contains any
special installation instructions for the PTF.

• The requisite section contains all requisite information. It includes both hard and soft pre-requisites
(:HARDREQ and :PREREQ), corequisites (:COREQ) and out-of-component requisites (:IFREQ). It also
includes a list of superseded PTFs (:SUP).

• The parts section contains the list of parts of the PTF. Rather than a simple list of parts, the parts
section contains a great deal of information on how each part is to be processed.

Receive Status Table
The receive status table is a list of PTFs that have been received and are available to be applied for a
product. A PTF can have two different states in this table: RECEIVED or COMMITTED. When a PTF is
flagged as committed, it tells VMFREC that it should not re-receive any of its parts because they are
obsolete.

In addition to the status of the PTF, the table includes the date and time at which it was received or
committed and the user ID from which the operation was performed.

Requisite Table
The requisite table is the part of the Software Inventory that consolidates all of the PTF requisite
information. This table includes all of the relationships that are identified in all of the PTF parts files
for a product. It also includes the APAR numbers associated with each PTF, so this table can be used to
translate back and forth between APAR and PTF numbers.

Description Table
The description table contains the abstracts of each APAR included in each PTF that has been received or
committed. This table can be used to do keyword searches for APAR descriptions.

The Software Inventory files used by the VMFREC EXEC are described in Chapter 15, “Introduction to the
Software Inventory,” on page 163 and Chapter 22, “Software Inventory Syntax,” on page 661.

A Closer Look at the VMFAPPLY EXEC
The VMFAPPLY EXEC defines new service levels by applying PTFs. The files that define the maintenance
levels are stored on the APPLY string. VMFAPPLY performs a great deal of checking to make sure that each
PTF is valid before it is added to a maintenance level.

VMFAPPLY uses the existing maintenance level, the requisite relationships, and the apply and exclude
lists to determine which PTFs should be applied. (PTFs listed in the exclude list are not applied, even if
they are requisites of PTFs in the apply list). It then validates each of these PTFs and (if they are valid),

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 109

it applies them. As it applies them, it updates the apply status table, version vector tables, and, when
necessary, the AUX files. When the TEST option is used, this last step is bypassed. The TEST option can be
used to do a dry run on the apply process.

Finally, the VMFAPPLY EXEC generates a list of all of the parts affected by service. This file is called the
select data file. It is used by VMFBLD to determine exactly which objects need to be built as a result of
new service.

Applying a PTF
Figure 69 on page 110 shows the algorithm that is used to apply PTFs.

Figure 69. The Apply Algorithm

Each circle in the diagram represents a program temporary fix (PTF). The characters above the circles
represent the parts affected by the PTF. Each arrow represents a requisite relationship (for example, PTF
6 requires PTF 5). The arrow encircling the diagram represents the apply algorithm, which is a post order
traversal of the graph.

In the lower left corner of Figure 69 on page 110, you can see we want to apply PTF 6. Before a PTF can
be applied, however, two questions must be answered:

• Has this PTF already been applied?
• Does it have any requisites?

Using VMSES/E for Service

110 z/VM: 7.3 VMSES/E Introduction and Reference

If the PTF has already been applied, it does not need to be applied again. If the PTF has requisites, they
must be applied before the PTF can be applied.

In Figure 69 on page 110, if PTF 6 is to be applied, its requisite, PTF 5, must be processed first. Again,
the same two questions must be answered for PTF 5. Has it already been applied? Does it have any
requisites? PTF 5 has not been applied, and PTF 5 requires PTF 3.

This same process continues until you reach a PTF that has no arrows leaving it, which indicates there are
no requisites or all of its requisites are already applied. In this example, PTF 1 is the first terminal node. It
has no requisites, so it can be applied. To apply it, each of the parts affected by it must be applied (parts
A, B, and C). When PTF 1 has been applied, PTF 2 can then be applied. Following the post order traversal,
PTFs 3, 5, and, finally, 6 are then applied.

Figure 70. Software Inventory Tables Updated During VMFAPPLY Processing

Figure 70 on page 111 shows a high-level view of the version vector table and apply status table for
the example shown in Figure 69 on page 110. The apply status table identifies the fixes that have been
successfully processed. The apply status table starts out empty, but entries are added as PTFs are
successfully applied. The version vector table identifies the individual parts that have changed and the
PTFs that define the changes.

The VMFAPPLY EXEC is described in detail in “VMFAPPLY EXEC” on page 294. For more detailed
examples of the contents of these Software Inventory tables, see Chapter 15, “Introduction to the
Software Inventory,” on page 163.

Software Inventory Files Used by the VMFAPPLY EXEC

Apply Status Table
The apply status table is a list of PTFs that have been applied for a product. A PTF can have two different
states in this table: APPLIED or SUPED. When a PTF is flagged as SUPED, it means that the PTF has
been superseded by another PTF. A superseding PTF includes all of the fixes and all of the requisite
relationships from all of the PTFs that it supersedes.

In addition to the status of the PTF, the table includes the date and time at which it was applied or
superseded and the user ID from which the operation was performed.

Version Vector Table
Version vector tables contain the service history for parts. They resemble AUX files in many respects. In
fact, version vector tables are pointed to by a control file in the same way that AUX files are. Both PTF and
APAR numbers are included in this table.

Select Data File
The select data file is not really part of the Software Inventory, but it is important enough to warrant
mention here. VMFAPPLY updates this file with a list of the parts affected by service, separated by time
and date stamps to indicate when they were serviced.

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 111

The Software Inventory files used by the VMFAPPLY EXEC are described in Chapter 15, “Introduction to
the Software Inventory,” on page 163 and Chapter 22, “Software Inventory Syntax,” on page 661.

A Closer Look at the VMFBLD EXEC
The VMFBLD EXEC builds usable objects at the latest service level from the raw materials in the service
database. First, the VMFBLD EXEC reads select data files and the build lists to determine which objects
have been serviced since its last invocation. After it has identified all of the serviced objects, it updates
the build status table with the results. This function is known as the VMFBLD status function. The status
function is always the first function performed by VMFBLD.

Second, VMFBLD calls part handlers to build the objects. The part handlers select the correct level of
parts and generate the usable form. Each time an object is built, VMFBLD changes the status of the object
to BUILT in the service-level build status table.

The VMFBLD EXEC also lets you build a list of objects or a specific object by using command line
parameters. When you need to build a single object or build list, include it on the command line and only
that object will be built.

Requisite Processing
VMFBLD uses object requisites information to determine extended build requirements. The user specifies
the primary requirements on the VMFBLD command by entering the names of build lists and objects.
VMFBLD adds all of that object's requisites that do not have a status of BUILT to the processing list.
VMFBLD then searches the requisites for these newly added objects and adds additional objects.

VMFBLD status updating is influenced by object dependents. As parts are updated, information is stored
in the select data file. During VMFBLD status processing, this information is used to match parts to objects
and update object status to show that build processing is required. The status for both the immediate and
extended dependents of these objects are similarly updated.

Updating the object status does not mean that these objects are built during this invocation of VMFBLD.
Only objects specifically requested to be built and their non-BUILT primary and extended requisites are
submitted to VMFBLD build processing.

The VMFBLD EXEC is described in more detail in “VMFBLD EXEC” on page 308. For more information on
the part handlers, see “Creating Objects with VMFBLD” on page 328. For more information on build lists,
see “Build Lists” on page 112.

Software Inventory Files Used by the VMFBLD EXEC

Build Status Table
The build status table is a list of objects that have been affected by service for a product. The objects
are identified by both the build list name and the object name because the same object name can appear
in multiple build lists. An object can have different states in this table: MANUAL, SERVICED, BUILDALL,
BUILT, BYPASSED, DELETE, and DELETED.

In addition to the status of the object, the table includes the date and time at which it was serviced or
built and the user ID from which the operation was performed. An error qualifier may also appear after
the date, time, and user ID. When .ERROR appears in the build status table, it indicates an error was
encountered when the object was being built. For a complete description of the build status table, see
“The Service-Level Build Status Table (bldid SRVBLDS)” on page 719.

Build Lists
Build lists contain the definitions of the objects that make up a product. There are three build list formats.

Format 1 build lists are in EXEC or EXEC2 format. Nucleus load lists are examples of format 1 build lists. A
format 1 build list can only define one object.

Using VMSES/E for Service

112 z/VM: 7.3 VMSES/E Introduction and Reference

Format 2 build lists are tagged files. They can contain multiple objects, as well as a wider variety of
parameters and options that may be required to build the objects.

Format 3 build lists support libraries. Each library member is defined as an object in a format 3 build list.

Note: When VMFBLD processes build lists, it uses their latest PTF-numbered levels. Therefore, if you
modify the usable form version of the build list (the one with a file type of EXEC), the modification is not
picked up. You must add any local modifications to build lists to the Software Inventory.

For more information on build lists, see “Build Lists” on page 141.

Saved Segment Data File
The saved segment data file contains customized information for building the saved segments defined in
a system saved segment build list. The saved segment data file is updated or created by the VMFSGMAP
EXEC.

Select Data File
Although not part of the Software Inventory, this file contains a list of all the parts affected by service,
identified with time and date stamps. VMFBLD uses this file to determine if any new service has been
applied by keeping track of the time and date stamps. VMFBLD also uses this file to determine which
objects must be rebuilt as a result of service.

The Software Inventory files used by the VMFBLD EXEC are described in Chapter 15, “Introduction to the
Software Inventory,” on page 163 and Chapter 22, “Software Inventory Syntax,” on page 661.

System-Level Product Inventory Table
The system-level Product Inventory table specifies which products are installed on which systems or
members. It also identifies any products that are superseded by a newer level of the product installed
on a system or member. For more information, see “The System-Level Product Inventory Table (VM
SYSPINV)” on page 698.

System-Level Base APAR Table
The system-level Base APAR table contains a list of all APARs included in the base of all supported z/VM
products/components. For more information, see “The System-Level Base APAR Table (VM SYSAPARS)”
on page 703.

Other VMSES/E EXECs
In addition to the primary service functions, VMSES/E provides tools to:

• Build additional raw materials, which include local modifications (the “VMFHASM EXEC” on page 390,
“VMFHLASM EXEC” on page 397, “VMFNLS EXEC” on page 451, VMFREPL EXEC, and “VMFEXUPD
EXEC” on page 384).

• Consolidate levels of the database (the “VMFMRDSK EXEC” on page 447).
• Compile the parameter file, which controls the operation of the other functions (the “VMFOVER EXEC”

on page 459 and “VMFPPF EXEC” on page 461).
• Manage the minidisks and SFS directories that make up the service database (the “VMFSETUP EXEC” on

page 503 and “VMFQMDA EXEC” on page 472).
• Manage objects (the “VMFQOBJ EXEC” on page 475).
• Manage saved segments (the “VMFSGMAP EXEC” on page 509).
• Verify the primary functions complete properly (the “VMFVIEW EXEC” on page 617).

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 113

Consolidating Levels of the Database
The VMFMRDSK EXEC consolidates raw materials on the DELTA string and service levels on the APPLY
string. The VMFMRDSK EXEC checks the Software Inventory for inconsistent states before it performs the
merge. The VMFMRDSK EXEC also checks that all target disks have enough room on them to accept the
files that are being moved to them.

Because the APPLY string contains the files that define service levels, a merge of the APPLY string has the
effect of consolidating service levels. Because the DELTA string is merely a repository for PTFs, the merge
function can be used as a stager. New PTFs can be staged on the alternate disk and then moved onto the
production disk where they will be stored permanently.

Figure 71 on page 114 illustrates a typical merge of the APPLY string.

Figure 71. VMFMRDSK EXEC Example

At some point in time, the production service level on the APPLY string is made up of a service level
(9101) and a COR tape (1315). When two new COR tapes arrive (1403 and 1404), they are applied
together; and the resulting maintenance level is stored on the alternate APPLY disk. Once this new

Using VMSES/E for Service

114 z/VM: 7.3 VMSES/E Introduction and Reference

maintenance level has passed some level of acceptance testing, it can be merged onto the intermediate
APPLY disk, freeing up the alternate APPLY disk for the next batch of service.

Managing Product Parameter Files
VMSES/E uses the VMFOVER and VMFPPF execs to compile the product parameter files.

The VMFOVER EXEC
The override function (VMFOVER EXEC) applies overrides (context oriented updates) to source product
parameter files ($PPFs). The resulting temporary PPF retains the file name which was entered on its
command line (that is, the override that is farthest from the source PPF in a chain of multiple overrides).

The VMFPPF EXEC
The VMFPPF function is analogous to the assembly functions. It calls an update facility (in this case the
VMFOVER EXEC) and generates the usable form PPF. In general, the term PPF refers to this usable form
product parameter file.

Figure 72 on page 115 illustrates the function of the VMFPPF EXEC.

Figure 72. VMFPPF EXEC Examples

In addition to its generation function, the VMFPPF EXEC also validates the syntax of the PPF and performs
some variable substitution for variables defined in the :DCL section of the PPF and used in the :MDA
section of the PPF. The usable form PPF is really a collection (or library) of usable form PPFs. The correct
usable form PPF is addressed by using the file name of the PPF and the component name of the product
or component.

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 115

Managing Disks for the Service Database
VMSES/E uses the VMFSETUP and VMFQMDA execs to manage minidisks and Shared File System
directories for the service database.

The VMFSETUP EXEC
The VMFSETUP EXEC is the tool that accesses the minidisks and SFS directories necessary to install or
service a product. The VMFSETUP EXEC uses the same access order for all VMSES/E functions for a given
product. You can enter the VMFSETUP EXEC once at the beginning of a session and not have to incur the
overhead of constantly changing the access order.

The VMFSETUP EXEC performs links if they are necessary and desired. The links are defined in the :DCL
section of the PPF. This function can also detach the disks that are linked when they are no longer
needed.

The VMFQMDA EXEC
VMFQMDA displays the current access order as it relates to a given PPF. In other words, the VMFQMDA
EXEC reads the :MDA section of the specified PPF and compares it to the current access order. The output
is formatted to mimic that of the CMS QUERY ACCESSED command, except that it reorders the disks by
disk string and includes the names of the disk strings in the output.

Managing Objects
VMSES/E uses the VMFQOBJ EXEC to manage objects.

The VMFQOBJ EXEC
VMFQOBJ provides information on objects that are defined in build lists. For example, you can obtain the
following information for objects:

• Status
• Library name
• Build requisites
• Build dependencies
• Global libraries
• Part handlers
• Target
• Build list options
• Parameters
• Serviceable parts included in an object
• Part options

See “VMFQOBJ EXEC” on page 475 for more information on this command.

Managing Saved Segments
VMSES/E uses the VMFSGMAP EXEC to manage the saved segment definitions associated with a system
saved segment build list.

The VMFSGMAP EXEC
VMFSGMAP processes and displays the saved segment definitions contained in the saved segment data
file associated with a system saved segment build list. VMFSGMAP also displays information about

Using VMSES/E for Service

116 z/VM: 7.3 VMSES/E Introduction and Reference

saved segments defined on the system that are not defined in the saved segment data file. The primary
VMFSGMAP display is a segment map that shows information such as:

• All the segment spaces in which a particular member resides
• All the members contained in each segment space
• Overlapping members in segment spaces
• Gaps in segment spaces
• Saved segment storage ranges that are not valid

Using VMFSGMAP functions, you can change, add, and delete saved segment definitions and display the
results in the map before you build the saved segments.

For more information about the VMFSGMAP command, see “The Source Product Parameter File” on page
13. For information about defining, building, and managing saved segments, see z/VM: Saved Segments
Planning and Administration.

Other VMSES/E Functions
VMSES/E provides additional functions to help you during the service process.

Regenerating Parts Locally
To allow for local regeneration of parts that are supported by updates, VMSES/E provides a number
of tools: the VMFASM, VMFHASM, VMFHLASM, VMFNLS, and VMFEXUPD execs. Each generates output,
which is named properly for VMSES/E and includes self-documenting information that lists the service
history for the output.

Each of the functions dynamically unpacks the source files when required. The unpacked source file is
then discarded in order to reclaim the disk space, leaving the original source file in place. These functions
also support all of the options of the primitive assembly and compilation commands (ASSEMBLE, HASM,
HLASM, GENCMD, GENMSG, UPDATE, and EXECUPDT). The VMFASM EXEC can call the F, H, or HL
assembler based on an option. The default is the F assembler.

Viewing Message Logs
The primary VMSES/E functions log their messages in message logs. The VMFVIEW EXEC helps you read
and interpret the message logs created by the primary VMSES/E functions. VMFVIEW supports message
logs for the LOCALMOD, PUT2PROD, SERVICE, SERVMGR, VMFAPPLY, VMFBLD, VMFINS, VMFMRDSK, and
VMFREC commands.

The VMFVIEW EXEC lets you locate the messages from a specific run of a VMSES/E function by including
the product parameter file (PPF) name and component name on the command line. This lets VMFVIEW
locate just the runs for that product. This can be very useful when processing service to multiple products
concurrently. The logs from one product can be viewed after already having processed a second product.

For more information, see “The Message Log” on page 137.

How VMSES/E Uses Control Files
VMSES/E uses control files to ensure information is correctly selected during the service process.

Control Files
A control file is a master file that ensures information is selected in a specific order for a set of serviceable
parts. The information for serviceable parts can be grouped into levels by two types of secondary files:

• Auxiliary Control Files (AUX)
• Version Vector Tables (VVT)

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 117

These secondary files identify update files, PTF numbers, or local modification identifiers. The file type of
these secondary files are identified by entries in the control file.

The control file is used by VMSES/E when:

• Source files are updated using the CMS UPDATE facility. The UPDATE function is used by XEDIT when
new updates are created and by compile functions, such as VMFASM, VMFHASM, VMFHLASM, VMFNLS,
and VMFEXUPD, when serviceable parts are generated.

• Output (produced by VMFASM, VMFHASM, VMFHLASM, VMFNLS, and VMFEXUPD) is named. The file
type of the serviceable parts produced by these functions depends on the information in the control file
and the version vector table. If a version vector table does not exist, AUX files are used.

• Selecting serviceable parts when generating new usable forms during build processing.
• Required MACLIBs are identified for text deck assembly.
• Level information is updated while applying new service using VMFAPPLY.
• Patches are applied to text decks.

“Control File (CNTRL) Syntax for a VMSES/E Environment” on page 118 shows the syntax of a control file.
(If you need help reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Control File (CNTRL) Syntax for a VMSES/E Environment

MACS Record

* comment
1

AUX Record

* comment
1

MACS Record

levelid MACS  libname
2 1

AUX Record

levelid AUX  lvlid

AUX  preflvl

prefix TX$

1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.
2 The total number of macro libraries specified on all MACS records cannot exceed 63.

MACS Record
Macro library (MACS) records contain the following:

levelid
is an update level identifier. In a VMSES/E environment, this value, combined with a file type
abbreviation, is used as the key into the control file extension table (see “Control File Extensions”
on page 119).

MACS
indicates this record contains the names of MACLIBs that are used by the assemble functions
(VMFASM, VMFHASM, VMFHLASM, and VMFNLS). MACS is a keyword.

Using VMSES/E for Service

118 z/VM: 7.3 VMSES/E Introduction and Reference

libname
is the name of a MACLIB.

AUX Record
AUX records contain the following:

levelid
is an update level identifier. In a VMSES/E environment, this value, combined with a file type
abbreviation, is used as the key into the control file extension table.

AUXlvlid
identifies the file type of an AUX file or a version vector table. The file type of a version vector
table has a VVT instead of the characters AUX. AUXlvlid is also the file type of an AUX file for parts
supported with source updates.

AUXpreflvl
identifies the file type of a preferred AUX file or version vector table. The file type of a version vector
table has a VVT instead of the characters AUX. AUXpreflvl is also the file type of a preferred AUX file
for parts supported with source updates.

Preferred version vector tables and preferred AUX files are used to conditionally select information
from the version vector table that is identified by AUXlvlid. If there is an entry in the preferred version
vector table for a particular part, the information in the corresponding AUXlvlid version vector table is
ignored.

prefix
is the file type abbreviation used for a part. You can use this as an alternative to using a control file
extension table (CONTRLEXT) for TEXT parts.

TX$
indicates that this AUXlvlid points to text patch files instead of source update files. The text deck
prefix, prefix, and the patch indicator field, TX$, can appear in either order in the command.

Comments
Comments are allowed on MACS records and AUX records. Comments begin with an asterisk (*).

Control File Extensions
The control file extension (cntrlfn CNTRLEXT) is an optional file that is used to change the file type
abbreviation for a part when a particular AUXlvlid is selected. The control file extension table is used
when multiple types of systems can be generated or when additional functions are added to a product by
another product. (In z/VM, several security products add functions to the CP component.) You must use
this table when parts exist in each type of system, and the parts have the same file name.

The file name of the control file extension table must match the file name of the control file.

“Control File Extension Syntax” on page 119 shows the syntax for the control file extension table. (If you
need help reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Control File Extension Syntax

levelid iftabbrev nftabbrev
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The control file extension table contains the following:

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 119

levelid
is an update level identifier. In a VMSES/E environment, this value, combined with a file type
abbreviation, is used as the key into the control file extension table.

iftabbrev
is the file type abbreviation for the input file. In a VMSES/E environment, this value, combined with a
levelid, is used as the key into the control file extension table.

nftabbrev
is the new file type abbreviation for the specified levelid and iftabbrev key.

The file type abbreviation for a part is changed if the following are true:

• There is an entry for the part in the version vector table that is identified by AUXlvlid.
• There is an entry for the part in the control file extension table that uses a key composed of the

levelid and file type abbreviation for the part.

Auxiliary Control Files
Auxiliary control files are used as pointers to update files.

“Auxiliary Control File (AUX) Syntax” on page 120 shows the auxiliary control file syntax. (If you need help
reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Auxiliary Control File (AUX) Syntax

updtft

svclvl  ptfnum

LCL  modid

TX$  modid

* comment
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The auxiliary control file contains the following:

updtft
is the file type of the source update. The updtft must be in uppercase.

svclvl
is the service level that contains the program temporary fix (PTF). The svclvl must be in uppercase.

ptfnum
is the program temporary fix (PTF) that contains the source update. The ptfnum must be in uppercase.

LCL
indicates the source update is a local modification.

TX$
indicates the update file contains TEXT patches.

modid
is a 7-character local tracking number assigned to this modification. The first two characters indicate
a local tracking number follows. It is recommended that the first two characters of the local tracking
number be LC. Characters 3-7 are a 5-character identifier for your local modification, which you can
create according to your own tracking scheme. It is recommended that the first character be an L.
Characters 3-7 of modid are concatenated to the ftabbrev to form the file type of the serviceable part
that is associated with this modification level of the part. For example, LCL1234 is a local modification
tracking number. In this example, L1234 would be concatenated to the ftabbrev to form the file type
of the serviceable part. The modid must be in uppercase.

Using VMSES/E for Service

120 z/VM: 7.3 VMSES/E Introduction and Reference

We recommend you start the local tracking number with LCL to ensure it does not interfere with
service delivered by IBM. If you use characters other than LCL, make sure they are unique for
your product.

*
indicates the beginning of a comment. You must use an asterisk to delimit the beginning of a
comment, unless the comment follows a three-token update record. Even in this case, the asterisk is
strongly recommended.

comment
is the comment you want to enter.

Version Vector Tables
The version vector table contains a history of all PTFs that have been applied to a product at a specific
maintenance level.

“Version Vector Table (VVTlvlid) Syntax” on page 121 shows the syntax of the version vector table. (If you
need help reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Version Vector Table (VVTlvlid) Syntax

:PART.  fn ftabbrev :PTF.  ptfnum
. aparnum

. updtft

M

For a complete description of the syntax of this file, see “The Version Vector Table (appid VVTlvlid)” on
page 723.

Patch Update Files
A patch update file contains an emergency circumventive fix for text decks which are used to build a
nucleus or a module. The patch function is included in the VMFBLD EXEC and is called prior to the loader
invocation. The patch function uses the information in the patch update file to modify the specified text
deck. The update file could be shipped to you on a special tape, or you might have to create the file
yourself under the direction of IBM.

The file name of a patch update file must match the file name of the text deck to be patched by the loader.
The file type is the full APAR number, VMmmmmm. Figure 73 on page 121 shows an example of a patch
update file.

./ * * PREREQ: VM23546 VM24484

./ * * CO-REQ: NONE

./ * * IF-REQ: NONE

./ * * comment

./ * NAME csectname

./ * VER disp hexdata

./ * REP disp hexdata

./ * REP disp hexdata

Figure 73. Example of a Patch Update File, DMKMNT VM12345

comment
is any comment that you want to add. For example, you may want to explain the reason for the patch.

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 121

NAME csectname
identifies the control section that is to be patched. If specified, this name must match the SD name
from the ESD for the text being patched. If this statement is omitted, the control section with the
same name as the patch update file is patched.

VER
identifies a verify control statement. A VER statement must precede the first REP statement.

REP
identifies a replace control statement, which allows instructions and constants to be changed and
additions made. The first REP statement must be preceded by a VER statement.

disp
is the four-digit hexadecimal starting address of the area to be verified or replaced as assigned by the
assembler. Unused leading columns must be filled with zeros.

hexdata
is up to 11 four-digit hexadecimal fields separated by commas, each verifying or replacing (VER or
REP) a previously loaded halfword (2 bytes). Unused leading columns in each field must be filled with
zeros. The last field must not be followed by a comma.

Creating Updated Source Files
The CMS UPDATE command is used to modify source files. The UPDATE command accepts a source input
file and, optionally, files containing UPDATE control statements, updated source records, and comments.
Using this input, it creates an updated source file. When using VMSES/E, AUX files are used to point to
update files. Figure 74 on page 122 shows how we create serviceable parts, the control file structure, and
examples of these items.

Figure 74. Control File Structure

• Item 1 is a control file. Its primary purpose is to list the levels of auxiliary control files (AUX files). It
also contains a MACS record (item 2) that lists the macro libraries that must be made available using
the CMS GLOBAL command when you assemble text decks. In the control file, the patch indicator (TX$)
indicates that the AUX file points to patch control statements.

• Items 3 , 4 , and 5 are AUX files. Item 3 is a local patch AUX file, item 4 is for local service, and item
5 is for PTF service.

Using VMSES/E for Service

122 z/VM: 7.3 VMSES/E Introduction and Reference

• Item 6 is a local patch update file. It contains patch control statements that are input to the loader
function. Because they are considered comments by the UPDATE command, they are ignored.

• Items 7 and 8 are regular update files. They contain update source records (9), update control
statements (10), and comments (11). The comments in item 11 contain requisite information
that is included in some text decks when they are assembled. This information is referred to as self-
documenting information and is used to validate the level of the text deck when the CKSDI option is
specified for VMFAPPLY.

Selecting the Latest Version of the Serviceable Part
The build list defines the serviceable parts that are contained in a usable form, and the build function
generates the usable form from the serviceable parts. The control file and version vector table files define
the version of the serviceable parts that are to be used when the usable form is generated. (AUX files
are used, if a version vector table does not exist.) The control file points to the allowable version vector
tables. These tables are searched, beginning at the bottom entry, by VMFSIM GETLVL. When VMFSIM
GETLVL finds a version vector table entry for the serviceable part, it determines the file type based on the
highest version of the serviceable part.

For example, in Figure 75 on page 123:

• If there is a record for DMSDEF in 1VMVMC23 VVTVM (1) and this is the only version vector table that
has an entry for DMSDEF, the file type for the resulting serviceable part is EXC00005. EXC is the file type
of the serviceable part DMSDEF, and it is used as input to the GETLVL function. 00005 is from characters
3-8 of the first :PTF entry.

• If a record exists for DMSDEF in 1VMVMC23 VVTLCL (2), the resulting serviceable part file type is
EXCL0003. EXC is the file type of the serviceable part DMSDEF. L0003 is from characters 3-8 of the
first :MOD entry.

If no entry can be found in any version vector table pointed to by the control file for a serviceable part, the
base file type is used. This file type is obtained from the VM SYSABRVT table and the :DABBV section of
the product parameter file. The base file type for EXC is EXC00000.

Figure 75. Control File Structure Using Version Vector Tables

When No Version Vector Table Exists
When a version vector table does not exist, the file type of Text parts is determined in another way. A
version vector table might not exist because a local modification was applied, and it was not logged in the
Software Inventory.

Important Note:
IBM strongly recommends you that log all local modifications in your local version vector table. For more
information, see Chapter 11, “Installing Local Service and Modifications,” on page 101.

VMSES/E uses information from the AUX files when version vector tables do not exist. Within the control
file, AUX files are processed from the bottom of the file. Update records within the AUX files are also
processed from the bottom of the file. The highest update is the last update processed.

For example, in Figure 74 on page 122:

Using VMSES/E for Service

Chapter 12. Using VMSES/E for Service 123

• If AUXVM is the only AUX file for DMSABC, the file type of the resulting text deck is TXT00005. TXT is
the default prefix. 00005 is from characters 3-8 of the third token of the last applied update record (5).

• If AUXLCL exists and it is the highest AUX file for DMSABC, the file type of the resulting text deck is
TXTL0003 (4). TXT is the default prefix. L0003 is from characters 3-8 of the third token of the last
applied local modification.

• If the third token is missing, the resulting file type is TXTlevelid. TXT is the default prefix, and levelid is
from the first token of the AUX file record of the control file. When levelid is TEXT, the file type of the
resulting text deck is TEXT.

• If AUXPAT exists and it is the highest AUX file for DMSABC, the file type of the resulting text deck is
TXTPAT. The third token is not used for patches.

• If no AUX files exist for DMSABC, the file type of the resulting text deck uses the first token on the MACS
record of the control file and appends it to TXT. Again, if this token is TEXT, the file type is TEXT.

Creating Text Decks
When text decks are assembled, the name of the resulting text deck is based on the version of the
serviceable part. The file type is determined using information provided by the VMFSIM GETLVL function.

The rules for naming text decks, which have just been described in the previous section, are used when
you specify the PPF option for the VMFASM, VMFHASM, VMFHLASM, and VMFNLS commands.

VMFASM, VMFHASM, VMFHLASM, and VMFNLS are assemble functions that:

• Update a source file
• Assemble the updated source file
• Name the resulting text deck
• Log local modifications in the local version vector table

When you create text decks for a VMSES/E environment, you must use the PPF option. Use the LOGMOD
option to automatically log local modifications in the local version vector table.

Identifying MACLIBs
The VMFASM, VMFHASM, VMFHLASM, and VMFNLS execs call an assemble function that uses the
information in MACLIBs. This information is made available to the assemble function by the CMS GLOBAL
command. The names of the required MACLIBs, which are the input to the GLOBAL command, are
identified on the MACS record in the control file (see item 2 in Figure 74 on page 122).

For more information on the MACS record, see “Control File (CNTRL) Syntax for a VMSES/E Environment”
on page 118.

Determining Local Modifications Requiring Rework
The VMFAPPLY EXEC updates the PTF level information for serviceable parts affected by PTFs in the
specified apply list. The level information is stored in the version vector table specified by the :UPDTID tag
in the product parameter file. If the serviceable part is supported with AUX files, the AUX file is created
from the updated information in the corresponding version vector table.

Any version vector table or AUX levels that are higher than the level specified on the :UPDTID tag are
considered to be local modifications that may need to be reworked as a result of PTF service. The
VMFAPPLY EXEC detects this situation and informs you of any parts requiring rework.

Using VMSES/E for Service

124 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 13. Other Files Used in the Service Process

In addition to the product parameter file, the files used to maintain the control structure, and the Software
Inventory, the product service process uses many other files, including the:

• Tape document
• Tape descriptor file
• Product contents directory
• Memo-to-Users
• Program level file
• Select data file
• VMSESE PROFILE
• Apply list
• Exclude list
• Place into production files
• Message log
• VMFINS DEFAULTS file
• Build lists
• National language support table

Some of these files, which are described in the following sections, are supplied with the base product,
some are shipped as part of service, and others are generated by VMSES/E. In certain situations, you
might have to create some files locally.

The product parameter file is described in “The Source Product Parameter File” on page 13 and Chapter
21, “Product Parameter File Syntax,” on page 623.

Files used to maintain the control structure are described in Chapter 8, “z/VM Service Concepts,” on page
89 and Chapter 12, “Using VMSES/E for Service,” on page 105.

The Software Inventory is described in Chapter 15, “Introduction to the Software Inventory,” on page 163
and Chapter 22, “Software Inventory Syntax,” on page 661.

If you need help reading the syntax diagrams in any of these sections, see “Understanding Syntax
Diagrams” on page 227.

The Tape Document
The tape document describes the service procedure for COR service. It lists the steps involved in applying
service to the system. The document is named COR DOCUMENT. Read the tape document before you
begin to apply service.

The Tape Descriptor File
The tape descriptor file contains a directory of the products for which service is contained on the service
tape. There is a tape descriptor file for installation tapes, RSU tapes, and COR service.

For Installation, RSU, and COR Descriptor File
The first record of the tape descriptor file states what type of tape it applies to: INS or COR. The second
record tells how many volumes the tape has and which volume this is. If there is more than one volume,
the tape descriptor file appears on each volume, but still describes the whole logical tape.

Other Files Used in the Service Process

© Copyright IBM Corp. 1990, 2023 125

The other records are the multi-volume directory. A :VOLnn record indicates the beginning of each
volume. Each of the 3-word records following a :VOLnn record describes a group of tape files. (A tape
file is the data between two tape marks. It may contain more than one CMS file.)

The first record following the :VOLnn tag lists the tape header files. This record is identified by the
word XXX where XXX is INS or COR. The header files are the two standard tape files that begin every
volume of the COR, RSU, or installation tape. One contains the tape descriptor file and the other contains
informational files about all the products for which service is supplied on the tape.

In the other records that follow the :VOLnn record, the first word is the prodid, the second word is either
HDR (meaning a product header file) or the name of the component to which the files apply, and the third
word is always the number of files in the group.

The prodid matches the value of the :RECID tag, and the component name matches the value of
the :BCOMPNAME tag, both of which appear in the product parameter file. The VMFREC EXEC uses these
two values as indexes to position the tape.

A product may be entirely on a single volume, it may cross volumes at a product break, or a single product
may span multiple volumes. When a product crosses a volume boundary, the break is indicated in the
multi-volume directory by a :VOLnn record. nn indicates the continuation volume.

For Installation and RSU Descriptor File
The installation descriptor file is a directory of the products on the installation tape. The Recommended
Service Upgrade (RSU) descriptor file is a directory of the products for which service is contained on the
RSU tape. The installation and RSU descriptor files are called INS yynn. yynn identifies the level of the
tape. The following table shows an example of the installation and RSU descriptor files.

The VMFINS EXEC receives these files as part of its processing. These files are not erased by VMSES/E,
but you can erase them if you want to.

For COR Descriptor File
The COR descriptor file is a directory of the products for which service is contained on the corrective
service tape. It shows how many files are available for each product and where they are. The COR
descriptor file is called COR ymdd. y is the last digit of the year, m is the month (numbered 1–C in
hexadecimal), and dd is the day. For example, 1A01 is October 1, 2021.

The VMFREC EXEC receives these files as part of its processing. These files are not erased by VMSES/E,
but you can erase them if you want to.

Table 8. Tape Descriptor Files

Install/RSU Descriptor File COR Descriptor File

INS yynn

VOL01 of 02
:VOL01.
INS FILES 02
prodid1 HDR 02
prodid1 CMS 03
prodid2 HDR 02
prodid2 CP 02
:VOL02.
INS FILES 02
prodid2 HDR 02
prodid2 CP 02
prodid3 HDR 02
prodid3 DV 03

COR ymdd

VM Corrective Service Tape nnnnn nnnnn
 CSD nnnnnnn yy/mm/dd hh:mm:ss.xxxxx
VOL01 of 01
:VOL01.
COR FILES 02
prodid1 HDR 01
prodid1 CMS 03

Other Files Used in the Service Process

126 z/VM: 7.3 VMSES/E Introduction and Reference

The Product Contents Directory
There is a product contents directory for each VMSES/E formatted product serviced by COR, Install, or
RSU. It lists the tape files supplied for the product. If the product crosses a tape boundary, the product
contents directory is repeated on the next tape. The product contents directory can be considered as an
expansion of the tape descriptor file. The descriptor file tells you how many files you have and where
they are. The product contents directory also tells you what the files are. Table 9 on page 127 shows an
example of a product contents directory.

The file name of the product contents directory is the product identifier (prodid). On a COR tape, the
file type of the product contents directory is $CORymdd. y is the last digit of the year, m is the month
(numbered 1–C in hexadecimal), and dd is the day. For an install or RSU tape, the file type of the product
contents directory is $INSyynn. yynn identifies the level of the tape.

Note: A product may be entirely on a single volume, it may cross volumes at a product break, or a single
product may span multiple volumes. When a product crosses a volume boundary, the break is indicated in
the product contents directory by a :VOLnn record. nn indicates the continuation volume.

Table 9. Product Contents Directory

Install/RSU Tape COR Tape

prodid1 $INSyynn

:VOL01.
:CMS.
AXLIST
PARTLST
UPDT

:VOL02.
TEXT
MODULE

prodid1 $CORymdd

:VOL01.
:CMS.
AXLIST
PARTLST
DELTA

The Memo-to-Users
You will receive a Memo-to-Users for each product that needs service. The memo contains instructions
for servicing the product. If the product is not fully supported by VMSES/E, the memo may describe any
special installation instructions, such as how to use a service exec. You should read the memo for each
product before you begin to apply service.

The Memo-to-Users file is called prodid MEMO.

The Program Level File
Program level files are included in both the second tape file and the first product header tape file on
VMSES/E tapes. The file name of the program level file is the product identifier (prodid). The file type is
defined as 0vrmnns, where:

0
is constant.

v
is the version number of the prodid.

r
is the release number of the prodid.

m
is the modification level of the prodid.

nn
represents the number of tape files. The number of tape files (nn) includes one of the tape header
files, all of the product header files, and all of the product tape files.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 127

s
is a Boolean flag that indicates the prodid is supported by VMSES/E with a product parameter file (1 -
will indicate that it is supported by VMSES/E).

For example, if a COR tape contained service for the MYCOMP component and the service consisted
of one prodid header file and seven prodid tape files, the program level file would have a file name of
1VMVMC23 and a file type of 0123081. 1VMVMC23 is the prodid for the MYCOMP component. The first
zero is a constant. The next three digits are the version, release, and modification identifiers. The digits 08
indicate there are a total of eight prodid tape files. The final digit (1) indicates the prodid is supported by
VMSES/E with a product parameter file.

The program level file contains a one-line description of the prodid and a copyright statement. Figure 76
on page 128 is an example of a program level file.

1VMVMC23 -- MYCOMP V1R2.3 Component
* CONTAINS IBM COPYRIGHTED MATERIALS *

Figure 76. Example of a Program Level File - 1VMVMC23 0123081

The Select Data File
The select data file contains a list of the parts to be processed by the VMFBLD status function. This file
is updated with a timestamp and a list of the parts that were serviced when the apply step was run. This
file can also be updated when using VMFSGMAP, VMFxASM, re-working local modifications and rebuilding
segments.

There is also a special select data file that is updated by the VMFBLD EXEC to list system objects that
contain parts that have been serviced. See “Select Data File Used for System Objects” on page 130.

The select data file is called appid $SELECT. The value of appid is specified on the :APPID tag in the
product parameter file. The select data file is stored on a product’s APPLY string.

If there is more than one appid specified on the :APPID tag in the product parameter file, the first appid is
the primary appid - the identifier for the primary select data file. Any additional appids identify secondary
select data files.

Secondary select data files allow you to get build requirements from an associated source. For example,
some REXX parts are included in the CMS nucleus. When these REXX parts are serviced, the CMS nucleus
must be rebuilt. To make sure they are rebuilt, the primary appid in the product parameter file is specified
as 7VMCMS10 (CMS) and the secondary appid is specified as 7VMREX10 (REXX).

When processing the primary select data file, the VMFBLD EXEC checks the select data file to see when
it was last processed and determines any new entries in the file. Objects that have been affected by a
serviced part are updated to a status of SERVICED in the service-level build status table. If a serviced
part does not exist in any build list for this component, the corresponding entry from the select data file is
added to the :PARTID tag of the special build list named UNKNOWN with a status of MANUAL.

When processing each secondary select data file, VMFBLD checks the service-level build status table to
see when each appid $SELECT file was last processed and determines any new entries in the file. VMFBLD
then checks the build lists of this component for any objects using the part. If VMFBLD cannot find any
objects using the part specified in the secondary appid $SELECT file, it ignores the part. When VMFBLD
finds an object using the part, it updates the service-level build status table entry for that object with a
status of SERVICED.

Finally, VMFBLD updates the :LASTAPP tag in the service-level build status table to show the level of the
appid $SELECT files processed.

File Syntax
“Select Data File Syntax ($SELECT)” on page 129 shows the syntax of the select data file. (If you need
help reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Other Files Used in the Service Process

128 z/VM: 7.3 VMSES/E Introduction and Reference

Select Data File Syntax ($SELECT)

:APPLYID. date time
1

Serviceable Part Entry

Serviceable Part Entry

partfn ftabbrev

previous_level_ft

BASE-FILETYPE

1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

:APPLYID.
is a tag that precedes the information from a VMFAPPLY run.

date
is the date when VMFAPPLY was run. The date is in the format mm/dd/yy.

time
is the time when VMFAPPLY was run. The time is in the format hh:mm:ss.

partfn
is the file name of the part that was serviced.

ftabbrev
is the file type abbreviation for the part that was serviced. The ftabbrev must be the 3-character PTF
abbreviation or the real CMS file type for parts that are not serviced by replacement.

previous_level_ft
is the file type of the previous level of the part that was serviced, for example EXC00001. The
previous_level_ft is only provided when the part identified by partfn ftabbrev is a build list.

This information is used by VMFBLD to compare a new level of a build list to its previous level to
determine if any object definitions have been added, changed, or deleted.

BASE-FILETYPE
is an identifier that is added to the select data file entry when the previous_level_ft is also the base
level. See Figure 77 on page 130 for an example of this type of entry.

Example
Figure 77 on page 130 is an example of the select data file.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 129

:APPLYID. 06/04/22 23:25:00
DMSYLI TXT
DMSETM TXA
DMSHMA EXC
CMSLOAD EXC EXC00000 BASE-FILETYPE
DMSMVS COPY
DMSFBO MACRO
⋮
:APPLYID. 06/03/22 13:25:00
DMSYLI TXT
DMSETM EXC1VMVMC23
 $PF
⋮

Figure 77. A Sample Select Data File

Note: The most recent entries in the select data file are added to the beginning of the file.

Select Data File Used for System Objects
VMSBR $SELECT is a special select data file that is used to identify system objects that need to be
built because they contain parts that have been serviced. System objects are objects with shared build
requirements, such as saved segments. They may contain objects or parts from more than one product.

When a part or object contained in a system object is built, the VMFBLD part handler VMFBDSBR updates
VMSBR $SELECT with the name of the product build list required to build the system object and issues a
message that the build list contains objects that must be built. The minidisk or SFS directory location of
VMSBR $SELECT is indicated in the VMSESE PROFILE.

System objects that need to be built because their definitions on the system have been changed are
identified in another select data file, SEGBLD $SELECT. When the VMFSGMAP EXEC is used to tailor the
definition of a saved segment (to change its storage range, for example), VMFSGMAP updates the SEGBLD
$SELECT file with a record that contains the name of the saved segment (segname DMY). The name of
the select data file used by VMFSGMAP is identified on the :APPID tag in the saved segment product
parameter file specified on the VMFSGMAP command. SEGBLD is the default.

Figure 78 on page 130 shows an example of the select data file (VMSBR $SELECT) that results from
service to parts contained in segments.

:APPLYID. 06/16/22 11:05:40
DMSSBPIP EXC
DMSSBSFS EXC

Figure 78. Example of the VMSBR $SELECT File

Figure 79 on page 130 shows an example of the select data file (SEGBLD $SELECT) containing entries
that result from VMFSGMAP tailoring.

:APPLYID. 06/23/22 08:26:50
CMSBAM DMY
CMSDOS DMY
CMSVMLIB DMY
DOSINST DMY
:APPLYID. 06/01/22 08:33:34
CMSAMS DMY
CMSVSAM DMY
CMSPIPES DMY
CMSFILES DMY
CMSVMLIB DMY

Figure 79. Example of the SEGBLD $SELECT File

Other Files Used in the Service Process

130 z/VM: 7.3 VMSES/E Introduction and Reference

The VMSESE PROFILE
The VMSESE PROFILE identifies system data that is used by VMSES/E. It is shipped as part of VMSES/E
and is installed on the 5E5 disk.

The SHRDISK record identifies the minidisk or SFS directory that is used to store information that is
required by multiple products, such as the VMSBR $SELECT file.

If you are changing the Software Inventory from a minidisk to an SFS directory, see Chapter 18, “Changing
the Software Inventory to an SFS Directory,” on page 221.

The PPFVAR record identifies variables and their values that are used by the VMFPPF command when
compiling product parameter files.

File Syntax
“VMSESE PROFILE Syntax” on page 131 shows the syntax of the VMSESE PROFILE. (If you need help
reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

VMSESE PROFILE Syntax
:SHRDISK. DIR dirid

LINK userid vdev mode
pw

* comment

:PPFVAR. varname varvalue

The fields in the VMSESE PROFILE are defined as follows:

:SHRDISK.
indicates a record that identifies a minidisk or SFS directory for shared information.
DIR

indicates that an SFS directory is being used.
dirid

is a fully-qualified SFS directory ID.
LINK

indicates a minidisk is being used.
userid

is the user ID of the minidisk owner. You can enter an asterisk (*) to indicate the current user.
vdev

is the address of the minidisk.
mode

is the access mode. Write access is required.
pw

is the access mode password.

Note: The minidisk or directory specified on the :SHRDISK tag must match the first disk in the APPLY
string defined in the saved segment product parameter file specified on the VMFBLD command. If the disk
is changed in one file, it must be changed in the other.

*
indicates a comment record.
comment

is a comment line.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 131

:PPFVAR.
indicates a record that identifies a PPF variable.
varname

is a variable used in a source product parameter file ($PPF).
varvalue

is the value assigned by VMFPPF when a product parameter file is compiled.

Note: The chosen variable name must be unique in all PPFs that may be complied.

Example
Here is a sample VMSESE PROFILE:

* ==
* VMSESE PROFILE
* ==
* Default disk used for updating the VMSBR $SELECT file for saved segment builds
* --
:SHRDISK. LINK MAINT730 51D MR

* --
* PPF file user ID definitions.
* --
:PPFVAR. $MAINT$ MAINT
:PPFVAR. $MNTVRM$ MAINT730
:PPFVAR. $MNTCSM$ MAINTCSM
:PPFVAR. $CSMWRK$ CSMWORK

* --
* PPF file pool definitions.
* --
:PPFVAR. $VMSYS$ VMSYS
:PPFVAR. $VMPSFS$ VMPSFS

* --
* CSM-specific variable definitions -- these should -not- be modified directly
* within this file.
* --
:PPFVAR. $CSMVRM$ CSM730
:PPFVAR. $CSMLVL$ BASE

* --
* SFS directory variable definitions for future use.
*
* !START! DO NOT MOVE THIS SECTION ANYWHERE ELSE IN THIS FILE.
* --
*
* TSAFSFS / AVSSFS
:PPFVAR. $TSAFAVSLMODZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.LOCALMOD * Local mods
:PPFVAR. $TSAFAVSSAMPZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.SAMPLE * Sample files
:PPFVAR. $TSAFAVSDELTZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.DELTAPROD * AVS service
:PPFVAR. $TSAFAVSAPPLX$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.APPLYALT * Aux/software
:PPFVAR. $TSAFAVSAPPLY$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.APPLYINT * Aux/software
:PPFVAR. $TSAFAVSAPPLZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.APPLYPROD * Aux/software
:PPFVAR. $TSAFAVSBAS2Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.TSAFAVS.OBJECT * AVS object
:PPFVAR. $TSAFAVSBLD4Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.CMSREXX.49D * Test Help disk
:PPFVAR. $TSAFAVSBLD7Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.CMSREXX.493 * Test CMS sys tool
:PPFVAR. $TSAFAVSBLD9Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.CMSREXX.402 * UCENG Help disk
*
* CMSSFS / REXXSFS
:PPFVAR. $CMSREXXLMODZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.CMSREXX.LOCALMOD * Local mods
:PPFVAR. $CMSREXXSAMPZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.CMSREXX.SAMPLE * Sample files
:PPFVAR. $CMSREXXDELTZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.CMSREXX.DELTAPROD * CMS service
*
* PERFTKSFS
:PPFVAR. $PTKBAS1Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.BASE * PERFTK BASE
:PPFVAR. $PTKLMODZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.LOCALMOD * LOCAL MODIFICATIONS
DISK
:PPFVAR. $PTKSAMPZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.SAMPLE * SAMPLES DISK
:PPFVAR. $PTKDELTZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.DELTA * PERFTK SERVICE
:PPFVAR. $PTKAPPLX$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.APPLYALT * AUX AND SW INVEN FILES
:PPFVAR. $PTKAPPLZ$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.APPLYPROD * AUX AND SW INVEN FILES
:PPFVAR. $PTKBLD0Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.TBUILD * TEST DISK
:PPFVAR. $PTKBLD2Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.1CC * CONFIGURATION CODE DISK
:PPFVAR. $PTKBLD4Z$ $VMPSFS$:$CSMVRM$.$CSMLVL$.PERFTK.PERFTKHELP * HELP FILES

Other Files Used in the Service Process

132 z/VM: 7.3 VMSES/E Introduction and Reference

*
* --
* !END! DO NOT MOVE THE ABOVE SECTION ANYWHERE ELSE IN THIS FILE.
* --

The Apply List
The apply list contains a list of the PTFs to be applied to a product. The order of the PTFs in the list is not
significant. The PTFs listed in the apply lists shipped by IBM with service are in age order, with the oldest
PTFs listed first.

The value specified on the :AXLIST tag in the product parameter file is the file name of the apply list
supplied by IBM on the service tape.

• For COR service, the file type is:

– $APCymdd for the apply list associated with a single COR tape. ymdd is the date (y is the last digit of
the year, m is the month numbered in hexadecimal, and dd is the day).

– $APCALL for the cumulative apply list.

Because COR tapes are cumulative, this apply list is a duplicate of the previous one.
• For an install or RSU tape, the file type is:

– $APIyynn for the apply list associated with a single tape. yynn is the level identifier.
– $APIALL for the cumulative apply list.

The VMFREC EXEC loads the numbered apply lists unmodified. The cumulative apply lists are renamed to
have a file type of $APPLIST, which is the file type required by the VMFAPPLY EXEC. When this is done,
the new lists from the tape either overlay any existing lists with the same names or are appended to them,
depending on the option selected on the VMFREC EXEC command invocation. Comments identifying the
product, tape type, and tape number are at the top of the apply list that is shipped from IBM.

A one-line entry for each PTF follows this information. The first word on the line is the PTF number. The
second word on the line, if present, is a comment containing the corresponding APAR number.

An asterisk (*) indicates a comment.

File Syntax
“Apply List File Syntax” on page 133 shows the apply list syntax. (If you need help reading the syntax
diagrams, see “Understanding Syntax Diagrams” on page 227.)

Apply List File Syntax

ptfnum

comment
1

* comment
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Example
Figure 80 on page 134 is an example of an apply list.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 133

* APPLY LIST FOR PRODUCT vVMCMSrm COR nnnn
UM14144 VM40611
UM14428 VM41021

Figure 80. Example of an Apply List–DMSVM $APPLIST

The Exclude List
The exclude list contains a list of the PTFs that are not to be applied to a product, even if they are listed in
the apply list. Excluded PTFs will not be applied, nor will any PTFs that list an excluded PTF as a requisite.
The first line in the exclude list, as shipped from IBM, is a comment identifying the product and the tape
type and number. Before you apply service to a product with the VMFAPPLY EXEC, you can create an
exclude list to define PTFs that you want to exclude.

The value specified on the :AXLIST tag in the product parameter file is the file name of the exclude list
supplied by IBM on the service tape. The value specified on the :EXCLIST tag in the product parameter file
is the file name of the optional exclude list supplied by you. The PTFs from both of these lists are used by
the VMFAPPLY process.

• The file type for COR service is:

– $EXCymdd for the exclude list associated with a single COR tape. ymdd is the date (y is the last digit
of the year, m is the month numbered in hexadecimal, and dd is the day).

– $EXCALL for the cumulative exclude list.

Because COR tapes are cumulative, this exclude list is a duplicate of the previous one.
• The file type for the install or RSU tape is:

– $EXIyynn for the exclude list associated with a single install or RSU tape. yynn is a level identifier.
– $EXIALL for the cumulative exclude list.

The VMFREC EXEC loads the numbered exclude lists unmodified. The cumulative exclude lists are
renamed to have a file type of $EXCLIST, which is the file type required by the VMFAPPLY EXEC. When this
is done, the new lists from the tape either overlay any existing lists with the same names or are appended
to them, depending on the option selected on the VMFREC EXEC command invocation.

File Syntax
“Exclude List File Syntax” on page 134 shows the exclude list syntax. (If you need help reading the syntax
diagrams, see “Understanding Syntax Diagrams” on page 227.)

Exclude List File Syntax

ptfnum

comment
1

* comment
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Example
Figure 81 on page 135 is an example of an exclude list with two PTF entries.

Other Files Used in the Service Process

134 z/VM: 7.3 VMSES/E Introduction and Reference

* EXCLUDE LIST FOR PRODUCT vVMCMSrm COR nnnn
UM03601
UM90033

Figure 81. Example of an Exclude List–DMSVM $EXCLIST

Place Into Production Files
The place into production files are the SERVICE $PRODS file and the systemid $PRODS files. These
files contain the products and associated objects that were serviced. The VMFBLD part handlers and
the SERVICE command update the SERVICE $PRODS file. The systemid $PRODS file is created from a
SERVICE $PRODS file.

The SERVICE $PRODS File
The SERVICE $PRODS output file contains the following types of records:

• COPYPART, ERASEPART, COPYHELP, and ERASEHELP record syntax:
recid compname COPYPART

ERASEPART

COPYHELP

ERASEHELP

ppffn compname &fromvarn &tovarn

NONE

UPCASE

prodid filename filetype

• BFS (Byte File System) record syntax:

recid compname BFS buildlist objectname

• SEGMENTS record syntax:
recid compname SEGMENTS buildlist

• NUCLEUS record syntax:
recid compname NUCLEUS

buildlist

• COMPONENT record syntax:
recid compname COMPONENT ppffn

• PRODLEV (production level) record syntax:
recid compname PRODLEV

servlvl

• SYNCLEV (synchronize service level) record syntax:
recid compname SYNCLEV servlvl

• SAVECMS record syntax:

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 135

recid compname SAVECMS

• ENABLE record syntax:
recid compname ENABLE systemid prodrecord

If there are multiple ENABLE records for the same recid, the last one in the file is used.
• DDRCMS record syntax:

recid compname DDRCMS ppffn compname &tovarn  filename filetype

• DDRREST record syntax:
recid compname DDRREST ppffn compname &fromvarn &tovarn NONE

prodid filename filetype

• WARNMSG record syntax:
recid compname WARNMSG msgnum.msgfmt

Where:
recid

is the 1- through 8-character alphanumeric product identifier. This is the same value that is on
the :RECID. tag in the product's PPF.

compname
is the 1- through 16-character base component name.

ppffn
is the 1- through 8-character alphanumeric Product Parameter File (PPF) file name.

&fromvarn
is the variable name defining the test build disk from the :DCL section in the PPF.

&tovarn
is the variable name defining the production build disk from the :DCL section in the PPF.

NONE | UPCASE
defines an option for processing parts.

prodid
is the 1- through 8-character alphanumeric identifier assigned to the product, concatenated with a
percent sign (%) to the 1- through 16-character alphanumeric component name identifier.

filename filetype
is the file name and file type of all of the serviced objects to be copied or erased.

buildlist
is the build list associated with the part handler in the :BLD. section of the product's PPF file. For
NUCLEUS records, buildlist can be optional, depending on the type of nucleus being built.

objectname
is the name of the object that was serviced.

systemid
is the system where the SET PRODUCT command was issued.

prodrecord
is the operand(s) used on the SET PRODUCT command.

servlvl
is the service level of the product.

Other Files Used in the Service Process

136 z/VM: 7.3 VMSES/E Introduction and Reference

msgnum.msgfmt
is the message number and the message format number, concatenated with a period (.) character.

The systemid $PRODS file
The systemid $PRODS file contains the same records and syntax as the SERVICE $PRODS file with the
exception of the following:

• The DCL variable value &fromvarn is replaced, for specific records, with minidisk-specific values or
SFS-specific values. Similarly, the DCL variable value &tovarn is replaced with minidisk-only specific
values.

• COPYPART, ERASEPART, COPYHELP, and ERASEHELP record syntax:
recid compname COPYPART

ERASEPART

COPYHELP

ERASEHELP

from_userid from_vdev

DIR from_dirid

to_userid

to_vdev NONE

UPCASE

prodid  filename filetype

• DDRCMS record syntax:

recid compname DDRCMS to_userid to_vdev  filename filetype

• The systemid $PRODS file can contain an ERROR record. The format is:
recid compname ERROR to_userid to_vdev

The changed variables and values that pertain to these records are:
from_userid

is the owning user ID of the test build disk.
from_vdev

is the address of the test build disk.
from_dirid

is the fully-qualified SFS directory of the test build directory.
to_userid

is the owning user ID of the production build disk.
to_vdev

is the address of the production build disk.

All other variables are described under “The SERVICE $PRODS File ” on page 135.

The Message Log
The message log contains any error or informational messages issued by its corresponding EXEC. The
message log is written to the A-disk. If the message log already exists when the exec is invoked, a
date and time stamp are inserted to separate the earlier log entries from the new entries. You should
browse the message log with the VMFVIEW EXEC after the LOCALMOD, PUT2PROD, SERVICE, SERVMGR,
VMFAPPLY, VMFBLD, VMFINS, VMFMRDSK, or VMFREC EXEC finishes processing.

The message logs related to z/VM Centralized Service Management (z/VM CSM) are $CSMCMG $MSGLOG
(produced by the SERVMGR EXEC) and $CSMAGT $MSGLOG (produced by the CSMAGENT EXEC).

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 137

For the LOCALMOD, PUT2PROD, SERVICE, VMFAPPLY, VMFBLD, VMFINS, VMFMRDSK, and VMFREC
EXECs, the message log is called $VMFxxx $MSGLOG, where xxx is:

• LMD for the local modification log created by the LOCALMOD EXEC
• P2P for the put into production log created by the PUT2PROD EXEC
• SRV for the service log created by the SERVICE EXEC
• APP for the apply message log created by the VMFAPPLY EXEC
• BLD for the build message log created by the VMFBLD EXEC
• INS for the install message log created by the VMFINS EXEC
• MRD for the merge message log created by the VMFMRDSK EXEC
• REC for the receive message log created by the VMFREC EXEC.

Table 10 on page 138 shows the different types of messages that appear in these message logs.

Table 10. VMSES $MSGLOG Message Codes

Code Explanation

ST: A status message pertaining to a major function of the current process

BD: Informational messages indicating build requirements

CK: A condition that must be checked

WN: A warning message

RO: Messages pertaining to requisites outside the component

RQ: Messages pertaining to requisites

MS: Mismatched parts, such as AUX files and AUX entries in the front of text decks

SV: A severe problem encountered

Note: All messages except status messages must be investigated. A warning message does not
necessarily mean that anything is wrong, but you cannot be sure until you check.

Message logs are cumulative. The most recent entries are at the top.

Figure 82 on page 139 shows a sample message log.

Other Files Used in the Service Process

138 z/VM: 7.3 VMSES/E Introduction and Reference

**
**** PPFNAME: SERVP2P COMPNAME: VMSES RECID: 7VMSES30 ****
**
**** Date: 2022-09-16 Time: 09:09:55 ****
**
ST:VMFREC2195I VMFREC PPF SERVP2P VMSES (LOG SRV ENV VMF0009 APPEND
ST: NOSETUP NORECVALL
ST:VMFREC2760I VMFREC processing started
ST:VMFUTL2205I Minidisk|Directory Assignments:
ST: String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
ST: -or- SFS Directory Name
ST:VMFUTL2205I LOCALMOD E R/W 5C4 MNT5C4 (MAINT730 05C4 : 5/02)
ST:VMFUTL2205I LOCALSAM F R/W 5C2 MNT5C2 (MAINT730 05C2 : 5/01)
ST:VMFUTL2205I APPLY G R/W 5A6 MNT5A6 (MAINT730 05A6 : 6/01)
ST:VMFUTL2205I H R/W 5A4 MNT5A4 (MAINT730 05A4 : 6/01)
ST:VMFUTL2205I I R/W 5A2 MNT5A2 (MAINT730 05A2 : 6/00)
ST:VMFUTL2205I DELTA J R/W 5D2 MNT5D2 (MAINT730 05D2 : 30/00)
ST:VMFUTL2205I BUILD8 B R/W 5E6 MNT5E6 (MAINT730 05E6 : 9/81)
ST:VMFUTL2205I BUILD7 K R/W 493 MNT493 (MAINT730 0493 : 250/53)
ST:VMFUTL2205I BUILD6 L R/W 490 MNT490 (MAINT730 0490 : 207/41)
ST:VMFUTL2205I BUILD4 M R/W 49D MNT49D (MAINT730 049D : 146/65)
ST:VMFUTL2205I BASE2 N R/W 5B2 MNT5B2 (MAINT730 05B2 : 38/88)
ST:VMFUTL2205I -------- A R/W 191 MNT191 (MAINT730 0191 : 175/19)
ST:VMFUTL2205I -------- C R/W 500 MNT500 (MAINT730 0500 : 900/60)
ST:VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/45)
ST:VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/41)
ST:VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/33)
ST:VMFREC1852I Volume 1 of 1 of COR ENVELOPE created on 16 September 20
ST:VMFREC1851I (1 of 3) VMFRCAXL processing AXLIST
ST:VMFRCX2159I Loading 4 part(s) to DELTA 5D2 (J)
ST:VMFRCX2193I Appending new Apply list VMFVM $APPLIST to the existing
ST: list on DELTA 5D2 (J)
ST:VMFRCX2193I Appending new Exclude list VMFVM $EXCLIST to the existing
ST: list on DELTA 5D2 (J)
ST:VMFREC1851I (2 of 3) VMFRCPTF processing PARTLST
ST:VMFRCP2159I Loading 1 part(s) to DELTA 5D2 (J)
ST:VMFREC1851I (3 of 3) VMFRCCOM processing DELTA
ST:VMFRCC2159I Loading 2 part(s) to DELTA 5D2 (J)
ST:VMFREC2189I Updating Requisite table 7VMSES30 SRVREQT, Description
ST: table 7VMSES30 SRVDESCT and Receive Status table 7VMSES30
ST: SRVRECS with 1 new PTFs from COR 0009
ST:VMFREC2760I VMFREC processing completed successfully

Figure 82. A Sample Message Log: $VMFREC $MSGLOG

See “Viewing Message Logs” on page 117 for more information.

The VMFINS DEFAULTS File
The VMFINS DEFAULTS file establishes command option defaults for the VMFINS EXEC and for various
other VMSES/E commands (such as SERVICE and PUT2PROD). These command defaults are obtained
from the first VMFINS DEFAULTS file that exists in the CMS search order when an associated VMSES/E
command is issued.

The option defaults in the VMFINS DEFAULTS file can be customized for your specific environment by:

• Directly modifying the VMFINS DEFAULTS file that resides on the VMSES/E build minidisk (by default,
MAINTvrm 5E5).

• Creating a private copy of this file (for example on the MAINTvrm 191 minidisk) and then customizing
this copy.

Syntax
“VMFINS DEFAULTS File Syntax” on page 140 shows the syntax of the VMFINS DEFAULTS file. (If you
need help reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 139

VMFINS DEFAULTS File Syntax

Option Default
1

Comment
2

Option Default
ADD

REPlace

FILEPool VMPSFS:

FILEPool filepoolid
:

*

CHECKPool YES

CHECKPool YES

NO

LINk

NOLink

MEMo

NOMemo

OVErride PROMPT

OVErride YES

NO

DEFAULTS

PANEL

NOPlan

PLAn

SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid

Comment

*

text

Notes:
1 The defaults applied for an omitted option definition appear above the line on the Option Default
fragment.
2 Indicates end-of-line. The next entry must start on a new line.

For information on the VMFINS options, see “VMFINS EXEC” on page 407.

Example
Figure 83 on page 141 shows sample definitions for the VMFINS DEFAULTS file.

Other Files Used in the Service Process

140 z/VM: 7.3 VMSES/E Introduction and Reference

ADD * default is ADD
NOPLAN * default is NOPLAN
MEMO * default is MEMO
LINK * default is LINK
*
SIDISK 51D * default is 51D
SIMODE D * default is D
SYSTEM VM * default is system ID is VM
FILEPOOL VMPSFS: * default is VMPSFS:
CHECKPOOL YES * Default is YES
OVERRIDE PROMPT * default is PROMPT

Figure 83. The VMFINS DEFAULTS File

Usage Notes
• The defaults specified in the VMFINS DEFAULTS file are used by respective VMSES/E commands on

an individual basis. Therefore, only a subset of these definitions might be applied when a specific
command is used.

• For some VMSES/E commands there are no command line options that correspond to definitions
within the VMFINS DEFAULTS file. For these commands, the definitions and values within the VMFINS
DEFAULTS file are the only means of control for the subject parameters. See the description of a specific
command to determine what options and controls can be applied.

• Case is not significant for definitions in the VMFINS DEFAULTS file. All information is used in upper case
form.

• If multiple instances of an option definition exist in the VMFINS DEFAULTS file, only the last instance is
used.

Build Lists
While the build status table identifies usable forms that have had service applied, the build list indicates
where a serviceable part is used in building a usable form (nucleus, MACLIB, and so forth). All serviceable
parts are listed in build lists. If a serviceable part is not listed in a build list, VMSES/E cannot identify or
build the usable forms automatically. The file type of a build list is either EXEC or EXCnnnnn.

VMSES/E uses build lists in three different formats. The older format, format 1, is retained for
compatibility with non-VMSES/E execs like HCPLDR and VMFMAC, which also use build lists. (In
connection with these execs, build lists are sometimes called loadlists or MACLIB execs.) Format 1 build
lists define only a single object.

Format 2 is more flexible than format 1. Format 2 build lists allow multiple objects (usable forms) within a
build list. And also allows variations determined by the part handler that will process the build list.

Format 3 supports libraries. Each library member is defined as an object in a format 3 build list.

Table 11 on page 141 shows the build list format used by each part handler. For detailed build list
specifications for the various part handlers, see “Creating Objects with VMFBLD” on page 328.

Table 11. Build List Formats Used by the VMFBLD Part Handlers

Part Handler Format Function

VMFBDBFS 2 Moves files into the Byte File System

VMFBDCLB 3 Builds callable services libraries

VMFBDCOM 2 Builds replacement objects

VMFBDCPY 1 Builds replacement text only

VMFBDDDR 2 Restores DDR image files to minidisks

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 141

Table 11. Build List Formats Used by the VMFBLD Part Handlers (continued)

Part Handler Format Function

VMFBDDLB 3 Builds CMS/DOS phase libraries

VMFBDGEN 2 Builds generated objects, such as text decks

VMFBDLLB 3 Builds LOADLIBs

VMFBDMLB 3 Builds MACLIBs

VMFBDMOD 2 Builds modules

VMFBDNUC 1 Builds nuclei

VMFBDPMD 2 Builds modules using the C89 or CPLINK command.

VMFBDSBR 2 Identifies system objects (saved segments) to be built

VMFBDSEG 2 Builds saved segments

VMFBDTLB 3 Builds TXTLIBs

Note: Use care when creating or adding your own build lists. Records are processed differently by the
various VMFBLD part handlers.

Syntax Notation
If you need help reading the syntax diagrams for the different build list formats, see “Understanding
Syntax Diagrams” on page 227. In addition, the following syntax is used while describing the build list
parameters:
[]

Brackets enclose optional items that may be displayed.
{ }

Braces enclose alternative items that may be displayed.
|

The vertical bar separates items within braces or brackets.
…

The ellipsis indicates that the preceding item may be repeated.

Format 1 Build List Syntax
“Format 1 Build List Syntax” on page 142 shows the syntax of a format 1 build list.

Format 1 Build List Syntax

* comment
1

&TRACE OFF
1

&CONTROL; OFF
1

Part Record

Loader Card

* comment
1

Part Record

&1; &2;

&3;

partfn

partft

( partopt

1

Other Files Used in the Service Process

142 z/VM: 7.3 VMSES/E Introduction and Reference

Loader Card

x'02' loader card
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Format 1 build lists have four types of records: EXEC or EXEC2 statements, part records for serviceable
parts, X'02' loader cards, and comments.

EXEC or EXEC2 Statements
One EXEC statement, &CONTROL; OFF, and one EXEC2 statement, &TRACE; OFF, are permitted as build
list records. EXEC or EXEC2 statements must be placed before any serviceable part entries or loader
cards.

Serviceable Part Records
Serviceable part records name a serviceable part. The format of a serviceable part record is:

&1 &2

&3

partfn

partft

(partopt

&1 &2 &3
are variables to be used by the exec that processes the build list.

partfn
is the file name of a serviceable part.

partft
is the file type of a serviceable part.

The part handler selects the correct level of each serviceable part. If you do not specify partft,
VMFSIM GETLVL selects the level based on the information in the version vector table.

partopt
are part options used by the part handler when processing the serviceable part. In format 1 build lists,
part options are specified after the parentheses on each serviceable part record. See Figure 84 on
page 144 (6). See “Creating Objects with VMFBLD” on page 328 for a description of the part options
for each part handler.

Serviceable part entries may not appear before the EXEC or EXEC2 statements, but they may be mixed in
any order with loader cards and comments.

Note: For format 1 build lists, the object name is BLDLIST, and it appears only as output from the
VMFQOBJ EXEC and the service-level build status table.

Loader Cards
Loader cards contain X'02' control characters. Loader cards may not appear before the EXEC or EXEC2
statements, but they may be mixed in any order with entries and comments.

Comments
Comments begin with an asterisk (*) in column 1. They may appear anywhere in the build list. They are
the only records that may be placed before the EXEC or EXEC2 statements.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 143

Format 1 Build List Example
Figure 84 on page 144 shows a sample format 1 build list.

* Begin by setting &TRACE; OFF
&TRACE; OFF 1
&1 &2 &3 HCPLDR LOADER
&1 &2 &3 DMSNUC 2
&1 &2 &3 DMSZNR
&1 &2 &3 SLC L00E000 3
⋮
******** DMSINN must be after DMSIND and not part of NUC
&1 &2 &3 DMSZINN
"LDT 4
* The " on the prior line is a Hex '02' 5
&1 &2 &3 DMSZINV
* DMSTRT needs the LANG option
&1 &2 &3 DMSTRT (LANG 6
&1 &2 &3 LDT DMSINIW

Figure 84. Example of a Format 1 Build list

It contains one EXEC2 statement (1), several serviceable part records with no file type specified (2), a
serviceable part record with the file type specified (3), a loader card (4), and a comment (5). The other
records are all entry records or comments. Some of the entry records specify file names and file types and
the rest specify only file names. One entry record specifies an option (6).

Format 2 and 3 Build List Syntax
“Format 2 and Format 3 Build List Syntax” on page 144 shows the syntax of format 2 and format 3 build
lists. (If you need help reading the syntax diagrams, see “Understanding Syntax Diagrams” on page 227.)

Format 2 and Format 3 Build List Syntax
:FORMAT. 2

3

:LIBNAME.  libname

 libparm

Gbldreqs Gglobals Gobjparms

Objblock

Objblock

Other Files Used in the Service Process

144 z/VM: 7.3 VMSES/E Introduction and Reference

:OBJNAME. objectname

 objparm

Bldreqs Globals

:OPTIONS.

 partopt

:PARTID.  partfn  ftabbrev

:EOBJNAME.

Gbldreqs

:GBLDREQ.

reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

Bldreqs

:BLDREQ.

reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

Gglobals

:GGLOBAL.

libtype

|

 libname

Globals

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 145

:GLOBAL.

libtype

|

 libname

Gobjparms

:GOBJPARM.

 objparm

General Information
The following guidelines apply to format 2 and 3 build lists:

• All tags must begin on a new line.
• The data on a tag can span multiple lines.
• All tagged records can have zero or more spaces after the tag.
• All records, except comments, must be in uppercase English.
• Comment lines are permitted anywhere in the file.
• A comment line begins with an asterisk (*).

Deleting Objects from Build Lists
Entries in the select data file, service-level build status table, and build lists are used to delete objects.

VMFBLD determines the objects to be deleted by reading the select data file to determine which build
lists have been serviced. (When a build list has been serviced, a third token is added to the select data
file entry.) VMFBLD then compares the previous level of the build list to the new level of the build list.
VMFBLD gives the status of DELETE to any object found in the previous level of the build list that is not
found in the new serviced level.

The following sections describe the records in format 2 and 3 build lists. Any special considerations for
certain build list formats are also provided.

:FORMAT Record
A :FORMAT record is the first record, other than a comment, in a build list. Its format is:

:FORMAT. 2

3

2
3

identifies the build list format.

Other Files Used in the Service Process

146 z/VM: 7.3 VMSES/E Introduction and Reference

:LIBNAME Records
A :LIBNAME record identifies a library. :LIBNAME records are only valid in format 3 build lists. Its format
is:

:LIBNAME. libname

libparm

libname
is the file name of the library to be built. The default file name is the file name of the build list. Each
member of the library must be defined as an object.

libparm
are parameters to use when processing the :LIBNAME record. The parameters can be:

C370LIB
C370LIB indicates to VMFBDTLB that the C370LIB family of commands should be used for TXTLIB
manipulation instead of the TXTLIB family of commands.

NOERASE
NOERASE indicates to the part handler that the library is not to be erased during the build. The
NOERASE parameter will have no effect on the CSLLIB part handler since a CSLLIB can only be
updated by being totally rebuilt.

If NOERASE is omitted, all library part handlers erase and rebuild a library if all of its objects are to be
built. In addition, the MACLIB part handler erases and rebuilds whenever an object is deleted, and the
LOADLIB and DOSLIB part handlers erase and rebuild if the history file is not found.

The NOERASE parameter is useful if a library is to be updated from multiple products, each of which
has its own build list for the library. Without NOERASE, if a product erases and rebuilds the library, any
objects (members) that have been added by other products are lost.

Part Handlers
VMFBDCLB - tolerates NOERASE
VMFBDDLB - full support for NOERASE
VMFBDLLB - full support for NOERASE
VMFBDMLB - full support for NOERASE
VMFBDTLB - full support for NOERASE and C370LIB

Example
The C370LIB parameter will be used by Licensed Products that wish to have their TXTLIBs built using the
C370LIB family of commands. By not specifying C370LIB as a library parameter on the :LIBNAME tag,
VMFBDTLB will default to the use of TXTLIB commands.

The following is an example of a format 3 build list, which contains the C370LIB parameter, used by
VMFBDTLB to create a TXTLIB.

 :FORMAT. 3
 :LIBNAME. MYTXTLIB C370LIB
 :OBJNAME. MEMBER1
 :OPTIONS. ENTRY CSECT1
 :PARTID. PART1 TXT
 :EOBJNAME.

Figure 85. Example of Format 3 Build List for TXTLIB

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 147

:OBJNAME Records
An object (:OBJNAME) record identifies the beginning of an object block, a group of records containing
information about a specific object or usable form (which may consist of one or more serviceable parts).

The :OBJNAME record must be the first noncomment record in an object block. Multiple object blocks are
permitted within a build list. VMFBDMOD uses the :OBJNAME record for the file name of the module being
generated. VMFBDSEG uses the :OBJNAME record for the name of the saved segment being generated.

The format of the :OBJNAME record is:

:OBJNAME. objectname

objparm

objectname
is the name of the object being defined. Object names must always be unique within a build list.

Object Names in Format 2 Build Lists
In format 2 build lists, the object name is a combination of the object file name and the object file type,
joined by a period (for example, RECEIVE.EXEC). See Figure 86 on page 153 for an example of a valid
object name in a format 2 build list.

The object file name can be any valid CMS file name, except BLDLIST, or an equal sign (=) for a wildcard
object (see “Using Wildcard Objects in Format 2 Build Lists” on page 148). Object names must be unique
within a build list.

The object file type is the type of object being generated (MODULE for a module, EXEC for an exec,
SEGMENT for a saved segment, and so on).

Using Wildcard Objects in Format 2 Build Lists
Wildcard objects are used to define a large group of parts that are similar in nature and have the
same part and object file types. In effect, a wildcard object is really many objects. Wildcard objects are
commonly used for help files, because large sets of help files frequently have the same file type, and help
files are not considered as critical to the system as other objects.

To specify a wildcard object in a format 2 build list, the object file name must be an equal sign (=); and the
part file name must be an asterisk (*). These characters are used for compatibility with the CMS COPYFILE
command. All files that match the specified ftabbrev on the :PARTID tag are included in the object. The
file name of each part becomes the file name of the corresponding object.

Object Names in Format 3 Build Lists
In format 3 build lists, the object name is the member name in a library. The object name can be any valid
CMS file name, except BLDLIST.

objparm
are parameters to use while processing the object listed on the :OBJNAME record. This field varies
greatly from build list to build list. It generally contains parameters that are passed directly to the
command that is used to build the object that is being processed.

Specifying Object Parameters
Object parameters are specified after the object name on the :OBJNAME tag in format 2 and 3 build lists.
“Creating Objects with VMFBLD” on page 328 shows the object parameters for each part handler.

Other Files Used in the Service Process

148 z/VM: 7.3 VMSES/E Introduction and Reference

:OPTIONS Records
Part options (:OPTIONS) records are part of the object block. The :OPTIONS record indicates the part
options to be used in processing the parts listed on the :PARTID records within the same object block. Its
format is:

:OPTIONS.

 partopt

partopt
are part options. This field varies greatly from build list to build list. It generally contains options
that are passed directly to the command that is building the defined object. These options apply to
all :PARTID tags that follow them until the next :OPTIONS tag is encountered. To specify the same
options for the next object block, you must specify the options on the :OPTIONS tag for that block
of :PARTID records.

When parts are language sensitive, the LANGFUNC option is included here. The LANGFUNC option is a
keyword-value pair, and the value is the name of the language function processor.

For more information on part options, see “Specifying Part Options” on page 149.

:OPTIONS records must appear within an object block. Multiple :OPTIONS records are allowed. They can
be mixed with :PARTID records.

The values on an :OPTIONS record remain in effect until the next options tag is encountered or the object
block ends.

Specifying Part Options
In format 2 and 3 build lists, part options are specified on :OPTIONS tags within object blocks. (In format
1 build lists, part options are specified after the parentheses on each serviceable part record). With part
options, you can also specify language specific parts. “Creating Objects with VMFBLD” on page 328 shows
the part options for each part handler.

:PARTID Records
A part (:PARTID) record gives the file name and, optionally, one or more valid file type abbreviations for a
serviceable part. Its format is:

:PARTID. partfn ftabbrev

partfn
is the name of a serviceable part that is included in the object being defined. A partfn must be either
a valid CMS file name or an asterisk (*). An asterisk indicates a wildcard part (see “Using Wildcard
Objects in Format 2 Build Lists” on page 148).

In a system saved segment build list, partfn is the name of a product saved segment build list or the
name of a saved segment.

ftabbrev
are the file type abbreviations for the file type of the part. At least one ftabbrev must be defined.
More than one is allowed when multiple types of systems can be generated. Only the first abbreviation
is passed to the VMFSIM GETLVL function. The others are used by the VMFBLD STATUS function.
For the VMFBDMLB part handler, ftabbrev can be the real file type or the file type abbreviation, see
“MACLIBs” on page 347.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 149

:PARTID records must appear within an object block.

:GBLDREQ Records
Global build requisite records begin with the :GBLDREQ tag. The :GBLDREQ tag specifies the requisites for
all objects in the build list that do not contain a :BLDREQ tag. Use the :GBLDREQ record when many or all
of the objects in a build list have the same build requirements.

When a requisite object is built, the status of the object specifying the requisite is changed to the same
status as the requisite in the service-level build status table. Before this object is built, VMFBLD builds any
of its requisites that have been serviced.

The format of a :GBLDREQ record is:

:GBLDREQ.

reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

reqbldlist
is a build list that contains a requisite object. It must be a valid CMS file name.

reqobj
is a requisite object. It must be a valid object name. All requisite objects must be built before the
object being defined is built. If all objects in a build list are requisites, BLDLIST is used as the object
name because it represents the entire build list. For format 1 build lists, the object name is BLDLIST.
See “Object Names in Format 2 Build Lists” on page 148 and “Object Names in Format 3 Build Lists”
on page 148 for more information on valid object names.

:BLDREQ Records
Build requisite records begin with a :BLDREQ tag. The :BLDREQ tag is used in object blocks, and it
specifies the requisites for the object defined by the object block. Object requisites defined on :BLDREQ
tags override any requisite objects defined on :GBLDREQ tags.

When a requisite object is built, the status of the object specifying the requisite is changed to the same
status as the requisite in the service-level build status table. Before this object is built, VMFBLD builds any
of its requisites that have been serviced.

The format of a :BLDREQ record is:

:BLDREQ.

reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

reqbldlist
is a build list that contains a requisite object. It must be a valid CMS file name.

reqobj
is a requisite object. It must be a valid object name. All requisite objects must be built before the
object being defined is built. If all objects in a build list are requisites, BLDLIST is used as the object
name because it represents the entire build list. For format 1 build lists, the object name is BLDLIST.

Other Files Used in the Service Process

150 z/VM: 7.3 VMSES/E Introduction and Reference

See “Object Names in Format 2 Build Lists” on page 148 and “Object Names in Format 3 Build Lists”
on page 148 for more information on valid object names.

:GGLOBAL Records
Global GLOBAL records begin with a :GGLOBAL tag. The :GGLOBAL tag specifies libraries that are required
for all objects in the build list that do not contain a :GLOBAL tag. Use this type of record when many or all
of the objects in a build list need to have the same libraries made global.

The format of a :GGLOBAL record is:

:GGLOBAL.

libtype

|

 libname

libtype
is a type of library that must be made GLOBAL (using the CMS GLOBAL command). The valid library
types are CSLLIB, DOSLIB, LOADLIB, MACLIB, and TXTLIB.

libname
is the name of a library.

On the :GGLOBAL tag, libname is the name of a library that must be made GLOBAL in order to
generate an object. It must be a valid CMS file name, or it can be null if you use the OR (|) operator.

|
is the OR operator. It indicates that one of a set of libraries must be made global. The first library
found is selected. If one of the libraries is null and no libraries are found, no library is made global.
There are no spaces between the libnames and the OR operator (for example, TESTLIB1|TESTLIB2|
TESTLIB3).

Note: Libraries made global with the :GGLOBAL record are added to the end of the existing globals so that
objects can be built, and then the original globals are restored.

:GLOBAL Records
Global records begin with a :GLOBAL tag. The :GLOBAL tag is used in object blocks, and it specifies the
libraries that are required for the object that is defined in the object block. Globals defined on :GLOBAL
tags override any globals defined on :GGLOBAL tags. The format of a :GLOBAL record is:

:GLOBAL.

libtype

|

 libname

libtype
is a type of library that must be made GLOBAL (using the CMS GLOBAL command). The valid library
types are CSLLIB, DOSLIB, LOADLIB, MACLIB, and TXTLIB.

libname
is the name of a library.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 151

On the :GLOBAL tag, libname is the name of a library that must be made GLOBAL in order to generate
an object. It must be a valid CMS file name, or it can be null if you use the OR (|) operator.

|
is the OR operator. It indicates that one of a set of libraries must be made global. The first library
found is selected. If one of the libraries is null and no libraries are found, no library is made global.
There are no spaces between the libnames and the OR operator (for example, TESTLIB1|TESTLIB2|
TESTLIB3).

Note: Libraries made global with the :GLOBAL record are added to the end of the existing globals so that
objects can be built, and then the original globals are restored.

:GOBJPARM Records
Global object parameter records begin with a :GOBJPARM tag. The :GOBJPARM tag is used in object
blocks, and it specifies object parameters that apply to all objects in the build list unless they contain
object parameters on the :OBJNAME tag. Object parameters specified with an object block override any
parameters specified on a :GOBJPARM tag.

The format of a :GOBJPARM record is:

:GOBJPARM.

 objname

objparm
are parameters to use while processing the object listed on the :OBJNAME record. This field varies
greatly from build list to build list. It generally contains parameters that are passed directly to the
command that is used to build the object that is being processed.

:EOBJNAME Records
An :EOBJNAME record identifies the end of an object block. It must be the last noncomment record in the
object block. Its format is:

:EOBJNAME.

Comments
Comments begin with an asterisk (*), and they may appear anywhere in the build list. Figure 86 on page
153 shows an example of comments in a format 2 build list.

Format 2 Build List Examples
Figure 86 on page 153 shows a sample format 2 build list.

Other Files Used in the Service Process

152 z/VM: 7.3 VMSES/E Introduction and Reference

* This build list has wild cards for file names
* and specifies the LANGFUNC and VMFLANG options.
:FORMAT.2
:OBJNAME.RECEIVE.EXEC 1
:PARTID.RECEIVE EXC
:EOBJNAME.
:OBJNAME.RECEIVE.XEDIT
:PARTID.RECEIVEX XED
:EOBJNAME.
:OBJNAME.=.HELPCMS
:OPTIONS.LANGFUNC VMFLANG 2
:PARTID.* HCM
:EOBJNAME.
⋮

Figure 86. Format 2 Build List Example

In this example, 1 shows the file name and file type are joined together by a period to form the object
name. 2 shows the language function, VMFLANG, has been specified on the :OPTIONS tag.

Figure 87 on page 153 shows an example of a system saved segment build list.

:FORMAT. 2
:OBJNAME. CMSAMS.SEGMENT
:PARTID. CMSAMS DMY 1
:EOBJNAME.
:OBJNAME. CMSBAM.SEGMENT
:PARTID. DMSSBBAM EXC 2
:PARTID. CMSBAM DMY
:EOBJNAME.
:OBJNAME. CMSDOS.SEGMENT
:BLDREQ. SEGBLIST.DOSINST.SEGMENT 3
:PARTID. DMSSBDOS EXC
:PARTID. CMSDOS DMY
:EOBJNAME.
⋮
:OBJNAME. DOSINST.SEGMENT 4
:PARTID. DMSSBDOS EXC
:PARTID. DOSINST DMY
:EOBJNAME.

Figure 87. System Saved Segment Build List Example

In this example, 1 shows the part ID for a saved segment that does not have a product build list. The file
name of the record is the name of the saved segment, and the file type (DMY) is a place holder. 2 shows
the additional part ID for a saved segment that does have a product build list. 3 shows a build requisite.
The requisite saved segment, 4 , must be defined in the same build list.

Figure 88 on page 153 shows an example of a product saved segment build list.

:FORMAT. 2
:OBJNAME. CMSFILES.SEGMENT
:BLDREQ. SERVLOAD.DMSDAC.MODULE 1
 SERVLOAD.DMSSAC.MODULE 2
 DMSBL493.DMSDAC.LSEG 3
 DMSBL493.DMSSAC.LSEG 4
:OPTIONS. LOADFUNC(LSEG DMSDAC) 5
 LOADFUNC(LSEG DMSSAC) 6
:EOBJNAME.

Figure 88. Product Saved Segment Build List Example

This example shows a physical saved segment that contains two logical saved segments, each of which
contains a module. The two modules, 1 and 2 , and the two logical saved segments, 3 and 4 , are all
build requisites for the physical saved segment. The example also shows two part options, 5 and 6 ,
specifying the load functions for the two logical saved segments.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 153

Format 3 Build List Example
Figure 89 on page 154 shows a sample format 3 build list.

:FORMAT.3
:LIBNAME.LOADLIBA 1
:GBLDREQ.TXTLIBA.BLDLIST 2
:OBJNAME.LOADMODA LEPARMS NCAL LIST XREF LET RENT SIZE 256K 32K 3
:PARTID.LOADMODA TXT 4
:OPTIONS.INCLUDE TXTLIBA(MEMBERA) 5
 INCLUDE TXTLIBA(MEMBERB)
 INCLUDE TXTLIBA(MEMBERC)
 INCLUDE TXTLIBA(MEMBERD)
 INCLUDE TXTLIBA(MEMBERE)
:PARTID.USEREXIT TXT 4
:OPTIONS.ENTRY LOADMODA
:EOBJNAME.
⋮

Figure 89. Format 3 Build List Example

In this example, 1 shows the name of the library to be created.

 2 shows the requisite objects that apply to all objects in the build list. The requisite is an entire TXTLIB.
It is a requisite because it must be built to the latest level of the TXTLIB before the LOADLIB can be built.

 3 shows the name of the object (or member of the LOADLIB) and the object parameters.

 4 shows TXT decks are also being included from CMS minidisks.

 5 shows five members of a TXTLIB are being included.

The National Language Support Table (VMFNLS LANGLIST)
The VMFNLS LANGLIST file contains a list of language IDs (langid), language names, language codes
(language code), and language descriptions, as well as other information for compatibility with previous
releases of VMSES/E. Information in this file supports national language processing.

File Syntax
The VMFNLS LANGLIST file has the following syntax.

Syntax for the VMFNLS LANGLIST File

language suffix

*

langid ftabbrev

*

language code description
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Note: In the VMFNLS LANGLIST file, each record begins on a new line.

language suffix
is 1- to 2-character suffix that is appended to the file name. An asterisk (*) indicates there is no
language suffix.

langid
is a 5-character identifier for a language. langid is supported for compatibility with products that
exploit VMSES/E 1.1.

Other Files Used in the Service Process

154 z/VM: 7.3 VMSES/E Introduction and Reference

ftabbrev
is an abbreviation for a language part. This field is maintained for compatibility with releases of VMSES
prior to 1.1.

Note: When you add new languages, enter an asterisk (*) in this field.

language code
is the 3-character language code from the National Language Support Reference Manual Volume 2,
SE09-8002.

description
is the description for the language.

Example
Figure 90 on page 155 shows an example VMFNLS LANGLIST file.

* AMENG TAM ENU American English
B UCENG TUC UPP Uppercase English
⋮

Figure 90. The VMFNLS LANGLIST File

The first field contains the language suffix. An asterisk (*) indicates a blank. In Figure 90 on page 155, B is
the language suffix for Uppercase English.

The second field is the language ID (langid). For example, in Figure 90 on page 155, UCENG is the langid
for Uppercase English.

The third field contains the file type abbreviation for the language part (ftabbrev). In Figure 90 on page
155, TUC is the file type abbreviation for Uppercase English.

The fourth field contains the language code (language code). In Figure 90 on page 155, UPP is the
language code for Uppercase English.

The last field contains a description for the language. In Figure 90 on page 155, you can see the
description, ‘Uppercase English’.

Other Files Used in the Service Process

Chapter 13. Other Files Used in the Service Process 155

Other Files Used in the Service Process

156 z/VM: 7.3 VMSES/E Introduction and Reference

Part 4. Planning and Managing Your Software
Inventories

This part of the book describes:

• The structure of the product parameter file and the Software Inventory
• The files that make up the Software Inventory
• How to use the VMFSIM and VMFINFO commands to manage your Software Inventory
• How to change the Software Inventory to an SFS Directory.

© Copyright IBM Corp. 1990, 2023 157

Figure 91. VMSES/E - Software Inventory Management

158 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 14. Introduction to the Product Parameter
File

The product parameter file (also called the PPF) is the customization file for the installation and service of
a product. It contains values that define and control the VMSES/E EXECs for a product, resources defined
for a product (including user IDs, minidisks, and SFS directories), layouts of installation media and service
tapes for a product, and the build lists necessary to build a product.

The defaults or recommended values for all of this information are supplied by the product in a source
PPF. This file should not be modified directly. Instead, you should use override PPFs to update the
information in the source PPF. When the source PPF is combined with all of the overrides, a usable form
PPF is created. The usable form PPF is often referred to as just the PPF.

The relationship between source, override, and usable form PPFs is analogous to the relationship
between a source ASSEMBLE file, update files, and a text deck. With an ASSEMBLE file, you use the CMS
UPDATE facility to apply updates to the source file. With VMSES/E, you use the VMFOVER EXEC to apply
override PPFs to a source PPF. The key difference between the UPDATE command and the VMFOVER
EXEC is that the VMFOVER EXEC does not use line or sequence numbers to apply the changes. VMFOVER
is a context-oriented facility that identifies changes in the source file by indicating in which part of which
section the change is.

For example, if you want to add a user exit to the :USEREXIT tag, you do not have to know the line number
of the :USEREXIT tag. You just have to remember that the :USEREXIT tag is in the :CNTRLOP section.

Just as the VMFASM, VMFHASM, and VMFHLASM execs call the UPDATE command to generate an
updated source ASSEMBLE file before assembling the text deck, the VMFPPF EXEC calls the VMFOVER
EXEC to generate the overridden source PPF (or temporary PPF) before compiling the usable form PPF. In
addition to generating the usable form PPF, the VMFPPF EXEC also validates the syntax of the PPF.

Note: If you are using the VMFINS EXEC, you would use the Make Override Panel to create and apply
override PPFs to a source PPF. See “Using the Make Override Panel” on page 33 for an example of
creating a PPF override.

Types of Product Parameter Files
There are four types of product parameter files (PPFs) used by VMSES/E:

• Source product parameter files
• Override product parameter files
• Temporary product parameter files
• Usable form product parameter files

Each type of product parameter file has a distinct function in the VMSES/E environment. Figure 92 on
page 159 shows the order in which product parameter files are created.

Figure 92. Product Parameter File Relationship

Source Product Parameter Files
Source PPFs are supplied with the product. The file name of the source PPF matches the prodid of
the product, and the file type is $PPF. Source PPFs contain the defaults and recommendations for the

Introduction to the Product Parameter File

© Copyright IBM Corp. 1990, 2023 159

product. Source PPFs may also contain override areas, which are equivalent to override PPFs. Override
areas in source PPFs are supplied when it is anticipated that many users will want or need certain
changes to the defaults for the product.

To find out more about the content and syntax of the source product parameter file, see “Source Product
Parameter File Syntax” on page 625.

Override Product Parameter Files
Override PPFs can be supplied with the product or created by the user. They can have any file name,
but they must have a file type of $PPF. Override PPFs can contain pointers to source PPFs, and they can
contain pointers to other override PPFs, which in turn point to source PPFs. In other words, you can create
chains of overrides to a source PPF. Override PPFs can contain multiple override areas that may be part of
multiple override chains.

The usable form PPF is named using the file name of the last override PPF in the chain. (The first override
in the chain is the one that points directly to the source PPF). It is a good strategy, therefore, to group the
ends of your override chains into override PPFs that identify the groupings by their file names.

To find out more about the content and syntax of the override product parameter file, see “Override
Product Parameter File Syntax” on page 655.

Temporary Product Parameter Files
Temporary PPFs are the output of the VMFOVER EXEC. The file name of a temporary PPF matches either
the file name of the last override PPF in the chain of overrides or the file name of the source PPF, if there
are no overrides. The file type is $PPFTEMP. You can run the VMFOVER EXEC while you are designing your
overrides to validate the resulting temporary PPFs before you include them in a usable form PPF.

To find out more about the content and syntax of the temporary product parameter file, see “Temporary
Product Parameter File Syntax” on page 656.

Usable Form Product Parameter Files
Usable form PPFs are used by the majority of VMSES/E execs. The file name of the usable form PPF
matches the file name of either the last override PPF in the chain of overrides or the file name of the
source PPF, if there are no overrides. The file type is PPF.

A usable form PPF can contain multiple component areas. Each component area contains a complete set
of parameters for a product. When you see ppfname and compname included as operands on VMSES/E
execs, ppfname is referring to the file name of the usable form PPF; and compname is referring to a
specific component area in the usable form PPF.

To find out more about the content and syntax of the usable form product parameter file, see “Usable
Form Product Parameter File Syntax” on page 656.

Sections of the Product Parameter File
The product parameter file is divided into sections that contain related information. These sections are:

• The control options section
• The variable declarations section
• The minidisk/directory assignments section
• The receive installation tape definition section
• The receive service media definition section
• The build product definitions section
• The file type abbreviations extensions section

Introduction to the Product Parameter File

160 z/VM: 7.3 VMSES/E Introduction and Reference

The Control Options Section
The control options section identifies parameters that are used to control the operation of VMSES/E and is
delimited by the :CNTRLOP and :ECNTRLOP tags. For more information, see “Control Options Section” on
page 627.

The Variable Declarations Section
The variable declarations section identifies variables and the values assigned to them in the PPF.
In source and override PPFs, the variables defined in this section are used in the minidisk/directory
assignment section. In the usable form PPF, this section is used for resource allocation and minidisk
linking. The VMFPPF EXEC substitutes the values of these variables into the minidisk/assignment section
when it creates the usable form PPF. The variables can also be used as parameters on product processing
exits in the receive installation tape definition and receive service media definition sections of the PPF. For
more information, see “Variable Declarations Section” on page 633.

The Minidisk/Directory Assignments Section
The minidisk/directory assignments section identifies the symbolic strings of minidisks or SFS directories
that make up the service database of the product. In source and override PPFs, this section may
contain variables that are defined in the variable declarations section. In the usable form PPF, all of
these variables have been resolved by the VMFPPF EXEC. For more information, see “Minidisk/Directory
Assignments Section” on page 635.

The Receive Installation Tape Definition Section
The receive installation tape definition section defines the layout of the installation tape for the product. It
also identifies how each tape file is processed and where it is loaded. For more information, see “Receive
Installation Tape Definition Section” on page 639.

The Receive Service Media Definition Section
The receive service media definition section defines the layout of service tapes and envelopes for the
product. It also identifies how each tape file is processed and where it is loaded. For more information,
see “Receive Service Media Definition Section” on page 641.

The Build Product Definitions Section
The build product definition section defines build lists and objects for the product. It also identifies
how each object is processed and where it is built. For more information, see “Build Product Definition
Section” on page 643.

The File Type Abbreviations Extensions Section
The file type abbreviations extensions section defines file type abbreviations for the product that
override entries in the file type abbreviation table (VM SYSABRVT). For more information, see “File Type
Abbreviations Extensions Section” on page 646.

Syntax of the Product Parameter File
See Chapter 21, “Product Parameter File Syntax,” on page 623 for a complete description of the syntax
for the different types of product parameter files.

Introduction to the Product Parameter File

Chapter 14. Introduction to the Product Parameter File 161

Introduction to the Product Parameter File

162 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 15. Introduction to the Software Inventory

VMSES/E maintains a software inventory. The software inventory consists of files that contain control and
status information, which are used during product installation and service. The software inventory has two
levels, the system-level software inventory and the service-level software inventory.

Each level of the software inventory contains the following files:

• A description table, describing the product or PTF
• A requisite table, describing the requisites defined for the product or PTF
• A receive status table, describing when the product or PTF was received
• An apply status table, describing the apply status of the product or PTF
• A build status table, describing the build status of the product or PTF

The nature of the information in each table differs depending on whether the table is in the system-level
software inventory or the service-level software inventory.

The system-level software inventory contains information on all products installed on a system.

The service-level software inventory contains information about all service applied to each product in a
system. VMSES/E maintains service-level Software Inventories only for products that use VMSES/E for
service.

Figure 93 on page 164 shows the two levels of the software inventory.

© Copyright IBM Corp. 1990, 2023 163

Figure 93. Software Inventory Files in the VMSES/E Database

Overview of the System-Level Software Inventory
The files in the system-level software inventory are:

• “The Product Parts (PRODPART) File” on page 166
• “The Saved Segment Data (SEGDATA) File” on page 166
• “The System-Level Description Table (VM SYSDESCT)” on page 166
• “The System-Level Requisite Table (VM SYSREQT)” on page 167
• “The System-Level Receive Status Table (VM SYSRECS)” on page 167
• “The System-Level Apply Status Table (VM SYSAPPS)” on page 168
• “The System-Level Build Status Table (VM SYSBLDS)” on page 168
• “The System-Level Service Update Facility Table (VM SYSSUF)” on page 169
• “The System-Level Restart Table (VM SYSREST)” on page 170
• “The File Type Abbreviation Table (VM SYSABRVT)” on page 170
• “The Parts Catalog (VMSES PARTCAT)” on page 170

All files in the system-level software inventory, except the parts catalog and the file type abbreviation
table, reside on the software inventory minidisk or directory, which is defined to be MAINTvrm's 51D
minidisk by default. Product parameter files also reside on the software inventory minidisk or directory.

164 z/VM: 7.3 VMSES/E Introduction and Reference

If you are maintaining multiple systems, you will have a software inventory minidisk or directory for each
system.

Note: The default file name for all system-level software inventory files (except the product parts
file, the saved segment data file, and the parts catalog) is VM. You can modify this name, if you are
supporting multiple systems, using the SYSTEM option of the VMFINS command. For more information,
see “Changing the Software Inventory Defaults” on page 662.

Types of Information Provided
The files in the system-level software inventory contain four types of information:

• System information
• Product information
• Build status information
• Supporting information

System Information
System information is contained in the:

• Saved segment data file

The saved segment data file contains information about all the saved segments defined by all the
products on the system.

Product Information
Product information is contained in the:

• Product parts file
• System-level description table
• System-level requisite table
• System-level receive status table
• System-level apply status table
• System-level service update facility table

Each time a product is loaded to a system, VMFINS EXEC uses information from the PRODPART file for
the product to update the system-level software inventory with product-specific information. VMFSUFTB
EXEC updates the system-level service update facility table from product information found in the other
tables. Product information includes:

• The product identifier
• The file name of the product parameter file (PPF) that was used to process the product
• The component name in the PPF that was used to load the product
• The description of the product
• The requisite relationships defined for the product
• The apply status of the product
• The date and time the product was received and the user ID used for the receive operation
• The date and time the product was applied and the user ID used for the apply operation

Build Status Information
Build status information is contained in the:

• System-level build status table.

Chapter 15. Introduction to the Software Inventory 165

Each time a product is built on a system, the VMFINS BUILD command updates the system-level build
status table with build status information. Build status information is also updated when a product is
deleted from the system. Build status information includes:

• The product identifier
• The file name of the PPF that was used to process the product
• The component name in the PPF that was used to build the product
• The build status of the product
• The date and time the product was built
• The user ID used for the build operation

Supporting Information
Supporting information is contained in the:

• File type abbreviation table

The file type abbreviation table is loaded as part of the VMSES/E component. It is used by VMSES/E to
process PTF-numbered parts. The information in the file type abbreviation table includes:

– The 3-character abbreviated file type used in renaming serviceable parts
– The 1-8 character real CMS file type corresponding to the abbreviation
– The 1-8 character identifier used for the associated base-level part

• System-level restart table

The system-level restart table stores data needed to restart the VMFSUFIN EXEC.

The Contents of the System-Level Software Inventory
Each of the files in the system-level software inventory is described below. For detailed information about
the syntax of the entries in each file, see Chapter 22, “Software Inventory Syntax,” on page 661.

Note: The data in the examples of the system-level software inventory files may not appear exactly as
shown in the files on your own system.

The Product Parts (PRODPART) File
VMSES/E uses information in the product parts file, which is included on a product's installation media,
to update entries in the system-level software inventory each time a product is loaded onto your system.
The product parts file also contains the default definitions for the saved segments used by the product.
To find out more about the content and the syntax of the product parts file, see “The Product Parts
(PRODPART) File” on page 662.

The Saved Segment Data (SEGDATA) File
The saved segment data file contains customized information for building the set of saved segments on
a z/VM system, which includes saved segments defined by the product and saved segments defined by
application products that run on z/VM. The set of saved segments on a z/VM system is identified in a
system saved segment build list. To find out more about the content and syntax of the saved segment
data file, see “The Saved Segment Data (SEGDATA) File” on page 679.

The System-Level Description Table (VM SYSDESCT)
The system-level description table contains the description of a product that has been received on the
system.

The system-level description table resides on the software inventory disk and is updated by the VMFINS
EXEC during receive processing for installation media. Information from the PRODPART files is used to
update this table.

The Contents of the System-Level Software
Inventory

166 z/VM: 7.3 VMSES/E Introduction and Reference

Example
Figure 94 on page 167 shows an example of the system-level description table.

:PPF. ESAINS MYCOMP :PRODID. 1VMVMC23 :DESC. Component of z/VM

Figure 94. System-Level Description Table Example

Contents
Each entry in the table contains the file name of the product parameter file used to process the product,
the component name in the PPF used to load the product, the product identifier, and a text description of
the product.

To find out more about the syntax and content of the system-level description table, see “The System-
Level Description Table (VM SYSDESCT)” on page 686.

The System-Level Requisite Table (VM SYSREQT)
The system-level requisite table contains the relationships between products.

The system-level requisite table resides on the software inventory disk and is updated during receive
processing for installation media.. Information from the PRODPART files is used to update this table.

Example
Figure 95 on page 167 shows an example of the system-level requisite table.

:1VMVMC23%MYCOMP :PREREQ.1VMVMP11 << 1VMVMS10 | 1VMVMS20 >>
 :COREQ. 1VMVMF10%PRODUCT
 :SUP. 1VMVMC22
 :IFREQ. 1VMVME10
 :NPRE. 1VMVMG10

Figure 95. System-Level Requisite Table Example

Contents
Each entry in the table contains a product identifier and the requisites defined for the product.

To find out more about the syntax and content of the system-level requisite table, see “The System-Level
Requisite Table (VM SYSREQT)” on page 688.

The System-Level Receive Status Table (VM SYSRECS)
The system-level receive status table contains a list of all products that have been received on the
system.

The system-level receive status table resides on the software inventory disk and is updated by the
VMFINS EXEC during receive processing for installation media. Information from the PRODPART files is
used to update this table.

Example
Figure 96 on page 168 shows an example of the system-level receive status table.

The Contents of the System-Level Software
Inventory

Chapter 15. Introduction to the Software Inventory 167

:PPF.ESAINS MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.RECEIVED.06/01/22.10:10:10.MAINT.9101-911
:PPF.ESATEST MYCOMP2 :PRODID.1VMVMS10%MYCOMP2 :STAT.DELETED.06/02/22.11:11:11.JONES

Figure 96. System-Level Receive Status Table Example

Contents
Each entry in the table contains the:

• File name of the product parameter file used to process the product
• Component name in the PPF used to load the product
• Product identifier
• Receive status of the product
• Date and time the product was received
• User ID that was used for the receive operation
• Service level of the product when it was received

To find out more about the syntax and content of the system-level receive status table, see “The System-
Level Receive Status Table (VM SYSRECS)” on page 690.

The System-Level Apply Status Table (VM SYSAPPS)
The system-level apply status table contains a list of all products that have been applied on the system. It
also identifies the file name of the PPF used to process the product and the component name in the PPF
that was used to load the product.

The system-level apply status table resides on the software inventory disk and is updated during
processing for installation media.

Example
Figure 97 on page 168 shows an example of the system-level apply status table.

:PPF.ESAINS MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.APPLIED.06/01/22.11:11:11.MAINT
:PPF.ESATEST MYCOMP2 :PRODID.1VMVMS10%MYCOMP2 :STAT.DELETED.06/02/22.10:10:10.JONES

Figure 97. System-Level Apply Status Table Example

Contents
Each entry in the table contains the file name of the PPF used to process the product, the component
name in the PPF used to load the product, the product identifier, and the apply status of the product. The
apply status includes the date the product was received, the time the product was applied, and the user
ID that was used for the receive operation.

To find out more about the syntax and content of the system-level apply status table, see “The System-
Level Apply Status Table (VM SYSAPPS)” on page 692.

The System-Level Build Status Table (VM SYSBLDS)
The system-level build status table contains a list of all products that have been built on the system. It
also identifies the file name of the PPF and the component name in the PPF that was used to build the
product.

The system-level build status table resides on the software inventory disk and is updated during build
processing for installation media.

The Contents of the System-Level Software
Inventory

168 z/VM: 7.3 VMSES/E Introduction and Reference

Example
Figure 98 on page 169 shows an example of the system-level build status table.

:PPF.ESAINS MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.BUILT.06/01/22.10:10:10.MAINT
:PPF.ESATEST MYCOMP2 :PRODID.1VMVMS10%MYCOMP2 :STAT.SUPED.06/10/22.11:11:11.MAINT
:PPF.ESATEST MYCOMP3 :PRODID.1VMVMP11%MYCOMP3 :STAT.DELETED.06/10/22.12:12:12.MAINT

Figure 98. System-Level Build Status Table Example

Contents
Each entry in the table contains the file name of the PPF used to process the product, the component
name in the PPF used to build the product, the product identifier, and the build status of the product. The
build status includes the date and time the product was built and the user ID that was used for the build
operation.

To find out more about the syntax and content of the system-level build status table, see “The System-
Level Build Status Table (VM SYSBLDS)” on page 694.

The System-Level Service Update Facility Table (VM SYSSUF)
The system-level service update facility table contains a list of all products that are installed on the
system and related data needed by the automated service commands.

The system-level service update facility table resides on the software inventory disk and is updated by
VMFSUFTB EXEC.

Example
Figure 99 on page 169 shows an example of the system-level service update facility table.

 :PRODID.1VMVMC23%MYCOMP :SERVLEV.RSU-0701 :DESC.Component of z/VM
 :INCLUDE.YES :INSTALL.YES :INSPPF.SERVP2P MYCOMP :BUILD.YES :BLDPPF.SERVP2P MYCOMP
 :P2PPPF.SERVP2P MYCOMPP2P :PRODLEV.RSU-0701

Figure 99. System-Level Service Update Facility Table

Contents
Each entry in the table might contain:

• Product identifier
• Service level of the product
• Text description of the product
• Tag to indicate if preventive service for the product is to be automatically installed
• Product parameter file name and component name to be used to install service
• Tag to indicate if installed service is to be automatically built
• Product parameter file name and component name to be used to build serviced files
• Product parameter file name and component name to be used to put the component into production

(optional)
• Production service level of product (optional)

To find out more about the syntax and content of the system-level service update facility table, see “The
System-Level Service Update Facility Table (VM SYSSUF)” on page 695.

The Contents of the System-Level Software
Inventory

Chapter 15. Introduction to the Software Inventory 169

The System-Level Restart Table (VM SYSREST)
The system-level restart table contains records used to restart the VMFSUFIN EXEC. This table resides on
the software inventory disk and is updated by the VMFSUFIN EXEC.

Example
Figure 100 on page 170 shows an example of the system-level restart table.

:PACKAGE.BUILD.7VMTCP30%TCPIP :PRODID.7VMTCP30%TCPIP :STAT.INIT.09/12/22.14:28:57.MAINT730

Figure 100. System-Level Restart Table Example

Contents
Each entry contains the data needed to restart a service install invocation. This data includes:

• Names of the RSU service envelopes or COR bucket service envelopes or both
• Product identifiers
• Restart data

To find out more about the syntax and content of the system-level restart table, see “The System-Level
Restart Table (VM SYSREST)” on page 698.

The File Type Abbreviation Table (VM SYSABRVT)
The file type abbreviation table contains a map of the 3-character abbreviations for file types to their
corresponding real CMS file types and their base file types. (A base file type is the file type used when
there is no service). This translation is required by VMSES/E when processing PTF-numbered parts. The
file type abbreviation table is shipped as part of the VMSES/E component.

Example
Figure 101 on page 170 shows an example of the file type abbreviation table.

:ABBRFT.CPY :REALFT.COPY :BASEFT.CPY00000
:ABBRFT.EXC :REALFT.EXEC :BASEFT.EXC00000
:ABBRFT.HCM :REALFT.HELPCMS :BASEFT.HCM00000
:ABBRFT.MAC :REALFT.MACRO :BASEFT.MAC00000
:ABBRFT.TXT :REALFT.TEXT :BASEFT.TXT00000
:ABBRFT.XED :REALFT.XEDIT :BASEFT.XED00000
:ABBRFT.$EX :REALFT.$EXEC :BASEFT.$EX00000
:ABBRFT.$XE :REALFT.$XEDIT :BASEFT.$XE00000

Figure 101. File Type Abbreviation Table Example

Contents
Each entry in the table contains a 3-character abbreviated file type, the 1-8 character real CMS file type
corresponding to the abbreviation, and a 1-8 character identifier used for the associated base-level part.

To find out more about the syntax and content of the file type abbreviation table, see “The File Type
Abbreviation Table (VM SYSABRVT)” on page 704.

The Parts Catalog (VMSES PARTCAT)
The parts catalog is a set of software inventory files that catalogs all parts of a product on a VMSES/E
target minidisk or SFS directory. All product parts are cataloged when they are loaded onto the system,

The Contents of the System-Level Software
Inventory

170 z/VM: 7.3 VMSES/E Introduction and Reference

when they are generated, and when they are moved. The VMFINS DELETE function reads the catalogs to
determine which product parts may be deleted when removing a product from the system.

A parts catalog, called VMSES PARTCAT, resides on each minidisk or SFS directory that is the target of a
merge disk, receive, apply, or build operation.

The parts catalog is updated each time VMSES/E loads, modifies or creates a part on any minidisk or SFS
directory identified in the :MDA section of the PPF. This minidisk or SFS directory is called the target of the
operation.

Note: VMSES/E may create temporary work files on targets. Temporary work files that are used only by
a single operation are not cataloged. VMSES/E does catalog temporary files created by an operation that
are to be used by a subsequent operation.

Example
Figure 102 on page 171 shows an example of the parts catalog.

:PARTID.DMSABC COPY :PRODID.1VMVMC23 :STAT.VMFREC.06/11/22.10:10:10.MAINT
:PARTID.DMSXXX TEXT :PRODID.1VMVMC23 :STAT.VMFREC.06/11/22.10:10:10.MAINT
:PARTID.RECEIVE EXEC :PRODID.1VMVMC23 :STAT.VMFREC.06/11/22.10:10:10.MAINT

Figure 102. Parts Catalog Table Example

Contents
Each entry in the table contains a part name and type, the product identifier of the product that owns the
part, the VMSES/E command that placed the part on the target, date and time the part was placed on the
target, and the user ID that was used for the operation.

To find out more about the syntax and content of the parts catalog, see “The Parts Catalog (VMSES
PARTCAT)” on page 705.

How Receive Processing Affects the Parts Catalog
Parts are cataloged by the receive operation before they are loaded. If a recoverable error, such as a
tape drive failure, occurs during the load, the receive operation deletes the entries in the parts catalog.
If an irrecoverable error, such as a system ABEND, occurs during the load, the parts catalog may contain
entries for more parts than were actually loaded to the targets. Restarting the receive operation corrects
this discrepancy.

How Apply Processing Affects the Parts Catalog
Parts are cataloged by the apply operation before they are generated. If a recoverable error occurs during
the load, the apply operation deletes the entries in the parts catalog. If an irrecoverable error, such as a
system ABEND, occurs while applying service, the parts catalog may contain more entries for more parts
than were actually created on the targets. Restarting the apply operation corrects this discrepancy.

How Build Processing Affects the Parts Catalog
Parts are cataloged by the build operation before they are generated. If a recoverable error occurs while
a part is being built, the build operation deletes the entries in the parts catalog. If an irrecoverable
error, such as a system ABEND, occurs while building a part, the parts catalog may contain more entries
for more parts than were actually created on the targets. Restarting the build operation corrects this
discrepancy.

Overview of the Service-Level Software Inventory
The files in the service-level software inventory are:

• “The $PTFPART File” on page 173

The Contents of the System-Level Software
Inventory

Chapter 15. Introduction to the Software Inventory 171

• “The Service-Level Description Table (VM SRVDESCT)” on page 173
• “The Service-Level Requisite Table (VM SRVREQT)” on page 174
• “The Service-Level Receive Status Table (VM SRVRECS)” on page 174
• “The Service-Level Apply Status Table (appid SRVAPPS)” on page 175
• “The Version Vector Table (appid VVTlvlid)” on page 176
• “The Service-Level Build Status Table (bldid SRVBLDS)” on page 175

prodid, appid, and bldid are the values assigned to the :RECID, :APPID, and :BLDID tags in the product
parameter file. lvlid identifies the maintenance level and is obtained from the AUX record of the control
file that has been identified for the product. (See “How VMSES/E Uses Control Files” on page 117.) The
default control file for the product is identified by the value assigned to the :CNTRL tag in the product
parameter file.

Note: If you are maintaining one system, the values of prodid, appid, and bldid are usually all the same. If
you are maintaining multiple systems, you vary the values of appid and bldid.

All files in the service-level software inventory reside on each product’s APPLY and DELTA strings.
(Remember, VMSES/E maintains service-level Software Inventories only for products that use VMSES/E
for service).

Types of Information Provided
The files in the service-level software inventory contain three types of information:

• PTF information
• Maintenance-level information
• Build status information

PTF Information
PTF information resides on the DELTA string and is contained in the following files:

• The $PTFPART file
• The service-level receive status table
• The service-level requisite table
• The service-level description table

Each time service is loaded to a system, the VMFREC EXEC uses the $PTFPART file, which is received
on the service package, to update the service-level software inventory with PTF-specific information.
PTF-specific information includes:

• The PTF number
• The receive status of the PTF
• The date and time the PTF was received and the user ID used for the receive operation
• The APAR number
• The APAR description
• A mapping of PTF number to APAR number
• The requisite relationships defined for the PTF

Maintenance-Level Information
Maintenance-level information resides on the APPLY string and is contained in the following files:

• The service-level apply status table
• The version vector table

The Contents of the System-Level Software
Inventory

172 z/VM: 7.3 VMSES/E Introduction and Reference

Each time service is applied to a product, the VMFAPPLY EXEC updates the service-level software
inventory with maintenance-level information. Maintenance-level information includes:

• The PTF number
• The apply status of the PTF
• The date and time the PTF was processed and the user ID that was used for the apply operation
• The PTFs (and their associated APARs) that have been processed for each part
• The service history of all parts serviced

Build Status Information
Build status information also resides on the APPLY string. Build status information is contained in the
following file:

• The service-level build status table

Each time a serviced product is re-built, the VMFBLD EXEC updates the service-level software inventory
with build status information. Build status information includes:

• A build list name
• An object name in the specified build list
• The build status of the object and, if processing was unsuccessful, an error qualifier
• The date and time the object was processed and the user ID used for the build operation

The Contents of the Service-Level Software Inventory
Each of the files in the service-level software inventory is described below. For detailed information about
the syntax of the entries in each file, see Chapter 22, “Software Inventory Syntax,” on page 661.

Note: The data in the examples of the service-level software inventory files may not appear exactly as
shown in the files on your own system.

The $PTFPART File
VMSES/E uses a file called the $PTFPART file, which is included on a product's service media, to update
entries in the service-level software inventory each time a PTF is loaded onto your system. To find out
more about the content and the syntax of the $PTFPART file, see “The Source Product Parameter File” on
page 13.

The Service-Level Description Table (VM SRVDESCT)
The service-level description table contains the abstract information for an APAR that has been received
on the system.

The service-level description table resides on the product’s DELTA disk string and is updated by the
VMFREC EXEC during receive processing for service tapes. Information from the $PTFPART file is used to
update this table. The VMFAPPLY EXEC uses this information to add comments to the AUX file it builds for
a serviced part.

Example
Figure 103 on page 173 shows an example of the service-level description table.

:APARNUM.VM23456 :ABSTRACT.Fix problem with CMS IPL
:APARNUM.VM22222 :ABSTRACT.DMSABC branches to location FFFFFFFF

Figure 103. Service-Level Description Table Example

The Contents of the Service-Level Software
Inventory

Chapter 15. Introduction to the Software Inventory 173

Contents
Each entry in the table contains an APAR number and the text of the associated APAR abstract.

To find out more about the syntax and content of the service-level description table, see “The Service-
Level Description Table (recid SRVDESCT)” on page 714.

The Service-Level Requisite Table (VM SRVREQT)
The service-level requisite table contains the relationships between PTFs and a mapping of PTFs to
APARs.

The service-level requisite table resides on the product’s DELTA disk string and is updated by the
VMFREC EXEC during receive processing for service media. The VMFAPPLY EXEC uses this information to
determine PTF requisites. Information from the $PTFPART file is used to update this table.

Example
Figure 104 on page 174 shows an example of the service-level requisite table.

:PTF.UV12345 :APARNUM.VM12345
 :PREREQ. UV23456
 :COREQ. UV45678 UV56789
 :SUP. UV77777 UV88888
 :IFREQ. UV66666.1VMVMC23
 :HARDREQ.VM00001

Figure 104. Service-Level Requisite Table Example

Contents
Each entry in the table contains a PTF number, the associated APAR numbers, and the requisites defined
for the PTF.

To find out more about the syntax and content of the service-level requisite table, see “The Service-Level
Requisite Table (recid SRVREQT)” on page 715.

The Service-Level Receive Status Table (VM SRVRECS)
The service-level receive status table contains a list of all PTFs that have been received for the product.

The service-level receive status table resides on the product’s DELTA disk string and is updated by the
VMFREC EXEC as PTFs are processed during receive processing for service media.

Example
Figure 105 on page 174 shows an example of the service-level receive status table.

:PTF.UV12345 :STAT.RECEIVED.03/03/22.11:11:11.SMITH
:PTF.UV23456 :STAT.RECEIVED.02/03/22.12:12:12.JONES
:PTF.UV01234 :STAT.COMMITTED.04/05/22.22:22:12.JONES
 RECEIVED.01/10/22.06:06:06.MIKED

Figure 105. Service-Level Receive Status Table Example

Contents
Each entry in the table contains a PTF number, the status of the PTF, the date and time the PTF was
received, and the user ID that was used for the receive operation.

To find out more about the syntax and content of the service-level receive status table, see “The Service-
Level Receive Status Table (recid SRVRECS)” on page 717.

The Contents of the Service-Level Software
Inventory

174 z/VM: 7.3 VMSES/E Introduction and Reference

The Service-Level Apply Status Table (appid SRVAPPS)
The service-level apply status table contains a list of all PTFs that have been applied to the product.

The service-level apply status table resides on the product’s APPLY disk string and is updated by the
VMFAPPLY EXEC during apply processing for service media.

Example
Figure 106 on page 175 shows an example of the service-level apply status table.

:PTF.UV12345 :STAT.APPLIED.03/03/22.22:22:22.JONES
:PTF.UV23456 :STAT.APPLIED.02/03/22.11:11:11.SMITH
:PTF.UV01234 :STAT.SUPED.11/10/22.12:12:12.SMITH
 APPLIED.06/06/22.02:02:02.JONES

Figure 106. Service-Level Apply Status Table Example

Contents
Each entry in the table contains the PTF number and the apply status of the product. The apply status
includes the date the PTF was applied, the time the PTF was applied, and the user ID that was used for
the apply operation.

To find out more about the syntax and content of the service-level apply status table, see “The Service-
Level Apply Status Table (appid SRVAPPS)” on page 718.

The Service-Level Build Status Table (bldid SRVBLDS)
The service-level build status table contains a list of all objects that have been serviced for the product.

The service-level build status table resides on the product’s APPLY string and is updated by the VMFBLD
EXEC as objects are generated during build processing for service media.

Example
Figure 107 on page 175 shows an example of the service-level build status table.

:LASTAPP.06/05/22 12:01:21 1VMVMC23
:BLDLIST.UNKNOWN :OBJECT.BLDLIST :STAT.MANUAL.06/05/22.12:01:21.MAINT :PARTID.HCPXYZ TXT
:BLDLIST.HCPEXC :OBJECT.ABC.EXEC :STAT.BUILT.06/05/22.10:24:13.MAINT
:BLDLIST.HCPEXC :OBJECT.BLDLIST :STAT.BUILT.06/05/22.10:24:13.MAINT
:BLDLIST.HCPMODS :OBJECT.HCPABC.MODULE :STAT.BUILT.06/05/22.10:35:21.MAINT
:BLDLIST.HCPMODS :OBJECT.HCPDEF.MODULE :STAT.BUILDALL.06/05/22.11:16:10.MAINT.ERROR
:BLDLIST.HCPMODS :OBJECT.BLDLIST :STAT.BUILDALL.06/05/22.11:16:10.MAINT.ERROR
:BLDLIST.CPLOAD :OBJECT.BLDLIST :STAT.BUILT.06/05/22.10:11:40.BILL

Figure 107. Service-Level Build Status Table Example

Contents
The first line in the table shows the date and time when the table was last updated with new build
requirements from the select data file. The file name of the select data file is also provided. Each entry
in the table contains a build list name, the name of an object generated from the build list, the build
status of that object, and possibly an error qualifier, if processing could not be completed successfully.
The build status includes the date and time the object was built and the user ID that was used for the
build operation.

To find out more about the syntax and content of the service-level build status table, see “The Service-
Level Build Status Table (bldid SRVBLDS)” on page 719.

The Contents of the Service-Level Software
Inventory

Chapter 15. Introduction to the Software Inventory 175

The Version Vector Table (appid VVTlvlid)
The version vector table contains a history of all parts that have been serviced. A product may have more
than one version vector table associated with it. Products may have one version vector table for each AUX
level identified in the product’s control file.

The version vector table resides on the product’s APPLY string and is updated by the VMFAPPLY EXEC
during apply processing as PTFs are processed.

Example
Figure 108 on page 176 shows an example of the version vector table.

:PART.DMSABC TXT :PTF. UV12345.VM00001 UV23456.VM00002
:PART.RECEIVE EXC :PTF. UV12345.VM00001 UV34567.VM00003
:PART.FILELIST EXC :PTF. UV12345.VM00001.P00001DS UV34567.VM00003.M
:PART.FSOPEN MACRO :PTF. UV12345.VM00001.P00001DS

Figure 108. Version Vector Table Example

Contents
Each entry in the table contains a part name and type, a PTF number, an APAR number associated with
the PTF number, and the 8-character file type of the source update file that contains the changes for the
specified APAR. An “M” following a PTF/APAR number pair indicates the PTF and APAR have been merged
into a new or refreshed source file for the part.

Note: The APAR number and the file type of the source update file are optional values and may not appear
in each entry in the version vector table.

To find out more about the syntax and content of the version vector table, see “The Version Vector Table
(appid VVTlvlid)” on page 723.

The Contents of the Service-Level Software Inventory

176 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 16. Introduction to the VMFSIM EXEC

The VMFSIM EXEC is the interface to the software inventory. You can use the VMFSIM EXEC to:

• Query the software inventory (“VMFSIM QUERY” on page 570)
• Update the software inventory (“VMFSIM MODIFY” on page 565)
• Compare the version vector tables to the AUX file structure (“VMFSIM CHKLVL” on page 534)
• Identify the latest version of a part (“VMFSIM GETLVL” on page 546)
• Compare two Software Inventory tables (“VMFSIM COMPTBL” on page 541)
• Build apply and exclude lists (“VMFSIM SRVREQ” on page 582 and “VMFSIM SRVDEP” on page 576)
• List the requisite PTFs for a given PTF (“VMFSIM SRVREQ” on page 582)
• List the requisite products for a given product (“VMFSIM SYSREQ” on page 594)
• List the dependent PTFs for a given PTF (“VMFSIM SRVDEP” on page 576)
• List the dependent products for a given product (“VMFSIM SYSDEP” on page 588)
• Support your local modification structure (“VMFSIM LOGMOD” on page 559)
• Initialize and recover the software inventory with products or PTFs (“VMFSIM INIT” on page 553)

You see examples of how to use the VMFSIM EXEC in the following sections. The VMFSIM EXEC and its
command syntax are described in “The Source Product Parameter File” on page 13.

The VMFINFO EXEC provides a user-friendly, panel interface to the VMFSIM EXEC and the Software
Inventory. For more information on the VMFINFO EXEC and the VMFINFO panels, see Chapter 17, “Using
the VMFINFO Panels,” on page 199 and “VMFINFO EXEC” on page 405.

Providing Input to VMFSIM
VMFSIM uses tagged data as input. There are three ways to enter tagged data for VMFSIM commands:

• From the command line
• In a REXX stem
• From a file

For more information on using tagged data as input, see “VMFSIM: Tagged Data (TDATA)” on page 530.

Receiving Output from VMFSIM
Output TDATA statements are returned from VMFSIM to the terminal display, a file, or a REXX stem.

Querying the Software Inventory
The VMFSIM QUERY function is the main interface to the software inventory. You can either use the
VMFINFO panels to run VMFSIM queries, or you can enter VMFSIM QUERY commands manually. To find
out how to use the VMFINFO panels, see Chapter 17, “Using the VMFINFO Panels,” on page 199.

To illustrate the power and flexibility of the VMFSIM QUERY function, the following sections show a
number of sample queries. For the command syntax, see “VMFSIM QUERY” on page 570.

Querying the System-Level Software Inventory after Receive Processing
This section shows examples of how to use the VMFSIM command to access the data available after
products are received on the system by VMSES/E. You can also use the VMFINFO panel interface to
perform these tasks.

Querying the Software Inventory

© Copyright IBM Corp. 1990, 2023 177

Determining the Status of Products Received
The VM SYSRECS table contains a list of all products that are received on the system. To query the status
of all installed products, enter:

VMFSIM QUERY VM SYSRECS TDATA :PPF :STAT

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PPF :STAT
:PPF ESA MYCOMP
 :STAT RECEIVED.06/28/22.09:16:01.MAINT.240-9901
:PPF ESA MYCOMP2
 :STAT RECEIVED.06/28/22.10:50:34.MAINT.240-9901

Finding the Description of Products Received
The VM SYDESCT table contains a descriptive name for each product that has been received on the
system. To find the description for all products received on the system, enter:

VMFSIM QUERY VM SYSDESCT TDATA :PPF

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PPF
:PPF ESA MYCOMP
 :PRODID 1VMVMC23%MYCOMP
 :DESC MYCOMP component for z/VM
:PPF ESA MYCOMP2
 :PRODID 1VMVMS10%MYCOMP2
 :DESC MYCOMP2 component for z/VM

Querying the System-Level Software Inventory after Apply Processing
This section shows examples of how to use the VMFSIM command to access the data that is available
after products have been applied to the system by VMSES/E.

Querying the Status of Products Applied
The VM SYSAPPS table contains the status of all the products that are applied on the system. To
determine the apply status of all the products installed on the system, enter:

VMFSIM QUERY VM SYSAPPS * TDATA :PPF :STAT

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PPF :STAT
:PPF ESA MYCOMP
 :STAT APPLIED.06/28/22.09:16:03.MAINT
:PPF ESA MYCOMP2
 :STAT APPLIED.06/28/22.10:50:36.MAINT

You can also use the VMFINFO panel interface to perform this query.

Querying the System-Level Software Inventory after Build Processing
This section shows examples of how to use the VMFSIM command to access the data that is available
after products have been built by VMSES/E.

Querying the Software Inventory

178 z/VM: 7.3 VMSES/E Introduction and Reference

Querying the Status of Products Built
The VM SYSBLDS table contains the status of all the products that are built on the system. To determine
the build status of all the products installed on the system, enter:

VMFSIM QUERY VM SYSBLDS * TDATA :PPF :STAT

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PPF :STAT
:PPF ESA MYCOMP
 :STAT BUILT.06/28/22.11:36:29.MAINT
:PPF ESA MYCOMP2
 :STAT BUILT.06/28/22.12:02:29.MAINT

You can also use the VMFINFO panel interface to perform this task.

Performing Additional Queries on the System-Level Software Inventory
This section shows additional queries you can perform on the system-level software inventory tables.

What Do I Have Installed that is Related to a Specific Product?
To determine what you have installed that is related to a specific product, for example RSCS, enter:

VMFSIM QUERY VM SYSDESCT TDATA :DESC PVM :PPF :PRODID

The data returned by the query is:

:PPF 5684100E PVMINS
 :PRODID 5684100E%PVMINS
 :DESC Installing PVM 2.1.1
:PPF 5684100E PVMUCENG
 :PRODID 5684100E%PVMUCENG
 :DESC Upper Case English help
:PPF 5684100E PVMSRC
 :PRODID 5684100E%PVMSRC
 :DESC Installing PVM 2.1.1 Optional source
:PPF 5684100E PVMISFS
 :PRODID 5684100E%PVMISFS
 :DESC Installing PVM 2.1.1 using SFS directories
:PPF 5684100E PVMUSFS
 :PRODID 5684100E%PVMUSFS
 :DESC Servicing PVM 2.1.1 Upper Case English help using SFS directories
:PPF 5684100E PVMSSFS
 :PRODID 5684100E%PVMSSFS
 :DESC Installing PVM 2.1.1 Optional source using SFS directories

What Options are Coded in the Product Parameter File (PPF)?
To find out which options are coded in the product parameter file for the MYCOMP component, enter:

VMFSIM QUERY ESA PPF TDATA :COMPNAME MYCOMP :CNTRLOP

The data returned by the query is:

VMFSIP2480I Results for
 TDATA :COMPNAME MYCOMP :CNTRLOP
:COMPNAME MYCOMP
 :CNTRLOP
 :BCOMPNAME MYCOMP
 :PRODDESC MYCOMP for z/VM
 :RECID 1VMVMC23
 :APPID 1VMVMC23
 :BLDID 1VMVMC23
 :AXLIST AGWVM
 :EXCLIST
 :LOG YES

Querying the Software Inventory

Chapter 16. Introduction to the VMFSIM EXEC 179

 :RECVALL NO
 :VERSION z/VM v.r.m
 :SETUP NO
 :CNTRL AGWVM
 :SLVI B/AW
 :NLS AMENG
 :RETAIN
 :CKAUX YES
 :CKSDI NO
 :CKVV NO
 :CKGEN
 :UPDTID AUXVM
 :PTFPFX UM
 :APARPFX VM
 :USEREXIT
 :ECNTRLOP

You can use the VMFINFO PPF Fileid - Help Panel to find this same information. For more information, see
“PPF Fileid - Help Panel” on page 202.

Querying the Service-Level Software Inventory after Receive Processing
This section shows examples of how to use the VMFSIM command to access the data that is available
after PTFs are received for a product by VMSES/E. You can also use the VMFINFO panel interface to
perform these tasks.

Querying the Status of PTFs Received
The prodid SRVRECS table contains a list of all PTFs received for a product. To query the status of all PTFs
received for a product, enter:

VMFSIM QUERY tblfn SRVRECS * TDATA :PTF

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PTF
:PTF UM18082
 :STAT RECEIVED.06/28/22.14:54:22.MAINT
:PTF UM18109
 :STAT RECEIVED.06/28/22.14:54:22.MAINT

Determining the Status of APARs Received
To determine the receive status of the APARs, you must first query the prodid SRVREQT table to obtain a
list of PTFs that contain the APARs in question. Then, use the results of that query to obtain the status of
the PTF. Enter the following commands:

VMFSIM QUERY tblfn SRVREQT * TDATA :APARNUM (FILE SRVAPARS
VMFSIM QUERY tblfn SRVRECS * FILE SRVAPARS

The data returned by these queries is:

VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18082 :APARNUM VM47103
:PTF UM18082
 :STAT RECEIVED.06/28/22.14:54:22.MAINT
VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18109 :APARNUM VM47104
:PTF UM18109
 :STAT RECEIVED.06/28/22.14:54:22.MAINT
VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18135 :APARNUM VM47105
:PTF UM18135
 :STAT RECEIVED.06/28/22.14:54:22.MAINT

The first query of the APAR from the prodid SRVREQT table captures the PTF numbers associated with the
APAR and saves the results in the SRVAPARS SIMDATA file. (SRVAPARS is the file name specified in the
first query.) The second query uses the SRVAPARS SIMDATA file as the input data and returns the status

Querying the Software Inventory

180 z/VM: 7.3 VMSES/E Introduction and Reference

of the PTFs from the prodid SRVRECS table. The result of these two queries is the status of the associated
PTF for APARs VM47103, VM47104, and VM47105.

Querying the Description of APARs Received
To obtain the description of an APAR, enter the following command against the prodid SRVDESCT table.

VMFSIM QUERY tblfn SRVDESCT * TDATA :APARNUM

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :APARNUM
:APARNUM VM47103
 :ABSTRACT FIX LOAD PROBLEM WITH DMSABC
:APARNUM VM47104
 :ABSTRACT SENDFILE EXITS WITH RC=28
:APARNUM VM47105
 :ABSTRACT MESSAGE xyz ISSUED WHEN FILE NOT FOUND

Determining APARs Contained in PTFs
To determine the APARs contained in all PTFs currently received, enter the following command against
the prodid SRVREQT table.

VMFSIM QUERY tblfn SRVREQT * TDATA :APARNUM

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :APARNUM
:PTF UM18082
 :APARNUM VM47103
:PTF UM18109
 :APARNUM VM47104
:PTF UM18135
 :APARNUM VM47105

Determining the Receive Status of All PTFs Containing an APAR
To determine the receive status of all PTFs containing a specific APAR, you must first query the prodid
SRVREQT table to obtain a list of PTFs that contain the APAR in question. Then, use the results of that
query to obtain the status of the PTF. Enter these VMFSIM QUERY commands:

VMFSIM QUERY tblfn SRVREQT * TDATA :APARNUM VM29997 (FILE PTFRECS
VMFSIM QUERY tblfn SRVRECS * FILE PTFRECS

The results of these queries are:

VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18082 :APARNUM VM47103
:PTF UM18082
 :STAT RECEIVED.06/28/22.14:54:22.MAINT

The first query of the APAR from the prodid SRVREQT table captures the PTF numbers associated with
the APAR and saves the results in the PTFRECS SIMDATA file. (PTFRECS is the file name specified in the
first query.) The second query uses the PTFRECS SIMDATA file as the input data and returns the status of
the PTFs from the prodid SRVRECS table. The result of these two queries is the status of all PTFs that are
contained in the APARs specified.

Querying the Service-Level Software Inventory after Apply Processing
This section shows examples of how to use the VMFSIM command to access data that is available after
PTFs have been applied for a product by VMFAPPLY. You can also use the VMFINFO panel interface to
perform some of these tasks.

Querying the Software Inventory

Chapter 16. Introduction to the VMFSIM EXEC 181

Querying the Status of PTFs Applied
The prodid SRVAPPS table consists of the list of PTFs with their appropriate statuses: APPLIED, SUPED, or
REMOVED. To get a list of all PTFs in the prodid SRVAPPS table with a status of APPLIED, enter:

VMFSIM QUERY tblfn SRVAPPS * TDATA :STAT APPLIED

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :STAT APPLIED
:PTF UM18082
 :STAT APPLIED.06/28/22.14:59:04.MAINT
:PTF UM18109
 :STAT APPLIED.06/28/22.14:59:04.MAINT

Querying the Status of APARs Applied
To determine the apply status of an APAR, you must first query the prodid SRVREQT table to obtain a list
of PTFs that contain the APAR in question. Then, use the results of that query to obtain the status of the
PTF. Enter the following VMFSIM QUERY commands:

VMFSIM QUERY tblfn SRVREQT * TDATA :APARNUM VM30514 (FILE SRVAPARS
VMFSIM QUERY tblfn SRVAPPS * FILE SRVAPARS

The data returned by these queries is:

VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18082 :APARNUM VM30514
:PTF UM18082
 :STAT APPLIED.06/28/22.14:59:04.MAINT

The first query of the APAR from the prodid SRVREQT table captures the PTF numbers associated with the
APAR and saves the results in the SRVAPARS SIMDATA file. (SRVAPARS is the file name specified in the
first query.) The second query uses the SRVAPARS SIMDATA file as the input data and returns the status
of the PTFs from the SRVAPPS table. The result of these two queries is the status of the APARs applied.

Determining All Parts Serviced by a Specific PTF
The version vector table consists of the list of PTFs, APARs, and, optionally, updates that are applied to
the part of a product at a specific level. To determine all parts affected by a PTF, for example UM18135,
enter:

VMFSIM QUERY tblfn VVTVM * TDATA :PTF UM18135

You can enter the VMFSIM QUERY this way, because the :PTF tag in the version vector table contains the
PTF number and the APAR number.

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18135
:PART HCPXLF TXT
 :PTF UM18135.VM47105.S47105HP
:PART HCPXLE TXT
 :PTF UM18135.VM47105.S47105HP
:PART HCPVDI TXT
 :PTF UM18135.VM47105.S47105HP
:PART HCPREP TXT
 :PTF UM18135.VM47105.S47105HP
:PART HCPPTU TXT
 :PTF UM18135.VM47105.S47105HP
:PART HCPMPS TXT
 :PTF UM18135.VM47105.S47105HP

Querying the Software Inventory

182 z/VM: 7.3 VMSES/E Introduction and Reference

Determining All Parts Serviced by a Specific APAR
The version vector table consists of the list of PTFs, APARs, and, optionally, updates that are applied
to the part of a component at a specific level. To determine all parts affected by an APAR, for example
VM47103, enter:

VMFSIM QUERY tblfn VVTVM * TDATA :PTF VM47103

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PTF VM47103
:PART HCPTDD TXT
 :PTF UM18082.VM47103.S47103HP
:PART HCPRDA TXT
 :PTF UM18109.VM47104.S47104HP UM18082.VM47103.S47103HP
:PART HCPPTF TXT
 :PTF UM18082.VM47103.S47103HP
:PART HCPPTE TXT
 :PTF UM18082.VM47103.S47103HP

Determining All Service Applied to a Specific Part
The version vector table consists of the list of PTFs, APARs, and, optionally, updates that are applied to
every part of the product that has been serviced. To determine all service applied to a specific part, for
example HCPRDA, enter:

VMFSIM QUERY tblfn VVTVM * TDATA :PART HCPRDA

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :PART HCPRDA
:PART HCPRDA TXT
 :MOD
 :PTF UM18109.VM47104.S47104HP UM18082.VM47103.S47103HP

Querying the Service-Level Software Inventory after Build Processing
This section shows examples of how to use the VMFSIM command to access data that is available after
the VMFBLD command has been run. You can also use the VMFINFO panel interface to perform some of
these tasks.

Querying the Status of an Object
The service-level build status table (appid SRVBLDS) has a list of build lists and objects that have been
serviced or built for the product. To determine the build status of a specific object (for example, ddr),
issue the following VMFSIM QUERY command against the appid SRVBLDS table:

VMFSIM QUERY tblfn SRVBLDS * TDATA :OBJECT DDR

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :OBJECT DDR.MODULE
:BLDLIST HCPMLOAD
 :OBJECT DDR.MODULE
 :STAT BUILT.06/28/22.13:09:59.MAINT

Querying the Software Inventory

Chapter 16. Introduction to the VMFSIM EXEC 183

Determining Which Objects to Build
The service-level build status table has a list of objects that have been serviced for the component. To
determine the specific objects that have been serviced and need to be built, issue the following VMFSIM
QUERY command against the appid SRVBLDS table searching for objects with a status of SERVICED.

VMFSIM QUERY tblfn SRVBLDS * TDATA :STAT SERVICED

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :STAT SERVICED
:BLDLIST HCPMLOAD
 :OBJECT DIRECTXA.MODULE
 :STAT SERVICED.06/28/22.13:09:59.MAINT
:BLDLIST HCPMLOAD
 :OBJECT CPEREPXA.MODULE
 :STAT SERVICED.06/28/22.13:09:59.MAINT
:BLDLIST HCPMLOAD
 :OBJECT MONWRITE.MODULE
 :STAT SERVICED.06/28/22.13:09:59.MAINT
:BLDLIST HCPMLOAD
 :OBJECT OVERRIDE.MODULE
 :STAT SERVICED.06/28/22.13:09:59.MAINT
:BLDLIST HCPMLOAD
 :OBJECT HCPCCU.MODULE
 :STAT SERVICED.06/28/22.13:09:59.MAINT

Determining Objects Requiring Manual Build Processing
The service-level build status table has a list of objects that have been serviced for the component. If
VMFBLD cannot locate a part that has been serviced, it updates the appid SRVBLDS table entry for that
part with a status of MANUAL.

To determine the parts requiring manual processing after service has been applied, issue the following
VMFSIM QUERY command against the appid SRVBLDS table searching for objects with a status of
MANUAL.

VMFSIM QUERY tblfn SRVBLDS * TDATA :STAT MANUAL :PARTID

The data returned by this query is:

VMFSIP2480I RESULTS FOR
 TDATA :STAT MANUAL :PARTID
:BLDLIST UNKNOWN
 :OBJECT BLDLIST
 :STAT MANUAL.06/28/22.12:27:53.MAINT
 :PARTID HCPABC TXT

In this example, the :BLDLIST field contains the keyword UNKNOWN. This indicates the parts identified on
the :PARTID tag were not found in any build lists identified in the PPF file. The :PARTID field contains a list
of the file names and file types of the parts that require manual build processing.

Performing Additional Queries on the Service-Level Software Inventory
This section shows examples of additional types of queries you can perform on the service-level software
inventory tables.

Which PTFs Have a Direct Prerequisite of a Specific PTF?
To determine which PTFs have a direct prerequisite of a specific PTF, for example UM15059, enter:

VMFSIM QUERY 1VMVMC23 SRVREQT TDATA :PTF :PREREQ UM15059

The data returned by the query is:

Querying the Software Inventory

184 z/VM: 7.3 VMSES/E Introduction and Reference

:PTF UM15066
 :PREREQ UM15059
:PTF UM15067
 :PREREQ UM15059
:PTF UM15068
 :PREREQ UM15059

The same query can be run using the VMFINFO panel shown in Figure 118 on page 206. See “PTF
Dependencies/Superseding Query Output” on page 209 for an example of the information provided by the
VMFINFO panel query.

What Are the Direct Requisites for a Specific PTF?
To determine the direct requisites for a specific PTF, for example UM15066, enter:

VMFSIM QUERY 1VMVMC23 SRVREQT TDATA :PTF UM15066

The data returned by the query is:

:PTF UM15066
 :APARNUM VM42215
 :PREREQ UM15059
 :HARDREQ VM42300

The same query can be run using the VMFINFO panel shown in Figure 118 on page 206. See “PTF
Requisites/Supersedes Query Output” on page 208 for an example of the information provided by the
VMFINFO panel query.

Which PTFs Are Applied?
To determine which PTFs are applied, enter:

VMFSIM QUERY 1VMVMC23 SRVAPPS TDATA :PTF

The data returned by the query is:

:PTF UM15042
 :STAT APPLIED.06/28/22.14:10:32.MAINT
:PTF UM15043
 :STAT APPLIED.06/28/22.14:10:32.MAINT
:PTF UM15044
 :STAT APPLIED.06/28/22.14:10:32.MAINT
:PTF UM15045
 :STAT APPLIED.06/28/22.14:10:32.MAINT
:PTF UM15046
 :STAT APPLIED.06/28/22.14:10:32.MAINT
:PTF UM15047
 :STAT APPLIED.06/28/22.14:10:32.MAINT

The same query can be run using the VMFINFO panel shown in Figure 118 on page 206.

Is a Specific APAR Applied?
To determine if a specific APAR is applied, for example VM41612, enter:

VMFSIM QUERY 1VMVMC23 SRVREQT TDATA :APARNUM VM41612 (FILE TTVMF
SIM QUERY 1VMVMC23 SRVAPPS FILE TT

The data returned by the second query is:

:PTF UM14894
 :STAT APPLIED.06/28/22.14:10:32.MAINT

The same query can be run using the VMFINFO panel shown in Figure 118 on page 206. See “PTF Status
Query Output” on page 207 for an example of the information provided by the VMFINFO panel query.

Querying the Software Inventory

Chapter 16. Introduction to the VMFSIM EXEC 185

What Is the Service History for a Part?
To determine the service history for a part, for example HCPPAG, enter:

VMFSIM QUERY 1VMVMC23 VVTVM TDATA :PART HCPPAG

The data returned by the query is:

:PART HCPPAG TXT
 :MOD
 :PTF UM14894.VM41612.H41612HP UM14580.VM41042.H41042HP
 UM11765.VM39201.H39201HP UM09344.VM38072.H38072HP
 UM09135.VM37393.H37393HP UM08863.VM35968.H35968HP
 UM08012.VM36349.H36349HP UM90043.VM34943.H34943HP
 ⋮

The same query can be run using the VMFINFO panel shown in Figure 125 on page 211. See “Part Service
History Query Output” on page 216 for an example of the information provided by the VMFINFO panel
query.

What Parts are Affected by a Specific PTF?
To determine what parts are affected by a specific PTF, for example UM14894, enter:

VMFSIM QUERY 1VMVMC23 VVTVM TDATA :PTF UM14894

The data returned by the query is:

:PART HCPPAG TXT
 :PTF UM14894.VM41612.H41612HP UM14580.VM41042.H41042HP
 UM11765.VM39201.H39201HP UM09344.VM38072.H38072HP
 UM09135.VM37393.H37393HP UM08863.VM35968.H35968HP
 UM08012.VM36349.H36349HP UM07833.VM36082.H36082HP
 ⋮
:PART HCPPAH TXT
 :PTF UM14894.VM41612.H41612HP UM14580.VM41042.H41042HP
 UM11765.VM39201.H39201HP UM09344.VM38072.H38072HP
 UM09135.VM37393.H37393HP UM08863.VM35968.H35968HP
 UM08012.VM36349.H36349HP UM90043.VM34943.H34943HP
 ⋮

The same query can be run using the VMFINFO panel shown in Figure 118 on page 206. See “PTF
Serviceable Parts Query Output” on page 210 for an example of the information provided by the VMFINFO
panel query.

Updating the Software Inventory
The VMFSIM MODIFY function updates the Software Inventory. To illustrate the power and flexibility of
the VMFSIM MODIFY function, sample commands for the following tasks are shown:

• Adding a product to the system-level Software Inventory
• Updating the SRVBLDS table after manual build processing

Adding A Product to the System-Level Software Inventory
If you install a product that is not supported by VMSES/E, you can update the system-level Software
Inventories to identify the product. Follow this procedure to add the product to the system-level Software
Inventory. You will enter VMFSIM MODIFY four times.

• Step 1: Update the SYSRECS table.

Updating the Software Inventory

186 z/VM: 7.3 VMSES/E Introduction and Reference

The SYSRECS table contains the status of all the products or components that are received on the
system. New products and status are added to this table by using the VMFSIM MODIFY function. In this
example, we use the prodid 5684100E.

VMFSIM MODIFY VM SYSRECS * TDATA :PPF 5684100E NONE :PRODID 5684100E :STAT RECEIVED

The VM SYSRECS table will be updated to reflect that product 5684100E has been received on the
system.

• Step 2: Update the SYSDESCT table.

The SYSDESCT table contains a short description of all the products or components that are received
on the system. The new product description is added to this table by using the MODIFY function of
VMFSIM.

VMFSIM MODIFY VM SYSDESCT * TDATA :PPF 5684100E NONE :PRODID 5684100E :DESC NEW
PRODUCT

The VM SYSDESCT table will be updated to reflect the description of the product that has been installed.
• Step 3: Update the SYSREQT table.

The SYSREQT table contains the relationships between the products and components that are received
on the system. The new products are added to this table using the VMFSIM MODIFY function.

VMFSIM MODIFY VM SYSREQT * TDATA :PRODID 5684100E

• Step 4: Update the SYSAPPS table.

The SYSAPPS table contains the status of all the products or components that are applied on the
system. The new product's apply status is added to this table by using the MODIFY function of VMFSIM.

VMFSIM MODIFY VM SYSAPPS * TDATA :PPF 5684100E NONE :PRODID 5684100E :STAT APPLIED

The VM SYSAPPS table will be updated to reflect that product 5684100E has been applied on the
system.

• Step 5: Update the SYSBLDS table.

The SYSBLDS table contains the status of all the products or components that are built on the system.
The new product's build status is added to this table by using the VMFSIM MODIFY function.

VMFSIM MODIFY VM SYSBLDS * TDATA :PPF 5684100E NONE :PRODID 5684100E :STAT BUILT

The VM SYSBLDS table will be updated to reflect that product 5684100E has been built on the system.

Updating the SRVBLDS Table after Manual Build Processing
The VMFSIM QUERY function retrieves data from the SRVBLDS file, and the VMFSIM MODIFY function
uses this data to update the service-level build status table.

To update the status of manually processed parts, enter the following VMFSIM commands:

VMFSIM QUERY tblfn SRVBLDS TDATA :STAT MANUAL (FILE UPSTAT
VMFSIM MODIFY tblfn SRVBLDS * FILE UPSTAT TDATA :STAT BUILT :PARTID (REPLACE
VMFSIM QUERY tblfn SRVBLDS TDATA :BLDLIST UNKNOWN :STAT BUILT

The data returned to the second query is:

VMFSPC2480I Results for TDATA :STAT BUILT
 :BLDLIST UNKNOWN
 :OBJECT BLDLIST
 :STAT BUILT.02/08/22.12:11:14.MAINT

Updating the Software Inventory

Chapter 16. Introduction to the VMFSIM EXEC 187

The first query returns all entries in the SRVBLDS table that have a status of MANUAL and saves the
results in a file UPSTAT SIMDATA. This file is then used as input to the modify function.

The VMFSIM MODIFY function is then entered with the file input UPSTAT SIMDATA and a TDATA
statement that contains a status of BUILT. The modify function processes the input specified in the
UPSTAT SIMDATA file and adds a status of BUILT to each entry in the file. The net result is that all entries
in the SRVBLDS table that had a status of MANUAL now have a status of BUILT. If you look at the data
returned to the second query, you see the modified entry in the SRVBLDS table.

For more information on this VMFSIM command, see “VMFSIM MODIFY” on page 565.

Comparing the Version Vector Table to the AUX File Structure
The VMFSIM CHKLVL function compares the control/AUX file structure to the version vector table. It is
used to validate:

• All service applied to a part is contained in the version vector table and AUX files for that part.
• Any local modification contained in AUX files are also identified in the corresponding version vector

table.
• Any local version vector table entries are also identified in local AUX files for the part.

To illustrate the VMFSIM CHKLVL function, sample commands for the following tasks are shown:

• Checking the AUX files and version vector table match for the HCPRDA module.
• Using the LOGMOD option to update the local version vector table.

Checking that the AUX Files and Version Vector Table Match
To use the VMFSIM CHKLVL function to check that the AUX files and version vector table match for
DMSABC, enter:

VMFSIM CHKLVL ESA MYCOMP TDATA :PART DMSABC

This command checks the levels of the AUX files for DMSABC against the version vector table entries. In
the output returned, the "X" shows the first mismatch detected.

==========================DMSABC TXT==================================1VMVMC23
 VVTVM1 E...........| |DMSABC AUXVM1 E
_________PTF________________|_|_______________________________________
UM00004.VM40000.H40000DS....| |H40000DS PTF UM00004 * Fix to problem 4
UM00003.VM30000.H30000DS....| |H30000DS PTF UM00003 * Fix to problem 3
UM00002.VM20000.H20000DS....|X|HXXXXXDS PTF UM00002 * Fix to problem 2
UM00001.VM10000.H10000DS....| |H10000DS PTF UM00001 * Fix to problem 1
==

Adding Local AUX File Entries to the Service-Level Software Inventories
To use VMFSIM CHKLVL to update the local version vector table, enter:

VMFSIM CHKLVL ppfname compname TDATA :PART DMSNGP TXT (LOGMOD

The LOGMOD option automatically logs information in the version vector table based on information in
the AUX files. VMFSIM CHKLVL compares the AUX files for all AUX file levels above the level specified on
the :UPDTID tag in the product parameter file to the corresponding version vector tables. If a mismatch
is detected, the information from the AUX file is used to replace the existing version vector table entry.
The first token in the AUX file is the update file type, the second token is ignored (however, LCL is
recommended), and the third token is modid.

To see the results of the VMFSIM CHKLVL command, enter:

VMFSIM QUERY tblfn VVTLCL E TDATA :PART DMSNGP TXT

Comparing the VVT and AUX File Structure

188 z/VM: 7.3 VMSES/E Introduction and Reference

The query returns the following:

VMFSPC2480I Results for TDATA :PART DMSNGP TXT
:PART DMSNGP TXT
 :MOD LCL2222.UPDTMOD2
 :PTF

The VMFSIM CHKLVL function added the local modification LCL2222 to the local version vector table for
the part DMSNGP TXT. This local modification is identified in the version vector table on the :MOD field.
The data on this field has the format lclmodid.updtft.

For more information on this VMFSIM command, see “VMFSIM CHKLVL” on page 534.

Identifying the Latest Version of a Part
The VMFSIM GETLVL function uses a control file, the version vector tables, and, optionally, AUX files to
find the current level of a part. To illustrate the VMFSIM GETLVL function, a sample command for the
following task is shown:

• Determining the current service level of a part

Determining the Current Service Level of a Part
To determine the current service level of a part, for example HCPRDA, enter the VMFSIM GETLVL
command and specify the file name of the usable form product parameter file (ppfname) and the
component name (compname) for the product:

VMFSIM GETLVL ESA MYCOMP TDATA :PART HCPRDA

The query returns the following data:

HCPRDA TXT18109

The TXT18109 token is the file type of the part at the highest service level found in the version vector
table.

For more information on this VMFSIM command, see “VMFSIM GETLVL” on page 546.

Comparing Two Software Inventory Tables
The VMFSIM COMPTBL function compares two Software Inventory tables. To illustrate the VMFSIM
COMPTBL function, sample commands for the following tasks are shown:

• Building an APPLY list of all PTFs received and not applied
• Creating an APPLY list from two SRVAPPS tables

Building an APPLY List of All PTFs Received and Not Applied
The SRVRECS table contains a list of PTFs that have been received, and the SRVAPPS table contains a
list of all PTFs already applied. When you compare these two tables, you get a file (NEW $APPLIST) that
contains an apply list of all PTFs received and not applied.

You can use this function when you want to create your own apply list containing only the new service you
have received and not use the apply list shipped on the service tape, which may contain PTFs that you
already have applied.

For example, when you enter:

VMFSIM COMPTBL 1VMVMC23 SRVRECS * 1VMVMC23 SRVAPPS * TDATA :PTF (APPLIST NEW

The file, NEW $APPLIST, looks like this:

Identifying the Latest Version of a Part

Chapter 16. Introduction to the VMFSIM EXEC 189

* APPLIST FROM VMFSIM COMPTBL 1VMVMC23 SRVRECS K 1VMVMC23 SRVAPPS A
UM18537
UM18538
UM18583
UM18598

The VMFSIM COMPTBL function compares the PTF entries in the SRVRECS table to the PTF entries in the
SRVAPPS table. Any PTF that is found in the SRVRECS table and not in the SRVAPPS table is added to
the NEW $APPLIST file. The NEW $APPLIST file can now be used as input to the VMFAPPLY command to
install all new PTFs just received.

Creating an APPLY List from Two SRVAPPS Tables
The SRVAPPS table on the first APPLY disk identified in the :MDA section of the PPF contains the most
current service level of all PTFs applied. The SRVAPPS table on subsequent APPLY disks identified in
the :MDA section of the PPF identifies previous service levels of the product or component. You can use
this type of comparison to:

• Validate that all service that was previously applied is applied in the current service level.
• Create an apply list that contains all PTFs applied to one copy of a product or component that are not

applied to a second copy of a product or component.
• Create an apply list that contains all reach-ahead service that is currently applied to a product or

component and not contained on a service refresh tape, for example, a Product Service Upgrade (PSU).

To perform this type of comparison, enter:

VMFSIM COMPTBL 1VMVMC23 SRVAPPS K 1VMVMC23 SRVAPPS J TDATA :PTF (APPLIST NEW

The file, NEW $APPLIST, looks like this:

* APPLIST FROM VMFSIM COMPTBL 1VMVMC23 SRVAPPS K 1VMVMC23 SRVAPPS J
UM18537
UM18538
UM18583
UM18598

The VMFSIM COMPTBL function compares the PTF entries in the first SRVAPPS table to the PTF entries
in the second SRVAPPS table. Any PTF that is found in the first SRVAPPS table and not in the second
SRVAPPS table is added to the NEW $APPLIST file. The NEW $APPLIST file can now be used as input to
the VMFAPPLY command to install all PTFs that were applied in the first table and not in the second. This
would make both levels contain the same service level.

For more information on this VMFSIM command, see “VMFSIM COMPTBL” on page 541.

Building Apply and Exclude Lists after Receive Processing
The VMFSIM SRVREQ function uses the service-level requisite table and the service-level apply status
table and returns the requisites for the specified PTFs. The VMFSIM SRVDEP function uses the service-
level requisite table and the service-level apply status table and returns the dependent PTFs. To illustrate
the VMFSIM SRVREQ function and VMFSIM SRVDEP functions, sample commands for the following tasks
are shown:

• Building an apply list containing requisites of a PTF
• Building an exclude list containing dependents of a PTF

Building an APPLY List Containing All Requisites of a PTF
To build an APPLY list containing all requisites required to install a specific PTF, use the VMFSIM SRVREQ
function. This apply list is useful in determining how much service will be applied before actually applying
it.

Building Apply/Exclude Lists

190 z/VM: 7.3 VMSES/E Introduction and Reference

Use this function to create your own apply list containing only the requisites required to apply a specific
PTF you have received, as shown in the following example:

vmfsim srvreq tblfn srvreqt a tblfn srvapps a tdata :ptf um15010 (applist ptfreqs

The data returned is:

===== * * * TOP OF FILE * * *
===== UM15010
===== UM18538
===== UM18583
===== UM18598
===== * * * END OF FILE * * *

The VMFSIM SRVREQ function adds an entry to the PTFREQS $APPLIST for every PTF that is not applied
and is a requisite of the PTF specified on the command. The PTFREQS $APPLIST can then be used as
input to the VMFAPPLY command to install a specific PTF and all its requisites.

For more information on this VMFSIM command, see “VMFSIM SRVREQ” on page 582.

Building an EXCLUDE List Containing All Dependents of a PTF
Use the VMFSIM SRVDEP function to create an EXCLUDE list containing all PTFs that are dependent on a
specific PTF. This exclude list is useful when you are identifying PTFs that depend on a specific PTF you do
not want to apply.

vmfsim srvdep tblfn srvreqt * tblfn srvapps * tdata :ptf um15010 (applist ptfdeps
rename ptfdeps $applist a = $exclist a

The data returned is:

===== * * * TOP OF FILE * * *
===== UM15010
===== UM18531
===== UM18582
===== UM18593
===== * * * END OF FILE * * *

The VMFSIM SRVDEP function adds an entry to the PTFDEPS $APPLIST for every PTF that is applied and
is dependent on the PTF specified on the command. The PTFDEPS $EXCLIST can then be used as input to
the VMFAPPLY command to exclude a specific PTF and all its dependents.

Note: It is not necessary to have all dependent PTFs in the exclude list. VMFAPPLY will automatically
exclude all PTFs dependent on a PTF specified in the exclude list.

For more information on this VMFSIM command, see “VMFSIM SRVDEP” on page 576.

Listing the Requisites for PTFs
The VMFSIM SRVREQ function uses the service-level requisite table and service-level apply status table
to return the requisites for the PTFs specified. Use this function to determine if you have applied or
received all the PTFs that are required by a PTF you want to install. To illustrate the VMFSIM SRVREQ
function, a sample command for the following task is shown:

• Determining the prerequisites for a PTF

Determining the Prerequisites for a PTF
You can use the VMFSIM SRVREQ command to determine the prerequisites for a PTF. For example, to
determine the prerequisites for PTF UM18135, enter:

VMFSIM SRVREQ tblfn SRVREQT * = SRVAPPS * TDATA :PTF UM18135

The response is:

Listing Requisites for PTFs

Chapter 16. Introduction to the VMFSIM EXEC 191

VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18135
:PTF UM18135
 :PREREQ UM18109
 :HARDREQ VM47104
 :SUBREQ UM18082
 :SUBIF *NONE*
 :SUBHARDREQ *NONE*

UM18109 must be installed before UM18135. UM18135 has no corequisites or if-requisites and does not
supersede another PTF. APAR VM47104 is required for UM18135 to function. A requisite PTF (which must
be UM18109, the only requisite) requires UM18082, but UM18109 has no if-requisites or required APARs.

For more information about this command, see “VMFSIM SRVREQ” on page 582.

Listing the Requisites for a Product
The VMFSIM SYSREQ function uses the system-level requisite table and system-level apply status table
to return the requisites for the prodid specified. (prodid is the 7- or 8-alphanumeric identifier assigned to
the product.) Use this function to determine if you have all the products or components installed on your
system that are required by the product you want to install.

To illustrate the VMFSIM SYSREQ function, a sample command for the following task is shown:

• Determining the prerequisites for a product

Determining the Prerequisites for a Product
To determine the prerequisites for a specific product, for example 1VMVMC23, enter:

VMFSIM SYSREQ VM SYSREQT * = SYSAPPS * TDATA :PRODID 1VMVMC23%MYCOMP

The response is:

VMFSIP2480I RESULTS FOR
 TDATA :PRODID 1VMVMC23%MYCOMP
:PRODID 1VMVMC23%MYCOMP 1
 :PREREQ 1VMVMP11 2
 :REQ *NONE*
 :DREQ 1VMVMC22 3
 :SUP *NONE*
 :IFREQ *NONE*
 :NPRE *NONE*
 :SUBREQ 1VMVME10 4
 :SUBIF *NONE*
 :PTFREQS *NONE*

As you can see in the above example, product 1VMVMP11 (2) is a pre-requisite and must be installed
before you install product 1VMVMC23 (1). There are no other pre-requisites.

1VMVMC23 is a dependent of 1VMVMC22 (3). 1VMVMC23 does not supersede any other product. It has
no if-requisites and does not preclude installing any other products.

A prerequisite product, 1VMVMP11 (2), has 1VMVME10 (4) as a requisite, but it has no if-requisites. No
PTFs are required.

For more information on this VMFSIM command, see “VMFSIM SYSREQ” on page 594.

Listing the Dependent PTFs for Another PTF
The VMFSIM SRVDEP function uses the system-level requisite table and system-level apply status table
to return the dependents for the PTFs specified. Use this function to determine which PTFs are dependent
on a specific PTF that you want to remove from the product or component. To illustrate the VMFSIM
SRVDEP function, a sample command for the following task is shown:

• Determining the PTFs dependent on a PTF

Listing Requisites for Products

192 z/VM: 7.3 VMSES/E Introduction and Reference

Determining the PTFs Dependent on a PTF
To determine the PTFs dependent on a PTF, for example UM15010, enter:

VMFSIM SRVDEP tblfn SRVREQT * = SRVAPPS * TDATA :PTF UM15010

The response is:

VMFSPC2480I Results for TDATA :PTF UM15010
 :PTF UM15010
 :DEPS UM15020
 :SUPBY *NONE*
 :OUTREQS *NONE*

One PTF, UM15020, depends on UM15010. No PTFs supersede UM15010, and there are no PTFs in other
products or components that depend on UM15010.

For more information on this VMFSIM command, see “VMFSIM SRVDEP” on page 576.

Listing the Dependent Products for Another Product
The VMFSIM SYSDEP function uses the service-level requisite table and service-level apply status table
to return the dependents for the prodid specified. Use this function to determine which products or
components are dependent on a specific product or component that you want to remove from the system.
To illustrate the VMFSIM SYSDEP function, a sample command for the following task is shown:

• Determining the dependents of a product

Determining the Dependents of a Product
To determine the dependents of a product, for example 1VMVMC23, enter:

VMFSIM SYSDEP VM SYSREQT * = SYSAPPS * TDATA :PRODID 1VMVMC23%MYCOMP

The response is:

VMFSIP2480I RESULTS FOR
 TDATA :PRODID 1VMVMC23%MYCOMP
:PRODID 1VMVMC23%MYCOMP
 :DEPS 1VMVMS20 1VMVME10 1VMVMG10 1
 :DREQDEPS 1VMVMC22 2
 :SUPBY *NONE*
 :OUTREQS *NONE*

As you can see in this example, products or components 1VMVMS20, 1VMVME10, and 1VMVMG10 are
all dependent on 1VMVMC23 (1). In other words, if you remove , 1VMVMC23, these products may not
function. 1VMVMC22 is a dependent feature of 1VMVMC23 (2). 1VMVMC23 is not superseded by any
other product, and no PTFs in other products or components depend on it.

For more information on this VMFSIM command, see “VMFSIM SYSDEP” on page 588

Adding Local Modifications to the Software Inventory
The VMFSIM LOGMOD function supports your local modifications structure.

If you are adding a local modification for an ASSEMBLE, NLS, or $Source file, you can use the LOGMOD
option on the VMFASM, VMFHASM, VMFHLASM, VMFNLS, or VMFEXUPD command to update the local
version vector table. For other source updated parts, use the VMFSIM CHKLVL command with the
LOGMOD option to update the local version vector table. You can also update $SELECT files and specify
the LOCALMOD disk for output using the $SELECT and OUTMODE options. For replacement only parts, you
must use the VMFSIM LOGMOD command.

To illustrate the VMFSIM LOGMOD function, sample commands for the following tasks are shown:

• Add local source update modifications to service-level Software Inventories

Listing Dependent Products

Chapter 16. Introduction to the VMFSIM EXEC 193

• Adding local replacement files to service-level Software Inventories

Adding Local Source Update Modifications to Service-Level Software
Inventories

The local version vector table (VVTLCL) is the default table that is used to track local modifications to
a product or component. Each time an entry is added to a local AUX file (AUXLCL), a corresponding
entry should be made in the local version vector table to ensure that all local modifications are identified
by VMFAPPLY when applying service and built into the objects when VMFBLD is run. To add a local
modification to the version vector table, enter the following VMFSIM LOGMOD command:

VMFSIM LOGMOD tblfn VVTLCL E TDATA :PART HCPRIO TXT :MOD LCL2222.UPDTMOD2

Entering this VMFSIM QUERY:

VMFSIM QUERY tblfn VVTLCL E TDATA :PART HCPRIO TXT

shows the results of the VMFSIM LOGMOD command:

VMFSPC2480I Results for TDATA :PART HCPRIO TXT
:PART HCPRIO TXT
 :MOD LCL2222.UPDTMOD2
 :PTF

The VMFSIM LOGMOD function added the local modification LCL2222 to the VVTLCL table for the part
HCPRIO TXT. This local modification is identified on the :MOD field in the version vector table. The data in
this field has the format modid.updtft.

LCL2222 is the local tracking number for this modification. It is recommended that the first two
characters of the local tracking number be LC. The modification identifier is 5 characters, and it is
recommended that the first character be an L. The 5 characters of the modification identifier identify
the file type of the text deck (HCPRIO in this example) that is used by VMFBLD. The file type that is
processed is a composite of the 3 character file type abbreviation and the 5 characters from the local
tracking number (TXTL2222 in this example). This local tracking number must also be identified in the
AUX file that contains the source update for this part (the AUX file would have a file type of AUXLCL in this
example).

Important Note
We recommend you start the local tracking number with LCL to ensure it does not interfere with service
delivered by IBM. If you use characters other than LCL, make sure they are unique for your product.

UPDTMOD2 is the file type of the source update file containing the changes to HCPRIO for this
modification.

Adding Local Replacement Files to Service-Level Software Inventories
The local version vector table (VVTLCL) is the default table that is used to track local modifications to
a product or component. If a part of the product that is serviced by part replacement is modified, the
modification must be identified in the local version vector table (VVTLCL). This ensures that all local
modifications are identified by VMFAPPLY when applying service and built into objects when VMFBLD is
run. If the modification is not added to the VVTLCL file, VMFAPPLY is unable to identify the change; and
VMFBLD does not pick up the modification when building objects.

To add a local modification (without source updates) to the version vector table, enter the following
VMFSIM LOGMOD command:

VMFSIM LOGMOD tblfn VVTLCL E TDATA :PART DMSABS EXC :MOD LCL2222

Entering this VMFSIM QUERY:

Adding Local Modifications to the Software Inventory

194 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSIM QUERY tblfn VVTLCL E TDATA :PART DMSABC EXC

shows the results of the VMFSIM LOGMOD command:

VMFSPC2480I Results for TDATA :PART DMSABC EXC
:PART DMSABC EXC
 :MOD LCL2222
 :PTF

The VMFSIM LOGMOD function added the local modification LCL2222 to the VVTLCL table for the part
DMSABC EXC. This local modification is identified on the :MOD field in the version vector table. The data in
this field has the format modid.

LCL2222 is the local tracking number for this modification. It is recommended that the first two
characters of the local tracking number be LC. The modification identifier is 5 characters, and it is
recommended that the first character be an L. The 5 characters of the modification identifier are used to
identify the file type of the replacement part (DMSABC in this example) that would be used by VMFBLD.
The file type that is processed is a composite of the 3 character file type abbreviation and the 5 characters
from the local tracking number (EXCL2222 in this example). Because there are no source updates for this
part, no AUX file needs to be built containing this local tracking number. Also, the version vector table
entry would not identify any source update files.

Important Note
We recommend you start the local tracking number with LCL to ensure it does not interfere with service
delivered by IBM. If you use characters other than LCL, make sure they are unique for your product.

For more information on this VMFSIM command, see “VMFSIM LOGMOD” on page 559.

Initializing and Recovering the Software Inventory Tables
The VMFSIM INIT function initializes or recovers the product or PTF information in the software
inventory . To illustrate the VMFSIM INIT function, sample commands for the following tasks are shown:

• Recovering the system-level Software Inventory tables
• Recovering the service-level Software Inventory tables

These examples are more detailed than the other examples in this chapter. The commands you need to
enter before and after VMFSIM INIT are shown in order to provide an example of using VMFSIM INIT to
do a realistic task.

Recovering the System-Level Software Inventories
If you need to recover the system-level inventory, follow this procedure:

1. Recover the SYSREQT and SYSDESCT tables.

The SYSREQT and SYSDESCT tables are created from the fn PRODPART file using the VMFSIM INIT
function. To recover these system-level software inventory tables, you need to create a list of all
PRODPART files on the system by entering this command:

listfile * prodpart * (exec

Then you need to recreate the tables by entering:

vmfsim init vm * file cms exec

The SYSREQT table is updated to reflect all requisite data contained in the PRODPART files processed.

The SYSDESCT table is updated to reflect all default PPFs and the descriptions associated with them in
the PRODPART files processed.

2. Recover the system-level software inventory status tables.

Initializing and Recovering Software Inventory Tables

Chapter 16. Introduction to the VMFSIM EXEC 195

You can create the system-level software inventory status tables by using the list of products
contained in the SYSDESCT table as a base. You can modify it to add any additional products or delete
products. To recover the status tables, use the following procedure:

a. Create a file that lists all the products contained in the SYSDESCT table by using this VMFSIM
QUERY command:

vmfsim query vm sysdesct tdata :ppf (file proddata

The PRODDATA SIMDATA file contains a list of all products and their descriptions. This data is used
as input to the VMFSIM MODIFY function.

b. Edit the PRODDATA SIMDATA file. Add any additional products that have been installed on the
system, and delete any product that has not been installed. Add any additional $PPF file overrides
that you may have created for the products you have installed.

c. Update the VM SYSRECS, VM SYSAPPS, and VM SYSBLDS tables using the PRODDATA SIMDATA file
created above. Enter:

vmfsim modify vm sysrecs d file proddata tdata :stat received
vmfsim modify vm sysapps d file proddata tdata :stat applied
vmfsim modify vm sysblds d file proddata tdata :stat built

The PRODDATA SIMDATA file contains a list of all products and their descriptions. The TDATA
statement adds, to each product identified in the VMFSIM PRODDATA file:

• A status of RECEIVED in the VM SYSRECS table
• A status of APPLIED in the VM SYSAPPS table
• A status of BUILT in the VM SYSBLDS table

Recovering Service-Level Software Inventories
If you need to recover the service-level Software Inventories, follow this procedure:

1. Recover the SRVREQT, SRVDESCT, and SRVRECS tables.

The SRVREQT, SRVRECS and SRVDESCT service-level Software Inventory tables are created from the
fn $PTFPART files using the VMFSIM INIT function. To do this, you need to create a list of all $PTFPART
files for the product. Enter:

vmfsetup esa compname
listfile * $ptfpart * (exec
vmfsim init prodid * fm file cms exec

The prodid SRVREQT table is updated to reflect all requisite data contained in the $PTFPART files
processed.

The prodid SRVDESCT table is updated to reflect all APARs, and the descriptions associated with them,
in the $PTFPART files processed.

The prodid SRVRECS table is updated with a status of RECEIVED for each $PTFPART file processed.
2. Recover the SRVAPPS and version vector tables.

The SRVAPPS and VVTVM service-level Software Inventory tables are created by the VMFAPPLY
command. In the following example, you can see an example of the commands you need to enter
to rebuild the SRVAPPS and version vector tables.

vmfsetup esa compname
listfile ctlfile $ap* * (exec args
erase reapp $applist a
cms cmdcall copyfile reapp $applist a (append
vmfapply ppf ppfname compname (applist reapp

The prodid SRVAPPS table is updated with a status of APPLIED or SUPED for each PTF processed.

The prodid VVTVM table is updated with the levels of all parts processed.

Initializing and Recovering Software Inventory Tables

196 z/VM: 7.3 VMSES/E Introduction and Reference

AUXVM files are created for all parts in the prodid VVTVM table that were updated and require AUX
files.

3. Recover the SRVBLDS table and rebuild objects. Run VMFBLD to regenerate or update the SRVBLDS
table and rebuild all objects serviced.

For more information on this VMFSIM command, see “VMFSIM INIT” on page 553.

Initializing and Recovering Software Inventory Tables

Chapter 16. Introduction to the VMFSIM EXEC 197

Initializing and Recovering Software Inventory Tables

198 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 17. Using the VMFINFO Panels

You can use the VMFINFO command to query the software inventory tables. VMFINFO provides easy-to-
use panels and a variety of predefined queries for both product information and service information.

Let's take a few minutes to see how to use the VMFINFO panels to query the Software Inventory.

Where Does the Information Come From?
When you use the VMFINFO command, queries are issued against the Software Inventory tables, just as if
you were entering a VMFSIM query.

Understanding the VMFINFO Panel Information
Figure 109 on page 199 is the main VMFINFO panel. This panel lists all the product queries, as well as the
topics for the service queries.

 VMFINFO Main Panel

Select one of the following. Then press Enter.
 PPF fileid ________ PPF _
 Component name ________________ Setup ... ___
 Product ID ...: System .. ________

 Options: S - select
Option Query
 _ Product description
 _ Product status
 _ Product requisites
 _ Product dependencies
 _ PTFs/APARs
 _ Serviceable parts/usable forms
 _ Miscellaneous

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 109. Reading the VMFINFO Main Panel

PPF fileid
is the file identifier of the usable form product parameter file that is to be used for the queries. You
can enter the file name and the file mode. The file type is always PPF. You can change the PPF fileid on
any VMFINFO query panel.

When you enter a valid product parameter file and component name and you enter an asterisk (*) for
file mode, VMFINFO uses the first file that is found with a matching file identifier on the first accessed
disk.

Component name
is the name of the component that is to be used for the queries. You can change the component name
on any VMFINFO query panel.

Product ID
is the 8-character product identifier. The product identifier is supplied for you from the selected
product parameter file. You cannot enter it manually.

Using the VMFINFO Panels

© Copyright IBM Corp. 1990, 2023 199

Setup
indicates whether a new minidisk/directory access order should be established each time you change
the name of the product parameter file or the component. The access order is determined by the
information in the product parameter file.

You can enter YES or NO, and you can change the value from any VMFINFO query panel.

Note: If you change either the product parameter file name or the component name and Setup has
been specified as No, you receive a message and, possibly, inaccurate output.

System
is the file name of the system-level software inventory tables for your system. The system-level
software inventory tables contain information on products. You can change this value from any
VMFINFO query panel. The default file name for the system-level software inventory is VM.

Note: An asterisk (*) can only be entered in the file mode field. For a list of valid selections for other input
fields, use the F1=Help key.

General Information
Keep the following information in mind when you use the VMFINFO panels:

• When you see More: + in the upper right corner of a panel, there is more information available. You
may scroll through it with the F8=Forward key.

• When you see More: - in the upper right corner of a panel, there is more information available. You
may scroll through it with the F7=Backward key.

• If you are using F1=Help on the VMFINFO panel:

– And the cursor is on an input field, F1=Help gives you help for that input field.
– And the cursor is on an area other than an input field, F1=Help provides general help on the panel.

• The F12=Cancel key returns you to the previous panel.
• Any valid CP or CMS command can be entered on the command line.

Using the Function Keys
Figure 110 on page 200 shows the Function key assignments. Table 12 on page 200 explains the function
each key provides.

⋮
Command ===>
F1=Help F3=Exit F5=File F7=Backward F8=Forward F12=Cancel

Figure 110. The Function Keys on the VMFINFO Panel

Table 12. Function Key Assignments for the VMFINFO Panels

Function Key Function Provided

F1=Help Provides a list of valid selections when the cursor is on an input field. When the
cursor is on a query topic on a query panel F1=Help gives you a description of the
query. When the cursor is on the command line or in an area on the panel that
has not been previously described, F1=Help provides general help on the VMFINFO
panel. When you are on a query output panel F1=Help gives you general help on
the query that has been selected.

F3=Exit Exits from the VMFINFO session.

Using the VMFINFO Panels

200 z/VM: 7.3 VMSES/E Introduction and Reference

Table 12. Function Key Assignments for the VMFINFO Panels (continued)

Function Key Function Provided

F5=File Allows you to save the output from the VMFINFO sessions in a file with the file
identifier VMFINFO mmddhhtt. Within a single VMFINFO session each consecutive
query is appended to the bottom of this file.

F7=Backward Moves backward through the information. More: - in the upper right corner of the
panel means there is more information, and you may scroll backward through it.

F8=Forward Moves forward through the information. More: + in the upper right corner of the
panel means there is more information to display, and you may scroll forward
through it.

F12=Cancel Exits from the VMFINFO panels, one at a time.

Getting Online Help for the VMFINFO Panels
To get HELP online, enter help vmses vmfinfop on the VMFINFO panel command line or the CMS
command line.

Getting Started
To perform VMFSIM queries using the VMFINFO panels, begin by entering either:

• vmfinfo (setup

When you enter this command, a setup of the component's minidisks or shared file directories will
be performed. The minidisks or directories need to be available in order for VMFINFO to access the
component's service software inventory files. VMFINFO displays a list of all product parameter files
(PPFs) found on all accessed disks. You can view or select any PPF in the list. See “PPF Fileid - Help
Panel” on page 202 for an example of this panel.

When you select a PPF, the Component Name - Help panel is displayed. This panel shows you a list of
the components within the PPF. See “Component Name - Help Panel” on page 202 for an example of
this panel.

• vmfinfo ppfname compname (setup

When you enter this command (with the product parameter file name, ppfname, and component name,
compname), a setup of the component's minidisks or shared file directories will be performed. The
minidisks or directories need to be available in order for VMFINFO to access the component's service
software inventory files. VMFINFO displays the Main Panel. From the main panel, you can select product
queries or select the topics for the service queries.

For the complete command syntax, see “The Source Product Parameter File” on page 13.

Selection Panels
To use the VMFINFO queries, you need to enter the name of a product parameter file and a component
name. You can get a list of product parameter file names and component names by entering a question
mark (?) in the appropriate input field.

If you enter a question mark (?) or request help for the PPF fileid field on any panel, the PPF Fileid - Help
panel is displayed. The PPF Fileid - Help panel lists all the product parameter files found on all accessed
disks. You also receive the PPF Fileid - Help panel when you leave the PPF fileid field blank.

If you enter a question mark (?) or request help for the component name field after a PPF has been
specified, the Component Name - Help panel is displayed. The Component Name - Help panel lists the
component names found within the selected product parameter file. You also receive the Component
Name - Help panel when you leave the component name field blank.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 201

PPF Fileid - Help Panel
The PPF Fileid - Help panel displays a list of all product parameter files found on all accessed disks. The
list of PPFs will be alphabetized. Figure 111 on page 202 shows an example of the PPF Fileid - Help panel.

 PPF Fileid - Help

Product parameter files (PPFs) define the environment and key variables
required to process the queries. The following is a list of all PPFs
found on all accessed disks. Select one to continue. The View function
can be used to examine one or more PPFs.

Type a “V” next to one or more PPFs to view their contents, or type an
“S” next to one PPF to select.

 Options: S - select V - view
Option PPF fileid
 S ESA PPF D
 _ 1VMVMC23 PPF D

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 111. PPF Fileid - Help Panel

You can select or view a product parameter file from this panel. When you specify the view option, you are
placed in an XEDIT session so you can check the settings in the product parameter file.

Once you select a PPF, the Component Name - Help panel is displayed.

Component Name - Help Panel
The Component Name - Help panel displays a list of all components within the product parameter file.
The following screen shows an example of the Component Name - Help panel.

 Component Name - Help

Product parameter files (PPFs) can contain one or more component names,
each specifying different environments and key variables. The following
is a list of component names within the PPF selected. Select one to
continue.

Type an “S” next to one component name; then press enter.

Option Component Name/Description
 S MYCOMP - VMSES for z/VM
 _ MYCOMP2 - REXX Programming Language

 Command ===>
F1=Help F3=Exit F12=Cancel

Figure 112. Component Name - Help Panel

On this panel, you can select one of the components for the specified product parameter file. Once you
select a component name, you either:

• Go to the VMFINFO Main Panel to select the type of query you want to perform.
• Return to the panel that you were on when you changed either the value in the PPF fileid field or the

component name.

Using the VMFINFO Panels

202 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINFO Main Panel
The following screen shows the VMFINFO Main Panel. It lists all of the product queries and topics for the
service queries.

 VMFINFO Main Panel

Select one of the following. Then press Enter.
 PPF fileid ESA PPF D
 Component name MYCOMP Setup ... YES
 Product ID ...: 1VMVMC23 System .. VM

 Options: S - select
Option Query
 _ Product description
 _ Product status
 _ Product requisites
 _ Product dependencies
 _ PTFs/APARs
 _ Serviceable parts/usable forms
 _ Miscellaneous

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 113. VMFINFO Main Panel

Once you have either entered or selected the product parameter file and component names, specified
either yes or no for the Setup option, and indicated the name of the system-level software inventory
tables for your system, you can run a query on the software inventory tables.

Product Queries
From the VMFINFO Main Panel, you can select the following queries for a product:
Description

provides the descriptive name for the product, such as PVM 2.1.1.
Status

provides the status of the product, such as received, applied, and built.
Requisites

provides a list of products that are required to be installed before the product you are processing can
be installed, built, and run.

Dependencies
provides a list of products that depend on the product you are processing.

After you select a product query, a Query Output panel is displayed. You can save the information from
the Query Output panel by pressing the F5=File key.

Service Queries
From the VMFINFO Main Panel, you can also select queries on:

• PTFs and APARs
• Serviceable parts and usable forms
• Miscellaneous information

Additional panels are displayed based on the selections you make.

An example of each VMFINFO query panel, as well as an example of each type of query output panel, is
shown in the following sections.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 203

Product Description Query
You can use the product description query to find the description of a product. To get the description for a
product, select the product description query from the VMFINFO Main Panel.

Figure 114 on page 204 shows the output from a product description query. For this example, we entered
ESA PPF D for the PPF fileid and MYCOMP for the component name.

 Query Output - Product Description

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

Product description: MYCOMP component for z/VM

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 114. Product Description Query Output

For information on the output provided, see “The System-Level Description Table (VM SYSDESCT)” on
page 686.

Product Status Query
You can use the product status query to find the receive, apply, and build status for the product. To
determine the status of a product, select the product status query from the VMFINFO Main Panel.

Figure 115 on page 204 shows the output from a product status query. In this example, we entered ESA
PPF D for the PPF fileid and MYCOMP for the component name.

 Query Output - Product Status

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

Receive status: RECEIVED.06/18/22.09:16:01.MAINT
Apply status: APPLIED.06/18/22.10:08:04.MAINT
Build status: BUILT.06/19/22.09:10:06.MAINT

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 115. Product Status Query Output

Using the VMFINFO Panels

204 z/VM: 7.3 VMSES/E Introduction and Reference

For information on the output provided, see “The System-Level Receive Status Table (VM SYSRECS)” on
page 690, “The System-Level Apply Status Table (VM SYSAPPS)” on page 692, and “The System-Level
Build Status Table (VM SYSBLDS)” on page 694.

Product Requisites Query
You can use the product requisites query to check the requisites for a product. To determine the
requisites for a product, select the product requisites query from the VMFINFO Main Panel.

Figure 116 on page 205 shows the output from a product requisite query. In this example, we entered
ESA PPF D for the PPF fileid and MYCOMP for the component name.

 Query Output - Product Requisites

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PRODID: 1VMVMC23%MYCOMP
PREREQ: 1VMVMP11
REQ: *NONE*
DREQ: 1VMVMC22
SUP: *NONE*
IFREQ: *NONE*
NPRE: *NONE*
SUBREQ: 1VMVME10
SUBIF: *NONE*
PTFREQS: *NONE*

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 116. Product Requisite Query Output

For information on the output provided, see “The System-Level Requisite Table (VM SYSREQT)” on page
688.

Product Dependencies Query
You can use the product dependencies query to find the dependencies for a product. To determine the
dependencies for a product, select the product dependencies query from the VMFINFO Main Panel.

Figure 117 on page 206 shows the output from a product dependencies query. In this example, we
entered ESA PPF D for the PPF fileid and MYCOMP for the component name.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 205

 Query Output - Product Dependencies

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PRODID: 1VMVMC23%MYCOMP
DEPS: 1VMVMS20 1VMVME10 1VMVMG10
DREQDEPS: 1VMVMC22
SUPBY: *NONE*
OUTREQS: *NONE*

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 117. Product Dependencies Query Output

For information on the output provided, see “The System-Level Requisite Table (VM SYSREQT)” on page
688.

PTF/APAR Query Panel
You can use the PTF/APAR Query Panel to obtain information on the PTFs and APARs installed on your
system.

When you select the PTF/APAR option from the VMFINFO Main Panel, you see the following panel:

 PTF/APAR Queries

Enter a PTF or APAR number and type an option code. Then press Enter.
 PPF fileid ESA PPF D
 Component name MYCOMP Setup ... YES
 Product ID ...: 1VMVMC23 System .. VM
 PTF number ________
 APAR number ... ________

 Options: S - select
Option Query
 _ Status of PTF
 _ Requisites/supersedes of PTF
 _ Dependencies/superseding of PTF
 _ User memo of PTF
 _ Serviceable parts included by PTF

 _ Abstract of APAR(s)

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 118. PTF/APAR Query Panel

You need to enter any combination of PTF or APAR numbers, select an option, and press enter.

You can get a list of valid PPF file identifiers, component names, PTF numbers, and APAR numbers by
putting the cursor on the field and pressing the F1 key for help. For a description of each type of query
listed on this panel, put the cursor on the query topic and press the F1 key. If the cursor is not on an input
field or a query topic and you press F1=Help, you receive general help on the query panel.

Using the VMFINFO Panels

206 z/VM: 7.3 VMSES/E Introduction and Reference

Table 13 on page 207 shows an example of the possible combinations of inputs and the outputs received
for each combination.

Table 13. Example PTF/APAR Query Inputs and Results

When You
Enter PTF
Number

When You
Enter APAR

Number
And You Select This Query You Receive

X None • Status of PTF
• Requisites/supersedes of PTF
• Dependencies/superseding of PTF
• User memo of PTF
• Serviceable parts included by PTF

Information for just PTF X

None Y • Status of PTF
• Requisites/supersedes of PTF
• Dependencies/superseding of PTF
• User memo of PTF
• Serviceable parts included by PTF

All PTFs with APAR number Y

X Y • Status of PTF
• Requisites/supersedes of PTF
• Dependencies/superseding of PTF
• User memo of PTF
• Serviceable parts included by PTF

Information for just PTF X

X None • Abstract of APAR(s) All abstracts for all APARs in PTF X

None Y • Abstract of APAR(s) Information for just APAR Y

X Y • Abstract of APAR(s) The abstract for the PTF X and APAR Y
combination

The following examples show the output for each type of query.

PTF Status Query Output
Figure 119 on page 208 shows the output from a PTF status query. You can use the PTF status query to
get the receive and apply status for a PTF.

In this example, we entered ESA PPF D for the PPF fileid, MYCOMP for the component name, and
UM18082 for the PTF number.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 207

 Query Output - PTF Status

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PTF: UM18082

Receive status: RECEIVED.07/18/22.09:16:01.MAINT
Apply status: APPLIED.07/18/22.10:08:04.MAINT

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 119. PTF Status Query Output

For information on the output provided, see “The Service-Level Receive Status Table (recid SRVRECS)” on
page 717.

PTF Requisites/Supersedes Query Output
Figure 120 on page 208 shows the output from a PTF requisites/supersedes query. You can use the PTF
requisites/supersedes query to find the requisites for the PTF and any PTFs replaced by the PTF number
you enter.

In this example, we entered ESA PPF D for the PPF fileid, MYCOMP for the component name, and
UM18135 for the PTF number.

 Query Output - PTF Requisites/Supersedes

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PTF: UM18135

PREREQ: UM18109
HARDREQ: VM47104
SUBREQ: UM18082
SUBIF: *NONE*
SUBHARDREQ: *NONE*

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 120. PTF Requisites/Supersedes Query Output

For information on the output provided, see “The Service-Level Requisite Table (recid SRVREQT)” on page
715 and “The Service-Level Apply Status Table (appid SRVAPPS)” on page 718.

Using the VMFINFO Panels

208 z/VM: 7.3 VMSES/E Introduction and Reference

PTF Dependencies/Superseding Query Output
Figure 121 on page 209 shows the output from a PTF dependencies/superseding query. You can use the
PTF dependencies/superseding query to find the PTFs that depend on the PTF number you enter, as well
as any PTFs that replace (supersede) that PTF number.

In this example, we entered ESA PPF D for the PPF fileid, MYCOMP for the component name, and
UM15010 for the PTF number.

 Query Output - PTF Dependencies/Superseding

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PTF: UM15010

DEPS: UM15020
SUPBY: *NONE*
OUTREQS: *NONE*

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 121. PTF Dependencies/Superseding Query Output

For information on the output provided, see “The Service-Level Requisite Table (recid SRVREQT)” on page
715 and “The Service-Level Apply Status Table (appid SRVAPPS)” on page 718.

PTF User Memo Query Output
Figure 122 on page 209 shows the output from a PTF user memo query. You can use the user memo
query to get additional information for a PTF that is provided in the user memo.

In this example, we entered ESA PPF D for the PPF fileid, MYCOMP for the component name, and
UM18082 for the PTF number.

 Query Output - PTF User Memo

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PTF: UM18082

This field contains special instructions.

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 122. PTF User Memo Query Output

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 209

For information on the output provided, see “The PTF Parts ($PTFPART) File” on page 707.

PTF Serviceable Parts Query Output
Figure 123 on page 210 shows the output from a PTF serviceable parts query. In this example, we
entered ESA PPF D for the PPF fileid, MYCOMP for the component name, and UM18135 for the PTF
number.

 Query Output - PTF Serviceable Parts

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

PTF: UM18135

VMFAPPLY EXC
VMFREC EXC
VMFBLD EXC
VMFSIM EXC

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 123. PTF Serviceable Parts Query Output

For information on the output provided, see “The PTF Parts ($PTFPART) File” on page 707.

APAR Abstract Query Output
Figure 124 on page 210 shows the output from an APAR abstract query. In this example, we entered ESA
PPF D for the PPF fileid, MYCOMP for the component name, and VM47103 for the APAR number.

 Query Output - APAR Abstract(s)

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

APAR: VM47103

This field contains the APAR abstract.

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 124. APAR Abstract Query Output

For information on the output provided, see “The Service-Level Description Table (recid SRVDESCT)” on
page 714 and “The PTF Parts ($PTFPART) File” on page 707.

Using the VMFINFO Panels

210 z/VM: 7.3 VMSES/E Introduction and Reference

Serviceable Parts/Usable Forms Query Panel
You can use the Serviceable Parts/Usable Forms Query Panel to obtain information on the:

• Status of objects
• Build requisites of objects
• Build dependencies of objects
• Part handler and target of objects
• Service level of parts
• Service history of parts

When you select the Serviceable Parts/Usable Forms option from the VMFINFO Main Panel, you see the
panel shown in Figure 125 on page 211.

 Serviceable Parts/Usable Forms Queries

Enter an Object or Part specification. Type an option code, press Enter.
 PPF fileid ESA PPF D
 Component name. MYCOMP Setup ... YES
 Product ID ...: 1VMVMC23 System .. VM
 Build list ________ Object........... ________
 Part file name. ________ File type abbrev. ________

 Options: S=Select
Option Query
 _ Status of object(s)
 _ Build requisites of object(s)
 _ Build dependencies of object(s)
 _ Part handler/target of object(s)

 _ Service level of part(s)
 _ Service history of part(s)

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 125. Serviceable Parts/Usable Forms Query Panel

You need to enter the information requested, select an option code, and press enter.

Table 14 on page 211 shows the different combinations of inputs and the type of information you receive
when you select one of the following queries:

• Status of object(s)
• Build requisites of object(s)
• Build dependencies of object(s)
• Part handler/target of objects(s)

Table 14. Serviceable Parts/Usable Forms Query Inputs and Results for Objects

When You Enter
You Receive

Build List Object File Name File Type Abbreviation

● Information for each object in
the build list

● ● Information for that object in
that build list

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 211

Table 14. Serviceable Parts/Usable Forms Query Inputs and Results for Objects (continued)

When You Enter
You Receive

Build List Object File Name File Type Abbreviation

● ● ● Information for the object
with that file name in that
particular build list

● ● ● ● Information for only that
object with the matching
file name and file type
abbreviation in that particular
build list

 ● Information for all build lists
containing that object

 ● ● Information for that object
with that file name in all build
lists

 ● ● ● Information for that object
with that file name and file
type abbreviation in all build
lists

 ● Information for all objects
with that file name in all build
lists

 ● ● Information for all objects
with that file name and file
type abbreviation in all build
lists

 ● A message. You must enter a
build list, object, or part file
name.

Table 15 on page 212 shows the different combinations of inputs and the type of information you receive
when you select one of the following queries:

• Service level of part(s)
• Service history of part(s)

Table 15. Serviceable Parts/Usable Forms Query Inputs and Results for Parts

When You Enter
You Receive

Build List Object File Name File Type Abbreviation

● Information for all parts in all
objects in that build list

● ● Information for all parts in that
object in that particular build
list

● ● ● Information for the part with
that file name in that object in
that particular build list

Using the VMFINFO Panels

212 z/VM: 7.3 VMSES/E Introduction and Reference

Table 15. Serviceable Parts/Usable Forms Query Inputs and Results for Parts (continued)

When You Enter
You Receive

Build List Object File Name File Type Abbreviation

● ● ● ● Information for only the part
with that file name and
file type abbreviation in that
object in that particular build
list

 ● Information for all parts in that
object in all build lists

 ● ● Information for only the part
with that file name in that
object in all build lists

 ● ● ● Information for only the part
with that file name and
file type abbreviation in that
object in all build lists

 ● Information for all parts
with that file name in all
combinations of the build list
and object

 ● ● Information for all parts
with that file name and
file type abbreviation in all
combinations of the build list
and object

 ● A message. You must enter a
build list, object, or part file
name.

The following examples show the output for each type of query. For information on the output provided by
these queries, see “Build Lists” on page 141.

Object Status Query Output
Figure 126 on page 214 shows the output from an object status query. In this example, we entered ESA
PPF D for the PPF fileid, MYCOMP for the component name, and VMFSBHLP for the build list.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 213

 Query Output - Object Status

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

OBJECT: VMFSBHLP.BLDLIST

STATUS: BUILT

OBJECT: VMFSBHLP.HELP.SEGMENT

STATUS: BUILT

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 126. Object Status Query Output

Object Build Requisites Query Output
Figure 127 on page 214 shows the output from an object build requisites query. In this example, we
entered ESA PPF D for the PPF fileid, MYCOMP2 for the component name, DMSSBVMT for the build list,
and CMSVMLIB.SEGMENT for the object.

 Query Output - Object Build Requisites

PPF fileid ...: ESA PPF D
Component name: MYCOMP2 Setup ..: YES
Product ID ...: 1VMVMS10 System .: VM

OBJECT: DMSSBVMT. CMSVMLIB.SEGMENT

BLDREQS: DMSBLVMT.BLDLIST DMSBL493.VMMTLIB.LSEG

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 127. Object Build Requisites Query Output

Object Build Dependencies Query Output
Figure 128 on page 215 shows the output from an object build dependencies query. In this example, we
entered ESA PPF D for the PPF fileid, MYCOMP2 for the component name, DMSBLVMT for the build list,
and VMMTLIB for the object.

Using the VMFINFO Panels

214 z/VM: 7.3 VMSES/E Introduction and Reference

 Query Output - Object Build Dependencies

PPF fileid ...: ESA PPF D
Component name: MYCOMP2 Setup ..: YES
Product ID ...: 1VMVMS10 System .: VM

OBJECT: DMSBLVMT.VMMTLIB

BLDDEPS: DMSBLVML.VMLIB CMSLOAD.BLDLIST
DMSSBVMT. CMSVMLIB.SEGMENT

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 128. Object Build Dependencies Query Output

Object Part Handler/Target Query Output
Figure 129 on page 215 shows the output from an object part handler/target query. In this example, we
entered ESA PPF D for the PPF fileid, MYCOMP2 for the component name, and DMSBLVMT for the build
list.

 Query Output - Object Part Handler/Target

PPF fileid ...: ESA PPF D
Component name: MYCOMP2 Setup ..: YES
Product ID ...: 1VMVMS10 System .: VM

OBJECT: DMSBLVMT.*

PART HANDLER: VMFBDCLB
TARGET: BUILD6

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 129. Object Part Handler/Target Query Output

Part Service Level Query Output
Figure 130 on page 216 shows the output from a part service level query. In this example, we entered
ESA PPF D for the PPF fileid, MYCOMP3 for the component name, HCPBDUTL for the part file name, and
EXC for the part file type.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 215

 Query Output - Part Service Level

PPF fileid ...: ESA PPF D
Component name: MYCOMP3 Setup ..: YES
Product ID ...: 1VMVMP11 System .: VM

PART: HCPBDUTL.EXC

HCPBDUTL EXC00000 BASE-FILETYPE

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 130. Part Service Level Query Output

Part Service History Query Output
Figure 131 on page 216 shows the output from a part service history query. In this example, we entered
ESA PPF D for the PPF fileid, MYCOMP3 for the component name, HCPVOT for the part file name, and TXT
for the part file type.

 Query Output - Part Service History

PPF fileid ...: ESA PPF D
Component name: MYCOMP3 Setup ..: YES
Product ID ...: 1VMVMP11 System .: VM

PART: HCPVOT TXT

HCPVOT TXT24508

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 131. Part Service History Query Output

Miscellaneous Queries Panel
Use the Miscellaneous Queries Panel to obtain information on the:

• Minidisks and Shared File System directories accessed
• The results of a comparison between tables
• Build requirements
• File type abbreviations.

Using the VMFINFO Panels

216 z/VM: 7.3 VMSES/E Introduction and Reference

When you select the Miscellaneous option from the VMFINFO Main Panel, you see the panel shown in
Figure 132 on page 217.

 Miscellaneous Queries

Type an option code. Then press Enter.
 PPF fileid ESA PPF D
 Component name. MYCOMP Setup ... YES
 Product ID ...: 1VMVMC23 System .. VM

 Options: S - Select
Option Query
 _ Minidisk/directory access
 _ Compare table contents
 _ Build requirements
 _ File type abbreviations

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 132. Miscellaneous Queries Panel

You need to select an option and press enter. A second panel may be displayed, depending on the option
you select. Each option is discussed briefly in the following sections.

Minidisk/Directory Access Query
When you select the minidisk/directory access query, you receive information on the minidisks and
Shared File System directories that are accessed. The access order is defined in the usable form product
parameter file.

Figure 133 on page 217 shows the output from a minidisk/directory access query.

 Query Output - Minidisk/Directory Access

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

Minidisk|Directory Assignments:
String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
 -or- SFS Directory Name
LOCALMOD E R/W 5C4 MNT5C4 (MAINT730 05C4 : 5/02)
LOCALSAM F R/W 5C2 MNT5C2 (MAINT730 05C2 : 5/01)
APPLY G R/W 5A6 MNT5A6 (MAINT730 05A6 : 6/01)
DELTA J R/W 5D2 MNT5D2 (MAINT730 05D2 : 30/00)
BUILD8 K R/W 5E6 MNT5E6 (MAINT730 05E6 : 9/81)
BUILD7 L R/W 493 MNT493 (MAINT730 0493 : 250/53)
BUILD6 M R/W 490 MNT490 (MAINT730 0490 : 207/41)

BUILD4 M R/W 49D MNT49D (MAINT730 049D : 146/65)
BASE3 P R/W 5B4 MNT5B4 (MAINT730 05B4 : 70/86)
BASE2 Q R/W 5B2 MNT5B2 (MAINT730 05B2 : 40/88)
-------- A R/W 191 MNT191 (MAINT730 0191 : 175/19)
-------- B R/W DIR VMPSFS:MAINT730.

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 133. Minidisk/Directory Access Query Output

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 217

Compare Table Contents Panel
When you select the compare table contents option from the Miscellaneous Queries panel, the Compare
Table Contents panel (Figure 134 on page 218) is displayed. You can use the Compare Table Contents
panel to compare information in two Software Inventory tables.

 Compare Table Contents

Enter the file and field names of the tables to compare, then press Enter.
 PPF fileid ESA PPF D
 Component name. MYCOMP Setup ... YES
 Product ID ...: 1VMVMC23 System .. VM

 Table 1.. _________ _________ _

 Table 2.. _________ _________ _

 Fields... _________ _________ _________ _________ _________

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 134. Compare Table Contents

You need to enter the file name, file type, and file mode for each table being used in the comparison. You
also need to enter the names of the fields (tags) that you want to compare.

The field name must begin with a colon (:), and it can be up to 9 characters in length. For a list of valid
tags, enter the file identifiers for the two tables that you want to compare, place the cursor on one of the
input fields, and press F1=Help. Tags that are common to both tables are displayed.

Compare Table Contents Query Output
Figure 135 on page 219 shows the output from a compare table contents query. In this example, we
entered 1VMVMC23 SRVAPPS D for the first table identifier, 1VMVMC23 SRVAPPS E for the second table
identifier, and :PTF as the field name to be used in the comparison.

Using the VMFINFO Panels

218 z/VM: 7.3 VMSES/E Introduction and Reference

 Query Output - Compare Table Contents

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

=============== 1VMVMC23 SRVAPPS D2 ===============

 :PTF UV12345 :STAT APPLIED.01/03/22.11:11:11.JONES

--------------- 1VMVMC23 SRVAPPS E2 ---------------

 :PTF **NOT FOUND**

=============== 1VMVMC23 SRVAPPS D2 ===============

 :PTF UV00007 :STAT SUPED.02/04/21.12:12:12.MAINT

--------------- 1VMVMC23 SRVAPPS E2 ---------------

 :PTF UV00007 :STAT APPLIED.01/04/22.22:22:22.MAINT

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 135. Compare Table Contents Query Output

For information on the output provided, see the descriptions for the tables used for the query in Chapter
22, “Software Inventory Syntax,” on page 661.

Build Requirements Query
When you select the build requirements option on the Miscellaneous Queries panel, you receive
information on the build requirements for the component selected. Figure 136 on page 219 shows the
output from a build requirements query.

 Query Output - Build Requirements

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

Build List Object Status Partid
--
VMFBLSES VMFSIM SERVICED.02/05/22.14:14:14.MAINTvrm
 VMFBLD BUILDALL.01/08/22.06:09:43.MAINTvrm.ERROR
VMFBLSYS VMFHASM SERVICED.02/05/22.14:19:16.MAINTvrm

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 136. Build Requirements Query Output

For information on the output provided, see “The Service-Level Build Status Table (bldid SRVBLDS)” on
page 719.

File Type Abbreviations Panel
When you select the file type abbreviations option from the Miscellaneous Queries panel, the File Type
Abbreviations panel (Figure 137 on page 220) is displayed.

Using the VMFINFO Panels

Chapter 17. Using the VMFINFO Panels 219

You can use the File Type Abbreviations panel to find the real file type and base file type for a file type
abbreviation.

Note: You can request information for only one file type at a time — abbreviation, real, or base.

 File Type Abbreviations

Enter either the abbrev, real, or base file type. Then press Enter.
 PPF fileid ESA PPF D
 Component name. MYCOMP Setup ... YES
 Product ID ...: 1VMVMC23 System .. VM

Abbreviation .. ___ Real .. ________ Base .. ________

Command ===>
F1=Help F3=Exit F12=Cancel

Figure 137. File Type Abbreviations Panel

You need to enter the 3-character file type abbreviation, the real file type, or the base file type and press
enter.

The following example shows the output for this type of query.

File Type Abbreviations Query Output
Figure 138 on page 220 shows the output from a file type abbreviations query. In this example, the file
type abbreviation EXC was entered; and the real and base file types were provided.

 Query Output - File Type Abbreviations

PPF fileid ...: ESA PPF D
Component name: MYCOMP Setup ..: YES
Product ID ...: 1VMVMC23 System .: VM

Abbrev: EXC
Real: EXEC
Base: EXC00000

Command ===>
F1=Help F3=Exit F5=File F12=Cancel

Figure 138. File Type Abbreviations Query Output

For more information on the output provided, see “The File Type Abbreviation Table (VM SYSABRVT)” on
page 704.

Using the VMFINFO Panels

220 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 18. Changing the Software Inventory to an
SFS Directory

When you use VMSES/E to install and service licensed programs, you need write access to the Software
Inventory disk (51D). If multiple users install and maintain licensed products on your system, there may
be a problem getting the necessary write access to the 51D disk.

If you find that there is contention for write access to the 51D disk, you can eliminate it by converting
the Software Inventory from minidisk to the Shared File System (SFS). With SFS, multiple users can have
write access at the same time. SFS also ensures the integrity of the data in any file that is updated. If
you would like to use an SFS directory instead of the 51D disk for your Software Inventories, follow the
procedures in this section. These procedures are examples only. The minidisk file modes and the SFS file
pools in these examples may be different from those on your system.

Create the SFS Directory
1. Log on to the MAINTvrm user ID, where vrm is the version, release, and modification level of the z/VM

system:

logon maintvrm

MAINTvrm will be the owner of the Software Inventory directory.
2. Create the Software Inventory directory:

create directory vmpsfs:maintvrm.sidisk

Initialize the VMPSFS:MAINTvrm.SIDISK Directory
Note: You must update the VMFINS DEFAULTS, VMSESE PROFILE, and SEGBLD PPF files immediately
after performing this step. This will prevent files from being placed on the 51D minidisk instead of the
VMPSFS:MAINTvrm.SIDISK directory.

1. Copy the 51D minidisk to the VMPSFS:MAINTvrm.SIDISK directory:

access 51d d

access vmpsfs:maintvrm.sidisk e

copyfile * * d = = e (olddate

Use the COPYFILE command to initialize the VMPSFS:MAINTvrm.SIDISK directory.

Note: You should backup the VMPSFS:MAINTvrm.SIDISK directory periodically. The 51D disk can be
used as a backup for the VMPSFS:MAINTvrm.SIDISK directory.

Change the Software Inventory Default from Minidisk to SFS
Directory

1. Establish the correct minidisk access order for VMSES/E:

access vmpsfs:maintvrm.sidisk d

2. Modify the VMFINS DEFAULTS file.

a. Run LOCALMOD and reply to the VMFLMD1301R prompt with a '1' to enter an XEDIT session.

Changing the Software Inventory to an SFS Directory

© Copyright IBM Corp. 1990, 2023 221

localmod vmses vmfins defaults

dfll0001 is the file type of your replacement part for VMFINS DEFAULTS. DFL is the file type
abbreviation for DEFAULTS, and L0001 is the local modid that was selected for this change.

b. Update the replacement VMFINS DEFAULTS file. Enter the following commands to change the
default for SIDISK from 51D to VMPSFS:MAINTvrm.SIDISK:

===> change /51D/vmpsfs:maintvrm.sidisk/ *
 ===>
 file

3. Modify the VMSESE PROFILE file.

a. Run LOCALMOD and reply to the VMFLMD1301R prompt with a '1' to enter an XEDIT session:

localmod vmses vmsese profile

prfl0002 is the file type of your replacement part for VMSESE PROFILE. PRF is the file type
abbreviation for PROFILE, and L0001 is the local modid that was selected for this change.

b. Update the replacement VMSESE PROFILE file. Enter the following commands to change the
default for SIDISK from 51D to VMPSFS:MAINTvrm.SIDISK:

 ===>
 locate :SHRDISK.
 ===>
 delete 1
 ===>
 input :SHRDISK. dir vmpsfs:maintvrm.sidisk
 ===>
 file

4. Rebuild the VMFINS DEFAULTS and VMSESE PROFILE files and make your changes active.

service vmses build

Note: The updated files containing your change have been built to the test build disk (5E6). To test
your update, you can access the test build disk in place of the production build disk (5E5) and issue
some VMFINS commands.

After you are satisfied with your change, you can place it into production, by entering these
commands:

put2prod vmses

copyfile * * t = = b (olddate

release t

Note: If you are running in an SSI cluster, you must run the PUT2PROD command on all members in
the cluster.

5. Update the SEGBLD PPF.

a. Run LOCALMOD and reply to the VMFLMD1301R prompt with a '1' to enter an XEDIT session.

localmod cp segbld $ppf

b. Update the replacement SEGBLD $PPF file. Enter the following commands to change the default for
SIDISK from 51D to VMPSFS:MAINTvrm.SIDISK.

===> locate /&SID/
 ===>
 delete 1
 ===>
 up 1
 ===>
 input &SID DIR $VMPSFS$:$MNTVRM$.SIDISK

Changing the Software Inventory to an SFS Directory

222 z/VM: 7.3 VMSES/E Introduction and Reference

===>
 file

Note that in the input command above, the "VRM" in $MNTVRM$ is the characters "VRM" rather
than the version, release and modification level.

c. Build the new SEGBLD $PPF and PPF.

service cp build

d. Place the new SEGBLD $PPF into production.

put2prod cp

Note: If you are running in an SSI cluster, you must run the PUT2PROD command on all members in
the cluster.

Enroll Users and Give Them Access Authority
You need to issue the following ENROLL and GRANT AUTHORITY commands for each current user and
any future user that uses VMSES/E to install and service licensed products. You only need to issue the
commands once for each user.

1. Log on to the MAINTvrm user ID if you are not already logged on:

logon maintvrm

Because MAINTvrm owns the VMPSFS:MAINTvrm.SIDISK directory, you must issue the ENROLL and
GRANT AUTHORITY commands from the MAINTvrm user ID.

2. Enroll users in the VMPSFS: filepool:

enroll user userid vmpsfs:

userid is any user ID that requires access to the VMPSFS: filepool.
3. Give users write access to the VMPSFS:MAINTvrm.SIDISK directory and all files that reside in it:

grant authority vmpsfs:maintvrm.sidisk to userid (write newwrite

userid is the user ID of each VMSES/E user.

The WRITE option gives users authority to write to the VMPSFS:MAINTvrm.SIDISK directory.

The NEWWRITE option lets the user update any new file that is added to the directory. If you are only
giving write access on an individual file basis, you will not want to give all users NEWWRITE authority
to this directory.

Note: If you want to control write authority on individual files, you must specify actual file names and
file types in place of the * * in this command. If you choose to grant authority for individual files, you
must ensure that all users have write access to the system-level Software Inventory files.

4. Give users write access to all the files that already exist in the directory:

grant authority * * vmpsfs:maintvrm.sidisk to userid (write

* * identifies all files in the VMPSFS:MAINTvrm.SIDISK directory.

The WRITE option on this command lets the user update files that were specified in this command.
5. Update the MAINTvrm PROFILE EXEC to change the access to the 51D disk.

change /51D/vmpsfs:maintvrm.sidisk (forcerw / *

Note: Update any other PROFILE EXECs that access the 51D software inventory disk.

Changing the Software Inventory to an SFS Directory

Chapter 18. Changing the Software Inventory to an SFS Directory 223

Changing the Software Inventory to an SFS Directory

224 z/VM: 7.3 VMSES/E Introduction and Reference

Part 5. Reference

This part of the book provides reference information on the following topics:

• Railroad track command syntax
• Online HELP Facility
• VMSES/E exec and command formats
• Product parameter file syntax
• Software Inventory syntax

Figure 139. VMSES/E - Reference Information

© Copyright IBM Corp. 1990, 2023 225

226 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 19. Using the VMSES/E Reference
Information

This chapter provides information to help you use the reference information in this book.

Understanding Syntax Diagrams
For an explanation of the syntax diagrams used in this book, see “Syntax, Message, and Response
Conventions” on page xxix.

Using the Online HELP Facility
You can receive online information about VMSES/E commands using the z/VM HELP Facility. For example,
to display a menu of VMSES/E commands, enter:

help vmses menu

To display information about a specific VMSES/E command (VMFREC in this example), enter:

help vmses vmfrec

For more information about using the HELP Facility, see z/VM: CMS User's Guide. To display the main HELP
Task Menu, enter:

help

For more information about the HELP command, see z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

Using the VMSES/E Commands
In order to use the VMSES/E commands, you should have:

• An A-disk accessed read-write (R/W).
• The VMSES/E build disk accessed. By default, the VMSES/E build disk is the 5E5 disk, and it is accessed

as B.
• The Software Inventory disk accessed. By default, the Software Inventory disk is the 51D disk, and it is

accessed as D.

Using the VMSES/E Reference Information

© Copyright IBM Corp. 1990, 2023 227

Using the VMSES/E Reference Information

228 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 20. VMSES/E EXEC and Command Format
Summaries

Summaries of the VMSES/E commands that are used during product installation and service application
follow. For information about how to read the syntax diagrams, see “Understanding Syntax Diagrams”
on page 227. For information about how to run the VMSES/E commands, see “Using the VMSES/E
Commands” on page 227.

Using Tools for Service and System Generation
z/VM provides a number of tools to help you perform service and system generation tasks. Table 16 on
page 229 lists the tools, their task, and where to find more information.

Table 16. z/VM Service and System Generation Tools

Tool Task For more information, see...

CHKAPARS Evaluates system APAR data. “CHKAPARS EXEC” on page 234

EXPAND Adds space to a program in object deck form. “EXPAND Command” on page 785

GENCPBLS Updates the CP load list build list. “GENCPBLS EXEC” on page 237

INSTFPP Installs optional products. “INSTFPP EXEC” on page 725

LOCALMOD Creates a local modification for a part. “LOCALMOD EXEC” on page 245

PRODUTL Selectively copies one or more groups of files
for a product, component, or feature into
production, or selectively compares such files,
for content-change notification purposes.

“PRODUTL EXEC” on page 249

PUT2PROD Places the z/VM components, features, or
products that are installed on the z/VM system
into production.

“PUT2PROD EXEC” on page 258

SERVICE Installs an RSU or applies corrective service
(COR).

“SERVICE EXEC” on page 261

SERVMGR Handles all tasks associated with z/VM
Centralized Service Management (z/VM CSM).

“SERVMGR EXEC” on page 269

SNTINFO Gets discontiguous saved segment (DCSS)
information directly from CP.

“SNTINFO EXEC” on page 735

VMFAPPLY Updates the maintenance level of the
specified product.

“VMFAPPLY EXEC” on page 294

VMFASM Updates an ASSEMBLE source file according
to entries in a control file, then assembles the
source file to produce an object file.

“VMFASM EXEC” on page 300

VMFBTMAP Creates a file, for each PTF prefix, that
contains a bitmap representation of all PTFs
received on the z/VM system for the PTF
prefix.

“VMFBTMAP EXEC” on page 367

VMFBLD Builds objects for the specified product. “VMFBLD EXEC” on page 308

© Copyright IBM Corp. 1990, 2023 229

Table 16. z/VM Service and System Generation Tools (continued)

Tool Task For more information, see...

VMFCNVT Converts size and block size data into
cylinders and displays the results.

“VMFCNVT EXEC” on page 370

VMFCOPY Copies a file to a VMSES/E target minidisk or
SFS directory and updates the parts catalog
table on that target.

“VMFCOPY EXEC” on page 372

VMFERASE Erases a file on a VMSES/E target minidisk or
SFS directory and updates the parts catalog
table on that target.

“VMFERASE EXEC” on page 380

VMFENRPT Creates a report of the products that are
enabled and disabled on your system.

“VMFENRPT EXEC” on page 376

VMFEXUPD Calls the EXECUPDT command to apply
updates to a $Source program.

“VMFEXUPD EXEC” on page 384

VMFHASM Updates an ASSEMBLE source file according
to entries in a control file, then uses the H
assembler to produce an object file.

“VMFHASM EXEC” on page 390

VMFHLASM Updates an ASSEMBLE source file according
to entries in a control file, then uses the HL
assembler to produce an object file.

“VMFHLASM EXEC” on page 397

VMFINFO Queries the software inventory tables. “VMFINFO EXEC” on page 405

VMFINS Installs, migrates, builds, and deletes
products.

“VMFINS EXEC” on page 407

VMFMERGE Applies PTFs to systems network architecture
(SNA) products. VMFMERGE is used only to
service SNA products.

“VMFMERGE EXEC” on page 776

VMFMRDSK Consolidates the contents of minidisks/
directories within a string.

“VMFMRDSK EXEC” on page 447

VMFNLS Applies updates to national language files and
compiles the updated versions.

“VMFNLS EXEC” on page 451

VMFOVER Creates a temporary PPF by applying
overrides to a source PPF.

“VMFOVER EXEC” on page 459

VMFPPF Compiles a source PPF into its usable form. “VMFPPF EXEC” on page 461

VMFPSU Helps you choose which method to use when
you install a product service upgrade (PSU).

“VMFPSU EXEC” on page 465

VMFQMDA Displays the current VMSES/E access order. “VMFQMDA EXEC” on page 472

VMFQOBJ Returns information about objects defined in
build lists.

“VMFQOBJ EXEC” on page 475

VMFREC Processes installation media and service
tapes.

“VMFREC EXEC” on page 480

VMFREM Removes PTFs received by the VMFREC
EXECand applied by the VMFAPPLY EXEC.

“VMFREM EXEC” on page 488

VMFREPL Supports the local modification of
replacement maintained parts.

“VMFREPL EXEC” on page 496

230 z/VM: 7.3 VMSES/E Introduction and Reference

Table 16. z/VM Service and System Generation Tools (continued)

Tool Task For more information, see...

VMFREMOV Removes PTFs from systems network
architecture (SNA) products. VMFREMOV is
used only to service SNA products.

“VMFREMOV EXEC” on page 779

VMFSETUP Sets up a minidisk and SFS directory access
order, or detaches minidisks that were linked
by previous invocations of the VMFSETUP
EXEC, depending on how it is invoked.

“VMFSETUP EXEC” on page 503

VMFSGMAP Processes and displays the saved segment
information defined in a saved segment
configuration build list and save segment data
file.

“VMFSGMAP EXEC” on page 509

VMFSIM Provides an interface to the software
inventories.

“VMFSIM EXEC” on page 528

VMFSUFIN Installs service from RSU service envelope
files, COR service envelope files, or both.

“VMFSUFIN EXEC” on page 600

VMFSUFTB Builds the VM SYSSUF table that contains a
list of all installed products and related data
needed by the automated service commands.

“VMFSUFTB EXEC” on page 605

VMFUPDAT Updates selected software inventory tables. “VMFUPDAT EXEC” on page 607

VMFVIEW Displays message logs using XEDIT with
predefined function keys.

“VMFVIEW EXEC” on page 617

VMFZAP Applies ZAPs to systems network architecture
(SNA) products. VMFZAP is used only to
service SNA products.

“VMFZAP EXEC” on page 781

ZAPTEXT Modifies or dumps individual text files. “ZAPTEXT EXEC” on page 783

z/VM provides a number of tools to help you perform service and system generation tasks. Table 17 on
page 231 lists z/VM service and system generation commands and where to find more information about
them.

Table 17. Additional z/VM Service and System Generation Tools

Tool Task For more information, see...

ASSEMBLE Processes source statements in assembler
language source files.

z/VM: CMS Commands and Utilities Reference

CSLGEN Builds a callable services library (CSL). z/VM: CMS Commands and Utilities Reference

DCSSGEN Builds the CMS installation saved segment
(CMSINST).

z/VM: CMS Commands and Utilities Reference

DIRECTXA Creates a user directory. z/VM: CP Commands and Utilities Reference

DISKMAP Summarizes the MDISK statements in the user
directory. The output shows gaps and overlaps
between minidisk assignments.

z/VM: CP Commands and Utilities Reference

DOSGEN Builds the CMSDOS physical saved segment. z/VM: CMS Commands and Utilities Reference

EXECUPDT Produces an updated version of a $Source file. z/VM: CMS Commands and Utilities Reference

Chapter 20. VMSES/E EXEC and Command Format Summaries 231

Table 17. Additional z/VM Service and System Generation Tools (continued)

Tool Task For more information, see...

GENMOD Generates CMS module files. z/VM: CMS Commands and Utilities Reference

GROUP Builds a GCS configuration file. z/VM: Group Control System

HCPLDR Calls and controls the system loader. z/VM: CP Commands and Utilities Reference

IPWIZARD Creates a minimal TCP/IP configuration
that establishes basic connectivity to your
IP network. Creates the TCP/IP SYSTEM
DTCPARMS, TCPIP DATA, and PROFILE TCPIP
files.

z/VM: CP Commands and Utilities Reference

LANGGEN Loads national language text files into a saved
segment.

z/VM: CMS Commands and Utilities Reference

LANGMERG Combines national language files for an
application into a single text file.

z/VM: CMS Commands and Utilities Reference

LOADLIB Lists, copies, or compresses CMS load
libraries.

z/VM: CMS Commands and Utilities Reference

MIGR51D Updates the system software inventory files. z/VM: CP Commands and Utilities Reference

MOVE2SFS Moves data from minidisks to shared file
system (SFS) servers, and reclaims the unused
minidisk space.

z/VM: CP Commands and Utilities Reference

PRELOAD Collects multiple text files and reformats them
into a single text file.

z/VM: CMS Commands and Utilities Reference

SAMGEN Builds the CMSBAM physical saved segment. z/VM: CMS Commands and Utilities Reference

SAMPNSS Defines named saved systems. z/VM: CMS Commands and Utilities Reference

SAVEFD Places file directory information for a shared,
extended data format (EDF) R/O minidisk into
a discontiguous shared segment (DCSS).

z/VM: CMS Commands and Utilities Reference

SEGGEN Builds logical saved segments defined in a
physical saved segment.

z/VM: CMS Commands and Utilities Reference

SPXTAPE Saves standard spool files and system data
files on tape and restores SPXTAPE-format
files from tape to the spooling system.

z/VM: CP Commands and Utilities Reference

UTILITY Provides occasionally-used installation
functions, such as, issuing DIAGNOSE code
X'24' and X'210' for a virtual device and
creating a stand-alone service utility tape for
either or both ICKDSF and DDRXA.

z/VM: CP Commands and Utilities Reference

VMFLKED Link edits modules into a load library
(LOADLIB).

z/VM: CMS Commands and Utilities Reference

VMFMAC Builds macro libraries (MACLIBs) containing
macro and copy files.

z/VM: CMS Commands and Utilities Reference

VMFPLC Provides a front end to routines that use
VMFPLC2 when conversion to VMFPLCD or a
dual path is desired.

z/VM: CMS Commands and Utilities Reference

232 z/VM: 7.3 VMSES/E Introduction and Reference

Table 17. Additional z/VM Service and System Generation Tools (continued)

Tool Task For more information, see...

VMFPLCD Loads files from an envelope, dumps files to
an envelope, and controls various envelope
operations.

z/VM: CMS Commands and Utilities Reference

VMFPLC2 Loads files from tape, dumps files to tape, and
controls various tape drive operations.

z/VM: CMS Commands and Utilities Reference

VMFTXT Builds a text library (TXTLIB) from text decks. z/VM: CMS Commands and Utilities Reference

ZAP Modifies or dumps MODULE, LOADLIB, or
TXTLIB files.

z/VM: CMS Commands and Utilities Reference

Chapter 20. VMSES/E EXEC and Command Format Summaries 233

CHKAPARS EXEC

CHKAPARS

CP

compname

ALL

VMNEWLVL SYSAPARS *

fn
SYSAPARS *

ft
*

fm

(

SUMmary

DETail

Purpose
The CHKAPARS EXEC evaluates system APAR data for a selected z/VM component or all components.
APAR data for the subject z/VM system is acquired by using the VMSES/E SERVICE STATUS ALLAPARS
command. The acquired data is compared to APAR reference data that is acquired from a specified CMS
file. A report of the evaluation is produced in a program-created report file.

Operands
compname

The compname operand specifies a z/VM component name. The operand can be a component of
interest (for example, CP or TCPIP) or the keyword ALL, which specifies all z/VM base components. If
you do not specify a component name, then the value defaults to CP.

fn
The fn operand specifies the filename of a file that contains reference APAR information. The asterisk
wildcard is not allowed in the filename. If you do not specify a fn operand, then the exec uses the
default file specification: VMNEWLVL SYSAPARS *.

ft
The ft operand specifies the filetype of a file that contains reference APAR information. The asterisk
wildcard is not allowed in the filetype. If you do not specify a fn operand, then you cannot specify a ft
operand. The default value for the ft operand is SYSAPARS.

fm
The fm operand specifies the filemode of a file that contains reference APAR information. If you do not
specify a ft operand, then you cannot specify a fm operand. The default value for the fm operand is *.

If two or more files match the file specification, CHKAPARS processes only the first file in the CMS
search order.

SUMmary
The SUMMARY keyword specifies that only summary information is included in the report. The
summary report lists APARs by product ID and identifies three APAR categories:

• Matched system APARs. APARs are on the system and on the reference list of APARs.
• Unique system APARs. APARs are on the system but not on the reference list of APARs.
• Reference APARs only. APARs are on the reference list but not present on the subject system.

CHKAPARS EXEC

234 z/VM: 7.3 VMSES/E Introduction and Reference

DETail
The DETAIL keyword specifies that detail information is included in the report. The detail report lists
APARs by the categories in the summary report. For system APARS, the detail report also groups
APARs by the following statuses:

• RECEIVED
• APPLIED
• BUILT
• PUT2PROD

Usage Notes
1. CHKAPARS can only display APAR information for products that have supplied previous-release APAR

information for their respective new-level equivalent.

Input and Output Files

Input Files
APAR reference file

The APAR reference file is a textual data file that lists the z/VM APARs in a new z/VM release.

A file with filetype SYSAPARS must have the same (tagged) format as the VMSES/E System-Level Base
APAR Table. The Base APAR Table file is VM SYSAPARS, and is supplied as part of the installation
media for a z/VM release.

A file with filetype other than SYSAPARS must have one of the following formats:

• A plain text file in the same format as the LIST input that is required for the VMSES/E SERVICE
command.

• A list of two-word records where the second word is a component name. In this case, the report
data combines the data by component. The result is the same as when a file with filetype SYSAPARS
file is used.

Output Files
CHKAPARS REPORT

The CHKAPARS REPORT file contains the evaluation results. The information is in plain text format.
Commentary information is delimited by an asterisk in column 1 of a file record.

$VMFCHK $MSGLOG
The $VMFCHK $MSGLOG contains messages that are associated with the CHKAPARS command. The
content can be viewed by using the VMFVIEW command.

Return Codes
The CHKAPARS EXEC issues the following return codes:

Return Code Explanation

0 Successful execution and normal completion. No errors were encountered.

4 A warning condition was encountered. Review of output and results is
advised.

6 Program Initialization errors were encountered.

8 General-case processing errors were encountered.

100 Significant program processing errors were encountered.

CHKAPARS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 235

Recovery Information

The CHKAPARS EXEC can be restarted by issuing the command again.

CHKAPARS EXEC

236 z/VM: 7.3 VMSES/E Introduction and Reference

GENCPBLS EXEC

GENCPBLS cploadlist

*

cntrlfn

ppfname compname

(
1

(
2

Options

)

Options
ASM HL

ASM H CNTRL cntrlfn ALTCNtrl altcntrlfn

CKGen
3

LOGMOD
3

NOCKGen

NOVVT
3

FILEType out_ft

NODUAL

DUAL
3

LOADList CPLOAD32

LOADList loadlistfn

ALTLOadlist CPLOAD64

ALTLOadList altloadlistfn

OUTMode A

OUTMode mda_string
3

fm

NO$SELect

$SELect
3

PRint

DIsk

NOPrint
4

SETup

NOSetup

PREEXit

MDLAT CP

MDLAT ALL hasm_options

HLASM hlasm_options EHLASM

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 The CKGEN, LOGMOD, DUAL, NOVVT, OUTMODE mda_string, and $SELECT options cannot be used
with the cntrlfn operand.
4 The NOPRINT option is only valid when you also use the ASM HL option.

GENCPBLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 237

Purpose
The GENCPBLS EXEC updates the CP load list build list based on a local modification to HCPMDLAT
MACRO.

Operands
cploadlist

is the file name of the CP load list to be created if the NODUAL option is specified.
*

is a place holder that can be used with the DUAL option. cploadlist is ignored if the DUAL option is
specified.

cntrlfn
is the file name of a control file. The file type must be CNTRL.

ppfname
is the file name of a usable form product parameter file. The product parameter file must have a file
type of PPF. The name of the control file that is to be used to update the source file is obtained from
this product parameter file.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1- to 16-character alphanumeric identifier.

Options
ASM H

indicates HASM is used to assemble the part.
ASM HL

indicates HLASM is used to assemble the part.
CNTRL

specifies a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of
the control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF. The CNTRL
option can not be used if operand cntrlfn is specified.

ALTCNtrl
specifies a control file is used to identify the AUX file structure for the alternate CP load list.
altcntrlfn

is the file name of the control file that is used to identify the AUX file structure for the alternate CP
load list. The file type of the control file is CNTRL. This value overrides the value on the :ALTCNTRL
tag in the PPF. The ALTCNTRL option cannot be used if operand cntrlfn is specified.

CKGen
requests validation of the AUX files against the version vector tables and issues an error message if a
mismatch is detected. The version vector tables are not updated. In addition, CKGen verifies that the
current service level of the MACRO and CP load list match.

LOGMOD
requests validation of the AUX files for HCPMDLAT against the version vector tables and automatically
updates the local version vector tables when a mismatch is detected. When you specify the LOGMOD
option, GENCPBLS modifies only the VVTs that are defined in the control file above the :UPDTID level
defined in the PPF. All other VVT levels are only compared to the AUX files, and mismatches are
displayed. All LOCAL disks must be accessed as Read/Write.

When you use the LOGMOD option:

• If a version vector table does not exist on a LOCAL disk, it is created on the first disk in the LOCAL
string.

GENCPBLS EXEC

238 z/VM: 7.3 VMSES/E Introduction and Reference

• If the AUX file for a part is not found, the :PART entry (if found) is deleted from the version vector
table.

• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that
part. The :PART entry is not deleted from the version vector table.

• LOGMOD will update the local VVTs for the HCPMDLAT MACRO and the cploadlist EXC. No VVT
entries are created for the HCPLDL assemble file.

NOCKGen
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file and name the output file.

NOVVT
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file and name the output file.

Note: If you omit the CKGEN, LOGMOD, NOCKGEN, and NOVVT options, the GENCPBLS EXEC uses the
value of the :CKGEN tag in the PPF to determine whether to validate the AUX files against the version
vector table. If the :CKGEN tag does not appear in the PPF, no validation is performed (NOCKGEN is
assumed).

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the
AUX, CNTRL, or VVT structures.
out_ft

is the file type for the output file.
DUAL

indicates both the primary and alternate load lists specified by the LOADLIST and ALTLOADLIST
options should be created.

NODUAL
indicates only the load list specified by the cploadlist operand should be created.

LOADList
specifies the filename of the primary loadlist.
CPLOAD32

is the default primary load list file name.
loadlistfn

is the primary load list file name.
ALTLOadlist

specifies the filename of the alternate load list.
CPLOAD64

is the default alternate load list filename.
altloadlistfn

is the alternate load list filename.
PRint

sends the listing output to the virtual printer. PRINT is the default.
DIsk

creates the listing output on your A-disk.
NOPrint

suppresses the writing of the listing output.

Note: If you specify PRINT, NOPRINT, and DISK between the HLASM and EHLASM keywords, they are
ignored.

SETup
sets up a minidisk/directory access order for the assemble function according to entries in the :MDA
section of the product parameter file. This option is valid only when using a product parameter file. If a
user exit is specified in the product parameter file, setup will occur after the user exit is called.

GENCPBLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 239

NOSetup
does not set up a new minidisk/directory access order.

PREEXit
sets up a minidisk or SFS directory access order for the assemble function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the GENCPBLS EXEC uses the value
of the :SETUP tag in the product parameter file to determine whether to set up a new access order.

MDLAT CP
indicates that only the HCPMDLAT MACRO will be used to generate the CP load list. This is the default.

MDLAT ALL
indicates that all the xxxMDLAT MACROs that are members of any maclibs that are specified by the
MACS statement in the selected control file will be used to build the CP load list.

OUTMode
indicates the file mode for the output files (for example, update files, AUX files, text decks, and load
list) that are created. The file mode specified as OUTMODE must be accessed Read/Write.
A

indicates that file mode A is the file mode for the output files. A is the default.
fm

is the file mode for the output files.
mda_string

is the name of the symbolic string of disks from the :MDA section of the product parameter file.
The output is placed on the first disk specified in this string.

NO$SELect
does not update the appid $SELECT file. NO$SELECT is the default.

$SELect
updates the appid $SELECT file to indicate the HCPMDLAT MACRO and CP LOAD LIST have changed.
The first APPLY disk in the :MDA section of the product parameter file must be accessed Read/Write.
Other APPLY disks must be accessed.

HASM OPTIONS SUPPORTED BY GENCPBLS:

You can only enter hasm_options when you use the ASM H option.

In the following table, the left column shows the options of the HASM command. The right column shows
how these options are supported by GENCPBLS when invoking the HASM command. The default values
for these options are also shown. The HASM defaults are used wherever possible. Keyword-function
options must be entered without the parentheses.

HASM Options GENCPBLS Options

ALIGN NOALIGN same

NOBATCH BATCH same

NODBCS DBCS same

DECK NODECK

same

ESD NOESD

same

FLAG(0) FLAG(n) FLAG 0 FLAG n

LINECOUN(55) LINECOUN(nn) LINECOUN 55 LINECOUN nn

GENCPBLS EXEC

240 z/VM: 7.3 VMSES/E Introduction and Reference

HASM Options GENCPBLS Options

LIST|NOLIST same

NUM|NONUM same

OBJECT|NOOBJECT OBJect|NOOBJect

PRINT|NOPRINT|DISK PRint|DIsk

RENT|NORENT same

RLD|NORLD same

STMT|NOSTMT same

SYSPARM(string) SYSPARM(?) SYSPARM() SYSPARM string SYSPARM ? SYSPARM SUP|SUP
SYSPARM EXP|EXP

TERM|NOTERM same

TEST|NOTEST same

XREF(FULL) XREF(SHORT) NOXREF XREF FULL XREF SHORT NOXREF

Note: Defaults are shown highlighted.

The SYSPARM SUP option suppresses the expansion of macros. The SYSPARM EXP option activates the
expansion of macros. SYSPARM SUP is the default.

HLASM
indicates the beginning of the HLASM options, which are passed directly to the HLASM command.
GENCPBLS does not parse these options; the HLASM command performs the parsing.
hlasm_options

are the HLASM options. You can only enter hlasm_options when you use the ASM HL option.

For a description of the HLASM options, see IBM High Level Assembler/MVS & VM & VSE
Programmer's Guide, SC26-4941.

EHLASM
indicates the end of the HLASM options.

Usage Notes
1. You must modify the HCPMDLAT MACRO or the alternate xxxMDLAT MACRO before you run

GENCPBLS.

You need to add an update record to the HCPMDLAT AUX file and create a local update file for
the HCPMDLAT MACRO. All xxxMDLAT MACROs used to build the CP load list must be members in
maclibs that are specified in the control file used by the GENCPBLS command. The control file used
is defined in the PPF or is specified as the CNTRL cntrlfn option of the command syntax. See z/VM:
Service Guide for more information.

2. GENCPBLS creates a temporary MACLIB (TMP MACLIB) on the A-disk that contains an updated
level of the HCPMDLAT MACRO. This MACLIB is the first one to be made global when the HCPLDL file
is assembled. The temporary MACLIB is erased after HCPLDL is assembled.

3. GENCPBLS does not rebuild the MACLIB that contains HCPMDLAT MACRO. You must run VMFBLD to
rebuild the MACLIB containing HCPMDLAT MACRO after you run GENCPBLS.

4. GENCPBLS does not rebuild the CP nucleus. You must run VMFBLD to rebuild the CP nucleus after
you run GENCPBLS.

5. The HASM OBJECT option is always used, rather than using the HASM default NOOBJECT.
6. GENCPBLS handles packed files.

GENCPBLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 241

7. If you receive warnings or errors from the UPDATE command, check the fn UPDLOG file for additional
information.

8. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with two
records. The first record is the HCPMDLAT MACRO and the other record is the CP load list consisting
of either:

• cploadlist and EXC
• cploadlist and the full file type (when the FILETYPE option is specified).

The select data file is used by VMFBLD to determine which objects need to be built.
9. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to

eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
table files, and saving the results on a LOCALMOD disk.

10. If the product parameter file is not used the GENCPBLS command uses the control file structure to
determine the file type of the resulting output file, unless you used the FILETYPE option. For more
information, see “How VMSES/E Uses Control Files” on page 117.

11. VMFBLD uses the version vector table to determine the correct level of the part to use during build
processing. If you do not specify the LOGMOD option, you must either manually update the version
vector table before you run VMFBLD or you must rerun GENCPBLS and specify the LOGMOD option.

12. If the file type option is not specified the file type of the CP load list is determined from the
HCPMDLAT MACRO's CNTRL and AUX structure.

13. The maclibs must be specified on the MACS statement in the control file and they must be on an
accessed minidisk or SFS directory.

Examples

• To run GENCPBLS and use the defaults:

GENCPBLS CPLOAD SERVP2P CP

• To include all the xxxMDLAT MACROs when building the CP load list enter:

GENCPBLS CPLOAD SERVP2P CP (MDLAT ALL

Input and Output Files
Input Files
cntrlfn CNTRL

The control file identified by the :CNTRL tag in the product parameter file (PPF).
altcntrlfn CNTRL

The control file identified by the :ALTCNTRL tag in the product parameter file (PPF).
HCPMDLAT AUXlvlid

HCPMDLAT user-updated AUX file.
ppfname PPF

The usable form product parameter file.
HCPLDL ASSEMBLE

Assemble file for CP load list.
HCPMDLAT MACRO

The macro defining the entries for the load list.
xxxMDLAT MACRO

The macro defining user entries for modules to be added to the load list.
Output Files
cploadblist cploadftype

The CP load list build list.

GENCPBLS EXEC

242 z/VM: 7.3 VMSES/E Introduction and Reference

altcploadblist cploadftype
The alternate CP load list build list.

cploadblist LISTING
The CP load list build list LISTING file.

altcploadblist LISTING
The alternate CP load list build list LISTING file.

HCPLDL updtft
Dummy update for HCPLDL ASSEMBLE file.

appid $SELECT
The select data file.

Input/Output Files
appid VVTlvlid

The version vector table specified by the control file which is pointed to by the :CNTRL tag in the
product parameter file.

HCPLDL AUXlvlid
HCPLDL AUX file.

Temporary Files
TMP MACLIB

MACLIB containing updated HCPMDLAT MACRO.
HCPLDL TXTmodid

The assembled object deck.
PPF Tags Used
:APPID

The identifier of the product used to name the version vector table and select data file.
:BLD

Defines build processing for the product.
:COMPNAME

Defines the component in the product parameter file to be used.
:CNTRL

Identifies the file name of the control file to be used.
:ALTCNTRL

identifies the file name of the alternate control file to be used.
:MDA

Defines symbolic strings and the minidisks or SFS directories associated with them.
:SETUP

Controls whether the VMFSETUP EXEC is called to access minidisks/directories.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

GENCPBLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 243

 PI

Return codes issued by the GENCPBLS EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The GENCPBLS EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information
The GENCPBLS command can be restarted by reissuing the command.

GENCPBLS EXEC

244 z/VM: 7.3 VMSES/E Introduction and Reference

LOCALMOD EXEC

LOCALMOD compname

prodid%compname

partfn partft

infn inft

LIST listfn listft

(Options

)

Options

ASM F

ASM H

ASM HL

CNTRL cntrlfn MODID modid
1

PREfix LC

PREfix prefix REMOVE
2

TEST

REWORK
3

VVTFT VVTlvlid

Notes:
1 The MODID option is required when using the LIST operand.
2 The REMOVE option is valid only with the LIST operand.
3 The REWORK option is not valid with the LIST operand.

Purpose
The LOCALMOD EXEC creates or reworks a local modification for a part.

Operands
compname

is the name of the component as it is specified on the :PRODID tag in the system-level service update
facility table (VM SYSSUF). compname is a 1- to 16-character alphanumeric identifier.

prodid%compname
is the prodid%compname as specified on the :PRODID tag in the system-level service update facility
table (VM SYSSUF). If using this form of the parameter, the prodid, the percent sign (%), and the
compname are all required.

LIST
specifies that a user-supplied list of local modifications will be used.

The input file format should consist of one local modification per line. Each line should follow the
format: compname partfn partft infn inft. Data after inft is considered to be commentary.
Any line that starts with an asterisk (*) is a comment.

LOCALMOD EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 245

listfn
is the file name of the input list.

listft
is the file type of the input list.

partfn
is the file name of the part to be modified.

partft
is the file type of the part to be modified.

infn
is the file name of the local modification.

inft
is the file type of the local modification.

Options
ASM F

specifies that ASSEMBLE will be used for assemblies.
ASM H

specifies that HASM will be used for assemblies.
ASM HL

specifies that ASMAHL or HLASM will be used for assemblies.
CNTRL

specifies that a control file will be used.
cntrlfn

is the file name of the control file.
MODID

specifies that a user-supplied local modification identifier will be used. See usage note “5” on page
247 for the default value.
modid

is the local modification identifier.
PREfix

specifies that a user-supplied local modification identification prefix will be used. When combined
with the local modification identifier (modid), the pair forms the local modification identification value.
The default prefix is LC.
prefix

is the two-character local modification prefix.
REMOVE

specifies that all local modifications with the local modification identifier (modid) will be removed
from each component in the specified list (parts will be ignored).
TEST

specifies that VMFREM will be called with the TEST option when the REMOVE option is specified.
REWORK

specifies that the highest local modification for the part will be reworked.
VVTFT

specifies that a version vector table will be used.
VVTlvlid

is the file type of the version vector table.

LOCALMOD EXEC

246 z/VM: 7.3 VMSES/E Introduction and Reference

Usage Notes
1. One of the assembler commands (ASMAHL, HLASM or HASM) and the REXXC command need to be

available.
2. PASCAL parts are supported for TCP/IP only.
3. C parts are not supported.
4. The input file type for a local modification cannot contain the local modification identifier that is

specified by the MODID option.
5. If a local modification identifier (modid) is not supplied and the REWORK option is not specified,

a unique local modification identifier will be generated. The default format begins with L and is
followed by a 4–digit number starting with 0001. For example, L0001.

6. Specifying an existing local modification identifier (modid) implies rework.
7. Only the highest local modification can be reworked.
8. If REWORK is entered with a user-supplied file name and file type, then the highest level of the local

modification is replaced with the supplied part.
9. If VVTFT is specified to create a local modification, there cannot be a local modification at a higher

level.
10. To remove local modifications without using the LIST operand, see “VMFREM EXEC” on page 488.
11. Creating or reworking a local modification for a cross-system highest release level program residing

on the SSI system common disk (PMAINT 551, by default) must be done from a member that has the
highest release of the product installed in the SSI cluster.

Examples

• To create a local modification for the CP load list by modifying part HCPMDLAT MACRO, enter:

 LOCALMOD CP HCPMDLAT MACRO

• To create a local modification for replacement maintained part CMSINST LSEG, enter:

 LOCALMOD CMS CMSINST LSEG

• To create a local modification for source maintained part SYSPROF EXEC, enter:

 LOCALMOD 1VMVMC23%MYCOMP SYSPROF $EXEC

• To create a local modification for CP part HCPIOX TXT12345 received from IBM, enter:

 LOCALMOD CP HCPIOX TEXT HCPIOX TXT12345 (MODID L2345

• To rework local modification for replacement maintained part CMSINST LSEG, enter:

 LOCALMOD CMS CMSINST LSEG (REWORK

• To test removing a local modification where the parts are included in a file, enter:

 LOCALMOD LIST IBMFIX APAR0023 (MODID A0023 REMOVE TEST

Input and Output Files

Input Files
VM SYSSUF

The system-level service update facility table.
ppfname PPF

The usable form product parameter file.

LOCALMOD EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 247

cntrlfn CNTRL
The control file.

appid VVTlvlid
The version vector table.

Input/Output Files
LOCALMOD $RESTART A

The local modification restart file.
$VMFLMD $MSGLOG A

The LOCALMOD message log.
Output Files
VM SYSLMOD

The system-level modification table.

Messages and Return Codes
For a complete explanation of each message, use the HELP Facility to view the message explanation
online or see the appropriate messages documentation. To display information on a specific message, for
example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

LOCALMOD issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The LOCALMOD EXEC can be restarted by issuing the command again.

LOCALMOD EXEC

248 z/VM: 7.3 VMSES/E Introduction and Reference

PRODUTL EXEC

PRODUTL ppfname compname ctlg_name ctlg_section

(Options

)

Options

DEBug

TRAce

FORCECopy

REPLace

SETUP TEST

Purpose
Use the PRODUTL command to copy one or more groups of files for a product, component or feature into
production, or to selectively compare such files (to obtain notification about files that have been updated
by service actions). When files are placed into production, PRODUTL uses the VMSES/E VMFCOPY
command to copy designated files from one resource (a minidisk or SFS directory) to another. When
PRODUTL is used to identify changed files, the designated files are compared, and those that differ are
reported (and by default, no copying of the subject files is performed). A catalog file, identified by a
command operand, is used to identify the subject files, as well as the minidisks and SFS directories that
are to be used for these processes. See “CATALOG Files” on page 252 for more information about the
catalog file and its structure and content.

Note: This command is intended for use by a maintenance user ID, such as MAINTvrm, and should be
used only during product installation or when applying service.

Operands
ppfname

The name of the usable form product parameter file that is used for the installation and maintenance
of a given z/VM product or feature. The file type must be PPF.

compname
The name of a component, as specified for a :COMPNAME. tag in the product parameter file;
compname is a 1- to 16-character alphanumeric identifier.

The PPF Variable Declarations (:DCL.) section defined for compname determines the source minidisks
and SFS directories from which product files are copied; likewise for the target production minidisks to
which these files are copied.

ctlg_name
The name of the product catalog file to be processed. The file type must be CATALOG.

ctlg_section
The definition section of the catalog file to be processed. The ctlg_section value is used to determine
the "begin" and "end" tags that define each section of grouped entries (records) within a catalog file.

Options
DEBUG
TRACE

Causes supplementary messages to be issued to provide information for diagnostic purposes. The
DEBUG and TRACE options are synonymous.

PRODUTL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 249

FORCECopy
REPLace

Causes files identified within a configuration or sample definition section to be copied to their
configured (or targeted) name and type, regardless of whether such a counterpart target file already
exists. By default, a file listed in a configuration definition section is copied to its configured name and
type only if the production instance of that file does not already exist, whereas PRODUTL by default
does not copy the files listed in a sample definition section to any target resource. See “Conventional
Catalog Definitions” on page 255 for details about how entries within a configuration section are
processed. The FORCECOPY and REPLACE options are synonymous. These options cannot be used
when a notify definition section is processed.

SETUP
Causes a VMSES/E VMFSETUP (LINK command to be issued as part of PRODUTL processing, to
establish a correct operational environment. The ppfname and compname operands supplied for the
PRODUTL command are also used as operands for the VMFSETUP command.

TEST
Causes processing for the current invocation to be performed such that no files are placed into
production. The TEST option allows you to verify that required minidisks and SFS directories can be
accessed without error, and that the appropriate catalog file entries will be processed. Additional
messages are issued to clarify what actions would occur if this option were not specified.

Usage Notes
1. By default, PRODUTL does not issue minidisk LINK commands as part of its processing. Use the SETUP

option to acquire the appropriate minidisk resources if the availability of such resources cannot be
determined.

2. PRODUTL uses the first CATALOG file found in the CMS search order that matches that specified by the
ctlg_name operand.

3. Catalog file entries that are found to be unusable are bypassed, with appropriate warning or error
messages issued.

4. PRODUTL requires a minidisk or SFS directory to be accessed at file mode A with read/write (R/W)
status, for use as temporary work space and for message logging.

PRODUTL File Exclusion Support
To ensure that production minidisks contain only those files necessary to provide or use TCP/IP services,
the PRODUTL command incorporates support that allows various files present on a source minidisk or
directory resource to be excluded as certain "wildcard" catalog entries are processed. When this "file
exclusion" support is applied, files can be excluded based on specific file names, file types, or by using
conventional CMS file pattern matching techniques that employ the wildcard (*) and pattern matching (%)
characters.

Files that are to be excluded in this manner must be identified within one or more catalog file exclude
sections that are separately defined for this purpose. Within such a section, one or more exclusion entries
are defined that identify the specific files or file groups that are to be excluded.

PRODUTL file exclusion processing is activated by the XCLUDE entry processing option, which is specified
as part of a wildcard file entry. See “Entry Processing Options” on page 254 for details about the XCLUDE
option.

Note:

1. When exclusion processing is activated for a given entry (and thus, a specific source and target
resource pairing), PRODUTL automatically excludes unchanged files from a copy operation in addition
to those files identified within an exclude section. This avoids unnecessarily processing source files
that have not been modified since such files were last placed into production.

In this context, a file is considered to be unchanged when file attributes — other than file mode
number and CMS data block count — for a source file and its production counterpart are identical.

PRODUTL EXEC

250 z/VM: 7.3 VMSES/E Introduction and Reference

2. Automatic exclusion of unchanged files is performed only when a valid XCLUDE option has been
specified for a wildcard entry.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

Return Code Explanation

0 Successful execution; no processing errors were encountered.

1 Incorrect invocation. PRODUTL was invoked with an incorrect number of
operands, or a supplied operand or command option was found not to be valid. A
message that identifies the problem is displayed.

2 Internal error. If this return code is produced, processing status is indeterminate.
Contact the product support group for problem determination and assistance in
addressing this type of error.

4 Errors encountered, with warnings issued. The errors encountered might
have caused processing to complete with only partial success. Review the
PRODUTL $MSGLOG for warning messages that identify any problems that were
encountered.

8 Errors encountered; processing has not completed successfully. Review the
PRODUTL $MSGLOG for messages regarding the problems encountered.

 PI end

For more information, see “CATALOG Files” on page 252.

PRODUTL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 251

CATALOG Files

 -
src_dclvar

 %*
1

prd_dclvar

 %*
1

src_fname

 *

/
2

/

proc_opt
2

src_ftype

 *

prd_fname

 =

prd_ftype

 = comment

Entry Processing Options
UP

XCLUDE :

/

sect_name

Notes:
1 Valid only for entries and section definitions used for file exclusion purposes.
2 A period (.) is also accepted, for compatibility purposes.

Purpose
A catalog file is used by the PRODUTL command to identify which product files are to be placed into
production or compared, as well as the minidisks and SFS directories that are to be used for this process.
Structure, content and customization requirements and considerations associated with the catalog file are
described in the sections that follow.

Catalog File Structure
Within the catalog file, distinct sections are defined which identify groups of related files that are to
be copied from a given (source) minidisk or SFS directory resource to one or more (target) production
resources, or that are to be compared across two such resources. For example, product run-time
files (such MODULE and EXEC files) might be defined for processing as one group, whereas product
configuration files might be defined for handling as another, separate group.

Similarly named, paired begin and end tags are used to define a given section of grouped catalog entries.
For example, in the prodid CATALOG file supplied with TCP/IP for z/VM, the section defined for sample
configuration files is delimited by the :TCPCSAMPLE. and :ETCPSAMPLE. tags.

In general, the various entries (or, records) in the catalog file provide information sufficient for PRODUTL
to process the files for a given group. See “Catalog Entry Types” on page 254 for more specific
information.

A unique, exclusion entry can be also be defined (within a separate catalog section) that identifies certain
files or groups of files to be excluded as PRODUTL processes the conventional entries just described. For
more information about these entries and their use, see “PRODUTL File Exclusion Support” on page 250 .

Note:

1. The file type of the catalog files used by the PRODUTL command must be CATALOG.

PRODUTL EXEC

252 z/VM: 7.3 VMSES/E Introduction and Reference

2. Section definition tags must begin with a colon (:), end with a period (.), and must be comprised of a
non-blank string (intervening blanks are not permitted). Case is not significant.

3. Section tags must be present on unique lines within a catalog file — they cannot be combined with file
data entries. Tags must also be properly paired (that is, no attempt is made to detect a missing end tag
for a given begin tag).

4. File exclusion entries must be defined separately from conventional catalog file entries, in sections
defined specifically for this purpose.

Operands
-

The entry bypass character, a hyphen (-). The presence of this character at the beginning of a file entry
signifies that PRODUTL should not process such an entry.

Note: It is suggested that all entries within a given section be maintained within the IBM-supplied
catalog files. Doing so allows PRODUTL to report such bypassed entries when files are processed, and
also allows file entries to more readily be distinguished from comments as a catalog file is modified
over time.

If a given file is not required for use by your installation, its corresponding entry should be bypassed
as just described, rather than deleted or changed to a comment.

src_dclvar
A PPF :DCL. variable name for the (source) minidisk or SFS directory resource where a source file
resides. For file exclusion entries, a wildcard value (%*), that allows an entry to be matched to a given
source resource when files are processed, can be specified .

prd_dclvar
A PPF :DCL. variable name for the (target) minidisk or SFS directory resource where a copied
production file is to reside. For file exclusion entries, a wildcard value (%*) is accepted, although
this operand serves only as a positional place holder (that is, the specification of a wildcard for this
operand has no effect on file exclusion processing).

src_fname
The file name for a given source file. An asterisk (*) can be specified as wildcard value to signify
that all files of the type specified by src_ftype are to be processed. When a wildcard (*) is used, the
production file name remains unchanged from the source file name.

proc_opt
An entry-specific processing option. Such options affect how the PRODUTL command processes
(copies) files that are associated with the designated entry. Entry processing options are valid only for
wildcard (*) source file names, and are delimited by a slash (/), with no intervening spaces. Processing
options recognized by PRODUTL are further explained in “Entry Processing Options” on page 254.

src_ftype
The file type for a given source file. An asterisk (*) can be specified as wildcard value to signify that
all files of the type specified by src_fname are to be processed. When a wildcard (*) is used, the
production file type remains unchanged from the source file type.

prd_fname
The file name for a given target production file. If the source file name is specified as a wildcard (*),
prd_fname must still be specified to maintain correct entry format. For clarity, it is suggested that an
equal sign (=) be specified for prd_fname in such a case (though any specified value is processed as if
'=' had been specified).

prd_ftype
The file type for a given target production file. If the source file type is specified as a wildcard (*),
prd_ftype must still be specified to maintain correct entry format. For clarity, it is suggested that an
equal sign (=) be specified for prd_ftype in such a case (though any specified value is processed as if
'=' had been specified).

comment
Commentary text that is ignored by PRODUTL during processing.

PRODUTL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 253

Note:

1. All operands must be separated by at least one space.
2. Comment lines within a catalog file must begin with an asterisk (*). Such lines are ignored during

PRODUTL processing.
3. Literal resource values (such as a minidisk device address or an SFS directory name) are not accepted

in place of the src_dclvar or prd_dclvar operands.
4. :DCL. wildcard values (%*) are unique to the PRODUTL catalog file and are not supported (or present)

within a VMSES/E PPF file. These values should be used only to define a file exclusion entry that can be
referenced during a wildcard file copy operation.

5. For file exclusion entries, the prd_fname and prd_ftype operands (if specified) are treated as
commentary information.

Entry Processing Options
Options that can be specified as part of a catalog file entry to affect PRODUTL copy processing are:

UP
Instructs PRODUTL to use the CMS COPYFILE UPCASE option when files are copied to production
resources.

XCLUDE:sect_name
Instructs PRODUTL to exclude one or more files when processing is performed for a wildcard
catalog entry. The files to be excluded must be listed in a separate catalog file section (identified
by sect_name) that is specifically defined for this purpose.

Multiple section names can be specified for a given XCLUDE option (with each name separated by a
colon), from which a cumulative exclusion list is generated. See “PRODUTL File Exclusion Support” on
page 250 for more information about PRODUTL file exclusion support.

Note:

1. The XCLUDE option can be specified for only a wildcard entry within a general catalog section, and
for only the source file name of such an entry. This restriction stems from the presumption that any
files that are to be excluded from PRODUTL operations are a subset of a substantially larger file group
— that is, a group that is more readily processed through file name and file type wildcard (*) pattern
matching, than on a file-by-file basis.

2. When multiple entry options are specified, do not include intervening blanks between operands or
delimiters.

3. To maintain compatibility with prior option processing support, a period (.) is also accepted as an
option delimiter. However, mixed use of this alternate value and the preferred delimiter (/) is not
supported.

Catalog Entry Types
The different types of catalog entries that can be defined within a catalog file are described here:

Entry Type Description

Conventional A conventional (or, general) entry is one that identifies an individual file that is
to be processed without special consideration. Such an entry can be used in any
catalog definition section. An example of such an entry is:

 &BLD1Z &BLD0Z PROFILE STCPIP = = *A comment...

PRODUTL EXEC

254 z/VM: 7.3 VMSES/E Introduction and Reference

Entry Type Description

Wildcard A wildcard catalog entry is similar to a conventional entry, but is one in which
the source file name or source file type (or both) is specified as an asterisk (*).
For such an entry, all of the files to which this wildcard pattern is matched are
processed. An example of such an entry is:

 &BLD1Z &BLD0Z * MODULE = = Commentary text

Exclusion An exclusion catalog entry is somewhat different from the previous types and is
used to exclude one or more files from being processed.

Conventional Catalog Definitions
While the entries described in the previous section identify specific files or file groups to be processed
by PRODUTL, they do not convey how those files are to be processed. The manner in which files are
processed is controlled to a large extent by the name associated with a catalog definition (specifically,
by its delimiting begin tag). The connotation of a section name, and its effect on PRODUTL processing is
further explained here.

Configuration, Notify and Sample Definitions
A section defined by a begin tag that ends with the strings config (meaning configuration), notify or
sample must contain only conventional, non-wildcard entries. This requirement exists because PRODUTL
expects to process the entries within such sections (and the files they identify) on an individual basis.

The processing of such files on an individual basis is done to allow for a proper comparison of a given
source file and its production counterpart. When differences between two given files are detected,
PRODUTL then can provide appropriate notification and process the subject source file accordingly.

However, it is important to note that when files listed in a notify or sample definition section are
processed, only file comparisons are performed for a subject file pairing, with any detected differences
reported. No attempt is made to copy a given file and replace its counterpart. The copying of such files is
presumed to be handled through other means (such as the PUT2PROD command), and that notification
of changes to those files (resulting from the application of service) is the rationale for processing via
PRODUTL.

While PRODUTL can be instructed to copy files listed in a sample section to designated resources
(through use of a FORCECOPY or REPLACE command option), it cannot be used to copy files listed in a
notify section. Such files are presumed to be grouped and listed for change notification purposes only, so
they cannot be copied using PRODUTL regardless of whether the aforementioned command options are
used.

By contrast, when file differences are detected as entries in a config (configuration) definition section are
processed, the default action is to not replace the production instance of a given file. This is done to avoid
the overlay of a (presumably) customized configuration file. When differences are detected, PRODUTL
provides notification to this affect, which includes readily available attribute information for the subject
files.

General Catalog Definitions
A catalog section that contains conventional entries, but is neither a sample or configuration section,
is considered to be a general catalog section. General catalog definitions can include a mixture of
conventional or wildcard entries, for which (by default), no special actions are performed as files are
copied from their respective source locations to designated production resources.

However, it is with such general definitions that PRODUTL file exclusion support can be used. The
definitions and entries required to exploit this support are described in the next section.

PRODUTL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 255

File Exclusion Definitions
The entries described in this section are used to exclude one or more source files from being copied to a
production resource. Such entries are referred to as file exclusion entries, with the definition section that
incorporates them known as a file exclude section.

Because file exclusion support is source file oriented, a production file name and file type are not required
for, or applicable to, exclusion entries. This stems from the intended use of these entries, for which
identification of only one or a group of source files is required. For this reason, production file name and
file type operands are treated as commentary information when they're included as part of an exclusion
entry.

A second attribute that distinguishes exclusion entries from their conventional counterparts is the
accommodation of a ":DCL. wildcard" value that is unique to the PRODUTL catalog file. This wildcard
(%*) can be specified in the place of a PPF :DCL. variable name so an exclusion entry can be matched to
the source :DCL. variable name of a conventional catalog entry. When such an entry is processed (and, an
XCLUDE option is present), the files identified by the matched exclusion entry are omitted from the set
of files that are copied to the designated production location. Thus, the ":DCL. wildcard" allows exclusion
entries to be defined such that select files can be excluded from PRODUTL operations, regardless of the
(source) resource on which they reside.

Note that the use of a :DCL. wildcard is not required for an exclusion entry. A PPF :DCL. variable name can
still be specified to identify a specific source resource from which designated files are to be excluded.

The files that are to be excluded by an exclusion entry can be identified by a literal file name and file type,
or by using conventional CMS file pattern matching techniques that employ the wildcard (*) and pattern
matching (%). Combinations of a literal file name and a file type "pattern" (and vice versa) can also be
used.

In the example that follows, a wildcard entry and a separately defined exclude section are illustrated
which, in combination, specify that all files for the given &BLD1Z source resource — except those
identified in the XTEST exclude section — are to be copied to the &BLD0Z production resource.

 …

 &BLD1Z &BLD0Z */XCLUDE:xtest * = = *No XTEST files

 …

:XTEST.
 %* %* * SAMP* ** Do not copy SAMP* variations
 %* %* * SEXEC ** Do not copy any SEXEC files
:EXTEST.

 …

File exclusion is performed by PRODUTL only when the XCLUDE processing option is specified for a
"conventional" catalog entry. This option also identifies the catalog section which defines the exclusion
entries that are to be applied during file processing.

Note:

1. The XCLUDE option can be specified for only a wildcard entry within a general catalog section, and
for only the source file name of such an entry. This restriction stems from the presumption that any
files that are to be excluded from PRODUTL operations are a subset of a substantially larger file group
— that is, a group that is more readily processed through file name and file type wildcard (*) pattern
matching, than on a file-by-file basis.

2. To be effective, file exclusion entries must be defined using catalog definitions that are separate from
conventional file processing entries. Exclusion entries that are encountered outside of a file exclude
section are ignored by PRODUTL, if they can be discerned as such, as would be the case for those
that employ :DCL. wildcard values. An exclusion entry that does not incorporate such values might be
identified as being not valid for other reasons, or in some cases, can be construed as a conventional
catalog entry.

PRODUTL EXEC

256 z/VM: 7.3 VMSES/E Introduction and Reference

Customization Notes
1. It is advised that any changes to a z/VM product, component or feature CATALOG file that are required

for your environment be made via a VMSES/E local modification, to allow for the reporting of service-
related changes during VMSES/E processing.

2. The source and target minidisk/directory variable names used within a CATALOG file must correspond
to those used within the ($)PPF file associated with a given z/VM product, component or feature
(or an override variation of that file). If any changes are made to the Variable Declarations (:DCL.)
section of the subject PPF file via a PPF override, you might need to incorporate similar changes within
any pertinent CATALOG files (through separate VMSES/E local modifications) to allow for the correct
resolution of PPF :DCL. variable names.

3. :DCL. wildcard values (%*) are unique to the PRODUTL catalog file and are not supported (or present)
within a VMSES/E PPF file. These values should be used only to define a file exclusion entry that is to
be referenced during a wildcard file copy operation.

PRODUTL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 257

PUT2PROD EXEC

PUT2PROD
ALL

compname

SAVECMS

SEGMENTs ALL

segment_name

Purpose
The PUT2PROD EXEC performs the actions listed in the systemid $PRODS file for the z/VM components,
features, or products that are installed on the z/VM system.

Operands
ALL

specifies that products serviced using the SERVICE command will be put into production.
compname

is the 1- through 16-character alphanumeric component name identifier for the component to be put
into production. Specify the component name as it is on the :PRODID tag in the VM SYSSUF table.

SAVECMS
specifies that the CMS saved systems will be built and put into production.

SEGMENTs
specifies which segment or segments will be put into production. If SEGMENTS is specified, it must be
followed by ALL or by one or more segment names.
ALL

when specified with the SEGMENTS option, all segments defined in the system segment build list
(SEGBLIST EXC00000) will be built and put into production.

segment_name
specifies one or more segment names that will be put into production.

Usage Notes
1. The PUT2PROD EXEC will affect your production environment. The following production environment

virtual machines will be logged off in order to update minidisks or SFS directories they own:

• DIRMAINT
• TCPMAINT

2. The PUT2PROD EXEC must be executed from the default MAINTvrm user ID or equivalent.
3. The PUT2PROD EXEC processes components, features, and products that provide a :P2P. section in

their PPF.
4. A BLDCMS user ID and a BLDSEG user ID must exist.
5. When the PUT2PROD EXEC is used to build CMS saved systems (whether overtly with the SAVECMS

operand or in conjunction with product service processing), the SSI relocation domain for the
MAINTvrm user ID is modified, when necessary, to that of the current member system. The updated
relocation domain remains in effect upon completion of the PUT2PROD EXEC.

PUT2PROD EXEC

258 z/VM: 7.3 VMSES/E Introduction and Reference

Examples

• To put all components, features, and products that were serviced (have an entry in the SERVICE
$PRODS file) into production enter:

 PUT2PROD

or

 PUT2PROD ALL

• To put only TCPIP into production, enter:

 PUT2PROD TCPIP

• To put only the CMS saved systems into production, enter:

 PUT2PROD SAVECMS

• To put only the XXXX and YYYY segments into production, enter:

 PUT2PROD SEGMENTS XXXX YYYY

Input and Output Files

Input Files
ppfname PPF

The usable form product parameter file.
VM SYSSUF

The system-level service update facility table.

Input/Output Files
VM SYSPINV

The system-level Product Inventory table, which specifies which products are installed on which
systems or members.

systemid $PRODS
The put into production file that is a list of products and associated objects that were serviced for the
system.

SERVICE $PRODS A
The put into production file that is a list of products that were serviced using the SERVICE EXEC.

PUT2PROD $CONS A
The console listing for the current invocation.

$VMFP2P $MSGLOG A
The PUT2PROD message log.

Output Files
prodid SRVPROD

The service-level production status table.
VM SYSPINV

The service-level product inventory table.

Messages and Return Codes
For a complete explanation of each message, use the HELP Facility to view the message explanation
online or see the appropriate messages documentation. To display information on a specific message, for
example VMF002E, enter:

PUT2PROD EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 259

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E exec.

PUT2PROD issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The PUT2PROD EXEC can be restarted by issuing the command again.

PUT2PROD EXEC

260 z/VM: 7.3 VMSES/E Introduction and Reference

SERVICE EXEC

SERVICE

ALL 181

ALL
1

REStart
2

compname

prodid%compname

181

TESTapply

181

tapeaddress

envelopefn

NORECeive

BLDNUC

ENABLE

DISABLE

BITMAP

BUILD Operand

STATus Operand

(Options

)

BUILD Operand
BUILD

LIST

SERVICE $BLDLIST *

listfn

$BLDLIST *

listft
*

listfm

STATus Operand

SERVICE EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 261

STATus
RSU

ptfnumber

aparnumber

ALLApars

ALLPtfs

LIST

SERVICE $STALIST *

listfn

$STALIST *

listft
*

listfm

Options

NOLog

PPF ppfname

Notes:
1 The BLDNUC, ENABLE, DISABLE, TESTapply and NORECeive operands are not valid with the ALL
operand.
2 The BUILD, BLDNUC, ENABLE, DISABLE, TESTapply, BITMAP and STATus operands are not valid
with the REStart operand.

Purpose
Use the SERVICE EXEC to:

• Install an RSU or apply corrective service (COR) for z/VM components, features, or products.
• Display the RSU level of the component specified or whether a particular PTF or APAR has been applied

(when used with STATUS).
• Create PTF bitmap files (when used with BITMAP).

Operands
ALL

indicates that service is to be installed for all products on the selected RSU or COR. When used with
STATUS or BITMAP, ALL indicates all products in the VM SYSSUF table.

REStart
restarts a previous call to SERVICE.

compname
is the component for which service will be installed or displayed or the component for which a bitmap
is created. compname is a 1- through 16-character alphanumeric identifier.

prodid%compname
is the component for which service will be installed or displayed, or the component for which a bitmap
is created. Specify prodid%compname as it is on the :PRODID tag in the VM SYSSUF table. If using this
form of the parameter, the prodid, the "%", and the compname are all required.

SERVICE EXEC

262 z/VM: 7.3 VMSES/E Introduction and Reference

TESTapply
indicates that VMFAPPLY will be called with the TEST option and the build step will be skipped. The
TESTapply operand is valid with COR service (tape or envelope) and not valid with RSU service (tape or
envelope).

tapeaddress
is the address of the tape drive where the preventive (RSU) or corrective (COR) service tape is
mounted. The default is 181. Multiple tapeaddress operands can be specified if the RSU or COR tape
is multivolume (for example, VOL01 of 02 and VOL02 of 02).

envelopefn
is the file name of the preventive (RSU) or corrective (COR) service envelope to be installed. The file
type must be SERVLINK. Multiple envelopefn operands can be specified if the RSU or COR envelope is
multivolume (for example, VOL01 of 02 and VOL02 of 02).

NORECeive
indicates the receive step is skipped. Service is applied and built.

BLDNUC
indicates that if the specified component has a nucleus build step, that nucleus will be flagged to be
built and all steps associated with the BUILD operand will be executed.

ENABLE
indicates the specified component is to be enabled.

DISABLE
indicates the specified component is to be disabled.

BITMAP
indicates PTF bitmap files are to be created.

BUILD
indicates service is to be built for the specified component, all components in the SYSSUF table if ALL
is specified, or a list of components if ALL and LIST are specified. RSU, COR, or local service which has
been applied but not yet built, will be built.
LIST

indicates a user-supplied list of components will be used. Each component in the list will be built.

If the ALL operand is not specified, the LIST operand will be ignored and the list not used.

The input file format should consist of one component per line. Data after the first word on a line is
considered to be commentary. Any line that starts with an asterisk (*) is a comment.

listfn
is the file name of the input list. The default file name is SERVICE.

listft
is the file type of the input list. The default file type is $BLDLIST.

listfm
is the file mode of the input list. The default file mode an asterisk (*).

STATus
displays service status.
RSU

displays the service level specified on the :SERVLEV tag in the system-level service update facility
table (VM SYSSUF). For example, RSU-0301, which indicates RSU was applied, or 303–0303,
which indicates SDO installed level. This is the default.

ptfnumber
is the PTF number for which status is displayed. The PTF number has the format of two alphabetic
characters followed by five numeric characters.

aparnumber
is the APAR number for which status is displayed. The APAR number has the format of two
alphabetic characters followed by five numeric characters.

SERVICE EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 263

ALLApars
displays status for all APARs that have been received and applied for the subject product.

ALLPtfs
displays status for all PTFs that have been received and applied for the subject product.

LIST
indicates a user-supplied list of PTFs or APARs will be used. The status will be displayed for each
PTF or APAR in the list.

The input file format should consist of one PTF or APAR number per line. Data after the first word
on a line is considered to be commentary. Any line that starts with an asterisk (*) is a comment.

listfn
is the file name of the input list. The default file name is SERVICE.

listft
is the file type of the input list. The default file type is $STALIST.

listfm
is the file mode of the input list. The default file mode is an asterisk (*).

Options
NOLog

indicates that the majority of messages produced by the SERVICE EXEC are not to be logged. This
option is supported with the BITMAP and STATUS operands only. Messages that are not logged still
are displayed at the console (as are messages which continue to be logged, such as VMF2760I
command status messages).

PPF
identifies a product parameter file that is to be referenced when certain SERVICE command
operations are performed.

The PPF name tells the SERVICE command that this is a z/VM CSM environment and the SERVICE
EXEC will use that PPF file instead.

ppfname
is the file name of a usable form product parameter (or override) file. The specified PPF file will be
used instead of the SERVP2P PPF file that is commonly used for SERVICE operations (and which is
cited for various VM SYSSUF file PPF-related tags).

Usage Notes
1. The SERVICE EXEC must be executed from the default MAINTvrm user ID or equivalent.
2. BLDNUC and BLDRACF user IDs must exist.
3. If a single tape address is specified, that address will be used for all volumes of a multivolume RSU.
4. The same tape address must be used for all volumes of a multivolume COR tape.
5. When the ENABLE operand is specified, the following occurs for the specified component:

• A VMFINS ENABLE command is issued.
• The SYSTEM CONFIG file is updated.
• The :BUILD tag in the VM SYSSUF table is set to YES.
• A VMFSUFIN command is issued with the BUILD option.

6. When the DISABLE operand is specified, the following occurs for the specified component:

• A VMFINS DISABLE command is issued.
• The SYSTEM CONFIG file is updated.
• The :BUILD tag in the VM SYSSUF table is set to NO.

SERVICE EXEC

264 z/VM: 7.3 VMSES/E Introduction and Reference

7. If the DISABLE operand is specified for the RACF component, the CP nucleus will be rebuilt with the
RACF modules removed.

8. SERVICE STATUS displays the production status for all systems or members, regardless of the system
or member on which you execute the command.

9. In the SERVICE STATUS display for a PTF or an APAR, for PTFs or APARs that were installed from an
RSU, the RECEIVED date reflects the date the RSU was installed on your system and the APPLIED
date reflects the date that the PTF/APAR was applied during IBM's RSU build processing.

10. The information produced by the SERVICE STATUS command when specified with the ALLAPARS
operand or the ALLPTFS operand can be voluminous, even when a relatively small number of PTFS
and APARs have been applied for a given product.

Note that by default, all such output is logged to the SERVICE command message log file.
Thus, issuing repeated SERVICE STATUS commands with these options can cause the log file to
substantially increase in size.

For this reason, consider specifying the NOLOG option when using the ALLAPARS operand or the
ALLPTFS operand. When doing so, it is advised that one makes sure the console output is spooled
properly (to the virtual reader, for example) or that command console output is directed to a file using
the appropriate CMS pipeline command.

Examples

• To install service to all of the products on the RSU mounted on tape drive 181 enter:

SERVICE

or

SERVICE ALL

• To check prerequisites before installing the corrective (COR) service mounted on tape drive 181, enter:

SERVICE CP TESTAPPLY

If all requisites are satisfied, install the service by entering:

SERVICE CP NORECEIVE

• To install service to all of the products on a three-volume RSU using three tape drives, enter:

SERVICE ALL 181 182 183

• To install service to CMS only, from the third tape of a stacked RSU, enter:

SERVICE CMS 183

• To install service to TCPIP using the COR envelope file UI54321 SERVLINK, enter:

SERVICE TCPIP UI54321

• To install service to all of the products on a two-volume RSU envelope, enter:

SERVICE ALL RSUENV1 RSUENV2

• To restart installing service after reworking local modifications, enter:

SERVICE RESTART

• To build all components in the SYSSUF table, enter:

SERVICE EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 265

SERVICE ALL BUILD

• To build all components in the list input file, enter:

SERVICE ALL BUILD LIST

If a component name is specified, the LIST operand is ignored:

SERVICE compname BUILD LIST

• To display the RSU level of CP, enter:

SERVICE CP STAT RSU

• To see if PTF UM12345 has been applied, built or put into production for CMS, enter:

SERVICE CMS STAT UM12345

• To see if APAR VM56789 has been applied, built or put into production for an installed product, enter:

SERVICE ALL STAT VM56789

Input and Output Files
SERVICE calls the VMFSUFIN exec, which in turn calls the VMFSETUP, VMFMRDSK, VMFINS, VMFPSU,
VMFAPPLY, VMFREC, and VMFBLD execs, therefore, SERVICE uses all of the input and output files for
these EXECs. The input and output files unique to SERVICE are:

Input Files
ppfname PPF

The usable form product parameter file
appid SRVAPPS

The service-level apply status table
recid SRVREQT

The service-level requisite table
recid SRVRECS

The service-level receive status table
fn SERVLINK

RSU and COR envelopes.
SERVICE $PTFS

Applied PTFs by component.
Input/Output Files
SERVICE $RESTART

The service restart file.
SERVICE $CONS

The console listing for the current invocation.
SERVICE $PRODS

The put into production file that contains the list of products and objects that were serviced using the
SERVICE EXEC. For more information, see “The SERVICE $PRODS File ” on page 135.

VM SYSPINV
The system-level Product Inventory table, which specifies which products are installed on which
systems or members.

VM SYSSUF
The system-level service update facility table.

VM SYSREST
The system-level Restart table.

SERVICE EXEC

266 z/VM: 7.3 VMSES/E Introduction and Reference

VM SYSLMOD
The system-level Local Modification table.

VM SYSMEMO
The system-level Memo table.

Output Files
prodid SRVPROD

The service-level production status table.
systemid $PRODS

The put into production file, for a specific system, that is a list of products and objects that were
serviced. For more information, see “The systemid $PRODS file” on page 137.

$VMFSRV $MSGLOG A
The SERVICE message log.

INSTSERV $RESTRT$
The service restart command file for automated installation use.

Messages and Return Codes
For a complete explanation of each message, use the z/VM help facility to view the message explanation
online or see the appropriate message documentation. To display information about a specific message
(VMF002E, for example), enter:

help msg vmf002e

To display the main z/VM help menu, enter:

help

For information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The SERVICE EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

5 Command not complete because service that affects core VMSES/E
components has been identified.

6 Command not completed because local modifications were found.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

SERVICE EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 267

Recovery Information

If the SERVICE EXEC does not complete successfully, it can be restarted by reissuing the command after
correcting the errors or reworking the local modifications. The format of the command is dependent on
whether a SERVICE $RESTART file was created. Message VMFSRV2310W will be issued if the restart file
was created.

If the restart file was not created, reissue the original SERVICE command.

If the restart file was created, issue the SERVICE RESTART command displayed in message
VMFSRV2310W.

SERVICE EXEC

268 z/VM: 7.3 VMSES/E Introduction and Reference

SERVMGR EXEC
Use the SERVMGR EXEC to handle all tasks associated with z/VM Centralized Service Management (z/VM
CSM). Based on the keywords and operands supplied with it, SERVMGR calls applicable sub-function
EXECs to perform specific types of processing.

For more information, see:

• “SERVMGR INITIALIZE” on page 271
• “SERVMGR SYSTEM” on page 274
• “SERVMGR SRVLVL” on page 281
• “SERVMGR REMOVE” on page 288
• “SERVMGR MANAGED” on page 291

Note: All SERVMGR operands and options must be specified in the order shown in the SERVMGR
subcommand syntax diagrams.

Using a KEYVAULT Database with the SERVMGR Command
The SERVMGR command uses FTP to interact with the various systems that are managed using z/VM
Centralized Service Management (z/VM CSM). To do so, it relies on the CSMWORK user ID, which is used
for FTP login purposes. The CSMWORK user ID is defined in the VMSESE PROFILE file that is referenced
by SERVMGR and other VMSES/E commands. Accordingly, a login password must be defined for the
CSMWORK user ID on any system that is managed using z/VM CSM. This password must be provided
during SERVMGR processing that involves interaction with a remote host system.

While CSMWORK login passwords can be provided in response to a prompt message for this entity,
doing so for more than a few systems, for certain SERVMGR commands, could become cumbersome or
problematic, especially when security practices require unique passwords for all system user IDs.

To help alleviate possible issues with the management and use of differing CSMWORK login passwords
across multiple systems, a CMS KEYVAULT database can be used in conjunction with the SERVMGR
command. The KEYVAULT database provides the ability to securely maintain login credentials for multiple
systems, in a protected form, using z/VM data encryption support. For information about the KEYVAULT
database and the KEYVAULT utility, which is used to manage this database, see the z/VM: CMS Commands
and Utilities Reference.

The KEYVAULT database that SERVMGR is to use as a source for login credentials is identified in response
to an input prompt for this information. SERVMGR then retains the database file ID for reference and use
with successive SERVMGR commands. The database prompt is issued only once, for the first SERVMGR
SRVLVL or SERVMGR SYSTEM command that is issued during a z/VM CSM work session. The database file
ID retained for SERVMGR command use is maintained only for the duration of the current IPL of CMS.

If the specified KEYVAULT database is determined to be in an open state for use, SERVMGR will then
automatically acquire defined default (DFLTUSER) login credentials for a managed system, as needed,
without the need to prompt for these values. If the subject database is not open, SERVMGR invokes the
KEYVAULT OPEN command on your behalf (after a prompt and confirmation to do so), to establish an
open database for use, as described.

Note: For KEYVAULT database entries that pertain to z/VM CSM managed systems, the KEYVAULT label
value must match the TCP/IP fully-qualified internet host name (or, TCP/IP IP address) that is specified
with the HOSTNAME operand when a system is added to a z/VM CSM mamagement group using the
SERVMGR SYSTEM ADD command.

To direct SERVMGR to not attempt any use of a KEYVAULT database for its operation, the keyword
<NONE> can be supplied in response to the initial prompt that is issued for the KEYVAULT database file
ID.

SERVMGR EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 269

If login credentials for a given managed host system are not acquired from a KEYVAULT database as
described, SERVMGR then attempts to acquire them from the FTP NETRC DATA file (a file that has no
intrinsic security mechanisms), and if not found therein, issues a prompt for this information.

SERVMGR EXEC

270 z/VM: 7.3 VMSES/E Introduction and Reference

SERVMGR INITIALIZE
Note: SERVMGR INITIALIZE operands must be specified in the order shown in the SERVMGR INITIALIZE
syntax diagram.

SERVMGR INITialize vrm

Purpose
Use the SERVMGR INITIALIZE command to create the initial structures for z/VM Centralized Service
Management (z/VM CSM).

Operands
INITialize

Creates the initial structures for z/VM CSM. The SERVMGR INITIALIZE command creates initial tables
and creates and populates vrm-level Shared File System directories.

vrm
Represents the specific version/release/modification level of information for which z/VM CSM is to be
initialized.

Usage Notes
1. During SERVMGR command processing, the MAINTCSM 191 disk is accessed at file mode Z, with this

access file mode maintained upon command completion. It is advised that files that are customized
for using z/VM CSM (such as a MAINTCSM NAMES file) or for productivity (a PROFILE XEDIT file) be
maintained on the MAINTCSM 191 disk, so these are available for reference, when needed.

2. The SERVMGR command maintains a select set of program work files in the VMPSFS:MAINTCSM
root directory, and Shared File System (SFS) aliases for these files in z/VM CSM root directories
(VMPSFS:CSMvrm) for respective z/VM levels. This set of work files allows for effective use of
credentials maintained in a KEYVAULT database, and for proper handling of potential z/VM CSM
command enhancements for differing z/VM CSM release levels. For more information about this set of
work files, see "The SERVMGR command" in Chapter 10 in the z/VM: Service Guide.

Example

1. To initialize z/VM CSM on your z/VM 730 system, enter:

SERVMGR INIT 730

Input/Output Files
The input and output files unique to SERVMGR are:
Input/Output Files
$CSMAGT $MSGLOG

CSMAGENT message log.
$CSMCMG $MSGLOG

SERVMGR message log.
CSM SVCSTAT

z/VM CSM service status table.
CSM SYSSTAT

z/VM CSM system status table.

SERVMGR INITIALIZE

Chapter 20. VMSES/E EXEC and Command Format Summaries 271

Messages and Return Codes
For a complete explanation of each message, use the z/VM help facility to view the message explanation
online or see the appropriate message documentation. To display information about a specific message
(VMF002E, for example), enter:

help msg vmf002e

To display the main z/VM help menu, enter:

help

For information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The SERVMGR EXEC issues the following return codes:

Return Code Explanation

0 Command processing completed successfully.

2 Command processing completed successfully, but additional action might be
required.

4 Command processing completed with warnings.

5 Command processing stops.

6 Command processing stops.

8 Command processing stops.

9 Command processing stops.

12 Command processing stops.

13 Command processing stops.

21 Command processing stops.

24 Command processing stops.

28 Command processing continues or stops.

32 Command processing stops.

33 Command processing stops.

34 Command processing stops.

35 Command processing stops.

36 Command processing stops.

40 Command processing stops.

90 Command processing stops.

97 Command processing stops.

98 Command processing stops.

99 Command processing stops.

100 Command processing stops.

SERVMGR INITIALIZE

272 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

4113 Command processing stops.

SERVMGR INITIALIZE

Chapter 20. VMSES/E EXEC and Command Format Summaries 273

SERVMGR SYSTEM
Note: SERVMGR SYSTEM operands must be specified in the order shown in the SERVMGR SYSTEM syntax
diagram.

SERVMGR SYStem ADD

DELETE

MODIFY

PUT2PROD

QUERY

SERVCHECK

ADD
ADD vrm sysname csmlvl ADD Operands FTP Options

ADD Operands
NONESM

ESM

HOSTname host_name

COMMTYPE FTP

COMMtype FTP

LOCAL

DELETE
DELete vrm sysname

MODIFY
MODify vrm sysname MODIFY Operands FTP Options

MODIFY Operands

new_sysname
NONESM

ESM HOSTname host_name
1

PUT2PROD

PUT2PROD vrm sysname

nickname

Notes:
1 The HOSTNAME operand is optional when supplied with a SYSTEM MODIFY command.

SERVMGR SYSTEM

274 z/VM: 7.3 VMSES/E Introduction and Reference

QUERY

Query vrm sysname

nickname

ALL

*

PRODPending

(

STATUS

STATus

DETails

VERify

SERVCHECK
SERVcheck vrm sysname

FTP Options
1

PORT

4535

port_number ADDRtype

ANY

IPv4

IPv6

NOSECure

FTP Options (continued)
1

SECure TImeout value TRACe DATAFile fname

Notes:
1 FTP options are valid with the SERVMGR SYSTEM ADD and SERVMGR SYSTEM MODIFY commands
only.

Purpose
Use the SERVMGR SYSTEM command to handle all of the system tasks that are associated with z/VM
Centralized Service Management (z/VM CSM).

Operands
SYStem

Performs functions that are related to maintaining a z/VM CSM system group. The SERVMGR SYSTEM
command adds information about a selected vrm-level system to the z/VM CSM system status table
of a pertinent principal system. The SERVMGR SYSTEM command is also used to maintain this
information - to modify and query information, and if necessary, to delete a managed system.

vrm
Represents the specific version, release, and modification level of information that z/VM CSM is to
reference, in relation to a given command. The specified vrm level determines which z/VM CSM

SERVMGR SYSTEM

Chapter 20. VMSES/E EXEC and Command Format Summaries 275

system status table data and z/VM CSM service status table data is referenced as a z/VM CSM
command is processed.

sysname
The 1- through 8-character system name (reported by the CP QUERY USERID command on the
subject system) for the z/VM system that is be serviced using z/VM CSM support.

nickname
A name assigned to a group of one or more z/VM systems that are to be serviced using z/VM CSM.

csmlvl
A 1- through 16-character identifier for a z/VM CSM service level. The csmlvl name must comply with
naming conventions for SFS directories. For example, no dashes are allowed.

ADD
Indicates that a new sysname entry is to be created in the z/VM CSM group.

NONESM
Indicates that the system will not incorporate ESM controls and support.

ESM
Indicates that the system is to incorporate ESM controls and support.

HOSTname host_name
Identifes a TCP/IP fully-qualified internet host name or TCP/IP IP address (IPv4 dotted-decimal
format or IPv6 colon-hexadecimal format).

COMMtype comm_type
Designates the type of communication protocol that is to be used for host-to-host data transfer and
communication:
FTP

Indicates that the TCP/IP FTP protocol is to be used. This is the default.
LOCAL

Indicates that the system being added is the principal system (the communication protocol is not
applicable).

DELETE
Indicates that the specified sysname is to be removed from the control of z/VM CSM. All information
for the subject system is removed from z/VM CSM tables.

MODify
Indicates that changes are to be made to the FTP parameters for sysname or that sysname is to be
renamed to new_sysname.

PUT2PROD
Indicates that the VMSES/E PUT2PROD command is to be run on sysname or nickname.

Query
Indicates that a SYSTEM QUERY function is to be performed against the z/VM CSM system status
table, to provide information about the systems defined in this table.

ALL | *
Indicates that information on every sysname in the z/VM CSM system status table is to be displayed.

PRODPending
Returns information about pending PUT2PROD operations on z/VM CSM managed systems.

STATus
Indicates that the service level status information for sysname or nickname is to be displayed. This
operand is the default operand for SYSTEM QUERY commands.

DETails
Requests a list of more detailed information about system attributes and component-level service
information maintained in the system status table on the principal system for the specified sysname or
nickname.

SERVMGR SYSTEM

276 z/VM: 7.3 VMSES/E Introduction and Reference

VERify
Augments the detailed service level status information with information obtained directly from a
managed system.

SERVcheck
Retrieves component bitmaps and local modification information from the designated managed
system and compares this information with the z/VM CSM service level defined for this system.

FTP Command Options
For more information about the following command options, see z/VM: TCP/IP User's Guide.

PORT port_number
The TCP/IP port number at which a dedicated FTP server is configured to listen. The default listen port
for this server is 4535.

ADDRtype address_type
The address type to use. Valid values are:
ANY

Indicates that any type (IPv4 or IPv6) of target host address is allowed.
IPV4

Indicates that the target host address must be in the AF_INET (IPv4) address family.
IPV6

Indicates that the target host address must be in the AF_INET6 (IPv6) address family.
NOSECure

Causes the FTP client not to attempt to secure data and control connections using TLS.
SECure

Causes the FTP client to attempt to secure data and control connection using TLS.
TImeout value

Specifies the number of seconds to be used for various FTP timing parameters. value is a whole
number ranging from 15 to 720, inclusive. If not specified, timing parameters are applied accordingly
by the TCP/IP FTP command itself, inclusive of those defined in an FTP DATA file. Note that minimal
TIMEOUT values are likely to cause command errors for those z/VM CSM commands that require
communication with a managed system.

TRACe
Starts the generation of tracing output. TRACE is used to assist in debugging. Trace data is written to
the console.

DATAFile sysname
Specifies the file name of a host-specific FTP DATA file instance that is to provide system-unique FTP
operational characteristics for a specific managed system. The file type of this file must be FTPDATA.
Any sysname FTPDATA file that is created should be based on the FTP DATA file that is created and
customized when z/VM CSM is initialized on a principal system. Like that file, the sysname FTPDATA
should reside on the z/VM CSM root directory for a given release (VMPSFS:CSMvrm).

Usage Notes
1. During SERVMGR command processing, the MAINTCSM 191 disk is accessed at file mode Z, with this

access file mode maintained upon command completion. It is advised that files that are customized
for using z/VM CSM (such as a MAINTCSM NAMES file) or for productivity (a PROFILE XEDIT file) be
maintained on the MAINTCSM 191 disk, so these are available for reference, when needed.

2. The SERVMGR command maintains a select set of program work files in the VMPSFS:MAINTCSM
root directory, and Shared File System (SFS) aliases for these files in z/VM CSM root directories
(VMPSFS:CSMvrm) for respective z/VM levels. This set of work files allows for effective use of
credentials maintained in a KEYVAULT database, and for proper handling of potential z/VM CSM
command enhancements for differing z/VM CSM release levels. For more information about this set of
work files, see "The SERVMGR command" in Chapter 10 in the z/VM: Service Guide.

SERVMGR SYSTEM

Chapter 20. VMSES/E EXEC and Command Format Summaries 277

Examples

1. To add the principal system (SYSTEM1) as a locally-managed (local) system that incorporates
external security manager (ESM) controls and support, enter:

SERVMGR SYSTEM ADD 730 SYSTEM1 RSU1_ESM ESM COMMTYPE LOCAL

2. To add a remote system named SYSTEM2 (which does not incorporate ESM controls and support),
enter:

SERVMGR SYS ADD 730 SYSTEM2 RSU1 NONESM HOST 123.45.67.87 COMM FTP

3. To check system status information for SYSTEM2, enter:

SERVMGR SYSTEM QUERY 730 SYSTEM2

4. To put service into production on managed system SYSTEM2, enter:

SERVMGR SYSTEM PUT2PROD 730 SYSTEM2

5. To add SYSTEM3, which is running RACF, has IP address 123.45.67.88, and has RSU 7302 installed,
enter:

SERVMGR SYS ADD 730 SYSTEM3 RSU2_ESM ESM HOST 123.45.67.88 COMM FTP

6. To display summary information about all the systems that you are managing, enter:

SERVMGR SYS Q 730 ALL

7. To display information from the SYSTEM2 $PRODS file, enter:

SERVMGR SYS Q 730 SYSTEM2 PRODPENDING

8. To display additional information about SYSTEM2, enter:

SERVMGR SYS Q 730 SYSTEM2 (details

9. To change the name of SYSTEM3 and its associated IP information to SYSTEM4, enter:

SERVMGR SYSTEM MOD 730 SYSTEM3 SYSTEM4 ESM HOSTNAME 123.45.67.89

10. To update the information for SYSTEM2 to enable the use of an ESM, enter:

SERVMGR SYSTEM MOD 730 SYSTEM2 ESM

11. To update the information for SYSTEM4 to disable the use of an ESM, enter:

SERVMGR SYSTEM MOD 730 SYSTEM4 NONESM

12. To delete a system that is no longer being managed by z/VM CSM from the z/VM CSM environment,
enter:

SERVMGR SYSTEM DEL 730 SYSTEM4

13. To compare service information on a managed system against the service information in the z/VM
CSM service level for that system, enter:

SERVMGR SYSTEM SERV 730 SYSTEM2

Input/Output Files
The input and output files unique to SERVMGR are:
Input/Output Files

SERVMGR SYSTEM

278 z/VM: 7.3 VMSES/E Introduction and Reference

$CSMAGT $MSGLOG
CSMAGENT message log.

$CSMCMG $MSGLOG
SERVMGR message log.

CSM SVCSTAT
z/VM CSM service status table.

CSM SYSSTAT
z/VM CSM system status table.

Messages and Return Codes
For a complete explanation of each message, use the z/VM help facility to view the message explanation
online or see the appropriate message documentation. To display information about a specific message
(VMF002E, for example), enter:

help msg vmf002e

To display the main z/VM help menu, enter:

help

For information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The SERVMGR EXEC issues the following return codes:

Return Code Explanation

0 Command processing completed successfully.

2 Command processing completed successfully, but additional action might be
required.

4 Command processing completed with warnings.

5 Command processing stops.

6 Command processing stops.

8 Command processing stops.

9 Command processing stops.

12 Command processing stops.

13 Command processing stops.

21 Command processing stops.

24 Command processing stops.

28 Command processing continues or stops.

32 Command processing stops.

33 Command processing stops.

34 Command processing stops.

35 Command processing stops.

SERVMGR SYSTEM

Chapter 20. VMSES/E EXEC and Command Format Summaries 279

Return Code Explanation

36 Command processing stops.

40 Command processing stops.

90 Command processing stops.

97 Command processing stops.

98 Command processing stops.

99 Command processing stops.

100 Command processing stops.

4113 Command processing stops.

SERVMGR SYSTEM

280 z/VM: 7.3 VMSES/E Introduction and Reference

SERVMGR SRVLVL
Note: SERVMGR SRVLVL operands must be specified in the order shown in the SERVMGR SRVLVL syntax
diagram.

SERVMGR SRVlvl ADD

DELETE

LOCALMOD

SERVICE

PACKAGE

SEND

SETLOCK

QUERY

VMFSETUP

BLDDATA

ADD
ADD vrm csmlvl ADD Operands

ADD Operands
BASEdon csmlvl NONESM

ESM DESC description

DELETE
DELete vrm csmlvl

LOCALMOD
LOCALMOD vrm csmlvl LOCALMOD_cmdparms

SERVICE
SERVice vrm csmlvl SERVICE_cmdparms

(

RESTart

NOLOG

PACKAGE
PACKage vrm csmlvl

(

RESTart

SEND
SEND vrm csmlvl SEND Operands

SEND Operands

system_name

nickname

(

TEST

STABLE

TEST

RESTart

SERVMGR SRVLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 281

SETLOCK
SETLOCK vrm csmlvl ON

OFF

QUERY

Query vrm csmlvl

ALL

*

COMPONENT ALL

COMPonent compname

ALL

*

(

DETails

SYStems

VMFSETUP
VMFSEtup vrm csmlvl compname

BLDDATA
BLDDATA vrm csmlvl BITmap

VVTlcl

ALLData

Purpose
Use the SERVMGR SRVLVL command to handle all service-level tasks associated with z/VM Centralized
Service Management (z/VM CSM).

Operands
SRVlvl

Manages the unique service-level environments and gives the principal system control over all defined
service levels that are available for the managed systems.

vrm
Represents the specific version, release, and modification level of information that z/VM CSM is to
reference, in relation to a given command. The specified vrm level determines which z/VM CSM
system status table data and z/VM CSM service status table data is referenced as a z/VM CSM
command is processed.

csmlvl
A 1- through 16-character identifier for a z/VM CSM service level.

ADD
Adds a service level to the z/VM CSM service status table and creates the SFS structure to contain the
new csmlvl.
BASEdon

Specifies the existing service level name from which the new csmlvl is initialized.
NONESM

Indicates that the service level will not incorporate ESM controls and support.
ESM

Indicates that the service level is to incorporate ESM controls and support.

SERVMGR SRVLVL

282 z/VM: 7.3 VMSES/E Introduction and Reference

DESC description
A free-form, text description for a service level that is being added. If the DESC operand is omitted
or no descriptive text is supplied, the csmlvl identifier is used. Descriptive information is stored
in the SERVLVL DESCRIPT file, which is maintained in the top-level SFS directory that pertains to
csmlvl. For example:

VMPSFS:CSMvrm.ABC0118D_BLD01

Note: Although the description is free-form text, certain restrictions apply. Any characters used in
the user's current CP TERMINAL command settings cannot be used. Additionally, parentheses are
not allowed in the description text supplied on the command line.

DELete
Removes a service level from the z/VM CSM service status table and deletes the associated SFS
directories.

See the Usage Notes for some service level deletion considerations.

LOCALMOD
Creates or reworks local modifications for a part maintained within the specified z/VM CSM service
level.
LOCALMOD_cmdparms

Any valid VMSES/E LOCALMOD command operands and options. See “LOCALMOD EXEC” on page
245 for more information.

SERVICE
Receives and builds service for the specified csmlvl using the VMSES/E SERVICE command.
SERVICE_cmdparms

Any valid VMSES/E SERVICE command operands and options. See “SERVICE EXEC” on page 261
for more information.

PACKage
Indicates that serviced components in csmlvl are to be packaged for subsequent transport to one or
more managed systems.

SEND
Indicates that the z/VM CSM service package for csmlvl is to be transported to the specified
system_name or nickname.
TEST

Indicates that the service level being transported has testing status. This status designation
allows the content of the service level to be updated iteratively until it is designated as a stable
service level.

STABLE
Indicates that the service level being transported has stabilized status. This status designation
indicates that the content of the service level is to be maintained as it is now (with no further
alteration possible) after it is transported to any managed system.

SETLOCK
Establishes an update activity lock for the specified csmlvl, to prevent or allow modification of its
content using the SERVMGR SERVICE command or the SERVMGR LOCALMOD command.
ON

Prevents update activity for the specified csmlvl.
OFF

Allows update activity for the specified csmlvl.
Query

Processes the z/VM CSM service status table and returns information about a specific csmlvl or about
all service levels defined in the z/VM CSM service status table.

SERVMGR SRVLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 283

ALL | *
Returns information about all service levels defined in the z/VM CSM service status table.

COMPONENT
Specifies when the list of levels is finished and demarks the compname variable's location.

compname
Denotes the name of the specific component being queried. ALL is the default value.

DETails
Displays PTF and local modification information that pertains to the specified csmlvl. This
information is listed on a component-by-component basis, with PTF data cited first, followed
by any applicable local modification information.

SYStems
Reports systems where the specified csmlvl is in use.

VMFSEtup
Invokes the VMSES/E VMFSETUP command, to establish a CMS minidisk and SFS directory access
order for the specified component, using resources that pertain to the specified csmlvl.
compname

The name of a component as it is specified on the :COMPNAME tag in a product parameter file
(PPF). compname is a 1- through 16-character alphanumeric identifier.

BLDDATA
Generates new bitmaps (BITMAP), local version vector tables (VVTLCL), or both (ALLDATA) for
members of a service level.

Options
REStart

Indicates that SERVMGR processing is to be resumed, after a previous error condition was
encountered (which since has been corrected). This option is valid for only the SERVMGR SRVLVL
SERVICE, PACKAGE, and SEND functions.

NOLOG
Indicates that the messages produced by the SERVMGR SRVLVL command are not to be logged.

Usage Notes
1. During SERVMGR command processing, the MAINTCSM 191 disk is accessed at file mode Z, with this

access file mode maintained upon command completion. It is advised that files that are customized
for using z/VM CSM (such as a MAINTCSM NAMES file) or for productivity (a PROFILE XEDIT file) be
maintained on the MAINTCSM 191 disk, so these are available for reference, when needed.

2. The SERVMGR command maintains a select set of program work files in the VMPSFS:MAINTCSM
root directory, and Shared File System (SFS) aliases for these files in z/VM CSM root directories
(VMPSFS:CSMvrm) for respective z/VM levels. This set of work files allows for effective use of
credentials maintained in a KEYVAULT database, and for proper handling of potential z/VM CSM
command enhancements for differing z/VM CSM release levels. For more information about this set of
work files, see "The SERVMGR command" in Chapter 10 in the z/VM: Service Guide.

3. When adding a new service level, the BASEDON service level will be made STABLE and will be locked
from further updates.

4. In order to save space, it is recommended that service levels be deleted when they are no longer being
used.

5. A service level cannot be deleted if it is the current or pending service level for a managed system or if
it is the BASEDON service level for a level that is currently in use.

6. The BASE service level cannot be deleted or modified.
7. When a restart of the SERVICE command is needed in the z/VM CSM environment, RESTART is

specified as a command option and not as a command operand.

SERVMGR SRVLVL

284 z/VM: 7.3 VMSES/E Introduction and Reference

8. Because the COMPONENT operand provides component-specific information about the PTFs applied
for a given component, use of the DETAILS option with this operand is redundant (no additional
information is available for the DETAILS option to operate upon).

Examples

1. To create a new service level named RSU1 that is not ESM enabled, enter:

SERVMGR SRV ADD 730 RSU1 BASEDON BASE NONESM DESC RSU1 shipped with z/VM

2. To install a service file named RSU1FILE SERVLINK into service level RSU1, enter:

SERVMGR SRVLVL SERVICE 730 RSU1 ALL RSU1FILE

3. To restart SERVICE command processing for service level RSU2, after correcting reported errors,
enter:

SERVMGR SRVLVL SERVICE 730 RSU2 (RESTART

4. To create the service package for service level RSU1, enter:

SERVMGR SRVLVL PACKAGE 730 RSU1

5. To send service level RSU1 to remote managed system SYSTEM2, enter:

SERVMGR SRVLVL SEND 730 RSU1 SYSTEM2

6. To restart a SEND command to SYSTEM2, enter:

SERVMGR SRVLVL SEND 730 RSU1 SYSTEM2 (RESTART

7. To add a new service level named RSU2_ESM that is based on service level RSU2, enter:

SERVMGR SRVLVL ADD 730 RSU2_ESM BASEDON RSU2 ESM DESC RSU2 enabled for RACF

8. To display summary information about all of the service levels that you have defined, enter:

SERVMGR SRV Q 730 ALL

9. To display PTF information for component CP in service level RSU1, enter:

SERVMGR SRV Q 730 RSU1 COMPONENT CP

10. To delete service level RSU1, enter:

SERVMGR SRVLVL DEL 730 RSU1

Input/Output Files
The input and output files unique to SERVMGR are:
Input/Output Files
$CSMAGT $MSGLOG

CSMAGENT message log.
$CSMCMG $MSGLOG

SERVMGR message log.
CSM SVCSTAT

z/VM CSM service status table.
CSM SYSSTAT

z/VM CSM system status table.

SERVMGR SRVLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 285

Messages and Return Codes
For a complete explanation of each message, use the z/VM help facility to view the message explanation
online or see the appropriate message documentation. To display information about a specific message
(VMF002E, for example), enter:

help msg vmf002e

To display the main z/VM help menu, enter:

help

For information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The SERVMGR EXEC issues the following return codes:

Return Code Explanation

0 Command processing completed successfully.

2 Command processing completed successfully, but additional action might be
required.

4 Command processing completed with warnings.

5 Command processing stops.

6 Command processing stops.

8 Command processing stops.

9 Command processing stops.

12 Command processing stops.

13 Command processing stops.

21 Command processing stops.

24 Command processing stops.

28 Command processing continues or stops.

32 Command processing stops.

33 Command processing stops.

34 Command processing stops.

35 Command processing stops.

36 Command processing stops.

40 Command processing stops.

90 Command processing stops.

97 Command processing stops.

98 Command processing stops.

99 Command processing stops.

100 Command processing stops.

SERVMGR SRVLVL

286 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

4113 Command processing stops.

SERVMGR SRVLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 287

SERVMGR REMOVE
Note: SERVMGR REMOVE operands must be specified in the order shown in the SERVMGR REMOVE
syntax diagram.

SERVMGR REMOVE vrm

Purpose
Use the SERVMGR REMOVE command to delete a version/release/modification level from the z/VM
Centralized Service Management (z/VM CSM) environment.

Operands
REMOVE

Deletes a version/release/modification (vrm) level from the z/VM CSM environment. The SERVMGR
REMOVE command deletes all tables and vrm-level Shared File System (SFS) directories that are
associated with a subject vrm level. Before the vrm level is deleted, the SERVMGR message log file,
$CSMCMG $MSGLOG, is copied from the z/VM CSM root directory for vrm (VMPSFS:CSMvrm.) to the
MAINTCSM 191 disk or to SFS directory VMPSFS:MAINTCSM. and saved as $CSMCMG $MSGvrm.

vrm
Represents the specific version/release/modification level of information for which z/VM CSM is to be
deleted.

Usage Note
1. During SERVMGR command processing, the MAINTCSM 191 disk is accessed at file mode Z, with this

access file mode maintained upon command completion. It is advised that files that are customized
for using z/VM CSM (such as a MAINTCSM NAMES file) or for productivity (a PROFILE XEDIT file) be
maintained on the MAINTCSM 191 disk, so these are available for reference, when needed.

2. The SERVMGR command maintains a select set of program work files in the VMPSFS:MAINTCSM
root directory, and Shared File System (SFS) aliases for these files in z/VM CSM root directories
(VMPSFS:CSMvrm) for respective z/VM levels. This set of work files allows for effective use of
credentials maintained in a KEYVAULT database, and for proper handling of potential z/VM CSM
command enhancements for differing z/VM CSM release levels. For more information about this set of
work files, see "The SERVMGR command" in Chapter 10 in the z/VM: Service Guide.

3. No managed systems in the z/VM CSM group can be using the specified version/release/modification
(vrm) level when it is deleted. Before running the SERVMGR REMOVE command, use the SERVMGR
SYSTEM DELETE command to delete all systems that are using the specified vrm level from the z/VM
CSM group.

Example

1. To delete the z/VM 7.2.0 vrm level from z/VM CSM, enter:

SERVMGR REMOVE 720

Input/Output Files
The input and output files unique to SERVMGR are:
Input/Output Files
$CSMAGT $MSGLOG

CSMAGENT message log.

SERVMGR REMOVE

288 z/VM: 7.3 VMSES/E Introduction and Reference

$CSMCMG $MSGLOG
SERVMGR message log.

$CSMCMG $MSGvrm
SERVMGR message log for a deleted version/release/modification level.

CSM SVCSTAT
z/VM CSM service status table.

CSM SYSSTAT
z/VM CSM system status table.

Messages and Return Codes
For a complete explanation of each message, use the z/VM help facility to view the message explanation
online or see the appropriate message documentation. To display information about a specific message
(VMF002E, for example), enter:

help msg vmf002e

To display the main z/VM help menu, enter:

help

For information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The SERVMGR EXEC issues the following return codes:

Return Code Explanation

0 Command processing completed successfully.

2 Command processing completed successfully, but additional action might be
required.

4 Command processing completed with warnings.

5 Command processing stops.

6 Command processing stops.

8 Command processing stops.

9 Command processing stops.

12 Command processing stops.

13 Command processing stops.

21 Command processing stops.

24 Command processing stops.

28 Command processing continues or stops.

32 Command processing stops.

33 Command processing stops.

34 Command processing stops.

35 Command processing stops.

SERVMGR REMOVE

Chapter 20. VMSES/E EXEC and Command Format Summaries 289

Return Code Explanation

36 Command processing stops.

40 Command processing stops.

90 Command processing stops.

97 Command processing stops.

98 Command processing stops.

99 Command processing stops.

100 Command processing stops.

4113 Command processing stops.

SERVMGR REMOVE

290 z/VM: 7.3 VMSES/E Introduction and Reference

SERVMGR MANAGED
Note: SERVMGR MANAGED operands must be specified in the order shown in the SERVMGR MANAGED
syntax diagram.

SERVMGR MANAGED OFF

ON

Purpose
Use the SERVMGR MANAGED command for emergency service situations, to remove a managed system
from the z/VM Centralized Service Management (z/VM CSM) environment, or to enable a new z/VM-
related product. SERVMGR MANAGED can be used for enablement of all of the z/VM-related products
except RACF.

Operands
MANAGED

Is used for emergency service situations, to enable a new z/VM-related product, or to remove a
managed system from z/VM CSM.

OFF
Removes a managed system from the z/VM CSM environment.

ON
Puts a managed system in the z/VM CSM environment.

Usage Notes
1. Emergency service situations while running in a z/VM CSM environment:

If a situation arises for which you need to temporarily remove a managed system from a z/VM CSM
environment and apply service manually, you can do that. This is not recommended by IBM because
of the risk of getting your service levels out of sync with the managed system, and should be used
with caution. Entered on the MAINTvrm user ID on the managed system, the SERVMGR MANAGED OFF
command removes a managed system from the z/VM CSM environment. After the managed system
has been removed, if the service is updated, the system will have to be managed manually until you
re-synchronize it with a service level on the principal system. After you have re-synchronized the
service, you can add the system back into your z/VM CSM group by entering the SERVMGR MANAGED
ON command from the MAINTvrm user ID on the managed system.

Example

1. To enable Performance Toolkit on a managed system, first (on the managed system), enter:

SERVMGR MANAGED OFF

Next, issue the appropriate enablement command as provided in the licensing document (MEMO file).

Then, enter:

SERVMGR MANAGED ON

Input/Output Files
The input and output files unique to SERVMGR are:

SERVMGR MANAGED

Chapter 20. VMSES/E EXEC and Command Format Summaries 291

Input/Output Files
$CSMAGT $MSGLOG

CSMAGENT message log.
$CSMCMG $MSGLOG

SERVMGR message log.
CSM SVCSTAT

z/VM CSM service status table.
CSM SYSSTAT

z/VM CSM system status table.

Messages and Return Codes
For a complete explanation of each message, use the z/VM help facility to view the message explanation
online or see the appropriate message documentation. To display information about a specific message
(VMF002E, for example), enter:

help msg vmf002e

To display the main z/VM help menu, enter:

help

For information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The SERVMGR EXEC issues the following return codes:

Return Code Explanation

0 Command processing completed successfully.

2 Command processing completed successfully, but additional action might be
required.

4 Command processing completed with warnings.

5 Command processing stops.

6 Command processing stops.

8 Command processing stops.

9 Command processing stops.

12 Command processing stops.

13 Command processing stops.

21 Command processing stops.

24 Command processing stops.

28 Command processing continues or stops.

32 Command processing stops.

33 Command processing stops.

34 Command processing stops.

35 Command processing stops.

SERVMGR MANAGED

292 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

36 Command processing stops.

40 Command processing stops.

90 Command processing stops.

97 Command processing stops.

98 Command processing stops.

99 Command processing stops.

100 Command processing stops.

4113 Command processing stops.

SERVMGR MANAGED

Chapter 20. VMSES/E EXEC and Command Format Summaries 293

VMFAPPLY EXEC

VMFAPPLY PPF ppfname compname

(
1

(
2

Options

)

Options

APPList userfn CKSdi

NOCksdi

CNTRL cntrlfn

EXCList userfn LOG

NOLog

RUN

TEST SETup

NOSetup

PREEXit

UPDTID auxft

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.

Purpose
VMFAPPLY updates the maintenance level of the specified component based on the set of PTFs defined
in the specified apply and exclude lists. The maintenance level of the component is defined by the
apply status table and the version vector tables. The apply status table defines the PTFs that have been
successfully processed by VMFAPPLY. The version vector tables define the service history for all parts
affected by PTFs in the apply status table.

Operands
PPF

indicates that the specified product parameter file is to be used for apply processing.
ppfname

is the file name of the usable form product parameter file. The file type must be PPF.
compname

is the name of the component as it is specified on the :COMPNAME tag in the product parameter file.
compname is a 1- to 16-character alphanumeric identifier.

Options
APPList

defines the file name of a user-supplied apply list.

VMFAPPLY EXEC

294 z/VM: 7.3 VMSES/E Introduction and Reference

userfn
is the file name of the apply list. The file type of the apply list is $APPLIST. This file is used instead
of the IBM-supplied file. This value overrides the value on the :AXLIST tag in the PPF.

CKSdi
compares the self-documenting information contained in parts that have the SDI option specified in
the $PTFPART file to the version vector table when the apply process completes.

NOCksdi
does not compare the self-documenting information to the version vector tables.

Note: If the CKSDI and NOCKSDI options are omitted, the VMFAPPLY EXEC uses the value of
the :CKSDI tag in the product parameter file to determine whether to compare the self-documenting
information to the version vector tables.

CNTRL
defines the file name of the control file used to identify the AUX file and version vector table structure.
cntrlfn

is the file name of the control file. The file type of the control file is CNTRL. This value overrides the
value on the :CNTRL tag in the PPF.

EXCList
defines the file name of a user-supplied exclude list.
userfn

is the file name of the exclude list. The file type of the exclude list is $EXCLIST. This file is used
with the IBM-supplied apply list. This value overrides the value on the :EXCLIST tag in the PPF.

LOG
writes VMFAPPLY messages into the apply message log ($VMFAPP $MSGLOG).

No messages are logged until initial validation of the command is complete.

NOLog
does not write VMFAPPLY messages into the apply message log ($VMFAPP $MSGLOG).

Note: If the LOG and NOLOG options are omitted, the VMFAPPLY EXEC uses the value of the :LOG tag
in the product parameter file to determine whether to log messages into the apply message log.

RUN
requests a complete run of the apply process. The Software Inventory files are updated when the
apply process is complete and no errors are encountered. RUN is the default.

TEST
requests a dry run of the apply process. All apply processing steps are completed, but the Software
Inventory files are not updated.

SETup
sets up a minidisk/directory access order for the apply function according to entries in the :MDA
section of the product parameter file. If a user exit is specified in the product parameter file, setup will
occur after the user exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the apply function according to entries in the :MDA
section of the product parameter file. If a user exit is specified in the product parameter file, setup will
occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFAPPLY EXEC uses the value
of the :SETUP tag in the product parameter file to determine whether to set up a new access order.

UPDTID
defines the file type of the version vector table that is updated by the VMFAPPLY EXEC. It also defines
the file type of the AUX file that is generated for parts that have the AUX option specified in the
$PTFPART file. This value overrides the value on the :UPDTID tag in the PPF.

VMFAPPLY EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 295

auxft
is the file type of the version vector table.

Usage Notes
1. VMFAPPLY requires the alternate APPLY disk to be accessed as read-write.
2. VMFAPPLY requires the entire APPLY, DELTA, and LOCAL strings to be accessed.

Examples

• To run VMFAPPLY using the IBM-supplied defaults, enter:

VMFAPPLY PPF ppfname compname

• To run VMFAPPLY using a user-specified apply list (named MYLIST $APPLIST), enter:

VMFAPPLY PPF ppfname compname (APPLIST MYLIST

• To use VMFAPPLY to do a dry run of the apply process, enter:

VMFAPPLY PPF ppfname compname (TEST

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
prodid SRVREQT

The service-level requisite table.
fn $APPLIST

The apply list, which identifies the PTFs to process.
fn $EXCLIST

The exclude list, which identifies PTFs that are not processed even if they are specified in the apply
list.

cntrlfn CNTRL
The control file identified by the :CNTRL tag in the PPF or the CNTRL option on the VMFAPPLY
command.

appid SRVAPPS
The service-level apply status table.

appid VVTlvlid
The version vector tables specified by the control file specified on the :CNTRL tag in the product
parameter file.

appid $SELECT
The select data file.

Input/Output Files
appid $APRCVRY

The existence of this file on the APPLY disk string indicates VMFAPPLY was interrupted during critical
processing on the last invocation of VMFAPPLY for the specified component (used for recovery).

appid $SRVAPPS
The apply status table with a temporary file type (used for recovery).

appid $VVlvlid
The version vector tables with temporary file types (used for recovery).

appid $STATS
This file contains the values of key variables that are required for recovery (used for recovery).

VMFAPPLY EXEC

296 z/VM: 7.3 VMSES/E Introduction and Reference

Output Files
appid $MISSING

If TEST option is selected, this file is created on the A-disk and contains a list of parts that were
identified as missing. This file is in CMS LISTFILE format.

RETRY $APPLIST
If VMFAPPLY fails because of errors with selected PTFs, this file is created on the A-disk. This file is an
apply list for the PTFs that did not encounter errors.

VMSES PARTCAT
The parts catalog table.

$VMFAPP $MSGLOG
The apply message log.

partid AUXlvlid
AUX files for parts that have the AUX option specified in the $PTFPART file.

PPF Tags Used
:APPID

The identifier of the product used during apply processing.
:AXLIST

Defines the apply and exclude list names supplied by IBM on the service tape.
:EXCLIST

Defines the file name of a user-supplied exclude list. This file is used with the IBM-supplied exclude
list that has the file name specified on the :AXLIST tag.

:CNTRL
Defines the name of the control file.

:MDA
Defines symbolic strings and the minidisk or SFS directories associated with them.

:UPDTID
Defines the file type of the version vector table that is updated by the VMFAPPLY EXEC. It also defines
the file type of the AUX file that is generated for parts that have the AUX option specified in the
$PTFPART file.

:CKSDI
Controls whether the self-documenting information in parts with the SDI option specified in the
$PTFPART file is compared to the version vector upon completion of the apply process.

:LOG
Controls whether messages are logged in the apply message log ($VMFAPP $MSGLOG).

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks/directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified, then no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

VMFAPPLY EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 297

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFAPPLY EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFAPPLY EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

Note: The Software Inventory is updated if the return code is less than or equal to 4.

 PI end

Recovery Information

The VMFAPPLY command can be restarted by reissuing the command.

Case 1: After the successful completion of VMFAPPLY, the same command is reissued.

Rerunning VMFAPPLY after it has successfully completed has no effect on the state of the Software
Inventory. PTFs that are already applied are not processed. Therefore, no PTFs would be processed in this
case.

Case 2: VMFAPPLY is interrupted while processing PTFs in the Apply list.

While processing PTFs, all data is maintained in storage. No data is written to the APPLY disk. The only
external changes are in the $VMFAPP $MSGLOG. In terms of the Apply Disk (the maintenance level of the
system), this is equivalent to the command not being issued.

Case 3: VMFAPPLY is interrupted while updating the Software Inventory.

After the processing of PTFs in the Apply list is complete, the Software Inventory (the APPLY disk) is
updated. Because this is an interruptible process, a situation could exist where half the information is
updated. To avoid this inconsistency, VMFAPPLY:

• Updates the Software Inventory (Apply Status table and Version Vectors) using temporary file types
• Saves key variables in a temporary file
• Sets the recovery flag (writes a file to the APPLY disk named appid $APRCVRY)
• Copies the Software Inventory files to the real file types

VMFAPPLY EXEC

298 z/VM: 7.3 VMSES/E Introduction and Reference

• Creates AUX files
• Updates the $SELECT file
• Resets the recovery flag (erases the file named appid $APRCVRY)
• Erases all temporary files

If the process is interrupted while the recovery flag (appid $APRCVRY) is set, VMFAPPLY detects this
condition and completes the prior VMFAPPLY invocation based on the response from the user. The prior
VMFAPPLY invocation is completed using the information saved in the temporary files.

VMFAPPLY EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 299

VMFASM EXEC

VMFASM fn cntrlfn

ppfname compname

(
1

(
2

Options

)

Options
ASM F

ASM H

ASM HL
CNTRL cntrlfn

3
CKGen

4

LOGMOD
4

NOCKGen

NOVVT
4

CTL

PPF

FILEType ft

NO$SELect

$SELect
4

NOKeepsrc

KEEPsrc

OBJect

NOOBJect

OUTMode A

OUTMode fm

mda_string
4

PRint

DIsk

NOPrint
5

SETup

NOSetup

PREEXit

assemble_options

hasm_options

HLASM hlasm_options EHLASM

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 You can not use the CNTRL option if you already specified cntrlfn at the beginning of the command.
4 The CKGEN, LOGMOD, NOVVT, $SELECT, OUTMODE mda_string options cannot be used with the
CTL option.
5 The NOPRINT option is only valid when you also specify the ASM HL option.

Purpose
The VMFASM EXEC applies updates to a source file and assembles the file using either the ASSEMBLE
command, the HASM command, or the HLASM command.

VMFASM EXEC

300 z/VM: 7.3 VMSES/E Introduction and Reference

Operands
fn

is the file name of a source file to be updated and assembled. It must have a file type of ASSEMBLE.
cntrlfn

is the file name of a control file. The file type must be CNTRL.
ppfname

is the file name of a usable form product parameter file. It must have a file type of PPF. The name of
the control file that is to be used to update the source file is obtained from this product parameter file.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1- to 16-character alphanumeric identifier.

Options
ASM F

indicates that ASSEMBLE is used to assemble the part. ASM F is the default.
ASM H

indicates that HASM is used to assemble the part.
ASM HL

indicates that ASMAHL or HLASM is used to assemble the part.
CNTRL

specifies that a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of
the control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF. The CNTRL
option can not be used if operands fn cntrlfn are specified.

CKGen
requests validation of the AUX files against the version vector table and issues an error message if a
mismatch is detected. The version vector tables are not updated.

LOGMOD
requests validation of the AUX files against the version vector tables and automatically updates the
local version vector tables when a mismatch is detected. When you specify the LOGMOD option,
VMFASM modifies only the VVT files that are defined in the control file above the :UPDTID level
defined in the product parameter file. All other VVT levels are only compared to the AUX files, and
mismatches are displayed. You should only use the LOGMOD option when you are assembling files
that have source updates. All LOCAL disks must be accessed as Read-Write.

When you use the LOGMOD option:

• If a version vector table does not exist on a LOCAL disk, it is created on the first disk in the LOCAL
string.

• If the AUX file for a part is not found, the :PART entry (if found) is deleted from the version vector
table.

• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that
part. The :PART entry is not deleted from the version vector table.

NOCKGen
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file, and the VVT structure is used to name the output file.

NOVVT
requests no validation of the AUX files against the version vector tables (VVT). The AUX file structure
is used to update the source file and name the output file.

Note: If you omit the CKGEN, LOGMOD, NOCKGEN, and NOVVT options, the VMFASM EXEC uses the value
of the :CKGEN tag in the product parameter file to determine whether to validate the AUX files against

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 301

the version vector table. If the :CKGEN tag does not appear in the PPF, no validation is performed; and
NOCKGEN is assumed.

CTL
indicates that the second operand in the command is the name of a control file. If CTL is specified, a
product parameter file is not used.

PPF
indicates that the second parameter in the command is the name of a product parameter file that
specifies the control file to be used to update the source file. The product parameter file also lists the
minidisk/directory search order.

Note: If you do not enter a compname and you do not specify CTL or PPF, CTL is assumed.

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the
AUX or VVT structures.
ft

is the file type for the output file.
NO$SELect

does not update the select data file (appid $SELECT). NO$SELECT is the default.
$SELect

updates the appid $SELECT file to indicate the text deck has been changed. The first APPLY disk
specified in the :MDA section of the product parameter file must be accessed Read/Write. The other
APPLY disks must be accessed.

NOKeepsrc
erases the updated source file after it is assembled. NOKEEPSRC is the default.

KEEPsrc
indicates that the updated source file consisting of the source file and any updates will be saved on
your A-disk. The file is named $fn ASSEMBLE. fn is the source file name, truncated to seven characters
when necessary.

OBJect
indicates that the output deck is to be created on your A-disk. OBJECT is the default.

NOOBJect
indicates that the output deck is not to be created on your A-disk.

Note: If you specify the OBJECT and NOOBJECT options between the HLASM and EHLASM keywords,
they are ignored.

OUTMode
indicates the file mode for the output text and listing files created. This file mode must be accessed
Read/Write.
A

creates the output files on file mode A. A is the default file mode.
fm

is the file mode for the output files.
mda_string

is the name of the symbolic string of disks from the :MDA section of the product parameter file.
The output is placed on the first disk specified in this string.

PRint
indicates the listing output is to be sent to the virtual printer. PRINT is the default.

DIsk
indicates the listing output is to be created on your A-disk.

NOPrint
suppresses the writing of the listing output.

VMFASM EXEC

302 z/VM: 7.3 VMSES/E Introduction and Reference

Note: If you specify the PRINT, NOPRINT, and DISK options between the HLASM and EHLASM
keywords, they are ignored.

SETup
sets up a minidisk/directory access order for the assemble function according to entries in the :MDA
section of the product parameter file. This option is valid only when using a product parameter file. If a
user exit is specified in the product parameter file, setup will occur after the user exit is called.

NOSetup
does not set up a new minidisk/directory access order.

PREEXit
sets up a minidisk or SFS directory access order for the assemble function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFASM EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

Usage Notes
1. VMFASM handles packed files.
2. When you assemble text decks for use in the VMSES/E environment, you must use a product

parameter file.
3. If you receive warnings or errors from the UPDATE command, check the fn UPDLOG file for additional

information.
4. The High Level Assembler is called with the TERM(NARROW) and NODECK options. If the High Level

Assembler command name is ASMAHL it is also called with the following options, FLAG(NOCONT)
and USING(NOWARN). To override these options, specify the desired options between the HLASM and
EHLASM keywords.

5. VMFBLD uses the version vector tables to determine which level of a part to use during build
processing. If you do not specify the LOGMOD option, you must either manually update the version
vector tables before you run VMFBLD or you must rerun VMFASM and specify the LOGMOD option.

6. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with a record
consisting of either:

• fn and the first 3 characters of the file type of the output file
• fn and the full file type (when you also specify the FILETYPE option)

The select data file is used by VMFBLD to determine which objects need to be built using this text
deck.

7. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to
eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
tables files, and saving the results on a LOCALMOD disk.

Examples

• To run VMFASM, using the IBM-supplied defaults and a product parameter file, enter:

VMFASM DMSABC ppfname compname

• To run VMFASM, using the IBM-supplied defaults and a control file, enter:

VMFASM DMSABC cntrlfn (CTL

• To run VMFASM, using the H assembler and a product parameter file, enter:

VMFASM DMSABC ppfname compname (ASM H

• To run VMFASM, using the HL assembler and a product parameter file, enter:

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 303

VMFASM DMSABC ppfname compname (ASM HL

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
cntrlfn CNTRL

The control file.
fn ASSEMBLE

The source file.
fn updtft

Updates to the source file.
appid VVTlvlid

The version vector table.
fn AUXlvlid

The AUX file.
Output Files
fn TEXT
fn TXTnnnnn
fn xxxnnnnn

The assembled object deck (xxx is the file type abbreviation; nnnnn is a PTF number). You receive only
one of these formats.

Note: The object deck is written to the A-disk only when the OBJECT option (the default) is specified.

appid VVTlvlid
A version vector table.

appid $SELECT
The list of build requirements, when the $SELECT option is specified.

$fn LISTING
The assembler listing file.

fn UPDLOG
The update log file.

fn ctlfile
The update information file.

Note: If listing output is generated during the assembly, the PRINT or DISK option determines where
it will reside. The PRINT option (the default) causes all listing output to be sent to the virtual printer as
fn ctlfile. The DISK option causes all listing output to be placed on the A-disk in two files, $fn LISTING
and fn UPDLOG.

Temporary Files
$fn ASSEMBLE

The updated source file.
$fn TEXT

The temporary assembled object deck.
fn UPDATES

The update history file.
$VMFSIM CNTRL

A control file used with the LOGMOD option.
fn AUX$$$$$

An AUX file used with the LOGMOD option.

VMFASM EXEC

304 z/VM: 7.3 VMSES/E Introduction and Reference

PPF Tags Used
:APPID

The identifier of the product, which is used to name the version vector table and the select data file.
:CKGEN

Controls the validation of AUX files against the version vector tables. Valid values are NO, YES,
LOGMOD, and NOVVT.

:COMPNAME
Defines the component in the product parameter file to be used.

:CNTRL
Defines the name of the control file.

:MDA
Defines symbolic strings and the minidisks or SFS directories associated with them.

:SETUP
Controls whether the VMFSETUP EXEC is called to access the minidisks and directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified, then no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFASM EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFASM EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 305

The VMFASM command can be restarted by reissuing the command.

ASSEMBLE Options Supported by VMFASM
You can only enter assemble_options when you use the ASM F option.

In the following table, the left column shows the options of the ASSEMBLE command. The right column
shows how these options are supported by VMFASM when invoking the ASSEMBLE command. Also shown
are the default values (underlined) of these options. The ASSEMBLE defaults are used wherever possible.
Keyword-function options must be entered without the parentheses.

ASSEMBLE Option VMFASM Option

ALIGN|NOALIGN|ALGN|NOALGN same

ALOGIC|NOALOGIC same

BUFSIZE(STD) BUFSIZE(MIN) BUFSIZE(MAX) BUFSIZE STD BUFSIZE MIN BUFSIZE MAX

DECK|NODECK same

ESD|NOESD same

FLAG(0) FLAG(n) FLAG 0 FLAG n

LIBMAC|NOLIBMAC same

LINECOUN(55) LINECOUN(nn) LINECOUN 55 LINECOUN nn

LIST|NOLIST same

MCALL|NOMCALL same

MLOGIC|NOMLOGIC same

NUMber|NONUM same

OBJect|NOOBJect same

PRint|NOPRint|DIsk PRint|DIsk

RENT|NORENT same

RLD|NORLD same

STMT|NOSTMT same

SYSPARM(string) SYSPARM(?) SYSPARM() SYSPARM string SYSPARM ? SYSPARM SUP|SUP
SYSPARM EXP|EXP

TERMinal|NOTERM same

TEST|NOTEST same

WORKSIZE(2048K) WORKSIZE(nnnnK) WORKSIZE 2048K WORKSIZE nnnnK

XREF(SHORT) XREF(FULL) NOXREF XREF SHORT XREF FULL NOXREF

YFLAG|NOYFLAG same

Note: The defaults appear highlighted.

The SYSPARM SUP option suppresses the expansion of macros. The SYSPARM EXP option activates the
expansion of macros. SYSPARM SUP is the default.

HASM Options Supported by VMFASM
You can only enter hasm_options when you use the ASM H option.

VMFASM EXEC

306 z/VM: 7.3 VMSES/E Introduction and Reference

In the following table, the left column shows the options of the HASM command. The right column
shows how these options are supported by VMFASM when invoking the HASM command. Also shown are
the default values of these options. The HASM defaults are used wherever possible. Keyword-function
options must be entered without the parentheses.

HASM Option VMFASM Option

ALIGN|NOALIGN same

BATCH|NOBATCH same

DBCS|NODBCS same

DECK|NODECK same

ESD|NOESD same

FLAG(0) FLAG(n) FLAG 0 FLAG n

LINECOUN(55) LINECOUN(nn) LINECOUN 55 LINECOUN nn

LIST|NOLIST same

NUM|NONUM same

OBJECT|NOOBJECT OBJect|NOOBJect

PRINT|NOPRINT|DISK PRint|DIsk

RENT|NORENT same

RLD|NORLD same

STMT|NOSTMT same

SYSPARM(string) SYSPARM(?) SYSPARM() SYSPARM string SYSPARM ? SYSPARM SUP|SUP
SYSPARM EXP|EXP

TERM|NOTERM same

TEST|NOTEST same

XREF(FULL) XREF(SHORT) NOXREF XREF FULL XREF SHORT NOXREF

Note: The defaults appear highlighted.

The SYSPARM SUP option suppresses the expansion of macros. The SYSPARM EXP option activates the
expansion of macros. SYSPARM SUP is the default.

HLASM
indicates the beginning of the HLASM options, which are passed directly to the HLASM command.
VMFASM does not parse these options, the HLASM command performs the parsing.
hlasm_options

are the HLASM options. You can only enter hlasm_options when you use the ASM HL option.

For a description of the HLASM options, see IBM High Level Assembler/MVS & VM & VSE
Programmer's Guide, SC26-4941.

EHLASM
indicates the end of the HLASM options.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 307

VMFBLD EXEC

VMFBLD

PPF

LIST

PROD prodid

parm

(LOG

(
LOG

NOLog

INSLOG

ULOG logid

)

PPF
PPF ppfname compname

bldlist
*

*

object

blopt

(
1

(
2

Options

)

Notes:
1 The defaults you receive appear above the line in the Options fragment
2 You can enter options in any order between the parentheses

LIST

LIST ppfname compname
VMFBLD BLDDATA *

listfn
BLDDATA *

listft
*

listfm

(
1

(
2

Options

)

VMFASM EXEC

308 z/VM: 7.3 VMSES/E Introduction and Reference

Options

CNTRL cntrlfn CKVV

NOCKVv

LOG

NOLog

INSLOG

ULOG logid

PRIvate
3

target SETup

NOSetup

PREEXit

STATus

SERViced

ALL

WILD

Notes:
1 The defaults you receive appear above the line in the Options fragment
2 You can enter options in any order between the parentheses
3 PRIvate is valid only with SERVICED, ALL, and WILD.

Purpose
Use the VMFBLD EXEC to build objects (such as MODULE files, nucleus load decks, saved segments,
execs, XEDIT files, and so on). See the description of the STATUS option for information on how VMFBLD
determines the build requirements.

Operands
PPF

indicates the product is fully supported by VMSES/E and the specified product parameter file is to be
used for build processing.

This keyword is used when building any of the saved segments identified in a system saved segment
build list, which may include entries for saved segments defined by several products, some of which
may not be in VMSES/E format. Build parameters for saved segments used by non-VMSES/E products
are defined in the saved segment data file associated with the system saved segment build list.

ppfname
is the file name of the usable form product parameter file. The file type must be PPF.

When building saved segments, this is the saved segment product parameter file.

compname
is the name of the component as it is specified on the :COMPNAME tag in the product parameter
file. compname is a 1- to 16-character alphanumeric identifier.

When building saved segments, this is the name of the section in the saved segment product
parameter file that contains control information for building all the saved segments on the system.

bldlist
is the file name of a build list you want to process.

When building saved segments, this is the name of the system saved segment build list. It is also
the name of the saved segment data file that contains build information for each saved segment.

*
indicates all objects in the build list should be built.

If an asterisk (*) is used for object, the VMFBLD EXEC builds all objects in the specified build list
that meet the build criteria established by any other options you include on the command.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 309

object
is the name of an object in a build list that you want to build.

For format 1 build lists, the object name is BLDLIST.

For format 2 build lists, object can be either:

• the file name of the object, which builds all objects that have that file name.
• a fully-qualified object name, a file name and file type joined by a period (.), for example

RECEIVE.EXEC. When you specify a fully-qualified object name, only that object is built by
VMFBLD.

blopt
are build list options. Valid options depend on the part handler being used. See “Build List
Options” on page 315 for valid build list options.

Build list options are generally operands or options of the command used to build objects. Build
list options can be specified in the :BLD section of the product parameter file or when you enter
a VMFBLD command. When you enter build list options on the VMFBLD command, they override
the corresponding values in :BLD section of the product parameter file. They do not override
corresponding object parameters that may appear in the build list. For more permanent overrides
to the IBM supplied values, create product parameter file overrides.

LIST
indicates the product is fully supported by VMSES/E and the specified product parameter file is to be
used to process all build lists and objects specified in the input file (VMFBLD BLDDATA A by default).
See “VMFBLD BLDDATA File” on page 314 for the correct format for the input file.
ppfname

is the file name of the usable form product parameter file. The file type must be PPF.
compname

is the name of the component as it is specified on the :COMPNAME tag in the product parameter
file. compname is a 1- to 16-character alphanumeric identifier.

listfn
is the file name of the CMS file containing the list of objects to build. The default is VMFBLD.

listft
is the file type of the CMS file containing the list of objects to build. When you specify listft, you
must also specify listfn. The default is BLDDATA.

listfm
is the file mode of the disk containing the list of objects to build. When you specify listfm, you must
also specify listft. The default is the *.

PROD
indicates that the product to be built (prodid) is not fully supported by VMSES/E, and a product-
specific exec is to be used to build it.
prodid

is the product identification number and the file name of the product-specific exec. The file type
must be EXEC.

parm
are parameters you want to pass to the product-specific exec.

Note: VMFBLD enters the string ‘BUILD’ as the first parameter if it is not passed as a parameter by
the product-specific exec.

Options
CNTRL

specifies that a control file is used to identify the AUX file structure.

VMFASM EXEC

310 z/VM: 7.3 VMSES/E Introduction and Reference

cntrlfn
is the file name of the control file that is used to identify the AUX file structure. The file type of the
control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

CKVV
requests validation of the AUX files against the version vector tables.

NOCKVv
requests no validation of the AUX files against the version vector tables.

Note: If the CKVV and NOCKVV options are omitted, the VMFBLD EXEC uses the value of the :CKVV
tag in the product parameter file to determine whether to validate the AUX files against the version
vector tables.

The CKVV and NOCKVV options are only used by part handlers that use the CMS UPDATE command to
generate the serviceable parts that are included in the objects being built.

LOG
writes VMFBLD messages to the build message log ($VMFBLD $MSGLOG).

No messages are logged until initial validation of the command is complete.

NOLog
does not write VMFBLD messages to the build message log ($VMFBLD $MSGLOG).

Note: If the LOG and NOLOG options are omitted, the VMFBLD EXEC uses the value of the :LOG tag in
the product parameter file to determine whether to log VMFBLD messages in the build message log.

INSLOG
logs the messages in the $VMFINS $MSGLOG file.

Note: The INSLOG option is reserved for use by VMSES/E.

ULOG
writes VMFBLD messages to a user message log ($VMFxxx $MSGLOG.
logid

is a three-character message log identifier, for example:

logid Type of LOG
XYZ The user message log ($VMFXYZ $MSGLOG)

PRIvate
builds a private copy of each object on the target specified. The target specified on the PRIVATE
option overrides the value specified in the :BLD section of the product parameter file for the build
list being processed. The target must be accessed as Read/Write. When PRIVATE is specified, the
service-level build status table is not updated. You must specify the SERVICED, ALL, or WILD option.

Note: When the PRIVATE option is specified, VMFBLD does not process any objects that have a status
of DELETE.

target
is the virtual address of a minidisk or Shared File System (SFS) directory; file mode of a minidisk
or SFS directory; or the name of a symbolic string of disks from the :MDA section of the PPF where
the object is to be placed.

If a file mode is used with the SETUP operand, the SETUP is performed before a file mode is
resolved. If you use the name of a symbolic string the output is placed on the first disk specified in
this string.

When specifying the PRIVATE option there may be some ambiguity between the fm and the disk
values. If for some reason you have a disk address that is A, B, C, D, E, or F you must specify the
address with a leading 0; otherwise the letter value is assumed to be a file mode (fm).

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 311

SETup
sets up a minidisk or directory access order for the build function according to entries in the :MDA
section of the product parameter file (ppfname). If a user exit is specified in the product parameter
file, setup will occur after the user exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the build function according to entries in the :MDA
section of the product parameter file. If a user exit is specified in the product parameter file, setup will
occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFBLD EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

STATus
identifies build requirements. A build requirement exists for an object when any of the following are
true:

• Any serviceable parts included in the object have been serviced. All select data files ($SELECT)
identified on the :APPID tag in the product parameter file are processed to determine which parts
have been serviced.

• Its object definition has been changed by service.
• It was requested from the VMFBLD command.
• It has a requisite for an object that meets any of the previous conditions.
• It has been deleted from the current level of the build list. These objects are given a status of

DELETE.

New build requirements are added to the service-level build status table with a status of SERVICED or
DELETE. You can use this as a planning step to see which objects have been serviced.

As part of STATUS option processing, newly-serviced source product parameter files are built to the
A-disk. STATUS is the default.

SERViced
performs the STATUS function if any select data file (appid $SELECT) specified on the :APPID tag in
the product parameter file has been updated. Then builds the serviced objects as specified in Table
18 on page 312. When you do not specify PRIVATE, SERVICED also builds objects flagged as DELETE
in the service-level build status table.

ALL
performs the SERVICED function and in addition, builds all objects except wildcard objects specified
on the command line. An initial status of BUILDALL is assigned to the objects in the service-level build
status table.

WILD
performs the ALL function and in addition, builds all wildcard objects.

Table 18 on page 312 shows how to specify what you want to build.

Table 18. VMFBLD EXEC Parameter Specifications and Objects Built

Bldlist Object Option Objects Built

STATUS None

SERVICED All build requirements in the service-
level build status table

ALL All non-wildcard objects plus
all wildcard objects with build
requirements in all build lists in the PPF

VMFASM EXEC

312 z/VM: 7.3 VMSES/E Introduction and Reference

Table 18. VMFBLD EXEC Parameter Specifications and Objects Built (continued)

Bldlist Object Option Objects Built

WILD All objects in all build lists in the PPF

X STATUS None

X SERVICED All build requirements for the specified
build list in the service-level build status
table

X ALL All non-wildcard objects plus
all wildcard objects with build
requirements in the specified build list

X WILD All objects in the specified build list

X X STATUS None

X X SERVICED The specified object, if there is a build
requirement for it

X X ALL The specified object if it is not a wildcard
object or if it has a build requirement

X X WILD The object specified

Note:

• The Objects Built column does not include any serviced source product parameter files that are
automatically built as part of STATUS option processing.

• When you use the LIST operand, each entry in the input file is processed as described in this table.
• When you specify the SERVICED, ALL, and WILD options, VMFBLD also builds all build requisites for

the object being built that have a status of SERVICED or BUILDALL. VMFBLD also processes all objects
in the service-level build status table that have a status of DELETE, regardless of the build list or
objects specified on the command line (except if the private option is specified).

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 313

VMFBLD BLDDATA File
You can use the VMFBLD command with the LIST operand to process all build lists or objects specified in
an input file. The default file name for this input file is VMFBLD BLDDATA. You can, however, give the input
file another name. The contents of the file should conform to the following syntax.

File Syntax
When you create the input file, listfn listft (or VMFBLD BLDDATA by default), make sure you follow this
syntax.

bldlist
*

*

object

 blopt

comment

1

Notes:
1 Each record in the file must start on a new line.

Figure 140. Syntax for VMFBLD LIST Input File (VMFBLD BLDDATA)

bldlist
is the file name of a build list you want to process.

*
indicates all objects in the build list should be built.

If you use an asterisk (*) for object, the VMFBLD EXEC builds all objects in the specified build list that
meet the build criteria established by any other options you include on the command.

object
is the name of an object in a build list that you want to build.

For format 1 build lists, the object name is BLDLIST.

For format 2 build lists, object can be either:

• The file name of the object, which builds all objects that have that file name.
• A fully-qualified object name, which is a file name and file type joined by a period (.), for example

RECEIVE.EXEC. When you specify a fully-qualified object name, only that object and any required
build requisites are built by VMFBLD.

For Format 3 build lists, the object name is the name of a member in a library.

blopt
are build list options. Valid options depend on the part handler being used. See “Build List Options” on
page 315 for a complete description of build list options.

comment
represents comment records in the BLDDATA file. All records that start with an asterisk (*) are treated
as comment records and are ignored. Blank lines are also ignored.

VMFASM EXEC

314 z/VM: 7.3 VMSES/E Introduction and Reference

Build List Options
Table 19. Build List Options

If You Are Building Build List Options

Byte File System

(VMFBDBFS)
loadbfs_options

specifies options that are passed to the LOADBFS command.

Callable Services Libraries
(CSL)

(VMFBDCLB)

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

LIBTYPE BOTH

LIBTYPE DASD

NUC

SEG

specifies the format for the callable services library.

BOTH
indicates two callable services libraries are to be built. One is formatted for
DASD, and it has a file type of CSLLIB. One is formatted for use in a logical
saved segment, and it has a file type of CSLSEG. BOTH is the default.

DASD
indicates the callable services library is to be formatted for DASD, and the
library will have a file type of CSLLIB.

NUC
indicates the CSL is to be formatted for inclusion within the CMS nucleus, and
the library will have a file type of TEXT.

SEG
indicates the callable services library is to be formatted for use in a logical
saved segment, and the library will have a file type of CSLSEG.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 315

Table 19. Build List Options (continued)

If You Are Building Build List Options

Replacement Objects

(VMFBDCOM)
UPPER

indicates all files copied to the build target should use the uppercase option of the
COPYFILE command.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

WRKST

indicates all files copied to the build target should also be downloaded to the
workstation.

HLVLCHK

specifies that VMFBDCOM will do highest release level checking when processing
objects in the build list. Objects in the build list will always be built in a single-
system environment, but will only be built when running the build on a member of
an SSI cluster that is running the highest release level of the associated product.

Replacement Text Only

(VMFBDCPY)
BLDREQ reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

specifies a build requisite. A build requisite must be built prior to the object that
specifies it. reqbldlist is the build list that contains the requisite object, and reqobj
is the requisite object. If reqobj is not specified, all objects in the specified build list
are requisites.

Full minidisks

(VMFBDDDR)

No build list options.

DOS Libraries

(VMFBDDLB)
MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

DOSSEG segname

specifies the name of the segment to use when VMFBDDLB issues SET DOS ON. If
DOSSEG is not specified and DOS is not already set ON, the DOSINST segment is
used.

VMFASM EXEC

316 z/VM: 7.3 VMSES/E Introduction and Reference

Table 19. Build List Options (continued)

If You Are Building Build List Options

Generated Objects

(VMFBDGEN)
MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

CNTRL cntrlfn

specifies the file name that is used to identify the AUX file structure. The file type
of the control file is CNTRL. This value overrides the value on the :CNTRL tag in the
PPF.

LOADLIBs

(VMFBDLLB)
MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

MACLIBs

(VMFBDMLB)
CNTRL cntrlfn

specifies the file name of the control file to use when building the MACLIB. The
control file specified on the build list option overrides the control file specified in
the CNTRLOP section of the product parameter file.

ALTCNTRL

specifies the alternate control file, if it is specified in the CNTRLOP section of the
product parameter file, is to be used instead of the control file when building the
MACLIB.

COMP

NOCOMP

specifies whether the MACLIB should be compacted (unused space is removed).
COMP is the default.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 317

Table 19. Build List Options (continued)

If You Are Building Build List Options

MACLIBs

(VMFBDMLB)

con't

COMPRESS

NOCOMPRESS

specifies whether the MACLIB should be compressed (comments are removed).
COMPRESS is the default.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

Modules

(VMFBDMOD)
MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

HLVLCHK

specifies that VMFBDMOD will do highest release level checking when processing
objects in the build list. Objects in the build list will always be built in a single-
system environment, but will only be built when running the build on a member of
an SSI cluster that is running the highest release level of the associated product.

Modules with CPLINK

(VMFBDPMD)
MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

HLVLCHK

specifies that VMFBDPMD will do highest release level checking when processing
objects in the build list. Objects in the build list will always be built in a single-
system environment, but will only be built when running the build on a member of
an SSI cluster that is running the highest release level of the associated product.

VMFASM EXEC

318 z/VM: 7.3 VMSES/E Introduction and Reference

Table 19. Build List Options (continued)

If You Are Building Build List Options

Nuclei

(VMFBDNUC)
CNTRL-cntrlfn

specifies the filename of the control file to use when building the nucleus. The
control file specified on the build list option overrides the control file specified
in the CNTRLOP section fo the product parameter file.

ALTCNTRL

specifies the alternate control file, if it is specified in the CNTRLOP section of the
product parameter file, is to be used instead of the control file when building the
nucleus.

FASTPATH

specifies the loader should use the text deck entries from the previous nucleus
build. These are included in the bldlist $NUCEXEC file.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 319

Table 19. Build List Options (continued)

If You Are Building Build List Options

Nuclei

(VMFBDNUC)

con't

NUCTARG PUNCH

NUCTARG DISK

TAPE

MODULE

specifies the target for the nucleus or nucleus module.

PUNCH
causes the nucleus to be created as an IPLable file in the virtual reader.
NUCTARG PUNCH is the default.

DISK
causes the nucleus to be link-edited and loaded directly to the system
residence device.

TAPE
causes the nucleus to be created as an IPLable file on the tape device at virtual
address 182.

MODULE
causes the nucleus to be created as a link-edited CMS module on the A-disk.

LOADER DMKLD00E

HCPLDR

specifies which loader to call. If no loader is specified, the default is the loader
identified in the nucleus build list.

RLDSAVE

indicates the relocation dictionary is to be saved. This option is only valid when
NUCTARG MODULE is specified.

MODNAME fn

specifies the name of the nucleus module. This option is only valid when NUCTARG
MODULE is specified. If you do not specify MODNAME, the build list name is used
as the default module name.

BLDREQ reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

specifies a build requisite. A build requisite must be built prior to the object that
specifies it. reqbldlist is the build list that contains the requisite object, and reqobj
is the requisite object. If reqobj is not specified, all objects in the specified build list
are requisites.

Note: The NUCTARG MODULE and RLDSAVE options are only valid when HCPLDR is
used.

VMFASM EXEC

320 z/VM: 7.3 VMSES/E Introduction and Reference

Table 19. Build List Options (continued)

If You Are Building Build List Options

Segments

(VMFBDSBR)

No build list options.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 321

Table 19. Build List Options (continued)

If You Are Building Build List Options

Segments

(VMFBDSEG)
ACCESS

LINK

NOACCESS

indicates whether VMFBDSEG should and how VMFBDSEG should call VMFSETUP
when you build a segment that uses a product parameter file. The product
parameter file is specified on the :BLDPARMS tag for the segment in the SEGDATA
file.

ACCESS
calls VMFSETUP to access the product disks (the disks must already be linked).
The accessed disks are released after the segment is built. ACCESS is the
default.

LINK
calls VMFSETUP with the LINK option to link and access the product disks.
The accessed disks are released, and the linked disks are detached after the
segment is built.

NOACCESS
does not call VMFSETUP. The disks must already be linked and accessed.

Note: These build list options do not affect the SETUP and NOSETUP options
specified on the VMFBLD command.

DROP

NODROP

indicates whether VMFBDSEG should drop all or just new nucleus extensions after
each segment is built.

DROP
indicates VMFBDSEG should release all segments on entry. Before building
the first segment and after each segment is built, all nucleus extensions are
dropped. DROP is the default.

NODROP
indicates VMFBDSEG should not release all existing segments. Before building
the first segment and after each segment is built, only those nucleus
extensions that were not already loaded on entry to VMFBDSEG are released.

NOTYPE

TYPE

indicates whether VMFBDSEG should show the messages issued by SEGGEN.

TYPE
indicates VMFBDSEG should show the messages issued by SEGGEN. This
option is passed to SEGGEN.

NOTYPE
indicates VMFBDSEG should not show the messages issued by SEGGEN. This
option is passed to SEGGEN.

VMFASM EXEC

322 z/VM: 7.3 VMSES/E Introduction and Reference

Table 19. Build List Options (continued)

If You Are Building Build List Options

TXTLIBs

(VMFBDTLB)
MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in
the build list. n must be a valid CMS file mode number. The default is 2.

Usage Notes
1. Most VMFBLD part handlers ignore the CKVV option, because they deal with parts supported by the

version vector table only.
2. VMFBLD requires the alternate APPLY disk and any build disks that are the targets of specified

objects to be accessed as Read-Write.
3. VMFBLD requires the entire APPLY, DELTA, LOCAL, and BASE strings to be accessed.
4. When you use the LIST operand:

• VMFBLD does not necessarily build the objects in the list file in the order they are specified. The
order in which they are built is determined by build requisite relationships and by grouping objects
in the same build list to minimize the number of calls to the part handlers.

• Options specified on the VMFBLD command apply to all of the objects being built. If you specify
build list options in the list, VMFBLD concatenates all of the options specified for the objects that
are being built as a group.

5. When you use the PRIVATE option, the results of the VMFBLD status function are used to determine
what needs to be built. The service-level build status table, however, is not updated with the results
from the status function.

Note: The target on the PRIVATE option is ignored when you are building some objects, such as saved
segments and the GCS and CMS nucleus.

6. Build list syntax is defined in “Build Lists” on page 141.
7. You should not remove build lists from product parameter files.
8. VMFBLD determines the objects to be deleted by reading the select data file to determine which build

lists have been serviced. (When a build list has been serviced, a third token is added to the select
data file entry.) VMFBLD then compares the previous level of the build list to the new level of the build
list. VMFBLD gives the status of DELETE to any object found in the previous level of the build list that
is not found in the new serviced level.

9. Unless the NODROP build list option is specified, all saved segments are released and nucleus
extensions are dropped before saved segments are built. Specify NODROP when there are segments
or nucleus extensions you do not want VMFBDSEG to release. Because VMFBDSEG will not release
storage reserved by any segments or nucleus extensions in this case, it is more likely the storage
needed by a segment to be built will not be available. To minimize this possibility, release all but the
needed segments and nucleus extensions before you invoke VMFBLD.

10. When NUC is specified for VMFBDCLB:

• All history is stored in the nucleus map.
• No checking of the existence of the TEXT files associated to a ROUTINE will be done. It is assumed

they already reside within the CMS nucleus. These text names are still needed to set the proper
linkage within the library TEXT file.

• A CSL that is defined to be built with the NUC option, can still be built using the options DASD, SEG
or BOTH.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 323

• Changes to text files associated with a ROUTINE result in rebuilding a CSL. If the NUC option is
specified for the build, however, the generated TEXT output does not change because the updated
text files are not used until the nucleus build.

11. When specifying the PRIVATE option there may be some ambiguity between the fm and the disk
values. If for some reason you have a disk address that is A, B, C, D, E, or F you must specify the
address with a leading 0; otherwise the letter value is assumed to be a file mode (fm).

12. If the WILD option is specified, VMFBLD builds wildcard objects by first searching for parts that have
a local, serviced, or base file type that matches the object's :PARTID tag. VMFBLD also searches any
BASE disks for parts with the real file type of the object. All parts found are then built using the
highest level of each part as determined by the version vector tables.

Examples
• To use VMFBLD to determine the build requirements for a fully-supported product using the IBM-

supplied defaults, enter:

VMFBLD PPF ppfname compname

• To run VMFBLD to build all serviced objects for a fully-supported product using the IBM-supplied
defaults, enter:

VMFBLD PPF ppfname compname (SERVICED

• To run VMFBLD to build all objects (except for wildcard objects that are not serviced) for a fully-
supported product using the IBM-supplied defaults, enter:

VMFBLD PPF ppfname compname (ALL

• To run VMFBLD to build all objects (including wildcard objects that are not serviced) for a fully-
supported product using the IBM-supplied defaults, enter:

VMFBLD PPF ppfname compname (WILD

• To run VMFBLD to build all serviced objects in a single build list for a fully-supported product using the
IBM-supplied defaults, enter:

VMFBLD PPF ppfname compname bldlist (SERVICED

• To run VMFBLD for a product that is not fully supported, using the IBM-supplied defaults, enter:

VMFBLD PROD prodid parms

• To run VMFBLD to build all the saved segments defined in the system saved segment build list, enter:

VMFBLD PPF ppfname compname bldlist (ALL

• To run VMFBLD to build a list of segments that have been serviced, enter:

VMFBLD LIST ppfname compname listfn listft listfm (SERVICED

• To run VMFBLD to build a test version of an object and not update the service-level build status table,
enter:

VMFBLD PPF ppfname compname bldlist object (ALL PRIVATE 191

• To run VMFBLD to build a specific saved segment whether or not it has been serviced, enter:

VMFBLD PPF ppfname compname bldlist segname (ALL

• To run VMFBLD to build a specific saved segment only if it has been serviced, enter:

VMFBLD PPF ppfname compname bldlist segname (SERVICED

VMFASM EXEC

324 z/VM: 7.3 VMSES/E Introduction and Reference

• To build all serviced segments using the LINK build list option to link and detach product disks, enter:

VMFBLD PPF ppfname compname bldlist * LINK (SERVICED

• To build all serviced segments using the NODROP option to not drop the segments or nucleus
extensions issue:

VMFBLD PPF SEGBLD ESASEGS * NODROP (SERVICED

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
appid $SELECT

The select data file.
appid SRVAPPS

The service-level apply status table.
appid VVTlvlid

The version vector tables specified by the control file specified on the :CNTRL tag in the product
parameter file.

listfn listft
The file containing the list of build lists and objects to process.

appid $APRCVRY
Used for apply recovery. The existence of this file on the APPLY string indicates VMFAPPLY was
interrupted during critical processing on the last invocation of VMFAPPLY for the specific component.

cntrlfn CNTRL
The control file identified by the :CNTRL tag in the product parameter file (PPF) or the CNTRL option of
the VMFBLD command.

VM SYSABRVT
The file type abbreviation table.

VMFNLS LANGLIST
National language support table.

VMSESE PROFILE
The file that identifies the minidisk or directory location of the VMSBR $SELECT file.

bldlist EXCnnnnn
The build list.

bldlist SEGDATA
The saved segment data file.

SERVICE $PRODS
The place into production file that is a list of products and objects that were serviced. For more
information, see “Place Into Production Files” on page 135.

VM SYSAPARS
The system-level Base APAR table.

VM SYSPINV
The system-level product inventory table.

Input/Output Files
bldid SRVBLDS

The service-level build status table.
VMSBR $SELECT

The select data file for system objects, such as saved segments.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 325

appid $HLVLSRV
List of serviced parts and associated build requirements for cross-system highest release level
objects.

Output Files
$VMFBLD $MSGLOG

The build message log.
VMSES PARTCAT

The parts catalog table.
filename TEXT

TEXT files created when you use the COPY option on the CSLGEN command.
fname DLKEDERR

The DOS library error file that is created or updated. fname is the name of the phase.
libname CSLLIB

The DASD version of the Callable Services Library that is created.
libname CSLSEG

The segment version of the Callable Services Library that is created.
libname DLKEDIT

The DOS library history file that is created or updated.
libname DOSLIB

The DOS library that is created or updated.
libname LIBMAP

The map for the DASD version of the Callable Services Library that is created.
libname SEGMAP

The map for the segment version of the Callable Services Library that is created.
libname TEXT

File containing the nucleus version of the Callable Services Library.
libname TXTLIB

The text library for the Callable Services Library that is created.
objname MAP

Load map created when a map is requested.
objname $MAP

Load map created when a module build fails and a map is requested.
objname LISTING

Listing created when the DISK option is specified on the generation routine.
objname cntrlfn

Listing created when the DISK and NOLIST options are specified on the generation routine.
bldlist $NUCEXEC

Load list created with all file specifications resolved.
bldlist MAP

Load map created when a map is requested.
Temporary Files
LLB LOADLIB

Work copy of the LOADLIB being serviced.
LLB LKEDMAP

Work copy of the link editor load map created when servicing a LOADLIB.
LLB TEXT

File containing the link editor control statements to service a LOADLIB member.
MLB MACLIB

Work copy of the MACLIB being serviced.

VMFASM EXEC

326 z/VM: 7.3 VMSES/E Introduction and Reference

MLB COPY
File created and included in the MACLIB being serviced to indicate the level of all members.

objname $HISTORY
File containing a header record and service level summary for TXTLIB and MACLIB members.

objname UPDATES
File created to be used in generating the service level summary.

$objname MODULE
Work copy of the module being created.

$objname MAP
Work copy of the load map created when building a module.

$$$TLL$$ EXEC
Temporary load list.

TLB TXTLIB
Work copy of the TXTLIB being serviced.

TLB TEXT
Text file with the service level summary of all TXTLIB members imbedded.

TLB $HISTORY
Collection of the $HISTORY files created for each member in a TXTLIB.

objname TIMESTMP
File created to record time stamp and user ID information that is used to create the service level
summary.

CLB CSLCNTRL
The CSLCNTRL file created from the build list.

CLB CSLLIB
The DASD version of the Callable Services Library that is created.

CLB CSLSEG
The segment version of the Callable Services Library that is created.

CLB TXTLIB
The text library for the Callable Services Library that is created.

CLB LIBMAP
The map for the DASD version of the Callable Services Library that is created.

CLB SEGMAP
The map for the segment version of the Callable Services Library that is created.

partname ASSEMBLE
A temporary copy of the source assemble file.

DLB DOSLIB
A temporary copy of the DOS library.

$DLBB$ DOSLIB
A backup temporary copy of the DOS library.

DLB DLKEDIT
A temporary copy of the DOS library history file.

fname DOSLNK
A link edit control file that is used as input to the DOSLKED command. fname is the name of the phase.

partname objtype
A temporary copy of the text file that is created.

PPF Tags Used
:BLD

Defines the build lists for the product and the part handlers and target strings associated with them.

VMFASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 327

:CNTRLOP
Defines the control options for the VMFBLD command and the VMFBLD part handlers.

:DABBV
Defines file type abbreviations specific to a product and the real and base file types associated with
them.

:MDA
Defines symbolic strings and the minidisks or SFS directories associated with them.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

These return codes may be returned to a user exit by VMFBLD. For more information about user exits,
see :USEREXIT..

The VMFBLD EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

 PI end

Recovery Information
The VMFBLD command can be restarted by reissuing the command.

Creating Objects with VMFBLD
VMFBLD uses a number of part handlers to process different types of parts and objects. The following
sections briefly describe each part handler, the function it provides, and the available options and
parameters. Usage notes and examples are also provided.

The following terms are used throughout this section of the book:

VMFASM EXEC

328 z/VM: 7.3 VMSES/E Introduction and Reference

build target
is a minidisk or Shared File System directory that is defined to be part of a BUILD string in the :MDA
(minidisk/directory assignment) section of the product parameter file. The BUILD string contains the
objects after they are built.

build list options
are options that apply to an entire build list. They are used by the build part handlers or other
commands that are used to generate the object.

object parameters
are values that apply to only one object definition in a build list. They are used by the build
part handlers or other commands that are used to generate the object. Object parameters take
precedence over build list options.

part options
are options that apply to one or more serviceable parts in an object definition. An :OPTIONS
record remains in effect for each of the remaining parts of an object unless it is superseded by
another :OPTIONS record. You can use a blank :OPTIONS record to turn off the previous :OPTIONS
record. They are used by the build part handlers or other commands that are used to generate the
object. Part options take precedence over object parameters.

Callable Services Libraries (CSL)
VMFBLD uses the VMFBDCLB part handler to build callable services libraries using the information in the
VMSES/E build list.

VMFBDCLB produces a CSL library, CSLLIB, CSLSEG or TEXT. In addition you can get TXTLIBs, maps,
and text decks depending on the build list options specified. VMFBDCLB also provides information to the
VMFBLD command so the service-level build status tables are updated.

VMFBDCLB supports the function of all CSL control statements, except the CSLCNTRL statement, as build
list part options. For more information, see “Part Options (CSL)” on page 331. VMFBDCLB supports all
valid CSLCNTRL statement options as part options on a :OPTIONS tag, except the FILETYPE option on the
ROUTINE statement. All other options are passed to the CSLGEN command, and VMFBDCLB performs no
error checking on them.

Build List Format (CSL)
VMFBDCLB uses format 3 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (CSL)
Figure 141 on page 330 is an example of a format 3 build list used by VMFBDCLB.

Callable Services Libraries (CSL)

Chapter 20. VMSES/E EXEC and Command Format Summaries 329

:FORMAT. 3
:LIBNAME. ACSLLIB
:GBLDREQ. DMSBLBAS.BLDLIST
:OBJNAME. ACSLLIB
 :OPTIONS. TXTLIB DMSBASE DMSAENV
 :OPTIONS. ROUTINE VMABND PATH 1024.080 MP CSECT VMABND
 :PARTID. DMSABM TXT
 :PARTID. DMSABM TMP
 :OPTIONS. ROUTINE VMEVMCR PATH 1024.094 MP CSECT VMEVMCR
 :PARTID. DMSEMC TXT
 :PARTID. DMSEMC TMP
 :OPTIONS. ALIAS VTEVMCR PATH 1024.094 MP COPY
 :OPTIONS. ROUTINE DMSEXIST
 :PARTID. DMSJEX TXT
 :PARTID. DMSJEX TMP
 :OPTIONS. INCLUDE
 :PARTID. DMSCSL TXT
 :OPTIONS. ROUTINE DMSQWUID
 :PARTID. DMSJQW TXT
 :PARTID. DMSJQWTP TMP
:EOBJNAME.

Figure 141. Example Build List Used by VMFBDCLB

Entering this command:

vmfbld ppf ppfname compname bldlist acsllib (all

causes the object, ACSLLIB, to be built and creates a callable services library named ACSLLIB.

Build List Restrictions (CSL)
VMFBDCLB:

• Requires exactly one object block
• Requires at least one :PARTID tag in the object block
• Ignores all :GLOBAL and :GGLOBAL values.

Build List Options (CSL)
VMFBDCLB uses the following build list options:

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all CSL generated files except TEXT
files. CSL generated TEXT files retain the file mode number set by CSLGEN. n must be a valid CMS file
mode number. The default is 2.

LIBTYPE BOTH

LIBTYPE DASD

NUC

SEG

specifies the format for the callable services library.

DASD
indicates the callable services library is to be formatted for DASD, and the library will have a file type
of CSLLIB. The associated map has a file type of LIBMAP.

Callable Services Libraries (CSL)

330 z/VM: 7.3 VMSES/E Introduction and Reference

SEG
indicates the callable services library is to be formatted for use in a logical saved segment, and the
library will have a file type of CSLSEG. The associated map has a file type of SEGMAP.

BOTH
indicates two callable services libraries are to be built. One is formatted for DASD, and it has a file type
of CSLLIB. One is formatted for use in a logical saved segment, and it has a file type of CSLSEG. The
associated maps have a file type of LIBMAP and SEGMAP. BOTH is the default.

NUC
indicates the callable services library is to be formatted for inclusion within the CMS nucleus, and the
library will have a file type of TEXT.

Library Parameters (CSL)
VMFBDCLB uses the following library parameters:

NOERASE

is tolerated and has no effect on CSLLIB part handler since a CSLLIB can only be updated by being totally
rebuilt.

Object Parameters (CSL)
VMFBDCLB uses the following object parameters:

LDRTBLS nnn

defines the number of pages of storage to be used for loader tables by issuing the SET LDRTBLS
command. nnn is a whole number ranging from 1 to 127 inclusive. The value is reset once the object build
is complete.

Part Options (CSL)
VMFBDCLB uses the following part options:

IGNORE

indicates the part can be ignored if it does not exist. By ignoring a part, an object can still be considered
built even if the part is not included in it. A part can only be ignored if it has no service history. If a service
level is defined for the part and it is missing, it is an error condition. This part option is intended for parts
for which no base level part is shipped (for example, help files and user exits).

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

NOGETLVL

indicates the VMFSIM GETLVL function should not be used for this part. The values provided on
the :PARTID tag are the specifications of the file used to build this part.

ROUTINE rtnname rtnopts

defines a callable services library routine.

rtnname
is the CSL ROUTINE name.

Callable Services Libraries (CSL)

Chapter 20. VMSES/E EXEC and Command Format Summaries 331

rtnopts
are any CSL ROUTINE options. These are only valid on the :OPTIONS tags which precede the
first :PARTID tag in a ROUTINE object block.

INCLUDE

indicates that a callable services library INCLUDE statement is being defined.

ALIAS rtnalias PATH path alopts

defines a callable services library routine alias.

rtnalias
is the CSL alias name.

PATH
is a CSL keyword.

path
is the path assigned for this alias name.

alopts
are any CSL ALIAS options. These are only valid on the :OPTIONS tags which precede the first :PARTID
tag in an ALIAS object block.

TEXT

indicates a member of the callable services library TXTLIB is being defined.

TXTLIB

indicates a TXTLIB that must be made global when the callable services library is built.

Usage Notes (CSL)
1. The :LIBNAME tag is not required. If it is omitted, the library file name is the same as the build list file

name.
2. The entire callable services library is built if any part has been serviced.
3. If no objects are listed in the build list and a build is requested, VMFBDCLB erases the CSLLIB,

CSLSEG, TXTLIB, and maps (LIBMAP and SEGMAP). No text decks are erased if they were created.
4. If you specified the target disk as the A-disk and the disk fills up before the library is generated,

the existing library remains unchanged. If the library is generated (that is, the CSLGEN command
completes successfully) and the A-disk fills up before VMFBLD processing completes, the A-disk may
contain both old and new levels of the library files.

5. For more information on callable services library routines and aliases, see z/VM: CMS Application
Development Guide for Assembler.

6. When NUC is specified for VMFBDCLB:

• All history is stored in the nucleus map.
• No checking of the existence of the TEXT files associated to a ROUTINE will be done. It is assumed

that they already reside within the CMS nucleus. These text names are still needed to set the proper
linkage within the library TEXT file.

• A callable services library, that is defined to be built with the NUC option, can still be built using the
options DASD, SEG, or BOTH.

• Changes to text files associated with a ROUTINE result in rebuilding a callable services library.
However, if the NUC option is specified for the build, the generated TEXT output does not change
since the updated text files are not used until the nucleus build.

Callable Services Libraries (CSL)

332 z/VM: 7.3 VMSES/E Introduction and Reference

Restore from DDR Image Files
VMFBLD uses the VMFBDDDR part handler to select the latest level of DDR image files and sets up the
environment to allow PUT2PROD to restore the DDR image files to the appropriate production minidisk.

Build List Format (DDR Image Files)
VMFBDDDR uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (DDR Image Files)
Figure 142 on page 333 is an example of a format 2 build list used by VMFBDDDR.

:FORMAT. 2
:OBJNAME. LOHCOST.DDR
:PARTID. LOH1 CKD
:PARTID. LOH2 CKD
:PARTID. LOH1 FBA
:PARTID. LOH2 FBA
:EOBJNAME.

Figure 142. Example Build List Used by VMFBDDDR

Entering this command:

vmfbld ppf ppfname compname bldlist lohcost.ddr (all

causes the highest level of the DDR image file(s) to be copied to the test disk, and the environment is
primed for PUT2PROD to be able to restore the DDR image file(s) to the production minidisk.

Build List Restrictions (DDR Image Files)
VMFBDDDR requires at least one :PARTID tag per object block. Since each DDR image file is device
dependent, there should be at least one image file for CKD devices and one image file for FBA devices.
If the minidisk is large enough, there can be multiple image files for each minidisk. Each individual image
file can be a portion of the minidisk, but there should be image files to cover all cylinders or blocks of the
minidisk.

Build List Options (DDR Image Files)
None.

Object Parameters (DDR Image Files)
None.

Part Options (DDR Image Files)
None.

Usage Notes (DDR Image Files)
1. The :OBJNAME tags are not used in the build process except to identify the objects.
2. If an object is removed from a VMFBDDDR build list, the object is marked as DELETED, but no DDR

image file processing occurs.

DDR image files

Chapter 20. VMSES/E EXEC and Command Format Summaries 333

CMS/DOS Phase Libraries (DOSLIB)
VMFBLD uses the VMFBDDLB part handler to build CMS/DOS phase libraries (DOSLIBs) using the
information in the VMSES/E build list. Each DOS library is represented by a build list that contains one or
more object blocks. Each object represents a phase (member) in the DOS library.

VMFBDDLB produces a DOSLNK file for each phase in the DOSLIB build list that is to be added or
replaced, and calls the DOSLKED command to update the library. Phases are deleted from the library
using the DOSLIB DEL command.

Build List Format (DOSLIB)
VMFBDDLB uses format 3 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (DOSLIB)
Figure 143 on page 334 is an example of a format 3 build list used by VMFBDDLB. In this example, the
second :OPTIONS record is necessary to turn off the parts in that object.

:FORMAT. 3
:LIBNAME. CMSVSAM
:OBJNAME. IKQVVS ACTION NOAUTO
 :PARTID. IKQVVS TXT
 :OPTIONS. ENTRY DMSVIP
 :PARTID. DMSVIP TXT
 :OPTIONS.
 :PARTID. IKQSMDMB TXT
:EOBJNAME.
:OBJNAME. IKQVVN PHPARMS ,*,NOAUTO
 :PARTID. IKQVVN TXT
:EOBJNAME.
:OBJNAME. IKQVRT PHPARMS ,+0
 :PARTID. IKQVRT TXT
:EOBJNAME.

Figure 143. Example Build List Used by VMFBDDLB

Entering this command:

vmfbld ppf ppfname compname bldlist ikqvvs (all

causes the phase IKQVVS to be built in the CMSVSAM DOSLIB.

Build List Restrictions (DOSLIB)
VMFBDDLB:

• Requires at least one :PARTID tag per object block
• Ignores all :GGLOBAL and :GLOBAL values

Build List Options (DOSLIB)
VMFBDDLB uses the following build list options:

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

DOSSEG segname

CMS/DOS Phase Libraries (DOSLIB)

334 z/VM: 7.3 VMSES/E Introduction and Reference

specifies the name of the segment to use when VMFBDDLB issues SET DOS ON. If DOSSEG is not
specified and DOS is not already set ON, the DOSINST segment is used.

Library Parameters (DOSLIB)
VMFBDDLB uses the following library parameters:

NOERASE

indicates to the part handler the library is not to be erased during the build.

Object Parameters (DOSLIB)
VMFBDDLB uses the following object parameters:

PHPARMS phaseparms

are a string of values that are valid following the phase name on a PHASE statement in a DOSLNK file.
Each value must be preceded by a comma, and there must be no blanks in the string. The first value must
be the origin value. If PHPARMS is not specified, the origin value defaults to ‘*’.

ACTION actionparms

specifies an ACTION record that will be the first input record to DOSLKED. actionparms is a string
of values that are valid on an ACTION statement in a DOSLNK file. The parameters are separated by
commas, and there must be no blanks in the string.

For more information on CMS/DOS libraries, see "Developing VSE Programs under CMS" in z/VM: CMS
Application Development Guide for Assembler. For more information on the statements in a DOSLNK file,
see VSE/ESA 1.3.0 System Control Statements , SC33-6513.

Part Options (DOSLIB)
VMFBDDLB uses the following part options:

ENTRY *

entrypoint

specifies a valid DOS link edit ENTRY record, which will be added to the DOSLNK file after the INCLUDE
record for the part (or as the next record if no part is specified). Use an * to indicate the ENTRY record
does not include an entry point. The ENTRY record is not added if a part is specified, and it is not found.

REMPHASE

indicates a PHASE record at the beginning of the control records section of the text deck should be
removed. The record is changed to a comment.

IGNORE

indicates the part can be ignored if it does not exist. By ignoring a part, an object can still be considered
built even if the part is not included in it. A part can only be ignored if it has no service history. If a service
level is defined for the part and it is missing, it is an error condition. This part option is intended for parts
for which no base level part is shipped (e.g. help files and user exits).

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

CMS/DOS Phase Libraries (DOSLIB)

Chapter 20. VMSES/E EXEC and Command Format Summaries 335

NOGETLVL

indicates the VMFSIM GETLVL function should not be used for this part. The values provided on
the :PARTID tag are the specifications of the file used to build this part.

Usage Notes (DOSLIB)
1. The :LIBNAME tag is not required. If it is omitted, the library file name is the same as the build list file

name.
2. If no objects are listed in the build list and a build is requested, VMFBDDLB erases the DOS library and

the DOS library history file, unless the NOERASE library parameter is specified.
3. If the DOS library does not exist or the DOS library history file is not on the same disk as the DOS

library, a message is issued and the entire DOS library and DOS library history file are built. If the
NOERASE library parameter is specified this occurs only if the DOS library does not exist.

4. The A-disk should not be used as the target disk because VMFBDDLB uses the A-disk as a work disk to
create and erase temporary files.

5. If the updated DOS library has been copied to the target disk, but the DOS library history file was
not copied to the target disk; use the VMFCOPY command to copy the temporary history file (DLB
DLKEDIT A) to the target disk.

6. If none of the text decks that make up a phase are found and the IGNORE option was specified for
each one, the phase is considered to have been built. Any version of the phase currently in the DOS
library remains in the library.

7. If DOS is set to ON before VMFBLD is invoked, it is not set ON by the part handler.
8. The DOS Library history file (libname DLKEDIT) contains the following information for each phase:

• The name of the phase
• A list of the text files that are included in the phase by VMFBDDLB
• The map output from the DOSLKED invocation to build the phase. The NOERASE parameter is useful

if a library is to be updated from multiple products, each of which has its own build list for the library.
Without NOERASE, if a product erases and rebuilds the library, any objects (members) that have
been added by other products are lost.

The history information from each text deck is included within the map output portion of the DLKEDIT
file. The map output from DOSLKED is erased after it is imbedded in the DLKEDIT file.

9. The NOERASE parameter is useful if a library is to be updated from multiple products, each of which
has its own build list for the library. Without NOERASE, if a product erases and rebuilds the library, any
objects (members) that have been added by other products are lost.

Generated Objects
VMFBLD uses the VMFBDGEN part handler to build generated objects, such as text decks. VMFBDGEN:

• Selects the correct level of the source part, unpacks the source file, and puts it on the A-disk
• Calls the generation routine specified in the build list
• Places the file, which is a result of the generation routine, on the target disk using the file specifications

that are specified on the :OBJNAME tag
• Erases the file staged to the A disk
• Deletes objects as requested
• Provides the status of the object to VMFBLD

Build List Format (Generated Objects)
VMFBDGEN uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Generated Objects

336 z/VM: 7.3 VMSES/E Introduction and Reference

Example (Generated Objects)
Figure 144 on page 337 is an example of a format 2 build list used by VMFBDGEN.

:FORMAT. 2
:GOBJPARM. GENPARMS VMFASM NOLIST NOTERM EGENPARMS
:OBJNAME. FILE1.TEXT
 :PARTID. FILE1 ASM
:EOBJNAME.
:OBJNAME. FILE2.TXT GENPARMS VMFHASM NOLIST NOTERM EGENPARMS GETLVL
 :PARTID. VMFZZZ ASM
:EOBJNAME.
:OBJNAME. FILE3.TXTGCS
 :PARTID. FILE3 ASM
:EOBJNAME.
:OBJNAME. FILE4.TEXT
 :OPTIONS. NOGETLVL
 :PARTID. MYOWN ASSEMBLE
:EOBJNAME.

Figure 144. Example Build List Used by VMFBDGEN

Entering this command:

vmfbld ppf ppfname compname bldlist (serviced

causes all serviced objects in the build list to be built.

Entering this command:

vmfbld ppf ppfname compname bldlist (all

causes all objects in the build list to be built.

Build List Restrictions (Generated Objects)
VMFBDGEN:

• Requires exactly one :PARTID tag per object block
• Ignores all :GGLOBAL and :GLOBAL values

Build List Options (Generated Objects)
VMFBDGEN uses the following build list options:

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

CNTRL cntrlfn

specifies the name of the control file that is used to identify the AUX file structure. The file type of the
control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

Object Parameters (Generated Objects)
VMFBDGEN uses the following object parameters:

Generated Objects

Chapter 20. VMSES/E EXEC and Command Format Summaries 337

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode for this object. n must be a valid CMS
file mode number. The default is 2.

GENPARMS command options EGENPARMS

specifies the generation routine to use to build this object.

command
is the generation routine to be used to build the object. The generation routine must be an EXEC.

options
are the options to be provided when the command is invoked.

GETLVL

calls VMFSIM GETLVL to determine the file type of the output file. The values provided on the :OBJNAME
tag are the file name and file type abbreviation of the output file. The PTF number is included in the file
type.

The VMFBLD command uses the control file structure to determine the file type of the resulting output,
unless you used the FILETYPE option. For more information, see “How VMSES/E Uses Control Files” on
page 117.

Part Options (Generated Objects)
VMFBDGEN uses the following part options:

IGNORE

indicates the part can be ignored if it does not exist. By ignoring a part, an object can still be considered
built even if the part is not included in it. A part can only be ignored if it has no service history. If a service
level is defined for the part and it is missing, it is an error condition. This part option is intended for parts
for which no base level part is shipped (for example, help files and user exits).

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

NOGETLVL

indicates the VMFSIM GETLVL function should not be used for this part. The values provided on
the :PARTID tag are the specifications of the file used to build this part.

Usage Notes (Generated Objects)
1. VMFBDGEN handles packed files.
2. The NOOBJECT option on the VMFASM, VMFHASM, VMFHLASM, and VMFNLS commands is ignored by

VMFBDGEN.
3. When you apply local modifications to parts processed by VMFBDGEN, you should log them in the local

version vector table using the source file type (for example, ASSEMBLE, REPOS, and DLCS).
4. The tokens, which are joined by a period (.), on the :OBJNAME tag are used to determine the file name

and file type of the executable form created by VMFBLD part handlers that process format 2 build lists.
The information on the :PARTID tag is used to determine which part(s) are used to create the output
object. The following example demonstrates some of the capabilities provided by this convention:

Generated Objects

338 z/VM: 7.3 VMSES/E Introduction and Reference

:FORMAT. 2
:GOBJPARM. GENPARMS VMFASM NOLIST NOTERM EGENPARMS
:OBJNAME. FILE1.TEXT
 :PARTID. FILE1 ASM
:EOBJNAME.
:OBJNAME. FILE2.TXT GENPARMS VMFHASM NOLIST NOTERM EGENPARMS GETLVL
 :PARTID. VMFZZZ ASM
:EOBJNAME.
:OBJNAME. FILE3.TXTGCS
 :PARTID. FILE3 ASM
:EOBJNAME.
:OBJNAME. FILE4.TEXT
 :OPTIONS. NOGETLVL
 :PARTID. MYOWN ASSEMBLE
:EOBJNAME.

Load to the Byte File System
VMFBLD uses the VMFBDBFS part handler to select the latest level of a LOADBFS control file and uses the
LOADBFS command to move files into the Byte File System.

Note: The VMFBDBFS part handler runs the CMS LOADBFS command. The LOADBFS command used to
install certain utilities must be run on the z/VM system where the file pool resides. LOADBFS cannot be
used to install data into a file pool on a remote z/VM system. The BFS limits the amount of data that can
be sent to a remote file pool and LOADBFS sends more data than that limit.

Build List Format (Byte File System)
VMFBDBFS uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (Byte File System)
Figure 145 on page 339 is an example of a format 2 build list used by VMFBDBFS.

:FORMAT. 2
*
:OBJNAME. SHELL.LOADBFS
:BLDREQ. GSUBLSYS GSUBLLIB GSUMLOAD
:PARTID. SHELL LBF
:EOBJNAME.

Figure 145. Example Build List Used by VMFBDBFS

Entering this command:

vmfbld ppf ppfname compname bldlist shell.loadbfs (all

causes the z/VM Shell and Utilities files to be loaded into Byte File System using the highest level of the
control file SHELL LBF.

Build List Restrictions (Byte File System)
VMFBDBFS requires at least one :PARTID tag per object block. The first :PARTID tag identifies the control
file; any others identify the files to be loaded.

Build List Options (Byte File System)

loadbfs_options

loadbfs_options specifies options that are passed to the LOADBFS command.

Load to the Byte File System

Chapter 20. VMSES/E EXEC and Command Format Summaries 339

$PRODS
NO

YES

If $PRODS YES is specified, a record is written to the SERVICE $PRODS file and the byte file system is not
updated. If $PRODS NO is specified, the byte file system is updated. $PRODS NO is the default.

Object Parameters (Byte File System)
None.

Part Options (Byte File System)
VMFBDBFS uses the following part options:

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

NOGETLVL

indicates the VMFSIM GETLVL function should not be used for this part. The values provided on
the :PARTID tag are the specifications of the file to use for this part.

Usage Notes (Byte File System)
1. LOADLIBs specified on the :GLOBAL or :GGLOBAL tags in the build list will be made global when

building an object. Any other types of libraries specified are ignored.
2. The first :PARTID tag in an object identifies the LOADBFS control file to be used. The latest service

level is used. All other :PARTID tags in an object identify the files to be loaded into the Byte File
System. The latest service levels of these files are not used. The parts that are actually loaded are
defined in the LOADBFS control file.

3. The :OBJNAME tags are not used in the build process except to identify the objects.
4. The target disk is not used. The target is the Byte File System as defined in the LOADBFS control file.
5. If an object is removed from a VMFBDBFS build list, the object is marked as DELETED, but no Byte File

System processing occurs.

Objects Serviced by Complete Replacement
VMFBLD uses the VMFBDCOM part handler to build objects that are serviced by complete replacement of
the serviceable part, for example execs, XEDIT macros, and help files. Many of these parts may also be
supported by updates, in addition to the replacement parts.

The VMFBDCOM part handler selects the latest levels of serviceable parts, copies them to the appropriate
build target, and renames them to the appropriate object names. For example, the serviceable part
VMFREC EXC12345 would be copied and renamed to VMFREC EXEC.

Build List Format (Replacement Objects)
VMFBDCOM uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (Replacement Objects)
Figure 146 on page 341 is an example of a format 2 build list used by VMFBDCOM.

Objects Serviced by Complete Replacement

340 z/VM: 7.3 VMSES/E Introduction and Reference

:FORMAT. 2
:OBJNAME. MYOWN.EXEC
 :PARTID. MYOWN EXC
:EOBJNAME.
:OBJNAME. MYOWN.XEDIT
 :PARTID. MYOWN XED
:EOBJNAME.
:OBJNAME. MYOWN2.EXEC
 :PARTID. MYOWN2 EXC
:EOBJNAME.
:OBJNAME. =.HELPCP
 :OPTIONS. IGNORE
 :PARTID. * HCP
:EOBJNAME.

Figure 146. Example Build List Used by VMFBDCOM

Entering this command:

vmfbld ppf ppfname compname bldlist myown.exec (all

causes only the object MYOWN.EXEC to be built, which results in an output file on the target disk or
directory MYOWN EXEC.

Entering this command:

vmfbld ppf ppfname compname bldlist myown (all

causes all objects whose file name portion of the :OBJNAME tag is MYOWN to be built. This causes
MYOWN EXEC and MYOWN XEDIT to be built on the target disk or directory.

Note: The object =.HELPCP represents all files with a file type of HELPCP. If the correct level of
serviceable part required to build any part of this object were the base level and that level could not
be found, specification of the IGNORE option would cause an informational message to be issued and
allow the object to be successfully built.

Build List Restrictions (Replacement Objects)
VMFBDCOM:

• Requires at least one :PARTID tag per object block
• Allows only one file type abbreviation in a :PARTID record
• Ignores :GLOBAL and :GGLOBAL tags

Build List Options (Replacement Objects)
VMFBDCOM uses the following build list options:

UPPER

indicates all files copied to the build target should use the uppercase option of the COPYFILE command.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

WRKST

Objects Serviced by Complete Replacement

Chapter 20. VMSES/E EXEC and Command Format Summaries 341

indicates all files copied to the build target should also be downloaded to the workstation.

HLVLCHK

specifies that VMFBDCOM will do highest release level checking when processing objects in the build list.
Objects in the build list will always be built in a single-system environment, but will only be built when
running the build on a member of an SSI cluster that is running the highest release level of the associated
product.

Object Parameters (Replacement Objects)
VMFBDCOM uses the following object parameters:

BYPASS

indicates that the associated object is not to be built, regardless of its service history. This object
parameter is intended for objects that need to be listed in a build list, but that should not be built by
VMFBLD at any time.

UPPER

indicates all files copied to the build target should use the uppercase option of the COPYFILE command.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of this object in the build list. n must
be a valid CMS file mode number. The default is 2.

Part Options (Replacement Objects)
VMFBDCOM uses the following part options:

IGNORE

indicates the part can be ignored if it does not exist. By ignoring a part, an object can still be considered
built even if the part is not included in it. A part can only be ignored if it has no service history. If a service
level is defined for the part and it is missing, it is an error condition. This part option is intended for parts
for which no base level part is shipped, for example, for help files and user exits.

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

UPPER

indicates all files copied to the build target should use the uppercase option of the COPYFILE command.

NOGETLVL

indicates file types are not to be resolved. All associated :PARTIDs must contain two tokens. They are
used as the file name and file type of the serviceable part that is required to build this object.

BYPASS

indicates that the associated part is not to be built, regardless of its service history. This part option is
intended for parts that need to be listed in a build list, but that should not be built by VMFBLD at any time.

Objects Serviced by Complete Replacement

342 z/VM: 7.3 VMSES/E Introduction and Reference

Usage Notes (Replacement Objects)
1. The tokens, which are joined by a period (.), on the :OBJNAME tag are used to determine the file name

and file type of the executable form created by VMFBLD part handlers that process format 2 build lists.
The information on the :PARTID tag is used to determine which part(s) are used to create the output
object. The following example demonstrates some of the capabilities provided by this convention:

:FORMAT. 2
:OBJNAME.XEDIT.MODULE
 :PARTID.DMSXEDMO MOD
:EOBJNAME.
:OBJNAME.XEDIT.EXEC
 :PARTID.DMSXEDEX EXC
:EOBJNAME.
:OBJNAME.XEDIT.PROFILE
 :PARTID.DMSXEDPR $PR
:EOBJNAME.

2. If multiple :PARTID tags appear in an object block, the latest levels of the serviceable parts are copied
together to form one file on the build target. This function is used to build the CP nucleus (CPLOAD
MODULE).

Text Objects Serviced by Complete Replacement (Format 1 Build List)
VMFBLD uses the VMFBDCPY part handler to select the latest levels of serviceable text decks, copy them
to the build target, and rename them to the appropriate object names.

For example, the serviceable part DMSABC TXT12345 would be copied and renamed to DMSABC TEXT.

Build List Format (Text Objects)
VMFBDCPY uses format 1 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (Text Objects)
Figure 147 on page 343 is an example of a build list used by VMFBDCPY.

&TRACE OFF
&1 &2 &3 DMSABC
&1 &2 &3 DMSXYZ TXTABC

Figure 147. Example Build List Used by VMFBDCPY

Entering this command:

vmfbld ppf ppfname compname bldlist (all

causes the highest level serviced text deck for DMSABC and DMSXYZ to be copied to the specified target
disk with a file type of TEXT and TXTABC respectively.

Build List Restrictions (Text Objects)
VMFBDCPY requires at least one part in the build list.

Build List Options (Text Objects)
VMFBDCPY uses the following build list options:

BLDREQ reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

Text Objects Complete Repl (Format 1)

Chapter 20. VMSES/E EXEC and Command Format Summaries 343

specifies a build requisite. A build requisite must be built prior to the object that specifies it. reqbldlist is
the build list that contains the requisite object, and reqobj is the requisite object. If reqobj is not specified,
all objects in the specified build list are requisites.

Object Parameters (Text Objects)
None.

Part Options (Text Objects)
VMFBDCPY uses the following part options:

LANG

specifies the part is language sensitive and VMFLANG is to be used as the language function. If a part type
is specified for the part in the build list, this option is ignored.

Usage Notes (Text Objects)
VMFBDCPY is supported for compatibility with previous releases of VM/ESA. If you are creating build lists
for text objects serviced by complete replacement, use a format 2 build list and the VMFBDCOM part
handler.

LOADLIBs
VMFBLD uses the VMFBDLLB part handler to select the latest levels of serviceable text decks, TXTLIB
members, LOADLIB members, and create load modules as members of a LOADLIB. For example, the
serviceable text decks DMSABC TXT12345 and DMSXYZ TXT23456 would be link edited into a load
module that is placed into a LOADLIB. The LOADLIB is then copied to the appropriate build target.

Build List Format (LOADLIBs)
VMFBDLLB uses format 3 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (LOADLIBs)
Figure 148 on page 344 is an example of a format 3 build list used by VMFBDLLB.

:FORMAT. 3
:LIBNAME. ALOADLIB
:OBJNAME. TEXT1
 :PARTID. MXRTXT1 TXT
:EOBJNAME.
:OBJNAME. TEXT2
 :PARTID. MXRTXT2A TXT
 :PARTID. MXRTXT2B TXT
:EOBJNAME.
:OBJNAME. TEXT3
 :BLDREQ. TXTLIBA.TEXTA8
 :OPTIONS. INCLUDE TXTLIBA(TEXTA8) INCLUDE DD3(LOAD3)
 :OPTIONS. DDNAME DD3 LOADLIBA LOADLIB
 :OPTIONS. ENTRY TEXTA8
:EOBJNAME.
:OBJNAME. TEXT4
 :OPTIONS.INCLUDE TXTLIBX(TEXTX1)
 CONCAT SYSLIB TXTLIBP|TXTLIBA
 CONCAT SYSLIB TXTLIBQ
 CONCAT SYSLIB TXTLIBX
 CONCAT SYSLIB TXTLIBZ
:EOBJNAME.

Figure 148. Example Build List Used by VMFBDLLB

Entering this command:

LOADLIBs

344 z/VM: 7.3 VMSES/E Introduction and Reference

vmfbld ppf ppfname compname bldlist (all

causes ALOADLIB LOADLIB to be rebuilt using the latest level of serviceable part for MXRTXT1,
MXRTXT2A, and MXRTXT2B text files. It would also contain member TEXTA8 from TXTLIBA TXTLIB,
member LOAD3 from LOADLIBA LOADLIB, member TEXTX1 from TXTLIBX TXTLIB, and any other text
members that TEXTX1 brings with it from the libraries being concatenated.

Entering this command:

vmfbld ppf ppfname compname bldlist text1 (all

causes only the object TEXT1 to be built in ALOADLIB LOADLIB using the latest level serviceable part for
MXRTXT1 text file.

Note: If the object TEXTA8 in TXTLIBA TXTLIB were serviced, it would cause object TEXT3 to be rebuilt
following the successful build of TEXTA8.

Build List Restrictions (LOADLIBs)
VMFBDLLB:

• Does not allow wildcard objects.
• Ignores :GLOBAL and :GGLOBAL tags

Build List Options (LOADLIBs)
VMFBDLLB uses the following build list options:

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

Library Parameters (LOADLIBs)
VMFBDLLB uses the following library parameters:

BIND

indicates that the LOADLIB is built with the Program Management Binder for CMS (Binder).

NOERASE

indicates to the part handler the library is not to be erased during the build.

Object Parameters (LOADLIBs)
VMFBDLLB uses the following object parameter:

LEPARMS opts

are the LKED options or BIND options for the member. The Binder SNAME option is not allowed as it is
generated automatically from the :OBJNAME tag.

Part Options (LOADLIBs)
VMFBDLLB uses the following part options:

LOADLIBs

Chapter 20. VMSES/E EXEC and Command Format Summaries 345

CONCAT ddname

|

 txtlibname

assigns a single data definition name to two or more TXTLIBs. These TXTLIBs are then made global in the
same order as the CONCAT statements are specified.

If the CONCAT option is specified, it must be followed by two tokens. The first token (ddname) is used as
the data definition name. The second token (txtlibname) is used as the TXTLIB name. If you use the OR (|)
operator, the first txtlibname found in the set of specified txtlibnames is used as the TXTLIB name. Also, if
you use the OR (|) operator and one of the libraries is null and no libraries are found, no processing occurs
for this CONCAT option. There are no spaces between the txtlibnames and the OR operator (for example,
TEXTLIB1|TEXTLIB2|TEXTLIB3).

You can specify any number of CONCAT options in an object or a build list.

For more information on data definition names, see the description of the FILEDEF command in z/VM:
CMS Commands and Utilities Reference.

IGNORE

indicates the part can be ignored if it does not exist. Only parts defined on a :PARTID tag may be ignored.
By ignoring a part, an object can still be considered built even if the part is not included in it. A part can
only be ignored if it has no service history. If a service level is defined for the part and it is missing, it is an
error condition. This part option is intended for parts for which no base level part is shipped, for example,
for help files and user exits.

Parts that are specified with the NOGETLVL part option can also specify IGNORE to be ignored if they do
not exist.

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

bind_statements

are any binder control statements, except for the NAME statement. The NAME statement is generated
automatically from the :OBJNAME tag. Each binder control statement has to be on its own :OPTIONS tag.

lked_statements

are any linkage editor control statements, except the NAME statement. The NAME statement is generated
automatically from the :OBJNAME tag. The linkage editor control statements may all be listed on the
same physical line with the :OPTIONS tag, or they may be split onto separate lines. INCLUDE statements
are used to include TXTLIB or LOADLIB members. A DDNAME option is used to define the library that
contains the member. If no DDNAME option matches the INCLUDE, the library defaults to a TXTLIB with
the name specified on the INCLUDE.

NOGETLVL

indicates file types are not to be resolved. All associated :PARTIDs must contain two tokens. They are
used as the file name and file type of the serviceable part that is required to build this object.

DDNAME ddname libname libtype

defines the library (TXTLIB or LOADLIB) that is searched for the member specified on an INCLUDE
statement. The format of the INCLUDE is INCLUDE ddname(member).

LOADLIBs

346 z/VM: 7.3 VMSES/E Introduction and Reference

Usage Notes (LOADLIBs)
1. The :LIBNAME tag is not required. If it is omitted, the library file name is the same as the build list file

name.
2. Format 3 part handlers can selectively service members based on the build requirements established

by VMFBLD.
3. Format 3 part handlers attempt to service an existing library, but will rebuild it if the library does not

exist or if all members must be rebuilt. If the NOERASE library parameter is specified the library will be
rebuilt only if it does not exist.

4. The NOERASE parameter is useful if a library is to be updated from multiple products, each of which
has its own build list for the library. Without NOERASE, if a product erases and rebuilds the library, any
objects (members) that have been added by other products are lost.

5. VMSES/E uses the part options IGNORE, LANGFUNC, and NOGETLVL to determine the latest level
of parts defined by :PARTID tags. When these options are found on an :OPTIONS tag, they apply to
all :PARTID tags that follow in the object block in which they are found until the next :OPTIONS tag is
encountered. The next :OPTIONS tag resets these options. All other part options are used to build the
input to the LKED command for the object block in which they are found. These options are used as
they are encountered on :OPTIONS tags and are not reset by subsequent :OPTIONS tags.

MACLIBs
VMFBLD uses the VMFBDMLB part handler to select the latest level serviceable MACRO and COPY files
and create members of a MACLIB. For example, the serviceable parts MACRO MAC12345 and COPY4
CPY54321 are placed into a MACLIB that is then copied to the appropriate build target. If files other than
MACRO or COPY are selected they are first renamed to COPY before being placed into the MACLIB.

Build List Format (MACLIBs)
VMFBDMLB uses format 3 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (MACLIBs)
Figure 149 on page 347 is an example of a format 3 build list used by VMFBDMLB.

:FORMAT. 3
:LIBNAME. AMACLIB
:OBJNAME. MEMBER1
 :PARTID. MACRO1 MAC
:EOBJNAME.
:OBJNAME. MEMBER2
 :PARTID. COPY1 COPY
:EOBJNAME.
:OBJNAME. MEMBER3
 :PARTID. COPY2 CPY
:EOBJNAME.
:OBJNAME. MEMBER4
 :PARTID. MACRO2 MACRO
:EOBJNAME.

Figure 149. Example Build List Used by VMFBDMLB

Entering this command:

vmfbld ppf ppfname compname bldlist (all

causes AMACLIB MACLIB to be rebuilt using the highest level of serviceable parts for MACRO1 MAC and
COPY2 CPY and using the highest levels of MACRO2 MACRO and COPY1 COPY, which are created using
their update files.

Entering this command:

MACLIBs

Chapter 20. VMSES/E EXEC and Command Format Summaries 347

vmfbld ppf ppfname compname bldlist member3 (all

causes only the object MEMBER3 to be built in AMACLIB MACLIB using the latest level serviceable part
for COPY2 CPY.

Note:

1. If any member of a MACLIB is to be deleted, VMFBDMLB will rebuild the MACLIB omitting the deleted
member unless NOERASE library parameter is specified. In this case, the deleted member will be
removed from the MACLIB without a complete rebuild.

2. Specifying a real file type, rather than an abbreviation, on the :PARTID tag signals the VMFBDMLB
part handler that the UPDATE command must be called to create the highest level of this part. If the
real file type is 3 characters in length, the UPDATE part option must be used to signal the use of the
UPDATE command.

Build List Restrictions (MACLIBs)
VMFBDMLB:

• Requires exactly one :PARTID tag per object block
• Does not allow wildcard objects
• Ignores :GLOBAL and :GGLOBAL tags

Build List Options (MACLIBs)
VMFBDMLB uses the following build list options:

CNTRL cntrlfn

specifies the name of the control file. The control file must have a file type of CNTRL. The control file
specified on the build list option overrides the control file specified in the CNTRLOP section of the product
parameter file.

ALTCNTRL

specifies the alternate control file, if it is specified in the CNTRLOP section of the product parameter file, is
to be used instead of the control file.

COMP

NOCOMP

specifies whether the MACLIB should be compacted (unused space is removed). COMP is the default.

COMPRESS

NOCOMPRESS

specifies whether the MACLIB should be compressed (comments are removed). COMPRESS is the default.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

MACLIBs

348 z/VM: 7.3 VMSES/E Introduction and Reference

Library Parameters (MACLIBs)
VMFBDMLB uses the following library parameters:

NOERASE

indicates to the part handler the library is not to be erased during the build.

Object Parameters (MACLIBs)
VMFBDMLB uses no object parameters.

Part Options (MACLIBs)
VMFBDMLB uses the following part options:

IGNORE

indicates the part can be ignored if it does not exist. By ignoring a part, an object can still be considered
built even if the part is not included in it. A part can only be ignored if it has no service history. If a service
level is defined for the part and it is missing, it is an error condition. This part option is intended for parts
for which no base level part is shipped, for example, for help files and user exits.

Parts that are specified with the NOGETLVL part option can also specify IGNORE to be ignored if they do
not exist.

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

NOGETLVL

indicates file types are not to be resolved. All associated :PARTIDs must contain two tokens. They are
used as the file name and file type of the serviceable part that is required to build this object.

UPDATE

indicates the UPDATE command must be called to create the highest level of this part.

Usage Notes (MACLIBs)
1. The :LIBNAME tag is not required. If it is omitted, the library file name is the same as the build list file

name.
2. Format 3 part handlers can selectively service members based on the build requirements established

by VMFBLD.
3. Format 3 part handlers attempt to service an existing library, but will rebuild it if the library does not

exist or if all members must be rebuilt. If the NOERASE library parameter is specified this occurs only if
the library does not exist.

4. When servicing a MACLIB using VMSES/E, there should be twice the number of free blocks of DASD on
your A-disk than the MACLIB being serviced requires. This provides more space for such functions as
staging the MACLIB, updating serviced files, and compressing the MACLIB.

5. The NOERASE parameter is useful if a library is to be updated from multiple products, each of which
has its own build list for the library. Without NOERASE, if a product erases and rebuilds the library, any
objects (members) that have been added by other products are lost.

MACLIBs

Chapter 20. VMSES/E EXEC and Command Format Summaries 349

Executable Modules
The VMFBDMOD part handler selects the latest level of serviceable text decks and uses the LOAD,
INCLUDE, and GENMOD commands to create executable MODULEs. For example, DMSABC TXT12345,
DMSXYZ TXT23456, and DMSA2Z are loaded into storage and used to create a module with the specified
name on the appropriate build target.

Build List Format (Modules)
VMFBDMOD uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (Modules)
Figure 150 on page 350 is an example of a format 2 build list used by VMFBDMOD.

:FORMAT. 2
:OBJNAME. FIRSTMOD.MODULE NOMAP
 :OPTIONS. NOMAP
 :PARTID. FIRSTEXT TXT
:EOBJNAME.
:OBJNAME. SECNDMOD.MODULE NOMAP
 :OPTIONS. NOMAP CLEAR RLDSAVE NCHIST NOUNDEF
 :PARTID. SECTEXT1 TXT
 :PARTID. SECTEXT2 TXT
 :PARTID. SECTEXT3 TXT
 :OPTIONS. NOGETLVL SAME
 :PARTID. DMSCSL TEXT
 :OPTIONS. NOMAP CLEAR RLDSAVE NCHIST NOUNDEF
 :PARTID. SECTEXT4 TXT
 :OPTIONS. UNDEF SAME
 :PARTID. SECLAST TXT
:EOBJNAME.

Figure 150. Example Build List Used by VMFBDMOD

Entering this command:

vmfbld ppf ppfname compname bldlist firstmod.module (all

causes the object FIRSTMOD MODULE to be built on the target disk or directory using the highest level of
the specified text deck.

Entering this command:

vmfbld ppf ppfname compname bldlist secndmod (all

causes the object SECNDMOD MODULE to be built on the target disk or directory using the highest level of
the specified text decks for all parts except DMSCSL TEXT. The NOGETLVL option causes normal VMFSIM
GETLVL processing to be bypassed for this part, and the first accessed version of the part name provided
on the :PARTID tag is used.

Build List Restrictions (Modules)
VMFBDMOD:

• Requires at least one :PARTID tag per object block
• Does not allow wildcard objects
• Does not allow consecutive :OPTIONS tags

Build List Options (Modules)
VMFBDMOD uses the following build list options:

MACLIBs

350 z/VM: 7.3 VMSES/E Introduction and Reference

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

HLVLCHK

specifies that VMFBDMOD will do highest release level checking when processing objects in the build list.
Objects in the build list will always be built in a single-system environment, but will only be built when
running the build on a member of an SSI cluster that is running the highest release level of the associated
product.

Object Parameters (Modules)
VMFBDMOD uses the following object parameters:

genmodopts

are any GENMOD command options.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of this object in the build list. n must
be a valid CMS file mode number. The default is 2.

LDRTBLS nnn

defines the number of pages of storage to be used for loader tables by issuing the SET LDRTBLS
command. nnn is a whole number ranging from 1 to 127 inclusive. The value is reset once the object build
is complete.

Part Options (Modules)
VMFBDMOD uses the following part options:

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

loadopts

are any LOAD command options. These are only valid on the :OPTIONS tags which precede the
first :PARTID tag in an object block.

inclopts

are any INCLUDE command options. These are only valid on the :OPTIONS tags which follow the
first :PARTID tag in an object block.

NOGETLVL

indicates file types are not to be resolved. All associated :PARTIDs must contain two tokens. They are
used as the file name and file type of the serviceable part that is required to build this object.

MACLIBs

Chapter 20. VMSES/E EXEC and Command Format Summaries 351

Usage Notes (Modules)
1. If you are building modules and you require TXTLIBs to be made global, specify them on the :GLOBAL

or :GGLOBAL tags in the build list.
2. The :OBJNAME tags specified in the build list have a clear and concise purpose. They provide the file

name and file type of the resulting usable form.
3. The tokens, which are joined by a period (.), on the :OBJNAME tag are used to determine the file name

and file type of the executable form created by VMFBLD part handler handlers that process format 2
build lists. The information on the :PARTID tag is used to determine which part(s) are used to create
the output object.

Executable Modules When Using CPLINK or BIND
The VMFBDPMD part handler selects the latest level of serviceable text decks and uses the CPLINK,
LOAD, and GENMOD commands to create executable modules. The specified object parameter
determines which command(s) will be used to build the modules:

• If the C89 object parameter is specified, the C89 command is used to build the modules.
• If the BIND object parameter is specified, the C89 and BIND commands are used to build the modules.
• If the XPLINK object parameter is specified, the C89, XPLINK, and BIND commands are used to build

the modules.

Build List Format (Modules using CPLINK or BIND)
VMFBDPMD uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (Modules using CPLINK or BIND)

Figure 151 on page 352 is an example of a format 2 build list used by VMFBDPMD.

:FORMAT. 2
:GLOBAL. LOADLIB SCEERUN
:OBJNAME. FIRSTMOD.MODULE NOMAP
 :OPTIONS. NOMAP
 :PARTID. FIRSTEXT TXT
:EOBJNAME.
:OBJNAME. SECNDMOD.MODULE NOMAP
 :OPTIONS. NOMAP CLEAR RLDSAVE NCHIST
 :PARTID. SECTEXT1 TXT
 :PARTID. SECTEXT2 TXT
 :PARTID. SECTEXT3 TXT
 :OPTIONS. NOGETLVL
 :PARTID. DMSCSL TEXT
 :OPTIONS.
 :PARTID. SECTEXT4 TXT
 :PARTID. SECLAST TXT
 :OPTIONS. UPCASE
:EOBJNAME.

Figure 151. Example Build List Used by VMFBDPMD

Entering this command:

vmfbld ppf ppfname compname bldlist firstmod.module (all

causes the object FIRSTMOD MODULE to be built on the target disk or directory using the highest level of
the specified text deck. The CPLINK, LOAD, and GENMOD commands are used to build the MODULE.

Entering this command:

vmfbld ppf ppfname compname bldlist secndmod (all

causes the object SECNDMOD MODULE to be built on the target disk or directory using the highest level of
the specified text decks for all parts except DMSCSL TEXT. The NOGETLVL option causes normal VMFSIM

Executable Modules when Using CPLINK or BIND

352 z/VM: 7.3 VMSES/E Introduction and Reference

GETLVL processing to be bypassed for this part, and the first accessed version of the part name provided
on the :PARTID tag is used. UPCASE is a CPLINK option.

Build List Restrictions (Modules using CPLINK or BIND)
VMFBDPMD:

• Requires at least one :PARTID tag per object block
• Does not allow wildcard objects

Build List Options (Modules using CPLINK or BIND)
VMFBDPMD uses the following build list options:

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

HLVLCHK

specifies that VMFBDPMD will do highest release level checking when processing objects in the build list.
Objects in the build list will always be built in a single-system environment, but will only be built when
running the build on a member of an SSI cluster that is running the highest release level of the associated
product.

Object Parameters (Modules using CPLINK or BIND)
VMFBDPMD uses the following object parameters:

C89

specifies the C89 command will be used to build the module.

BIND

specifies the C89 and the BIND commands will be used to build the module.

XPLINK

specifies the C89, XPLINK, and BIND commands will be used to build the module.

genmodopts

are any GENMOD command options.

bindopts

are any BIND command options.

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of this object in the build list. n must
be a valid CMS file mode number. The default is 2.

Executable Modules when Using CPLINK or BIND

Chapter 20. VMSES/E EXEC and Command Format Summaries 353

LDRTBLS nnn

defines the number of pages of storage to be used for loader tables by issuing the SET LDRTBLS
command. nnn is a whole number ranging from 1 to 127 inclusive. The value is reset once the object build
is complete.

LOADEXIT fn

is an EXEC called between CPLINK and LOAD processing. The output from CPLINK is passed to the
LOADEXIT with fn being the file name of the EXEC. Output from the LOADEXIT is passed to LOAD. This exit
must accept 2 arguments: the file name of the input text file followed by the file name of the output file.

Part Options (Modules using CPLINK or BIND)
VMFBDPMD uses the following part options:

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

loadopts

are any LOAD command options. These are only valid on the :OPTIONS tag which precede the
first :PARTID tag in an object block. LOAD options are ignored if the BIND object parameter is specified.

NOGETLVL

indicates file types are not to be resolved. All associated :PARTIDs must contain two tokens. They are
used as the file name and file type of the serviceable part that is required to build this object.

cplinkopts

are any CPLINK command options. These are only valid on the :OPTIONS tag which follows the
last :PARTID tag in an object block. CPLINK options are ignored if the BIND object parameter is specified.

Usage Notes (Modules using CPLINK or BIND)
1. If you specify the C89 object parameter, VMFBDPMD requires that any part specified on a :PARTID tag

must be available on an accessed disk or directory. VMFBDPMD does not search global TXTLIBs for
specified parts when using the C89 command.

2. If you specify the C89 object parameter with the DLL CPLINK command option, an exported variables
and functions list file (file type of EXP) is created. In this situation, the LOADEXIT object parameter is
not supported and is ignored if it is specified.

3. If you specify the BIND object parameter, the C89 object parameter is specified by default.
4. If you specify the XPLINK object parameter, the C89 and BIND object parameters are specified by

default.
5. If you are building modules and you require TXTLIBs or LOADLIBs to be made global, specify them on

the :GLOBAL or :GGLOBAL tags in the build list. If you do not specify the C89 object parameter, you
should include the SCEERUN LOADLIB on a global tag.

6. The :OBJNAME tags specified in the build list have a clear and concise purpose. They provide the file
name and file type of the resulting usable form.

7. The tokens, which are joined by a period (.), on the :OBJNAME tag are used to determine the file name
and file type of the executable form created by VMFBLD part handler handlers that process format 2
build lists. The information on the :PARTID tag is used to determine which part(s) are used to create
the output object.

Executable Modules when Using CPLINK or BIND

354 z/VM: 7.3 VMSES/E Introduction and Reference

Nuclei
When building a nucleus, VMFBLD uses the VMFBDNUC part handler to select the latest level of
serviceable text decks and build a temporary load list to be used by the system loader to build a nucleus.
For example, all file types for all entries in CPLOAD EXEC would be resolved and HCPLDR would be called
with this information, and any other information, based on options or parameters that have been supplied.

Build List Format (Nuclei)
VMFBDNUC uses format 1 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (Nuclei)
Figure 152 on page 355 is an example of a build list used by VMFBDNUC.

&TRACE OFF
&1 &2 &3 HCPLDR LOADER
&1 &2 &3 HCPSYS
&1 &2 &3 HCPRIO
*LDT
&1 &2 &3 HCPBOX
*LDT HCPGENUC

Figure 152. Example Build List Used by VMFBDNUC

Entering this command:

vmfbld ppf ppfname compname bldlist * nuctarg module modname nuc (all

causes a nucleus to be generated as a loadable module on the target disk with the file identifier of NUC
MODULE fm. If the MODNAME option was not specified, the resulting file name would be the same as
bldlist.

Entering this command:

vmfbld ppf ppfname compname bldlist * fastpath (all

causes a nucleus to be generated to the virtual reader using the existing bldlist $NUCEXEC as a load list. If
this file does not exist, an error message is issued and processing terminates.

Note: Since VMFBDNUC generates the correct control card for HCPGENUC or HCPLODNC based on the
NUCTARG value, you could encounter problems using the FASTPATH option. If the value in the $NUCEXEC
file does not match the value specified (or the default) on the command, an error message is issued and
processing terminates.

Build List Restrictions (Nuclei)
VMFBDNUC requires at least one part in the build list.

Build List Options (Nuclei)
VMFBDNUC uses the following build list options:

CNTRL-cntrlfn

specifies the filename of the control file. The control file must have a filetype of CNTRL. The control
file specified on the build list option overrides the control file specified in the CNTRLOP section for the
product parameter file.

ALTCNTRL

Nuclei

Chapter 20. VMSES/E EXEC and Command Format Summaries 355

specifies the alternate control file, if it is specified in the CNTRLOP section of the product parameter file, is
to be used instead of the control file.

FASTPATH

specifies the loader should use the text deck entries from the previous nucleus build. These are included
in the bldlist $NUCEXEC file.

NUCTARG PUNCH

NUCTARG DISK

TAPE

MODULE

specifies the target for the nucleus or nucleus module.

PUNCH
causes the nucleus to be created as an IPLable file in the virtual reader. NUCTARG PUNCH is the
default.

DISK
causes the nucleus to be link-edited and loaded directly to the system residence device.

TAPE
causes the nucleus to be created as an IPLable file on the tape device at virtual address 182.

MODULE
causes the nucleus to be created as a link-edited CMS module on the target disk.

LOADER DMKLD00E

HCPLDR

specifies which loader to call. If no loader is specified, the default is the loader identified in the nucleus
build list.

RLDSAVE

indicates the relocation dictionary is to be saved. This option is only valid when NUCTARG MODULE is
specified.

MODNAME fn

specifies the name of the nucleus module. This option is only valid when NUCTARG MODULE is specified.
If you do not specify MODNAME, the build list name is used as the default module name.

BLDREQ reqbldlist

reqbldlist .BLDLIST

reqbldlist . reqobj

specifies a build requisite. A build requisite must be built prior to the object that specifies it. reqbldlist is
the build list that contains the requisite object, and reqobj is the requisite object. If reqobj is not specified,
all objects in the specified build list are requisites.

Note: The NUCTARG MODULE and RLDSAVE options are only valid when HCPLDR is used.

Object Parameters (Nuclei)
None.

Nuclei

356 z/VM: 7.3 VMSES/E Introduction and Reference

Part Options (Nuclei)
VMFBDNUC uses the following part options:

LANG

specifies the part is language sensitive and VMFLANG is to be used as the language function. If a part type
is specified for the part in the build list, this option is ignored.

Usage Notes (Nuclei)
1. VMFBDNUC must insert the correct control card, either HCPGENUC or HCPLODNC, for the NUCTARG

value specified. If the control card value in the bldlist $NUCEXEC conflicts with the NUCTARG
value that is specified when FASTPATH is requested, you receive an error message and processing
terminates.

2. The CP nucleus can be built only with NUCTARG MODULE.

Identifying System Objects to be Built
VMFBLD uses the VMFBDSBR part handler to identify system objects (such as saved segments) that need
to be built because they contain parts that have been serviced. VMFBDSBR updates the VMSBR $SELECT
file.

Build List Format (System Objects)
VMFBDSBR uses format 2 product saved segment build lists. For more information on build lists, see
“Build Lists” on page 141.

Example (System Object)
Figure 153 on page 357 is an example of a product saved segment build list used by VMFBDSBR.

:FORMAT. 2
:OBJNAME. CMSFILES.SEGMENT
:BLDREQ. SERVLOAD.DMSDAC.MODULE
 SERVLOAD.DMSSAC.MODULE
 DMSBL493.DMSDAC.LSEG
 DMSBL493.DMSSAC.LSEG
:OPTIONS. LOADFUNC(LSEG DMSDAC)
 LOADFUNC(LSEG DMSSAC)
:EOBJNAME.

Figure 153. Example Product Saved Segment Build List Used by VMFBDSBR and VMFBDSEG

Build List Restrictions (System Objects)
None.

Build List Options (System Objects)
None.

Object Parameters (System Objects)
VMFBDSBR uses the following object parameters:

SBR sbrname sbrtype

Identifying System Objects to be Built

Chapter 20. VMSES/E EXEC and Command Format Summaries 357

specifies the file name and file type of a part or a system object to be identified in the select data file as
a build requirement instead of the file name and file type of this build list. If no object parameters are
specified, this build list is identified as a build requirement.

Part Options (System Objects)
Part options are used by VMFBDSEG, but not by VMFBDSBR.

Usage Notes (System Objects)
1. The :VERSION tag in the product parameter file that identifies the product saved segment build list

must be at least VM/ESA 1.2.0.
2. The first :SHRDISK tag in the first VMSESE PROFILE file found is used to locate the minidisk or SFS

directory on which to update or create the VMSBR $SELECT file.
3. Minidisks might be released during processing and reaccessed on termination.
4. The VMSBR $SELECT file might be updated even if the VMFBDSBR return code is not zero. Check the

time stamp in the file. If it is current, you do not need to run VMFBLD again for this build list.

Saved Segments
VMFBLD uses the VMFBDSEG part handler to build saved segments.

Build List Format (Saved Segments)
VMFBDSEG uses two kinds of format 2 build lists:

• A system saved segment build list that identifies all of the saved segments on the system
• Product saved segment build lists that contain build information for saved segments defined by

VMSES/E format products

For more information on build lists, see “Build Lists” on page 141.

Example (Saved Segments)
Figure 154 on page 358 is an example of a system saved segment build list used by VMFBDSEG. Figure
153 on page 357 is an example of a product saved segment build list used by VMFBDSEG.

:FORMAT. 2
:OBJNAME. CMSAMS.SEGMENT
:PARTID. CMSAMS DMY
:EOBJNAME.
:OBJNAME. CMSBAM.SEGMENT
:PARTID. DMSSBBAM EXC
:PARTID. CMSBAM DMY
:EOBJNAME.
:OBJNAME. CMSDOS.SEGMENT
:BLDREQ. SEGBLIST.DOSINST.SEGMENT
:PARTID. DMSSBDOS EXC
:PARTID. CMSDOS DMY
:EOBJNAME.
⋮
:OBJNAME. CMSFILES.SEGMENT
:PARTID. DMSSBSFS EXC
:PARTID. CMSFILES DMY
:EOBJNAME.
⋮
:OBJNAME. DOSINST.SEGMENT
:PARTID. DMSSBDOS EXC
:PARTID. DOSINST DMY
:EOBJNAME.

Figure 154. Example System Saved Segment Build List Used by VMFBDSEG

Saved Segments

358 z/VM: 7.3 VMSES/E Introduction and Reference

Build List Restrictions (Saved Segments)
VMFBDSEG does not allow wildcard objects.

Build List Options (Saved Segments)
VMFBDSEG uses the following build list options to link and detach the product disks when the segments
for the product are built.

ACCESS

LINK

NOACCESS

indicates whether VMFBDSEG should and how VMFBDSEG should call VMFSETUP when you build a
segment that uses a product parameter file. The product parameter file is specified on the :BLDPARMS tag
for the segment in the SEGDATA file.

ACCESS
calls VMFSETUP to access the product disks (the disks must already be linked). The accessed disks
are released after the segment is built. ACCESS is the default.

LINK
calls VMFSETUP with the LINK option to link and access the product disks. The accessed disks are
released, and the linked disks are detached after the segment is built.

NOACCESS
does not call VMFSETUP. The disks must be already linked and accessed.

DROP

NODROP

specifies whether VMFBDSEG should drop all or just new nucleus extensions after each segment is built.

DROP
indicates VMFBDSEG should release all segments on entry. Before building the first segment and after
each segment is built, all nucleus extensions are dropped.

NODROP
indicates VMFBDSEG should not release any existing segments. Before building the first segment and
after each segment is built, only those nucleus extensions that were not already loaded on entry to
VMFBDSEG are released.

NOTYPE

TYPE

specifies whether VMFBDSEG should show the messages issued by SEGGEN.

TYPE
indicates VMFBDSEG should show the messages issued by SEGGEN. This option is passed to
SEGGEN.

NOTYPE
indicates VMFBDSEG should not show the messages issued by SEGGEN. This option is passed to
SEGGEN.

Object Parameters (Saved Segments)
None.

Saved Segments

Chapter 20. VMSES/E EXEC and Command Format Summaries 359

Part Options (Saved Segments)
When processing a system saved segment build list, VMFBDSEG uses no part options.

When processing a product saved segment build list, VMFBDSEG uses the following part options:

LOADFUNC ( parmstring)

specifies the function that VMFBDSEG calls to load and save the saved segment (after VMFBDSEG has
issued the DEFSEG command to define the saved segment to CP), where parmstring is one of the
following:

loadfunc

loadparms

specifies the name of the routine used to load and save the saved segment, plus any parameters to be
passed to the routine. The following built-in variables are also available to indicate data to be passed to
the loadfunc routine:
&ORIGIN

Starting load address
&RANGE

Page range, page descriptor codes, and optional DEFSEG operands
&SEGNAME

Saved segment name
&SPACE

Primary segment space name
When the saved segment is built, VMFBDSEG resolves the variables by obtaining the values from the
saved segment definition record in the saved segment data (SEGDATA) file that has the same file name as
the system saved segment build list specified on the VMFBLD command.

Return codes from product or user build functions are processed as follows:
0

Saved segment built without any errors
1-4

Saved segment built, one or more warnings issued
all others

Saved segment build failed

LOADSAVE modfn

ORIGIN hexloc

specifies the built-in LOADSAVE function, which issues the LOADMOD command to load the specified
relocatable module file (modfn MODULE). LOADSAVE then issues the SAVESEG command to save the
module as a saved segment.

Note: It is recommended that the ORIGIN keyword be specified and the built-in variable &ORIGIN be
used to indicate the storage location. When the saved segment is built, VMFBDSEG resolves the &ORIGIN
variable to get the load address from the saved segment definition in the SEGDATA file.

If the ORIGIN keyword is not specified, CMS selects any available storage location. Coding ORIGIN with
a specific value for hexloc means the user cannot customize the load address. If a fixed address is
necessary, it must be within the range specified in the DEFPARMS field of the definition in the SEGDATA
file.

Saved Segments

360 z/VM: 7.3 VMSES/E Introduction and Reference

LSEGment lfn lft lfm

PROFILE profn EPIFILE epifn

is a logical saved segment definition, which identifies a CMS logical saved segment to be included in a
physical saved segment.

Note: The LOADFUNC part option can be repeated only when parmstring is a logical saved segment
definition.

UNKNOWN

indicates a build function for this object cannot be issued by VMFBDSEG. This forces VMFBDSEG to issue
only the DEFSEG command to define the saved segment to CP. After VMFBLD has completed, the user
must issue the function that actually loads and saves the saved segment.

Usage Notes (Saved Segments)
1. VMFBDSEG does not support segments defined above 2 GB.
2. The :VERSION tag in the saved segment product parameter file (the product parameter file that

identifies the system saved segment build list) must be at least VM/ESA 1.2.0.
3. The user ID issuing the VMFBLD command must have:

• the authority to issue the CP DEFSEG, SAVESEG, QUERY NSS, and PURGE NSS commands.
• enough virtual storage to contain the range of each saved segment to be built (except those whose

load function is UNKNOWN) in addition to the storage used by CMS.
4. All saved segments are released and nucleus extensions dropped before saved segments are built.
5. To avoid problems when building the individual members of a segment space, build all the members

at the same time by creating a VMFBLD input list (VMFBLD BLDDATA file) containing the members.
Then issue the VMFBLD command with the LIST option.

6. If you are building segments from different products at the same time, use the LINK build list option
to call VMFSETUP and link and access the product disks. The ACCESS build list option also calls
VMFSETUP, but it does not link the product disks. For more information, see “Build List Options
(Saved Segments)” on page 359.

7. A saved segment is deleted if any of the following are true:

• The saved segment has been deleted through VMFSGMAP. In this case, the definition for the
segment has been marked DELETED in the SEGDATA file; and the segment has been removed from
the system saved segment build list.

• The saved segment is built entirely from build lists having a status of DELETED.

In the first case, the build status of the saved segment is set to DELETED. In the second case, the
build status of the saved segment is set to BUILT, because the saved segment is still in the system
saved segment build list.

8. Before building a saved segment, VMFBDSEG purges any existing Class S (skeleton) system data file
for that saved segment. In addition, when building a member saved segment in a Class S segment
space, if a Class A (active) system data file for that member already exists, VMFBDSEG purges the
Class A system data file. Note that this means the Class A member is removed from all the other
segment spaces to which it belongs, even if those spaces are active.

9. When building a member of an existing Class A (active) or Class R (restricted) segment space, the
unchanged members of the space are copied (using the SAME operand on the DEFSEG command)
to the new Class S (skeleton) segment space. This does not copy the attributes (such as RSTD) with
which these saved segments might have been created. To give the Class S segment space these
attributes, they must be specified in the DEFPARMS field of the definition for the member being built.

Saved Segments

Chapter 20. VMSES/E EXEC and Command Format Summaries 361

10. When the PPF keyword is specified in the BLDPARMS field of the saved segment definition,
VMFBDSEG activates any global libraries specified in the product saved segment build list as it uses
each load function in the build list to build the saved segment.

11. When building a physical saved segment containing CMS logical saved segments:

a. VMFBDSEG copies the SYSTEM SEGID file from the S disk to the build target disk, if it is not
already there. VMFBDSEG then invokes the SEGGEN command to build the physical and logical
saved segments and update the SYSTEM SEGID file on the target disk.

After all the saved segments are built, the updated SYSTEM SEGID file may need to be copied to
the S disk. Copying the file is not necessary if data has been added, deleted, or changed in an
existing saved segment. Copying the file is required if a new logical or physical saved segment has
been created, an existing logical or physical saved segment has been deleted, or the relationship
between the logical and physical saved segments has been changed (for example, a logical saved
segment has been copied or moved from one physical saved segment to another). A message is
issued if copying the file is necessary. If the message is issued after building a critical segment,
such as CMSINST, the file must immediately be copied to the S disk. Note that updating a file on
the system disk invalidates the current shared S-STAT (the S disk file directory). Therefore, after
the file is copied to the system disk, the CMS named saved system must be resaved to update the
S-STAT.

b. VMFBDSEG creates the physical segment definition file (default file type PSEG) from the logical
saved segment definitions:

• That follow the PROD keyword in the BLDPARMS field of the saved segment definition
• That are specified in the build lists that follow the PPF keyword in the BLDPARMS field of the

saved segment definition

Then VMFBDSEG issues the SEGGEN command to build the physical and logical saved segments.
VMFBDSEG creates logical saved segment profiles and epifiles (named $VMFPn EXEC and
$VMFEn EXEC) as needed. These files are erased if SEGGEN is successful.

c. PROFILE and EPIFILE cannot be used as the file type of a logical segment definition file.
d. The PSEGMAP and LSEGMAP load map files created by SEGGEN are stored on the target disk.

12. When building a saved segment that does not contain CMS logical saved segments:

a. Only one set of build parameters can be specified in the BLDPARMS field of the saved segment
definition. If the BLDPARMS field contains the PPF keyword only one load function can be
specified in the product saved segment build list.

b. If a routine is called to load and save the saved segment, it must release all the storage that it
obtains. A return code of 0, 1, 2, 3, or 4 from the routine is considered a successful build (resulting
in a VMFBDSEG return code of 0). Any other return code from the routine is considered a severe
error (VMFBDSEG return code 100). The routine should issue its own messages to indicate error
conditions.

TXTLIBs
VMFBLD uses the VMFBDTLB part handler to select the latest level of serviceable text decks and create
members of a TXTLIB. For example, the serviceable parts DMSABC TXT12345 and DMSXYZ TXT54321
are placed into a TXTLIB that is then copied to the appropriate build target.

Build List Format (TXTLIBs)
VMFBDTLB uses format 3 build lists. For more information on build lists, see “Build Lists” on page 141.

Examples (TXTLIBs)
Figure 155 on page 363 is an example of a format 3 build list used by VMFBDTLB.

TXTLIBs

362 z/VM: 7.3 VMSES/E Introduction and Reference

:FORMAT. 3
:LIBNAME. MYTXTLIB
:OBJNAME. MEMBER1
 :PARTID. PART1 TXT
:EOBJNAME.
:OBJNAME. MEM2 NOFILENAME
 :OPTIONS. NAME MEM2 ALIAS MEM3
 :PARTID. PART2 TXT
 :OPTIONS. ENTRY CSECT3
 :PARTID. PART3 TXT
 :OPTIONS.
 :PARTID. PART4 TXT
:EOBJNAME.

Figure 155. Example Build List Used by VMFBDTLB

Entering this command:

vmfbld ppf ppfname compname bldlist (all

creates MYTXTLIB TXTLIB with two members. MEMBER1 is created from PART1 with an entry point of
CSECT1. The second member, MEM2, is created from PART2, PART3, and PART4. It has an alias name of
MEM3 and an entry point of CSECT3 in PART3.

Figure 156 on page 363 is another example of a format 3 build list used by VMFBDTLB.

:FORMAT. 3
:LIBNAME. MYTXTLIB C370LIB
:OBJNAME. MEMBER1
 :OPTIONS. ENTRY CSECT1
 :PARTID. PART1 TXT
:EOBJNAME.

Figure 156. Example of Format 3 Build List for TXTLIB

The C370LIB parameter will be used by Licensed Products who wish to have their TXTLIBs built using
the C370LIB family of commands. By not specifying C370LIB as a library parameter on the :LIBNAME tag,
VMFBDTLB will default to the use of TXTLIB commands.

Build List Restrictions (TXTLIBs)
VMFBDTLB does not allow wildcard objects.

Build List Options (TXTLIBs)
VMFBDTLB uses the following build list options:

MODENUM 2

MODENUM n

specifies the file mode number that is appended to the target mode of all objects in the build list. n must
be a valid CMS file mode number. The default is 2.

Library Parameters (TXTLIBs)
VMFBDTLB uses the following library parameters:

C370LIB

TXTLIBs

Chapter 20. VMSES/E EXEC and Command Format Summaries 363

indicates to VMFBDTLB the C370LIB family of commands are to be used for TXTLIB manipulation instead
of the TXTLIB family of commands.

NOERASE

indicates to the part handler the library is not to be erased during the build.

LIBTYPE TXTLIB

LIBTYPE ft

specifies the filetype of the TXTLIB that is to be created or updated.

Object Parameters (TXTLIBs)
VMFBDTLB uses the following object parameters:

FILENAME

NOFILENAME

specifies whether VMFBDTLB should add the object to the TXTLIB using the FILENAME option on the
TXTLIB command.

FILENAME
creates a TXTLIB member with the same name as the object name in the build list. FILENAME is the
default.

NOFILENAME
creates a TXTLIB member named according to the rules for the TXTLIB command.

Part Options (TXTLIBs)
VMFBDTLB uses the following part options:

ALIAS alias

is a TXTLIB link edit ALIAS record. This record is added to the text deck after the END statement.

ENTRY entryname

is a TXTLIB link edit ENTRY record. This record is added to the text deck after the END statement.

IGNORE

indicates the part can be ignored if it does not exist. By ignoring a part, an object can still be considered
built even if the part is not included in it. A part can only be ignored if it has no service history. If a service
level is defined for the part and it is missing, it is an error condition. This part option is intended for parts
for which no base level part is shipped, for example, for help files and user exits.

Parts that are specified with the NOGETLVL part option can also specify IGNORE to be ignored if they do
not exist.

LANGFUNC exec

specifies a language function to be used in the selection of the correct serviceable part.

TXTLIBs

364 z/VM: 7.3 VMSES/E Introduction and Reference

NAME name

name(R)

is a TXTLIB link edit NAME record. This record is added to the text deck after the END statement. The
NAME record is added after all the other types of link edit records. The name on the NAME option must
match the objectname specified on the :OBJNAME tag in the build list.

NOGETLVL

indicates file types are not to be resolved. All associated :PARTIDs must contain two tokens. They are
used as the file name and file type of the serviceable part that is required to build this object.

SETSSI xxxxxxxx

is a TXTLIB link edit SETSSI record. This record is added to the text deck after the END statement.

Note: You can specify any number of NAME, ENTRY, ALIAS, and SETSSI statements on an :OPTIONS
record. VMFBDTLB adds the statements to the text deck, identified on the :PARTID record, directly
following the :OPTIONS statement. The statements are added to the text deck after the END statement.
The NAME statement appears last.

Usage Notes (TXTLIBs)
1. The :LIBNAME tag is not required. If it is omitted, the library file name is the same as the build list file

name.
2. Format 3 part handlers can selectively service members based on the build requirements established

by VMFBLD.
3. Format 3 part handlers attempt to service an existing library, but will rebuild it if the library does not

exist or if all members must be rebuilt. If the NOERASE library parameter is specified the library will be
rebuilt only if it does not exist.

4. For successful delete processing, the object name in the TXTLIB build list must be the same as the
name of the TXTLIB member that is built from that object.

5. Multiple :PARTID records can be specified for an object in a TXTLIB build list. Each :PARTID record
can be preceded by an :OPTIONS record that specifies the link edit statements for that part. As
each :PARTID record is processed, VMFBDTLB adds the link edit statements after the END statement
for that part. It then appends the part to the first part for that object. The combined parts are staged
on the A-disk and used to create the member.

6. The NOERASE parameter is useful if a library is to be updated from multiple products, each of which
has its own build list for the library. Without NOERASE, if a product erases and rebuilds the library, any
objects (members) that have been added by other products are lost.

SMAPI Appliance Servers and Stand-Alone Dump Utility
VMFBLD uses the VMFBDSSP part handler to notify the service installer that certain Systems Management
Application Programming Interface (SMAPI) appliance servers need to be restarted, or that the Stand-
Alone Dump utility needs to be rebuilt using the information in the VMSES/E build list.

Build List Format (SMAPI/Stand-Alone Dump Utility)
VMFBDSSP uses format 2 build lists. For more information on build lists, see “Build Lists” on page 141.

Example (SMAPI/Stand-Alone Dump Utility)
Figure 157 on page 366 is an example of a format 2 build list used by VMFBDSSP.

SMAPI Appliance Servers and Stand-Alone Dump
Utility

Chapter 20. VMSES/E EXEC and Command Format Summaries 365

:FORMAT. 2
:OBJNAME. LOHCOST.SERVER
:BLDREQ. DMSBL400.SSPK71.IMAGE
:BLDREQ. DMSBL400.SSPI71.IMAGE
:BLDREQ. DMSBL400.SSPP71.IMAGE
:BLDREQ. DMSBL400.LOHCOST.IMAGE
:EOBJNAME.

Figure 157. Example Build List Used by VMFBDSSP

When SERVICE issues the command:

vmfbld ppf ppfname compname bldlist lohcost.server (all

it causes the message VMFBLD2899W to be issued, telling the service installer that the LOHCOST
appliance server needs to be restarted.

Build List Restrictions (SMAPI/Stand-Alone Dump Utility)
VMFBDSSP requires at least one :BLDREQ tag per object block.

Build List Options (SMAPI/Stand-Alone Dump Utility)
None.

Object Parameters (SMAPI/Stand-Alone Dump Utility)
None.

Part Options (SMAPI/Stand-Alone Dump Utility)
None.

Usage Notes (SMAPI/Stand-Alone Dump Utility)
1. The :OBJNAME tags are not used in the build process except to identify the objects (i.e. the SMAPI

appliance server or the Stand-Alone Dump utility).

SMAPI Appliance Servers and Stand-Alone Dump
Utility

366 z/VM: 7.3 VMSES/E Introduction and Reference

VMFBTMAP EXEC

VMFBTMAP
ALL

compname

PPF ppfname compname

Purpose

The VMFBTMAP EXEC creates or updates a file, (one for each PTF prefix associated with a component),
that contains a bitmap representation of all PTFs received, applied, or superseded on the z/VM system for
the PTF prefix. It also creates a file that lists all of the products that are installed on the system.

Operands
ALL

indicates PTF bitmap files are created for all products in the VM SYSSUF table. This is the default.
compname

is the name of the component as it is specified on the :PRODID tag in the system-level service update
facility table (VM SYSSUF). It indicates that bitmap files will be created or updated for the specific
component. compname is a 1-16 character alphanumeric identifier.

PPF
identifies the product parameter file:

• ppfname is the file name of the PPF file.
• compname is the component name specified in the PPF file. compname is a 1-16 character

alphanumeric identifier.

Usage Notes
1. If VMFREM with the UNRECEIVE option has been executed, you need to run VMFBTMAP with the ALL

operand to remove PTFs from the BITMAP files.
2. The BITMAP files are written to the VMSES/E Software Inventory Disk.
3. The VMPFXALL BITMAP and VMPRODS BITMAP files always get rebuilt.
4. VMFSUFTB needs to be run prior to running VMFBTMAP to place all installed products into the VM

SYSSUF table.

Examples

• To create a bitmap of PTFs for CP, enter:

VMFBTMAP CP

• To create a bitmap of PTFs for all products defined in the VM SYSSUF table, enter:

VMFBTMAP

Input and Output Files

Input Files

VMFBTMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 367

VM SYSSUF
The system-level service update facility table

ppfname PPF
The usable form product parameter file

recid SRVRECS
The service-level receive status table

appid SRVAPPS
The service-level apply status table

Input/Output Files
VMPFX-aa BITMAP

Bitmap representation file for PTF PREFIX aa
Output Files
VMPFXALL BITMAP

File containing a list of products installed, by PRODID, and bitmap representation of all PTFs installed
VMPRODS BITMAP

List of products installed on the system

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFBTMAP EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

The BITMAP File Structure
The structure of the VMPRODS and VMPFX-aa BITMAP files follows. The VMPFXALL BITMAP file contains
the VMPRODS BITMAP file and all of the VMPFX-aa BITMAP files appended together. All of the files reside
on the VMSES/E Software Inventory Disk; the default is the 51D (D) disk.

The VMPRODS BITMAP file consists of 157 80-byte records with the following format:

VMFBTMAP EXEC

368 z/VM: 7.3 VMSES/E Introduction and Reference

Bytes 01-08 PRODLIST
Bytes 09-14 processor number (from Q CPUID command)
Bytes 15-18 model number (from Q CPUID command)
Bytes 19-26 VM v.r.m e.g. VM 7.3.0 (from Q CPLEVEL command)
Bytes 27-32 date in format of yymmdd
Bytes 33-43 not used
Bytes 44-47 SESE
Bytes 48-60 not used
Bytes 61-12560 Blank-delimited PRODIDs

Each VMPFX-aa BITMAP file (one for each PTF prefix) consists of 157 80-byte records with the following
format:

Bytes 01-06 BITPTF
Bytes 07-08 ptf prefix e.g. UA
Bytes 09-14 processor number (from Q CPUID command)
Bytes 15-18 model number (from Q CPUID command)
Bytes 19-26 VM v.r.m e.g. VM 7.3.0 (from Q CPLEVEL command)
Bytes 27-32 date in format of yymmdd
Bytes 33-43 not used
Bytes 44-47 SESE
Bytes 48-60 not used
Bytes 61-12560 each bit represents PTF within this prefix
 1st bit in byte 61 indicates PTF aa00000
 Last bit in byte 12560 indicates PTF aa99999
 bit on, '1', represents PTF is received

VMFBTMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 369

VMFCNVT EXEC

VMFCNVT size 1K

2K

4K

devtype

devtype- devmodel

Purpose

The VMFCNVT command converts a given number of blocks of DASD to an equivalent number of cylinders
and displays the result. Output depends on the type of DASD being used.

Operands
size

is the number of blocks to be converted.
1K

indicates the blocks to be converted are 1K in size.
2K

indicates the blocks to be converted are 2K in size.
4K

indicates the blocks to be converted are 4K in size.
devtype

is the device type of the direct access storage device (DASD) for which you want information. The
device type (for example, 3380 or 3390) must be listed in the $DASD$ CONSTS file.

devmodel
is the model of the DASD. For example, 3390-1 indicates the 3390 model one. (-1 is the model
indicator.) The device model must be listed in the $DASD$ CONSTS file. If you do not specify
devmodel, conversions are calculated for all models of the specified DASD.

Usage Notes
1. The $DASD$ CONSTS file, which is shipped with the VM/ESA product, must be available.

Examples

• To determine the number of 3380 cylinders required for 50 4K blocks, enter:

vmfcnvt 50 4k 3380

You receive this response:

50 4K BLOCKS = 1 3380 CYLINDERS
50 4K BLOCKS = 1 3380-E4 CYLINDERS
50 4K BLOCKS = 1 3380-K4 CYLINDERS
READY;

Input and Output Files
Input Files

$DASD$ CONSTS
Contains DASD-dependent conversion factors

VMFCNVT EXEC

370 z/VM: 7.3 VMSES/E Introduction and Reference

Messages and Return Codes
For a complete explanation of each message, use the HELP Facility to view the message explanation
online or see the appropriate messages documentation. To display information on a specific message, for
example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E exec.

VMFCNVT issues the following return codes:

Return Code Explanation

0 Command completed successfully.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

100 Command failed because of an external error.

Recovery Information

The VMFCNVT command can be restarted by reissuing the command.

VMFCNVT EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 371

VMFCOPY EXEC

VMFCOPY fn

*

ft

*

fm

*

= = =

fn2
= =

ft2
=

fm2

(
1

Options

)

Options

PRODid prodid % compname SPRODid prodid % compname

COPYFILE_Options

Notes:
1 You can enter options in any order between the parentheses.

Purpose
The VMFCOPY EXEC copies files to a VMSES/E target minidisk or SFS directory and, optionally, updates
the VMSES PARTCAT file on that target.

Operands
fn

is the file name of the input file. You must indicate a specific file name or use special characters (* and
%) as part of the file name to request a specific subset of files to copy.

ft
is the file type of the input file. You must indicate a specific file type or use special characters (* and
%) as part of the file name to request a specific subset of files to copy.

fm
is the file mode of the input file. You must indicate a specific file mode or use an asterisk (*) as a
wildcard indicator.

fn2
is the file name of the output file. You must indicate a specific file name or use an equal sign (=) to
indicate the same file name as the input file. The default is =.

ft2
is the file type of the output file. You must indicate a specific file type or use an equal sign (=) to
indicate the same file type as the input file. The default is =.

fm2
is the file mode of the output file. You must indicate a specific file mode or use an equal sign (=) to
indicate the same file mode as the input file. The default is =.

VMFCOPY EXEC

372 z/VM: 7.3 VMSES/E Introduction and Reference

Options
PRODid

indicates the identifier for the product.
prodid

is the 7- to 8-character alphanumeric identifier assigned to the product by IBM.
%

is a delimiter.
compname

is the 1- to 16-character alphanumeric identifier assigned to the component by IBM (for example,
CMS). The component name can be found on the :PRODID tag in the product management files,
such as the PRODPART file, the product parameter file, and the system-level Software Inventory
tables.

SPRODid
is the product identifier for the files to be copied. This is only applicable if the VMSES PARTCAT has a
catalog entry for the file.
prodid

is the 7- to 8-character alphanumeric identifier assigned to the product by IBM.
%

is a delimiter.
compname

is the 1- to 16-character alphanumeric identifier assigned to the component by IBM (for example,
CMS). The component name can be found on the :PRODID tag in the product management files,
such as the PRODPART file, the product parameter file, and the system-level Software Inventory
tables.

COPYFILE_Options
are the options supported by the CMS COPYFILE command. The CMS COPYFILE command is
described in z/VM: CMS Commands and Utilities Reference.

Usage Notes
1. When you enter the VMFCOPY command with the PRODID option, the VMFCOPY EXEC calls the

COPYFILE command to copy the source file(s) to the target, then updates the VMSES PARTCAT file on
the target disk or SFS directory.

2. When you enter the VMFCOPY command without the PRODID option, VMFCOPY simply calls the
COPYFILE command to copy the source file(s) to the target.

3. Any option supported by the CMS COPYFILE command is supported by VMFCOPY.
4. Although the CMS COPYFILE command allows you to specify multiple file identifiers, VMFCOPY only

allows you to specify two — one for the source and one for the target.
5. You cannot use VMFCOPY to copy VMSES PARTCAT files from one disk to another, because the VMSES

PARTCAT file lists all files that are related to a specific product on a specific disk or directory.

VMFCOPY does not copy the VMSES PARTCAT file on the source disk to the target disk, but it does
update the VMSES PARTCAT file on the target disk.

6. If the SPRODID option is specified, only those files that are cataloged in the VMSES PARTCAT file with
the prodid%compname and meet the file selection criteria are copied to the target location.

7. If * is specified as fm and the same fn and ft are on different disks, VMFCOPY will not append the
files to the target (fn2 ft2 fm2) as does the CMS COPYFILE command. If the REPLACE option is not
specified, only the first file in the search order is copied to the target location. The remaining files will
result in error message DMSCPY024E, stating the file (fn ft fm) already exists. If the REPLACE option is
specified, each file will be copied to the target (fn2 ft2 fm2), replacing the previous file. The last fn ft in
the CMS search order will be the resulting file on the target location.

VMFCOPY EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 373

8. Special pattern matching characters * and % are supported for copying a subset of files to the target
location.

9. Alias file support has been added to VMFCOPY. The VMFCOPY command will copy files to an alias
target file provided that:

• The user ID has WRITE and NEWWRITE authority to the target file pool directory.
• The user ID has only READ authority to the files currently in the target directory.
• The user ID has only READ authority to the base files and base file pool directory.

Examples

• To use VMFCOPY to copy the CMS file MYFILE DATA A to MYFILE DATA C and update the VMSES
PARTCAT file on the target, enter:

VMFCOPY MYFILE DATA A = = C (PRODID 1VMVMC23%MYCOMP

• To use VMFCOPY to copy the file TEST DATA A to TEST DATA C, preserving the original file creation date
on the target file, without updating the VMSES PARTCAT file on the target, enter:

VMFCOPY TEST DATA A = = C (OLDDATE

• To use VMFCOPY to copy all files from the A disk to the C disk that are cataloged in VMSES PARTCAT A
for product 1VMVMC23%MYCOMP and to update VMSES PARTCAT C, enter:

VMFCOPY * * A = = C (SPRODID 1VMVMC23%MYCOMP PRODID 1VMVMC23%MYCOMP

Input and Output Files
Input Files
fn ft fm

The source file(s) to be copied.
Output Files
fn2 ft2 fm2

The target file of the copy.
VMSES PARTCAT

The parts catalog table.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation.

To display information on a specific message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFCOPY EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

VMFCOPY EXEC

374 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFCOPY command can be restarted by reissuing the command.

VMFCOPY EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 375

VMFENRPT EXEC

VMFENRPT PROD prodid

ALL

(
1

(
2

Options

)

Options

HISTory

SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file. See the Usage Notes.
2 You can enter options in any order between the parentheses.

Authorization
Privilege Class: E

User IDs that issue this EXEC must have a CP privilege class of E. The CP QUERY PRODUCT command
requires this authority.

Purpose
The VMFENRPT EXEC creates a report of the products that are enabled and disabled on your system. The
file name of the report is VMFENRPT REPORT, and it is placed on the A-disk. This report may contain the
following information, depending on the options you specify:

• The system and VMSES/E current enablement state of the products. This is the default.
• The system and VMSES/E enablement state history, which includes the current state of the products.

Operands
PROD

identifies the product for which you want a report.
prodid

is the 7- or 8-character alphanumeric identifier for the product.
ALL

indicates you want a report on all products.

Options
HISTory

indicates that you want the enablement history.

VMFENRPT

376 z/VM: 7.3 VMSES/E Introduction and Reference

SIDisk
identifies where the system-level Software Inventory resides. This can be the virtual address of the
minidisk or the name of the Shared File System directory.
51D

is the default minidisk address.
vdev

is the virtual address of the Software Inventory minidisk.
dirid

is the name of the SFS directory.
SIMode

identifies the file mode for the Software Inventory disk.
D

is the default.
fm

identifies the file mode for the Software Inventory disk. If you are going to continue to use this
file mode, create a product parameter file override to list it on the :RETAIN tag in the product
parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not accessed as read-write, VMFINS tries to access it.

SYStem
identifies the name of the system-level Software Inventory.
VM

is the default.
sysid

is the name of the system-level Software Inventory.

Usage Notes
1. Each time you run VMFENRPT, a new report is appended to the top of the VMFENRPT REPORT file.
2. Your A-disk must be accessed as read-write.
3. This command uses the VMFINS DEFAULTS file to determine the default value for options. If you do

not specify an option and there is no value assigned for that option in the VMFINS DEFAULT file, the
command uses the default value that is shown in the syntax diagram. VMSES/E uses the first VMFINS
DEFAULTS file found in the CMS search order. For more information about the VMFINS DEFAULTS file,
see “Changing the VMFINS Command Defaults” on page 48.

Examples

• To run VMFENRPT, using the IBM-supplied defaults, to obtain the current state of a product identified by
the prodid, enter:

VMFENRPT PROD 5735FALQ

• To run VMFENRPT, using the IBM-supplied defaults, to obtain the current state and the enablement
history on all products, enter:

VMFENRPT ALL (HISTORY

VMFENRPT

Chapter 20. VMSES/E EXEC and Command Format Summaries 377

**
**** ENABLEMENT REPORT: ALL HISTORY USERID: MAINT 1

**
**** Date: 30 DEC 2021 Time: 08:00:18

**
Product Enablement State Description 2

5735FALQ System: DISABLED 00/00/00.00:00:00.$BASEDDR TCP/IP LEVEL 730 - TCP/IP FEATURE (BASE)
5735FALQ TCPIP VMSES/E: DISABLED 10/11/21.09:12:30.P735FALQ TCP/IP LEVEL 730 - TCP/IP FEATURE (BASE)
 INSTALLED 10/11/21.09:12:30.P735FALQ

5735NFSQ System: DISABLED 00/00/00.00:00:00.$BASEDDR TCP/IP NFS FEATURE LEVEL 730 - Part of TCP/IP base
5735NFSQ NOCOMP VMSES/E: DISABLED 10/11/21.09:12:30.P735FALQ TCP/IP NFS FEATURE LEVEL 730 - Part of TCP/IP base

5684096K System: ENABLED 10/20/21.13:13:13.P684096K RSCS Networking Version 7 Release 3 Modification 0
5684096K RSCS VMSES/E: ENABLED 10/20/21.13:13:13.P684096K RSCS Networking Version 7 Release 3 Modification 0
 DISABLED 10/11/21.09:12:30.P684096K
 INSTALLED 10/11/21.09:12:30.P684096K

9999TST System: ENABLED 12/05/21.13:13:13.MAINT Test Product
9999OVER TTESTSFS VMSES/E: DISABLED 12/01/21.08:10:45.CTTEST Test Product Override to change SFS filepool 3
9999TST TTESTSFS ENABLED 11/01/21.15:20:20.CTTEST Test Product
 INSTALLED 11/01/21.15:20:20.CTTEST

5799ABC System: ENABLED ABC Product
 VMSES/E: NONE 4

5654A22C System: NONE 5
5654A22C CCXX VMSES/E: DISABLED 12/01/21.08:10:45.5654A22C IBM XL C/C++ for z/VM Compiler
 DELETED 12/01/21.08:10:45.5654A22C IBM XL C/C++ for z/VM Compiler
 ENABLED 10/31/21.17:50:00.5654A22C
 INSTALLED 10/31/21.17:50:00.5654A22C

Figure 158. Product Enablement Report

Figure 158 on page 378 is an example of the VMFENRPT REPORT file. The data in this report was
generated using the ALL operand with the HISTORY option. A report without the HISTORY option is
similar. The difference is that for VMSES/E only the most recent enablement status is displayed (a single
line of VMSES/E status is displayed or a double line of VMSES/E status is displayed if the timestamps
match between two adjacent entries).

Each time you run VMFENRPT, a new report is appended to the top of the VMFENRPT REPORT file. If a
VMFENRPT REPORT file does not exist, VMFENRPT creates one.

Section 1 is the report header. The information in the report header shows the VMFENRPT function
used, the user ID that issued the command, and the date and time the command was issued.

Section 2 is the column header.

Under the Product column, the information shown is: 1) The prodids listed in the output of the
QUERY PRODUCT command and 2) For VMSES/E, any product parameter file (PPF) found in the
system-level apply status table (VM SYSAPPS), for the specified prodid, with a :ESTAT value.
Under the Enablement State column, the system data is part of the output from the
QUERY PRODUCT command. The VMSES/E data is the information on the :ESTAT tag in the
system-level apply status table (VM SYSAPPS). A system enablement state that contains
00/00/00.00:00:00.$BASEDDR means this product's enablement was set on the base DDR. If
no timestamp appears for the system enablement state no timestamp was present in the product
description data.
Under the Description column, the system description data is part of the output from the QUERY
PRODUCT command. The VMSES/E description data is taken from the system-level description table
(VM SYSDESCT). The description is only shown once for each PPF shown. The description could be
blank, for system or VMSES/E, if none was found.

Section 3 shows there were two PPFs, 9999OVER and 9999TST, that have been used for prodid
9999TST.

Section 4 shows a state of NONE for VMSES/E. This means the product did not have any ESTAT value in
the VM SYSAPPS table.

Section 5 shows a state of NONE for System. This means the product did not appear in the QUERY
PRODUCT output.

Input and Output Files
Input Files

VMFENRPT

378 z/VM: 7.3 VMSES/E Introduction and Reference

sysid SYSAPPS
The system-level apply status table.

sysid SYSDESCT
The system-level description table.

VMFINS DEFAULTS
The file containing the VMFINS option defaults (the established command option defaults, the
overrides created by you on your A-disk, or both).

Output Files
VMFENRPT REPORT

The file containing the report on the enablement current state or history of the product, which is
stored on the A-disk.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information about a
specific message - VMF002E, for example - enter:

help msg vmf002e

If you are not familiar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E EXEC. The VMFENRPT EXEC issues the following
return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

24 Command failed because of a command line syntax error.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

VMFENRPT

Chapter 20. VMSES/E EXEC and Command Format Summaries 379

VMFERASE EXEC

VMFERASE PROD prodid % compname FROM fm

LIST fn ft
*

fm1

FROM fm2

FILE fn ft
A

fm

(LOG NONE LOGLVL I

(
1

LOG NONE

LOG logid

LOGLVL I
2

LOGLVL mlvl)

Notes:
1 You can enter options in any order between the parentheses.
2 The LOGLVL option is ignored when you specify LOG NONE or allow LOG to default to NONE.

Purpose
The VMFERASE EXEC erases a file on a VMSES/E target minidisk or SFS directory and updates the VMSES
PARTCAT file on that target.

Operands
PROD

indicates the identifier for the product for which the files will be erased. For example,
1VMVMC23%MYCOMP is the identifier for the MYCOMP component.

When you specify the PROD operand, all the files associated with this identifier on the specified target
are erased.

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM.

%
is a delimiter.

compname
is the 1-16 character alphanumeric identifier assigned to the component by IBM (for example,
CMS). The component name can be found on the :PRODID tag in the product management files,
such as the PRODPART file, product parameter file, and the system-level Software Inventory
tables.

FROM
specifies the target minidisk or SFS directory where the files reside. The specified files are erased
from this target, and the VMSES PARTCAT on this target is updated.
fm

is the file mode of the target minidisk or SFS directory where the files reside.

VMFERASE EXEC

380 z/VM: 7.3 VMSES/E Introduction and Reference

LIST
specifies the file that identifies the files to be erased.
fn

is the file name of the input file that identifies the files to be erased.
ft

is the file type of the input file that identifies the files to be erased.
*

is the default file mode.
fm1

is the file mode of the input file that identifies the files to be erased.

The input file can contain one of the following:

1. A collection of the file identifiers (file names and file types) for the parts to be erased from
the parts catalog table. The file can be in the format of a CMS exec generated by the LISTFILE
command with the EXEC option.

Note: If you specify a file mode as part of the file identifier, it is ignored.
2. A collection of TDATA statements, in the following form, that identify the files to be erased:

TDATA
:PARTID TEST1 FILE
 :PRODID 1234567%ABCD

There can be multiple TDATA statements, one for each file to be erased. You can use the VMFSIM
QUERY function to create the file that contains these TDATA statements. You can enter the
VMFERASE command using the same file.

FROM
specifies the target minidisk or SFS directory where the files reside. The specified files are erased
from this target, and the VMSES PARTCAT on this target is updated.
fm2

is the file mode of the target minidisk or SFS directory where the files reside.
FILE

identifies the file or files to be erased. When you enter an asterisk (*) for the fn or ft, all file names or
file types are used.
fn

is the file name of the files to be erased. An asterisk (*) indicates that all files with file types that
match the specified file type are to be erased from all specified file modes.

ft
is the file type of the files to be erased. An asterisk (*) indicates that all files with file names that
match the specified file name are to be erased from all specified file modes.

A
is the default file mode for the minidisk or directory from which the files are erased.

fm
is the file mode for the minidisk or directory from which the files are erased. If you use an asterisk
(*) as the file mode, you must specify either the file name or the file type (or both) by name. If this
field is omitted, VMFERASE searches only the minidisk or directory accessed as A.

Note: If you specify an asterisk (*) for both fn and ft, you must specify a valid 2-character file
mode.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log,
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

VMFERASE EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 381

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

the apply message log ($VMFAPP $MSGLOG A)
BLD

the build message log ($VMFBLD $MSGLOG A)
XYZ

the user message log ($VMFZYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal or above the mlvl specified. The message levels are shown below, in order of
severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the highest
severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error

Usage Notes
1. If a specified file is not found, no message is issued.
2. When you specify:

vmferase file fn ft *

VMFERASE erases files matching fn ft from any mode accessed Read-Write. If the file is found on a
Read-Only disk, no message is issued.

3. If you specify a VMSES PARTCAT file as one of the files to be erased by a VMFERASE command with
the LIST or FILE option, it is ignored. You cannot use VMFERASE to directly erase a VMSES PARTCAT
file. The VMSES PARTCAT file is automatically erased, however, when VMFERASE erases the last file
listed in the VMSES PARTCAT file.

VMFERASE EXEC

382 z/VM: 7.3 VMSES/E Introduction and Reference

Examples

• To use VMFERASE to erase the file, MYFILE DATA C, and update the VMSES PARTCAT file on C-disk,
enter:

VMFERASE FILE MYFILE DATA C

• To use VMFERASE to erase all files from the MYCOMP component on the A-disk, enter:

VMFERASE PROD 1VMVMC23%MYCOMP FROM A

Input and Output Files
Input Files
fn ft fm

The file to be erased or the file containing the file identifiers of files to be erased.
Output Files
VMSES PARTCAT

The parts catalog table.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation.

To display information on a specific message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFERASE EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFERASE command can be restarted by reissuing the command.

VMFERASE EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 383

VMFEXUPD EXEC

VMFEXUPD fn ft ppfname compname

(
1

(
2

Options

)

Options

CKGen

LOGMOD

NOCKGen

NOVVT

CNTRL cntrlfn FILEType out_ft

FTAbbr ftabbr

OUTMode A
3

OUTMode fm

mda_string

NO$SELect

$SELect

NOKeepsrc

KEEPsrc SETup

NOSetup

PREEXit

EXECUPDT_options

UPDATE_options

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 The output mode for the executable version of the source program. If KEEPSRC is specified, it is
the output mode of the merged source.

Purpose
The VMFEXUPD EXEC calls the EXECUPDT command to apply updates to a $Source program. VMFEXUPD
creates a variable-format, executable version of the source program from a fixed-format, sequential
source file.

Operands
fn

is the file name of the source input file.
ft

is the file type of the source input file. The file type identifier must be entered without the leading
dollar sign ($).

VMFEXUPD EXEC

384 z/VM: 7.3 VMSES/E Introduction and Reference

ppfname
is the file name of a usable form Product Parameter File (PPF). It must have a file type of PPF. The
name of the control file that is to be used to update the source file is obtained from this PPF.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the PPF.
compname is a 1-16 character alphanumeric identifier.

Options
CKGen

requests validation of the AUX files against the version vector tables (VVT) and issues an error
message if a mismatch is detected. The version vector tables are not updated.

LOGMOD
requests validation of the AUX files against the version vector table (VVT) and automatically updates
the local VVT when a mismatch is detected. When you specify the LOGMOD option, VMFEXUPD
modifies only the VVTs that are defined in the control file above the :UPDTID level defined in the PPF.
All other VVT levels are only compared to the AUX files, and mismatches are displayed. You should
only use the LOGMOD option when you are processing files that have source updates. All LOCAL disks
must be accessed as Read-Write.

When you use the LOGMOD option:

• If a version vector table does not exist on a LOCAL disk, it is created on the first disk in the LOCAL
string.

• If the AUX file for a part is not found, the :PART entry (if found) is deleted from the version vector
table.

• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that
part. The :PART entry is not deleted from the version vector table.

NOCKGen
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file, and the VVT structure is used to name the output file.

NOVVT
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file and name the output file.

Note: If you omit the CKGEN, LOGMOD, NOCKGEN, and NOVVT options, the VMFEXUPD EXEC uses the
value of the :CKGEN tag in the PPF to determine whether to validate the AUX files against the VVT. If
the :CKGEN tag does not appear in the PPF, no validation is performed; and NOCKGEN is assumed.

CNTRL
specifies that a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of the
control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the
AUX or VVT structures.
out_ft

is the file type for the output file.
FTAbbr

is used to name the file type for the output file that is created. This option overrides the three
character abbreviation that is obtained from the VM SYSABRVT table.
ftabbr

is the three character abbreviation used with the file type. For example, a file type of SXE12345
has SXE as the ftabbr.

VMFEXUPD EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 385

OUTMode
indicates the file mode for the executable version of the source program that is created. This file mode
must be accessed Read/Write.
A

indicates file mode A is the file mode for the executable version of the source program. A is the
default.

fm
is the file mode for the executable version of the source program.

mda_string
is the name of a symbolic string of disks from the :MDA section of the product parameter file. The
executable version of the source program is placed on the first disk specified in this string.

NO$SELect
does not update the appid $SELECT file. NO$SELECT is the default.

$SELect
updates the appid $SELECT file to indicate the executable version has been changed. The first APPLY
disk specified in the :MDA section of the product parameter file must be accessed Read/Write. The
other APPLY disks must be accessed.

NOKeepsrc
erases the updated source file after it is converted to an executable version. NOKEEPSRC is the
default.

KEEPsrc
saves the updated source file, which consists of the source file and any updates, on the outmode disk.
If OUTMODE is not specified, the default is the A-disk. The file is named $fn $ft. fn is the name of the
source file, which is truncated to seven characters when necessary. $ft is the file type of the source
file.

SETup
sets up a minidisk or SFS directory access order for the VMFEXUPD function according to entries in
the :MDA section of the PPF. If a user exit is specified in the product parameter file, setup will occur
after the user exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the VMFEXUPD function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFEXUPD EXEC uses the value
of the :SETUP tag in the product parameter file to determine whether to set up a new access order.

Usage Notes
1. VMFEXUPD handles packed files.
2. If you receive warnings or errors from the UPDATE command, check the fn UPDLOG file for additional

information.
3. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with a record

consisting of either:

• fn and the first 3 characters of the file type of the output file
• fn and the full file type (when you also specify the FILETYPE option).

The select data file is used by VMFBLD to determine which objects need to be built using the updated
executable file.

VMFEXUPD EXEC

386 z/VM: 7.3 VMSES/E Introduction and Reference

4. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to
eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
tables files, and saving the results on a LOCALMOD disk.

5. VMFBLD uses the version vector tables to determine the correct level of the part to use during build
processing. If you do not specify the LOGMOD option, you must either manually update the version
vector tables before you run VMFBLD or you must rerun VMFEXUPD and specify the LOGMOD option.

6. You must use the FTABBR ftabbr option when using VMFEXUPD with compiled REXX/VM parts.

Examples

• To create an executable version of the source file, SENDFILE $EXEC, and remove comments from the
file, enter:

vmfexupd sendfile exec ppfname compname (comp noup

The COMPRESS option is a default; you do not have to specify it. The NOUPDATE option ignores update
file processing and produces a file named SENDFILE EXEC from the SENDFILE $EXEC. SENDFILE EXEC
does not contain the comments.

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
cntrlfn CNTRL

The control file.
fn $ft

The source file.
fn updtft

Updates to the source file.
fn AUXlvlid

The auxiliary control file.
appid VVTlvlid

The version vector table.
Output Files
fn out_ft

The updated source file, when the FILETYPE option is specified.
fn xxxnnnnn

The updated source file (xxx is the file type abbreviation; nnnnn is a PTF number or LOCALMODID).

Note: You receive only one of the above formats.

fn UPDLOG
The UPDATE log file.

appid VVTlvlid
A version vector table when the LOGMOD option is specified.

$fn $ft
The updated source file when the KEEPSRC option is specified.

appid $SELECT
The list of build requirements when the $SELECT option is specified.

Temporary Files
fn UPDATES

The update history file.

VMFEXUPD EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 387

$fn $ft
The updated source file unless the KEEPSRC option is specified.

PPF Tags Used
:APPID

The identifier of the product, which is used to name the VVT and the $SELECT file.
:CKGEN

Controls the validation of AUX files against the VVT. Valid values are NO, YES, LOGMOD, and NOVVT.
:CNTRL

Defines the name of the control file.
:MDA

Defines symbolic strings and the minidisks or SFS directories associated with them.
:SETUP

Controls whether the VMFSETUP EXEC is called to access minidisks/directories.
:USEREXIT

Defines the file name of the user exit. If no value is specified, then no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFEXUPD EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFEXUPD EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information
The VMFEXUPD command can be restarted by reissuing the command.

VMFEXUPD EXEC

388 z/VM: 7.3 VMSES/E Introduction and Reference

EXECUPDT Options Supported by VMFEXUPD
VMFEXUPD accepts all EXECUPDT command options. The EXECUPDT command is called with the
HISTORY and SID options, which are not the EXECUPDT defaults. To override these options, specify
NOHISTORY or NOSID on the VMFEXUPD command line. For a complete list of EXECUPDT options, see
z/VM: CMS Commands and Utilities Reference.

UPDATE Options Supported by VMFEXUPD
VMFEXUPD accepts all UPDATE command options. For a complete list of UPDATE options, see z/VM: CMS
Commands and Utilities Reference.

VMFEXUPD EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 389

VMFHASM EXEC

VMFHASM fn cntrlfn

ppfname compname

(
1

(
2

Options

)

Options
ASM H

CNTRL cntrlfn
3

CKGen
4

LOGMOD
4

NOCKGen

NOVVT
4

CTL

PPF

FILEType ft

NO$SELect

$SELect
4

NOKeepsrc

KEEPsrc

OBJect

NOOBJect

OUTMode A

OUTMode fm

mda_string
4

PRint

DIsk SETup

NOSetup

PREEXit

hasm_options

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 You can not use the CNTRL option if you already specified cntrlfn at the beginning of the command.
4 The CKGEN, LOGMOD, NOVVT, $SELECT, and OUTMODE mda_string options cannot be used with
the CTL option or the cntrlfn operand.

Purpose
The VMFHASM EXEC calls the VMFASM EXEC with the ASM H option to apply updates to a source file and
then assembles the file using the H assembler.

Operands
fn

is the file name of a source file to be updated and assembled. The source file must have a file type of
ASSEMBLE.

VMFHASM EXEC

390 z/VM: 7.3 VMSES/E Introduction and Reference

cntrlfn
is the file name of a control file. The control file must have a file type of CNTRL. If there is a product
parameter file with the same file name, you must specify the CTL option. If you do not, VMFHASM
uses the control file that is specified in the product parameter file to update the source file and not the
control file specified on the command line.

ppfname
is the file name of a usable form product parameter file. It must have a file type of PPF. The control file
used to update the source file is obtained from this PPF.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1-16 character alphanumeric identifier.

Options
ASM H

tells VMFASM to use the H assembler. ASM H is always used by the VMFHASM command. The version
vector tables are not updated.

CNTRL
specifies a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of
the control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF. The CNTRL
option can not be used if operands fn cntrlfn are specified.

CKGen
requests validation of the AUX files against the version vector tables (VVT) and issues an error
message if a mismatch is detected.

LOGMOD
requests validation of the AUX files against the version vector tables and automatically updates the
local version vector tables when a mismatch is detected. When you specify the LOGMOD option,
VMFHASM modifies only the VVT files that are defined in the control file above the :UPDTID level
defined in the product parameter file. All other VVT levels are only compared to the AUX files, and
mismatches are displayed. You should only use the LOGMOD option when you are assembling files
that have source updates. All LOCAL disks must be accessed as Read-Write.

When you use the LOGMOD option:

• If a version vector table does not exist on a LOCAL disk, it is created on the first disk in the LOCAL
string.

• If the AUX file for a part is not found, the :PART entry (if found) is deleted from the version vector
table.

• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that
part. The :PART entry is not deleted from the version vector table.

NOCKGen
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file, and the VVT structure is used to name the output file.

NOVVT
requests no validation of the AUX files against the version vector tables (VVT). The AUX file structure
is used to update the source file and name the output file.

Note: If you omit the CKGEN, LOGMOD, NOCKGEN, and NOVVT options, the VMFHASM EXEC uses the
value of the :CKGEN tag in the product parameter file to determine whether to validate the AUX files
against the version vector tables. If the :CKGEN tag does not appear in the product parameter file, no
validation is performed; and NOCKGEN is assumed.

VMFHASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 391

CTL
indicates the second operand in the command is the name of a control file. If CTL is specified, a
product parameter file is not used.

PPF
indicates the product parameter file specifies which control file to use to update the source file. The
product parameter file also lists the minidisk and directory search order.

Note: If you do not enter a compname and you do not specify CTL or PPF, CTL is assumed.

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the
AUX or VVT structures.
ft

is the file type for the output file.
NO$SELect

does not update the appid $SELECT file. NO$SELECT is the default.
$SELect

updates the appid $SELECT file to indicate the text deck has been changed. The first APPLY disk
specified in the :MDA section of the product parameter file must be accessed Read/Write. The other
APPLY disks must be accessed.

NOKeepsrc
erases the updated source file after it is assembled. NOKEEPSRC is the default.

KEEPsrc
indicates the updated source file, which consists of the source file and any updates, will be saved on
the user’s A-disk. The file is named $fn ASSEMBLE. fn is the source file name, which is truncated to
seven characters when necessary.

OBJect
creates the output deck on the user’s A-disk. OBJECT is the default.

NOOBJect
does not create the output deck on the user’s A-disk.

OUTMode
indicates the file mode for the output text and listing files created. This file mode must be accessed
Read/Write.
A

creates the output files on file mode A. A is the default file mode.
fm

is the file mode for the output files.
mda_string

is the name of the symbolic string of disks from the :MDA section of the product parameter file.
The output is placed on the first disk specified in this string.

PRint
sends the listing output to the virtual printer. PRINT is the default.

Disk
creates the listing output on the user’s A-disk.

SETup
sets up a minidisk or SFS directory access order for the assemble function according to the entries
in the :MDA section of the product parameter file. This option is valid only when using a product
parameter file. If a user exit is specified in the product parameter file, setup will occur after the user
exit is called.

NOSetup
does not set up a new access order.

VMFHASM EXEC

392 z/VM: 7.3 VMSES/E Introduction and Reference

PREEXit
sets up a minidisk or SFS directory access order for the assemble function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFHASM EXEC uses the value
of the :SETUP tag in the product parameter file to determine whether to set up a new access order.

HASM OPTIONS SUPPORTED BY VMFASM AND VMFHASM

In the following table, the left column shows the options of the HASM command. The right column
shows how these options are supported by VMFHASM when invoking the HASM command. Also shown
are the default values (underlined) of these options. The HASM defaults are used wherever possible.
Keyword-function options must be entered without the parentheses.

HASM Option VMFHASM Option

ALIGN|NOALIGN same

BATCH|NOBATCH same

DBCS|NODBCS same

DECK|NODECK same

ESD|NOESD same

FLAG(0) FLAG(n) FLAG 0 FLAG n

LINECOUN(55) LINECOUN(nn) LINECOUN 55 LINECOUN nn

LIST|NOLIST same

NUM|NONUM same

OBJECT|NOOBJECT OBJect|NOOBJect

PRINT|NOPRINT|DISK PRint|DIsk

RENT|NORENT same

RLD|NORLD same

STMT|NOSTMT same

SYSPARM(string) SYSPARM(?) SYSPARM() SYSPARM string SYSPARM ? SYSPARM SUP|SUP
SYSPARM EXP|EXP

TERM|NOTERM same

TEST|NOTEST same

XREF(FULL) XREF(SHORT) NOXREF XREF FULL XREF SHORT NOXREF

Note: The defaults appear highlighted.

The SYSPARM SUP option suppresses the expansion of macros. The SYSPARM EXP option activates the
expansion of macros. SYSPARM SUP is the default.

Usage Notes
1. VMFHASM handles packed files.
2. When assembling text decks for use in the VMSES/E environment, you must use a product parameter

file.
3. If you receive warnings or errors from the UPDATE command, check the fn UPDLOG file for additional

information.

VMFHASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 393

4. VMFBLD uses the version vector tables to determine which level of a part to use during build
processing. If you do not specify the LOGMOD option, you must either manually update the version
vector tables before you run VMFBLD or you must rerun VMFHASM and specify the LOGMOD option.

5. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with a record
consisting of either:

• fn and the first 3 characters of the file type of the output file
• fn and the full file type (when you also specify the FILETYPE option)

The select data file is used by VMFBLD to determine which objects need to be built using this text
deck.

6. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to
eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
tables files, and saving the results on a LOCALMOD disk.

Examples

• To run VMFHASM using the IBM-supplied defaults and a product parameter file, enter:

VMFHASM DMSABC ppfname compname

• To run VMFHASM using the IBM-supplied defaults and a control file, enter:

VMFHASM DMSABC cntrlfn

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
cntrlfn CNTRL

The control file.
fn ASSEMBLE

The source file.
fn updtft

Updates to the source file.
fn AUXlvlid

The auxiliary control file.
appid VVTlvlid

The version vector table.
Output Files
fn TEXT
fn TXTnnnnn
fn xxxnnnnn

The assembled object deck (xxx is the file type abbreviation; nnnnn is a PTF number). You receive only
one of these formats.

Note: The object deck is written to the A-disk only when the OBJECT option (the default) is specified.

$fn ASSEMBLE
The updated source file, when you use the KEEPSRC option.

appid VVTlvlid
A version vector table.

appid $SELECT
The list of build requirements, when you specify the $SELECT option.

VMFHASM EXEC

394 z/VM: 7.3 VMSES/E Introduction and Reference

$fn LISTING
The assembler listing file.

fn UPDLOG
The update log file.

fn ctlfile
The update information file.

Note: If listing output is generated during the assembly, the PRINT or DISK option determines where
it will reside. The PRINT option (the default) causes all listing output to be sent to the virtual printer as
fn ctlfile. The DISK option causes all listing output to be placed on the A-disk in two files ($fn LISTING
and fn UPDLOG).

Temporary Files
$fn ASSEMBLE

The updated source file.
$fn TEXT

The assembled object deck.
fn UPDATES

The update history file.
$VMFSIM CNTRL

A control file used with the LOGMOD option.
fn AUX$$$$$

An AUX file used with the LOGMOD option.
PPF Tags Used
:APPID

The identifier of the product, which is used to name the version vector tables and the $SELECT file.
:CKGEN

Controls the validation of AUX files against the version vector tables. Valid values are NO, YES,
LOGMOD, and NOVVT.

:CNTRL
Defines the name of the control file.

:MDA
Defines symbolic strings and the minidisks or SFS directories associated with them.

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks/directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

VMFHASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 395

Return codes issued by the VMFHASM EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFHASM EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information

The VMFHASM command can be restarted by reissuing the command.

VMFHASM EXEC

396 z/VM: 7.3 VMSES/E Introduction and Reference

VMFHLASM EXEC

VMFHLASM fn cntrlfn

ppfname compname

(
1

(
2

Options

)

Options
ASM HL

CNTRL cntrlfn
3 ALTCNtrl altcntrlfn

CKGen
4

LOGMOD
4

NOCKGen

NOVVT
4

CTL

PPF

FILEType ft

NODUAL

DUAL
4

NO$SELect

$SELect
4

NOKeepsrc

KEEPsrc

OBJect

NOOBJect

OUTMode A

OUTMode fm

mda_string
4

PRint

DIsk

NOPRint

SETup

NOSetup

PREEXit

HLASM hlasm_options EHLASM

LOADList CPLOAD32

LOADList loadlistfn

ALTLOadlist CPLOAD64

ALTLOadList altloadlistfn

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 You can not use the CNTRL option if you already specified cntrlfn at the beginning of the command.
4 The CKGEN, LOGMOD, NOVVT, $SELECT, DUAL, and OUTMODE mda_string options cannot be used
with the CTL option or the cntrlfn operand.

VMFHLASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 397

Purpose
The VMFHLASM EXEC calls the VMFASM EXEC with the ASM HL option to apply updates to a source file
and then assembles the file using the IBM High Level Assembler (HLASM).

Operands
fn

is the file name of a source file to be updated and assembled. The source file must have a file type of
ASSEMBLE.

cntrlfn
is the file name of a control file. The control file must have a file type of CNTRL.

ppfname
is the file name of a usable form product parameter file. It must have a file type of PPF. The control file
used to update the source file is obtained from this product parameter file.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1-16 character alphanumeric identifier.

Options
ASM HL

tells VMFASM to use the IBM High Level Assembler. ASM HL is always used by the VMFHLASM
command. The version vector tables are not updated.

CNTRL
specifies a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of
the control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF. The CNTRL
option can not be used if operands fn cntrlfn are specified.

ALTCNtrl
specifies a control file is used to identify the alternate AUX file structure.
altcntrlfn

is the file name of the alternate control file that is used to identify the alternate AUX file
structure. The file type of the alternate control file is CNTRL. This value overrides the value on
the :ALTCNTRL tag in the PPF. The ALTCNTRL option cannot be used if operands fn cntrlfn are
specified.

CKGen
requests validation of the AUX files against the version vector tables and issues an error message if a
mismatch is detected. The version vector tables are not updated.

LOGMOD
requests validation of the AUX files against the version vector tables and automatically updates the
local version vector tables when a mismatch is detected. When you specify the LOGMOD option,
VMFHLASM modifies only the VVT files that are defined in the control file above the :UPDTID level
defined in the product parameter file. All other VVT levels are only compared to the AUX files, and
mismatches are displayed. You should only use the LOGMOD option when you are assembling files
that have source updates. All LOCAL disks must be accessed as Read-Write.

When you use the LOGMOD option:

• If a version vector table does not exist on a LOCAL disk, it is created on the first disk in the LOCAL
string.

• If the AUX file for a part is not found, the :PART entry (if found) is deleted from the version vector
table.

VMFHLASM EXEC

398 z/VM: 7.3 VMSES/E Introduction and Reference

• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that
part. The :PART entry is not deleted from the version vector table.

NOCKGen
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file, and the VVT structure is used to name the output file.

NOVVT
requests no validation of the AUX files against the version vector tables (VVT). The AUX file structure
is used to update the source file and name the output file.

Note: If you omit the CKGEN, NOCKGEN, LOGMOD, and NOVVT options, the VMFHLASM EXEC uses the
value of the :CKGEN tag in the product parameter file to determine whether to validate the AUX files
against the version vector tables. If the :CKGEN tag does not appear in the product parameter file, no
validation is performed; and NOCKGEN is assumed.

CTL
indicates the second operand in the command is the name of a control file. If CTL is specified, a
product parameter file is not used.

PPF
indicates the product parameter file specifies which control file to use to update the source file. The
product parameter file also lists the minidisk and directory search order.

Note: If you do not enter a compname and you do not specify CTL or PPF, CTL is assumed.

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the
AUX or VVT structures.
ft

is the file type for the output file.
DUAL

indicates the file will be assembled once or twice depending on the contents of the specified load
lists. If the file, fn, is found in the loadlistfn, the file is assembled using the cntrlfn control file. If the
file, fn, is found in the altloadlistfn, the file is assembled using the altcntrlfn control file. If the file is
not found in either load list, the file is assembled using the cntrlfn control file.

NODUAL
indicates the file will be assembled once using the cntrlfn control file.

NO$SELect
does not update the appid $SELECT file. NO$SELECT is the default.

$SELect
updates the appid $SELECT file to indicate the text deck has been changed. The first APPLY disk
specified in the :MDA section of the product parameter file must be accessed Read/Write. The other
APPLY disks must be accessed.

NOKeepsrc
erases the updated source file after it is assembled. NOKEEPSRC is the default.

KEEPsrc
indicates the updated source file, which consists of the source file and any updates, will be saved on
your A-disk. The file is named $fn ASSEMBLE. fn is the source file name, which is truncated to seven
characters when necessary.

OBJect
creates the output deck on your A-disk. OBJECT is the default.

NOOBJect
does not create the output deck on your A-disk.

Note: If the OBJECT and NOOBJECT options are specified between the HLASM and EHLASM
keywords, they are ignored.

VMFHLASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 399

OUTMode
indicates the file mode for the output text and listing files created. This file mode must be accessed
Read/Write.
A

creates the output files on file mode A. A is the default file mode.
fm

is the file mode for the output files.
mda_string

is the name of the symbolic string of disks from the :MDA section of the product parameter file.
The output is placed on the first disk specified in this string.

PRint
sends the output to the virtual printer in a file, fn ctlfile. PRINT is the default.

DIsk
creates the output on your A-disk in files, $fn LISTING (or $fn LIST32 and $fn LIST64) and fn UPDLOG.

NOPRint
suppresses the writing of the listing output.

Note: If the PRINT, NOPRINT, and DISK options are specified between the HLASM and EHLASM
keywords, they are ignored.

SETup
sets up a minidisk or SFS directory access order for the assemble function according to the entries
in the :MDA section of the product parameter file. This option is valid only when you use a product
parameter file. If a user exit is specified in the product parameter file, setup will occur after the user
exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the assemble function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFHLASM EXEC uses the value
of the :SETUP tag in the product parameter file to determine whether to set up a new access order.

HLASM
indicates the beginning of the HLASM options, which are passed directly to the HLASM command.
VMFHLASM does not parse these options.
hlasm_options

are the HLASM options. You can only enter hlasm_options when you use the ASM HL option.

For a description of the HLASM options, see IBM High Level Assembler/MVS & VM & VSE
Programmer's Guide, SC26-4941.

EHLASM
indicates the end of the HLASM options.

LOADList
specifies the filename of the primary loadlist
CPLOAD32

is the default primary load list file name.
loadlistfn

is the primary load list file name.
ALTLOadlist

specifies the filename of the alternate load list.

VMFHLASM EXEC

400 z/VM: 7.3 VMSES/E Introduction and Reference

CPLOAD64
is the default alternate load list filename.

altloadlistfn
is the alternate load list filename.

Usage Notes
1. VMFHLASM handles packed files.
2. When assembling text decks for use in the VMSES/E environment, you must use a product parameter

file.
3. If you receive warnings or errors from the UPDATE command, check the fn UPDLOG file for additional

information.
4. The High Level Assembler is called with the TERM(NARROW) and NODECK options. If the High Level

Assembler command name is ASMAHL, it is also called with the FLAG(NOCONT) and USING(NOWARN)
options. To override these options, specify the desired options between the HLASM and EHLASM
keywords.

5. To suppress the printing of macro expansions, specify SYSPARM(SUP) between the HLASM and
EHLASM keywords.

6. VMFBLD uses the version vector tables to determine which level of a part to use during build
processing. If you do not specify the LOGMOD option, you must manually update the version vector
tables before you run VMFBLD or you must rerun VMFHLASM and specify the LOGMOD option.

7. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with a record
consisting of one of the following:

a. fn and the first three characters of the file type of the output file
b. fn and the full file type (when you also specify the FILETYPE option)

The select data file is used by VMFBLD to determine which objects need to be built using this text
deck.

8. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to
eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
tables files, and saving the results on a LOCALMOD disk.

9. HLASM 1.1 uses the command name HLASM. HLASM 1.2 uses the command name ASMAHL.

Examples

• To run VMFHLASM using the IBM-supplied defaults, a product parameter file, and the HLASM
LINECOUNT option, enter:

VMFHLASM DMSABC ppfname compname (HLASM LINECOUNT(65) EHLASM

• To run VMFHLASM using the IBM-supplied defaults and a control file, enter:

VMFHLASM DMSABC cntrlfn (ctl

• To assemble DMSXMPL ASSEMBLE, issue the following command:

VMFHLASM DMSXMPL ppfname compname (CNTRL cntrlfn

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
cntrlfn CNTRL

The control file.

VMFHLASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 401

altcntrlfn CNTRL
The alternate control file.

loadlistfn EXECloadlistfn EXCnnnnn
The primary load list.

altloadlistfn EXECaltloadlistfn EXCnnnnn
The alternate load list.

fn ASSEMBLE
The source file.

fn updtft
Updates to the source file.

fn AUXlvlid
The auxiliary control file.

appid VVTlvlid
The version vector table.

Output Files
fn TEXT
fn TXTnnnnn
fn xxxnnnnn

The assembled object deck (xxx is the file type abbreviation; nnnnn is a PTF number). You receive only
one of these formats.

Note: The object deck is written to the A-disk only when the OBJECT option (the default) is specified.

appid VVTlvlid
A version vector table.

appid $SELECT
The list of build requirements, when you specify the $SELECT option.

$fn LISTING
The assembler listing file.

$fn LIST32 | $fn LIST64
The assembler listing files when two files are produced.

fn UPDLOG
The update log file.

fn ctlfile
The update information file.

Note: If listing output is generated during the assembly, the PRINT or DISK option determines where
it will reside. The PRINT option (the default) causes all listing output to be sent to the virtual printer as
fn ctlfile. The DISK option causes all listing output to be placed on the A-disk in files, $fn LISTING (or
$fn LIST32 and $fn LIST64) and fn UPDLOG.

Temporary Files
$fn ASSEMBLE

The updated source file.
$fn TEXT

The assembled object deck.
fn UPDATES

The update history file.
$VMFSIM CNTRL

A control file used with the LOGMOD option.
fn AUX$$$$$

An AUX file used with the LOGMOD option.

VMFHLASM EXEC

402 z/VM: 7.3 VMSES/E Introduction and Reference

PPF Tags Used
:APPID

The identifier of the product, which is used to name the version vector tables and the $SELECT file.
:CKGEN

Controls the validation of AUX files against the version vector tables. Valid values are NO, YES,
LOGMOD, and NOVVT.

:COMPNAME
Defines the component in the product parameter file to be used.

:CNTRL
Defines the name of the control file.

:ALTCNTRL
Defines the name of the alternate control file.

:MDA
Defines symbolic strings and the minidisks or SFS directories associated with them.

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks/directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified, then no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFHLASM EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFHLASM EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

VMFHLASM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 403

Recovery Information

The VMFHLASM command can be restarted by reissuing the command.

VMFHLASM EXEC

404 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINFO EXEC

VMFINFO ppfname compname

(NOSetup

(

NOSetup

SETup)

Purpose

Use the VMFINFO command to query the Software Inventory files. With VMFINFO, you can select specific
query topics from the VMFINFO panels, and VMFSIM performs the queries.

Operands
ppfname

is the file name of the usable form product parameter file (PPF) to be used for the VMFSIM queries.
compname

is the name of the component (for example, CP or CMS) to use for the queries. compname is a 1-16
character alphanumeric identifier.

Options
NOSetup

does not automatically set up a new minidisk/directory access order. If the environment is not correct,
incorrect results may be returned. To force a set up, change the value for "Setup" on the VMFINFO
panels to YES. NOSETUP is the default.

SETup
sets up a minidisk/directory access order according to the entries in the :MDA section of the product
parameter file. When SETUP is specified, a setup is performed when the command is issued or any
other time there is a change to the PPF name or component name.

Usage Notes
1. If you do not specify the PPF file name (ppfname) and component name (compname) when you issue

the VMFINFO command, the PPF Fileid - Help panel is displayed. You must select a PPF from this
panel. After you select the PPF, the Component Name - Help panel is displayed. You must select a
component name.

If there is only one ppfname, it is automatically selected for you; and you do not receive the PPF Fileid
- Help panel.

2. When you specify both the PPF name (ppfname) and the component name (compname), the VMFINFO
Main Panel is displayed.

3. You can use the PF5 key to save the output in a file called VMFINFO mmddhhtt. mmddhhtt is the
month (mm), day (dd), hour (hh), and minute (tt).

When you use the PF5 key, consecutive queries within a single invocation of VMFINFO are appended to
the bottom of the file. A new file is created for each consecutive invocation.

Examples

• To select a product parameter file to use for the queries, enter:

VMFINFO EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 405

vmfinfo

• To access the VMFINFO Main Panel, enter:

vmfinfo ppfname compname

For more information on using the VMFINFO command, see Chapter 17, “Using the VMFINFO Panels,” on
page 199.

Input and Output Files
Input Files

VMFINFO uses all of the Software Inventory tables, product parameter files, build lists, and control
files.

Output Files
VMFINFO mmddhhtt

The output file for the queries, if you use PF5 to save the output.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E exec.

VMFINFO issues the following return codes:

Return Code Explanation

0 Command completed successfully.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

100 Command failed because of an external error.

Recovery Information

The VMFINFO command can be restarted by reissuing the command.

VMFINFO EXEC

406 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINS EXEC

The VMFINS EXEC provides a single, consistent, and flexible process for installing products on your z/VM
system. With the VMFINS EXEC, you can:

• Print the Memo-to-Users for products on the installation media
• Plan to install, migrate, and delete products
• Install products
• Specify installation-related parameters
• Maintain multiple levels of products on your system
• Migrate products from one version or release to another
• Build products
• Delete products

VMFINS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 407

VMFINS BUILD Command

VMFINS BUIld PPF ppfname

PROD prodid

compname

bldlist
*

*

object

 blopt

(
1

(
2

Options

)

Options

CKVV

NOCKVv

CNTRL cntrlfn

LINk

NOLink

SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

STATus

SERViced

ALL

SYStem VM

SYStem sysid

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file. See the Usage Notes.
2 You can enter options in any order between the parentheses.

Purpose
Use the VMFINS BUILD command to build a product after it has been installed or migrated on your
system. VMFINS BUILD updates the system-level Software Inventory and calls the VMFBLD command.

Before you enter a VMFINS BUILD command, see “Who Can Use VMFINS?” on page 10 to make sure you
have everything you need.

Operands
BUIld

builds the product, updates the Software Inventory status tables, saves any segments, and verifies
the product was installed or migrated correctly.

VMFINS BUILD

408 z/VM: 7.3 VMSES/E Introduction and Reference

PPF
identifies the product you want to build using a product parameter file name (ppfname).
ppfname

is the file name of the usable form product parameter file after all overrides have been applied.
The product parameter file must have a file type of PPF.

PROD
identifies the product you want to build using the product identifier (prodid).
prodid

is a 7-8 alphanumeric identifier assigned to the product by IBM.
compname

is the name of the component associated with product parameter file (ppfname) or the product
identifier (prodid), such as CP or CMS, or the name of a component parameter override area
containing alternate parameters for the component. compname is a 1-16 character alphanumeric
identifier.

If you do not provide a valid component name or product parameter file override name, or there is
more than one to choose from, VMFINS shows you a list of names and asks you to choose one. If
there is only one component, it is automatically selected for processing.

bldlist
is the file name of the build list that you want to process. The build list must have a file type of EXEC.
When you specify this option, you must also specify the component name (compname).

*
builds all objects in the specified build list that meet the build criteria established by any other options
you include on the command line.

object
is the name of an object in the build list that you want to build.

Note: For format 1 build lists, the object name is BLDLIST.

blopt
are build list options. Valid options depend on the part handler being used.

Build list options are generally operands or options of the command used to build objects. Build
list options can be specified in the :BLD section of the product parameter file or when you enter a
VMFINS BUILD command. When you enter build list options on the VMFINS BUILD command, they
override the corresponding values in :BLD section of the product parameter file. They do not override
corresponding object parameters that may appear in the build list. For more permanent overrides to
the IBM supplied values, create product parameter file overrides. See “Build List Options” on page
315 for valid build list options.

Options
CKVV

requests validation of the AUX files against the version vector tables.
NOCKVv

requests no validation of the AUX files against the version vector tables.

Note: If the CKVV and NOCKVV options are omitted, the VMFINS BUILD command uses the value of
the :CKVV tag in the product parameter file to determine whether to validate the AUX files against the
version vector tables.

The CKVV and NOCKVV options are only used by part handlers that use the CMS UPDATE command
to generate the serviceable parts for the objects being built. VMFBDMLB and VMFBDGEN are the only
VMSES/E part handlers that use these options.

CNTRL
specifies a control file is used to identify the AUX/VVT file structure.

VMFINS BUILD

Chapter 20. VMSES/E EXEC and Command Format Summaries 409

cntrlfn
is the file name of the control file that is used to identify the AUX file structure. The control file
must have a file type of CNTRL. This value overrides the value on the :CNTRL tag in the product
parameter file.

LINk
links the minidisks and accesses the minidisks and SFS directories that are common to both the :MDA
and :DCL sections in the product parameter file. LINK is the default.

NOLink
assumes you have already linked the proper minidisks and accesses the minidisks and SFS directories
that are defined in the :MDA section of the product parameter file.

SIDisk
specifies where the Software Inventory resides. This can be either the virtual address of the minidisk
or the name of the Shared File System directory.
51D

is the default minidisk address.
dirid

is the name of the Shared File System directory.
vdev

is the virtual address of the Software Inventory minidisk.
SIMode

specifies the file mode for the Software Inventory disk.
D

is the default.
fm

specifies the file mode for the Software Inventory disk. If you are going to continue to use this
file mode, create a product parameter file override to list it on the :RETAIN tag in the product
parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not already accessed as read-write, VMFINS tries to access it.

STATus
identifies build requirements. A build requirement exists for an object when any of the following are
true:

• Any serviceable parts included in the object have been serviced. All $SELECT files identified on
the :APPID tag in the PPF file are processed to determine which parts have been serviced.

• Its object definition has been changed by service.
• It was requested from the VMFBLD command.
• It has a requisite for an object that meets any of the previous conditions.
• It has been deleted from the current level of the build list. These objects are given a status of

DELETE.

New build requirements are added to the service-level build status table with a status of SERVICED or
DELETE. You can use this as a planning step to see which objects have been serviced.

As part of STATUS option processing, newly-serviced source product parameter files are built to the
A-disk. STATUS is the default.

SERViced
Performs the status function if any select data file (appid $SELECT) specified on the :APPID tag in the
product parameter file has been updated. Then builds the serviced objects as specified in Table 20 on
page 411. In addition, SERVICED also builds all objects flagged as SERVICED, DELETE, or BUILDALL in
the service-level build status table.

VMFINS BUILD

410 z/VM: 7.3 VMSES/E Introduction and Reference

ALL
Performs the status function if any select data file (appid $SELECT) identified on the :APPID tag in
the product parameter file has been updated. In addition, ALL builds all objects specified on the
command line and assigns an initial status of BUILDALL to the objects in the service-level build status
table.

The following table shows how to specify what you want to build.

Table 20. VMFBLD EXEC Parameter Specifications and Objects Built

Bldlist Object Option Objects Built

STATUS None

SERVICED All build requirements in the service-level build status
table

ALL All objects in all build lists in the PPF

X STATUS None

X SERVICED All build requirements for the specified build list in the
service-level build status table

X ALL All objects in the specified build list

X X STATUS None

X X SERVICED The specified object, if there is a build requirement for it

X X ALL The object specified

Note:

• The “Objects Built” column does not include any serviced build lists or product parameter source
files that are automatically built as part of STATUS option processing.

• When you specify the LIST operand, VMFBLD processes each entry in the input file as described in
this table.

• When you specify the SERVICED and ALL options, VMFBLD also builds all build requisites of the
object being built that have a status of SERVICED or BUILDALL. VMFBLD also processes all objects
in the service-level build status table that have a status of DELETE, regardless of the build list or
objects specified on the command line (except if the private option is specified).

SYStem
specifies which system-level Software Inventory files to use.
VM

is the default.
sysid

is the file name of the system-level Software Inventory files you want to use.

Build List Options
See “Build List Options” on page 315 for valid build list options.

Usage Notes
1. If you have not spooled your console, VMFINS spools it to a reader file named VMFINS CONSOLE.
2. If a product is not in VMSES/E format, the only options valid are LINK, NOLINK, SIDISK, and SYSTEM.
3. This command uses the VMFINS DEFAULTS file to determine the default values for the LINK, NOLINK,

SIDISK, SIMODE, and SYSTEM options. If you do not specify an option and there is no value assigned

VMFINS BUILD

Chapter 20. VMSES/E EXEC and Command Format Summaries 411

for that option in the VMFINS DEFAULT file, the command uses the default value that is shown in the
syntax diagram. VMSES/E uses the first VMFINS DEFAULTS file found in the CMS search order. For
more information on the VMFINS DEFAULTS file, see “Changing the VMFINS Command Defaults” on
page 48.

4. Build list syntax is defined in “Build Lists” on page 141 .

Examples

For a detailed example of how to use the VMFINS BUILD command, see “Scenario 1: Building a Product
with the PPF Operand” on page 77.

Input and Output Files
Input Files
prodid $PPF

The source product parameter file.
ppfname $PPF

The source or override product parameter file.
ppfname PPF

The usable form product parameter file.
VMFINS DEFAULTS

The file containing the VMFINS option defaults (either the established command option defaults, the
overrides created by you on your A-disk, or both).

SETUP $LINKS
The file containing the original minidisk access order and the modified access order as VMFINS
processes.

sysid SYSREQT
The system-level requisite table.

sysid SYSDESCT
The system-level description table.

sysid SYSRECS
The system-level receive status table.

Bponum
Product-specific exec sent with the product.

Vponum
Product-specific exec sent with the product.

appid $SELECT
The select data file.

appid SRVAPPS
The service-level apply status table.

appid VVTlvlid
The version vector tables specified by the control file specified on the :CNTRL tag in the product
parameter file.

appid $APRCVRY
(Used for apply recovery) the existence of this file on the APPLY disk string indicates VMFAPPLY was
interrupted during critical processing on the last invocation of VMFAPPLY for the specific component.

VMFNLS LANGLIST
The country code values for the language source files.

VM SYSABRVT
The file type abbreviation table.

Input/Output Files

VMFINS BUILD

412 z/VM: 7.3 VMSES/E Introduction and Reference

sysid SYSAPPS
The system-level apply status table.

bldid SRVBLDS
The service-level build status table for the product.

Output Files
$VMFINS $MSGLOG

The VMFINS message log, which is stored on your A-disk when VMFINS processing is complete.
VMFINS CONSOLE

The VMFINS console listing.
VMSES PARTCAT

The parts catalog.
sysid SYSBLDS

The system-level build status table.
PPF Tags Used
:DCL

Defines the minidisk links needed to build the product.
:APPID

The identifier of the product used during apply processing.
:BLD

Defines the buildlists for the product and the part handlers and target strings associated with them.
:BLDID

The identifier of the product used during build processing.
:CKVV

Controls the validation of AUX files against the version vector tables.
:CNTRL

Defines the name of the control file, which is used to identify the AUX file structure.
:DABBV

Defines file type abbreviations specific to a product and the real and base file types associated with
them.

:LOG
Controls whether messages are logged.

:MDA
Defines symbolic strings and the minidisks and SFS directories associated with them.

:NLS
Defines the national language being used.

:PRODID
The identifier of the product, component, release, version, and modification level.

:PTFPFX
Defines the 2 letter PTF prefix for the product.

:RECID
The identifier of the product being received as it appears on the tape.

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks or SFS directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified, then no exit is invoked.

VMFINS BUILD

Chapter 20. VMSES/E EXEC and Command Format Summaries 413

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E exec.

VMFINS BUILD issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

Recovery Information
The VMFINS BUILD command can be restarted by reissuing the command.

VMFINS BUILD

414 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINS DELETE Command

VMFINS DELete PPF ppfname

PROD prodid compname

(
1

(
2

Options

)

Options
LINk

NOLink

NOPlan

PLAn

NOResource SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid DISable

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file. See the Usage Notes.
2 You can enter options in any order between the parentheses.

Purpose
Use the VMFINS DELETE command to remove product code from the system, if the product was installed
with VMSES/E.

Make sure you have everything you need before entering a VMFINS DELETE command. For more
information, see “Who Can Use VMFINS?” on page 10.

Operands
DELete

removes a product from the system.
PPF

identifies the product you want to delete using the product parameter file name (ppfname).
ppfname

is the file name of the usable form product parameter file after all overrides have been applied.
The product parameter file must have a file type of PPF.

For more information about PPF files, see Chapter 21, “Product Parameter File Syntax,” on page 623.

PROD
identifies the product you want to delete using the product identifier (prodid).
prodid

is the 7-8 alphanumeric identifier for the product. You can use the VMFINS DELETE INFO
command to get a list of prodids.

VMFINS DELETE

Chapter 20. VMSES/E EXEC and Command Format Summaries 415

compname
is the name of the component associated with the product parameter file (ppfname) or the product
identifier (prodid), such as CP or CMS, or the name of a component parameter override area
containing alternate parameters for the component. compname is a 1-16 character alphanumeric
identifier.

If you do not provide a valid component, or there is more than one to choose from, VMFINS shows you
a list of names and asks you to choose one. If there is only one component, it is automatically selected
for processing.

Options
LINk

links the minidisks and accesses the minidisks and SFS directories that are common to both the :MDA
and :DCL sections of the product parameter file. LINK is the default.

NOLink
assumes you have already linked the proper minidisks and accesses the minidisks and SFS directories
as they are defined in the :MDA section of the product parameter file.

NOPlan
deletes the product. NOPLAN is the default.

PLAn
creates a prodid PLANINFO file. This file contains information on product dependencies, as well
as resources that will be deleted (user IDs, minidisks, and SFS directories). PLAN also creates the
ppfname ERASE file that lists the files that will be erased during delete processing.

Note: When you use the PLAN option, NORESOURCE, and DISABLE are ignored.

Delete processing does not occur.

NOResource
prevents the VMFINS resource manager from automatically deleting system resources (which include
user IDs, minidisks, and SFS directories), or from altering the CP directory or the CMS Shared File
System in any manner. This operand is an unchangeable default and is in effect for all VMFINS DELETE
commands, except those for which the PLAN operand also is specified (in which case, NORESOURCE
has no meaning so is ignored). You must manually delete any system resources that are no longer
required for the product code that has been removed upon successful completion of a VMFINS
DELETE command that is issued for other than planning purposes.

SIDisk
specifies where the system-level Software Inventory resides. This can be either the virtual address of
the minidisk or the name of the Shared File System directory.
51D

is the default minidisk address.
vdev

is the virtual address of the Software Inventory minidisk.
dirid

is the name of the SFS directory.
SIMode

specifies the file mode for the Software Inventory disk.
D

is the default.
fm

specifies the file mode for the Software Inventory disk. If you are going to continue to use this
file mode, create a product parameter file override to list it on the :RETAIN tag in the product
parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not already accessed as read-write, VMFINS tries to access it.

VMFINS DELETE

416 z/VM: 7.3 VMSES/E Introduction and Reference

SYStem
identifies the name of the system-level Software Inventory.
VM

is the default.
sysid

is the name of the system-level Software Inventory.
DISable

sets up a product as disabled and deleted in VMSES/E. Deletes the product from the system
enablement support.

Usage Notes
1. Your A-disk must be accessed as read-write.
2. If you have not spooled your console, VMFINS spools it to a reader file named VMFINS CONSOLE.
3. This command uses the VMFINS DEFAULTS file to determine the default value for options. If you do

not specify an option and there is no value assigned for that option in the VMFINS DEFAULT file, the
command uses the default value that is shown in the syntax diagram. VMSES/E uses the first VMFINS
DEFAULTS file found in the CMS search order. For more information on the VMFINS DEFAULTS file, see
“Changing the VMFINS Command Defaults” on page 48 .

Examples

For a detailed example of how to use the VMFINS DELETE command, see “Scenario 1: Deleting a Product
with the PPF Operand” on page 81.

Input and Output Files
Input Files
prodid PRODPART

The PRODPART file that is shipped with the product.
ppfname $PPF

The source or override product parameter file.
ppfname PPF

The usable form product parameter file.
VMFINS DEFAULTS

The file containing the VMFINS option defaults (either the established command option defaults, the
overrides created by you on your A-disk, or both).

VMFRMT EXTENTS
File telling the resource manager the available extents on the system on which to allocate space.

SETUP $LINKS
The file containing the original minidisk access order and the modified access order as VMFINS
processes.

sysid SYSREQT
The system-level requisite table.

sysid SYSDESCT
The system-level description table.

Input/Output Files
VMSES PARTCAT

The parts catalog.
sysid SYSRECS

The system-level receive status table.
Output Files

VMFINS DELETE

Chapter 20. VMSES/E EXEC and Command Format Summaries 417

prodid PLANINFO
Lists planning information for the product being deleted. Created when you enter a VMFINS DELETE
command with the PLAN option.

prodid $$EXEC$$
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
an existing prodid EXEC that was not created by VMFINS was found.

prodid EXEC
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
the CP SET PRODUCT command did not complete successfully.

prodid PRODSYS
The file containing the CP PRODUCT system configuration statement, which is stored on the A-disk.

ppfname ERASE
Lists the files to be deleted for the product Created when you enter a VMFINS DELETE command with
the PLAN option.

$VMFINS $MSGLOG
The VMFINS message log, which is stored on your A-disk when VMFINS processing is complete.

VMFINS CONSOLE
The VMFINS console log.

sysid SYSAPPS
The system-level apply status table.

sysid SYSBLDS
The system-level build status table.

Temporary Files
These files are created and left on your system only if delete processing stops before it is
complete.

ppfname $PPFTEMP
File created by VMFOVER; used and deleted by VMFPPF.

PPF Tags Used
:DCL

Defines user IDs, Shared File System directories, and links for minidisks required by the product.
:MDA

Identifies the minidisks or Shared File System directories that need to be accessed.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E exec.

VMFINS DELETE issues the following return codes:

Return Code Explanation

0 Command completed successfully.

VMFINS DELETE

418 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

Recovery Information
The VMFINS DELETE command can be restarted by reissuing the command.

If for some reason, a product is not successfully deleted, check the $VMFINS $MSGLOG file to see where
an error occurred. See online help or the appropriate messages book for additional information on error
messages and recommendations for fixing the errors.

Correct the problem. Then, reissue the original VMFINS DELETE command.

VMFINS DELETE

Chapter 20. VMSES/E EXEC and Command Format Summaries 419

VMFINS DISABLE Command

VMFINS DISable PPF ppfname

PROD prodid compname

(
1

(
2

Options

)

Options
SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file. See the Usage Notes.
2 You can enter options in any order between the parentheses.

Purpose
Use the VMFINS DISABLE command to change a product to a disabled state.

Operands
DISable

changes a product to a disable state.
PPF

identifies the product you want to disable using the product parameter file name (ppfname).
ppfname

is the file name of the usable form product parameter file after all overrides have been applied.
The product parameter file must have a file type of PPF.

For more information about PPF files, see Chapter 21, “Product Parameter File Syntax,” on page 623.

PROD
identifies the product you want to disable using the product identifier (prodid).
prodid

is the 7-8 alphanumeric identifier for the product.

You specify a product by entering the prodid. You specify a component by entering the prodid and the
compname.

compname
is the name of the component associated with the product parameter override file (ppfname) or the
product identifier (prodid), such as CP or CMS. compname is a 1-16 character alphanumeric identifier.

If you do not enter a component name, or there is more than one from which to choose, VMFINS
shows you a list of names and asks you to choose one. If there is only one component, it is
automatically selected for processing.

VMFINS DISABLE

420 z/VM: 7.3 VMSES/E Introduction and Reference

Options
SIDisk

identifies where the system-level Software Inventory resides. This can be either the virtual address of
the minidisk or the name of the Shared File System directory.
51D

is the default minidisk address.
vdev

is the virtual address of the Software Inventory minidisk.
dirid

is the name of the SFS directory.
SIMode

identifies the file mode for the Software Inventory disk.
D

is the default.
fm

identifies the file mode for the Software Inventory disk. If you are going to continue to use this
file mode, create a product parameter file override to list it on the :RETAIN tag in the product
parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not accessed as read-write, VMFINS tries to access it.

SYStem
identifies the name of the system-level Software Inventory.
VM

is the default.
sysid

is the name of the system-level Software Inventory.

Usage Notes
1. The product you want to disable must be in VMSES/E format and must have already been installed

using VMSES/E.
2. Your A-disk must be accessed as read-write.
3. This command uses the VMFINS DEFAULTS file to determine the default value for options. If you do

not specify an option and there is no value assigned for that option in the VMFINS DEFAULT file, the
command uses the default value that is shown in the syntax diagram. VMSES/E uses the first VMFINS
DEFAULTS file found in the CMS search order. For more information on the VMFINS DEFAULTS file, see
“Changing the VMFINS Command Defaults” on page 48 .

Examples

• To run VMFINS DISABLE using the IBM-supplied defaults and a product parameter file to disable a
product, enter:

VMFINS DISABLE PPF ppfname compname

• To run VMFINS DISABLE using the IBM-supplied defaults and a product identifier, enter:

VMFINS DISABLE PROD prodid

Input and Output Files
Input Files

VMFINS DISABLE

Chapter 20. VMSES/E EXEC and Command Format Summaries 421

ppfname $PPF
The source or override product parameter file.

ppfname PPF
The usable form product parameter file after all overrides have been applied.

sysid SYSDESCT
The system-level description table.

VMFINS DEFAULTS
The file containing the VMFINS option defaults (either the established command option defaults, the
overrides created by you on your A-disk, or both).

Output Files
prodid $$EXEC$$

The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
an existing prodid EXEC that was not created by VMFINS was found.

prodid EXEC
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
the CP SET PRODUCT command did not complete successfully.

prodid PRODSYS
The file containing the CP PRODUCT system configuration statement, which is stored on the A-disk.

sysid SYSAPPS
The system-level apply status table.

$VMFINS $MSGLOG
The VMFINS message log, which is stored on your A-disk when VMFINS processing is complete.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E exec. VMFINS DISABLE issues the following return
codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

VMFINS DISABLE

422 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

500 User terminated the command from a prompt.

VMFINS DISABLE

Chapter 20. VMSES/E EXEC and Command Format Summaries 423

VMFINS ENABLE Command

VMFINS ENAble PPF ppfname

PROD prodid compname

(
1

(
2

Options

)

Options
SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file.
2 You can enter options in any order between the parentheses.

Purpose
Use the VMFINS ENABLE command to change a product to an enabled state.

Operands
ENAble

changes a product to an enabled state.
PPF

identifies the product you want to enable using the product parameter file name (ppfname).
ppfname

is the file name of the usable form product parameter file after all overrides have been applied.
The product parameter file must have a file type of PPF.

For more information about PPF files, see Chapter 21, “Product Parameter File Syntax,” on page 623.

PROD
identifies the product you want to enable using the product identifier (prodid).
prodid

is the 7-8 alphanumeric identifier for the product.

You specify a product by entering the prodid. You specify a component by entering the prodid and the
compname.

compname
is the name of the component associated with the product parameter override file (ppfname) or the
product identifier (prodid), such as CP or CMS. compname is a 1-16 character alphanumeric identifier.

If you do not enter a component name, or there is more than one from which to choose, VMFINS
shows you a list of names and asks you to choose one. If there is only one component, it is
automatically selected for processing.

VMFINS ENABLE

424 z/VM: 7.3 VMSES/E Introduction and Reference

Options
SIDisk

identifies where the system-level Software Inventory resides. This can be either the virtual address of
the minidisk or the name of the Shared File System directory.
51D

is the default minidisk address.
vdev

is the virtual address of the Software Inventory minidisk.
dirid

is the name of the SFS directory.
SIMode

identifies the file mode for the Software Inventory disk.
D

is the default.
fm

identifies the file mode for the Software Inventory disk. If you are going to continue to use this
file mode, create a product parameter file override to list it on the :RETAIN tag in the product
parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not accessed as read-write, VMFINS tries to access it.

SYStem
identifies the name of the system-level Software Inventory.
VM

is the default.
sysid

is the name of the system-level Software Inventory.

Usage Notes
1. The product you want to enable must be in VMSES/E format and must have already been installed

using VMSES/E.
2. Your A-disk must be accessed as read-write.
3. This command uses the VMFINS DEFAULTS file to determine the default value for options. If you do

not specify an option and there is no value assigned for that option in the VMFINS DEFAULT file, the
command uses the default value that is shown in the syntax diagram. VMSES/E uses the first VMFINS
DEFAULTS file found in the CMS search order. For more information on the VMFINS DEFAULTS file, see
“Changing the VMFINS Command Defaults” on page 48 .

Examples

• To run VMFINS ENABLE using the IBM-supplied defaults and a product parameter file to enable a
product, enter:

VMFINS ENABLE PPF ppfname compname

• To run VMFINS ENABLE using the IBM-supplied defaults and a product identifier, enter:

VMFINS ENABLE PROD prodid

Input and Output Files
Input Files

VMFINS ENABLE

Chapter 20. VMSES/E EXEC and Command Format Summaries 425

ppfname $PPF
The source or override product parameter file.

ppfname PPF
The usable form product parameter file after all overrides have been applied.

sysid SYSDESCT
The system-level description table.

VMFINS DEFAULTS
The file containing the VMFINS option defaults (either the established command option defaults, the
overrides created by you on your A-disk, or both).

Output Files
prodid $$EXEC$$

The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
an existing prodid EXEC that was not created by VMFINS was found.

prodid EXEC
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
the CP SET PRODUCT command did not complete successfully.

prodid PRODSYS
The file containing the CP PRODUCT system configuration statement, which is stored on the A-disk.

sysid SYSAPPS
The system-level apply status table.

$VMFINS $MSGLOG
The VMFINS message log, which is stored on your A-disk when VMFINS processing is complete.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E exec.

VMFINS ENABLE issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

VMFINS ENABLE

426 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

100 Command failed because of an external error.

500 User terminated the command from a prompt.

VMFINS ENABLE

Chapter 20. VMSES/E EXEC and Command Format Summaries 427

VMFINS INSTALL Command

VMFINS INStall INFO

LIST

VMFINS PRODLIST A

fn
PRODLIST A

ft
A

fm

PPF ppfname

PROD prodid compname

(
1

(
2

Options

)

Options
ADD

REPlace ENV fn

FILEPool VMPSFS:

FILEPool filepoolid
:

*

LINk

NOLink

MEMo

NOMemo

NOPlan

PLAn

NOResource

OVErride PROMPT

OVErride YES

NO

DEFAULTS

PANEL

SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid

SETup

NOSetup ENAble

DISable

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file. See the Usage Notes.
2 You can enter options in any order between the parentheses.

VMFINS INSTALL

428 z/VM: 7.3 VMSES/E Introduction and Reference

Purpose

Use the VMFINS INSTALL command to add a copy of a new product to your system or to replace an
existing copy with a new copy. Tailorings for the existing copy (not on the LOCAL disks) are not saved.

Make sure you have everything you need before entering the VMFINS INSTALL command. For more
information, see “Who Can Use VMFINS?” on page 10 .

Operands
INStall

puts a new copy of a product on the system.
INFO

creates a list of products that can be installed and stores the list in a file on your A-disk. You can
use the default file identifier for the output file, which is VMFINS PRODLIST A, or you can name the
output file anything you want. When you use the INFO operand with the REPLACE option, the output
file (VMFINS PRODLIST by default) lists products that are on the installation media and are currently
installed on your system.

Note: When you use the INFO operand, the PLAN, NOPLAN, LINK, NOLINK, NORESOURCE, FILEPOOL,
OVERRIDE, ENABLE, and DISABLE options are ignored.

fn
is the file name of the output file you want to create. The default is VMFINS.

ft
is the file type of the output file you want to create. The default is PRODLIST.

fm
is the file mode of the output file you want to create. The default is A.

Entries in the output file are in one of these two formats:

PROD prodid compname description
PPF ppfname compname description

The component name and description are optional. Make sure you use the correct format if you add
information to this file. For more information, see “The VMFINS PRODLIST File” on page 18 .

LIST
indicates you want to install a list of products. The list of products is in an input file. If you used
the defaults when you entered the VMFINS INSTALL INFO command, the file identifier is VMFINS
PRODLIST A.
fn

is the file name of the input file you want to use. The default is VMFINS.
ft

is the file type of the input file you want to use. The default is PRODLIST.
fm

is the file mode of the input file you want to use. The default is A.

Entries in the input file can be in one of these two formats:

PROD prodid compname description
PPF ppfname compname description

The component name and description are optional. Make sure you use the correct format if you
manually add information to this file. For more information, see “The VMFINS PRODLIST File” on page
18.

PPF
identifies the product you want to install using the product parameter file name (ppfname).

VMFINS INSTALL

Chapter 20. VMSES/E EXEC and Command Format Summaries 429

ppfname
is the file name of the usable form product parameter file after all overrides have been applied.
The product parameter file must have a file type of PPF.

using the LIST operand and the PLAN option, you can find the ppfname in the VMFINS PRODLIST
file. For more information on product parameter files, see “The Source Product Parameter File” on
page 13 and Chapter 21, “Product Parameter File Syntax,” on page 623.

PROD
identifies the product you want to install using the product identifier (prodid). You specify a product by
entering the prodid. You can specify a component by entering the prodid and the compname.
prodid

is the 7-8 alphanumeric identifier for the product. You can obtain a list of prodids by using the
VMFINS INSTALL INFO command.

compname
is the name of the component you want to install, for example, CP or CMS. compname is a 1-16
character alphanumeric identifier.

If you do not enter a component name or you enter a component name that is not recognized by
VMFINS, VMFINS shows you a list of valid names; and you are asked to select one. If there is only one
component, it is automatically selected for processing.

Options
ADD

adds a new copy or an additional copy of a product or component to the system. ADD is the default.
REPlace

overlays an existing copy of a product or component on the system.
ENV

indicates the input media is an electronic envelope. If an electronically-packaged product requires
more than one envelope file, you are prompted to enter the file name of the next envelope. This option
is only valid for products in VMSES/E format.
fn

is the file name of the envelope to use. The file type must be SERVLINK. VMFINS INSTALL uses the
first file found in the CMS search order with the file identifier fn SERVLINK.

FILEPool
identifies the product service Shared File System file pool. Product system data is maintained and
serviced using this file pool.
VMPSFS:

is the default file pool ID for VMFINS processing if nothing is specified in the VMFINS DEFAULTS
file.

filepoolid
the name (file pool ID) of the file pool. An asterisk (*) indicates that the CMS file pool default (set
by the CMS SET FILEPOOL command) is to be used. If no CMS file pool default is in effect, the
VMFINS command default is used. That is, the default of VMPSFS: is used if the FILEPOOL option
is omitted, or if no such option has been defined in the VMFINS DEFAULTS file.

LINk
issues the CP LINK commands defined in the :DCL section of the product parameter file. LINK is the
default.

NOLink
does not issue the CP LINK commands defined in the :DCL section of the product parameter file.

MEMo
asks you to select the Memo-to-Users to print on your system printer. MEMO is the default.

NOMemo
does not ask you if you want to print the Memo-to-Users.

VMFINS INSTALL

430 z/VM: 7.3 VMSES/E Introduction and Reference

Note: Each time you enter a VMFINS INSTALL command, all Memo-to-Users are loaded to the
Software Inventory disk from the installation media.

NOPlan
installs the products. NOPLAN is the default.

PLAn
creates a prodid PLANINFO file. This file contains product requisites and resources required for the
product (user IDs, minidisks, and SFS directories). PLAN does not generate, allocate, or commit any
system resources.

This option is not valid for the INFO operand.

If you specify the REPLACE option, PLAN also creates a ppfname ERASE file that lists:

• the files associated with the copy of the product you are replacing
• the resources associated with the copy of the product you are replacing

When you specify the LIST operand with the PLAN option, the VMFINS PRODLIST file is updated
to show the product parameter file overrides created during PLAN processing. See “Using the LIST
Operand with the PLAN Option” on page 21 for an example.

Note: When you use the PLAN option, the NORESOURCE, ENABLE, and DISABLE options are ignored.

NOResource
prevents the VMFINS resource manager from automatically updating system resources (which
includes user IDs, minidisks, and SFS directories), or from altering the CP directory or the CMS Shared
File System in any manner. This operand is an unchangeable default and is in effect for all VMFINS
INSTALL commands, except those for which the PLAN operand also is specified (in which case,
NORESOURCE has no meaning so is ignored). You must ensure that any system resources required
for the product code that is to be installed are available prior to the use of the VMFINS INSTALL
command that is issued for other than planning purposes.

OVErride
controls the prompts for creating product parameter file overrides that are issued by VMFINS
processing.
PROMPT

asks you if you want to create an override for the product you are installing. If you answer yes to
this prompt, PROMPT also asks if you want to use the defaults for the product.

YES
does not ask you if you want to create an override. You are, however, asked if you want to use the
defaults for the product.

NO
suppresses the prompts and does not display the Make Override Panel. NO uses the existing
parameters in the product parameter file and does not give you an opportunity to change them.

DEFAULTS
suppresses both prompts and creates an override using the defaults for the product.

PANEL
suppresses both prompts and displays the Make Override Panel so you can enter new values for
the installation parameters.

SIDisk
specifies where the system inventory resides. This can be either the virtual address of the minidisk or
the name of the Shared File System directory.
51D

is the default minidisk address.
vdev

is the virtual address of the system-level Software Inventory minidisk.
dirid

is the name of the Shared File System directory.

VMFINS INSTALL

Chapter 20. VMSES/E EXEC and Command Format Summaries 431

SIMode
specifies the file mode for the system-level Software Inventory disk.
D

is the default.
fm

specifies the file mode for the system-level Software Inventory disk. If you are going to continue
to use this file mode, create a product parameter file override to list it on the :RETAIN tag in the
product parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not accessed as read-write, VMFINS tries to access it.

SYStem
specifies the name of the system-level Software Inventory.
VM

is the default.
sysid

is the name of the system-level Software Inventory.
SETup

sets up a minidisk or directory access order according to entries in the :MDA section of the product
parameter file.

NOSetup
does not set up a new minidisk or directory access order.

ENAble
sets up the product as enabled.

DISable
sets up the product as disabled.

Usage Notes
1. Your A-disk must be accessed as read-write.
2. If you have not spooled your console, VMFINS spools it to a reader file named VMFINS CONSOLE.
3. When you use the FILEPOOL option:

• The file pool specified by filepoolid must be available in interactive mode.
• You must have administrative authority for the file pool to enroll yourself in the file pool or increase

the amount of space allocated.
• You create the filepoolid:userid.VMFINS directory or enroll a user in the filepoolid file pool.

4. You should run the VMFINS BUILD command after each product installation. VMFINS BUILD builds the
product on the system and updates the Software Inventory tables.

5. This command uses the VMFINS DEFAULTS file to determine the default value for options. If you
do not specify an option and there is no value assigned for that option in the VMFINS DEFAULT file,
the command uses the default value shown in the syntax diagram. VMSES/E uses the first VMFINS
DEFAULTS file found in the CMS search order. For more information on the VMFINS DEFAULTS file, see
“Changing the VMFINS Command Defaults” on page 48 .

6. There is a difference between requisite and prerequisite products if they are missing when you issue
a VMFINS INSTALL command. If a requisite is missing, the install will complete and you will receive
a message indicating there is a run time requisite but the install can complete and is successful. If a
prerequisite is missing, the install is unsuccessful. This is considered an installation requisite so that is
why the install does not complete.

7. If you choose to have VMFINS override the default installation parameters provided for the product, a
product parameter file override is created for every component in the specified PPF. Any changes that

VMFINS INSTALL

432 z/VM: 7.3 VMSES/E Introduction and Reference

you provide using the Make Override Panel are made to the specified component and to each of the
other components if applicable.

Examples

For detailed examples of how to use the VMFINS INSTALL command, see “Scenario 1: Installing a Product
with the PPF Operand” on page 54.

Input and Output Files
Input Files
prodid PRODPART

The PRODPART file that is shipped with the product.
ppfname1 $PPF

The source and override product parameter file.
ppfname1 PPF

The usable form product parameter file.
VMFINS PRODLIST

The file created when you enter a VMFINS INSTALL command with the INFO operand.
VMFNLS LANGLIST

The country code values for the language source files.
VMFINS DEFAULTS

The file containing the VMFINS option defaults (either the established command option defaults, the
overrides created by you on your A-disk, or both).

Output Files
VMFINS PRODLIST

Created when you enter a VMFINS INSTALL command with the INFO operand.
prodid PLANINFO

Lists planning information for the product.
prodid $$EXEC$$

The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
an existing prodid EXEC that was not created by VMFINS was found.

prodid EXEC
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
the CP SET PRODUCT command did not complete successfully.

prodid PRODSYS
The file containing the CP PRODUCT system configuration statement, which is stored on the A-disk.

ppfname ERASE
Lists files that will be deleted for the product.

$VMFINS $MSGLOG
The VMFINS message log, which is stored on your A-disk when VMFINS processing is complete.

VMFINS CONSOLE
The VMFINS console log.

ppfname2 $PPF
The override product parameter file.

ppfname2 PPF
The usable form product parameter file.

sysid SYSREQT
The system-level requisite table.

sysid SYSDESCT
The system-level description table.

VMFINS INSTALL

Chapter 20. VMSES/E EXEC and Command Format Summaries 433

sysid SYSRECS
The system-level receive status table.

sysid SYSAPPS
The system-level apply status table.

Temporary Files
VMFRMT EXTENTS

The file listing the available extents on the system.
VMFRMT $NEWCP$

The temporary CP user directory used to build the new one.
VMFRMT $TMPCP$

The temporary CP user directory to backup original.
PPF Tags Used
:DCL

Defines user IDs, Shared File System directories, and links for minidisks required by the product.
:MDA

Identifies the section that lists the minidisks or Shared File System directories that need to be
accessed.

:RECINS
Defines the tape files included on the installation media and the part handlers and target strings
associated with them.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E exec.

VMFINS issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

VMFINS INSTALL

434 z/VM: 7.3 VMSES/E Introduction and Reference

Recovery Information
A VMFINS INSTALL command can be restarted by reissuing the command.

If an installation ends unsuccessfully, check the $VMFINS $MSGLOG and VMFINS CONSOLE files to see
where the error occurred. For example, there may not be enough contiguous space available or there was
an error in the product parameter file. See z/VM: Other Components Messages and Codes for additional
information on error messages and recommendations for fixing the errors. Fix the problem and rerun the
installation using the same command. If resources have already been generated, VMFINS will not create
duplicate resources when you rerun install.

VMFINS INSTALL

Chapter 20. VMSES/E EXEC and Command Format Summaries 435

VMFINS MIGRATE Command

VMFINS MIGrate INFO

LIST

VMFINS PRODLIST A

fn
PRODLIST A

ft
A

fm

PPF ppfname

PROD prodid compname

(
1

(
2

Options

)

Options
ADD

REPlace ENV fn

FILEPool VMPSFS:

FILEPool filepoolid
:

*

LINk

NOLink

MEMo

NOMemo

NOPlan

PLAn

NOResource

OVErride PROMPT

OVErride YES

NO

DEFAULTS

PANEL

SIDisk 51D

SIDisk vdev

dirid

SIMode D

SIMode fm

SYStem VM

SYStem sysid ENAble

DISable

Notes:
1 The defaults you receive appear above the line in the Options fragment, unless specified in the
VMFINS DEFAULTS file. See the Usage Notes.
2 You can enter options in any order between the parentheses.

VMFINS MIGRATE

436 z/VM: 7.3 VMSES/E Introduction and Reference

Purpose
Use the VMFINS MIGRATE command to put a new copy of a product or a list of products on your system
while keeping any user tailorings, such as tailored files and SFS file authorizations and aliases. VMFINS
MIGRATE also determines reach-ahead service, if there is any. You can migrate to a new copy of a
product, if the product was installed with VMSES/E.

Make sure you have everything you need before entering the VMFINS MIGRATE command. For more
information, see “Who Can Use VMFINS?” on page 10.

Operands
MIGrate

puts a new copy of the product on the system and preserves the tailorings from a previously installed
or migrated copy of the product.

INFO
creates a list of products that can be migrated and stores the list in an output file. You can use the
default file identifier for the output file (VMFINS PRODLIST A), or you can create a new file identifier.
fn

is the file name of the output file you are creating. The default is VMFINS.
ft

is the file type of the output file you are creating. The default is PRODLIST.
fm

is the file mode of the output file you are creating. The default is A.

Entries in the output list are in one of these two formats:

PPF ppfname compname description
PROD prodid compname description

The component name and description are optional. Make sure the information is in the correct format
if you manually add information to this file. For more information, see “The VMFINS PRODLIST File”
on page 18.

Note: When you use the INFO operand, the PLAN, NOPLAN, LINK, NOLINK, NORESOURCE, FILEPOOL,
OVERRIDE, ENABLE, and DISABLE options are ignored.

LIST
indicates you want to migrate a list of products. The list of products is in an input file. If you used
the defaults when you entered the VMFINS MIGRATE INFO command, the file identifier is VMFINS
PRODLIST A.
fn

is the file name of the input file you want to use. The default is VMFINS.
ft

is the file type of the input file you want to use. The default is PRODLIST.
fm

is the file mode of the input file you want to use. The default is A.

Entries in the input file are in one of these two formats:

PPF ppfname compname description
PROD prodid compname description

The component name and description are optional. If you manually add information to this file, make
sure the information is in the correct format. For more information, see “The VMFINS PRODLIST File”
on page 18.

PPF
identifies the product you want to migrate using the product parameter file name (ppfname).

VMFINS MIGRATE

Chapter 20. VMSES/E EXEC and Command Format Summaries 437

ppfname
is the file name of the usable form product parameter file after all overrides have been applied.
The product parameter file must have a file type of PPF. For more information about PPF files,
see Chapter 21, “Product Parameter File Syntax,” on page 623the information about product
parameter file syntax in z/VM: VMSES/E Introduction and Reference.

PROD
identifies the product you want to migrate using the product identifier (prodid).
prodid

is the 7-8 alphanumeric identifier for the product. You can use the VMFINS MIGRATE INFO
command to get a list of prodids.

You specify a product by entering the prodid; you specify a component by entering the prodid and the
compname.

compname
is the name of the component associated with the product parameter file override (ppfname) or the
product identifier (prodid), such as CP or CMS. compname is a 1-16 character alphanumeric identifier.

If you do not enter a component name, or there is more than one to choose from, VMFINS shows
you a list of valid names; and you are asked to select one. If there is only one component, it is
automatically selected for processing.

Options
ADD

adds a new copy of the product to your system and preserves the tailorings from the current copy of
the product. ADD is the default.

REPlace
lays the new version of the product over the existing copy on your system and preserves the tailorings
from that existing copy of the product.

ENV
indicates the input media is an electronic envelope. If an electronically-packaged product requires
more than one envelope file, you are prompted to enter the file name of the next envelope. This option
is only valid for products in VMSES/E format.
fn

is the file name of the envelope to use. The file type must be SERVLINK. VMFINS MIGRATE uses
the first file found in the CMS search order with the file identifier fn SERVLINK.

FILEPool
identifies the product service Shared File System file pool. Product system data is maintained and
serviced using this file pool.
VMPSFS:

is the default file pool ID for VMFINS processing if nothing is specified in the VMFINS DEFAULTS
file.

filepoolid
the name (file pool ID) of the file pool. An asterisk (*) indicates that the CMS file pool default (set
by the CMS SET FILEPOOL command) is to be used. If no CMS file pool default is in effect, the
VMFINS command default is used. That is, the default of VMPSFS: is used if the FILEPOOL option
is omitted, or if no such option has been defined in the VMFINS DEFAULTS file.

LINk
links the minidisks and accesses the minidisks and SFS directories that are common to both the :MDA
and :DCL sections of the product parameter file. LINK is the default.

NOLink
accesses the minidisks and SFS directories that are common to both the :MDA and :DCL sections of
the product parameter file. This option assumes you have already linked the proper minidisks.

VMFINS MIGRATE

438 z/VM: 7.3 VMSES/E Introduction and Reference

MEMo
asks you to select the Memo-to-Users to print on your system printer. MEMO is the default.

NOMemo
does not ask you if you want to print the Memo-to-Users.

Note: Each time you enter a VMFINS MIGRATE command, all Memo-to-Users are loaded to the
Software Inventory disk from the installation media.

NOPlan
migrates the product. NOPLAN is the default.

PLAn
creates a prodid PLANINFO file. This file contains information on product requisites and resources
required for the product (user IDs, minidisks, and SFS directories).

If you specify the REPLACE option, PLAN also creates a ppfname ERASE file that lists:

• the files associated with the copy of the product you are replacing
• the resources associated with the copy of the product you are replacing

PLAN does not generate, allocate, or commit any system resources. This option is not valid with the
INFO operand.

Note: When you use the PLAN option, the NORESOURCE, ENABLE, and DISABLE options are ignored.

NOResource
prevents the VMFINS resource manager from automatically updating system resources (which include
user IDs, minidisks, and SFS directories), or from altering the CP directory or the CMS Shared File
System in any manner. This operand is an unchangeable default and is in effect for all VMFINS
MIGRATE commands, except those for which the PLAN operand also is specified (in which case,
NORESOURCE has no meaning so is ignored). You must ensure that any system resources required
for the product code that is to be installed are available prior to the use of the VMFINS MIGRATE
command that is issued for other than planning purposes.

OVErride
controls the prompts issued by VMFINS processing.
PROMPT

asks you if you want to create an override for the product you are installing. If you answer yes to
this prompt, PROMPT also asks if you want to use the defaults for the product.

YES
does not ask you if you want to create an override. You are, however, asked if you want to use the
defaults for the product.

NO
suppresses the prompts and does not display the Make Override Panel. NO uses the existing
parameters in the product parameter file and does not give you an opportunity to change them.

DEFAULTS
suppresses both prompts and creates an override using the defaults for the product.

PANEL
suppresses both prompts and displays the Make Override Panel so you can enter new values for
the installation parameters.

SIDisk
specifies where the system-level Software Inventory resides. This can be either the virtual address of
the minidisk or the name of the Shared File System directory.
51D

is the default minidisk address.
vdev

is the virtual address of the Software Inventory minidisk.

VMFINS MIGRATE

Chapter 20. VMSES/E EXEC and Command Format Summaries 439

dirid
is the name of the Shared File System directory.

SIMode
specifies the file mode for the Software Inventory disk.
D

is the default.
fm

specifies the file mode for the Software Inventory disk. If you are going to continue to use this
file mode, create a product parameter file override to list it on the :RETAIN tag in the product
parameter file so it is not changed by future invocations of the VMFSETUP command.

Note: The Software Inventory disk must be accessed as read-write during all VMFINS processing.
If it is not accessed as read-write, VMFINS tries to access it.

SYStem
specifies the name of the system-level Software Inventory.
VM

is the default.
sysid

is the name of the system-level Software Inventory.
ENAble

sets up the product as enabled.
DISable

sets up the product as disabled.

Usage Notes
1. The product you want to migrate from must be in VMSES/E format and must have already been

installed using VMSES/E.
2. If you have not spooled your console, VMFINS spools it to a reader file named VMFINS CONSOLE.
3. Your A-disk must be accessed as read-write.
4. If you have specified a file pool in the product parameter file, you must have administrative authority

for the file pool to:

• Enroll users
• Create directories for other users
• Increase the amount of space allocated

5. VMFINS MIGRATE uses a temporary directory (filepoolid:userid.VMFINS) to migrate products.
filepoolid is the value specified on the FILEPOOL option.

6. You must be enrolled in the Shared File System file pool specified in the VMFINS DEFAULTS file or
specified on the VMFINS MIGRATE command (VMPSFS:userid.VMFINS by default), because VMFINS
MIGRATE uses this Shared File System directory for its migration save area.

7. When you use the NORESOURCE option, you should be a SFS administrator or own the files in the SFS
directories associated with the product you want to migrate. Otherwise, file level SFS authorizations
and aliases might not be restored.

8. When you use the FILEPOOL option:

• The file pool specified by filepoolid must be available in interactive mode.
• You must have administrative authority for the file pool to enroll yourself in the file pool or increase

the amount of space allocated.
• You must create the filepoolid:userid.VMFINS directory or enroll a user in the filepoolid file pool.

9. This command uses the VMFINS DEFAULTS file to determine the default value for options. If you do
not specify an option and there is no value assigned for that option in the VMFINS DEFAULT file, the

VMFINS MIGRATE

440 z/VM: 7.3 VMSES/E Introduction and Reference

command uses the default value that is shown in the syntax diagram. VMSES/E uses the first VMFINS
DEFAULTS file found in the CMS search order. For more information on the VMFINS DEFAULTS file,
see “Changing the VMFINS Command Defaults” on page 48 .

10. If reach-ahead service for the product you are migrating is found on your system, a prodid $APPLIST
file is created. You will see several messages in the $VMFINS $MSGLOG file saying there are program
temporary fixes (PTFs) that need to be re-applied. For more information on re-applying those PTFs,
see the service documentation for the product you are migrating.

11. Run the VMFINS BUILD command after each product migration. The VMFINS BUILD command builds
the product on the system and updates the Software Inventory tables to reflect the build.

12. If you choose to have VMFINS override the default installation parameters provided for the product, a
product parameter file override is created for every component in the specified PPF. Any changes you
provide using the Make Override Panel are made to the specified component and to each of the other
components if applicable.

Examples

For more information on how to use the VMFINS MIGRATE command, see “The Source Product Parameter
File” on page 13.

Input and Output Files
Input Files
prodid PRODPART

The source product parameter file.
ppfname $PPF

The source or override product parameter file after all overrides have been applied.
ppfname PPF

The usable form product parameter file after all overrides have been applied.
VMFINS DEFAULTS

The file containing the VMFINS option defaults (either the established command option defaults, the
overrides created by you on your A-disk, or both).

VMFRMT EXTENTS
File telling the resource manager the available extents on the system on which to allocate space.

SETUP $LINKS
The file containing the original minidisk access order and the modified access order as VMFINS
processes.

Input/Output Files
VMFINS PRODLIST

Created when you enter a VMFINS MIGRATE command with the INFO operand or used when you
enter a VMFINS MIGRATE command with the LIST operand.

VMSES PARTCAT
Parts catalog table which identifies the product that owns all parts residing on a disk and the VMSES/E
command that last modified or created the part.

sysid SYSAPPS
Software Inventory table containing information on which products have been applied on the system.

sysid SYSREQT
The system-level requisite table.

sysid SYSDESCT
The system-level description table.

sysid SYSRECS
The system-level receive status table.

Output Files

VMFINS MIGRATE

Chapter 20. VMSES/E EXEC and Command Format Summaries 441

prodid $$EXEC$$
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
an existing prodid EXEC that was not created by VMFINS was found.

prodid EXEC
The executable exec file containing the CP SET PRODUCT command, which is stored on the A-disk if
the CP SET PRODUCT command did not complete successfully.

prodid PRODSYS
The file containing the CP PRODUCT system configuration statement, which is stored on the A-disk.

prodid PLANINFO
Lists planning information for the product being migrated. Created when you enter a VMFINS
MIGRATE command with the PLAN option.

ppfname ERASE
Lists the files to be deleted for the product. Created when you enter a VMFINS MIGRATE command
with the REPLACE and PLAN options.

$VMFINS $MSGLOG
The VMFINS message log, which is stored on your A-disk when VMFINS processing is complete.

VMFINS CONSOLE
The VMFINS console log.

Temporary Files
IBMSRC $VMFREST

File containing the IBM tailorable file information needed to migrate the product.
CUSSRC $VMFREST

File containing your tailorable file information needed to migrate the product.
VMFRMT EXTENTS

The file listing the available extents on the system.
VMFRMT $NEWCP$

The temporary CP user directory used to build the new one.
VMFRMT $TMPCP$

The temporary CP user directory to backup the original.

Note: These files are created and left on your system only if the migration ends before it is complete. They
are the work files that are found in the migration save area, which is created during the migration.

PPF Tags Used
:DCL

Defines user IDs, Shared File System directories, and links for minidisks required by the product.
:MDA

Identifies the minidisks or Shared File System directories that need to be accessed.
:RECINS

Defines the tape files included on the installation media and the part handlers and target strings
associated with them.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

VMFINS MIGRATE

442 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E exec.

VMFINS MIGRATE issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

Recovery Information

There are several reasons a migration process could complete unsuccessfully. Depending on the point
in the migration where the error occurred, you could remigrate the product or do a few extra steps to
complete your migration.

VMFINS creates a log of the messages ($VMFINS $MSGLOG) issued during your migration and stores
it on your A-disk. You should look in this file for the commands entered and any error messages that
were issued during your migration. The VMFINS CONSOLE file can also be helpful with the responses you
entered during your migration. It is spooled to your reader during your migration. You may want to print
these files for reference during the following steps. They will guide you through the recovery process.

You should complete these steps before using another VMFINS command.

Step 1. Re-IPL CMS
Enter:

ipl cms

to return CMS to a running state.

Step 2. Try to Determine What Stopped Your Migration
Comments

While your migration was processing, messages were displayed on your screen and logged in the
$VMFINS $MSGLOG file and the VMFINS CONSOLE file. These files can give you other hints to what went
wrong. See online help or the appropriate messages book for additional information on error messages
and recommendations for fixing the errors.

If you are unable to determine what went wrong during your migration after looking at the $VMFINS
$MSGLOG file, you must re-install your product, retailor the product files you had on your system for
that product, and delete all files from the migration save area, instead of completing the migration. For
information on re-installing the product, see Chapter 4, “Installing Products with VMFINS,” on page 49

VMFINS MIGRATE

Chapter 20. VMSES/E EXEC and Command Format Summaries 443

Step 3. Correct the Problem
Comments

If you determine the error was system related, see online help or the appropriate messages book and
contact your system administrator or your IBM representative.

After you have determined what went wrong during your migration, correct the problem and go to the next
step.

Step 4. Finish Your Migration
Comments

When the problem has been fixed, there are two ways to continue – one for the ADD option; one for the
REPLACE option: If you used the ADD option,

1. Access the migration save area as file mode C using:

set filepool vmpsfs:

access .vmfins c

Note: The VMFINS subdirectory is the default migration save area.
2. Erase all the files in the migration save area on your C disk.
3. Reissue the command you used to migrate your product.

Note: If you cannot remember the exact options you used, refer to the VMFINS CONSOLE file in your
reader for the command line entry that started your migration.

If you used the REPLACE option,

1. Determine where the migration stopped. Check the $VMFINS $MSGLOG file on your A-disk for the
following message:

VMFDEF2739I Now deleting files for ppfname compname (prodid)

2. If you do not find the message VMFDEF2739:

a. Access the migration save area as file mode C using these commands:

set filepool vmpsfs:

access .vmfins c

Note: The VMFINS subdirectory is the default migration save area.
b. Erase all the files in the migration save area on your C disk.
c. Reissue the command you used to migrate your product.

Note: If you cannot remember the exact options you used, refer to the VMFINS CONSOLE file in
your reader for the command line entry that started your migration.

3. If you found the message VMFDEF2739:

a. Look again in the $VMFINS $MSGLOG file for the following message:

VMFRES1960I VMFREST processing completed successfully

b. If you find this message, the migration is complete.
c. If you do not find this message, go on to the next step.

VMFINS MIGRATE

444 z/VM: 7.3 VMSES/E Introduction and Reference

Step 5. Manually Complete Your Migration (Optional)
Comments

Note:
The following instructions are used only if you are recovering from a migration that was invoked with the
REPLACE option and you cannot restart it.

By following the next set of steps, you can recover the product files that were set up for the old copy of
the product.

To ensure that a valid copy of the product is on the system, install the product using the REPLACE option.

After you have successfully installed the product using the VMFINS INSTALL command with the REPLACE
option, the following manual steps are required to retailor the product's system files and SFS attributes.

Note: The tailored files stored in the migration save area have modified file types. This is done to avoid a
name conflict when a tailored file with an identical file name and file type is stored in the save area. The
original file type can be determined by examining the $VMFINS $MSGLOG file as described in step “1” on
page 445 below.

1. To restore the tailored files for your product, look in the $VMFINS $MSGLOG file for the following
message:

VMFSAV2715I Tailored part fn1 ft1 fm1 (vaddr1|dir1)
 saved as fn2 ft2 fm2 (vaddr2|dir2)

This message may appear more than once. It shows what file identifiers VMFINS MIGRATE gave to
your tailored files when they were copied to the migration save area.

Use the following steps to manually tailor these files:

a. Access the new product version of the file by entering:

access vaddr1|dir1 fm1

Note: Use the vaddr1 or dir1 and the first file mode specified in message VMFSAV2715I.
b. Access your old version of the file by entering:

access vaddr2|dir2 fm2

Note: Use the vaddr2 or dir2 and the second file mode specified in message VMFSAV2715I.
c. Compare these two files to see what changes from your file need to be incorporated into the

product file. You can compare these by printing copies of the files or by using XEDIT and the SET
SCREEN 2 XEDIT command to view both files in a split screen session.

d. Combine the tailorings from your file into the product file and save the product file on the disk or
directory accessed as fm1.

e. Repeat steps “1.a” on page 445 and “1.b” on page 445 for each file that was identified with
message VMFSAV2715I, then go on to the next step.

2. To restore your SFS file authorizations for your product, look in the $VMFINS $MSGLOG file for the
following messages:

VMFSAV2715I Authorizations saved for fn ft dir
VMFSAV2121I grantee read write

Message VMFSAV2121I may appear more than once. These messages show the file in message
VMFSAV2715I had all the file authorizations listed in messages VMFSAV2121I.

Use the following steps to manually grant these authorizations:

VMFINS MIGRATE

Chapter 20. VMSES/E EXEC and Command Format Summaries 445

a. Grant these file authorizations using:

grant authority fn ft dir to grantee (authority

fn ft dir are the same as in message VMFSAV2715I, and grantee is the same as in message
VMFSAV2121I. authority is WRITE if message VMFSAV2121I has a “X” in the write column.
Otherwise, authority is READ, which is the command default.

b. Repeat this command for each grantee listed in the VMFSAV212I messages.
c. Repeat steps “2.a” on page 446 and “2.b” on page 446 for each file and directory pair identified

with message VMFSAV2715I.
3. To restore your SFS file aliases for your product, look in the $VMFINS $MSGLOG file for the following

messages:

VMFSAV2715I Aliases saved for fn1 ft1 dir1
VMFSAV2121I fn2 ft2 dir2

Message VMFSAV2121I may appear more than once. These messages show the file in message
VMFSAV2715I had all the aliases listed in messages VMFSAV2121I.

Use the following steps to manually create your file aliases:

a. Recreate these file aliases using:

create alias fn1 ft1 dir1 fn2 ft2 dir2

fn1 ft1 dir1 are the same as in message VMFSAV2715I, and fn2 ft2 dir2 is the same as in message
VMFSAV2121I.

b. Repeat this command for each file alias found in the VMFSAV2121I message.
c. Repeat steps “3.a” on page 446 and “3.b” on page 446 for each file and directory pair identified

with message VMFSAV2715I.

VMFINS MIGRATE

446 z/VM: 7.3 VMSES/E Introduction and Reference

VMFMRDSK EXEC

VMFMRDSK ppfname compname string

(LEVels 1

(
1

LEVels 1

LEVels n

*

LOG

NOLog

SETup

NOSetup

PREEXit

)

Notes:
1 You can enter options in any order between the parentheses.

Purpose
VMFMRDSK consolidates the contents of the specified minidisks or Shared File System directories within
a string. Merging is done for a specific string in pairs of minidisks or directories, which are called levels. In
a string, you can specify any number of levels to be merged.

Operands
ppfname

is the file name of the usable form product parameter file. The product parameter file must have a file
type of PPF.

compname
is the name of the component as it is specified on the :COMPNAME tag in the product parameter file.
compname is a 1-16 character alphanumeric identifier.

string
is a symbolic name for a disk string (defined in the :MDA section of the product parameter file). Valid
values are DELTAxxx, APPLYxxx, or LOCALxxx. The variable xxx is a qualifier for different disk strings
within the same category of disks, such as LOCAL1 and LOCAL2.

Options
LEVels

Indicates how many levels of disks to merge. Each level is made up of one disk pair, so the number of
levels of disks that can be merged is one less than the total number of disks in the string. For example,
with three disks in a string, there are two levels that can be merged in the string. If you specify more
levels than the number of levels defined in the product parameter file, a message is issued; and no
merge is performed.
1

is the default. One disk level is to be merged.
n

is the specific number of levels to be merged.
*

indicates that all disk levels are to be merged.

VMFMRDSK EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 447

LOG
writes VMFMRDSK messages into the merge message log ($VMFMRD $MSGLOG).

No messages are logged until initial validation of the command is complete.

NOLog
does not write VMFMRDSK messages into the merge message log ($VMFMRD $MSGLOG).

Note: If the LOG and NOLOG options are omitted, the VMFMRDSK EXEC uses the value of the :LOG
tag in the product parameter file to determine whether to log VMFMRDSK messages into the merge
message log.

SETup
sets up a minidisk or SFS directory access order for the merge function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur after the user exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the merge function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFMRDSK EXEC uses the value
of the :SETUP tag in the product parameter file to determine whether to set up a new access order.

Usage Notes
1. VMFMRDSK requires all source and target disks in the string being merged to be accessed as read-

write.

Examples

The following examples assume the APPLY string defined in the :MDA section of the product parameter
file is:

 APPLY 004 003 002 001

• To merge one level of the APPLY string, enter:

VMFMRDSK ppfname compname APPLY (LEVELS 1

In this example,

1. The contents of 004 are copied to 003, and 004 is erased.
• To merge two levels of the APPLY string, enter:

VMFMRDSK ppfname compname APPLY (LEVELS 2

In this example,

1. The contents of 003 are copied to 002, and 003 is erased.
2. The contents of 004 are copied to 003, and 004 is erased.

• To merge all levels of the APPLY string, enter either of these two commands:

VMFMRDSK ppfname compname APPLY (LEVELS *

or

VMFMRDSK ppfname compnameAPPLY (LEVELS 3

In this example,

VMFMRDSK EXEC

448 z/VM: 7.3 VMSES/E Introduction and Reference

1. The contents of 002 are copied to 001, and 002 is erased.
2. The contents of 003 are copied to 002, and 003 is erased.
3. The contents of 004 are copied to 003, and 004 is erased.

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
$DASD$ CONSTS

The DASD constants file (used for space calculations).
appid SRVAPPS

The service-level apply status table.
appid $APRCVRY

(used for recovery) The existence of this file on the APPLY disk string indicates VMFAPPLY was
interrupted during critical processing on the last invocation of VMFAPPLY for the specified component.

VMSES $PARTCAT
A temporary copy of the parts catalog table.

Output Files
$CRDSK$ $FILES$

A file that allows you to read-only access source disks in the future by acting as a place holder.
VMSES PARTCAT

The parts catalog.
Temporary Files
$TRGLST$ EXEC

List of files on the target disk.
$SRCLST$ EXEC

List of files on the source disk.
PPF Tags Used
:APPID

The identifier of the product used during apply processing.
:LOG

Controls whether messages are logged.
:MDA

Defines symbolic strings and the minidisks or SFS directories associated with them.
:PRODID

The identifier of the product, component, release, version, and modification level.
:RECID

The identifier of the product used when it was received.
:SETUP

Controls whether the VMFSETUP EXEC is called to access minidisks/directories.
:USEREXIT

Defines the file name of the user exit. If no value is specified no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

VMFMRDSK EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 449

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFMRDSK EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFMRDSK EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information

The VMFMRDSK command can be restarted by reissuing the command.

If the target disk is not big enough, VMFMRDSK does not attempt the merge and issues an error message.

VMFMRDSK EXEC

450 z/VM: 7.3 VMSES/E Introduction and Reference

VMFNLS EXEC

VMFNLS fn ASSEMBLE

DLCS

REPOS

cntrlfn

ppfname compname

(
1

(
2

Options

)

Options

CNTRL cntrlfn
3

CKGen
4

LOGMOD
4

NOCKGen

NOVVT
4

CTL

PPF

FILEType ft

NO$SELect

$SELect
4

NOKeepsrc

KEEPsrc

OBJect

NOOBJect

OUTMode A

OUTMode fm

mda_string
4

PRint

DIsk SETup

NOSetup

PREEXit

assemble_options
5

gencmd_options
6

genmsg_options
7

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 You can not use the CNTRL option if you already specified cntrlfn at the beginning of the command.
4 The CKGEN, LOGMOD, NOVVT, $SELECT, and OUTMODE mda_string options cannot be used with
the CTL option or the cntrlfn operand.
5 You can only enter assemble_options when you use the ASSEMBLE operand.
6 You can only enter gencmd_options when you use the DLCS operand.
7 You can only enter genmsg_options when you use the REPOS operand.

VMFNLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 451

Purpose
VMFNLS applies updates to a source file specific to a national language and then generates one or more
object decks for that file.

Operands
fn

is the file name of a source file that is to be converted to text.
ASSEMBLE

is the file type of an assembler source part that is to be converted to text. The text decks generated
from assembler source parts are created using the ASSEMBLE command.

DLCS
is the file type of a definition language for command syntax (DLCS) source parts that are to be
converted to text. The text decks generated from DLCS parts are created using the GENCMD
command.

REPOS
is the file type of a message repository source part that is to be converted to text. The text decks
generated from message repository source parts are created using the GENMSG command.

cntrlfn
is the file name of a control file. The control file must have a file type of CNTRL. If there is a product
parameter file with the same file name, you must specify the CTL option. If you do not, VMFNLS uses
the control file that is specified in the product parameter file to update the source file and not the
control file specified on the command line.

ppfname
is the file name of a usable form product parameter file. The product parameter file must have a file
type of PPF. This PPF contains the name of the control file to use to update the source file.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1- to 16-character alphanumeric identifier.

Options
CNTRL

specifies a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of the
control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

CKGen
requests validation of the AUX files against the version vector tables and issues an error message if a
mismatch is detected. The version vector tables are not updated.

LOGMOD
requests validation of the AUX files against the version vector tables and automatically updates the
local version vector tables when a mismatch is detected. When you specify the LOGMOD option,
VMFNLS modifies only the VVT files that are defined in the control file above the :UPDTID level defined
in the product parameter file. All other VVT levels are only compared to the AUX files, and mismatches
are displayed. You should only use the LOGMOD option when you are assembling files that have
source updates. All LOCAL disks must be accessed as Read/Write.

When you use the LOGMOD option:

• If a version vector table does not exist on a LOCAL disk, it is created on the first disk in the LOCAL
string.

• If the AUX file for a part is not found, the :PART entry (if found) is deleted from the version vector
table.

VMFNLS EXEC

452 z/VM: 7.3 VMSES/E Introduction and Reference

• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that
part. The :PART entry is not deleted from the version vector table.

NOCKGen
requests no validation of the AUX files against the version vector tables. The AUX file structure is used
to update the source file, and the VVT structure is used to name the output file.

NOVVT
requests no validation of the AUX files against the version vector tables (VVT). The AUX file structure
is used to update the source file and name the output file.

Note: If you omit the CKGEN, LOGMOD, NOCKGEN, and NOVVT options, the VMFNLS EXEC uses
the value of the :CKGEN tag in the product parameter file to determine whether to validate the AUX
files against the VVT. If the :CKGEN tag does not appear in the PPF, no validation is performed; and
NOCKGEN is assumed.

CTL
indicates the third operand in the command is the name of a control file. If CTL is specified, a product
parameter file is not used.

PPF
indicates the second parameter in the command is the name of a product parameter file that specifies
the control file to be used to update the source file. The product parameter file also lists the minidisk
and directory search order.

Note: If you do not enter a compname and you do not specify CTL or PPF, CTL is assumed.

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the
AUX or VVT structures.
ft

is the file type for the output file.
NO$SELect

does not update the appid $SELECT file. NO$SELECT is the default.
$SELect

updates the appid $SELECT file to indicate the text deck has been changed. The first APPLY disk
specified in the :MDA section of the product parameter file must be accessed Read/Write. The other
APPLY disks must be accessed.

NOKeepsrc
erases the updated source file after it is converted to text. NOKEEPSRC is the default.

KEEPsrc
indicates the updated source file, which consists of the source file and any updates, will be saved on
your A-disk. The file is named $fn ft. fn is the source file name, which is truncated to 7 characters
when necessary; and ft is the source file type.

OBJect
creates the output deck(s) on your A-disk. OBJECT is the default.

NOOBJect
does not create the output deck(s) on your A-disk.

OUTMode
indicates the file mode for the output text and listing files created. This file mode must be accessed
Read/Write.
A

creates the output files on file mode A. A is the default file mode.
fm

is the file mode for the output files.

VMFNLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 453

mda_string
is the name of the symbolic string of disks from the :MDA section of the product parameter file.
The output is placed on the first disk specified in this string.

PRint
sends the listing output to the virtual printer. PRINT is the default.

Disk
creates the listing output on your A-disk.

SETup
sets up a minidisk or SFS directory access order for the assemble function according to entries
in the :MDA section of the product parameter file. This option is valid only when using a product
parameter file. If a user exit is specified in the product parameter file, setup will occur after the user
exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the assemble function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFNLS EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

ASSEMBLE Options Supported by VMFNLS

In the following table, the left column shows the options of the ASSEMBLE command. The right column
shows how these options are supported by VMFNLS when invoking the ASSEMBLE command. Also shown
are the default values (underlined) of these options. The ASSEMBLE defaults are used wherever possible.
Keyword-function options must be entered without the parentheses.

ASSEMBLE Option VMFNLS Option

ALIGN|NOALIGN|ALGN|NOALGN same

ALOGIC|NOALOGIC same

BUFSIZE(STD) BUFSIZE(MIN) BUFSIZE(MAX) BUFSIZE STD BUFSIZE MIN BUFSIZE MAX

DECK|NODECK same

ESD|NOESD same

FLAG(0) FLAG(n) FLAG 0 FLAG n

LIBMAC|NOLIBMAC same

LINECOUN(55) LINECOUN(nn) LINECOUN 55 LINECOUN nn

LIST|NOLIST same

MCALL|NOMCALL same

MLOGIC|NOMLOGIC same

NUMber|NONUM same

OBJect|NOOBJect same

PRint|NOPRint|DIsk PRint|DIsk

RENT|NORENT same

RLD|NORLD same

STMT|NOSTMT same

VMFNLS EXEC

454 z/VM: 7.3 VMSES/E Introduction and Reference

ASSEMBLE Option VMFNLS Option

SYSPARM(string) SYSPARM(?) SYSPARM() SYSPARM string SYSPARM ? SYSPARM SUP|SUP
SYSPARM EXP|EXP

TERMinal|NOTERM same

TEST|NOTEST same

WORKSIZE(2048K) WORKSIZE(nnnnK) WORKSIZE 2048K WORKSIZE nnnnK

XREF(SHORT) XREF(FULL) NOXREF XREF SHORT XREF FULL NOXREF

YFLAG|NOYFLAG same

Note: The defaults appear highlighted.

The SYSPARM SUP option suppresses the expansion of macros. The SYSPARM EXP option activates the
expansion of macros. SYSPARM SUP is the default.

GENCMD Options Supported by VMFNLS

In the following table, the left column shows the options of the GENCMD command. The right column
shows how these options are supported by VMFNLS when invoking the GENCMD command. The default
values of these options are also shown. The GENCMD defaults are used wherever possible.

GENCMD Option VMFNLS Option

OUTmode * OUTmode fm CHeck OBJect|NOOBJect

STACK|FIFO|LIFO not supported

SYSTEM|USER|ALL same

Note: The defaults appear highlighted.

GENMSG Options Supported by VMFNLS

In the following table, the left column shows the options of the GENMSG command. The right column
shows how these options are supported by VMFNLS when invoking the GENMSG command. The default
values of these options are also shown. The GENMSG defaults are used wherever possible.

GENMSG Option VMFNLS Option

If the application ID is DMK or HCP, CP is used.

Dbcs|NODbcs If the language is KANJI, DBCS is used.

List|NOList same

Margin 72 Margin nn Margin 63 Margin nn

Object|NOObject OBJect|NOOBJect

Xref|NOXref same

Note: The defaults appear highlighted.

Usage Notes
1. VMFNLS handles packed files.
2. When generating text decks for use in the VMSES/E environment, you must use a product parameter

file.

VMFNLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 455

3. If you receive warnings or errors from the UPDATE command, check the fn UPDLOG file for additional
information.

4. VMFBLD uses the version vector tables to determine which level of a part to use during build
processing. If you do not specify the LOGMOD option, you must update the version vector tables
manually before you run VMFBLD or you must rerun VMFNLS and specify the LOGMOD option.

5. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with a record
consisting of one of the following:

• fn and the first 3 characters of the file type of the output file
• fn and the full file type (when you also specify the FILETYPE option)

The select data file is used by VMFBLD to determine which objects need to be built using this text
deck.

6. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to
eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
tables files, and saving the results on a LOCALMOD disk.

7. VMFNLS creates three output files from a CMS Pipelines system message repository file (FPLMESx
REPOS). The system message file (FPLMESx TXTnnnnn) is created by the GENMSG command. The
user message file (FPLUME TXTnnnnn) is a copy of the system message file. The merged message file
(FPLNLS xxxnnnnn) is created by the LANGMERG command.

Examples

• To run VMFNLS using the IBM-supplied defaults and a product parameter file to assemble a part, enter:

VMFNLS DMSABC ASSEMBLE ppfname compname

• To run VMFNLS using the IBM-supplied defaults and a control file, enter:

VMFNLS DMSABC ASSEMBLE cntrlfn

• To run VMFNLS using the IBM-supplied defaults and a product parameter file to generate commands,
enter:

VMFNLS DMSSPA DLCS ppfname compname

• To run VMFNLS using the IBM-supplied defaults and a product parameter file to generate messages,
enter:

VMFNLS DMSMES REPOS ppfname compname

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
cntrlfn CNTRL

The control file.
fn ASSEMBLEfn DLCSfn REPOS

The source file.
fn updtft

Updates to the source file.
VMFNLS LANGLIST

National language support country code table.
fn AUXlvlid

The auxiliary control file.

VMFNLS EXEC

456 z/VM: 7.3 VMSES/E Introduction and Reference

appid VVTlvlid
The version vector table.

Output Files
fn TEXTfn TXTnnnnnfn xxxnnnnn

The assembled object deck (xxx is the file type abbreviation; nnnnn is a PTF number). You receive only
one of these formats.

Note: The object deck is written to the A-disk only when the OBJECT option (the default) is specified.

appid VVTlvlid
A version vector table.

appid $SELECT
The list of build requirements, when you specify the $SELECT option.

$fn LISTING
The assembler listing file.

fn UPDLOG
The update log file.

fn ctlfile
The update information file.

Note: If listing output is generated during the assembly, the PRINT or DISK option determines where
it will reside. The PRINT option (the default) causes all listing output to be sent to the virtual printer as
fn ctlfile. The DISK option causes all listing output to be placed on the A-disk in two files ($fn LISTING
and fn UPDLOG).

Temporary Files
$fn ASSEMBLE

The updated source assemble file.
$fn TEXT

The temporary generated object deck or decks.
fn $langid

The updated source repos file.
fn $DLCS

The updates source DLCS file.
fn LISTING

The temporary listing file.
fn UPDATES

The update history file.
$VMFSIM CNTRL

A control file used with the LOGMOD option.
fn AUX$$$$$

An AUX file used with the LOGMOD option.
PPF Tags Used
:APPID

The identifier of the product, which is used to name the version vector tables and the $SELECT file.
:CKGEN

Controls the validation of AUX files against the version vector tables. Valid values are NO, YES,
LOGMOD, and NOVVT.

:CNTRL
Defines the name of the control file.

:MDA
Defines symbolic strings and the minidisks or SFS directories associated with them.

VMFNLS EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 457

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks and SFS directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified, no exit is called.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information about a
specific message - VMF002E, for example - enter:

help msg vmf002e

If you are not familiar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

 PI

Return codes issued by the VMFNLS EXEC might be returned to a user exit. For more information about
user exits, see :USEREXIT.

The VMFNLS EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information

The VMFNLS command can be restarted by reissuing the command.

VMFNLS EXEC

458 z/VM: 7.3 VMSES/E Introduction and Reference

VMFOVER EXEC

VMFOVER ppfname
compname

(LOG NONE

(
LOG NONE

LOG logid)

Purpose
The VMFOVER EXEC creates a temporary product parameter file by applying overrides to a source product
parameter file. The file type of the temporary file is $PPFTEMP. The file is resolved to one component (the
component specified on invocation of VMFOVER) with all overrides applied.

Component parameter overrides (alternative or additional component parameters) can be defined in a
component parameter override area either in the source product parameter file or in a separate product
parameter override file.

Overrides can be chained so that an override can point to either a component area or another override
area.

Operands
ppfname

is the name of a source or override product parameter file. The file type must be $PPF.
compname

is the name of the component (such as CP or CMS) or the name of a component area or an override
area. compname is a 1-16 character alphanumeric identifier. If you do not specify a valid component
or override name, VMFOVER shows you a list of names and asks you to choose one. You can specify
only one name.

Options
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
can be one of the following:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)

VMFOVER EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 459

INS
The install message log ($VMFINS $MSGLOG A)

MRD
The merge message log ($VMFMRD $MSGLOG A)

REC
The receive message log ($VMFREC $MSGLOG A)

Examples

To run VMFOVER with a component name, enter:

VMFOVER ppfname compname

If the product parameter file you wish to process has only one component or you wish to be prompted for
a component name, enter:

VMFOVER ppfname

For additional examples, see “Examples of Overrides” on page 657.

Input and Output Files
Input Files
ppfname $PPF

The input file is either a source product parameter file or an override file.
Temporary Files
$$PPFT$$ $PPF

$$PPFT$$ $PPF is a working file used to process override files. It is deleted if VMFOVER completes
successfully.

Output Files
ppfname $PPFTEMP

ppfname $PPFTEMP is the final outcome of running VMFOVER. All overrides have been processed for
the given component name. This file is a source of information for VMFPPF EXEC.

$VMFlogid $MSGLOG
The message log.

PPF Tags Used
:COMPLST

The :COMPLST tag is used to identify the valid components for a product parameter file.
:OVERLST

The :OVERLST tag is used to identify the valid overrides. The overrides may be a separate override file,
or part of a source product parameter file.

All of the PPF tags are relevant to VMFOVER. The tags listed are of particular importance when trying to
accomplish specific tasks.
Override Control Records
./DELETE

The ./DELETE tag is used to identify a record to be deleted.
./INSERT

The ./INSERT tag is used to identify the start of a block to be inserted.

Note: For more information on the ./DELETE and ./INSERT tags, see “Override Control Records” on page
647.

VMFOVER EXEC

460 z/VM: 7.3 VMSES/E Introduction and Reference

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFOVER EXEC issues the following return codes:

Return Code Explanation

0 VMFOVER completed successfully.

4 A warning message has been issued.

12 A syntax error was found in the product parameter file.

24 An error was found when parsing the input to VMFOVER.

28 A product parameter file was not found.

100 An error occurred as a result of issuing an external command.

Recovery Information

The VMFOVER command can be restarted by reissuing the command.

VMFPPF EXEC

VMFPPF ppfname

 compname

*

(LOG NONE

(
LOG NONE

LOG logid)

Purpose
The VMFPPF EXEC updates and compiles a source product parameter file (with file type $PPF) into its
usable form (with file type PPF). The VMFPPF EXEC calls the VMFOVER EXEC to generate the temporary
product parameter file which is used as input. The VMFPPF EXEC also resolves variables declared

VMFPPF EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 461

in the :DCL section of the product parameter file, which may be referenced in the :MDA, :RECINS,
and :RECSER sections. The VMFPPF EXEC also performs syntax checking as part of the compile process.

Operands
ppfname

is the name of a source or override product parameter file. The file type must be $PPF.
compname

is the name of the component (such as CP or CMS) to be added to the compiled product parameter
file. compname is a 1-16 character alphanumeric identifier. The component must be specified on
the :COMPLST or :OVERLST tags in the source product parameter file. You can specify any number of
components.

*
compiles all of the components listed on the :COMPLST and :OVERLST tags in the source product
parameter file ($PPF).

Note: If you do not specify an asterisk (*) or a compname, a list of all of the components on
the :COMPLST and :OVERLST tags in the source product parameter file ($PPF) is displayed. You are
prompted to select the ones to compile.

Options
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
can be one of the following:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
INS

The install message log ($VMFINS $MSGLOG A)
MRD

The merge message log ($VMFMRD $MSGLOG A)
REC

The receive message log ($VMFREC $MSGLOG A)

Examples

• To run VMFPPF to compile the usable form of the product parameter file for the CP component, enter:

VMFPPF ppfname CP

• To run VMFPPF to compile the usable form of the product parameter file for all components, enter:

VMFPPF ppfname *

• To run VMFPPF and be prompted for the components to compile, enter:

VMFPPF EXEC

462 z/VM: 7.3 VMSES/E Introduction and Reference

VMFPPF ppfname

Input and Output Files
Input Files
ppfname $PPF

The source and override product parameter files used by the VMFOVER EXEC.
Temporary Files
ppfname $PPFTEMP

The temporary product parameter file produced by the VMFOVER EXEC. This file is used by VMFPPF
and is temporarily stored on your A-disk.

Output Files
ppfname PPF

The usable form of the product parameter file. This file is stored on your A-disk if the PPF does not
already exist. If there is a previous copy of ppfname PPF, VMFPPF replaces the existing copy if it is on
a read-write disk.

PPF Tags Used
All PPF tags are used by the VMFPPF EXEC.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFPPF EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

VMFPPF EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 463

The compiled version of the product parameter file is not updated unless the return code from the
VMFPPF EXEC is zero, with one exception. The following message indicates the VMFPPF EXEC failed while
attempting to update the compiled version of the product parameter file.

VMFPPF1965E The command, COPYFILE VMFUT1 $TEMP A ppfname PPF
fm failed with return code rc

In this case, the compiled version of the product parameter file may be in an inconsistent state. Correct
the problem as indicated by the return code rc in the message and reissue the VMFPPF command.

VMFPPF EXEC

464 z/VM: 7.3 VMSES/E Introduction and Reference

VMFPSU EXEC

VMFPSU ppfname compname

(
1

(
2

Options

)

Options

CNTRL cntrlfn EXCList userfn

LOG NONE

LOG logid

SETup

NOSetup

UPDTID updateid

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.

Purpose
VMFPSU produces a file (appid PSUPLAN) that contains:

• A list of all the PTFs that are contained on the Product Service Upgrade but not applied to the product.
• A list of all PTFs that are applied to the product and not on the PSU.
• A list of excluded PTFs.
• A list of the parts with local modifications that need to be reprocessed after you receive the PSU. Their

local modification IDs (modids) are also provided.

VMFPSU also creates a select data file (xxxPSU $SELECT) with parts from local modifications that do
not need to be reprocessed but do need to be rebuilt. The xxx in the xxxPSU $SELECT file will be the
assigned component partname prefix.

Operands
ppfname

is the file name of a usable form product parameter file. The product parameter file must have a file
type of PPF.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1- to 16-character alphanumeric identifier.

Options
CNTRL

indicates a specific control file is to be used to identify the version vector table structure.
cntrlfn

is the file name of the control file. This value overrides the value on the :CNTRL tag in the PPF. The
file type of the control file is CNTRL.

VMFPSU EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 465

EXCList
indicates a specific user-supplied exclude list is to be used.
userfn

is the file name of the exclude list. This value overrides the value on the :EXCLIST tag in the PPF.
The file type of the exclude list is $EXCLIST.

LOG
identifies the type of message logging to be done. Messages are written to the terminal or logged in
the specified message log as well as written to the terminal, depending on the LOG option used.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
can be one of the following:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
INS

The install message log ($VMFINS $MSGLOG A)
MRD

The merge message log ($VMFMRD $MSGLOG A)
REC

The receive message log ($VMFREC $MSGLOG A)
SETup

sets up a minidisk or SFS directory access order according to the entries in the :MDA section of the
product parameter file.

NOSetup
does not set up a new access order.

Note: If the SETUP and NOSETUP options are omitted, the VMFPSU EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

UPDTID
indicates a specific update level identifier is to be used to determine the file type of the maintenance
level version vector table. The resulting file is compared with the VVTPSU file shipped on the PSU
media.
updateid

is the update level identifier used to determine the file type of the maintenance level version
vector table. The identifier must begin with the string AUX (AUXVM, for example). This value
overrides the value on the :UPDTID tag in the PPF.

Usage Notes
1. You must issue the VMFINS INSTALL INFO command before you use VMFPSU to ensure the

appropriate version vector tables from the Product Service Upgrade media are available.
2. The APPLY and LOCAL strings must be accessed.
3. VMFPSU uses only the primary :APPID to identify the version vector tables.
4. The appid PSUPLAN output file is replaced when you run VMFPSU for the same appid.

VMFPSU EXEC

466 z/VM: 7.3 VMSES/E Introduction and Reference

5. All version vector tables (VVTs) above the value specified on the :UPDTID tag in the product parameter
file, or on the command line, are checked for parts containing local modifications. Be careful when you
change the UPDTID, because all local modifications may not be picked up.

6. If you see an entry containing question marks (????) under a heading in the appid PSUPLAN file, the
information for that section is not available due to an error. You can check the console log to find out
where the error occurred. You can also check the message log if you used the LOG logid option.

Examples

To use the VMFPSU command for the MYCOMP component, enter these commands:

VMFINS INSTALL INFO

VMFPSU ESA MYCOMP (SETUP

The following messages are produced:

VMFPSU2760I VMFPSU processing started
VMFPSU1071I There are 12 PTFs on the Recommended Service Upgrade for
 PRODID 1VMVMC23%MYCOMP that are not currently
 applied.
VMFPSU1072I There are 5 PTFs currently applied to PRODID
 1VMVMC23%MYCOMP that need to be reapplied.
VMFPSU1076I There are 0 PTFs to be excluded from the Recommended Service
 Upgrade.
VMFPSU1073I There are 3 parts with local modifications that need to
 be reprocessed.
VMFPSU1078I Select data file HCPPSU $SELECT was created or updated
 to force the rebuild of local modifications.
VMFPSU1070I Creating 1VMVMC23 PSUPLAN file at service level 201-9401 for
 component MYCOMP in PPF ESA.
VMFPSU2760I VMFPSU processing completed successfully

Figure 159 on page 468 shows the appid PSUPLAN file created for MYCOMP during PSU processing.

VMFPSU EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 467

**
**** PPFNAME: ESA COMPNAME: MYCOMP **** 1
**
**** PRODID: 1VMVMC23%MYCOMP Service Level: 201-9401 ****
**
**** Date: 07/01/22 Time: 13:31:36 ****
**
VMFPSU1071I There are 12 PTFs on the Recommended Service Upgrade for 2
 PRODID 1VMVMC23%MYCOMP that are not currently
 applied.
VMFPSU1072I There are 5 PTFs currently applied to PRODID
 1VMVMC23%MYCOMP that need to be reapplied.
VMFPSU1076I There are 0 PTFs to be excluded from the Recommended Service
 Upgrade.
VMFPSU1073I There are 3 parts with local modifications that need to
 be reprocessed.
VMFPSU1078I Select data file HCPPSU $SELECT was created or updated
 to force the rebuild of local modifications.
**
**** PTFS TO BE APPLIED FOR PRODID 1VMVMC23%MYCOMP ****
**
 PTF.APAR PTF.APAR PTF.APAR PTF.APAR 3
UM24491.VM55782 UM24493.VM55890 UM24508.VM56081 UM24508.VM56085
UM24512.VM56113 UM24555.VM24554 UM24636.VM55900 UM24646.VM55792
UM24663.VM56161 UM24698.VM56179 UM24918.VM54956 UM24984.VM55935
UM25038.VM56572
**
**** PTFS TO BE REAPPLIED TO PRODID 1VMVMC23%MYCOMP ****
**
 PTF.APAR PTF.APAR PTF.APAR PTF.APAR 4
UM25043.VM56291 UM45454.VM44445 UM89995.VM89991 UM89996.VM89992
UM89999.VM89998
**
**** PTFS EXCLUDED FOR PRODID 1VMVMC23%MYCOMP ****
**
NONE 5
**
**** LOCALMODS TO REPROCESS: 1VMVMC23 VVTLCL ON DISK 2C4(E) *** 6
**
PART - HCPITT TXT 7
 PTF - UM25038.VM56572 8
 MOD - LCL1212.DL12 9
**
**** LOCALMODS TO REPROCESS: 1VMVMC23 VVTLCL2 ON DISK 2C4(E) *** 10
**
PART - HCPBLSAM EXC
 PTF - UM24508.VM56089 UM24508.VM56085 UM24555.VM24554
 UM24984.VM55935
 MOD - LCL0098 LCL0068
PART - HCPDTD TXT
 PTF - UM24663.VM56161
 MOD - LCL0005.DL0003DA LCL0004.DL0004DA LCL0003.DL3
 LCL0006.DL0006DA LCL0007.LC0007DA
PART - HCPITT TXT 11
 PTF - UM25038.VM56572
 MOD - LCL0088.DL0088DA LCL0044.DL0044DA LCL0095.DL0095DA
 LCL0076.DL0076DA LCL0017.LC0017DA

Figure 159. PSUPLAN File

In Figure 159 on page 468, the information that is most important to you is numbered for reference
purposes.

Section 1 provides the name of the product parameter file (PPF), component (MYCOMP), and product
(1VMVMC23), as well as the service level for which this PSUPLAN file was created. The date and time at
which the file was created is also shown.

Section 2 shows you the messages issued by VMFPSU. You receive details on the specific PTFs and local
modifications in the remainder of the PSUPLAN file. If there are any errors during VMFPSU processing, the
last error message is shown here. To see additional error messages, refer to the console log.

Section 3 lists the PTFs from the Recommended Service Upgrade to be applied for the specified product.
This section can contain:

• The PTFs (with associated APAR) that are to be applied from the RSU.

VMFPSU EXEC

468 z/VM: 7.3 VMSES/E Introduction and Reference

Note:

1. The number of entries shown in this section may not always match the number shown in message
VMFPSU1071I. This section shows the PTF more than once if it affects more than one APAR.

2. The PTFs are preapplied on the RSU so they will be displayed as "already applied" by VMFAPPLY.
• The word NONE if there are no PTFs to be applied from the RSU.

Section 4 shows the PTFs that need to be reapplied to your z/VM system. This section can contain:

• The PTFs (with associated APAR) you need to reapply.

Note: The number of entries shown in this section may not always match the number shown in message
VMFPSU1072I. The PTF appears more than once if it affects more than one APAR.

• The word NONE if there are no PTFs to reapply.
• Question marks (????) if an error occurred during VMFPSU processing and the data could not be

collected. If this is the case, check the console log or the message log for error messages.

Section 5 shows the PTFs excluded by you or IBM. This section can contain:

• The excluded PTFs.

Note: The PTFs shown are from the user and IBM exclude lists only.
• The word NONE if there were no excluded PTFs.
• Question marks (????) if an error occurred during VMFPSU processing and the data could not be

collected. If this is the case, see the console log or the message log for error messages.

Section 6 tells you there are local modifications to reprocess in that particular version vector table on
that particular disk.

Note:

1. If no local modifications are affected, the version vector table and disk address do not appear.
2. The total number of entries in the LOCALMODS sections (6 and 10) might not always match the

number shown in message VMFPSU1073I. A part is shown more than once if it appears in more than
one version vector table for a local modification.

3. The local modifications shown in the LOCALMODS sections (6 and 10) need to be reprocessed
or reworked. There may be other local modifications that need to be rebuilt. All local modifications
will be placed in the xxxPSU $SELECT file, if xxx$PSU$ was specified as a secondary apply ID on
the :APPID tag in the PPF; or all local modifications will be placed in the default PSU $SELECT file, if
no xxxPSU file was specified on the :APPID tag in the PPF.

If a PSU $SELECT file was created, you must append PSU $SELECT to the top of the appid
$SELECT file to rebuild the local modifications before you issue the VMFBLD command

 7 tells you the name of the part that has the local modification. You might also see:

• The word NONE if there are no local modifications on your z/VM system.
• Question marks (????) if an error occurred during VMFPSU processing and the data could not be

collected. If this is the case, see the console log or the message log for error messages.

 8 tells which of the PTFs to be applied affect this part.

Note: An at sign (@) preceding the PTF - indicates that at least one PTF is in the list of excluded PTFs. You
do not need to reprocess this local modification when the PTF is excluded.

 9 tells you the local modification identifiers for this part.

Section 10 shows there was more than one version vector table affected by the PTFs to be applied.

 11 shows a part that appears in more than one local modification version vector table.

Input and Output Files
Input Files

VMFPSU EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 469

appid VVTlvlid
Version vector table specified by the control file that is pointed to by the :CNTRL tag in the product
parameter file (PPF) or the CNTRL option.

appid VVTPSU
Version vector table from the Product Service Upgrade media.

cntrlfn CNTRL
The control file specified in the :CNTRL tag of the product parameter file (PPF) or the CNTRL option on
the VMFPSU command.

fn $EXCLIST
The user-supplied exclude list identified by the :EXCLIST tag in the PPF or the EXCLIST option on
the VMFPSU command, the product-supplied exclude list identified by the :AXLIST tag in the product
parameter file, or both.

ppfname PPF
The usable form product parameter file.

prodid PRODPART
Product parts file from the Product Service Upgrade (used to get the service upgrade level).

Output Files
appid PSUPLAN

Contains messages issued by VMFPSU, which includes a list of all PTFs new to the system, a list of all
PTFs that would have to be reapplied, a list of PTFs excluded, and the parts with local modifications
that are affected by the service. appid PSUPLAN is stored on the A-disk.

$VMFlogid $MSGLOG
The message log where the messages will be written to depending on the LOG option.

xxxPSU $SELECT
Updated select data file. PSU $SELECT is the default if xxxPSU is not specified on the :APPID tag
of the PPF.

Temporary Files
appid VVTlvlid

A temporary version vector table used during VMFPSU processing, if one does not already exist on the
APPLY disks for the same appid. This file is stored on your A-disk until processing is complete.

PPF Tags Used
:APPID

The identifier of the product used to find the version vector tables. Also identifies the xxxPSU
$SELECT file to use.

:AXLIST
Identifies the file name of the product-supplied apply and exclude lists shipped in the service
packages.

:BLD
Identifies build lists for the product.

:CNTRL
Identifies the file name of the control file to be used.

:COMPNAME
Defines the component in the product parameter file to be used.

:DABBV
Identifies file type abbreviations assigned by this product.

:EXCLIST
Identifies the file name of the user-supplied exclude list.

:MDA
Identifies the minidisk/directory assignments for the product to be used.

VMFPSU EXEC

470 z/VM: 7.3 VMSES/E Introduction and Reference

:PRODID
Defines the product in the product parameter file to be used.

:RECID
Identifies the product (used as file name for PRODPART file).

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks/directories.

:UPDTID
Identifies the update level identifier used in the file types of AUX files and VVTs.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information about a
specific message - VMF002E, for example - enter:

help msg vmf002e

If you are not familiar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The VMFPSU EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully. Check the appid PSUPLAN file and choose
a service method.

1 Command completed successfully. No PTFs to be applied from PSU for
product.

2 Command completed successfully. Recommends not installing RSU due to
excluded PTFs.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information
The VMFPSU command can be restarted by reissuing the command.

VMFPSU EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 471

VMFQMDA EXEC

VMFQMDA ppfname compname

Purpose
The VMFQMDA EXEC displays the current VMSES/E access order.

Operands
ppfname

is the file name of the usable form product parameter file. The product parameter file must have a file
type of PPF.

compname
is the name of the component as it is specified on the :COMPNAME tag in the product parameter file.
compname is a 1-16 character alphanumeric identifier.

Usage Notes
1. VMFQMDA uses the :MDA section of the product parameter file to obtain disk string definitions and

issues the CMS QUERY ACCESSED command to obtain the current access order. It compares these two
input sources to determine the VMSES/E access order and then displays it. Figure 160 on page 472
shows the output from the VMFQMDA EXEC.

VMFUTL2205I Minidisk|Directory Assignments:
 String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
 -or- SFS Directory Name
VMFUTL2205I LOCALMOD E R/W 3C4 MNT3C4 (MAINT730 03C4 : 9/02)
VMFUTL2205I LOCALSAM F R/W 3C2 MNT3C2 (MAINT730 03C2 : 5/04)
VMFUTL2205I APPLY G R/W 3A6 MNT3A6 (MAINT730 03A6 : 6/01)
VMFUTL2205I H R/W 3A4 MNT3A4 (MAINT730 03A4 : 6/01)
VMFUTL2205I I R/W 3A2 MNT3A2 (MAINT730 03A2 : 6/01)
VMFUTL2205I DELTA J R/W 3D2 MNT3D2 (MAINT730 03D2 : 208/01)
VMFUTL2205I BUILD7 --- --- 493 ------
VMFUTL2205I BUILD6 --- --- 490 ------
VMFUTL2205I BUILD10 --- --- 550 ------
VMFUTL2205I BUILD0 --- --- 49E ------
VMFUTL2205I BUILD8 --- --- 400 ------
VMFUTL2205I BUILDA --- --- 890 ------
VMFUTL2205I BUILD4 --- --- 49D ------
VMFUTL2205I BUILDN --- --- 49D ------
VMFUTL2205I BASE2 --- --- 3B2 ------
VMFUTL2205I -------- A R/W 191 MNT191 (MAINT730 0191 : 175/19)
VMFUTL2205I -------- B R/W 5E6 MNT5E6 (MAINT730 05E6 : 9/81)
VMFUTL2205I -------- C R/W 500 MNT500 (MAINT730 0500 : 900/60)
VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/45)
VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/41)
VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/33)
VMFUTL2205I -------- Z R/W A191 MAC191 (MAINT730 A191 : 10/66)

Figure 160. VMFQMDA Sample Output

In Figure 160 on page 472, the following information is provided:

String
is the name of a symbolic disk string, as defined in a product parameter file (PPF). If this field is
left blank, the minidisk or Shared File System (SFS) directory cited is part of the same string as the

VMFQMDA EXEC

472 z/VM: 7.3 VMSES/E Introduction and Reference

previously-listed minidisk or directory. If this field is filled with dashes, the minidisk or directory is
not part of any defined disk string.

Mode
is the file mode letter at which the minidisk or directory is accessed. If this field is filled with
dashes, the minidisk or directory is not accessed.

Stat
is the status of the minidisk or directory: R/O (read-only) or R/W (read/write). If this field is filled
with dashes, the minidisk or directory is not accessed.

Vdev
is the virtual device number of a minidisk, or 'DIR', if the entry is an SFS directory. If the directory
has the directory control (DIRCONTROL) attribute, 'DIRC' is displayed instead of 'DIR'.

Label
is the label assigned to a formatted CMS disk. If the entry is an OS or DOS disk, this is the volume
label.

(OwnerID Odev : Cyl/%Used)
is additional disk information that is provided with minidisk entries only.

Disk information is presented using this format:

ownerID odev : nnnn/pp

where:
ownerID

identifies the user ID that owns the listed disk.
odev

is the owner's virtual device number for this disk.
nnnn

is the number of cylinders available on the disk.
pp

is the percentage of disk blocks in use.

SFS Directory Name
is the complete name of an SFS directory.

Note: Missing minidisks are indicated by hyphens (-) in the Mode and Status columns.

Examples

To use VMFQMDA to list the VMSES/E access order for CMS, enter:

VMFQMDA ESA CMS

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
PPF Tags Used
:MDA

Defines symbolic strings and the minidisks or SFS directories associated with them.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

VMFQMDA EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 473

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFQMDA EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

100 Command failed because of an external error.

Recovery Information

The VMFQMDA command can be restarted by reissuing the command.

VMFQMDA EXEC

474 z/VM: 7.3 VMSES/E Introduction and Reference

VMFQOBJ EXEC

VMFQOBJ ppfname compname TDATA  :tag

data

STEM stemid

FILE fn
OBJDATA*

ft
*

fm

(TYPE

(
1

SETup

NOSetup

TYPE

STEM stemid

FILE fn

)

Notes:
1 You can enter options in any order between the parentheses.

Purpose

VMFQOBJ returns information about objects defined in build lists.

You can use VMFQOBJ to identify any objects that must be rebuilt as a result of a local modification. You
can also use VMFQOBJ when you are trying to identify and fix problems. VMFQOBJ allows you to easily
identify the parts that are included in an object.

Operands
ppfname

is the file name of the usable form product parameter file. The file type must be PPF.
compname

is the name of the component. compname is a 1-16 character alphanumeric identifier.
TDATA

identifies the search data.
:tag

is the name of the tag. If a tag is specified and it does not contain any data, it is treated as a return
field. See Table 21 on page 477 for a list of valid tags.

data
is the data for which you want to search.

STEM
identifies a REXX stem that lists TDATA.

VMFQOBJ EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 475

stemid
is the name of a REXX stem. stemid must end with a period.

FILE
identifies a file that lists TDATA.
fn

is the file name of the file containing the TDATA.
OBJDATA

is the default file type for the file containing the TDATA.
ft

is the file type of the file containing the TDATA.
*

is the default file mode for the file containing the TDATA. If an asterisk (*) is used as the file mode,
VMFQOBJ uses the first file found in the search order that has the correct file name and file type.

fm
is the file mode of the file containing the TDATA. If no file mode is specified, VMFQOBJ uses the
first file found in the search order that has the correct file name and file type.

Options
SETup

sets up a minidisk/directory access order according to entries in the :MDA section of the product
parameter file.

NOSetup
does not set up a new access order.

Note: If you omit the SETUP and NOSETUP options, the VMFQOBJ EXEC uses the value of the :SETUP
tag in the product parameter file to determine if a new access order should be set up.

TYPE
directs the output to the terminal. TYPE is the default.

STEM
directs the output to a REXX stem.
stemid

is the name of the REXX stem.
FILE

directs the output to a CMS file.
fn

is the file name of the file to use for the output. The output file always has a file type of OBJDATA
and a file mode of A.

Usage Notes
1. VMFQOBJ uses tagged data (TDATA) statements as input. TDATA statements can be entered on the

command line, from a file, or from a REXX stem.

Each set of tags and data to be processed begins with the keyword TDATA. The syntax for a TDATA
statement is:

TDATA : tag

data

A tag must be specified following the TDATA keyword. You can specify data after the tag.

The following example shows a TDATA statement with two tags, one with and one without data:

VMFQOBJ EXEC

476 z/VM: 7.3 VMSES/E Introduction and Reference

TDATA :OBJECT BFNA.OBJA :STATUS

2. Input TDATA statements are processed according to these rules:

• All tags specified in the TDATA statement are treated as return fields. That is, all data contained in
the field is returned to the caller.

• If a tag that corresponds to a parent field is specified as a return field, but none of its subfields are
specified, all subfields are returned.

• When data is entered with a tag in the TDATA statement, VMFQOBJ treats the data as a search
argument. VMFQOBJ searches the corresponding fields in each object for the search arguments
specified. If a match is found, the requested return fields for that object are returned to the caller.

• VMFQOBJ treats statements with more than one search argument as if an "AND" condition were
specified.

• If data is specified with duplicate tags, VMFQOBJ treats the multiple search arguments as an "OR"
condition; and either argument can result in a match.

• Tags not defined for objects are ignored.
3. Output from VMFQOBJ can be returned to the terminal display, a file, or a REXX stem.
4. You can use the following tags with VMFQOBJ:

Table 21. Valid Tags for VMFQOBJ

Tag Description

:OBJECT is the key field; it identifies objects. An object is represented by a
combination of the build list name and the object name, which are joined
by a period (.). Any combination of the build list name, object file name,
and object file type may be used as search criteria when specified without
the periods. When you specify them with the periods, the entire object
specification must be used. A build list name of UNKNOWN indicates a
special build list that lists any parts that get serviced but are not included in
any build lists. An object name of BLDLIST indicates the overall build list.

:STAT provides status information from the service-level build status table. It lists
the value on the :STAT tag. Any combination of the values of the object
fields may be used as search criteria when you specify them without the
periods. When you specify them with the periods, the entire field must be
used.

:PARTID is subordinate to the :STATUS tag. It lists the value of the :PARTID tag in the
service-level build status table.

:LIBNAME lists the library name for objects defined in format 3 build lists.

:BLDREQ lists direct build requisites of an object. The objects are represented a
combination of the build list name and the object name, which are joined
by a period (.). Any combination of build list names, object file names, and
object file types may be used as search criteria when you specify them
without the periods. When specifying them with the periods, you must use
entire requisite object specifications.

:BLDDEP lists direct build dependents of an object. The objects are represented by
a combination of the build list name and the object name, which are joined
by a period (.). Any combination of build list names, object file names, and
object file types may be used as search criteria when you specify them
without the periods. When specifying them with the periods, you must use
entire dependent object specifications.

:GLOBAL lists GLOBALs for an object. The data that follows is a library type followed
by library names.

VMFQOBJ EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 477

Table 21. Valid Tags for VMFQOBJ (continued)

Tag Description

:PARTHAND lists the part handler for an object. This field lists a dash (-) if the build list is
flagged to be bypassed in the PPF.

:TARGET lists the target for an object.

:BLOPT lists the build list options for an object.

:OBJPARM lists the object parameters for an object.

:PART lists a serviceable part that is included in an object. The data that follows is
a part file name and one or more ftabbrev.

:PARTOPT is subordinate to the :PART tag. It lists part options for a part included in an
object.

5. All build lists defined in the product parameter file are read in their entirety regardless of the tagged
data specified.

Examples

• To display the serviceable parts included in object OFN1.OFT1 in build list BFN1, you enter:

 VMFQOBJ ppfname compname TDATA :OBJECT BFN1.OFN1.OFT1 :PART

If you cannot remember the object file type, you can enter:

 VMFQOBJ ppfname compname TDATA :OBJECT BFN1 OFN1 :PART

• To display the objects that include serviceable part DMSXYZ TXT, enter:

 VMFQOBJ ppfname compname TDATA :PART DMSXYZ TXT

• To display the objects that require both TXTLIB TLB1 and MACLIB MLB1 to be made GLOBAL (which you
can do using the CMS GLOBAL command), enter:

 VMFQOBJ ppfname compname TDATA :OBJECT :GLOBAL TXTLIB TLB1
 :GLOBAL MACLIB MLB1

• To display the objects that have build requisites of object OFN1.OFT1 in build list BFN1, enter:

 VMFQOBJ ppfname compname TDATA :OBJECT :BLDREQ BFN1.OFN1.OFT1

If you cannot remember the requisite object file type, you can enter:

 VMFQOBJ ppfname compname TDATA :OBJECT :BLDREQ BFN1 OFN1

If you cannot remember the requisite build list name either, enter:

 VMFQOBJ ppfname compname TDATA :OBJECT :BLDREQ OFN1

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
fn {EXEC|EXCnnnnn}

Build lists.
bldid SRVBLDS

The service-level build status table.

VMFQOBJ EXEC

478 z/VM: 7.3 VMSES/E Introduction and Reference

cntrlfn CNTRL
The control file.

cntrlfn CNTRLEXT
The control file extension.

appid VVTlvlid
The version vector tables.

VMFNLS LANGLIST
The language table.

Input/Output Files
fn {OBJDATA|ft}

The file containing tagged data.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E exec.

VMFQOBJ issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFQOBJ command can be restarted by reissuing the command.

VMFQOBJ EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 479

VMFREC EXEC

VMFREC INFO

PROD

PPF

INFO

INFO

(LOG MEMOS

(
1

ENV fn

LOG

NOLog

INSLOG

MEMOS

SDMAP)

PROD
PROD prodid

 parm

(LOG SRV

(
1

ENV fn

LOG

NOLog

INSLOG

SRV

INS)

PPF
PPF ppfname compname

*

fn

*

ft

* C

*

tapefile

C

A

string

PPF

HDR n
C

A

string

(
2

(
1

PPF Options

)

Notes:
1 You can enter options in any order between the parentheses.

VMFREC EXEC

480 z/VM: 7.3 VMSES/E Introduction and Reference

2 The defaults you receive appear above the line in the PPF Options fragment.

PPF Options
APpend

NOAppend ENV fn LOG

NOLog

INSLOG

RECVAll

NORecvall

SETup

NOSetup

PREEXit

SIMode D

SIMode fm

SRV

INS

PDI

Purpose
VMFREC processes installation tapes, service tapes, and service envelopes.

• The INFO keyword is used to map the tape and plan the installation steps.
• The PROD keyword is used to receive products that are not fully supported by VMSES/E.
• The PPF keyword is used to receive products/components that are fully supported by VMSES/E.

When service is received for fully supported products/components, the Software Inventory is updated to
reflect any new PTFs.

• The Receive Status table identifies any PTFs that have been received or committed.
• The Requisite table identifies any requisite relationships between PTFs.
• The Description table contains descriptions of each APAR.

Operands
INFO

maps the tape and gives you a list of the products on the tape. You can use this information to plan the
installation of the service on the tape.

The INFO operand is only valid for service tapes.

PROD
indicates the product to be received (prodid) is not fully supported by VMSES/E and a product-specific
exec is to be used to receive it.
prodid

is the product identification number and the file name of the product-specific exec. The file type
must be EXEC.

parms
are parameters you want to pass to the product-specific exec. You can enter a maximum of 27
parameters.

PPF
indicates you want to use a specific product parameter file for receive processing.
ppfname

is the file name of the usable form product parameter file. The product parameter file must have a
file type of PPF.

VMFREC EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 481

compname
is the name of the component as it is specified on the :COMPNAME tag in the product parameter
file. compname is a 1-16 character alphanumeric identifier.

Options
APpend

appends the contents of any apply and exclude lists on the target disk to the apply and exclude lists
on the tape or envelope being received. APPEND is the default.

NOAppend
overlays the contents of any apply and exclude lists on the target disk with the apply and exclude lists
on the tape or envelope being received.

ENV
indicates an envelope rather than a tape is to be received. The envelope can reside on any accessed
disk in the post-VMFSETUP access order.
fn

is the file name of the envelope. A file name must be specified. The file type of the envelope must
be SERVLINK.

LOG
writes VMFREC messages into the receive message log ($VMFREC $MSGLOG).

No messages are logged until initial validation of the command is complete. The default is LOG.

NOLog
does not write VMFREC messages into the receive message log ($VMFREC $MSGLOG).

Note: If the LOG and NOLOG options are omitted, the VMFREC EXEC uses the value of the :LOG tag in
the product parameter file to determine whether to log VMFREC messages into the receive message
log.

INSLOG
logs messages in the $VMFINS $MSGLOG file.

Note: The INSLOG option is reserved for use by VMSES/E.

MEMOS
does everything the SDMAP option does, and in addition receives the tape document and memos.
The tape document and memos are received on your C-disk if it is accessed R/W, otherwise they are
received on your A-disk. MEMOS is the default option for INFO.

SDMAP
receives the tape descriptor file, builds the SERVICE DISKMAP file, and lists the products on the tape.

RECVAll
requests that committed parts of previously-received PTFs are to be received.

NORecvall
requests that missing parts of previously-received PTFs are not to be received.

Note: If the RECVALL and NORECVALL options are omitted, the VMFREC EXEC uses the value of
the :RECVALL tag in the product parameter file to determine whether to receive missing parts of
previously-received PTFs.

SETup
sets up a minidisk/directory access order for the receive function according to entries in the :MDA
section of the product parameter file. If a user exit is specified in the product parameter file, setup will
occur after the user exit is called.

NOSetup
does not set up a new access order.

VMFREC EXEC

482 z/VM: 7.3 VMSES/E Introduction and Reference

PREEXit
sets up a minidisk or SFS directory access order for the receive function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFREC EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

SIMode
specifies the file mode for the system-level Software Inventory disk.

The SIMODE option should be used in conjunction with the PDI option. If you do not specify the PDI
option, the SIMODE option is ignored.

D
is the default.

fm
specifies the file mode for the system-level Software Inventory disk. If you are going to continue
to use this file mode, create a product parameter file override to list it on the :RETAIN tag in the
product parameter file so it is not changed by future invocations of the VMFSETUP command.

SRV
receives a corrective service (COR) tape or program update tape (PUT), if one is mounted. SRV is the
default.

INS
receives an installation tape, if mounted.

PDI
receives a Parameter Driven Installation tape, if one is mounted.

Note:

1. The PDI option is reserved for use by the VMFINS EXEC only. It is only valid with the PPF operand.
2. Usage notes “3” on page 483 and “4” on page 483 discuss how the VMFREC EXEC handles tape

positioning with and without the PDI option.

Usage Notes
1. VMFREC requires the alternate DELTA disk to be accessed as read-write.
2. VMFREC requires the entire DELTA string to be accessed.
3. The service tape can be positioned anywhere when you invoke VMFREC; you do not have to issue tape

positioning commands. The VMFREC EXEC uses the multi-volume and program contents directories to
determine where to position the tape to receive the specified product or service files.

On normal completion of receive processing, the tape is positioned at the first tape file following
the product you just received. If receive processing ends with a failure condition, or if processing is
interrupted due to a system failure, the position of the tape is unpredictable.

4. The PDI option is reserved for use by the VMFINS EXEC, although no checking is done to enforce this.

Because the VMFINS EXEC positions the tape to the first tape file following the header file for the
specified product, the VMFREC EXEC does not check or position the tape when it is invoked with the
PDI option.

When the PDI option is specified, messages are logged in the install message log ($VMFINS
$MSGLOG).

5. Tape file names in the :RECINS and :RECSER sections of the product parameter file can only appear
once per section.

6. You can receive a subset of the tape files that are listed in the product parameter file using the part
handlers specified in the PPF (instead of the VMFRCALL part handler that is used when you invoke
the VMFREC EXEC with the file specification options) and bypass tape files you do not wish to receive.

VMFREC EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 483

Simply add a hyphen (-) to the beginning of the part handler name in the tape file entry in the PPF for
the tape files you do not want to receive.

If you choose to bypass tape files, it is up to you to ensure that you do not receive partial PTFs. When
you apply PTFs, the VMFAPPLY EXEC notifies you if parts are missing.

 PI
7. You can specify additional processing for tape files by using product processing exits. You identify

these exits in the :RECINS and :RECSER sections of the product parameter file using the keyword
PPEXIT. The VMFREC EXEC passes everything that follows the PPEXIT keyword, up to the first asterisk
or end-of-line, to the EXEC processor.

The VMFREC EXEC executes product processing exits in the order they are encountered in the
product parameter file. These exits are executed independently of any action taken by the VMFREC
part handlers, that is, whether or not any tape files were loaded by the VMFREC EXEC prior to its
encountering the PPEXIT keyword. You can sequentially specify more than one PPEXIT keyword in the
product parameter file.

Product processing exit routines can be received as part of a tape file. If a specified exit cannot be
found, or errors occur while the exit is processed; the VMFREC EXEC exits with a return code indicating
the failure.

Note:

a. If you run the VMFREC EXEC with any of the file-specification operands, the product processing
exits are bypassed.

b. This interface is intended for use by program products that make use of VMSES/E. IBM does not
intend this interface for customer use.

 PI end

Examples

• To use the VMFREC mapping function using the IBM-supplied defaults, enter:

VMFREC INFO

• To run VMFREC using the IBM-supplied defaults for a fully-supported product or component, enter:

VMFREC PPF ppfname compname

• To run VMFREC using the IBM-supplied defaults for a non-fully-supported product, enter:

VMFREC PROD prodid parms

• To use VMFREC to receive a specific CMS file for a fully-supported product, enter:

VMFREC PPF ppfname compname fn ft * A

• To use VMFREC to receive a fully-supported product from an envelope, enter:

VMFREC PPF ppfname compname (ENV fn

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
COR ymdd

The COR descriptor file.
INS nnnn

The INS descriptor file.

VMFREC EXEC

484 z/VM: 7.3 VMSES/E Introduction and Reference

PUT nnnn
The PUT descriptor file.

prodid $CORymdd
The COR product contents directory.

prodid $INSnnnn
The INS product contents directory.

prodid $PUTnnnn
The PUT product contents directory.

VM SYSABRVT
The file type abbreviation table.

Input/Output Files
prodid SRVRECS

The receive status table.
Output Files
prodid SRVREQT

The requisite table.
prodid SRVDESCT

The description table.
SERVICE DISKMAP

The tape or envelope map.
VMPUT SERVICE

Old service disk maps.
VMSES PARTCAT

The parts catalog table.
$VMFREC $MSGLOG

The receive message log.
$VMFINS $MSGLOG

The install message log.
Temporary Files
axlist APxnnnn$

Saved copies of old tape-specific apply lists.
axlist EXxnnnn$

Saved copies of old tape-specific exclude lists.
PPF Tags Used
:AXLIST

Defines the apply and exclude list names supplied by IBM on the service tape.
:BCOMPNAME

Identifies the base component name assigned to this product.
:DABBV

Defines file type abbreviations specific to a product or component and the real and base file types
associated with them.

:LOG
Controls whether messages are logged.

:MDA
Defines symbolic strings and the minidisks or SFS directories associated with them.

:PRODID
The identifier of the product, component, release, version, and modification level.

:PTFPFX
Defines the 2 letter PTF prefix for the product.

VMFREC EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 485

:RECID
The identifier of the product being received as it appears on the tape.

:RECINS
Defines the tape files included on installation tapes and the part handlers and target strings
associated with them.

:RECSER
Defines the tape files included on service tapes and the part handlers and target strings associated
with them.

:RECVALL
Controls whether missing parts of previously received PTFs are received.

:SETUP
Controls whether the VMFSETUP EXEC is called to access minidisks and SFS directories.

:USEREXIT
Defines the file name of the user exit. If no value is specified no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

These return codes may be returned to a user exit by VMFREC. For more information about user exits,
see :USEREXIT..

The VMFREC EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

 PI end

Recovery Information

VMFREC EXEC

486 z/VM: 7.3 VMSES/E Introduction and Reference

The VMFREC command can be restarted by reissuing the command. If you determine there is an error in
the packaging of the tape or envelope, report the problem to the IBM Support Center and order a new
tape or envelope.

Filespec Operands
These operands identify specific CMS files to be received from a tape or envelope. If specific CMS files
are requested and none can be found that meet the specifications, the VMFREC EXEC terminates with a
return code of 28.

Note: When invoked with the file specification operands, the VMFREC EXEC always uses the VMFRCALL
part handler to receive the specified files.

CMS File Specifications
*

indicates all files matching the specified file type are to be received.
fn

Specifies the file name of the file to be received.
*

indicates all files matching the specified file name are to be received.
ft

Specifies the file type of the file to be received.

Tape File Specifications
*

indicates all tape files in the :RECINS or :RECSER section of the product parameter file are to be
received.

tapefile
specifies the tape files from which the files are to be received. Tape files are defined in the :RECINS
section of the product parameter file for installation tapes and in the :RECSER section of the product
parameter file for service tapes. If an asterisk (*) is specified for tapefile, all tape files in the :RECINS
or :RECSER section of the product parameter file are received.

HDRn
indicates the nth product header file is to be received. HDRn is a special tape file name that is not
specified in the product parameter file.

Target Specifications
C

indicates the C-disk is the target of the receive. If you do not specify a target with the file specification
operands, the C-disk is the default target, if it is accessed in R/W mode. If the C-disk is not accessed
in R/W mode or is not present, the A-disk is used as the target. The A-disk must be accessed in R/W
mode.

A
indicates the A-disk is the target of the receive.

string
is an :MDA symbolic name specifying the target of the receive.

PPF
indicates you want to use the product parameter file entry for the specified tape file to determine the
target of the receive.

VMFREC EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 487

VMFREM EXEC

VMFREM PPF ppfname compname

PTF ptfnum

LIST

1

listfn

 $REMLIST *

listft
 *

listfm

LEVels n

ALL
2

APPLIED

SUPED

MOD modid

(
3

(
4

Options

)

Options
UNAPPly

UNRECeive

COMmit
5

EXCList userfn

NOEXclist

CNTRL cntrlfn LOG

NOLog

RUN

TEST SETup

NOSetup

PREEXit

UPDTID auxft

PREfix LC
6

PREfix prefix

Notes:
1 The default for listfn listft listfm is the value of the :AXLIST tag in the PPF followed by $REMLIST *.
2 The ALL operand is only valid with the COMMIT option.
3 The defaults you receive appear above the line in the Options fragment.
4 You can enter options in any order between the parentheses.
5 The COMMIT option is only valid with the PTF, LIST, or ALL operands.
6 The PREFIX option is only valid with the MOD operand.

VMFREM EXEC

488 z/VM: 7.3 VMSES/E Introduction and Reference

Purpose
VMFREM removes individual PTFs by "un-applying" them from all service levels (apply disks) and
optionally "un-receiving" them. "Un-apply" means the function previously performed by VMFAPPLY for
the specified PTFs is removed. "Un-receive" means the function previously performed by VMFREC for the
specified PTFs is removed.

VMFREM also removes complete service levels and optionally un-receives PTFs that are applied only to
the removed levels. In addition, commit support is provided for individual PTFs that have been applied.

VMFREM removes local modifications from the VVT and AUX files and optionally erases the parts
associated with the local modification.

Operands
PPF

indicates the specified product parameter file is to be used for remove processing.
ppfname

is the file name of the usable form product parameter file. The file type must be PPF.
compname

is the name of the component as it is specified on the :COMPNAME tag in the product parameter file.
compname is a 1-16 character alphanumeric identifier.

PTF
indicates the specified PTF is selected for processing.
ptfnum

is the 7 character PTF number of the selected PTF.
LIST

indicates all PTFs in the specified input file are to be selected for processing. The syntax for the
input file is one PTF number per record. All data after the first word in a record is considered to be a
comment. Any record that starts with an asterisk (*) is a comment record.
listfn

is the file name of the CMS file containing the list of selected PTFs. The default file name is the
value of the :AXLIST tag in the PPF.

listft
is the file type of the CMS file containing the list of selected PTFs. The default file type is
$REMLIST.

listfm
is the file mode of the CMS file containing the list of selected PTFs. The default file mode is the *.

LEVels
indicates complete service levels are to be removed. All PTFs applied to the specified service levels
and not applied to lower service levels are selected for processing. A service level corresponds to one
disk in the APPLY string in the :DCL section of the PPF.
n

is the specific number of service levels to remove.

If n is equal to the total number of disks in the APPLY string, all service is removed.

Note: The LEVELS operand is not valid with the COMMIT option.

ALL
indicates all PTFs with a specified apply status are selected for processing.
APPLIED

indicates all PTFs that have been applied (status of 'APPLIED' or 'SUPED APPLIED') are selected.
SUPED

indicates all PTFs that have been superseded after being applied (status of 'SUPED APPLIED') are
selected.

VMFREM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 489

Note: The ALL operand is valid only with the COMMIT option.

MOD
indicates the specified local modification is selected for processing.

modid
is a local modification number. It should begin with L, followed by up to 4 alphanumeric characters.
For example, LFIX2.

Options
UNAPPly

indicates the selected PTFs are to be un-applied or selected local modification is to be removed.

Note: The UNAPPLY option is not valid with the ALL operand.

UNRECeive
indicates the selected PTFs are to be un-received and un-applied or selected local modification is
removed and its parts are erased.

Note: The UNRECEIVE option is not valid with the ALL operand.

COMmit
indicates all selected PTFs are to be committed.

Note: The COMMIT option is not valid with the LEVELS operand.

EXCList
defines the name of a user-supplied exclude list.
userfn

is the file name of the exclude list. The file type of the exclude list is $EXCLIST. All un-applied and
un-received PTFs are added to this file.

NOEXclist
indicates PTFs are not to be added to any exclude list.

Note: If neither the EXCLIST nor the NOEXCLIST option is specified, all un-applied and un-received
PTFs are added to the IBM supplied exclude list. The file name of the IBM supplied exclude list is the
value specified on the :AXLIST tag in the PPF.

CNTRL
defines the name of the control file used to identify the AUX file and version vector table structure.
cntrlfn

is the file name of the control file. The file type of the control file is CNTRL. This value overrides the
value on the :CNTRL tag in the PPF.

LOG
writes VMFREM messages into the remove message log ($VMFREM $MSGLOG). No messages are
logged until initial validation of the command is complete.

NOLog
does not write VMFREM messages into the remove message log ($VMFREM $MSGLOG).

Note: If the LOG and NOLOG options are omitted, the VMFREM EXEC uses the value of the :LOG tag in
the PPF to determine whether to log messages into the remove message log.

RUN
requests a complete run of the remove process. The Software Inventory files are updated when the
remove process is completed and no errors are encountered. RUN is the default value.

TEST
requests a dry run of the remove process. All remove processing steps are completed, but the
Software Inventory files are not updated.

VMFREM EXEC

490 z/VM: 7.3 VMSES/E Introduction and Reference

SETup
sets up a minidisk/directory access order for the VMFREM function according to entries in the :MDA
section of the PPF. If a user exit is specified in the product parameter file, setup will occur after the
user exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the VMFREM function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFREM EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

UPDTID
defines the file type of the AUX files that are generated for parts that have the AUX option specified
in the $PTFPART files. It also defines the file type of the version vector tables that are updated by the
VMFREM EXEC.
auxft

is the file type of the AUX files. This value overrides the value on the :UPDTID tag in the PPF.
PREfix

provides the local modification identification prefix which, combined with the modid, forms the local
modification identification
prefix

is the two-character local modification identification prefix. The default prefix is LC.

Usage Notes
1. Backups of all the DELTA and APPLY disks (or directories) should be taken before running VMFREM.
2. VMFREM removes PTFs from the service software inventory tables and sets up for build processing.

To complete the removal you must run VMFBLD (refer to the product's service instructions).
3. When you specify the UNRECEIVE option for an applied PTF, the PTF is first un-applied and then

un-received.
4. Dependent PTFs in the same component or product of the PTF being removed are un-applied, but not

un-received.
5. If you specify the UNAPPLY option for a PTF for which another component/product has a

dependency, you must remove the dependent component/product or dependent component/product
PTF. Run VMFREM with the TEST option to get a list of PTFs that will be un-applied. Use this list to
determine whether these PTFs have any other component/product dependencies. Refer to the User
Response section of message VMF2135I.

6. Removed PTFs are placed in the appropriate exclude list. To "re-apply" a removed PTF, you must
remove it from the exclude list.

7. A PTF with a status of 'APPLIED' or 'SUPED APPLIED', in the service-level apply software inventory
table (appid SRVAPPS), can be committed. If the status of a PTF is only 'SUPED', in appid SRVAPPS,
it cannot be committed. If a 'SUPED' PTF has been received, its parts can be removed by using the
UNRECEIVE option for the PTF.

8. When a PTF with a status of 'SUPED APPLIED', in the service-level apply software inventory table
(appid SRVAPPS), is un-applied, only the 'APPLIED' status is removed. Because the 'SUPED' status is
still active, no dependent PTFs need be removed.

9. VMFREM checks for the existence of the new highest level of each part of each PTF that will be
un-applied. If such a part is missing, messages VMF2130W and VMF2131R are issued. You must
respond by specifying QUIT, CONTINUE, or BYPASS. If you specify QUIT, VMFREM terminates with
no changes to the software inventory. If you specify CONTINUE, VMFREM continues the remove
processing, but you must restore the missing parts before running VMFBLD. If you specify BYPASS,

VMFREM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 491

VMFREM continues the remove processing and the missing parts are not added to the select
data ($SELECT) file. This means that these parts will not trigger any build processing, and objects
containing these parts will still contain the parts from the removed PTFs. The BYPASS response is
only offered for base level parts. You should use the CONTINUE and BYPASS options with caution.
Refer to the User Response section of message VMF2131R for more information on the responses.

10. When you use the COMMIT option for a PTF, its parts are erased and its status in the receive software
inventory table (recid SRVRECS) is set to 'COMMITTED'.

11. If you specify the UNAPPLY option for a committed PTF, it will also be un-received.
12. To "re-receive" a committed PTF, first use the UNAPPLY option to un-apply and un-receive the PTF.

Then remove the PTF from the exclude list, issue the VMFREC command, and issue the VMFAPPLY
command.

13. Always review the remove message log ($VMFREM $MSGLOG) after using the VMFREM command.

Examples

• To run VMFREM to do a dry run of un-applying a PTF, enter:

VMFREM PPF ppfname compname PTF ptfnum (TEST

• To run VMFREM to un-apply a PTF, enter:

VMFREM PPF ppfname compname PTF ptfnum

• To run VMFREM to un-apply and un-receive a PTF, enter:

VMFREM PPF ppfname compname PTF ptfnum (UNRECEIVE

• To run VMFREM to remove one service level (alternate level), enter:

VMFREM PPF ppfname compname LEVELS 1

• To run VMFREM to commit a PTF, enter:

VMFREM PPF ppfname compname PTF ptfnum (COMMIT

• To run VMFREM to remove a local modification, enter:

VMFREM PPF ppfname compname MOD modid

Input and Output Files
Input Files
ppfname PPF

The useable form product parameter file.
cntrlfn CNTRL

The control file identified by the :CNTRL tag in the PPF or the CNTRL option on the VMFREM
command.

ptfnum $PTFPARTS
The PTF parts file.

VM SYSABRVT
The file type abbreviation table.

bldlist EXCnnnnn
The build list.

appid $APRCVRY
The existence of this file on the APPLY disk string indicates VMFAPPLY was interrupted during critical
processing on the last invocation of VMFAPPLY for the specified component (used for recovery).

VMFREM EXEC

492 z/VM: 7.3 VMSES/E Introduction and Reference

Input/Output Files
appid SRVAPPS

The service-level apply status table.
appid VVTlvlid

The version vector tables specified by the control file specified on the :CNTRL tag in the product
parameter file.

appid $SELECT
The select data file.

appid $RMRCVRY
The existence of this file on the APPLY or DELTA disk string indicates VMFREM was interrupted during
critical processing on the last invocation of VMFREM for the specified component (used for recovery).

recid SRVRECS
The service-level receive status table.

recid SRVREQT
The service-level requisite table.

recid SRVDESCT
The service-level description table.

Output Files
fn EXCLIST

The exclude list, which identifies PTFs that are not to be processed by VMFAPPLY.
VMSES PARTCAT

The parts catalog table.
$VMFREM $MSGLOG

The remove message log.
partid AUXlvlid

AUX files for parts that have the AUX option specified in the $PTFPART file.
partid EAXlvlid

Local AUX files that have become empty as a result of all entries being commented out by local
modification removal processing.

Temporary Files
appid $SRAPPS

The apply status table with a temporary file type (used for recovery).
appid $SNAPPS

The temporary file that indicates an empty apply status table (used for recovery).
appid $VVlvlid

The version vector tables with temporary file types (used for recovery).
appid $VNlvlid

The temporary files that indicate empty version vector tables (used for recovery).
appid $$SELECT

The select data file with a temporary file type (used for recovery).
appid $ASTATS

This file contains the values of key variables that are required for un-apply recovery (used for
recovery).

recid $SRRECS
The receive status table with a temporary file type (used for recovery).

recid $SNRECS
The temporary file that indicates an empty receive status table (used for recovery).

recid $SRREQT
The requisite table with a temporary file type (used for recovery).

VMFREM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 493

recid $SNREQT
The temporary file that indicates an empty requisite table (used for recovery).

recid $SRDESCT
The description table with a temporary file type (used for recovery).

recid $SNDESCT
The temporary file that indicates an empty description table (used for recovery).

recid $DSTATS
This file contains the values of key variables that are required for un-receive recovery (used for
recovery).

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFREM EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFREM EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

500 User terminated the command from a prompt.

Note: The Software Inventory is updated if the return code is less than or equal to 4.

 PI end

Recovery Information

The VMFREM command can be restarted by reissuing the command. Case 1:

VMFREM is interrupted while processing PTFs.

VMFREM EXEC

494 z/VM: 7.3 VMSES/E Introduction and Reference

While processing PTFs, all data is maintained in storage. No data is written to the APPLY or DELTA disks.
The only external changes are in the $VMFAPP $MSGLOG. In terms of the APPLY disks (the maintenance
level of the system), this is equivalent to the command not being issued. Case 2:

VMFREM is interrupted while updating the Software Inventory.

After the processing of PTFs is complete, the Software Inventory (the APPLY or DELTA disks) are updated.
Because this is an interruptible process, a situation could exist where half the information is updated. To
avoid this inconsistency, VMFREM:

• Updates the Software Inventory using temporary file types
• Saves key variables in temporary files
• Sets the recovery flag (writes a file named appid $RMRCVRY to the APPLY disk or DELTA disk or both)
• Copies the Software Inventory files to the real file types
• Creates AUX files
• Updates the $SELECT file
• Resets the recovery flag (erases the files named appid $RMRCVRY)
• Erases all temporary files

If the process is restarted while the recovery flag (appid $APRCVRY) is set, VMFREM detects this
condition and completes the prior VMFREM invocation based on the response from the user. The prior
VMFREM invocation is completed using the information saved in the temporary files.

VMFREM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 495

VMFREPL EXEC

VMFREPL fn ft ppfname compname

1

ifn
= *

ift
*

ifm

(
2

(
3

Options

)

Options

SETup

NOSetup

PREEXit

CNTRL cntrlfn

COPY

NOCopy

NOQuery

Query

NO$SELect

$SELect LOGMOD modid1 VVTFT VVT  lvlid

MODID modid2 FTAbbr ftabbr FILEType out_ft

OUTMode A

OUTMode fm

mda_string

PREfix-LC

PREfix prefix

MOD

PTF

LOGLVL-I

LOGLVL mlvl

4
LOG-NONE

LOG logid

ILOG logid

Notes:
1 The default for the input file is the current highest level of the replacement part.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 If you specify LOG NONE or allow LOG to default to NONE, the LOGLVL option is ignored.

VMFREPL EXEC

496 z/VM: 7.3 VMSES/E Introduction and Reference

Purpose
The VMFREPL EXEC is used to support the local modification of replacement maintained parts. VMFREPL
can be used to:

• Copy the highest level of a part
• Copy a specified part
• Update a Version Vector Table
• Update a Select Data file
• Display the highest levels of a part

Operands
fn

is the real file name of the replacement part.
ft

is the real file type of the replacement part.
ppfname

is the file name of a usable form Product Parameter File (PPF). It must have a file type of PPF. The
name of the control file that is to be used to determine version vector table file types is obtained from
this PPF.

compname
is the name of the component (such as CP or CMS) as it is specified on the :COMPNAME tag in the PPF.
compname is a 1-16 character alphanumeric identifier.

ifn
is the file name of the input file. If ifn is specified as an equal sign (=), the value of fn is used. If ifn is
not specified, the file ID of the input file is determined by using the version vector structure to locate
the highest level of the replacement part.

ift
is the file type of the input file. If ift is specified as an equal sign (=), the value of ft is used.

ifm
is the file mode of the input file. If ifm is specified as an asterisk (*), the first occurrence of the file is
used.

Options
SETup

sets up a minidisk or SFS directory access order for the VMFREPL function according to entries in
the :MDA section of the PPF. If a user exit is specified in the product parameter file, setup will occur
after the user exit is called.

NOSetup
does not set up a new access order.

PREEXit
sets up a minidisk or SFS directory access order for the VMFREPL function according to entries in
the :MDA section of the product parameter file. If a user exit is specified in the product parameter file,
setup will occur before the user exit is called.

Note: If the SETUP, PREEXIT, and NOSETUP options are omitted, the VMFREPL EXEC uses the value of
the :SETUP tag in the product parameter file to determine whether to set up a new access order.

CNTRL
specifies the control file that is used to identify the version vector table structure.
cntrlfn

is the file name of the control file that is used to identify the version vector table structure. The file
type of the control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

VMFREPL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 497

COPY
copies the input part. COPY is the default.

NOCopy
bypasses copying the input part.

NOQuery
does not perform the query function. NOQUERY is the default.

Query
issues a message with the highest levels of IBM service and local modification for the replacement
part.

NO$SELect
does not update the appid $SELECT file. NO$SELECT is the default.

$SELect
updates the appid $SELECT file to indicate the replacement part has been changed. The first APPLY
disk specified in the :MDA section of the product parameter file must be accessed Read/Write. The
other APPLY disks must be accessed.

LOGMOD
updates a version vector table for the replacement part using the resolved file type abbreviation and
the specified modid.
modid1

is the modid used to update the version vector table and to construct the file type of the copied
file. modid is a local modification number. It should begin with L, followed by up to 4 alphanumeric
characters. For example, LFIX2.

VVTFT
overrides the version vector table to be updated.
VVTlvlid

is the file type of the version vector table to be updated.
MODID

provides the modid if the LOGMOD option is not specified or overrides the modid specified with the
LOGMOD option.
modid2

is the modid used to construct the file type of the copied file and to update the version vector
table if the LOGMOD option is specified. modid is a local modification number. It should begin with
L, followed by up to 4 alphanumeric characters. For example, LFIX2.

FTAbbr
is used to name the file type for the output file that is created. This option overrides the three
character abbreviation that is obtained from the VM SYSABRVT table.
ftabbr

is the three character abbreviation used with the file type. For example, a file type of SXE12345
has SXE as the ftabbr.

FILEType
indicates the file type for the output file that is created. This option overrides any naming from the VVT
structure.
out_ft

is the file type for the output file.
OUTMode

indicates the file mode for the replacement part that is created. This file mode must be accessed
Read/Write.
A

indicates file mode A is the file mode for the replacement part. A is the default.
fm

is the file mode for the replacement part.

VMFREPL EXEC

498 z/VM: 7.3 VMSES/E Introduction and Reference

mda_string
is the name of a symbolic string of disks from the :MDA section of the product parameter file. The
replacement part is placed on the first disk specified in this string.

PREfix
provides the local modification identification prefix which, combined with the modid, forms the local
modification identification
prefix

is the two-character local modification identification prefix. The default prefix is LC.
MOD

indicates the highest overall level of the specified part is used as the input part. MOD is the default.
PTF

indicates the highest service level of the specified part is used as the input part.
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal. The message log is not initialized.

No messages are logged until initial validation of the command is complete.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
ILOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal. The message log is initialized before the first message is written.

No messages are logged until initial validation of the command is complete.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

VMFREPL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 499

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error

Usage Notes
1. When you specify the $SELECT option, the select data file (appid $SELECT) is updated with a record

consisting of one of the following:

• fn and the 3-character abbreviation for the file type of the output file
• fn and the full file type (when you also specify the FILETYPE option)
• fn, 3-character abbreviation for the file type of the output file, full file type of the previous level of the

part, and "BASE-FILETYPE" if appropriate (when the part if a build list)

The select data file is used by VMFBLD to determine which objects need to be built using the
replacement part.

2. When you create local modifications, you can use the $SELECT, LOGMOD, and OUTMODE options to
eliminate some manual steps, such as updating the appid $SELECT file, updating local version vector
tables, and saving the results on a LOCALMOD disk.

3. VMFBLD uses the version vector tables to determine the correct level of the part to use during build
processing. If you do not specify the LOGMOD option, you must either manually update the version
vector tables before you run VMFBLD or you must rerun VMFREPL and specify the LOGMOD option.

4. When you specify the LOGMOD option, a local version vector table is updated using the resolved file
type abbreviation and the specified modid. If the part is currently found in a local version vector table,
the same table is updated. If not, the highest local level version vector table defined in the control file
is updated.

5. The file type of the copied part is determined by:

a. The FILETYPE option
b. The file type abbreviation and the MODID option
c. The file type abbreviation and the LOGMOD option
d. The file type abbreviation and the highest MOD level in the version vector structure
e. The base file type

VMFREPL EXEC

500 z/VM: 7.3 VMSES/E Introduction and Reference

Examples

• To copy the highest level of CMSINST LSEG to the LOCALMOD disk as CMSINST SEGL0001, update the
local version vector table, and update the $SELECT file, enter:

vmfrepl cmsinst lseg servp2p cms ($select logmod l0001 outmode localmod

• To copy CMSINST TESTLSEG A to the LOCALMOD disk as CMSINST SEGL0002, update the local version
vector table, and update the $SELECT file, enter:

vmfrepl cmsinst lseg servp2p cms = testlseg a ($select
 logmod l0002 outmode localmod

• To copy TELL SXEL0003 F to TELL CEXL0003 F, update the local version vector table, and update the
$SELECT file, enter:

vmfrepl tell exec servp2p cms = sxel0003 f ($select ftabbr
 cex logmod l0003 outmode f

• To copy TELL SXEL0004 F to TELL CEXL0004 F and update the $SELECT file, enter:

vmfrepl tell exec servp2p cms = sxel0004 f ($select
 ftabbr cex modid l0004 outmode f

• To update the local version vector table for TELL CEX with modid L0005 and update the $SELECT file,
enter:

vmfrepl tell exec servp2p cms ($select ftabbr cex logmod l0005 nocopy

• To update the $SELECT file for TELL CEX, enter:

vmfrepl tell exec servp2p cms ($select ftabbr cex nocopy

• To update the $SELECT file for FSOPEN MACRO, enter:

vmfrepl fsopen macro servp2p cms ($select nocopy filetype macro

• To update the $SELECT file for SYSPROF EXC, enter:

vmfrepl sysprof exec servp2p cms ($select nocopy

• To display the highest service and local modification levels for SYSPROF EXEC, enter:

vmfrepl sysprof exec servp2p cms (query nocopy

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
cntrlfn CNTRL

The control file.
appid VVTlvlid

The version vector table.
Output Files
fn out_ft

The replacement file, when the FILETYPE option is specified.
fn xxxnnnnn

The replacement file (xxx is the file type abbreviation; nnnnn is a modid).

Note: You receive only one of the above formats.

VMFREPL EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 501

appid VVTlvlid
A version vector table when the LOGMOD option is specified.

appid $SELECT
The list of build requirements when the $SELECT option is specified.

PPF Tags Used
:APPID

The identifier of the product, which is used to name the version vector tables and the $SELECT file.
:CNTRL

Defines the name of the control file.
:MDA

Defines symbolic strings and the minidisks or SFS directories associated with them.
:SETUP

Controls whether the VMFSETUP EXEC is called to access minidisks/directories.
:USEREXIT

Defines the file name of the user exit. If no value is specified no exit is invoked.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

 PI

Return codes issued by the VMFREPL EXEC may be returned to a user exit. For more information about
user exits, see :USEREXIT..

The VMFREPL EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

 PI end

Recovery Information
The VMFREPL command can be restarted by reissuing the command.

VMFREPL EXEC

502 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSETUP EXEC

VMFSETUP

ppfname compname

(
1

(
2

Options

)

DETACH
compname

(LOG NONE

(
LOG NONE

LOG logid)

Options

LOG NONE

LOG logid

LInk

LINKRr

NOLink

PRompt

NOPRompt NOCONS

RETain
3

 fm

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 The RETAIN option must always be the last option entered.

Purpose
The VMFSETUP EXEC performs these functions:

• When the VMFSETUP EXEC is run without the DETACH keyword, it sets up a minidisk and SFS directory
access order for the component being serviced, using the :MDA section of the product parameter file
(PPF).

• When a linking option is specified (or used by default), VMFSETUP links to disks whose addresses
appear in the :MDA section and are also defined in the :DCL section of the PPF. The LINKRR option
causes all such disks to be linked and accessed with read-only status.

• When the VMFSETUP EXEC is run with the DETACH keyword, it detaches disks that were linked by
previous invocations of VMFSETUP.

VMFSETUP does not release disks accessed as file mode A, B, C, D, S, or Y.

VMFSETUP can be called by other execs, for example the VMFAPPLY, VMFASM, VMFBLD, VMFMRDSK, and
VMFREC execs, by using the SETUP option on the command invocation.

VMFSETUP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 503

Operands
ppfname

is the file name of the usable form product parameter file. The file type must be PPF.
compname

is the name of the component as it is specified on the :COMPNAME tag in the PPF. compname is a
1-16 character alphanumeric identifier.

DETACH
detaches disks that were linked by previous invocations of VMFSETUP during the current logon
session.
compname

detaches only those disks associated with the component specified by compname. compname is a
1-16 character alphanumeric identifier.

Options
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LInk

resolves any links specified in the :DCL section of the PPF using the CP LINK command. LINK is the
default.

LINKRr
resolves any links specified in the :DCL section of the PPF using the CP LINK command, and acquires
these disks with read-only status.

NOLink
does not resolve the :DCL. section of the PPF. If links are required and the NOLINK option is specified,
VMFSETUP fails. Any required links must be established manually before using the VMFSETUP
command.

PRompt
prompts the user for the LINK password if the user ID does not have the necessary authority.

NOPRompt
does not prompt the user for LINK passwords. If the user ID does not have the necessary authority, an
error message is issued.

NOCONS
prevents informational and warning messages (other than VMF2204I) from being displayed at the
console.

VMFSETUP EXEC

504 z/VM: 7.3 VMSES/E Introduction and Reference

Note: The NOCONS option is reserved for use by VMSES/E.

RETain
lists file modes that VMFSETUP should not use. File modes specified in this list override any values on
the :RETAIN. tag in the PPF. File modes in this list are not used and remain accessed.

Access order will be preserved. A disk listed on the :RETAIN tag will cause other disks listed in
the :MDA section to be accessed after the next available file mode. If multiple modes are used
by the :RETAIN tag and an out of sequence access order occurs (according to the access order in
the :MDA section of the PPF) a warning message will be issued.

fm
is the file mode. File modes must be separated by blanks.

Note: File modes A thru D, S, and Y are automatically retained.

Usage Notes
1. The VMFSETUP EXEC accesses minidisks and directories by string name in the order they are specified

in the :MDA section of the PPF. Within each string, the minidisks and directories are accessed from left
to right. The first occurrence of the disk or directory establishes its place in the access order.

2. If you enter a forward slash (/) directly after the minidisk number in the :MDA section of the PPF, the
VMFSETUP EXEC accesses it as read-only. This is the case when either the LINK or LINKRR linking
option is used.

In the following example, the 2D4 and 2D2 disks are to be accessed as read-only by accessing them as
extensions of themselves (for example, mode/mode) by the VMFSETUP EXEC.

DELTA 2D6 2D4/ 2D2/

• If a minidisk or directory appears more than once, its status is determined by the first specification.
• If a minidisk or directory is already accessed read-write, it is released and reaccessed read-only.
• If a minidisk is empty (no CMS files on it), it cannot be accessed as read-only.

– When the LINK option is in effect and read-only access is requested for an empty disk, a warning
message is issued and the disk is accessed as read/write. If the disk is linked read-only, an error
message is issued and the disk is not accessed.

– When the LINKRR option is in effect and read-only access is requested for an empty disk, a
warning message is issued and the disk is not accessed.

3. If you enter a question mark (?) directly after the minidisk number in the :MDA section of the PPF, the
VMFSETUP EXEC does not access the disk.

In the following example, 1DF is not to be accessed, but will be linked to if the LINK option is specified.

SYSTEM 1DF?

4. The DETACH operand will detach only minidisks that had been previously linked using the VMFSETUP
command. Any disks that you have linked yourself will not be detached. The DETACH operand has no
affect on SFS directories.

5. Some minidisks specified in the :DCL section of the PPF that are linked and then accessed by the
processing of an :MDA section might not all be released when the DETACH operand is used. This is the
case for minidisks which VMFSETUP determines to be "base" minidisks (that is, minidisks for which a
link exists prior to the use of VMFSETUP). For information about restoring an original access order, see
“Recovery Information” on page 508.

6. If you enter a LINK, DEFINE, or DETACH command between invocations of the VMFSETUP EXEC, the
results might be unexpected.

VMFSETUP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 505

Examples

• To run VMFSETUP for the access function and link to disks specified in the :MDA and :DCL sections
without logging messages, and without retaining specific disks in your access order, enter:

VMFSETUP ppfname compname

• To run VMFSETUP for the access function and link to disks specified in the :MDA and :DCL sections,
enter:

VMFSETUP ppfname compname (LINK

• To run VMFSETUP for the access function without linking any disks, enter:

VMFSETUP ppfname compname (NOLINK

• To run VMFSETUP for the access function, to issue links, and to retain modes H and R in your access
order, enter:

VMFSETUP ppfname compname (LINK RETAIN H R

• To run VMFSETUP to detach any links done by VMFSETUP for a specific component name, enter:

VMFSETUP DETACH compname

• To run VMFSETUP to detach all the links done by previous invocations of VMFSETUP during this logon
session, enter:

VMFSETUP DETACH

• To run VMFSETUP to detach all the links done by previous invocations of VMFSETUP during this logon
session and log messages in the VMFAPPLY message log, enter:

VMFSETUP DETACH (LOG APP

• Figure 161 on page 506 shows an example of the output from the VMFSETUP EXEC.

ST:VMFSET2760I VMFSETUP processing started for SERVP2P CMS
ST:VMFUTL2205I Minidisk|Directory Assignments:
ST: String Mode Stat Vdev Label (OwnerID Odev : Cyl/%Used)
 -or- SFS Directory Name
ST:VMFUTL2205I LOCALMOD E R/W 3C4 MNT3C4 (MAINT730 03C4 : 9/02)
ST:VMFUTL2205I LOCALSAM F R/W 3C2 MNT3C2 (MAINT730 03C2 : 5/04)
ST:VMFUTL2205I APPLY G R/W 3A6 MNT3A6 (MAINT730 03A6 : 6/01)
ST:VMFUTL2205I H R/W 3A4 MNT3A4 (MAINT730 03A4 : 6/01)
ST:VMFUTL2205I I R/W 3A2 MNT3A2 (MAINT730 03A2 : 6/01)
ST:VMFUTL2205I DELTA J R/W 3D2 MNT3D2 (MAINT730 03D2 : 208/01)
ST:VMFUTL2205I BUILD7 K R/W 493 MNT493 (MAINT730 0493 : 250/53)
ST:VMFUTL2205I BUILD6 L R/W 490 MNT490 (MAINT730 0490 : 207/41)
ST:VMFUTL2205I BUILD10 M R/W 550 PMT550 (PMAINT 0550 : 20/02)
ST:VMFUTL2205I BUILD0 N R/W 49E MNT49E (7VMLEN30 049E : 250/61)
ST:VMFUTL2205I BUILD8 O R/W 400 MNT400 (MAINT730 0400 : 275/03)
ST:VMFUTL2205I BUILDA P R/W 890 MNT890 (MAINT730 0890 : 50/01)
ST:VMFUTL2205I BUILD4 Q R/W 49D MNT49D (MAINT730 049D : 146/65)
ST:VMFUTL2205I BUILDN Q R/W 49D MNT49D (MAINT730 049D : 146/65)
ST:VMFUTL2205I BASE2 R R/W 3B2 MNT3B2 (MAINT730 03B2 : 375/70)
ST:VMFUTL2205I -------- A R/W 191 MNT191 (MAINT730 0191 : 175/18)
ST:VMFUTL2205I -------- B R/W 5E6 MNT5E6 (MAINT730 05E6 : 9/82)
ST:VMFUTL2205I -------- C R/W 2CC MNT2CC (PMAINT 02CC : 10/23)
ST:VMFUTL2205I -------- D R/W 51D MNT51D (MAINT730 051D : 26/45)
ST:VMFUTL2205I -------- S R/O 190 MNT190 (MAINT 0190 : 207/41)
ST:VMFUTL2205I -------- Y/S R/O 19E MNT19E (MAINT 019E : 500/33)
ST:VMFSET2760I VMFSETUP processing completed successfully

Figure 161. VMFSETUP Sample Output

In Figure 161 on page 506, the following information is provided:

VMFSETUP EXEC

506 z/VM: 7.3 VMSES/E Introduction and Reference

String
is the name of a symbolic disk string, as defined in a product parameter file (PPF). If this field is
left blank, the minidisk or Shared File System (SFS) directory cited is part of the same string as the
previously-listed minidisk or directory. If this field is filled with dashes, the minidisk or directory is
not part of any defined disk string.

Mode
is the file mode letter at which the minidisk or directory is accessed. If this field is filled with dashes,
the minidisk or directory is not accessed.

Stat
is the status of the minidisk or directory: R/O (read-only) or R/W (read/write). If this field is filled
with dashes, the minidisk or directory is not accessed.

Vdev
is the virtual device number of a minidisk, or 'DIR', if the entry is an SFS directory. If the directory
has the directory control (DIRCONTROL) attribute, 'DIRC' is displayed instead of 'DIR'.

Label
is the label assigned to a formatted CMS disk. If the entry is an OS or DOS disk, this is the volume
label.

(OwnerID Odev : Cyl/%Used)
is additional disk information that is provided with minidisk entries only.

Disk information is presented using this format:

ownerID odev : nnnn/pp

where:
ownerID

identifies the user ID that owns the listed disk.
odev

is the owner's virtual device number for this disk.
nnnn

is the number of cylinders available on the disk.
pp

is the percentage of disk blocks in use.

SFS Directory Name
is the complete name of an SFS directory.

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
Input/Output Files
SETUP $LINKS

The addresses linked by VMFSETUP.
PPF Tags Used
:DCL

Used to identify the beginning of the Declaration section where the addresses to be linked are
defined.

:MDA
Identifies the section that lists the disks or directories that need to be accessed.

VMFSETUP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 507

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSETUP EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but at least one major process failed.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

VMFSETUP can be restarted after correcting any error situation without doing any cleanup. However if you
wish to return to your original access order, you can do so as follows:

• If the NOLINK option has been specified on all invocations of VMFSETUP, simply IPL CMS.
• If the LINK or LINKRR option has been specified (or LINK has been used by default) on a previous

invocation of VMFSETUP, you need to detach the links. This can be done by invoking VMFSETUP and
specifying the DETACH keyword. To bring back the original access order (from when you logged onto
this session), IPL CMS. You can check the file SETUP $LINKS to verify whether any links were done by
VMFSETUP. If any component name is listed with a corresponding address, the address was linked by
VMFSETUP. **BASE** indicates the link existed prior to invoking VMFSETUP.

VMFSETUP EXEC

508 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSGMAP EXEC

VMFSGMAP
SEGBLD ESASEGS SEGBLIST

ppfname
ESASEGS SEGBLIST

compname
SEGBLIST

bldlist

(
1

Options

)

Options

SPACE spacename NOSETUP

SETUP

Notes:
1 You can enter options in any order between the parentheses.

Purpose

Use the VMFSGMAP EXEC to process and display the saved segment information defined in the saved
segment data file associated with a specified system saved segment build list. The display also includes
information about saved segments and saved systems that are currently defined on the system (in system
data files) but are not defined in the saved segment data file.

VMFSGMAP provides a panel interface that:

• Shows all segment spaces, member saved segments, discontiguous saved segments, and saved
systems

• Shows gaps in segment spaces
• Shows overlapping member saved segments
• Detects ranges that are not valid in segment spaces
• Allows you to change, add, and delete saved segment definitions
• Saves the display in a file
• Updates the Software Inventory files

Operands
SEGBLD
ppfname

is the file name of the product parameter file used for mapping and building saved segments. The
default file name is SEGBLD. The file type must be PPF.

ESASEGS
compname

is the name of the system to be processed in the saved segment product parameter file. The default is
ESASEGS.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 509

SEGBLIST
bldlist

is the file name of the system saved segment build list. This is also the file name of the saved segment
data file to be processed. The default file name is SEGBLIST.

The file type of the build list must be EXCnnnnn. (If the file is located on a base disk, the file type may
be EXEC.) The file type of the data file must be SEGDATA. The default is SEGBLIST.

Options
SPACE

indicates you want to view a particular segment space. Only the specified space and its members are
displayed, along with any other spaces in which members of the specified space also reside.
spacename

is the name of the segment space you want to view.
SETUP

sets up a minidisk/directory access order according to entries defined in the :MDA section of the
product parameter file.

NOSETUP
does not set up a new access order.

Usage Notes
1. VMFSGMAP does not support segments defined above 2 GB.
2. Saved systems are not defined in the system saved segment build list or the SEGDATA file. Although

VMFSGMAP displays saved systems currently defined on the system, the information is supplied for
planning purposes only. You cannot use VMFSGMAP to add, change, or delete saved systems.

3. If the system saved segment build list does not exist, VMFSGMAP creates it on the build disk defined
in the saved segment product parameter file.

4. VMFSGMAP processes the first available copy of the SEGDATA file. If the SEGDATA file does not exist,
VMFSGMAP creates it on the same disk where the system saved segment build list resides.

5. If you specify the SPACE option with the name of a segment space that does not exist, VMFSGMAP
displays the complete segment map.

6. If the SETUP/NOSETUP option is omitted, VMFSGMAP uses the value of the :SETUP tag in the product
parameter file to determine whether to set up a new access order.

7. VMFSGMAP does not commit any changes until you press PF6 (Save) or PF5 (File) from the Segment
Map panel.

8. VMFSGMAP provides several subcommands to help you use the VMFSGMAP panels. For example, you
can use the VIEW subcommand to change what is being displayed on the panel.

9. VMFSGMAP creates a segblist DELlvlid build list to identify the VMFBLD segments to delete. If you
erase this file, VMFBLD does not detect any segments to be deleted. You can recreate this file by
running VMFSGMAP and deleting the segments again.

Panels

VMFSGMAP displays the following types of panels:

• Segment Map panel
• Segment Definition panel
• Help panels

Segment Map Panel

VMFSGMAP EXEC

510 z/VM: 7.3 VMSES/E Introduction and Reference

Entering the VMFSGMAP command places you into an XEDIT session with an initial display of the
Segment Map panel. This panel contains a map of the segment spaces, member saved segments, and
discontiguous saved segments defined in the SEGDATA file that has the same file name as the system
saved segment build list specified on the VMFSGMAP command. The map also shows the saved systems
defined on the system and the saved segments defined on the system that are not defined in the
SEGDATA file.

VMFSGMAP divides your storage into 4MB ranges: 0-3MB, 4-7MB, and so on. If a saved segment or saved
system is wholly or partially defined in one of these 4MB ranges, VMFSGMAP displays a heading for the
storage range on the panel, followed by a segment map record for each saved segment or saved system
defined in the range.

A segment map record identifies the status, name, and type of the saved segment or saved system and
graphically shows the storage used. For a segment space, the panel displays a record for the space
followed by a record for each member. If a saved segment is defined both in the SEGDATA file and on the
system, the SEGDATA version is the one displayed in the map.

Figure 162 on page 511 shows the format of the panel.

 VMFSGMAP - Segment Map More: + -
 Lines 1 to n1 of n2

Meg 000-MB 001-MB 002-MB 003-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF012...
s objname typ mmm
s objname typ mmm
 0 1 2 3
⋮

Meg 004-MB 005-MB 006-MB 007-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF012...
s objname typ mmm
s objname typ mmm
s objname typ mmm
 4 5 6 7
⋮

s objname DCS DELETED

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Class
====>

Figure 162. VMFSGMAP Segment Map Panel with Status Codes

Segment Map Record: A segment map record contains the following fields, when you are displaying
status codes:

s
is a status code that indicates the status of the saved segment or saved system, based on a
comparison between the definition in the SEGDATA file and the information on the system.

System information about a saved segment or saved system is obtained from the Class A (active)
or Class R (restricted active - you must be authorized) system data file created by the SAVESEG or
SAVESYS command. If neither exists, information is obtained from the Class S (skeleton) system data
file created by the DEFSEG or DEFSYS command.

The data compared are the hexadecimal page ranges, page descriptor codes, and segment space
names.

The possible status codes are:
blank

The definition on the system matches the definition in the SEGDATA file.
D

Different — The definition on the system does not match the definition in the SEGDATA file.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 511

Note: To see the system definition, place the cursor on the segment name and press PF2/14 (Chk
Obj).

E
Error — The system definition or the SEGDATA definition is in error.

To view only the segment definitions in error, enter this subcommand on the command line:

view error

If a member saved segment is defined on the system but does not have an associated segment
space, the following record is appended to the end of the map:

E segname MEM

If a segment space is defined on the system but has no members, the following record is
appended to the end of the map:

E segname SPA NOMEMBERS

To see the system definition for a saved segment, place the cursor on the segment name and
press:

PF2/14 (Chk Obj)

To purge a system data file causing an error, enter:

#cp purge nss spoolid

or:

#cp purge nss assoc spoolid

Use the second command if you are purging a member of a segment space or the entire page.

To see the SEGDATA definition for a saved segment, press PF4/16 from the Segment Map panel.
Errors are highlighted on the Change Segment Definition panel. Correct the errors and return to
the map by pressing PF5/17.

M
Mapped — The saved segment or saved system is defined on the system but not in the SEGDATA
file.

Note: Saved systems are not defined in the SEGDATA file. Therefore, all saved systems have a
status of 'M'.

P
Planned — The saved segment is defined in the SEGDATA file but not on the system.

objname
is the name of the saved segment or saved system.

typ
is an abbreviation for the type of saved segment or saved system. The possible types are:
CPD

CP system service saved segment
DCS

Discontiguous saved segment (DCSS)
MEM

Member of a segment space
SPA

Segment space

VMFSGMAP EXEC

512 z/VM: 7.3 VMSES/E Introduction and Reference

SYS
Saved system

mmmmmmmm…
is a 64-character storage mask that shows a 4 MB range of storage and the amount of storage used by
the saved segment or saved system. Each mask character represents 64 KB of storage; 16 characters
span a complete megabyte. The type of mask character indicates how the 64 KB is used. The possible
storage mask characters are:
.

Unused (if the first 64 KB in a megabyte range is unused, the dot (.) is replaced by a hexadecimal
count character)

R
Read-only pages

W
Read/write pages

N
Read/write pages, no data saved

C
CP writable pages

>
Continued in another 4MB range

=
Range of a segment space actually used

-
Padding (allocated but empty storage) to a megabyte boundary

X
Overlapping member saved segment range

0 1 2 3 …
are guide markers to help you locate the megabyte boundaries when there are many entries in a
particular storage range.

Map Record for a Deleted Saved Segment: If a saved segment is deleted (marked 'DELETED' in the
DEFPARMS field of the definition in the SEGDATA file), a record with the following format is appended to
the end of the map:

s objname DCS DELETED

If the deleted saved segment is defined on the system, the status code in this record is 'D'. If the deleted
saved segment is defined only in the SEGDATA file, the status code in this record is 'P'.

Segment Map Panel with Spool File Classes

You can also display spool file classes on the Segment Map panel by pressing PF12/24 (Class).

Figure 163 on page 514 shows the format of the panel with spool file classes displayed.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 513

 VMFSGMAP - Segment Map More: + -
 Lines 1 to n1 of n2

Meg 000-MB 001-MB 002-MB 003-MB
Cl Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF012...
c objname typ mmm
c objname typ mmm
 0 1 2 3
⋮

Meg 004-MB 005-MB 006-MB 007-MB
Cl Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF012...
c objname typ mmm
c objname typ mmm
c objname typ mmm
 4 5 6 7
⋮

c objname DCS DELETED

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Class
====>

Figure 163. VMFSGMAP Segment Map Panel with Spool File Classes

Segment Map Record: A segment map record contains a different field, when you are displaying spool file
classes:

c
is the class of the spool file.

System information about a saved segment or saved system is obtained from the Class A (active) or
Class R (restricted active) system data file created by the SAVESEG or SAVESYS command. If neither
exists, information is obtained from the Class S (skeleton) system data file created by the CP DEFSEG
or DEFSYS command.

The possible spool file classes are:
blank

The segment is not defined on the system
A

Active
R

Restricted
S

Skeleton

The remainder of the information on the panel is the same.

PF Keys on the Segment Map Panel

Table 22 on page 514 describes the functions of the PF keys on the Segment Map panel.

Table 22. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Map Panel

PF Keys Function Explanation

PF1/13 Help Displays a help panel that describes the general format of a map record.

VMFSGMAP EXEC

514 z/VM: 7.3 VMSES/E Introduction and Reference

Table 22. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Map Panel (continued)

PF Keys Function Explanation

PF2/14 Chk Obj Uses the object name from the map record where the cursor is located to check the system
definition against the definition in the SEGDATA file. If there are differences, a message is issued
and the status code is changed to 'D'. PF2/14 also displays the Query NSS Map Window.

Note:

1. If PF2/14 is processing a segment space or a saved system, only the output from Query NSS
MAP is displayed.

2. If the cursor is not on an object name, all segments defined on the system are displayed.

PF3/15 Exit Exits from VMFSGMAP. If you made any changes since the last save (PF6/18), you receive a
prompt. Enter 1 to discard the changes and exit from VMFSGMAP. Enter 0 to continue processing
the Segment Map panel.

PF4/16 Chg Obj Displays the Change Segment Definition panel for the map record where the cursor is located.

Note:

1. You cannot use PF4/16 to select a saved system.
2. If the selected object is a segment space all the members of the space are displayed.
3. If the selected object has a status code of 'M' the status is changed in the refreshed map

after you complete your changes to the definition. If you modify the DEFPARMS or SPACE
information the status code is changed to 'D'. If you do not modify these fields the status code
is changed to blank. When you save or file the map the definition is added to the SEGDATA file
and an entry is added to the system saved segment build list.

PF5/17 File Records the changes in the SEGDATA file and exits from VMFSGMAP. If any definitions have been
added, entries are also added to the build list.

PF6/18 Save Records the changes in the SEGDATA file and remains in the map. If any saved segments have
been added, they are added to the build list.

PF7/19 Bkwd Scrolls up one page in the file.

PF8/20 Fwd Scrolls down one page in the file.

PF9/21 Retrieve Retrieves the last invoked command from the buffer.

PF10/22 Add Obj Displays the Add Segment Definition panel. If the cursor is on a map record when you press
PF10/22, the panel contains the definition for that object. If the cursor is not on a map record
when you press PF10/22, the panel contains a skeleton definition.

Note:

1. You cannot use PF10/22 to select a segment space or a saved system.
2. When you complete the definition and return to the map, a record with a status code of 'P'

is added to the refreshed map. When you save or file the map, the definition is added to the
SEGDATA file and an entry is added to the system saved segment build list.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 515

Table 22. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Map Panel (continued)

PF Keys Function Explanation

PF11/23 Del Obj Deletes the map record where the cursor is located. The panel is refreshed to show the new
mapping.

Note:

1. You cannot use PF11/23 to delete a saved system.
2. If the deleted object is a segment space the name of the space is deleted from the definition

for each member of the space. If a member is not contained in any other space the member is
also deleted.

If the VMFSGMAP command was entered with the SPACE option to view only this segment
space and its members, the refreshed map shows all the saved segments and saved systems
currently defined in the SEGDATA file and on the system.

3. If the deleted object is a member of a segment space, the member is deleted only from the
space that immediately precedes it in the map. The cursor then moves to the next occurrence
of the member in the map. If the deleted member is the only member of a space, the space is
deleted.

4. The definition record for a deleted saved segment is not actually deleted from the SEGDATA
file. The data in the DEFPARMS field of the definition is appended to the keyword 'DELETED'.
The entry in the build list is removed.

5. If a member saved segment or DCSS being deleted is defined only on the system (status code
'M'), the object is added to the SEGDATA file and the build list first, then marked 'DELETED' in
the SEGDATA file.

6. If every occurrence of a member saved segment is deleted, the member becomes a deleted
DCSS.

7. If the deleted member saved segment or DCSS is defined on the system, the following record
is appended to the end of the map:

D objname DCS DELETED

8. If the deleted member saved segment or DCSS is defined only in the SEGDATA file, the
following record is appended to the end of the map:

P objname DCS DELETED

9. You can retrieve a deleted saved segment by moving the cursor to the record at the end of
the map, pressing PF4/16 or PF10/22 to view the definition, and removing the 'DELETED'
keyword in the DEFPARMS field.

PF12/24 Status/Class Controls the display in column 1. You can either display the current status code or the current
spool file class for the objects. PF12/24 is a toggle key. If the panel currently displays the status
code, pressing PF12/24 changes the panel to display the spool file class. If the panel currently
displays the spool file class, pressing PF12/24 changes the panel to display the status code.

Segment Definition Panel

The Segment Definition panel displays one or more saved segment definition records. There are two
versions of the panel, one to change a definition and one to add a definition. Figure 164 on page 517
shows the format of the panel. Data is not required in all of the fields of the definition.

For information about the content and syntax of each field, see Saved Segment Definition Record.

VMFSGMAP EXEC

516 z/VM: 7.3 VMSES/E Introduction and Reference

 [Change|Add] Segment Definition
 [1 to n1 of n2]

 OBJNAME....:
 DEFPARMS...:
 SPACE......:
 TYPE.......:
 OBJDESC....:
 OBJINFO....:
 GT_16MB....:
 DISKS......:
 SEGREQ.....:
 PRODID.....:
 BLDPARMS...:

F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
====>

Figure 164. VMFSGMAP Segment Definition Panel

Change Segment Definition Panel: Pressing PF4/16 (Chg Obj) on the Segment Map panel when the
cursor is located on a map record displays the Change Segment Definition panel. The panel contains the
definition record for the selected saved segment. You can change any part of the definition except the
name. If you want to change the name of a saved segment, you must first add a definition with the new
name, then delete the definition with the old name.

If the selected map record has a status code of 'M', the saved segment is defined in a system data file but
not in the SEGDATA file. Therefore, the definition panel contains only the information that can be obtained
from the system data file.

Add Segment Definition Panel: Pressing PF10/22 (Add Obj) on the Segment Map panel displays the Add
Segment Definition panel, which allows you to add a definition to the SEGDATA file. (When you save or file
the map, an entry is also added to the system saved segment build list.) Depending on where you place
your cursor in the map before you press PF10/22, you can use an existing saved segment as a template,
or you can create an entirely new definition.

If the cursor is located on a map record when you press PF10/22, and the status code is not 'M', the
displayed definition is from the SEGDATA file. If the status code is 'M', the definition contains only the
information that can be obtained from the system data file. In either case, the OBJNAME field contains
question marks instead of a name, because you cannot add a definition for a name already in use. If the
cursor is not located on a map record when you press PF10/22, the displayed definition is a skeleton.

Saved Segment Definition Record: A saved segment definition record contains the following fields:

OBJNAME....:
contains the name of the saved segment.

OBJNAME....: segname

segname
is the name of the saved segment.

If question marks are displayed, you must enter a name that is not already in use for another
saved segment.

DEFPARMS…:
contains the storage range and other information the VMFBLD EXEC specifies on the DEFSEG
command to define the saved segment to CP.

For information about the syntax and usage of the DEFSEG command, see z/VM: CP Commands and
Utilities Reference.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 517

DEFPARMS...:

hexpage - hexpage type

defseg_parms

DELETED

hexpage-hexpage type

defseg_parms

hexpage
is the hexadecimal address of a page in storage.

type
is a page descriptor code that indicates the type of virtual machine access that is permitted to the
page range.

defseg_parms
are optional DEFSEG command operands. The following operands are permitted: LOADNSHR,
RSTD, and SECURE.

Note: Do not specify the SPACE operand in this field. Segment spaces are identified in the SPACE
field.

DELETED
indicates the saved segment is to be deleted. No DEFSEG command is issued.

Note: If any DEFSEG data is specified in this field, it is saved in the SEGDATA file following the
DELETED keyword.

SPACE......:
lists the segment spaces in which the saved segment is a member.

Note: The VMFBLD EXEC uses the first name listed in this field as the primary segment space when
issuing the DEFSEG command for the member.

SPACE......:

spacename

spacename
is the name of a segment space.

TYPE.......:
indicates whether the saved segment contains CMS logical saved segments.

TYPE.......: SEG

PSEG

SEG
indicates the saved segment does not contain logical saved segments. One set of build
parameters is allowed in the BLDPARMS field.

PSEG
indicates the saved segment is a physical saved segment that contains logical saved segments.
Multiple sets of build parameters are allowed in the BLDPARMS field, each set defining one or
more logical saved segments.

VMFSGMAP EXEC

518 z/VM: 7.3 VMSES/E Introduction and Reference

OBJDESC....:
contains a description of the saved segment.

OBJDESC....:

objdesc

objdesc
is free-format text that describes the saved segment.

OBJINFO....:
contains special installation information.

OBJINFO....:

objinfo

objinfo
is free-format text that describes any special requirements for installing the saved segment. This
field is informational; its content does not affect the generation of the saved segment.

GT_16MB....:
indicates whether the saved segment can be loaded above the 16MB line.

GT_16MB....: YES

NO

YES
the saved segment can be loaded above 16MB.

Note: This does not mean the range specified in the DEFPARMS field actually defines the saved
segment above 16MB, only that it can.

NO
the saved segment cannot be loaded above 16MB. The range specified in the DEFPARMS field
must be less than 16MB.

DISKS......:
lists the minidisks and SFS directories to be accessed by the VMFBLD EXEC when building the saved
segment.

Note: If 'PPF' is specified in the BLDPARMS field, the minidisks and directories specified in this
field are accessed before the minidisks and directories defined in the product parameter file. If
'UNKNOWN' is specified in the BLDPARMS field, the minidisks and directories specified in this field are
not accessed.

DISKS......:

vdev

dirname

vdev
is a minidisk virtual device number.

dirname
is a fully qualified SFS directory name.

SEGREQ.....:
lists the saved segments that must be built before this saved segment is built.

Note: All requisite saved segments must be defined in the same system saved segment build list and
SEGDATA file as this saved segment.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 519

SEGREQ.....:

reqsegname

reqsegname
is the name of a requisite saved segment.

PRODID.....:
identifies the product parts (PRODPART) file that contains the default definition for the saved
segment. This information is required for the SEGINFO function (PF10/22) on the Segment Definition
panel.

PRODID.....:

prodid
compname

prodid
is the 7 to 8 character alphanumeric identifier assigned to the product.

compname
is the 1 to 16 character component name.

Note: The component name is necessary only if the PRODPART file contains saved segment
definitions for more than one component. If the PRODPART file contains more than one
component, and no component name is specified in this field, VMFSGMAP gets information from
the first segname definition it finds. If you are using the SEGINFO function to obtain all the saved
segment definitions for a product, and no component name is specified in this field, VMFSGMAP
gets information from the first component that has saved segment definitions.

BLDPARMS…:
identifies the parameters the VMFBLD EXEC uses to build the saved segment.

If 'PSEG' is specified in the TYPE field, the VMFBLD EXEC creates a physical segment definition file
(segname PSEG) that contains the logical segment records and then issues the SEGGEN command
to build the physical and logical saved segments. You can specify multiple sets of build parameters
(for VMSES/E and non-VMSES/E products) in this field to identify the logical saved segments to be
included in the physical saved segment.

BLDPARMS…:

UNKNOWN

PPF (ppfname compname bldlist)

PROD (Logical Saved Segment Def)

1

PROD (loadfunc

loadparm

LOADSAVE modfn

ORIGIN hexloc

)

Logical Saved Segment Def

VMFSGMAP EXEC

520 z/VM: 7.3 VMSES/E Introduction and Reference

LSEGment lfn
LSEG *

lft
*

lfm

PROFILE profn EPIFILE epifn

Notes:
1 This loop is valid only for a physical saved segment that contains CMS logical saved segments.
'PSEG' must be specified in the TYPE field.

UNKNOWN
indicates a build function for this saved segment cannot be issued by the VMFBLD EXEC. This
forces VMFBLD to issue only the DEFSEG command to define the saved segment to CP. After
VMFBLD has completed, you must issue the function that actually loads and saves the saved
segment. This is the default.

PPF
indicates the build parameters are defined in the specified product parameter file and build list.
Depending on the build list option specified (ACCESS, LINK, or NOACCESS), VMFSETUP might be
called to link and access the disks specified in the product parameter file for the product when the
segment is built.

ppfname
is the name of the product parameter file.

compname
is the name of the component section in the product parameter file.

bldlist
is the name of the product saved segment build list.

PROD
indicates the build parameters are not specified in a product parameter file. The VMFBLD EXEC
uses the parameters specified in this field to build the saved segment (after issuing the DEFSEG
command to define the saved segment to CP).

LSEGment
identifies a logical segment definition file, which defines a CMS logical saved segment to be
included in the physical saved segment.

Note: 'PSEG' must be specified in the TYPE field.

lfn
is the file name of the logical segment definition file.

lft
is the file type of the logical segment definition file. If the file type is not specified in this definition,
the SEGGEN command uses a default of LSEG.

Note: Do not use PROFILE or EPIFILE as the file type of the logical segment definition file.

lfm
is the file mode of the logical segment definition file. If the file mode is not specified in this
definition, the SEGGEN command uses a default of *.

PROFILE
indicates a profile routine is to be run before information is loaded into the logical saved segment.
For information about using a profile when building a logical saved segment, see z/VM: CP
Planning and Administration.

profn
is the file name of the profile routine.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 521

EPIFILE
indicates an epifile routine is to be run after information is loaded into the logical saved segment.
For information about using an epifile when building a logical saved segment, see z/VM: CP
Planning and Administration.

epifn
is the file name of the epifile routine.

loadfunc
is the name of the routine the VMFBLD EXEC calls to load and save the saved segment.

loadparm
is a parameter to be passed to the loadfunc routine.

The following built-in variables are also available to indicate data to be passed to the loadfunc
routine. When the saved segment is built, the VMFBLD EXEC resolves the variables as indicated:
&RANGE

Gets the hexadecimal page ranges, page descriptor codes, and optional DEFSEG operands
from the DEFPARMS field

&SPACE
Gets the primary segment space name from the SPACE field

&ORIGIN
Gets the starting load address from the DEFPARMS field

&SEGNAME
Gets the name from the OBJNAME field

LOADSAVE
indicates the VMFBLD EXEC calls the built-in LOADSAVE function, which issues the LOADMOD
command to load a specified relocatable module. LOADSAVE then issues the SAVESEG command
to save the module as a saved segment.

See the usage notes on the LOADMOD command in z/VM: CMS Commands and Utilities Reference.

modfn
is the file name of the relocatable module. The file type must be MODULE.

ORIGIN
specifies a load address for the module.

hexloc
is the hexadecimal storage address where the module is to be loaded.

Note: It is recommended that you specify the ORIGIN keyword and that you use the built-in
variable &ORIGIN to indicate the storage location. When the saved segment is built, the VMFBLD
EXEC resolves the &ORIGIN variable to get the load address from the DEFPARMS field. If the
ORIGIN keyword is not specified, CMS selects any available storage location. If you specify an
actual load address, it must be within the range defined in the DEFPARMS field.

PF Keys on the Segment Definition Panel: Table 23 on page 522 describes the functions of the PF keys
on the Segment Definition panel.

Table 23. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Definition Panel

PF Keys Function Explanation

PF1/13 Help Displays a help panel that describes the content and meaning of the Segment Definition panel,
or a particular field. You can ask for help on a particular field by placing the cursor on the field
and pressing PF1/13. When the cursor is located in any other area of the panel, pressing PF1/13
displays general help on the entire panel.

PF2/14 Get Obj Gets the definition from the SEGDATA file and overlays the information on the panel and then gets
information from the system data file to update the DEFPARMS and SPACE fields.

VMFSGMAP EXEC

522 z/VM: 7.3 VMSES/E Introduction and Reference

Table 23. Program Function (PF) Keys on the VMFSGMAP EXEC Segment Definition Panel (continued)

PF Keys Function Explanation

PF3/15 Exit Exits from VMFSGMAP. If you made any changes since the last save, you receive a prompt. Enter
1 to discard the changes and exit from VMFSGMAP. Enter 0 to continue processing the Segment
Definition panel.

PF4/16 Add Line Adds a blank line following the line where the cursor is located. This allows you to add data to the
field that precedes the blank line.

Note: You cannot add lines to the OBJNAME, TYPE, GT_16MB, and PRODID fields.

PF5/17 Map Returns to the segment map. All changes to the definition are kept, and the map is refreshed with
the new data.

PF6/18 Chk Mem Checks for overlapping members in all segment spaces that contain the member specified in the
OBJNAME field. Definitions for all overlapping members are added to the panel.

PF7/19 Bkwd Scrolls up one page in the file.

PF8/20 Fwd Scrolls down one page in the file.

PF9/21 Retrieve Retrieves the last invoked command from the buffer.

PF10/22 Seginfo Gets default saved segment information from the PRODPART file identified in the PRODID field.
If a component name is not specified in the PRODID field, information is obtained from the first
component in the file that has saved segment definitions.

If the OBJNAME field contains a name when you press PF10/22, default information is obtained
for that saved segment only and used to update the definition on the panel. If the OBJNAME field
is empty or contains question marks when you press PF10/22, default information is obtained for
all the saved segments defined for the component, and definitions for those saved segments are
added to the panel.

PF11/23 Adj Mem Checks for overlapping members in all segment spaces that contain the member specified in
the OBJNAME field. The ranges of the members are adjusted where necessary to eliminate the
overlaps. Definition records for all adjusted members are added to the panel.

Note: Each member is adjusted downward or upward according to which direction requires the
least total amount of movement.

PF12/24 Cancel Returns to the segment map. If you made any changes on this panel, you receive a prompt. Enter
1 to discard the changes and return to the segment map panel. Enter 0 to continue processing the
Segment Definition panel.

Query NSS Map Window

The Query NSS Map window displays the current system definitions for a segment or segment space. The
output is in the same format as the output returned by the CP QUERY NSS MAP command.

Figure 165 on page 524 shows the format of the Query NSS Map panel that is displayed when you press
PF2/14 of the Segment Map panel for the CMSPIPES segment.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 523

 VMFSGMAP - Segment Map More: + -
 Lines 37 to 54 of 88
 --
 Query NSS Map For CMSPIPES
 Lines 1 to 2 of 2
 FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
 0033 CMSPIPES DCSS N/A 01800 018FF SR A 00009 N/A N/A

 F1=Help F3=Exit F6=File Query F7=Bkwd F8=Fwd F9=Retrieve F12=Cancel
 --
 CMSVMLIB DCS 4...............5...............6...............RRRRRRRRRRRRRRRR

Meg 018-MB 019-MB 01A-MB 01B-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
 CMSPIPES DCS RRRRRRRRRRRRRRRR9...............A...............B...............
 SVM DCS 8...............RRRRRRRRRRRRRRRRA...............B...............
 CMSFILES DCS 8...............RR

Meg 01C-MB 01D-MB 01E-MB 01F-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
VMFSMD2032I System and SEGDATA definitions are the same for segment CMSPIPES
 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Class
====>

Figure 165. VMFSGMAP Query NSS Map Panel

PF Keys on the Query NSS Map Window: Table 24 on page 524 describes the functions of the PF keys
on the Query NSS Map window.

Table 24. Program Function (PF) Keys on the VMFSGMAP EXEC Query NSS Map Panel

PF Keys Function Explanation

PF1/13 Help Displays a help panel that describes the content and meaning of the Query
NSS Map panel.

PF3/15 Exit Exits from VMFSGMAP. If you made any changes since the last save, you
receive a prompt. Enter 1 to discard the changes and exit from VMFSGMAP.
Enter 0 to return to the Query NSS Map window.

PF6/18 File Query Saves the contents of the Query NSS Map window in a CMS file on the A-disk.
The file name is segname and the file type is NSSMAP.

PF7/19 Bkwd Scrolls up one page in the file.

PF8/20 Fwd Scrolls down one page in the file.

PF12/24 Cancel Returns to the segment map.

Subcommands

VMFSGMAP provides the following subcommands for use from the panels:
SEGMERGE

Merges saved segment information from the system into the SEGDATA file. Definitions that already
exist in the SEGDATA file are not changed. SEGMERGE also compares the system saved segment build
list to the SEGDATA file and adds entries to the build list where necessary. Note that these additions
are not committed until you press PF6/18 (Save) or PF5/17 (File) on the Segment Map panel.

SAVEMAP fn
Saves a copy of the current segment map in a file called fn SEGMAP on the A-disk.

VMFSGMAP EXEC

524 z/VM: 7.3 VMSES/E Introduction and Reference

VIEW
Controls which segments are displayed in the Segment Map panel. Enter the VIEW subcommand
on the command line from the VMFSGMAP Segment Map panels to change the set of segments
displayed.

When you issue a VIEW subcommand, the same view is displayed until you issue a new VIEW
subcommand or until there are no more segments in the specified view. For example, when you issue:

view error

and fix all of the segments in error, the view is reset to display all segments.

ALL
displays the segments defined in the SEGDATA file and the segments defined only on the system.
ALL is the default.

ERROR
displays only segments with a status code of E.

SEGDATA
displays all segments defined in the SEGDATA file. Segments defined only on the system are not
displayed in the map.

Examples

This section shows examples of the VMFSGMAP Segment Map panel and Change Segment Definition
panel filled in with data. However, for guidance information on using the VMFSGMAP EXEC to do various
saved segment management tasks, such as adding a saved segment, changing the range of a saved
segment, and so on, see z/VM: CP Planning and Administration.

Displaying the Segment Map: To process system saved segment build list SEGBLIST EXC00000 and
segment data file SEGBLIST SEGDATA, using control information defined in the ESASEGS section of saved
segment product parameter file SEGBLD PPF, enter:

vmfsgmap segbld esasegs segblist

VMFSGMAP begins building the segment map, and issues the following message:

VMFSGM2034I Building segment map

When the build is complete, VMFSGMAP displays the Segment Map panel.

Figure 166 on page 526 shows an example.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 525

 VMFSGMAP - Segment Map More: + -
 1 to 21 of 39

Meg 000-MB 001-MB 002-MB 003-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M GCS SYS W---------------1...............2...............3...............
M CMS SYS W-W-------------1...............2...............3...............

Meg 004-MB 005-MB 006-MB 007-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M GCS SYS RRRRNNNNNNNNNNNNNNNNNNNNNNNNNNNN6...............7...............

Meg 008-MB 009-MB 00A-MB 00B-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M DOSBAM SPA 8...............9...............A...............====------------
M CMSDOS MEM 8...............9...............A...............R...............
M CMSBAM MEM 8...............9...............A...............RRRR............
M DOSINST DCS 8...............R---------------A...............B...............

Meg 00C-MB 00D-MB 00E-MB 00F-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............
M CMS SYS C...............D...............E...............RRRRRRRRRRRRRRR>

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Class
====>

Figure 166. Example of the VMFSGMAP Segment Map Panel

The first map record in Figure 166 on page 526 is for the GCS saved segment. This record indicates GCS is
mapped (defined on the system but not in the SEGDATA file) and that it is a named saved system located
partly in the X'000'MB block of storage and in the X'004' to X'006'MB blocks of storage.

Displaying a Segment Definition Record: Moving the cursor to HELPINST in the map and pressing
PF4/16 displays the definition record for HELPINST in the Change Segment Definition panel, as shown in
Figure 167 on page 526.

 Change Segment Definition

 OBJNAME....: HELPINST
 DEFPARMS...: C00-CFF SR
 SPACE......:
 TYPE.......: PSEG
 OBJDESC....: CMSINST AND HELP LSEGS
 OBJINFO....:
 GT_16MB....: NO
 DISKS......:
 SEGREQ.....:
 PRODID.....: 1VMVMC23 MYCOMP
 BLDPARMS...: PPF(SERVP2P MYCOMP DMSSBINS) PPF(SERVP2P MYCOMP DMSSBHLP)

F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
====>

Figure 167. Example of the VMFSGMAP Change Segment Definition Panel

The definition indicates the following additional information about HELPINST:

• It occupies pages X'C00-CFF' and the permitted access is shared read-only.
• It is not a member of any segment spaces.
• It is a physical saved segment that contains at least one logical saved segment.
• It may not be defined above the 16MB line.

VMFSGMAP EXEC

526 z/VM: 7.3 VMSES/E Introduction and Reference

• There are no additional minidisks or SFS directories that need to be accessed to build the saved
segment.

• There are no requisite saved segments.
• The default information is defined in the MYCOMP section of the 1VMVMC23 PRODPART file.
• The build information is supplied in the MYCOMP section of the SERVP2P PPF file and in product saved

segment build lists DMSSBINS and DMSSBHLP.

Input and Output Files
Input Files
ppfname PPF

Usable form product parameter file used for saved segment mapping and building.
prodid PRODPART

The PRODPART file shipped with the product (used only by the SEGINFO function on the Segment
Definition panel).

Input/Output Files
bldlist EXCnnnnn

The system saved segment build list.
bldlist SEGDATA

The saved segment data file.
Output Files
appid $SELECT

The file where VMFSGMAP indicates the saved segments that need to be built.
fn SEGMAP

Optional saved copy of the current segment map, generated by the SAVEMAP subcommand.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifier for each VMSES/E exec.

VMFSGMAP issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

100 Command failed because of an external error.

Recovery Information

The VMFSGMAP command can be restarted by issuing the command again.

VMFSGMAP EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 527

VMFSIM EXEC

Purpose
The VMFSIM EXEC is the interface to the Software Inventory. With the VMFSIM EXEC, you can:

• Compare the control/AUX file structure to the version vector tables (“VMFSIM CHKLVL” on page 534)
• Compare two Software Inventory tables (“VMFSIM COMPTBL” on page 541)
• Identify the latest level of a part (“VMFSIM GETLVL” on page 546)
• Initialize the Software Inventory (“VMFSIM INIT” on page 553)
• Support your local modification structure (“VMFSIM LOGMOD” on page 559)
• Update the Software Inventory (“VMFSIM MODIFY” on page 565)
• Query the Software Inventory (“VMFSIM QUERY” on page 570)
• List the dependent PTFs for a given PTF (“VMFSIM SRVDEP” on page 576)
• List the requisite PTFs for a given PTF (“VMFSIM SRVREQ” on page 582)
• List the dependent products for a given product (“VMFSIM SYSDEP” on page 588)
• List the requisite products for a given product (“VMFSIM SYSREQ” on page 594)

Structure of the Data in the SI Tables

Before you use the VMFSIM EXEC, however, you need to be familiar with the structure of the data in
the Software Inventory tables. Tables in the Software Inventory are made up of logical records. A logical
record consists of all the fields between one key field and the next. A key field identifies the major
grouping of information contained in each logical record. The data in each key field is unique throughout
a table. A field consists of everything between one tag and the next, even if it spans multiple lines. The
name of the field is the same as the tag in the field.

A tag is an alphanumeric string that starts with a colon (:) and ends with a period (.). The tag identifies the
nature of the data following the tag.

Figure 168 on page 528 illustrates the data structure.

Figure 168. Software Inventory Data Structure

For example, in the system-level description table, shown in “System-Level Description Table Syntax”
on page 529, there are three fields, PPF, PRODID, and DESC. PPF is the key field, consisting of the
tag :PPF and its data ppfname compname. The PRODID field consists of the tag :PRODID and its data
prodid%compname. The percent sign (%) is a delimiter. The DESC field consists of the tag :DESC and its
data text. Each logical record in the table begins with the key field PPF.

VMFSIM EXEC

528 z/VM: 7.3 VMSES/E Introduction and Reference

System-Level Description Table Syntax

:PPF.  ppfname compname :PRODID. prodid

% compname
:DESC. text

Providing Input to VMFSIM

VMFSIM uses tagged data (TDATA) statements as input. There are three ways to enter TDATA statements
for VMFSIM commands:

• From the command line
• In a REXX stem
• From a file

A TDATA statement begins with the keyword TDATA. The TDATA keyword is followed by one or more tags
that correspond to fields in the Software Inventory tables and the data for the tags.

The syntax of a TDATA statement is:

TDATA : tag

data

The keyword TDATA precedes each set of tags and data to be processed. You must specify a tag after the
TDATA keyword. You can also specify data after the tag.

Receiving Output from VMFSIM

Output TDATA statements are returned from VMFSIM to the terminal display, a file, or a REXX stem.

VMFSIM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 529

VMFSIM: Tagged Data (TDATA)
The VMFSIM functions process the tags and data that are entered on the command line or contained in
a file or stem according to some basic rules. A tag is the name of a field that is defined for a table. Tags
begin with a colon (:) prefix. The rules for processing tags and data are:

• All tags specified in the TDATA statement are treated as return fields. That is, all data contained on the
tag is returned to the caller.

• If a tag that corresponds to a parent field is specified as a return field, but none of its sub fields are
specified, all sub fields are returned.

• If a tag is specified with data in the TDATA statement, VMFSIM treats the data as search arguments.
VMFSIM searches each record in the table for the specified search arguments. If a match is found, the
record is processed by the appropriate VMFSIM function. For example, the QUERY function returns to
the caller all fields specified in the TDATA statement for the record found.

• VMFSIM treats statements with more than one search argument as if an "AND" condition were
specified, and all search arguments must match.

• Duplicate tags or tags not defined for the table being processed are ignored.

Using File Input
The FILE parameter on the VMFSIM command allows you to input a collection of TDATA statements. The
default file name for files containing a collection of TDATA statements is SIMDATA.

The syntax of a TDATA statement in a file is:

TDATA : tag

 data

For example, the following file (Q1 SIMDATA A) contains two TDATA statements:

TDATA :PTF UV12345 :PREREQ
TDATA :PTF UV23456 :COREQ

Suppose you issue the following query against Q1 SIMDATA A:

VMFSIM QUERY 1VMVMC23 SRVREQT * FILE Q1

The QUERY function returns this response:

Results for TDATA statement
TDATA :PTF UV12345 :PREREQ

:PTF UV12345
 :PREREQ UV23456 UV56789

Results for TDATA statement
TDATA :PTF UV23456 :COREQ

:PTF UV23456
 :COREQ UV00001 UV00002

Querying Multiple Tables Using the File Option
You can use the results of one query as input to a second query by specifying the FILE parameter and
FILE option. The results are in the same format as the required input.

VMFSIM EXEC

530 z/VM: 7.3 VMSES/E Introduction and Reference

In the file, each group of records that is separated by the keyword TDATA is considered one collection of
tags or data for the query.

The following example shows a multiple table query to find all of the PTFs associated with an APAR and
the modules that were serviced by the PTFs.

• Step 1: Find all the PTFs that contain a given APAR and FILE the results.

Enter this command:

VMFSIM QUERY 1VMVMC23 SRVREQT TDATA :APARNUM VM12345 :PTF (FILE Q1

The following is returned in Q1 SIMDATA A:

 TDATA
 :PTF UV00001
 :APARNUM VM12345
 TDATA
 :PTF UV00002
 :APARNUM VM12345

• Step 2: Find all the modules that contain those PTFs that were saved in file Q1 and save the results in a
file Q2.

Enter this command:

VMFSIM QUERY 1VMVMC23 VVTVM FILE Q1 TDATA :PART (FILE Q2

The following is returned in Q2 SIMDATA A:

 TDATA
 :PART HCPABC TXT
 :PTF UV00001.VM12345.P12345DK UV01234.VM00234.P00234DK
 TDATA
 :PART HCPXXX TXT
 :PTF UV00001.VM12345.P12345DK
 TDATA
 :PART HCPXXX TXA
 :PTF UV00001.VM12345.P12345DK
 TDATA
 :PART HCPXXX TXM
 :PTF UV00002.VM12345.P12345DK

In Step 1, the query function returned two PTFs that contained the APAR specified. The results were
placed in a file, Q1 SIMDATA A.

In Step 2, a VMFSIM QUERY command was issued using the file that contained the results from the first
query. The return field was specified as the :PART tag from the version vector table (VVTVM). The results
of the second query were placed in the file Q2 SIMDATA A.

Note: Because the :APARNUM tag is not a valid tag in version vector tables, it is ignored by the second
query.

Using this process, where the output of the first query is input for a second query, it is possible to perform
many complicated queries against the Software Inventory.

Using the STEM Variable
 PI

The stem variable allows you to develop REXX applications that use the query function without the
overhead of file input and output. The VMFSIM command supports two types of stem input and output,
simple and associative stems.

VMFSIM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 531

Simple Stems
Simple stem input and output uses the same format as file input and output. Each element in the stem is
equivalent to a record in a file. The zero element of the stem indicates the total number of other elements
in the stem.

The following example shows the use of a simple stem as input and output in a REXX exec:

/* REXX EXEC using VMFSIM STEM input and output */

 X.0 = 2
 X.1 = 'TDATA :PTF UV12345 :PREREQ'
 X.2 = 'TDATA :PTF UV23456 :COREQ'
 'EXEC VMFSIM QUERY 1VMVMC23 SRVREQT * STEM X. (STEM Q.'
 Do j = 1 to Q.0
 Say Q.j
 End
 Exit

When you run the exec, the following is displayed:

TDATA
:PTF UV12345
:PREREQ UV23456 UV56789
TDATA
:PTF UV23456
:COREQ UV00001 UV00002

Associative Stems
The second type of stem input and output is called associative stem input and output. This format returns
the data in a tree structure, which minimizes the amount of necessary searching when data is processed.
The data is processed by VMFSIM in the same way as simple stem input and output is processed.

The following example shows the use of an associative stem input and output:

 X.0 - is the root node of the tree. It contains:
 X.0 = nodes - the number of nodes in the tree
 X.0.TAGS = tag ptr ... - ordered pairs of key tags and pointers
 to the keys and data entries
 X.0.0 = 0 - no data in root node

 X.ptr - is a node in the tree. It contains:
 X.ptr = tag - the name of the tag at this node
 X.ptr.TAGS = tag ptr ... - ordered pairs of fields and pointers
 to the entries associated with this TAG
 X.ptr.0 = n - number of records containing data
 for this TAG
 X.ptr.n = data - data record for the TAG

When you use this query from an exec:

VMFSIM QUERY 1VMVMC23 SRVREQT TDATA :PTF UV00100 (ASTEM X.

the results are in the ASTEM variable "X.", as you see below:

 X.0 = 4
 X.0.0 = 0
 X.0.TAGS = PTF ptr1

 X.ptr1 = PTF (tag name)
 X.ptr1.0 = 1 (number of data)
 X.ptr1.1 = UV00100 (data)
 X.ptr1.TAGS = APARNUM ptr2 PREREQ ptr3 COREQ ptr4 (tag pointer)

 X.ptr2 = APARNUM
 X.ptr2.0 = 1
 X.ptr2.1 = VM11111
 X.ptr2.TAGS = ''

 X.ptr3 = PREREQ
 X.ptr3.0 = 1
 X.ptr3.1 = UV00090

VMFSIM EXEC

532 z/VM: 7.3 VMSES/E Introduction and Reference

 X.ptr3.TAGS = ''

 X.ptr4 = COREQ
 X.ptr4.0 = 1
 X.ptr4.1 = UV00099
 X.ptr4.TAGS = ''

To access the required :COREQ data, the following parsing commands are required:

 Parse var X.0.TAGS . 'PTF' inx1 .
 Parse var X.inx1.TAGS . 'COREQ' inx2 .
 level = x.inx2.1

Figure 169 on page 533 shows the tree structure of ASTEM X.

Figure 169. Tree Structure Format

Considerations for Using Stem Input and Output
When you develop applications using stem input and output, the calling application must:

• Be a REXX exec
• Invoke the VMFSIM EXEC with an EXEC statement

 PI end

VMFSIM EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 533

VMFSIM CHKLVL

VMFSIM CHKLVL ppfname compname

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

1
TDATA

(
2

(
3

Options

)

TDATA
TDATA :PART fn

ftabbrev

Options

AUXFT AUX  lvlid CNTRL cntrlfn

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl LOGMOD

TYPE

FILE fn

STEM stemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 If you specify LOG NONE or allow LOG to default to NONE, the LOGLVL option is ignored.

Purpose
The CHKLVL function verifies the version vector structure matches the corresponding AUX structure for
one or more parts.

Beginning at the highest level in the control file, each version vector table is compared to the
corresponding AUX file until either:

• A mismatch is found.

VMFSIM CHKLVL

534 z/VM: 7.3 VMSES/E Introduction and Reference

• All levels have been checked.

VMFSIM CHKLVL reports mismatches by providing:

• The file IDs of the files in error
• The records in error

Parts not supported by AUX files are also reported. To determine if a part is supported by AUX files,
VMFSIM checks to see if there are any update files identified for that part in the version vector tables.

Note: If a specific AUX file is entered on the command, only that AUX file and its corresponding version
vector table, are checked.

Operands
ppfname

is the file name of the usable form product parameter file. The product parameter file must have a file
type of PPF.

compname
is the name of the component, for example CP or CMS, as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1-16 character alphanumeric identifier.

TDATA
identifies the parts to be validated. You can specify additional tags, but they are ignored.
:PART

identifies the part to be validated.

You can specify additional tags, but they are ignored. A detailed description on how tag data is
processed is contained in the section “VMFSIM: Tagged Data (TDATA)” on page 530. The only
difference between how QUERY and CHKLVL process tag data is that CHKLVL does not allow
return tags.

fn
is the file name of the part in the version vector table that is to be validated.

ftabbrev
is the file type of the part in the version vector table that is to be validated. The ftabbrev must
be the 3-character PTF abbreviation or the real CMS file type for parts that are not serviced by
replacement.

If you omit ftabbrev, all parts with the specified file name are validated.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, it will be added
to the end of the list of PARTs or products in the file or stem defined by the FILE, STEM, or ASTEM
operand.

FILE
identifies a CMS file that lists the parts to be validated.
fn

is the file name of the CMS file containing the parts.
SIMDATA

is the default file type.
ft

is the file name of the CMS file containing the parts.
*

indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

CMS File Contents: The CMS file can contain one of the following:

VMFSIM CHKLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 535

1. A collection of TDATA statements that identify parts to be validated. For example, a file could contain
this:

TDATA :PART VMFAAA EXC
TDATA :PART VMFBBB XED
TDATA :PART VMFCCC

2. A collection of file names and, optionally, file type abbreviations of the parts to be validated. The
format of the file can be that of a CMS exec generated from the LISTFILE command using the EXEC
option, because any EXEC 2 statements (for example, &TRACE OFF) and dummy arguments (for
example, &1) are ignored.

For example, a file could contain this:

&1 &2 VMFAAA EXC
&1 &2 VMFBBB XED
&1 &2 VMFCCC

For more information, see “Using File Input” on page 530.

STEM
identifies a simple REXX stem variable that lists the parts to be validated.
stemid

is the name of the REXX stem containing the parts.

 PI

Stem Contents: The stem can contain one of the following:

1. A collection of TDATA statements that identify parts to be validated. For example, a stem could
contain:

x.0 = 3
x.1 = 'TDATA :PART VMFAAA EXC'
x.2 = 'TDATA :PART VMFBBB XED'
x.3 = 'TDATA :PART VMFCCC'

2. A collection of file names and, optionally, the file types of the parts in the version vector table to
validate against corresponding AUX files. The format of the file can be that of a CMS exec generated
from the LISTFILE command using the EXEC option, because any EXEC 2 statements (for example,
&TRACE OFF) and dummy arguments (for example, &1) are ignored. For example, a stem could
contain:

x.0 = 3
x.1 = 'VMFAAA EXC'
x.2 = 'VMFBBB XED'
x.3 = 'VMFCCC'

The zero element of the stem identifies the number of other elements in the stem.

For more information, see “Using the STEM Variable” on page 531.

 PI end

Options
AUXFT

identifies the file type of an auxiliary (AUX) control file, specified in the control file, at which the
validation should occur. If this option is not specified on the command, all AUX levels identified in the
control file are validated against the corresponding version vector table for that level.
AUXlvlid

is the file type of an AUX file.
CNTRL

indicates a control file is used to identify the AUX file structure.

VMFSIM CHKLVL

536 z/VM: 7.3 VMSES/E Introduction and Reference

cntrlfn
is the file name of the control file that is used to identify the AUX file structure. The file type of the
control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log,
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error
LOGMOD

automatically logs information in the version vector tables based on information in the AUX files.
VMFSIM CHKLVL compares the AUX files for all AUX file levels above the level specified on
the :UPDTID tag in the product parameter file to the corresponding version vector tables. If a

VMFSIM CHKLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 537

mismatch is detected, the information from the AUX file is used to replace the existing version vector
table entry. The first token in the AUX file is the update file type, the second token is ignored (however,
LCL is recommended), and the third token is modid. All LOCAL disks must be accessed as Read/Write?

When you use the LOGMOD option:

• If a version vector table does not exist, it is created on the first disk in the LOCAL string.
• If the modid is not specified in the AUX file, VMFSIM CHKLVL uses the levelid, which has been

appended to LC, from the control file.
• If the AUX file for a part is not found, the :PART entry is deleted from the version vector table.
• If the AUX file for a part is empty, the :MOD data is deleted from the version vector table for that

part. The :PART entry is not deleted from the version vector table.
• All LOCAL disks must be accessed as read-write.

TYPE
directs the output to the terminal. TYPE is the default.

FILE
directs the output to a CMS file.
fn

is the file name of the CMS file containing the output from CHKLVL. The file type is SIMDATA, and
the file mode is A.

STEM
identifies a simple REXX stem variable that will contain the output of CHKLVL. The structure and
content of the stem are the same as if an EXECIO was performed on the output file.
stemid

is the name of the REXX stem that will contain the output from CHKLVL.

Examples

To use VMFSIM CHKLVL to validate the AUX files for a specific part match the corresponding version
vector table entries for that part, enter:

VMFSIM CHKLVL ESA MYCOMP TDATA :PART DMSABC

This command checks the levels of the AUX files for DMSABC against the version vector table entries.
This command checks the AUX files for DMSABC against the version vector table entries. In the output
returned, the "X" shows the first mismatch detected.

==========================DMSABC TXT==================================1VMVMC23
 VVTVM1 E...........| |DMSABC AUXVM1 E
_________PTF________________|_|_______________________________________
UM00004.VM40000.H40000DS....| |H40000DS PTF UM00004 * Fix to problem 4
UM00003.VM30000.H30000DS....| |H30000DS PTF UM00003 * Fix to problem 3
UM00002.VM20000.H20000DS....|X|HXXXXXDS PTF UM00002 * Fix to problem 2
UM00001.VM10000.H10000DS....| |H10000DS PTF UM00001 * Fix to problem 1
==

Input and Output Files
Input Files
cntrlfn CNTRL

The control file.
cntrlfn CNTRLEXT

The control file extension table.
fn SIMDATA

An optional input file for the data.

VMFSIM CHKLVL

538 z/VM: 7.3 VMSES/E Introduction and Reference

appid VVTlvlid
The version vector table.

partid AUXlvlid
The AUX file.

ppfname PPF
The usable form product parameter file.

VM SYSABRVT
The table that contains the file type abbreviations (ftabbrev).

Output Files
fn SIMDATA

An optional output file for the returned data.
fn OLDDATA

The previous level of the fn SIMDATA output file.
appid VVTlvlid

A version vector table.
Temporary Files
$VMFSIM CNTRL

A control file used with the LOGMOD option.
fn AUX$$$$$

An AUX file used with the LOGMOD option.
PPF Tags Used
:APPID

Identifies the product, which is used as the file names of the version vector tables.
:CNTRL

Defines the name of the control file, which is used to identify the version vector structure.
:DABBV

Defines the file type abbreviation specific to a product and the real and base file types associated with
it.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM CHKLVL EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

8 Command completed but one or more parts were not supported by AUX files or
there were mismatches between AUX files and version vector tables.

VMFSIM CHKLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 539

Return Code Explanation

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM CHKLVL function saves a backup copy of the SIMDATA file that is being updated if it is found
on the output disk. The file name of the file is the same as the original file, and the file type is OLDDATA.
You can use this file to recover the SIMDATA file to the level of data it contained before the command was
run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM CHKLVL

540 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSIM COMPTBL

VMFSIM COMPTBL table1fn table1ft table1fm

*

table2fn

=

table2ft

=

table2fm

=

*
TDATA : tag

data

(
1

(
2

Options

)

Options

LOG NONE

LOG logid

LOGLVL
3

I

LOGLVL mlvl

TYPE

FILE fn

APPLIST fn

STEM stemid

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The VMFSIM COMPTBL command can be used to verify that the first table that has been entered on the
command is a subset of the second table. The tables being compared must have the same key and one or
more of the same fields.

Operands
table1fn

is the file name of the table containing the fields that are to be compared to the second table.
table1ft

is the file type of the table containing the fields that are to be compared to the second table.
table1fm

is the file mode of the table containing the fields that are to be compared to the second table. If an
asterisk (*) is specified, the first table in the search order that matches the file name and file type
specifications for table 1 is used. If a file mode is specified, it must be accessed.

table2fn
is the file name of the table containing the fields the first table compares to. If ‘=’ is specified, the
same file name that was specified for the first table is used.

VMFSIM COMPTBL

Chapter 20. VMSES/E EXEC and Command Format Summaries 541

table2ft
is the file type of the table containing the fields the first table compares to. If ‘=’ is specified, the same
file type that was specified for the first table is used.

table2fm
is the file mode of the table containing the fields that are to be compared to the first table. If a file
mode is specified, it must be accessed. If ‘=’ is specified, the same file mode that was specified for
the first table is used. If an asterisk (*) is specified, the first table in the search order that matches the
file name and file type specifications for table 2 is used.

TDATA
identifies the fields to be compared in the tables. If TDATA is not specified, all fields defined in the
first table are compared to the second table. If TDATA is specified and a key is not specified on the
command, it is added to the list of tags specified for the comparison.
:tag

defines which entries to compare.
data

specifies the search arguments to be used in the table search.

Options
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a 3-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’, logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging

VMFSIM COMPTBL

542 z/VM: 7.3 VMSES/E Introduction and Reference

R
Response required

I
Informational Message

W
Warning Message

E
Error Message

S
Severe Error Message

T
Terminating Error

TYPE
directs the output to the terminal. TYPE is the default.

FILE
directs the output of COMPTBL to a CMS file.
fn

is the file name of the CMS file that will store the output from COMPTBL. The file type is SIMDATA,
and the file mode is A.

APPLIST
directs the output of COMPTBL to an apply list that can later be used by VMFAPPLY. This function can
only be used when you are comparing tables that have :PTF as their key.
fn

is the file name of the apply list. The file type is $APPLIST, and the file mode is A.
STEM

identifies a simple REXX stem variable that will contain the output of COMPTBL. The structure and
content of the stem is the same as if an EXECIO was performed on the output file.
stemid

is the name of the REXX stem variable.

Examples

• To use VMFSIM COMPTBL to compare PTFs in different levels of the apply status tables, enter:

VMFSIM COMPTBL 1VMVMC23 SRVAPPS D = = E TDATA :PTF

This command returns a list of all PTFs that are in the first table and not in the second table. The format
of the output data follows.

=============== 1VMVMC23 SRVAPPS D2 ===============
 :PTF UV45678
--------------- 1VMVMC23 SRVAPPS E2
 :PTF **NOT FOUND**
=============== 1VMVMC23 SRVAPPS D2 ===============
 :PTF UV00001
--------------- 1VMVMC23 SRVAPPS E2
 :PTF **NOT FOUND**
===

• To use VMFSIM to compare PTFs and status in different apply status tables, enter:

VMFSIM COMPTBL 1VMVMC23 SRVAPPS D = = E TDATA :PTF :STAT

This command returns a list of all PTFs that are in the first table and not in the second table, along with
their status. The format of the output data is:

=============== 1VMVMC23 SRVAPPS D2 ===============
 :PTF UV12345 :STAT APPLIED.01/03/22.11:11:11.JONES

VMFSIM COMPTBL

Chapter 20. VMSES/E EXEC and Command Format Summaries 543

--------------- 1VMVMC23 SRVAPPS E2
 :PTF **NOT FOUND**
=============== 1VMVMC23 SRVAPPS D2 ===============
 :PTF UV00007 :STAT SUPED.02/04/22.12:12:12.MAINT
--------------- 1VMVMC23 SRVAPPS E2
 :PTF UV00007 :STAT APPLIED.01/04/22.22:22:22.MAINT
===

Input and Output Files
Input Files
table1fn table1ft

The first table specified.
table2fn table2ft

The second table specified.
Output Files
fn $APPLIST

An apply list.
fn SIMDATA

An optional output file for the returned data.
fn OLDDATA

The previous level of the fn SIMDATA output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information about a
specific message - VMF002E, for example - enter:

help msg vmf002e

If you are not familiar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The VMFSIM COMPTBL EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed, the first table was not a subset of the second table.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

VMFSIM COMPTBL

544 z/VM: 7.3 VMSES/E Introduction and Reference

Recovery Information

The VMFSIM COMPTBL function saves a backup copy of the SIMDATA file that is being updated if it is
found on the output disk. The file name of the file is the same as the original file, and the file type is
OLDDATA. You can use this file to recover the SIMDATA file to the level of data it contained before the
command was run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM COMPTBL

Chapter 20. VMSES/E EXEC and Command Format Summaries 545

VMFSIM GETLVL

VMFSIM GETLVL ppfname compname

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

1
TDATA

(
2

(
3

Options

)

TDATA
TDATA :PART fn

ftabbrev

Options

CNTRL cntrlfn

MOD

HISTory

PTF

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl

TYPE

FILE fn

STEM stemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 If you specify LOG NONE or allow LOG to default to NONE, the LOGLVL option is ignored.

Purpose
The GETLVL function returns the file type of the highest level of a part, using the control file with the
version vector tables.

VMFSIM GETLVL

546 z/VM: 7.3 VMSES/E Introduction and Reference

Operands
ppfname

is the file name of the usable form product parameter file. It must have a file type of PPF.
compname

is the name of the component, for example CP or CMS, as it is specified on the :COMPNAME tag in the
product parameter file. compname is a 1-16 character alphanumeric identifier.

TDATA
identifies the parts to be located. The TDATA statement must contain the tag :PART followed by the
file name of a part to locate. You can specify additional tags, but they are ignored.
:PART

identifies a part to be located.
fn

is the file name of the part to be located.
ftabbrev

is the file type abbreviation for the part to be located. The ftabbrev must be the 3-character PTF
abbreviation or the real CMS file type for parts that are not serviced by replacement.

If you do not specify ftabbrev, VMFSIM GETLVL locates all parts with the specified file name.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, it will be added
to the end of the list of PARTs or products in the file or stem defined by the FILE, STEM, or ASTEM
operand.

FILE
identifies a CMS file that lists the parts to be located.
fn

is the file name of the file that lists the parts.
SIMDATA

is the default file type.
ft

is the file type of the file that lists the parts.
*

indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file that lists the parts. If a file mode is specified, it must be accessed.

CMS File Contents: The contents of the file can be one of the following:

1. A collection of TDATA statements that identify parts to be located. For example, the file could contain
this:

TDATA :PART VMFAAA EXC
TDATA :PART VMFBBB XED
TDATA :PART VMFCCC

2. A collection of file names and, optionally, file types of the parts in the Version Vector table to be
processed. The format of the file can be that of a CMS exec generated from the LISTFILE command
using the EXEC option, because any EXEC 2 statements (for example, &TRACE OFF) and dummy
arguments (for example, &1) are ignored. For example, the file could contain this:

&1 &2 VMFAAA EXC
&1 &2 VMFBBB XED
&1 &2 VMFCCC

For more information, see “Using File Input” on page 530.

VMFSIM GETLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 547

STEM
identifies a simple REXX stem variable that lists the parts to be located.
stemid

is the name of a simple REXX stem.

 PI

Stem Contents: The contents of the stem can be one of the following:

1. A collection of TDATA statements that identify parts to be located. For example, a stem could contain
this:

x.0 = 3
x.1 = 'TDATA :PART VMFAAA EXC'
x.2 = 'TDATA :PART VMFBBB XED'
x.3 = 'TDATA :PART VMFCCC'

2. A collection of file names and, optionally, the file types of the parts in the Version Vector table to be
processed. The format of the file can be that of a CMS exec generated from the LISTFILE command
using the EXEC option, because any EXEC 2 statements (for example, &TRACE OFF) and dummy
arguments (for example, &1) are ignored. For example, a stem could contain this:

x.0 = 3
x.1 = 'VMFAAA EXC'
x.2 = 'VMFBBB XED'
x.3 = 'VMFCCC'

The zero element of the stem identifies the number of other elements in the stem.

For more information, see “Using the STEM Variable” on page 531.

 PI end

Options
CNTRL

indicates a control file is used to identify the AUX file structure.
cntrlfn

is the file name of the control file that is used to identify the AUX file structure. The file type of the
control file is CNTRL. This value overrides the value on the :CNTRL tag in the PPF.

MOD
displays the file type of the highest overall level of a part. MOD is the default.

HISTory
displays the service history for a part.

PTF
displays the file type of the highest service level of a part.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log,
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log

VMFSIM GETLVL

548 z/VM: 7.3 VMSES/E Introduction and Reference

APP
The apply message log ($VMFAPP $MSGLOG A)

BLD
The build message log ($VMFBLD $MSGLOG A)

XYZ
The user message log ($VMFXYZ $MSGLOG A)

LOGLVL
identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error
TYPE

directs the output to the terminal. TYPE is the default.
FILE

directs the output from GETLVL to a CMS file.
fn

is the file name of the CMS file containing the output from GETLVL. The file type is SIMDATA, and
the file mode is A.

STEM
identifies a simple REXX stem variable that will contain the output of GETLVL. The structure and
content of the stem are the same as if an EXECIO was performed on the output file.
stemid

is the name of the REXX stem variable.

Examples

• To use VMFSIM GETLVL to search for the current level of a part using the corresponding version vector
table entries for the part, enter:

vmfsim getlvl esa cp tdata :part receive

VMFSIM GETLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 549

This command checks the levels of the version vector tables for the part ‘RECEIVE’ and returns the
highest PTF-numbered levels found. The format of the output data is shown below.

 RECEIVE EXC12345
 RECEIVE XED00000 BASE-FILETYPE
 RECEIVE MSG72345

• To display the service history for several parts, enter:

vmfsim getlvl esa cp tdata :part simsmpl txt
 tdata :part simrepl txt tdata :part simupdt txt (history

The output from VMFSIM GETLVL is:

:PART SIMSMPL TXT06009
 :VVT VVTVM2
 :PTF
 UM06009
 UM06005
 UM06004
 UM06002
 UM06001
:PART SIMREPL TXT06009
 :VVT VVTVM2
 :PTF
 UM06009.VM99999
 UM06004.VM44444
 UM06001.VM11111
:PART SIMUPDT TXT06009
 :VVT VVTVM2
 :PTF
 UM06009.VM99999.H99999HP
 UM06005.VM55555.H55555HP
 UM06004.VM44444.H44444HP
 UM06001.VM11111.H11111HP

To display the service history of several parts with local service, enter:

vmfsim getlvl esa cp tdata :part simsmpl txt
 tdata :part simrepl txt tdata :part simupdt txt (history

VMFSIM GETLVL displays:

:PART SIMSMPL TXTL0005
 :VVT VVTLCL
 :MOD
 LCL0005
 LCL0004
 :VVT VVTVM2
 :PTF
 UM06009
 UM06005
 UM06004
 UM06002
 UM06001
:PART SIMREPL TXTL0008
 :VVT VVTLCL
 :MOD
 LCL0008
 LCL0004
 :VVT VVTVM2
 :PTF
 UM06009.VM99999
 UM06004.VM44444
 UM06001.VM11111
:PART SIMUPDT TXTL0008
 :VVT VVTLCL
 :MOD
 LCL0008
 LCL0003
 :VVT VVTVM2
 :PTF
 UM06009.VM99999.H99999HP
 UM06005.VM55555.H55555HP
 UM06004.VM44444.H44444HP
 UM06001.VM11111.H11111HP

VMFSIM GETLVL

550 z/VM: 7.3 VMSES/E Introduction and Reference

Input and Output Files
Input Files
cntrlfn CNTRL

The control file.
cntrlfn CNTRLEXT

The control file extension table.
appid VVTlvlid

The version vector tables.
VM SYSABRVT

The table that contains the file type abbreviations (ftabbrev).
ppfname PPF

The usable form product parameter file.
Output Files
fn SIMDATA

An optional output file for the returned data.
fn OLDDATA

The previous level of the fn SIMDATA output file.
PPF Tags Used
:APPID

Identifies the file names of the version vector tables.
:CNTRL

Defines the name of the control file, which is used to identify the version vector structure.
:DABBV

Defines the file type abbreviation specific to a product and the real and base file types associated with
it.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM GETLVL EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 The AUX option was specified but the part is not supported by AUX files.

4 Command completed, but no serviced level was found for the part.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

VMFSIM GETLVL

Chapter 20. VMSES/E EXEC and Command Format Summaries 551

Return Code Explanation

100 Command failed because of an external error.

Recovery Information

The VMFSIM GETLVL function saves a backup copy of the SIMDATA file that is being updated, if it is found
on the output disk. The file name of the backup file is the same as the original file, and the file type is
OLDDATA. You can use this file to return to the same level of data that was in the SIMDATA file before the
command was run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM GETLVL

552 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSIM INIT

VMFSIM INIT tablefn

*

SYSDESCT

SYSREQT

*

tablefm

FILE fn PRODPART

listft

*

fm

STEM stemid

*

SRVDESCT

SRVRECS

SRVREQT

*

tablefm

FILE fn $PTFPART

listft

*

fm

STEM stemid

(LOG NONE LOGLVL I

(
1

LOG NONE

LOG logid

LOGLVL
2

I

LOGLVL mlvl)

Notes:
1 You can enter options in any order between the parentheses.
2 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The INIT function either creates the specified tables or updates them based on the tags and data being
processed from the $PTFPART or PRODPART file.

The INIT function reads the specified files and adds the data in them to the Software Inventory requisite,
description, and receive status tables.

Operands
tablefn

is the file name of the table to be initialized. If $PTFPART files are being processed to create or update
service-level Software Inventory tables, the file name must be the same as the prodid identifier
specified on the :RECID tag in the PPF file. If PRODPART files are being processed to create or update
system-level Software Inventory tables, the file name should be the same as the file name of your
system-level Software Inventory tables. VM is the default file name for the system-level Software
Inventory tables.

*
indicates all applicable Software Inventory tables should be updated. If the input is made up
of PRODPART files, the SYSDESCT and SYSREQT tables are updated. If the input is made up of
$PTFPART files, the SRVDESCT, SRVRECS, and SRVREQT tables are updated.

If you specify an asterisk (*) for the table file type (tableft) and you select PRODPART as the file type
with the FILE operand, the SYSREQT and SYSDESCT tables are updated. If you specify an asterisk
(*) for the file type and you select $PTFPART as the file type with the FILE operand, the SRVREQT,
SRVDESCT and SRVRECS tables are updated.

VMFSIM INIT

Chapter 20. VMSES/E EXEC and Command Format Summaries 553

Note: If the SRVRECS table is being updated, the :STAT field is updated with a status of RECEIVED
along with the date, time, and user ID performing the update.

SYSDESCT
indicates the system-level description table is to be created or updated.

SYSREQT
indicates the system-level requisite table is to be created or updated.

SRVDESCT
indicates the service-level requisite table is to be created or updated.

SRVRECS
indicates the service-level receive status table is to be created or updated.

SRVREQT
indicates the service-level requisite table is to be created or updated.

*
indicates the first tables found in the CMS search order on a read/write accessed disk with the
correct file names and file types should be updated. If the tables are found on a disk that is not
accessed read/write, you receive an error message. If the tables are not found anywhere in the search
order, they are created on your A-disk. If your A-disk is not in read/write mode, you receive an error
message. Asterisk (*) is the default.

tablefm
is the file mode of the minidisk or directory containing the tables. The file mode must be accessed
read-write. If the tables are not found on the file mode specified, they are created on that mode. If the
file mode is not accessed, an error message is displayed; and the table is not created or updated.

FILE
identifies the $PTFPART or PRODPART files that are to be used as input to update the Software
Inventory. The file can contain the file name of a single PRODPART or $PTFPART file, or it can contain
a list of PRODPART or $PTFPART files. For more information, see “Using File Input” on page 530.
fn

is the file name of the file. The file name for $PTFPART files is the PTF number. The file name
for PRODPART files is the product identifier (prodid) for the product. The file name for a file that
contains a list of files can be any valid CMS file name.

PRODPART
is the file type for a PRODPART file. PRODPART files are used to update the system-level
description table and requisite table.

$PTFPART
is the file type for a $PTFPART file. $PTFPART files are used to update the service-level
description table, requisite table, and receive status table.

listft
is the file type of a CMS file that contains a collection of either $PTFPART or PRODPART files. The
list must contain either all PRODPART or all $PTFPART files; they cannot be mixed.

If you specify a system-level Software Inventory table on the command, the list must contain
all PRODPART files. If you specify a service-level Software Inventory table on the command, the
list must contain all $PTFPART files. If you specify an asterisk (*) for the table file type on the
command, the file type of the first entry in the list that passes validation determines the set of
tables to be updated.

The format of the file can be that of a CMS exec generated from the LISTFILE command using the
EXEC option.

*
indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

VMFSIM INIT

554 z/VM: 7.3 VMSES/E Introduction and Reference

File Contents: The file contains a collection of file names, file types, and, optionally, file modes of the
$PTFPART or PRODPART files to be processed. The format of the file can be that of a CMS exec generated
from the LISTFILE command using the EXEC option, because any EXEC 2 statements (for example,
&TRACE OFF) and dummy arguments (for example, &1) are ignored.

For example, the file could contain:

&1 &2 UM00001 $PTFPART E
&1 &2 UM00002 $PTFPART E
&1 &2 UM00003 $PTFPART E

Each file in the list is checked to make sure it has the correct file type and it exists on a minidisk or SFS
directory in the CMS access order. If it does not have the correct file type or it cannot be found, an error
message is issued, it is removed from the list, and the next file in the list is checked.

STEM
identifies a REXX stem variable that contains a collection of either $PTFPART or PRODPART files that
are to be used as input to update the Software Inventory.
stemid

is the name of the REXX stem.

If you specify a system-level Software Inventory table on the command, the stem must contain all
PRODPART files. If you specify a service-level Software Inventory table on the command, the stem
must contain all $PTFPART files. The stem must contain either all $PTFPART files or all PRODPART
files; they cannot be mixed. If you specify an asterisk (*) for the table file type (tableft) on the
command, the file type of the first entry in the stem that passes validation determines the set of
tables to be updated.

 PI

Stem Contents: The stem contains a collection of file names, file types, and, optionally, file modes of
the $PTFPART or PRODPART files to be processed. The format of the stem can be that of a CMS exec
generated from the LISTFILE command using the EXEC option, because any EXEC 2 statements (for
example, &TRACE OFF) and dummy arguments (for example, &1) are ignored.

For example, the stem could contain:

x.0 = 3
x.1 = 'UM00001 $PTFPART'
x.2 = 'UM00002 $PTFPART'
x.3 = 'UM00003 $PTFPART'

The zero element of the stem identifies the number of other elements in the stem.

Each file in the stem is checked to make sure it has the correct file type and it exists on a minidisk or SFS
directory in the CMS access order. If it does not have the correct file type or it cannot be found, an error
message is issued, it is removed from the stem, and the next file is checked.

For more information, see “Using the STEM Variable” on page 531.

 PI end

Options
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

VMFSIM INIT

Chapter 20. VMSES/E EXEC and Command Format Summaries 555

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
Messages are logged in the specified message log if they have a severity level equal to or above
the mlvl specified. The message levels are shown below, in order of severity. Messages of level ‘R’
have the lowest severity, and messages of level ‘T’ have the highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error

Examples

• To use VMFSIM INIT to update the SYSREQT and SYSDESCT tables with the data contained in the
1VMVMC23 PRODPART file, enter:

VMFSIM INIT VM * D FILE 1VMVMC23 PRODPART

As a result of this command, the following files are updated:

VM SYSREQT D is updated with requisite data from the PRODPART file.
VM SYSDESCT D is updated with product description data from the PRODPART file.

• To use VMFSIM INIT to update the SRVREQT, SRVDESCT, and SRVRECS tables with the data contained
in the UM12345 $PTFPART file, enter:

VMFSIM INIT 1VMVMC23 * E FILE UM12345 $PTFPART

As a result of this command, the following files are updated:

VMFSIM INIT

556 z/VM: 7.3 VMSES/E Introduction and Reference

1VMVMC23 SRVREQT E is updated with requisite data from the $PTFPART file.
1VMVMC23 SRVDESCT E is updated with APAR description data from the $PTFPART file.
1VMVMC23 SRVRECS E is updated with a status of RECEIVED for PTF UM12345.

Input and Output Files
Input Files
fn listft

An optional input file.
prodid PRODPART

The PRODPART file.
fn $PTFPART

The $PTFPART file.
Output Files
sysid SYSDESCT

The system-level description table.
sysid SYSREQT

The system-level requisite table.
prodid SRVDESCT

The service-level description table.
prodid SRVRECS

The service-level receive status table.
prodid SRVREQT

The service-level requisite table.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM INIT EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

VMFSIM INIT

Chapter 20. VMSES/E EXEC and Command Format Summaries 557

Recovery Information

The VMFSIM INIT command can be restarted by reissuing the command.

VMFSIM INIT

558 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSIM LOGMOD

VMFSIM LOGMOD tablefn VVT  lvlid
*

tablefm

TDATA :PART fn ftabbrev Modification

Modification :PART fn ftabbrev

Choices

(
1

(
2

Options

)

Modification

:MOD  modid

.updtft

3

Choices

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

4

TDATA :PART fn ftabbrev Modification

Modification

:PART fn ftabbrev

Options

ADD

DELETE

REPLACE

LOG NONE

LOG logid

LOGLVL
5

I

LOGLVL mlvl

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.

VMFSIM LOGMOD

Chapter 20. VMSES/E EXEC and Command Format Summaries 559

3 You can string multiple modid entries together as long as they relate to the same file listed on the
PART tag.
4 One extra TDATA statement is allowed following the input file or stem specification.
5 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The LOGMOD function adds, replaces, or deletes local modification data in the specified version vector
table.

Operands
tablefn

is the file name of the version vector table to be modified. This file name should be in the APPID string
in the PPF.

VVTlvlid
is the file type of the version vector table to be modified.

*
indicates the first table found in the CMS search order on read/write accessed disk with the correct
file name and file type should be updated. If the table is found on a disk that is not accessed
read/write, you receive an error message. If the table is not found anywhere in the search order, it
is created on your A-disk. If your A-disk is not in read/write mode, you receive an error message.
Asterisk (*) is the default.

tablefm
is the file mode of the minidisk or directory containing the table. The file mode must be accessed as
read/write. If the table is not found on that file mode, it is created on that mode. If the file mode is not
accessed, an error message is displayed; and the table is not created or updated.

TDATA
identifies the search data, a part for which a local modification is to be added, deleted, or replaced.
You can specify additional tags, but they are ignored.
:PART

indicates a part for which a local modification is to be added, deleted, or replaced.
fn

is the file name of the part for which a local modification is to be added, deleted, or replaced.
ftabbrev

is the file type abbreviation for the part for which a local modification is to be added, deleted, or
replaced. The file type must be the 3-character PTF abbreviation or the real CMS file type for parts
that are not serviced by replacement.

:MOD
indicates a local modification.

modid
is a 7-character local tracking number that identifies the local modification to be added, deleted,
or replaced in the specified version vector table. Multiple modid entries can be strung together as
long as they relate to the same file listed on the PART tag.

The first two characters indicate a local tracking number follows. It is recommended the first two
characters of the local tracking number be LC. Characters 3-7 are a 5-character identifier for your
local modification, which you create according to your own tracking scheme. It is recommended
that the first character be an L. Characters 3-7 of modid are concatenated to the ftabbrev to form
the file type of the serviceable part that is associated with this modification level of the part.
For example, LCL1234 is a local modification tracking number. In this example, L1234 would be
concatenated to the ftabbrev to form the file type of the serviceable part.

VMFSIM LOGMOD

560 z/VM: 7.3 VMSES/E Introduction and Reference

We recommend you start the local tracking number with LCL to ensure it does not interfere with
service delivered by IBM. If you use characters other than LCL, make sure they are unique for your
product.

.updtft
is the file type of the source update file that contains the change for the local modification
identified.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operands, it will either be:

• Added to the end of the list of modifications in the file or stem defined by the FILE, STEM, or ASTEM
operand, if you specified both the :PART tag and the :MOD tag.

• Logically added to the list of modifications in the file or stem defined by the FILE, STEM, or ASTEM
operand, if you did not specify either the :PART tag or the :MOD tag. This means the tags and data on
the TDATA statement are added to the tags and data for each of the modifications listed in the file or
stem.

FILE
identifies a CMS file that contains a collection of parts for which local modifications are to be added,
deleted, or replaced. For more information, see “Using File Input” on page 530.
fn

is the file name of the file.
SIMDATA

is the default file type for the file.
ft

is the file type of the file.
*

indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

File Contents: For example, a file could contain:

TDATA :PART VMFAAA EXC :MOD LCL0001.LCL0001L
TDATA :PART VMFAAA XED :MOD LCL0001.LCL0001L
TDATA :PART VMFAAA TXT :MOD LCL0001.LCL0001L

STEM
identifies a simple REXX stem variable that contains a collection of parts for which local modifications
are to be added, deleted, or replaced.
stemid

is the name of a REXX stem.

 PI

Stem Contents: For example, the stem could contain:

x.0 = 3
x.1 = 'TDATA :PART VMFAAA EXC :MOD LCL0001.LCL0001L'
x.2 = 'TDATA :PART VMFAAA XED :MOD LCL0001.LCL0001L'
x.3 = 'TDATA :PART VMFAAA TXT :MOD LCL0001.LCL0001L'

For more information, see “Using the STEM Variable” on page 531.

 PI end

ASTEM
identifies an associative REXX stem variable that contains a collection of parts for which local
modifications are to be added, deleted, or replaced.

VMFSIM LOGMOD

Chapter 20. VMSES/E EXEC and Command Format Summaries 561

astemid
is the name of an associative REXX stem.

 PI

Astem Contents: For example, an associate stem could contain:

x.0 = 4
x.0.0 = 0
x.0.tags = 'PART 1 PART 2 PART 3'

x.1 = 'PART'
x.1.0 = 1
x.1.1 = 'VMFAAA EXC'
x.1.tags = 'MOD 4'

x.2 = 'PART'
x.2.0 = 1
x.2.1 = 'VMFBBB XED'
x.2.tags = 'MOD 4'

x.3 = 'PART'
x.3.0 = 1
x.3.1 = 'VMFCCC TXT'
x.3.tags = 'MOD 4'

x.4 = 'MOD'
x.4.0 = 1
x.4.1 = 'LCL0001.LCL0001L'
x.4.tags = ''

For more information, see “Associative Stems” on page 532.

 PI end

Options
ADD

Specifies the tags and data on the command are to be added to the table if they do not already exist.
ADD is the default.

DELETE
Specifies the tags and data on the command are to be deleted from the table.

REPLACE
Specifies the tags and data on the command are to replace any existing fields in the table. If you are
replacing multiple entries for the same PART entry, string the modid entries together on one TDATA
statement. If you use duplicate TDATA statements for each modid, each modid is overlaid on top of
the previous one.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)

VMFSIM LOGMOD

562 z/VM: 7.3 VMSES/E Introduction and Reference

XYZ
The user message log ($VMFXYZ $MSGLOG A)

LOGLVL
identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error

Usage Notes
1. For more information on local modifications, see Chapter 11, “Installing Local Service and

Modifications,” on page 101.

Examples

• To use VMFSIM LOGMOD to identify a local modification added to a part that is serviced by replacement,
enter:

VMFSIM LOGMOD 1VMVMC23 VVTLCL B TDATA :PART HCPXXX EXC :MOD LCLTST1

• To use VMFSIM LOGMOD to identify a local modification added to a part that is modified using a source
update, enter:

VMFSIM LOGMOD 1VMVMC23 VVTLCL B TDATA :PART HCPSNT TXT
 :MOD LCLTST1.LCLMOD1

Note: LCLTST1 is the name of the local tracking number, and LCLMOD1 is the file type of the source
update file.

• To use VMFSIM LOGMOD with the REPLACE option to identify multiple local modifications and update
the version vector table, enter:

VMFSIM LOGMOD 1VMVMC23 VVTLCL B TDATA :PART HCPSNT TXT
 :MOD LCLTEST1.LCLMOD1 LCLTEST2.LCLMOD2 LCLTEST3.LCLMOD3

VMFSIM LOGMOD

Chapter 20. VMSES/E EXEC and Command Format Summaries 563

Input and Output Files
Input Files
fn SIMDATA | ft

An optional input file.
Input/Output Files
fn VVTlvlid

The version vector table.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM LOGMOD EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM LOGMOD command can be restarted by reissuing the command.

VMFSIM LOGMOD

564 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSIM MODIFY

VMFSIM MODIFY tablefn tableft
*

tablefm

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

1
TDATA

(
2

(
3

Options

)

TDATA

TDATA : tag  data

Options

ADD

DELETE

REPLACE

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl TBLTYPE ft

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 If you specify LOG NONE or allow LOG to default to NONE, the LOGLVL option is ignored.

Purpose
The MODIFY function adds, replaces, or deletes specific data from the Software Inventory.

Note: The MODIFY function does not support the PPF, $PPFTEMP, PRODPART, or $PTFPART files.

VMFSIM MODIFY

Chapter 20. VMSES/E EXEC and Command Format Summaries 565

Operands
tablefn

is the file name of the table to be modified.
tableft

is the file type of the table to be modified.
*

indicates the first table found in the CMS search order on a read/write accessed disk with the correct
file name and file type should be modified. If the table is found on a disk that is not accessed
read/write, you receive an error message. If the table is not found anywhere in the search order, it
is created on your A-disk. If your A-disk is not in read/write mode, you receive an error message.
Asterisk (*) is the default.

tablefm
is the file mode of the minidisk or directory containing the table. The file mode must be accessed as
read-write. If the table is not found on the file mode, it is created on that mode. If the file mode is not
accessed, an error message is displayed; and the table is not created or updated.

TDATA
identifies modification data.

You must specify the key field and a search value, or the modify function exits with a nonzero return
code. If only the key field and data are specified and you choose the DELETE option, the entire record
is deleted (if it is found).

:tag
are the tags to be added, deleted, or replaced.

data
is the data to be added, deleted, or replaced.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, it will either be:

• Added to the end of the list of modifications in the file or stem defined by the FILE, STEM, or ASTEM
operand, if you specified the key field.

• Logically added to the list of modifications in the file or stem defined by the FILE, STEM, or ASTEM
operand, if you did not specify the key field. This means the tags and data on the TDATA statement
are added to the tags and data for each of the modifications listed in the file or stem.

Each final TDATA statement, whether it is specified on the command line or in a file or stem, must
include the key field for the table being modified. If you use the DELETE option and only specify the
key field, the entire record is deleted (if it is found).

FILE
identifies a CMS file that lists TDATA statements that contain modification data. The CMS file has a
collection of tags that contain the search data and tags to be edited. For more information, see “Using
File Input” on page 530.
fn

is the file name of the file.
SIMDATA

is the default file type.
ft

is the file type of the CMS file that contains the tags and data.
*

indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

VMFSIM MODIFY

566 z/VM: 7.3 VMSES/E Introduction and Reference

STEM
identifies a simple REXX stem variable that lists TDATA statements that contain modification data. For
more information, see “Using the STEM Variable” on page 531.
stemid

is the name of the REXX stem.
ASTEM

identifies an associative REXX stem variable that contains modification data. For more information,
see “Associative Stems” on page 532.
astemid

is the name of the associate REXX stem.

Options
ADD

specifies the tags and data on the command are to be added to the table if they do not already exist. If
the data already exists in the table, it is ignored. ADD is the default.

DELETE
specifies the tags and data on the command are to be deleted from the table.

REPLACE
specifies the tags and data on the command are to replace any existing fields in the table. If the entry
does not already exist in the table, it is added.

Note: The existence of an entry is determined solely by the key field.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored when the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is a severity level. Messages are logged in the specified message log if they have a severity level
equal to or above the mlvl specified. The message levels are shown below, in order of severity.
Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the highest severity.

VMFSIM MODIFY

Chapter 20. VMSES/E EXEC and Command Format Summaries 567

mlvl
Level of logging

R
Response required

I
Informational Message

W
Warning Message

E
Error Message

S
Severe Error Message

T
Terminating Error

TBLTYPE
identifies the file type or definition of a table in the Software Inventory that is to be used to process
the table that is specified in the command. When you specify the TBLTYPE option, VMFSIM can
process Software Inventory tables with file types other than those usually associated with a Software
Inventory table, for example, NEWFILE.

If this option is not specified, the VMFSIM MODIFY function assumes the file type of the table
specified on the command, tableft, is defined in the Software Inventory.

ft
is the file type to use when processing the table that is specified on the command. For example, if
you specify TBLTYPE SYSDESCT, you tell VMFSIM the file is really a system-level description table.

Examples

• To use VMFSIM MODIFY to add a prerequisite to the SRVREQT table for a specific PTF, enter:

VMFSIM MODIFY 1VMVMC23 SRVREQT TDATA :PTF UV12345 :PREREQ UV56789

This command adds the prerequisite UV56789 to the PTF UV12345. The format of the output data is
shown below.

:PTF UV12345

 :PREREQ UV56789 UV23456

Input and Output Files
Input Files
fn SIMDATA | ft

An optional input file.
Input/Output Files
tablefn tableft

The Software Inventory table.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

VMFSIM MODIFY

568 z/VM: 7.3 VMSES/E Introduction and Reference

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM MODIFY EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM MODIFY command can be restarted by reissuing the command.

VMFSIM MODIFY

Chapter 20. VMSES/E EXEC and Command Format Summaries 569

VMFSIM QUERY

VMFSIM QUERY tablefn tableft
*

tablefm

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

1
TDATA

(
2

(
3

Options

)

TDATA

TDATA : tag

data

Options

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl TBLTYPE ft

TYPE

FILE fn

STEM stemid

ASTEM astemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

VMFSIM QUERY

570 z/VM: 7.3 VMSES/E Introduction and Reference

Purpose
The QUERY function accesses the specified table and searches for the specified tag and its corresponding
value.

Operands

tablefn
is the file name of the table to be queried.

tableft
is the file type of the table to be queried.

*
is the default file mode. If an asterisk is used as the file mode, the query function processes the first
table found in the search order that matches the specified file name and file type.

tablefm
is the file mode of the minidisk or directory containing the table. If a mode is specified, it must be
accessed.

Note: If you do not specify TDATA, FILE, STEM, or ASTEM, all fields that are applicable to the table are
displayed to show you which fields may be entered.

TDATA
identifies the search data.
:tag

is the tag to search for. If a tag is specified and it does not contain any data, it is treated as a return
field.

data
is the data to search for. The format of the data returned is dependent on the options specified on
the command.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, it will be one of
the following:

• Added to the end of the list of search data in the file or stem defined by the FILE, STEM, or ASTEM
operand, if you specified the key field.

• Logically added to the list of search data in the file or stem defined by the FILE, STEM, or ASTEM
operand, if you did not specify the key field. This means the tags and data on the TDATA statement
are added to the tags and data for the search data listed in the file or stem.

FILE
identifies a CMS file that lists TDATA statements that contain search data. For more information, see
“Using File Input” on page 530.
fn

is the file name of the file.
SIMDATA

is the default file type.
ft

is the file type of the file.
*

indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the CMS file. If a file mode is specified, it must be accessed.

STEM
identifies a simple REXX stem variable that lists TDATA statements that contain search data. For more
information, see “Using the STEM Variable” on page 531.

VMFSIM QUERY

Chapter 20. VMSES/E EXEC and Command Format Summaries 571

stemid
is the name of a REXX stem.

ASTEM
identifies an associative REXX stem variable that contains search data. For more information, see
“Associative Stems” on page 532.
astemid

is the name of an associate REXX stem.

Options
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a 3-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message

VMFSIM QUERY

572 z/VM: 7.3 VMSES/E Introduction and Reference

T
Terminating Error

TBLTYPE
identifies the file type or definition of a table in the Software Inventory that is to be used to process
the table that is specified in the command. When you specify the TBLTYPE option, VMFSIM QUERY
can process Software Inventory tables with file types other than those usually associated with a
Software Inventory table, for example NEWFILE.

If this option is not specified, the VMFSIM QUERY function assumes the file type of the table specified
on the command, tableft, is defined in the Software Inventory.

ft
is the file type to use when processing the table that is specified on the command. For example, if
you specify TBLTYPE SYSDESCT, you tell VMFSIM the file is really a system-level description table.

TYPE
directs the output to the terminal. TYPE is the default.

FILE fn
directs the output from the query to a CMS file.
fn

is the file name of the CMS file containing the output. The file type is SIMDATA, and the file mode
is A.

STEM
identifies a simple REXX stem variable that will contain the output from the query.
stemid

is the name of the REXX stem that contains the output.
ASTEM

identifies an associative REXX stem variable that will contain the output from the query.
astemid

is the name of the associative REXX stem that contains the output.

Usage Notes
1. You can also use the VMFINFO EXEC to query the Software Inventory tables. VMFINFO provides an

easy-to-use panel interface. For more information, see Chapter 17, “Using the VMFINFO Panels,” on
page 199.

Examples

• To use VMFSIM QUERY to query the fields defined for the SRVREQT table, enter:

VMFSIM QUERY 1VMVMC23 SRVREQT

This command returns all the fields defined for the SRVREQT table. The format of the output follows.

:PTF - PTF Number field (KEY)
 :APARNUM - APAR(s) contained in the PTF (FIELD)
 :PREREQ - Pre-requisite PTF(s) (FIELD)
 :COREQ - Co-requisite PTF(s) (FIELD)
 :IFREQ - If-requisite PTF(s) (FIELD)
 :SUP - Superseded PTF(s) (FIELD)
 :HARDREQ - Logical requisite (FIELD)

• To use VMFSIM QUERY to return all the pre-requisites for a specific PTF, enter:

VMFSIM QUERY 1VMVMC23 SRVREQT TDATA :PTF UV12345 :PREREQ

This command returns the pre-requisites for PTF UV12345. The format of the output follows.

VMFSIM QUERY

Chapter 20. VMSES/E EXEC and Command Format Summaries 573

:PTF UV12345
 :PREREQ UV23456 UV56789

• To use VMFSIM QUERY to return the status for a specific PTF, enter:

VMFSIM QUERY 1VMVMC23 SRVAPPS TDATA :PTF UV12345 :STAT

This command returns the status for PTF UV12345. The format of the output follows.

:PTF UV12345
 :STAT SUPED.09/10/21.MAINT APPLIED.08/01/22.JONES

Input and Output Files
Input Files
tablefn tableft

The Software Inventory table.
fn SIMDATA

An optional input file.
Output Files
fn SIMDATA

An optional output file for the returned data.
fn OLDDATA

The previous level of the fn SIMDATA output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information about a
specific message - VMF002E, for example - enter:

help msg vmf002e

If you are not familiar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

The VMFSIM QUERY EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 Command completed successfully but no entries matched the search
arguments.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

VMFSIM QUERY

574 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM QUERY function saves a backup copy of the SIMDATA file that is being updated if it is found
on the output disk. The file name of the file is the same as the original file, and the file type is OLDDATA.
You can use this file to recover the SIMDATA file to the level of data it contained before the command was
run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM QUERY

Chapter 20. VMSES/E EXEC and Command Format Summaries 575

VMFSIM SRVDEP

VMFSIM SRVDEP reqtablefn SRVREQT

reqtableft

reqtablefm

*

apptablefn

=

SRVAPPS

apptableft

apptablefm

*
=

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

1
TDATA

(
2

(
3

Options

)

TDATA
TDATA :PTF pftnum

Options

LASTAPP

BASELVL

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl

TYPE

APPLIST fn

FILE fn

STEM stemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The VMFSIM SRVDEP command accesses the service-level requisite and apply status tables and returns
all the dependents that have been applied. You can use this command to determine which PTFs depend
on a specific PTF before you remove it from a product.

VMFSIM SRVDEP

576 z/VM: 7.3 VMSES/E Introduction and Reference

Operands
reqtablefn

is the file name of the requisite table to search.
SRVREQT

is the file type of the service-level requisite table.
reqtableft

is the file type of the requisite table to search.
reqtablefm

is the file mode of the requisite table to search. If a file mode is specified, it must be accessed.
*

indicates you want to search all file modes. If you specify an asterisk (*) as the file mode, VMFSIM
uses the first file in the search order that matches the specified file name and file type.

apptablefn
is the file name of the apply status table to use to determine the status of the PTFs that will be
processed.

=
tells VMFSIM to use the name that was entered for the requisite table. If an equal sign (=) is used as
the file name, the same file name is used for both the requisite table and the apply status table.

SRVAPPS
is the file type of the service-level apply status table.

apptableft
is the file type of the service-level apply status table to use to determine the status of the PTFs that
will be processed.

apptablefm
is the file mode of the service-level apply status table to use to determine the status of the PTFs that
will be processed. If a file mode is specified, it must be accessed.

*
searches all file modes. If an asterisk (*) is used as the file mode, the first file in the search order that
matches the specified file name and file type is used.

=
uses the file mode specified for the service-level requisite table. If an equal sign (=) is used as the file
mode, the same file mode is used for both the requisite table and the apply status table.

TDATA
identifies the search data. You can specify additional tags, but they are ignored.
:PTF

is the tag to search for. You must use :PTF when you enter a VMFSIM SRVDEP command.
ptfnum

is the PTF number to search for. You must enter a PTF number (ptfnum) when you enter a VMFSIM
SRVDEP command.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, the tags and
data specified are logically added to each TDATA statement contained in the file or stem defined by
the FILE, STEM, or ASTEM operand.

FILE
identifies a CMS file that lists TDATA statements that contain search data. For more information, see
“Using File Input” on page 530.
fn

is the file name of the file.
SIMDATA

is the default file type.

VMFSIM SRVDEP

Chapter 20. VMSES/E EXEC and Command Format Summaries 577

ft
is the file type of the CMS file.

*
indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

STEM
identifies a simple REXX stem variable that lists TDATA statements that contain search data. For more
information, see “Using the STEM Variable” on page 531.
stemid

is the name of a REXX stem.
ASTEM

identifies an associative REXX stem variable that contains search data. For more information, see
“Associative Stems” on page 532.
astemid

is the name of an associate REXX stem.

Options
LASTAPP

returns all dependents that have a status of APPLIED. The default is LASTAPP.
BASELVL

returns all dependents regardless of status.
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order

VMFSIM SRVDEP

578 z/VM: 7.3 VMSES/E Introduction and Reference

of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error
TYPE

directs the output to the terminal. TYPE is the default.
APPLIST

directs the output to a CMS file in the format required by VMFAPPLY.

Note: Only PTF numbers defined on :PTF tags are added to the apply list.

fn
is the file name of the CMS file. The file type is $APPLIST, and the file mode is A.

FILE
directs the output to a CMS file.
fn

is the file name of the CMS file. The file type is SIMDATA, and the file mode is A.
STEM

identifies a simple REXX stem variable that will contain the output.
stemid

is the name of a REXX stem.

Usage Notes
1. If the specified apply status table does not exist, VMFSIM assumes nothing has been applied.

Examples

• Determining Dependent PTFs

You can use the VMFSIM SRVDEP function with the service-level requisite table and service-level apply
status table to return the dependents for the PTFs specified. By definition, a dependent PTF is applied.
To determine which PTFs are dependent on a specific PTF that you want to remove from the product,
enter:

vmfsim srvdep 5700abcd srvreqt * = srvapps * tdata :ptf um15010

You receive this response:

VMFSPC2480I Results for TDATA :PTF UM15010
 :PTF UM15010
 :DEPS UM15020
 :SUPBY *NONE*
 :OUTREQS *NONE*

VMFSIM SRVDEP

Chapter 20. VMSES/E EXEC and Command Format Summaries 579

The response includes:

:PTF
the PTF number being processed.

:DEPS
a list of the PTFs that are dependent on the PTF specified.

:SUPBY
a list of the PTFs that supersede this PTF.

:OUTREQS
a list of the PTFs in another product that are dependent on the PTF specified.

Input and Output Files
Input Files
reqtablefn reqtableft

The requisite table.
prodid SRVREQT

The service-level requisite table.
apptablefn apptableft

The system-level apply status table.
appid SRVAPPS

The service-level apply status table.
fn SIMDATA | ft

An optional input file.
Output Files
fn $APPLIST

An apply list.
fn SIMDATA

An optional output file for the returned data.
fn OLDDATA

The previous level of the fn SIMDATA output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM SRVDEP EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 PTF or PRODID was not found in tables.

VMFSIM SRVDEP

580 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM SRVDEP function saves a backup copy of the SIMDATA file that is being updated if it is found
on the output disk. The file name of the file is the same as the original file, and the file type is OLDDATA.
You can use this file to recover the SIMDATA file to the level of data it contained before the command was
run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM SRVDEP

Chapter 20. VMSES/E EXEC and Command Format Summaries 581

VMFSIM SRVREQ

VMFSIM SRVREQ reqtablefn SRVREQT

reqtableft

reqtablefm

*

apptablefn

=

SRVAPPS

apptableft

apptablefm

*
=

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

1
TDATA

(
2

(
3

Options

)

TDATA
TDATA :PTF pftnum

Options

LASTAPP

BASELVL

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl

TYPE

APPLIST fn

FILE fn

STEM stemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The VMFSIM SRVREQ function accesses the service-level requisite table and the service-level apply
status table and returns the requisites for the specified PTFs. You can use this command to determine if
you have received and applied all the PTFs that are required by a PTF that you want to install.

VMFSIM SRVREQ

582 z/VM: 7.3 VMSES/E Introduction and Reference

Operands
reqtablefn

is the file name of the requisite table to search.
SRVREQT

is the file type of the service-level requisite table.
reqtableft

is the file type of the requisite table to search.
reqtablefm

is the file mode of the requisite table to search. If a file mode is specified, it must be accessed.
*

searches all file modes. If you enter an asterisk (*) as the file mode, VMFSIM uses the first file in the
search order that matches the specified file name and file type.

apptablefn
is the file name of the service-level apply status table to use to determine the status of the PTFs that
will be processed.

=
tells VMFSIM to use the name that was entered for the service-level requisite table. If an equal sign
(=) is used as the file name, the same file name is used for both the requisite table and the apply
status table.

SRVAPPS
is the file type of the service-level apply status table.

apptableft
is the file type of the service-level apply status table to use to determine the status of the PTFs that
will be processed.

apptablefm
is the file mode of the service-level apply status table to use to determine the status of the PTFs that
will be processed. If a file mode is specified, it must be accessed.

*
searches all file modes. If an asterisk (*) is used as the file mode, VMFSIM uses the first file in the
search order that matches the specified file name and file type.

=
uses the file mode specified for the requisite table. If an equal sign (=) is used as the file mode, the
same file mode is used for both the requisite table and the apply status table.

TDATA
identifies the search data. You can specify additional tags, but they are ignored.
:PTF

is the tag to search for. You must use :PTF when you enter a VMFSIM SRVREQ command.
ptfnum

is the PTF number to search for. You must enter a PTF number (ptfnum) when you enter a VMFSIM
SRVREQ command.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, it will be added
to the end of the list of PTFs or products in the file or stem defined by the FILE, STEM, or ASTEM
operand.

FILE
identifies a CMS file that lists TDATA statements that contain search data. For more information, see
“Using File Input” on page 530.
fn

is the file name of the file.
SIMDATA

is the default file type.

VMFSIM SRVREQ

Chapter 20. VMSES/E EXEC and Command Format Summaries 583

ft
is the file type of the CMS file that contains the tags and data.

*
indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

STEM
identifies a simple REXX stem variable that lists TDATA statements that contain search data. For more
information, see “Using the STEM Variable” on page 531.
stemid

is the name of a REXX stem.
ASTEM

identifies an associative REXX stem variable that contains search data. For more information, see
“Associative Stems” on page 532.
astemid

is the name of an associative REXX stem.

Options
LASTAPP

indicates the requisites search should stop when a requisite has a status of APPLIED or SUPED.
LASTAPP is the default.

BASELVL
indicates the requisites search should continue when a requisite has a status of APPLIED or SUPED.
This causes all the requisites to be collected back to the base level of the product.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

VMFSIM SRVREQ

584 z/VM: 7.3 VMSES/E Introduction and Reference

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error
TYPE

directs the output to the terminal. TYPE is the default.
APPLIST

directs the output to an apply list that can later be used by VMFAPPLY.

Note: Only PTF numbers defined on :PTF tags are added to the apply list.

fn
is the file name of the apply list. The file type is $APPLIST, and the file mode is A.

FILE
directs the output to a CMS file.
fn

is the file name of the CMS file. The file type is SIMDATA, and the file mode is A.
STEM

identifies a simple REXX stem variable that will contain the output.
stemid

is the name of a REXX stem.

Usage Notes
1. If the specified apply status table does not exist, VMFSIM assumes nothing has been applied.

Examples

• Determining Requisite PTFs

You can use the VMFSIM SRVREQ function with the service-level requisite table and service-level apply
status table to return the requisites for the PTFs specified.

To determine if you have all the PTFs (received and applied) that are required by a PTF you want to
install, enter:

vmfsim srvreq 5700abcd srvreqt * = srvapps * tdata :ptf um18135

You receive this response:

VMFSIM SRVREQ

Chapter 20. VMSES/E EXEC and Command Format Summaries 585

VMFSIP2480I RESULTS FOR
 TDATA :PTF UM18135
:PTF UM18135
 :PREREQ UM18109
 :HARDREQ VM47104
 :SUBREQ UM18082
 :SUBIF * NONE *
 :SUBHARDREQ * NONE *

The response can include:

:PTF
the PTF number being processed.

:PREREQ
a list of the PTFs in this product or another product that must be installed before installing this PTF.
PREREQs satisfy the service chain.

:COREQ
a list of the PTFs in this product or another product that must be installed before running this
product with the PTF installed. COREQs satisfy the service chain.

:SUP
a list of the PTFs this PTF supersedes, or is a functional replacement of.

:IFREQ
a list of the PTFs in another product that are required if the product is installed.

:HARDREQ
a list of the APARs that are required to be installed for this PTF to function. These are a subset
of the PREREQs that have real code intersections or functional dependencies. HARDREQs satisfy
functional requisites.

:SUBREQ
a list of the PTFs in this product or another product that are required by the requisites identified
above.

:SUBIF
a list of the PTFs in another product that are required by the requisites identified above if the
product identified in the condition is installed.

:SUBHARDREQ
a list of the APARs that are required to be installed by the PTFs listed above for them to function
correctly.

Note: The fields :SUBREQ, :SUBIF, and :SUBHARDREQ are not in the actual table, they are output only
from the VMFSIM SRVREQ command.

Input and Output Files
Input Files
reqtablefn reqtableft

The requisite table.
prodid SRVREQT

The service-level requisite table.
apptablefn apptableft

The apply status table.
appid SRVAPPS

The service-level apply status table.
fn SIMDATA | ft

An optional input file.
Output Files

VMFSIM SRVREQ

586 z/VM: 7.3 VMSES/E Introduction and Reference

fn $APPLIST
An apply list.

fn SIMDATA
An optional output file for the returned data.

fn OLDDATA
The previous level of the fn SIMDATA output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation.

To display information on a specific message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM SRVREQ EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 PTF or PRODID was not found in tables.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM SRVREQ function saves a backup copy of the SIMDATA file that is being updated if it is found
on the output disk. The file name of the file is the same as the original file, and the file type is OLDDATA.
You can use this file to recover the SIMDATA file to the level of data it contained before the command was
run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM SRVREQ

Chapter 20. VMSES/E EXEC and Command Format Summaries 587

VMFSIM SYSDEP

VMFSIM SYSDEP reqtablefn SYSREQT

reqtableft

reqtablefm

*

apptablefn

=

SYSAPPS

apptableft

apptablefm

*
=

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

1
TDATA

(
2

(
3

Options

)

TDATA
TDATA :PRODID luid

Options

LASTAPP

BASELVL

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl

TYPE

APPLIST fn

FILE fn

STEM stemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The VMFSIM SYSDEP command accesses the the system-level requisite and apply status tables and
returns all the dependents that have been applied.

VMFSIM SYSDEP

588 z/VM: 7.3 VMSES/E Introduction and Reference

You can use this command to determine which products depend on a specific product before you remove
it from the system.

Operands
reqtablefn

is the file name of the requisite table to search.
SYSREQT

is the file type of the system-level requisite table.
reqtableft

is the file type of the requisite table to search.
reqtablefm

is the file mode of the requisite table to search. If a file mode is specified, it must be accessed.
*

indicates you want to search all file modes. If you specify an asterisk (*) as the file mode, VMFSIM
uses the first file in the search order that matches the specified file name and file type.

apptablefn
is the file name of the apply status table to use to determine the status of the products that will be
processed.

=
tells VMFSIM to use the name that was entered for the requisite table. If an equal sign (=) is used as
the file name, the same file name is used for both the requisite table and the apply status table.

SYSAPPS
is the file type of the system-level apply status table.

apptableft
is the file type of the system-level apply status table to use to determine the status of the products
that will be processed.

apptablefm
is the file mode of the system-level apply status table to use to determine the status of the products
that will be processed. If a file mode is specified, it must be accessed.

*
searches all file modes. If an asterisk (*) is used as the file mode, the first file in the search order that
matches the specified file name and file type is used.

=
uses the file mode specified for the system-level requisite table. If an equal sign (=) is used as the file
mode, the same file mode is used for both the requisite table and the apply status table.

TDATA
identifies the search data. You can specify additional tags, but they are ignored.
:PRODID

is the tag to search for. You must use :PRODID when you enter a VMFSIM SYSDEP command.
luid

is the loadable unit identifier to search for. You must enter a loadable unit identifier (luid) when
you enter a VMFSIM SYSDEP command. The format of luid is prodid%compname.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, the tags and
data specified are logically added to each TDATA statement contained in the file or stem defined by
the FILE, STEM, or ASTEM operand.

FILE
identifies a CMS file that lists TDATA statements that contain search data. For more information, see
“Using File Input” on page 530.
fn

is the file name of the file.

VMFSIM SYSDEP

Chapter 20. VMSES/E EXEC and Command Format Summaries 589

SIMDATA
is the default file type.

ft
is the file type of the CMS file.

*
indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

STEM
identifies a simple REXX stem variable that lists TDATA statements that contain search data. For more
information, see “Using the STEM Variable” on page 531.
stemid

is the name of a REXX stem.
ASTEM

identifies an associative REXX stem variable that contains search data. For more information, see
“Associative Stems” on page 532.
astemid

is the name of an associate REXX stem.

Options
LASTAPP

returns all dependents that have a status of APPLIED. The default is LASTAPP.
BASELVL

returns all dependents regardless of status.
LOG

identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

VMFSIM SYSDEP

590 z/VM: 7.3 VMSES/E Introduction and Reference

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error
TYPE

directs the output to the terminal. TYPE is the default.
APPLIST

directs the output to a CMS file in the format required by VMFINS INSTALL LIST.
fn

is the file name of the CMS file. The file type is $APPLIST, and the file mode is A.
FILE

directs the output to a CMS file.
fn

is the file name of the CMS file. The file type is SIMDATA, and the file mode is A.
STEM

identifies a simple REXX stem variable that will contain the output.
stemid

is the name of a REXX stem.

Usage Notes
1. If the specified apply status table does not exist, VMFSIM assumes nothing has been applied.

Examples

Determining Dependent Products

You can use the VMFSIM SYSDEP command with the system-level requisite table and system-level apply
status table to return the dependents for the specified products.

To determine which products are dependent on a specific product that you want to remove from the
system, enter:

vmfsim sysdep vm sysreqt * = sysapps * tdata :prodid 1VMVMC23%MYCOMP

You receive this response:

VMFSIP2480I RESULTS FOR
 TDATA :PRODID 1VMVMC23%MYCOMP
:PRODID 1VMVMC23%MYCOMP

VMFSIM SYSDEP

Chapter 20. VMSES/E EXEC and Command Format Summaries 591

 :DEPS prod1, prod2, prod3, prod4
 prod5, prod6
 :DREQDEPS prod7, prod8
 :SUPBY *NONE*

The response includes:

:PRODID
the name of the product that was processed.

:DEPS
a list of the products that are dependent on the product specified.

:DREQDEPS
a list of the products that are dependent features of the product specified on the command.

:SUPBY
the name of a product that supersedes this product.

Input and Output Files
Input Files
reqtablefn reqtableft

The requisite table.
sysid SYSREQT

The system-level requisite table.
apptablefn apptableft

The apply status table.
sysid SYSAPPS

The system-level apply status table.
fn SIMDATA | ft

An optional input file.
Output Files
fn $APPLIST

An apply list.
fn SIMDATA

An optional output file for the returned data.
fn OLDDATA

The previous level of the fn SIMDATA output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM SYSDEP EXEC issues the following return codes:

VMFSIM SYSDEP

592 z/VM: 7.3 VMSES/E Introduction and Reference

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 PTF or PRODID was not found in tables.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM SYSDEP function saves a backup copy of the SIMDATA file that is being updated if it is found
on the output disk. The file name of the file is the same as the original file, and the file type is OLDDATA.
You can use this file to recover the SIMDATA file to the level of data it contained before the command was
run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM SYSDEP

Chapter 20. VMSES/E EXEC and Command Format Summaries 593

VMFSIM SYSREQ

VMFSIM SYSREQ reqtablefn SYSREQT

reqtableft

reqtablefm

*

apptablefn

=

SYSAPPS

apptableft

apptablefm

*
=

TDATA

FILE fn
SIMDATA *

ft
*

fm

STEM stemid

ASTEM astemid

1
TDATA

(
2

(
3

Options

)

TDATA
TDATA :PRODID luid

Options

LASTAPP

BASELVL

LOG NONE

LOG logid

LOGLVL
4

I

LOGLVL mlvl

TYPE

APPLIST fn

FILE fn

STEM stemid

Notes:
1 One extra TDATA statement is allowed following the input file or stem specification.
2 The defaults you receive appear above the line in the Options fragment.
3 You can enter options in any order between the parentheses.
4 The LOGLVL option is ignored if you specify LOG NONE or allow LOG to default to NONE.

Purpose
The VMFSIM SYSREQ function accesses the the system-level requisite table and the system-level apply
status table and returns the requisites for the specified products. You can use this command to determine
if you have all the products installed that are required by another product that you want to install.

VMFSIM SYSREQ

594 z/VM: 7.3 VMSES/E Introduction and Reference

Operands

reqtablefn
is the file name of the requisite table to search.

SYSREQT
is the file type of the system-level requisite table.

reqtableft
is the file type of the system-level requisite table to search.

reqtablefm
is the file mode of the system-level requisite table to search. If a file mode is specified, it must be
accessed.

*
searches all file modes. If you enter an asterisk (*) as the file mode, VMFSIM uses the first file in the
search order that matches the specified file name and file type.

apptablefn
file name of the apply status table to use to determine the status of the products that will be
processed.

=
tells VMFSIM to use the name that was entered for the system-level requisite table. If an equal sign
(=) is used as the file name, the same file name is used for both the requisite table and the apply
status table.

SYSAPPS
is the file type of the system-level apply status table.

apptableft
file type of the system-level apply status table to use to determine the status of the products that will
be processed.

apptablefm
file mode of the system-level apply status table to use to determine the status of the products that
will be processed. If a file mode is specified, it must be accessed.

*
searches all file modes. If an asterisk (*) is used as the file mode, VMFSIM uses the first file in the
search order that matches the specified file name and file type.

=
uses the file mode specified for the system-level requisite table. If an equal sign (=) is used as the file
mode, the same file mode is used for both the requisite table and the apply status table.

TDATA
identifies the search data. You can specify additional tags, but they are ignored.
:PRODID

is the tag to search for. You must use :PRODID when you enter a VMFSIM SYSREQ command.
luid

is the loadable unit identifier to search for. You must enter a loadable unit identifier (luid) when
you enter a VMFSIM SYSREQ command. The format of luid is prodid%compname.

Note: If you specify a TDATA statement following the FILE, STEM, or ASTEM operand, it will be added
to the end of the list of PTFs or products in the file or stem defined by the FILE, STEM, or ASTEM
operand.

FILE
identifies a CMS file that lists TDATA statements that contain search data. For more information, see
“Using File Input” on page 530.
fn

is the file name of the file.

VMFSIM SYSREQ

Chapter 20. VMSES/E EXEC and Command Format Summaries 595

SIMDATA
is the default file type.

ft
is the file type of the CMS file that contains the tags and data.

*
indicates the first file found in the search order with the correct file name and file type should be
used. Asterisk (*) is the default.

fm
is the file mode of the file. If a file mode is specified, it must be accessed.

STEM
identifies a simple REXX stem variable that lists TDATA statements that contain search data. For more
information, see “Using the STEM Variable” on page 531.
stemid

is the name of a REXX stem.
ASTEM

identifies an associative REXX stem variable that contains search data. For more information, see
“Associative Stems” on page 532.
astemid

is the name of an associative REXX stem.

Options
LASTAPP

indicates the requisites search should stop when a requisite has a status of APPLIED or SUPED.
LASTAPP is the default.

BASELVL
indicates the requisites search should continue when a requisite has a status of APPLIED or SUPED.
This causes all the requisites to be collected back to the base level of the product.

LOG
identifies the type of message logging to be done. Messages are logged in the specified message log
as well as written to the terminal.

No messages are logged until initial validation of the command is complete.

Note: The LOG option is reserved for use by VMSES/E.

NONE
is the default. If NONE is specified, messages are written only to the terminal.

logid
is a three-character message log identifier, for example:
logid

Type of Log
APP

The apply message log ($VMFAPP $MSGLOG A)
BLD

The build message log ($VMFBLD $MSGLOG A)
XYZ

The user message log ($VMFXYZ $MSGLOG A)
LOGLVL

identifies the level of message logging to be done.

Note: The LOGLVL option is ignored if the LOG option is NONE.

VMFSIM SYSREQ

596 z/VM: 7.3 VMSES/E Introduction and Reference

I
is the default. ‘I’ logs all informational messages, warning messages, error messages, severe error
messages, and terminating errors.

mlvl
is the message severity level. Messages are logged in the specified message log if they have a
severity level equal to or above the mlvl specified. The message levels are shown below, in order
of severity. Messages of level ‘R’ have the lowest severity, and messages of level ‘T’ have the
highest severity.
mlvl

Level of logging
R

Response required
I

Informational Message
W

Warning Message
E

Error Message
S

Severe Error Message
T

Terminating Error
TYPE

directs the output to the terminal. TYPE is the default.
APPLIST

directs the output to an apply list that can later be used by VMFINS INSTALL LIST.
fn

is the file name of the apply list. The file type is $APPLIST, and the file mode is A.
FILE

directs the output to a CMS file.
fn

is the file name of the CMS file. The file type is SIMDATA, and the file mode is A.
STEM

identifies a simple REXX stem variable that will contain the output.
stemid

is the name of a REXX stem.

Usage Notes
1. If the specified apply status table does not exist, VMFSIM assumes nothing has been applied.

Examples

Determining Product Requisites

You can use the VMFSIM SYSREQ command with the system-level requisite table and system-level apply
status table to return the requisites for specified products.

To determine if you have all the products installed on your system that are required by a product you want
to install, enter:

vmfsim sysreq vm sysreqt * = sysapps * tdata :prodid 1VMVMC23%MYCOMP

You receive this response:

VMFSIM SYSREQ

Chapter 20. VMSES/E EXEC and Command Format Summaries 597

VMFSIP2480I RESULTS FOR
 TDATA :PRODID 1VMVMC23%MYCOMP
:PRODID 1VMVMC23%MYCOMP
 :PREREQ 1VMVMP11
 :REQ *NONE*
 :DREQ 1VMVME10
 :SUP *NONE*
 :IFREQ *NONE*
 :NPRE *NONE*
 :SUBREQ 1VMVMS10
 :SUBIF *NONE*
 :PTFREQS *NONE*

The response includes:

:PRODID
the name of the product that was processed.

:PREREQ
a list of the products that must be installed before installing this product.

:REQ
a list of the products that must be installed before running this product.

:DREQ
a list of the products that this product is a dependent feature of.

:SUP
a list of the products that this product supersedes or is a functional replacement of.

:IFREQ
a list of the products that are required, if the product identified in the condition is installed.

:NPRE
a list of the products that cannot be installed if this product is installed.

:SUBREQ
a list of the products that are required to be installed by the requisites identified above.

:SUBIF
a list of the products that are required to be installed by the requisites identified above if the product
identified in the condition is installed.

:PTFREQS
PTFs that must be installed to products that are requisites.

Input and Output Files
Input Files
reqtablefn reqtableft

The requisite table.
sysid SYSREQT

The system-level requisite table.
apptablefn apptableft

The apply status table.
sysid SYSAPPS

The system-level apply status table.
fn SIMDATA | ft

An optional input file.
Output Files
fn $APPLIST

An apply list.
fn SIMDATA

An optional output file for the returned data.

VMFSIM SYSREQ

598 z/VM: 7.3 VMSES/E Introduction and Reference

fn OLDDATA
The previous level of the fn SIMDATA output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation.

To display information on a specific message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSIM SYSREQ EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

2 Command completed successfully but extraneous data was encountered.

4 PTF or PRODID was not found in tables.

12 Not all input data was processed successfully due to syntax errors in the data.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

The VMFSIM SYSREQ function saves a backup copy of the SIMDATA file that is being updated if it is found
on the output disk. The file name of the file is the same as the original file, and the file type is OLDDATA.
You can use this file to recover the SIMDATA file to the level of data it contained before the command was
run.

After the errors have been corrected, rerun the command to regenerate the SIMDATA file.

VMFSIM SYSREQ

Chapter 20. VMSES/E EXEC and Command Format Summaries 599

VMFSUFIN EXEC

VMFSUFIN  prodid
%compname

ALL

(
1

(
2

Options

)

Options

RSUEnv

.

 fn

COREnv

.

 fn

KEY key
3

COREnv

.

 fn

RSUEnv

.

 fn

KEY key
3

RSUTape

.

 cuu

CORTape

.

 cuu

ENVMode  fm

PRompt

NOPRompt

NOFOrce

FOrce REStart BUIld

NOREC TEST

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 The KEY option is not valid with the ALL operand.

Purpose

VMFSUFIN EXEC

600 z/VM: 7.3 VMSES/E Introduction and Reference

The VMFSUFIN EXEC installs service from RSU service envelope files, COR service envelope files, RSU
service tapes, or COR service tapes. If you use service envelope files, you can install RSU and COR service
with one invocation of VMFSUFIN.

Operands
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23).

%compname
is the component name preceded by a percent sign (%), for example %CMS. compname is a 1-16
character alphanumeric identifier.

ALL
indicates service is to be installed for all products on the selected RSU (or COR, if no RSU is selected).

Options
RSUEnv

indicates an RSU envelope is to be installed.
fn

is the file name of an RSU envelope. The file type must be SERVLINK.
.

joins multiple file names (no blanks) for multivolume RSU envelopes (for example,
RPTF1234.RPTF1235).

COREnv
indicates a COR envelope is to be installed.
fn

is the file name of a COR envelope. The file type must be SERVLINK.
.

joins multiple file names (no blanks) for multivolume COR envelopes (for example,
VPTF5678.VPTF5679).

ENVMode
indicates a disk must be retained when the envelopes are installed.
fm

is the file mode of the disk that contains the envelopes.
RSUTape

indicates an RSU tape is to be installed.
cuu

is the address of the tape drive where the RSU tape is to be mounted
.

joins multiple addresses (no blanks) for multivolume RSU tapes (for example, 181.182).
CORTape

indicates a COR tape is to be installed.
cuu

is the address of the tape drive where the COR tape is to be mounted
.

joins multiple addresses (no blanks) for multivolume COR tapes (for example, 181.181).
KEY

indicates this call is one of two that pass the data required to install the service for these products.
key

is the character string that identifies the two calls required to pass the data for these products.

VMFSUFIN EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 601

PRompt
calls VMFSETUP with the PROMPT option. Therefore, the user will be prompted for link passwords, if
necessary.

NOPRompt
calls VMFSETUP with the NOPROMPT option. Therefore, the user will not be prompted for link
passwords. If a link password is required, VMFSUFIN fails.

NOFOrce
may install or not install service based on the setting of the :INSTALL tag in the VM SYSSUF table.

FOrce
installs service regardless of the setting of the :INSTALL tag in the VM SYSSUF table.

REStart
restarts a previous call to VMFSUFIN. The ENVMODE and KEY options, as well as any specified
envelope names, are ignored when RESTART is specified.

BUIld
builds serviced parts by invoking VMFBLD with the SERVICED option.

NOREC
skips the receive step and invokes VMFAPPLY and VMFBLD.

TEST
invokes VMFAPPLY with the TEST option and skips VMFBLD.

Usage Notes
1. To run VMFSUFIN manually, you must first invoke the VMFSUFTB command to build the SYSSUF

table. You can then customize the SYSSUF table using the VMFSIM MODIFY or the VMFUPDAT
SYSSUF command.

2. VMFSUFIN uses the :INSTALL and :BUILD tags in the SYSSUF table to determine whether to install
service for a product and whether to build the installed service.

3. VMFSUFIN uses the :INSPPF and :BLDPPF tags in the SYSSUF table to obtain the PPF names and
components names used to install service for a product and to build the installed service.

4. After using VMFSUFIN to install and build service, you must refer to the product's service instructions
to complete the service process. VMFSUFIN automatically completes the service procedures by
issuing the VMFBLD command with the SERVICED option. Any further service procedures, such as
placing into production or customization, must be performed manually.

5. If the NOPROMPT option is specified, you must have the appropriate LINK authority to all disks listed
in the :MDA section of the PPF for all products specified on the command. The :DCL section of the
PPF defines the authority for all the disks. If the NOPROMPT option is not specified, you will be
prompted for the password of any disk for which you do not have the appropriate authority.

6. You can not initiate VMFSUFIN without the RESTART option if a restart record exists in the SYSREST
table for any of the specified products or the service package. If you do not intend to restart the
interrupted invocation, you must delete the restart record using the VMFSIM MODIFY command.

7. To process a multivolume service tape, a device address must be specified for each tape volume (for
example, to process a 3-volume RSU tape using tape addresses 181, 182, and 183, specify RSUTAPE
181.182.183). If you use a single tape device, specify the same address multiple times (for example,
to process a 2-volume RSU tape using tape address 181, specify RSUTAPE 181.181).

8. You can process a single volume of a multivolume service tape by specifying one tape address and
mounting the appropriate volume. If you use the ALL operand, only products on the tape volume that
is mounted are processed.

9. If the BUILD option is specified, only the first product specified is processed and the ALL operand is
invalid.

10. If the BUILD option is specified, the RSUENV, CORENV, ENVMODE, RSUTAPE, CORTAPE, KEY, and
RESTART options are invalid.

VMFSUFIN EXEC

602 z/VM: 7.3 VMSES/E Introduction and Reference

Examples

• To install service to MYCOMP and MYCOMP2 from RSU envelope RSU9802 SERVLINK on the L-disk,
enter:

VMFSUFIN 1VMVMC23%MYCOMP 1VMVMP11%MYCOMP2 (RSUENV RSU9802 ENVMODE L

• To restart the previous example after an error condition has been corrected, enter:

VMFSUFIN 1VMVMC23%MYCOMP (RESTART

• To install service to all the products on RSU envelope RPTF1234 along with any COR service for those
products on COR envelope VPTF5678, enter:

VMFSUFIN ALL (RSUENV RPTF1234 CORENV VPTF5678

• To install service to all the products on a 2-volume RSU tape using a single tape drive at address 181,
enter:

VMFSUFIN ALL (RSUTAPE 181.181

Input and Output Files
VMFSUFIN calls the VMFSETUP, VMFMRDSK, VMFINS, VMFPSU, VMFAPPLY, VMFREC, and VMFBLD execs;
therefore, VMFSUFIN uses all of the input and output files for those execs. The input and output files
unique to VMFSUFIN are:
Input Files
sysid SYSSUF

The system-level Service Update Facility table. sysid is the value assigned to the SYSTEM option in the
VMFINS DEFAULTS file.

fn SERVLINK
RSU and COR service envelopes.

Input/Output Files
sysid SYSREST

The system-level restart table. sysid is the value assigned to the SYSTEM option in the VMFINS
DEFAULTS file.

SERVICE $PTFS
Applied PTFs by component.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation.

To display information on a specific message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSUFIN EXEC issues the following return codes:

VMFSUFIN EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 603

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

5 Command not complete because service that affects core VMSES/E
components has been identified.

6 Command not completed because local modifications were found.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

Recovery Information

VMFSUFIN stores recovery information in the SYSREST table. You can restart an interrupted invocation
of VMFSUFIN by entering the VMFSUFIN command with the RESTART option. VMFSUFIN uses the first
product specified (and ignores any other products) and locates a restart record in the SYSREST table
that contains that product. If you specify the ALL operand instead of a list of products, VMFSUFIN
locates a restart record that contains the ALL keyword. This restart record is used to complete the
interrupted invocation by finishing the service install for the interrupted product and processing the
remaining products that were not previously processed. The ENVMODE and KEY options are ignored when
RESTART is specified. If the restart record indicates envelope service, the envelope names are taken from
the restart record. If the restart record indicates tape service, the tape addresses must be specified on
the command.

VMFSUFIN EXEC

604 z/VM: 7.3 VMSES/E Introduction and Reference

VMFSUFTB EXEC

VMFSUFTB (
NOFile

FILE SUFFN fn)

Purpose
The VMFSUFTB EXEC creates and updates the system-level service update facility table (VM SYSSUF),
that contains a list of all installed products and related data needed by the automated service commands.

Options
FILE

creates an output file containing a subset of data from the VM SYSSUF table.
NOFile

does not create the output file.
SUFFN fn

indicates which system-level service update facility file to update. fn is the file name of the system-
level service update facility file. The default file name is defined by the SYSTEM option in the VMFINS
DEFAULTS file. This option is used by the VMFUPDAT command.

Usage Notes
1. VMFSUFTB builds records in the VM SYSSUF table from the SYSAPPS, SYSRECS, and SYSDESCT tables.

VMFSUFTB only updates the :SERVLEV field in an existing record.
2. If the PRODID in the SYSRECS table does not currently appear in the VM SYSSUF table, the entry with

the latest date in the :STAT field is selected. If the PRODID in the SYSRECS table does appear in the VM
SYSSUF table, an entry is selected if its :PPF field matches the :INSPPF field in the VM SYSSUF table. If
no match is found, no entry is selected.

3. You can modify the :P2PPPF, :INCLUDE, :INSTALL, :INSPPF, :BUILD, and :BLDPPF fields in the SYSSUF
table using the VMFSIM MODIFY or the VMFUPDAT command. Before making any updates, you should
invoke VMFSUFTB to update the SYSSUF table to the latest level. For more information on the SYSSUF
table, see “The System-Level Service Update Facility Table (VM SYSSUF)” on page 169.

Examples

To update the VM SYSSUF table to the latest level, enter:

VMFSUFTB

Input and Output Files
Input Files
sysid SYSAPPS

The system-level apply status table. sysid is the value assigned to the SYSTEM option in the VMFINS
DEFAULTS file.

sysid SYSRECS
The system-level receive status table. sysid is the value assigned to the SYSTEM option in the VMFINS
DEFAULTS file.

VMFSUFTB EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 605

sysid SYSDESCT
The system-level description table. sysid is the value assigned to the SYSTEM option in the VMFINS
DEFAULTS file.

Input/Output Files
sysid SYSSUF

The system-level service update facility table. sysid is the value assigned to the SYSTEM option in the
VMFINS DEFAULTS file.

Output Files
SUF OUT

The service update facility output file.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation.

To display information on a specific message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFSUFIN EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

24 Command failed because of a command line syntax error.

36 Command failed because a target disk or directory was not available.

100 Command failed because of an external error.

VMFSUFTB EXEC

606 z/VM: 7.3 VMSES/E Introduction and Reference

VMFUPDAT EXEC

VMFUPDAT

SRVBLDS compname

SYSSUF

SYSLMOD

SYSREST

SYSMEMO

SYSPINV

PROD recid  systemid

SYSTEM systemid from_system

REMOVE PROD recid ALL

systemid

REMOVE SYSTEM systemid

Purpose
Use the VMFUPDAT EXEC to:

• change the manual status in the Service-Level Build Status table.
• change the INSTALL, BUILD, INCLUDE, INSPPF, BLDPPF and P2PPPF tags in the System-Level Service

Update table.
• change the local modification rework status in the System-Level Local Modification table.
• delete restart records in System-Level Restart table or SERVICE $RESTART (from SERVICE EXEC) file.
• display memos.
• change the System-Level Product Inventory table.

Operands
SRVBLDS

indicates the Service-Level Build Status table is to be updated.
compname

is the name of the component whose SRVBLDS table is to be updated.
SYSSUF

indicates the system-level service update facility table is to be updated.
SYSLMOD

indicates the System-Level Local Modification table is to be updated.
SYSREST

indicates the System-Level Restart table and SERVICE $RESTART file are to be updated.
SYSMEMO

indicates the System-Level Memo Table entries should be displayed.
SYSPINV

indicates the System-Level Product Inventory table is to be updated.

VMFUPDAT EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 607

PROD
indicates a product is to be added to one or more systems.
recid

is the 1- to 8-character alphanumeric identifier on the :RECID. tag in the PPF file for the
product.

systemid
is the ID of the system to which the product is to be added.

SYSTEM
indicates that a system is to be cloned (new system ID information is added for each product
that is associated with an existing system) OR changed (product information that pertains to an
existing system ID is modified to reflect the new system name specified).
systemid

is the ID of the system being added (for system cloning), or that is replacing an existing system
ID (for system change).

from_systemid
is the ID of the system being cloned or changed. If the specified system ID exists in the system
configuration file, system information is cloned. If the specified system ID does not exist in the
system configuration file, system information is changed to the system name specified by the
systemid operand.

REMOVE PROD
indicates a product is to be removed from one or more systems.
recid

is the 1-to-8 character alphanumeric identifier on the :RECID. tag in the PPF file for the
product.

ALL
indicates a product is to be removed from all systems.

systemid
is the ID of the system from which the product is to be removed.

REMOVE SYSTEM
indicates a system is to be removed from all products.
systemid

is the ID of the system being removed.

Usage Notes
1. To update the system-level service update facility table (SYSSUF), from the VMSES/E System Inventory

tables, use the PF6 VMFSUFTB key on the panel that is displayed after invoking VMFUPDAT SYSSUF.

Examples

• To update the Service-Level Build Status table enter:

 VMFUPDAT SRVBLDS CMS

• To update the system-level service update facility table enter:

 VMFUPDAT SYSSUF

• To update the System-Level Local Modification table enter:

 VMFUPDAT SYSLMOD

• To update the System-Level Restart table enter:

 VMFUPDAT SYSREST

VMFUPDAT EXEC

608 z/VM: 7.3 VMSES/E Introduction and Reference

• To add the system mymem2 to all the products that are on mymem1:

 VMFUPDAT SYSPINV SYSTEM MYMEM2 MYMEM1

• To add the product 1VMVMC20 to more than one system:

 VMFUPDAT SYSPINV PROD 1VMVMC20 MEMEM1 MYMEM2

• To remove the system mymem4 (that is, to remove the specified system from every product, or to
remove all products from the specified system):

 VMFUPDAT SYSPINV REMOVE SYSTEM MYMEM4

• To remove the product 1VMVMC20 from all systems:

 VMFUPDAT SYSPINV REMOVE PROD 1VMVMC20 ALL

• To remove the product 1VMVMC20 from the mymem1 system:

 VMFUPDAT SYSPINV REMOVE PROD 1VMVMC20 MYMEM1

Panels
VMFUPDAT Function Selection Panel

The VMFUPDAT Function Selection panel lets you select a specific VMFUPDAT function. It is automatically
displayed if VMFUPDAT is entered without any operands. If you enter VMFUPDAT with any of its operands,
you would go directly to the specific function panel and bypass this panel.

VMFUPDAT displays the following panels:

• SRVBLDS update panel
• SYSSUF update panel
• SYSLMOD update panel
• SYSREST update panel
• SYSMEMO update panel

Note: There is no panel interface for the SYSPINV function of VMFUPDAT.

 *** Select VMFUPDAT Function ***

 Set action code AC to S to select the desired function:
 SRVBLDS to update MANUAL build status to BUILT (component name required),
 SYSSUF to update PPF and YES|NO fields,
 SYSLMOD to update REWORK status to REWORKED,
 SYSREST to browse restart files and|or deletes restart records,
 SYSMEMO to browse memos and|or updates DISPLAY status to DELETED.

 AC Function Description Component Name

 -- -------- --- ---------------

 N SRVBLDS Service-Level Build Status Table ***************

 N SYSSUF System-Level Service Update Facility Table

 N SYSLMOD System-Level Local Modification Table

 N SYSREST System-Level Restart Table

 N SYSMEMO System-Level Memo Table

 PF1=HELP PF3/PF12=Quit PF5=Process

Figure 170. VMFUPDAT Function Selection Panel

VMFUPDAT EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 609

Table 25. Program Function (PF) Keys on the VMFUPDAT Function Update Panel

PF Key Function Explanation

PF1 Help Displays a help panel that describes the content and meaning of the VMFUPDAT Update panel.

PF3/12 Quit Exits from VMFUPDAT.

PF5 Process Displays the selected function panel, or if no selection was made, exits the VMFUPDAT EXEC.

PF6 VMFSUFTB Calls the VMFSUFTB command to create the SYSSUF table.

SRVBLDS Update Panel

The SRVBLDS Update panel lets you update the status of parts in the special build list, UNKNOWN, in the
Service-Level Build Status (SRVBLDS) table for the component name specified.

This panel displays the parts in a component's SRVBLDS table with a status of MANUAL. The records are
displayed with an action code (AC) 'M', meaning the status of the parts in the special build list UNKNOWN,
can be changed from MANUAL to BUILT by changing the action code (AC) to 'B'. When you press the
Process Key (PF5), each part with an Action Code of 'B' is removed from the UNKNOWN record and the
status of the record is changed to BUILT if all parts are removed.

 *** Update SRVBLDS Table Entries ***

Set action code AC to B to update status to BUILT. Action code M indicates
that the status is MANUAL. Press PF6 to set action code to B for all
parts.

AC Part Fn Part Fta
-- ------- --------
M DMSXXX EXC
M DMSXX1 EXC
M DMSXX2 EXC
M DMSXX3 EXC
M DMSXX4 EXC
M DMSXX5 EXC
M DMSXX6 EXC
M DMSXX7 EXC
M DMSXX8 EXC
M DMSXX9 EXC
M DMSX10 EXC
M DMSX11 EXC

 Page 1 of 2

 PF1=HELP PF3/PF12=Quit PF5=Process PF6=All_Parts PF8=Forward

Figure 171. SRVBLDS Update Panel

Table 26. Program Function (PF) Keys on the VMFUPDAT EXEC SRVBLDS Update Panel

PF Key Function Explanation

PF1 Help Displays a help panel that describes the content and meaning of the SRVBLDS Update panel.

PF3/12 Quit Exits from VMFUPDAT. No changes are made to records in the SRVBLDS table.

PF5 Process Updates the appropriate records in the SRVBLDS table with changes made on the panel.

PF6 All_Parts Sets the Action Code to 'B' for all parts.

PF7 Backward Displays the previous page of the panel.

PF8 Forward Displays the next page of the panel.

SYSSUF Update Panel

The SYSSUF Update panel lets you update selected fields in the System-Level Service Update Facility
(SYSSUF) table.

VMFUPDAT EXEC

610 z/VM: 7.3 VMSES/E Introduction and Reference

The column headings Compname, Prodid, Servlev, Prodlev, and Description are displayed for each record
in the table. These headings can't be changed. Other fields that can be changed are:

:INSTALL :BUILD :INCLUDE
These fields can be changed to YES or NO.

:INSPPF :BLDPPF :P2PPPF
These fields can be changed to any valid PPF name or Component name combination. You can blank
out the P2PPPF field if you want to remove the tag and data from the record in the SYSSUF table. Data
is required for all the other fields.

A line is displayed at the bottom of each page that lets you change all the occurrences of a particular PPF
name in the SYSSUF table. Enter the PPF name you want changed and the name you want it changed to in
place of the '********' fields.

 *** Update SYSSUF Table Entries ***

Update any PPF/component name or YES|NO field. To change all occurrences
of a PPF name in the table replace both ******** fields with PPF names.

Compname Prodid Servlev Prodlev Description
---------------- -------- -------- -------- ---------------------------------
AVS 7VMAVS30 000-0000 000-0000 AVS for z/VM
 :INSTALL YES :INSPPF SERVP2P AVS
 :BUILD YES :BLDPPF SERVP2P AVS
 :INCLUDE YES :P2PPPF SERVP2P AVSP2P
CMS 7VMCMS30 RSU-0901 000-0000 CMS for z/VM
 :INSTALL YES :INSPPF SERVP2P CMS
 :BUILD YES :BLDPPF SERVP2P CMS
 :INCLUDE YES :P2PPPF SERVP2P CMSP2P
CP 7VMCPR30 RSU-0901 000-0000 CP for z/VM
 :INSTALL YES :INSPPF SERVP2P CP
 :BUILD YES :BLDPPF SERVP2P CP
 :INCLUDE YES :P2PPPF SERVP2P CPP2P

Change PPF name ******** to ********
 Page 1 of 7

 PF1=HELP PF3/PF12=Quit PF5=Process PF6=VMFSUFTB PF8=Forward

Figure 172. SYSSUF Update Panel

Note: The Servlev and Prodlev information displayed in Figure 172 on page 611 reflect the information for
the system or SSI member where you are executing the command.

Table 27. Program Function (PF) Keys on the VMFUPDAT EXEC SYSSUF Update Panel

PF Key Function Explanation

PF1 Help Displays a help panel that describes the content and meaning of the SYSSUF Update panel.

PF3/12 Quit Exits from VMFUPDAT. No changes are made to records in the SYSSUF table.

PF5 Process Updates the appropriate records in the SYSSUF table with changes made on the panel.

PF6 VMFSUFTB Calls the VMFSUFTB command to update the SYSSUF table from the VMSES/E System Inventory
tables on the 51D disk. The updates to the SYSSUF table are not final until the panel is exited with
the process key (PF5). The VMFSUFTB key is only valid before any data is entered on the panel.

PF7 Backward Displays the previous page of the panel.

PF8 Forward Displays the next page of the panel.

SYSLMOD Update Panel

The SYSLMOD Update panel lets you update the status field of records in the System-Level Local
Modification (SYSLMOD) table to REWORKED.

This panel displays records in the table with a status of REWORK. The records are displayed with an
action code (AC) 'N', meaning that rework is NOT COMPLETE for the local modification. This Action Code

VMFUPDAT EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 611

should be changed to 'C' if you have COMPLETED the rework for this local modification. When you press
the Process Key (PF5), the status of each record with an Action Code of 'C' is updated to REWORKED.

 *** Update SYSLMOD Table Entries ***

Set action code AC to C when rework is Complete. Action code N means rework
is Not Complete. Use the lines at the bottom of the panel to mark rework
complete for: ALL Localmods (press PF6), any Localmods with ***** (fill in
a Modid), or any Localmods for **************** (fill in a Compname).

AC Compname Prodid Modid Part Fn Part Fta VVT Ft
-- ---------------- -------- ----- -------- -------- --------
N CMS 7VMCMS30 L0001 DMSAAA TXT VVTLCL
N CMS 7VMCMS30 L0001 DMSBBB TXT VVTLCL
N CMS 7VMCMS30 L0001 DMSCCC TXT VVTLCL
N CMS 7VMCMS30 L0002 DMSDDD TXT VVTLCL
N CP 7VMCPR30 L0001 HCPAAA TXT VVTLCL
N CP 7VMCPR30 L0003 HCPBBB TXT VVTLCL
N CP 7VMCPR30 L0003 HCPCCC TXT VVTLCL
N CP 7VMCPR30 L0004 HCPCCC TXT VVTLCL

All local modifications PF6
All local modifications with Modid *****
All local modifications for Compname ****************
 Page 1 of 2

 PF1=HELP PF3/PF12=Quit PF5=Process PF6=All_Mods PF8=Forward

Figure 173. SYSLMOD Update Panel

Table 28. Program Function (PF) Keys on the VMFUPDAT EXEC SYSLMOD Update Panel

PF Key Function Explanation

PF1 Help Displays a help panel that describes the content and meaning of the SYSLMOD Update panel.

PF3/12 Quit Exits from VMFUPDAT. No changes are made to records in the SYSLMOD table.

PF5 Process Updates the appropriate records in the SYSLMOD table with changes made on the panel.

PF6 All_Mods Updates the Action Code to 'C' for all local modifications displayed on the panel.

PF7 Backward Displays the previous page of the panel.

PF8 Forward Displays the next page of the panel.

Three lines are displayed at the bottom of each page that let you mark rework complete for multiple local
modifications:
First Line (press PF6)

Updates the Action Code to 'C' for ALL local modifications.
Second Line (Enter a MODID, press enter or a PF key)

Updates the Action Code to 'C' for any local modifications with the specified MODID.
Third Line (Enter a COMPNAME, press enter or a PF key)

Updates the Action Code to 'C' for any local modifications with the specified COMPNAME.

SYSREST Update Panel

The SYSREST Update panel lets you browse or delete records from the System-Level Restart table and
the SERVICE $RESTART file.

The SERVICE $RESTART file contains the data needed to restart the SERVICE command. The VM SYSREST
table contains records, each of which contains the data needed to restart a specific call to the VMFSUFIN
command. For each record in the VM SYSREST table, the Package Name and Status is displayed with an
Action Code (AC) of 'K'. You can change this Action Code to 'D' for DELETE, if you want the file or record
deleted. The All-Recs Key (PF6) can be used to change all Action Codes to 'D'. When you press the Process

VMFUPDAT EXEC

612 z/VM: 7.3 VMSES/E Introduction and Reference

Key (PF5), the SERVICE $RESTART file is erased if selected, and the selected VM SYSREST records are
deleted. If all the records in the VM SYSREST table are deleted the table is erased.

 *** Update SYSREST Table Entries ***

Set action code AC to D to DELETE a restart record. Action code K indicates
that the record will be KEPT. A record is displayed for the restart defined
in the SERVICE $RESTART file and for each restart defined in the VM SYSREST
table. Press PF6 to select all restart records for deletion. To BROWSE a
restart record, place the cursor on the appropriate entry and press PF4.

AC SERVICE $RESTART - First Record
-- -------------------------------
K ERROR ALL

AC VM SYSREST - Package Name Status
-- ------------------------------- --------------------------------
K DMS0002 CHKPT.08/27/22.12:00:20.MAINT

 Page 1 of 1

 PF1=HELP PF3/PF12=Quit PF4=Browse PF5=Process PF6=All_Recs

Figure 174. SYSREST Update Panel

Table 29. Program Function (PF) Keys on the VMFUPDAT EXEC SYSREST Update Panel

PF Key Function Explanation

PF1 Help Displays a help panel that describes the content and meaning of the SYSREST Update panel.

PF3/12 Quit Exits from VMFUPDAT. No changes are made to records in the SYSREST table.

PF4 Browse Displays the selected record using the BROWSE command.

PF5 Process Updates the appropriate records in the SYSREST table with changes made on the panel.

PF6 All_Recs Updates the Action Code to 'D' for all restart records.

PF7 Backward Displays the previous page of the panel.

PF8 Forward Displays the next page of the panel.

SYSMEMO Update Panel

The SYSMEMO Update panel lets you browse available system memos and then delete the memos from
the VM SYSMEMO table if they are no longer needed. The actual memos are not deleted.

Several service deliverables come with MEMOs. These memos include:

• CORrective service Memos (COR MEMOs)
• PTF APAR MEMOs
• RSU MEMOs
• UMEMOs

During automated service processing, pointers to these memos are collected and placed in the VM
SYSMEMO table. The collected memos can be viewed in one place using the VMFUPDAT EXEC.

For each record in the VM SYSMEMO table, an Action Code (AC), the Component, Memo Type, Memo File
name (Memo Fn), Memo File Type (Memo Ft), and Memo Date/Time are displayed. You can browse a
memo by placing the cursor on the desired entry and pressing PF4. An Action Code of 'K' indicates the
status of the memo will be kept as DISPLAY. You can change this action code to 'D' for DELETE if you want

VMFUPDAT EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 613

the memo to no longer be displayed. When you press PF5, the status of the memo is changed to DELETED
in the SYSMEMO table.

 *** Update SYSMEMO Table Entries ***

Set action code AC to D to update the status of a memo record to DELETED.
Action code K indicates the status will be KEPT as DISPLAY. To BROWSE a
memo, place the cursor on the appropriate entry and press PF4.

AC Component Memo Type Memo Fn Memo Ft Memo Date/Time
-- --------- --------- ------- ------- -----------------
K CMS RSUMEMO 7VMCMS30 MEMO 06/01/22 08:50:00
K RSCS UMEMO UW76694 $PTFPART 08/28/22 10:10:00
K TCPIP APARMEMO 7VMTCP30 APARMEMO 06/17/22 13:10:00
K TCPIP CORMEMO 7VMTCP30 MEMO 06/10/22 14:20:00

 Page 1 of 1

 PF1=HELP PF3/PF12=Quit PF4=Browse PF5=Process

Figure 175. SYSMEMO Update Panel

Table 30. Program Function (PF) Keys on the VMFUPDAT EXEC SYSMEMO Update Panel

PF Key Function Explanation

PF1 Help Displays a help panel that describes the content and meaning of the SYSMEMO Update panel.

PF3/12 Quit Exits from VMFUPDAT. No changes are made to records in the SYSMEMO table.

PF4 Browse Displays the selected memo using the BROWSE command.

PF5 Process Updates the appropriate records in the SYSMEMO table with changes made on the panel.

PF7 Backward Displays the previous page of the panel.

PF8 Forward Displays the next page of the panel.

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
VMFHPSEL HPANEL

The SELECT function HELP panel.
VMFHPSUF HPANEL

The Update SYSSUF HELP panel.
VMFHPLMD HPANEL

The Update SYSLMOD HELP panel.
VMFHPRST HPANEL

The Update SYSREST HELP panel.
VMFHPBLD HPANEL

The Update SRVBLDS HELP panel.
VMFHPMEM HPANEL

The Update SYSMEMO HELP panel.

VMFUPDAT EXEC

614 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINS DEFAULTS
The file containing the sysid default.

Input/Output Files
sysid SYSSUF

The system-level service update facility table.
sysid SYSLMOD

The system-level local modification table.
sysid SYSREST

The system-level restart table.
sysid SYSMEMO

The system–level memo table.
SERVICE $RESTART

The SERVICE restart file.
bldid SRVBLDS

The service-level build status table.
systemid SYSPINV

The system-level product table.
recid SRVPROD

The service-level production status table.
Temporary Files
VMFUPDAT $$$UP$$$

The VMFUPDAT parameter file (used to pass parameters to the panel handler).
$$$VM$$$ SYSSUF

The SYSSUF temporary file (used for recovery).
$$$VM$$$ SYSLMOD

The SYSLMOD temporary file (used for recovery).
$$$VM$$$ SYSREST

The SYSREST temporary file (used for recovery).
$$$VM$$$ SRVBLDS

The SRVBLDS temporary file (used for recovery).
$$$VM$$$ SYSMEMO

The SYSMEMO temporary file (used for recovery)
$$$VM$$$ SYSPINV

The SYSPINV temporary file (used for recovery).

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E EXEC.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information about a
specific message - VMF002E, for example - enter:

help msg vmf002e

If you are not familiar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information about the HELP command, enter:

help cms help

Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers for each VMSES/E EXEC.

VMFUPDAT EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 615

VMFUPDAT issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

36 Command failed because a target disk or directory was not available.

99 Command terminated by user.

100 Command failed because of an external error.

VMFUPDAT EXEC

616 z/VM: 7.3 VMSES/E Introduction and Reference

VMFVIEW EXEC

VMFVIEW

?

Apply

VMFApply

$VMFApp

Build

VMFBld

$VMFBld

BLD

$CSMAGT

$CSMCMG

CSM

Install

VMFIns

$VMFIns

Merge

VMFMrd

$VMFMrd

MRD

MIgrate

$VMFMIg

MGR

Put2prod

$VMFP2p

P2P

Receive

VMFRec

$VMFRec

REMove

VMFREM

$VMFREM

Service

$VMFSrv

SRV

xxx

VMF xxx

$VMF xxx

ppfname compname

(LAST

(
LAST

ALL)

VMFVIEW EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 617

Purpose

VMFVIEW calls XEDIT to allow you to view the message logs. Using VMFVIEW, you can:

• Select which product or component's messages to view.
• Select which function's messages to view.
• View all the messages with the same message leaders.
• View all the messages with the same message number.
• View the help file for a specific message.
• Move backward and forward through the displayed message log.
• View only those PTFs that have been received or committed.

Operands
?

displays a VMFVIEW help screen.
Apply
VMFApp
$VMFApp

views the apply message log.
Build
VMFBld
$VMFBld
BLD

views the build message log.
$CSMAGT

views the CSMAGENT message log.
$CSMCMG
CSM

views the SERVMGR message log.
Install
VMFIns
$VMFIns

views the install message log.
Merge
VMFMrd
$VMFMrd
MRD

views the merge message log.
MIgrate
$VMFMIg
MGR

views the migrate message log.
Put2prod
$VMFP2p
P2P

views the put2prod message log.
Receive
VMFRec
$VMFRec

views the receive message log.

VMFVIEW EXEC

618 z/VM: 7.3 VMSES/E Introduction and Reference

REMove
VMFREM
$VMFREM

views the remove message log.
Service
$VMFSrv
SRV

views the service message log.
xxx
VMFxxx
$VMFxxx

views the user message log, $VMFxxx $MSGLOG.
ppfname

is the file name of the usable form product parameter file. The product parameter file must have a file
type of PPF.

compname
is the name of the component as it is specified on the :COMPNAME tag in the product parameter file.

Options
LAST

displays only messages from the most recent run in the message log. LAST is the default.
ALL

displays messages from all runs in the message log.

Usage Notes
1. The ppfname and compname operands can be used for the install message log, except when the

VMFINS command INFO option is used.
2. PF keys are defined in a tailorable file called VMFVIEW$ PROFILE. To change the PF key assignments,

edit this file and follow the instructions at the beginning of the file. (See Table 31 on page 621 for
the default PF key assignments.)

3. The initial set of messages displayed by VMFVIEW is defined in the file VMFVIEW$ PROFILE. The
default is the nonstatus category of messages.

4. The Help PF key (PF1 / PF13) performs one of two functions, depending on the position of the cursor:

a. When the cursor is on the command line, the VMFVIEW help screen is displayed.
b. When the cursor is on a line that contains a recognized message ID, the help screen for that

VMSES/E message is displayed. If the requested message help is not found, or if a message ID
cannot be identified, an error is reported.

5. The ‘All’ PF key (PF2) performs one of two functions, depending on the position of the cursor:

a. When the cursor is on the command line, the ‘All’ key displays all messages in the log, excluding
any trace messages.

b. When the cursor is on a line that contains a recognized message ID, the ‘All’ key displays all of
the messages in the log with the same message number. If no message ID is recognized, an error
message is reported.

6. The 'All+Trace' PF key (PF14) performs one of two functions, depending on the position of the cursor:

a. When the cursor is on the command line, the 'All' key displays all messages in the log, including
any trace messages.

b. When the cursor is on a line that contains a recognized message number, the 'All+Trace' key
functions in the same manner as the 'All' (PF2) key.

VMFVIEW EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 619

Note: Results produced by using the ‘All’ (PF2) key and the 'All+Trace' (PF14) key are qualified by
the LAST and ALL options of the VMFVIEW command.

7. To gather information about messages, you can issue commands, such as VMFSIM, FILELIST, and
XEDIT, from the command line.

8. You may find it useful to put a subset of messages into a separate CMS file. You can use the XEDIT
PUT command to do this.

For example, if you want to put all BD: (build) messages in a file to process separately, press the
appropriate PF key to isolate this subset of messages. (The default is PF06 / PF18.) Then enter the
following command on the XEDIT command line:

 PUT * BUILD

This creates a CMS file with the name BUILD $MSGLOG. The PUT command changes the current line
on the XEDIT screen. You can enter TOP on the XEDIT command line to make the current line the top
line of the file, or you can press another PF key to view a new subset of messages.

9. You may find it useful to add the invocation of VMFVIEW to your user exits.
10. If, while viewing messages from the LAST run, you wish to check messages in previous runs, use

the ‘ALL’ XEDIT macro. This macro resets the ‘SET SELECT’ and ‘SET DISPLAY’ XEDIT subcommands
used by VMFVIEW. To return to view only the LAST run, press one of the PF keys that is set to select a
subset of messages.

Examples

• To run VMFVIEW using the IBM-supplied defaults to view the last receive message log, enter:

VMFVIEW R

• To use VMFVIEW to view all apply message logs, enter:

VMFVIEW VMFA (ALL

• To use VMFVIEW to view the last build message log for a given product or component, enter:

VMFVIEW BLD ppfname compname

Message Headers
The message headers that appear in the message logs are:
BD

These are build messages that give information needed to rebuild the parts affected by the
application of service.

CK
These are items you must check. These messages contain information that may require user action.

MS
These are mismatch messages that indicate conflicting control information that must be investigated
and corrected.

RO
These are requisite out of component messages. They indicate PTFs must be applied to another
component.

RQ
These are requisite messages that indicate there are PTFs (in the same component) that are missing
and must be applied.

ST
These are status messages. These messages give useful information but require no further action.

VMFVIEW EXEC

620 z/VM: 7.3 VMSES/E Introduction and Reference

SV
These are severe messages. These indicate problems that resulted in the termination of a process.
These problems must be investigated and corrected.

TR
These are tracing messages produced from having activated program-specific tracing. These
messages provide supplementary information for diagnostic purposes.

WN
These are warning messages that must be investigated. They indicate situations that may or may not
be a real problem. It is up to the user to decide after investigating the cause of the message.

Default PF Key Assignments

Table 31 on page 621 shows the default Program Function (PF) key assignments.

Table 31. Default Program Function (PF) Key Assignments for the VMFVIEW EXEC

PF Keys Function Explanation

PF1 / PF13 Help Display a HELP screen

PF2 All Display ALL messages other than tracing messages

PF3 / PF15 Quit Exit VMFVIEW

PF4 / PF16 Exception Display CK:, MS:, RQ:, SV:, and WN: messages

PF5 / PF17 Status Display ST: messages

PF6 / PF18 Build Display BD: messages

PF7 / PF19 Backward Display previous screen of messages

PF8 / PF20 Forward Display following screen of messages

PF9 / PF21 OutCompReq Display RO: messages

PF10 / PF22 Non-Stat Display all messages except ST: messages

PF11 / PF23 Requisite Display RQ: messages

PF12 / PF24 Severe Display SV: messages

PF14 All+Trace Display ALL messages, including tracing messages

Input and Output Files
Input Files
ppfname PPF

The usable form product parameter file.
VMFVIEW$ PROFILE

The VMFVIEW environment profile.
fn $MSGLOG

The message log.
PPF Tags Used
:APPID

The identifier of the product/component used during Apply.
:BLDID

The identifier of the product/component used during Build.

VMFVIEW EXEC

Chapter 20. VMSES/E EXEC and Command Format Summaries 621

:RECID
The identifier of the product/component being received as it appears on the tape.

Messages and Return Codes
Appendix D, “Module Identifiers for VMSES/E Messages,” on page 751 shows the format of VMSES/E
messages and lists the identifiers used by each VMSES/E exec.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example VMF002E, enter:

help msg vmf002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

The VMFVIEW EXEC issues the following return codes:

Return Code Explanation

0 Command completed successfully.

4 Command completed with one or more warning conditions.

12 Command failed because of an internal error.

24 Command failed because of a command line syntax error.

28 Command failed because a required file was not found.

100 Command failed because of an external error.

Recovery Information

The VMFVIEW command can be restarted by reissuing the command.

VMFVIEW EXEC

622 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 21. Product Parameter File Syntax

This chapter describes the syntax of the records in the various types of product parameter files. For an
overview of the various types of product parameter files, see “The Source Product Parameter File” on
page 13.

Structure of the Data in Product Parameter Files
All product parameter files (PPFs) consist of a series of records. There are two types of records: data
records and comments.

Data Records
A data record begins with a tag. A tag begins with a colon and contains a keyword and a data value, which
are separated by a period. The keyword identifies the function of the record. Depending on the function,
the tag could be followed by zero or more values on the same line as the tag, or a list of zero or more
statements on successive lines below the tag.

Unlike the data in the Software Inventory tables, all PPF tags must be in uppercase; but their values can
be in mixed case. All PPF tags are required and must start in column one. A data record looks like this:

:COMPNAME.VMSES

:COMPNAME is the tag; VMSES is the value. The syntax checking function of the VMFPPF EXEC notifies
you if there are missing tags.

Comments
Product parameter files can also contain comments. A comment begins with an asterisk (*). Comments
can appear on separate lines or on the same lines as tags and statements. In source and override product
parameter files, comments that appear on separate lines come in three varieties, which are distinguished
by the number of asterisks that begin the comment.

• Leading comments begin with a single asterisk. These comments are bound to the records that follow
them. A blank must follow the asterisk.

• Trailing comments begin with two asterisks. These comments are bound to the records that precede
them. A blank must follow the asterisks.

• Other comments include those that begin with more than two asterisks and those that do not have a
blank between the asterisks and the text of the comment. These comments are not merged into the
temporary or usable form PPF.

File Structure of Product Parameter Files
There are four types of product parameter files; source, override, temporary, and usable form.

The source product parameter file is supplied by the product. It contains the recommended values for the
various product parameters.

The override product parameter file may be supplied by the product or created by you. It contains
overrides to the product-supplied parameters that are found in the source product parameter file.

Temporary product parameter files are created by the VMFOVER EXEC and erased from your system after
the usable form product parameter file is created.

The usable form product parameter file is the final PPF file, and it is used to control VMSES/E exec
processing.

Product Parameter File Syntax

© Copyright IBM Corp. 1990, 2023 623

The structure of each of these types of PPFs is very similar. The syntax of the source PPF is described in
its entirety in the following sections. When the syntax of the other types of PPFs is discussed, only the
differences from the source PPF are described. Figure 176 on page 624 shows the general relationship
of the four types of product parameter files.

Product Parameter File Processing
The VMFOVER EXEC applies override PPFs to a source PPF to create a temporary PPF. The VMFPPF EXEC
calls the VMFOVER EXEC to dynamically build the temporary PPF. The VMFPPF EXEC uses this temporary
PPF to create the usable form PPF. Throughout this book, the usable form product parameter file is
referred to as simply the product parameter file or the PPF.

Figure 176. Product Parameter File Relationship

Product Parameter File Syntax

624 z/VM: 7.3 VMSES/E Introduction and Reference

Source Product Parameter File Syntax
The source product parameter file is supplied by the product. It contains the recommended, or default,
values for the various parameters. It is made up of a header area, one or more component areas, and zero
or more override areas.

The following shows the overall syntax for a source product parameter file.

Source Product Parameter File ($PPF), Overall Syntax

:COMPLST. compname
1

:OVERLST. overname
1

Component Area Override Area

Component Area

: compname . :PRODID. prodid

% compname

1
CNTRLOP Section

DCL Section MDA Section RECINS Section RECSER Section BLD Section

DABBV Section :END.
1

Override Area
:overname. compname

novername ppfname CNTRLOP Override

DCL Override RECINS Override RECSER Override

MDA Override BLD Override DABBV Override

:END.
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Header Area
The header area contains two tags; :COMPLST and :OVERLST. The :COMPLST tag is a list of component
areas in the source PPF. The :OVERLST tag is a list of override areas in the source PPF. The header area
must appear before any component or override areas, and the :COMPLST tag must precede the :OVERLST
tag.

:COMPLST.
lists the component areas in the source PPF. There is generally only one component area per product.
The parameters in a component area are usually modified with overrides rather than providing
additional component areas.
compname

is the name of a component area. compname is a 1- to 16-character alphanumeric identifier.

The compname on the :COMPLST tag must match one of the :compname tags in the component area.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 625

:OVERLST.
lists the override areas in the source PPF. Each override area provides changes for a single component
area, but multiple override areas can provide changes for the same component area.
overname

is the name of an override area in the source PPF.

The overname on the :OVERLST tag should match one of the :overname tags in one of the override
areas.

Example
Figure 177 on page 626 shows an example of a header area in a source PPF.

:COMPLST. VMSES
:OVERLST. VMSESUCENG VMSESINS VMSESPTFS

Figure 177. Sample Header Area of a Source PPF

Component Area
Component areas are delimited by the :compname and :END tags and contain the :PRODID tag plus the
following sections that contain the parameters for the product:

• CNTRLOP section (see “Control Options Section” on page 627)
• DCL section (see “Variable Declarations Section” on page 633)
• MDA section (see “Minidisk/Directory Assignments Section” on page 635)
• RECINS section (see “Receive Installation Tape Definition Section” on page 639)
• RECSER section (see “Receive Service Media Definition Section” on page 641)
• BLD section (see “Build Product Definition Section” on page 643)
• DABBV section (see “File Type Abbreviations Extensions Section” on page 646)

All the tags and sections in the component area of the source PPF are the same as in the component area
of the usable form PPF. Remember that in the source PPF, variables defined in the variable declarations
section have not yet been resolved.

The tags in the component area are:

:compname.
marks the beginning of a component area in a source PPF and is retained in the usable form PPF.
compname is a 1-16 character uppercase name that identifies a product. The :compname tag is used
by the VMFOVER EXEC to locate the component areas listed on the :COMPLST tag in source PPFs.

:PRODID.
identifies the 7-25 character product/component/version-release-modification identifier for PTF
validation and product requisites.
prodid

is the 7-8 character alphanumeric identifier assigned to each product/version-release-
modification level of the product (may also be referred to as prodid in other areas of this book).
prodid also identifies the file name of the source PPF for the product.

%compname
is the component name identifier, for example CMS, which is added to the prodid with a percent
sign (%). compname is a 1-16 character alphanumeric identifier.

:END.
marks the end of a component area.

Example
Figure 178 on page 627 shows an example of the component area in a source PPF.

Product Parameter File Syntax

626 z/VM: 7.3 VMSES/E Introduction and Reference

:VMSES.
:PRODID. 1VMVMC23%MYCOMP
⋮
:END.

Figure 178. Sample Component Area of a Source PPF

Control Options Section
The control options (CNTRLOP) section is delimited by the :CNTRLOP and :ECNTRLOP tags and identifies
parameters used to control the operation of VMSES/E. Many control options can be overridden by
corresponding options on the VMSES/E commands.

Syntax
The following shows the syntax for the control options section of the product parameter file.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 627

Source Product Parameter File ($PPF), CNTRLOP Section

:CNTRLOP.
1

:PRODDESC. text
1

:VERSION.version

1
:BCOMPNAME.

bcompname
1

:RECID. prodid
1

:APPID. appid

sappid

1

:BLDID. bldid
1

:LOG. YES

NO

1
:RECVALL YES

NO

1
:SETUP

YES

NO

PREEXit

1
:SLVI x/ zz

1
:NLS. langid

language code

1

:CNTRL. cntrlfn
1

:ALTCNTRL. altcntrlfn
1

:AXLIST. axname
1

:EXCLIST.

exname

1
:UPDTID. updateid

1

:CKAUX. YES

NO

1

:CKSDI. YES

NO

1
:CKVV. YES

NO

1

:CKGEN. YES

LOGMOD

NO

NOVVT

1
:RETAIN.

fm

1
:USEREXIT.

exitname

1
:PTFPFX. pp

1
:APARPFX. aa

1

:ECNTRLOP.
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

:CNTRLOP.
marks the start of the control options section.

Product Parameter File Syntax

628 z/VM: 7.3 VMSES/E Introduction and Reference

:PRODDESC.
is the descriptive name for the product identified on the :PRODID tag.
text

is free-format text, which can include spaces. text ends with the start of the next tag.
:VERSION.

identifies the level of VMSES/E required by the product. If this tag is not specified, the version is
assumed to be VMSES/E 1.1.1.
version

indicates the level of VMSES/E required by the product. The format is z/VM v.r.m.

Note: This field is reserved for use by IBM.

:BCOMPNAME.
identifies the base component.
bcompname

is the 1-16 character base component name assigned to the product, which is used together with
prodid to stack the product on VMSES/E formatted tapes.

:RECID.
identifies the product.
prodid

is the 1-8 character alphanumeric product identifier assigned to the product, which is used
together with bcompname to stack the product on VMSES/E formatted tapes. prodid is also used
as the file name of the Software Inventory tables created or updated during receive processing.

:APPID.
specifies the file names of the select data file and version vector tables.
appid

is the primary apply identifier.
sappid

is a secondary apply identifier. sappids are required when there are different system versions and
dependent products.

Note: The appid and sappids are the file names of the version vector tables used by the VMFSIM
GETLVL and VMFSIM CHKLVL commands. VMFSIM GETLVL and VMFSIM CHKLVL search the tables
in the order you specify until the information is located.

:BLDID.
identifies the file name of the Software Inventory tables for build processing.
bldid

is the 1-8 character alphanumeric identifier used as the file name of the Software Inventory tables
created or updated during build processing. The default value is the same as prodid. Different
bldid values can be used to create different systems.

:LOG.
identifies whether messages should be logged.
YES

indicates messages issued by the VMFINS, VMFREC, VMFAPPLY, VMFBLD and VMFMRDSK execs
should be logged.

NO
indicates messages issued by the VMFINS, VMFREC, VMFAPPLY, VMFBLD and VMFMRDSK execs
should not be logged.

:RECVALL.
indicates if missing serviceable parts will be received for committed PTFs.
YES

indicates the VMFREC EXEC will receive missing serviceable parts.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 629

NO
indicates the VMFREC EXEC will not receive missing serviceable parts of committed PTFs.

:SETUP.
indicates whether VMFSETUP should be called by other VMSES/E commands to access the required
minidisks or SFS directories for the product.
YES

indicates VMFSETUP EXEC should be called by other VMSES/E commands to access the required
minidisks or SFS directories for the product. If a user exit is specified, VMFSETUP is called after
the user exit.

NO
indicates VMFSETUP EXEC should not be called by other VMSES/E commands to access the
required minidisks or SFS directories for the product.

PREEXit
indicates VMFSETUP EXEC should be called by other VMSES/E commands to access the required
minidisks or SFS directories for the product. If a user exit is specified, VMFSETUP is called before
the user exit.

:SLVI.
lists the system level and version indicators used to prefix and suffix the APAR number to identify the
file type of update files for the product, as in X12345ZZ.
x

is the prefix.
zz

is the suffix.
:NLS.

specifies the language identifier.
langid

is the 1- through 5-character language identifier for the national language installed for the
product. It is the second token in the VMFNLS LANGLIST file. langid supports products exploiting
VMSES/E 1.1.

language code
is a 3-character language code defined in National Language Support Reference Manual Volume 2,
SE09-8002.

:CNTRL.
identifies the file name of the control file used to service, assemble, or build this product.
cntrlfn

is the 1- through 8-character file name of the control file. The file type must be CNTRL.
:ALTCNTRL.

identifies the file name of the alternate control file used to service, assemble, or build this product.
cntrlfn

is the 1- through 8-character file name of the alternate control file. The file type must be CNTRL.
:AXLIST.

identifies the file name of the product-supplied apply and exclude lists shipped in service packages.
axname

is the 1- through 8-character alphanumeric file name of the product-supplied apply and exclude
lists.

:EXCLIST.
identifies the file name of the user-supplied exclude list.
excname

is the 1- through 8-character alphanumeric file name of the user-supplied exclude list. The file
type of this file must be $EXCLIST.

Product Parameter File Syntax

630 z/VM: 7.3 VMSES/E Introduction and Reference

:UPDTID.
identifies the update level identifier used in the file types of AUX files and version vector tables
created during VMFAPPLY EXEC processing. The AUX file must be listed in the control file specified on
the :CNTRL tag.
updateid

is the 4- through 8-character update level identifier.
:CKAUX.

indicates if self-documenting information in replacement parts should be validated against AUX files
during VMFBLD EXEC processing.

Note: The CKAUX function is not performed in VM/ESA 1.2.0 (and later). The tag remains for
downward compatibility with VM/ESA 1.1.1.

YES
indicates self-documenting information in replacement parts should be validated against AUX files
during VMFBLD EXEC processing.

NO
indicates if self-documenting information in replacement parts should not be validated against
AUX files during VMFBLD EXEC processing.

:CKSDI.
indicates if self-documenting information in replacement parts should be validated against version
vector tables during VMFAPPLY EXEC processing.
YES

indicates self-documenting information in replacement parts should be validated against version
vector tables during VMFAPPLY EXEC processing.

NO
indicates self-documenting information in replacement parts should not be validated against
version vector tables during VMFAPPLY EXEC processing.

:CKVV.
indicates if AUX files should be validated against the corresponding version vector tables during
VMFBLD EXEC processing.
YES

indicates AUX files should be validated against the corresponding version vector tables during
VMFBLD EXEC processing.

NO
indicates AUX files should not be validated against the corresponding version vector tables during
VMFBLD EXEC processing.

:CKGEN.
indicates if AUX files should be validated against the corresponding version vector tables during
VMFASM, VMFHASM, VMFHLASM, VMFNLS, VMFEXUPD, and GENCPBLS processing.
YES

indicates AUX files should be validated against the corresponding version vector tables.
LOGMOD

indicates AUX files should be validated against the corresponding version vector tables and local
version vector tables should be updated using the information from the corresponding AUX files.

NO
indicates AUX files should not be validated against the corresponding version vector tables. The
output file is named according to the VVT structure.

NOVVT
indicates AUX files should not be validated against the corresponding version vector tables. The
output file is named according to the AUX/CNTRL file structure.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 631

:RETAIN.
identifies file modes that are restricted from use by VMSES/E. The VMFSETUP EXEC does not use any
file mode listed here. File modes A thru D, S, and Y are automatically retained.
fm

is the file mode that is to be restricted from use by VMSES/E.
:USEREXIT.

identifies the file name of a user exit to be called to setup at the beginning and cleanup at the end of
each invocation of the VMFREC, VMFAPPLY, VMFBLD, VMFMRDSK, VMFASM, VMFHASM, VMFHLASM,
VMFREPL, VMFNLS, VMFREM, VMFEXUPD, and GENCPBLS execs.
exitname

is the file name of the user exit.

 PI

You can give this exec any file name; the file type must be EXEC. Use this exec to do setup or cleanup
tasks, such as accessing and linking minidisks. For example, you could use it to link and later detach
minidisks required by the calling service function.

The calling function supplies three parameters to the user exec:

1. The name of the service function (in upper case)
2. SET-UP or CLEAN-UP, indicating initialization or termination
3. The return code which the calling service function is going to end with (on CLEAN-UP only)

The return code from the user exit is processed by the calling service function. On SET-UP, any return
code other than 0 or 4 will cause the calling service function to stop. On CLEAN-UP, the return code
will override the return code of the calling service function. If you do not wish to alter the return code
of the calling service function, you must be sure to end the user exit with the return code that was
passed from the calling service function.

 PI end

:PTFPFX.
identifies the 2-character prefixes that are used to identify a PTF number for this product.
pp

is a 2-character prefix for this product.
:APARPFX.

identifies the 2-character prefixes that are used to identify an APAR number for this product.
aa

is a 2-character prefix for this product.
:ECNTRLOP.

marks the end of the control options section for the product.

Example
Figure 179 on page 633 shows an example of a control options section.

Product Parameter File Syntax

632 z/VM: 7.3 VMSES/E Introduction and Reference

:CNTRLOP.
:PRODDESC. ACOMP for VM
:VERSION. z/VM v.r.m
:BCOMPNAME. MYCOMP
:RECID. 1VMVMC23
:APPID. 1VMVMC23 CMPPSU
:BLDID. 1VMVMC23
:LOG. YES
:RECVALL. NO

:SETUP. NO
:SLVI. Z/VF
:NLS. AMENG
:CNTRL. CMPVM
:AXLIST. CMPVM
:EXCLIST.
:UPDTID. AUXVM
:CKGEN. YES
:CKSDI. NO
:CKVV. NO
:RETAIN.
:USEREXIT.
:PTFPFX. UM
:APARPFX. VM
:ECNTRLOP.

Figure 179. Sample :CNTRLOP Section of a PPF

Variable Declarations Section
The variable declarations section identifies variables and the values assigned to them in the PPF. It is
delimited by the :DCL and :EDCL tags. In source and override PPFs, the variables defined in this section
are used in the minidisk/directory assignment section. In the usable form PPF, this section is used for
resource allocation and minidisk linking. The VMFPPF EXEC substitutes the values of these variables into
the minidisk/assignment section when it creates the usable form PPF. The variables can also be used
as parameters on product processing exits in the receive installation tape definition and receive service
media definition sections of the PPF.

Syntax
The following shows the syntax for the variable declarations section of the product parameter file.

Source Product Parameter File ($PPF), DCL Section Syntax

:DCL
1

DCL Record

:EDCL.
1

DCL Record
& varname LINK userid vdev1 vdev2 linkmode

password

DIR dirid

USER userid
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 633

:DCL.
marks the beginning of the variable declarations section for the product.

:EDCL.
marks the end of the variable declarations section for the product.

DCL Record
&varname

is a variable name. The first character must be "&". This variable is used by the :MDA section. It is also
used by the :USERDEF and :TARGET sections in the PRODPART file.

LINK
identifies a minidisk target where product code will reside.
userid

is the user ID of the owner of the target minidisk.
vdev1

is the owner's address of the target minidisk.
vdev2

is the address at which to link the specified minidisk. It is the value that is substituted in the :MDA
section for &varname.

linkmode
is the link mode, for example RR, W, M, and so on.

password
is the password for the access mode specified, if required.

Note: When defining a target minidisk for a multiconfiguration virtual machine, specify the user ID of
the virtual machine as userid.

DIR
identifies a fully-qualified SFS directory target where product code will reside. A fully qualified
directory identifier is in the format filepoolid:userid.qualifier (qualifier can be multiple subdirectory
identifiers, such as A.B.C).
dirid

is the value that is substituted in the :MDA section for &varname.
USER

matches directly to a :USERDEF statement in a PRODPART file and (usually) identifies the name of
a service virtual machine. The VMFINS resource manager needs this information to define virtual
machine entries in the CP Directory.
userid

is the name of a service virtual machine.

Example
Figure 180 on page 635 shows an example variable declarations section.

Product Parameter File Syntax

634 z/VM: 7.3 VMSES/E Introduction and Reference

:DCL.
&LMODZ DIR POOL1:MAINTvrm.LOCALMOD MR
&SAMPZ DIR POOL1:MAINTvrm.LOCALSMP MR
&DELTY LINK MAINTvrm 5D6 5D6 MR
&DELTZ LINK MAINTvrm 5D2 5D2 MR
&APPLX LINK MAINTvrm 5A6 5A6 MR
&APPLY LINK MAINTvrm 5A4 5A4 MR
&APPLZ LINK MAINTvrm 5A2 5A2 MR
&BAS3Z LINK MAINTvrm 5B4 5B4 MR
&BLD2Z LINK MAINT 193 193 MR
&BLD5Z LINK MAINT 19D 19D MR
&BLD6Z LINK MAINTvrm 490 490 MR
&BLD7Z LINK MAINTvrm 493 493 MR
&BLD8Z LINK MAINTvrm 5E6 5E6 MR
&SRVU1 USER VMSERVU
:EDCL.

Figure 180. Sample :DCL Section of a PPF

Minidisk/Directory Assignments Section
The minidisk/directory assignments section identifies the symbolic strings of minidisks or SFS directories
that make up the service database of the product. It is delimited by the :MDA and :EMDA tags. In source
and override PPFs, this section may contain variables defined in the variable declarations section. In the
usable form PPF, however, all of these variables have been resolved by VMFPPF.

Syntax
The following shows the syntax of the minidisk/directory assignments section of the product parameter
file.

Source Product Parameter File ($PPF), MDA Section Syntax

:MDA
1

MDA Record

:EMDA
1

MDA Record

TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

& varname

dirid

vdev

/

?

1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

:MDA.
marks the beginning of the minidisk/directory assignments section for the product.

:EMDA.
marks the end of the minidisk/directory assignments section for the product.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 635

MDA Record
In the syntax shown above, String is a 1-8 character symbolic string name. The string name must begin
in column 1. Duplicate string names are used for strings that require more than one line.

The valid string names are:

TASK
contains any minidisks or directories you want accessed before the service database defined for the
product.

LOCALxxx
contains customized files such as local modifications and circumventive service.

DELTAxxx
contains PTFs. PTFs contain the raw materials required to build systems after applying service:
update files, replacement parts, and PTF parts lists. The DELTA string also contains the service-level
description table, the service-level requisite table, and the service-level receive status table.

APPLYxxx
contains the files that define maintenance levels: AUX files, version vector tables, the service-level
apply status table, the select data file, and the service-level build status table.

BASExxx
contains the product raw materials: source files and base object files.

BUILDxxx
contains the usable system.

SYSTEM
contains any minidisks or directories you want accessed after the service database defined for the
product.

Note: The xxx in the string names indicates you can define different strings within a string type. You can
use this capability to give your strings more meaningful names. For more information, see “The VMSES/E
Database” on page 105.

&varname
is a variable that is defined in the variable declarations section on a LINK or DIR statement. (It would
not be on a USER statement since this statement cannot be in the :MDA record.)

dirid
is the name of a fully-qualified SFS directory.

vdev
is the address of a minidisk.

/
causes VMFSETUP to access the string as read-only. For example:

DELTA 2D6 2D4/ 2D2/

indicates the 2D4 and 2D2 disks are to be accessed as read-only by accessing them as extensions of
themselves (for example, mode/mode) by the VMFSETUP EXEC.

• If a minidisk or directory appears more than once, its first specification determines its status.
• If a minidisk or directory is already accessed read-write, it is released and reaccessed read-only.
• If a minidisk is empty (there are no CMS files on it), it cannot be accessed as read-only. When

a read-only access is requested for an empty disk, a warning message is issued; and the disk is
accessed as read/write. If the disk is linked read-only, an error message is issued and the disk is not
accessed.

A minidisk address, directory name, or variable can appear in more than one string.

Note: The VMFSETUP EXEC accesses minidisks and directories by string name in the order they are
specified above. Within each string, the minidisks and directories are accessed from left to right. The
first occurrence of the disk or directory establishes its place in the access order.

Product Parameter File Syntax

636 z/VM: 7.3 VMSES/E Introduction and Reference

?
causes VMFSETUP to not access the string. For example:

SYSTEM 1DF?

indicates the 1DF disk is not to be accessed, but will be linked if the LINK option is specified.

Example
Figure 181 on page 637 shows an example minidisk/directory assignments section in a source PPF.

:MDA.
LOCALMOD &LMODZ
LOCALSAM &SAMPZ
APPLY &APPLX &APPLY &APPLZ
DELTA &DELTY &DELTZ
BUILD8 &BLD8Z

BUILD7 &BLD7Z
BUILD6 &BLD6Z
BUILD5 &BLD5Z
BUILD2 &BLD2Z
BASE3 &BAS3Z
SYSTEM
:EMDA.

Figure 181. Sample :MDA Section of a Source PPF

Figure 182 on page 637 shows an example minidisk/directory assignments section in a usable form PPF.
Notice the variables have been resolved.

:MDA.
LOCALMOD POOL1:MAINTvrm.LOCALMOD
LOCALSAM POOL1:MAINTvrm.LOCALSMP
APPLY 5A6 5A4 5A2
DELTA 5D6 5D2
BUILD8 5E6

BUILD7 493
BUILD6 490
BUILD5 19D
BUILD2 193
BASE3 5B4
SYSTEM
:EMDA.

Figure 182. Sample :MDA Section of a Usable Form PPF

Place Into Production Section
The place into production section identifies test build and production build minidisks or SFS directories to
be used when copying serviced objects into production. Each set of minidisks are optionally flagged as a
system disk, a product disk, or a help disk.

The place into production section is optional.

Syntax
The following shows the syntax for the place into production section of the product parameter file.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 637

Source Product Parameter File ($PPF), Place Into Production Section
1

:P2P

P2P Record

:EP2P.
1

P2P Record

string &fromvarn  &tovarn
+

(SYSTEM

PRODUCT

HELP

SHARED

1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

:P2P.
marks the beginning of the place into production section.

:EP2P.
marks the end of the place into production section.

P2P Record
string

is the 1–8 character symbolic MDA section string for a test build minidisk or SFS directory. See “MDA
Record” on page 636 for a description of the allowed string values.

&fromvarn
is the variable name from the DCL section that defines a test build minidisk or SFS directory.

&tovarn
is the variable name from the DCL section that defines a production build minidisk or SFS directory.
+

A "+" at the end of the variable name causes an upper case copy to occur.
SYSTEM

identifies a CMS system disk, such as 190.
PRODUCT

identifies a product code disk, such as 19E.
HELP

identifies a product help disk, such as 19D.
SHARED

identifies a disk that is shared by two or more systems.

Example
Figure 183 on page 639 shows an example variable declarations section.

Product Parameter File Syntax

638 z/VM: 7.3 VMSES/E Introduction and Reference

:P2P.
BUILD6 &BLD6Z &BLD3Z (SYSTEM
BUILD7 &BLD7Z &BLD2Z (PRODUCT
BUILD3 &BLD3Z &BLD5Z &BLD9Z+ (HELP
:EP2P.

Figure 183. Sample :P2P Section of a PPF

Receive Installation Tape Definition Section
The receive installation tape definition section defines the layout of the installation tape for the product. It
is delimited by the :RECINS and :ERECINS tags.

Syntax
The following shows the syntax of the receive installation tape definition section of a product parameter
file.

Source Product Parameter File ($PPF), RECINS Section Syntax

:RECINS.
1

RECINS Record

:ERECINS.
1

RECINS Record
tapefile phexec TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

PPEXIT ppexec

parms

1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

:RECINS.
marks the beginning of the receive installation tape definition section for the product.

:ERECINS.
marks the end of the receive installation tape definition section for the product.

RECINS Record
tapefile

is a 1-8 upper-case character symbolic tape file name. There is one tapefile for each tape file on
the installation tape for the product. tapefile may start in any column. Each tape file contains all the
product parts of the same or a related type. The attribute that binds the types of parts in a particular
tape file is that they all require the same receive processing and are loaded to the same target. Each

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 639

part is in a separate CMS file within the tape file. Tape file names cannot appear in the :RECINS
section more than once.

phexec
is the name of the VMFREC part handler used to process the parts in the tape file:
VMFRCALL

receives parts unconditionally.
VMFRCAXL

receives apply and exclude lists.
VMFRCCOM

receives parts conditionally.
VMFRCPTF

receives PTF parts lists conditionally.
VMFRCUPP

receives files unconditionally. The tape files are loaded to a target disk and changed to uppercase.

If the part handler name begins with a dash (-), the associated tape file is not received. For more
information on the part handlers used by VMFREC, see “A Closer Look at the VMFREC EXEC” on page
108.

String
In the syntax diagram, String is the 1-8 character upper-case symbolic string name to which the tape
file is loaded. For more information on strings, see “The VMSES/E Database” on page 105. The symbolic
string must be defined in the minidisk/directory assignments section.

Valid string names are:

TASK
contains any minidisks or directories you want accessed before the service database defined for the
product.

LOCALxxx
contains customized files such as local modifications and circumventive service.

DELTAxxx
contains PTFs. PTFs contain the raw materials required to build systems after applying service:
update files, replacement parts, and PTF parts lists. The DELTA string also contains the service-level
description table, the service-level requisite table, and the service-level receive status table.

APPLYxxx
contains the files that define maintenance levels: AUX files, version vector tables, the service-level
apply status table, the select data file, and the service-level build status table.

BASExxx
contains the product raw materials: source files and base object files.

BUILDxxx
contains the usable system.

SYSTEM
contains any minidisks or directories you want accessed after the service database defined for the
product.

PPEXIT
indicates a product processing exit to be run when it is encountered in the receive installation tape
definition section.
ppexec

is the file name of the product processing exit.
parms

is a list of parameters passed to the product processing exit.

Product Parameter File Syntax

640 z/VM: 7.3 VMSES/E Introduction and Reference

Note: This interface is intended for use by program products that make use of VMSES/E. IBM does
not intend this interface for customer use.

Example
Figure 184 on page 641 shows a sample receive installation tape definition section.

:RECINS.
AXLIST VMFRCAXL DELTA * Apply and Exclude Lists
PARTLST VMFRCPTF DELTA * $PTFPART Files
DELTA VMFRCCOM DELTA * Service
APPLY VMFRCALL APPLY * Service
TOOLS VMFRCALL BUILD7 * Tools
SYSTEM VMFRCALL BUILD6 * System Disk
NCHELP VMFRCUPP BUILD5 * Uppercase HELP Files
:ERECINS.

Figure 184. Sample :RECINS Section of a PPF

Receive Service Media Definition Section
The receive service media definition section defines the layout of service tapes and envelopes for the
product. It is delimited by the :RECSER and :ERECSER tags.

Syntax
The following shows the syntax of the receive service media definition section of the product parameter
file.

Source Product Parameter File ($PPF), RECSER Section Syntax

:RECSER.
1

RECSER Record

:ERECSER.
1

RECSER Record
tapefile phexec TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

PPEXIT ppexec

parms

1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 641

:RECSER.
marks the beginning of the receive service media definition section for the product.

:ERECSER.
marks the end of the receive service media definition section for the product.

RECSER Record:
tapefile

is a 1-8 upper-case character symbolic tape file name. There is one tapefile for each tape file on the
service media for the product. tapefile may start in any column. Each tape file contains all the product
parts of the same or a related type. The attribute that binds the types of parts in a particular tape file
is that they all require the same receive processing and are loaded to the same target. Each part is in
a separate CMS file within the tape file. Tape file names cannot appear in the :RECSER section more
than once.

phexec
is the name of the VMFREC part handler used to process the parts in the tape file:
VMFRCALL

receives parts unconditionally.
VMFRCAXL

receives apply and exclude lists.
VMFRCCOM

receives parts conditionally.
VMFRCPTF

receives PTF parts lists conditionally.
VMFRCUPP

receives tape files unconditionally. The tape files are loaded to a target disk and changed to
uppercase.

If the part handler name begins with a dash (-), the associated tape file is not received. For more
information on the part handlers used by VMFREC, see “A Closer Look at the VMFREC EXEC” on page
108.

String
In the syntax diagram, String is the upper-case symbolic string name to which the tape file is loaded.
For more information on strings, see “The VMSES/E Database” on page 105. The symbolic string must be
defined in the minidisk/directory assignments section.

Valid string names are:

TASK
contains any minidisks or directories you want accessed before the service database defined for the
product.

LOCALxxx
contains customized files such as local modifications and circumventive service.

DELTAxxx
contains PTFs. PTFs contain the raw materials required to build systems after applying service:
update files, replacement parts, and PTF parts lists. The DELTA string also contains the service-level
description table, the service-level requisite table, and the service-level receive status table.

APPLYxxx
contains the files that define maintenance levels: AUX files, version vector tables, the service-level
apply status table, the select data file, and the service-level build status table.

BASExxx
contains the product raw materials: source files and base object files.

BUILDxxx
contains the usable system.

Product Parameter File Syntax

642 z/VM: 7.3 VMSES/E Introduction and Reference

SYSTEM
contains any minidisks or directories you want accessed after the service database defined for the
product.

PPEXIT
indicates a product processing exit to be run when it is encountered in the receive service media tape
definition section.
ppexec

is the file name of the product processing exit.
parms

is a list of parameters passed to the product processing exit.

Note: This interface is intended for use by program products that make use of VMSES/E. IBM does
not intend this interface for customer use.

Example
Figure 185 on page 643 shows an example receive service media definition section.

:RECSER.
AXLIST VMFRCAXL DELTA
PARTLST VMFRCPTF DELTA
DELTA VMFRCCOM DELTA
:ERECSER.

Figure 185. Sample :RECSER Section of a PPF

Build Product Definition Section
The build product definition section defines build processing for the product. It is delimited by the :BLD
and :EBLD tags.

Syntax
The following shows the build product definition section of the product parameter file.

Source Product Parameter File ($PPF), BLD Section Syntax

:BLD.
1

BLD Record

:EBLD.
1

BLD Record
bldlist phexec

-phexec

TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

ftabbrev

(

blopt

1

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 643

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

:BLD.
marks the beginning of the build product definition section for the product.

:EBLD.
marks the end of the build product definition section for the product.

BLD Record
bldlist

is a 1-8 upper-case character build list file name. There is one bldlist for each build list defined for the
product. bldlist may start in any column. The attribute that binds objects in a particular build list is that
they all require the same build processing and are built to the same target. Build list names cannot
appear in the :BLD section more than once.

You should not remove build lists from product parameter files. If you do not want to ever build any
object in a specific build list, create a product parameter file override and bypass it.

phexec
is the name of the VMFBLD part handler used to process the objects in the build list.
VMFBDCLB

builds callable services libraries.
VMFBDCOM

builds replacement objects (format 2 build lists).
VMFBDCPY

builds replacement text only (format 1 build lists).
VMFBDDDR

restores DDR image files to minidisks.
VMFBDDLB

builds CMS/DOS Phase libraries.
VMFBDGEN

builds generated objects, such as text decks.
VMFBDLLB

builds LOADLIBs.
VMFBDMLB

builds MACLIBs.
VMFBDMOD

builds MODULEs.
VMFBDNUC

builds nuclei.
VMFBDSBR

identifies system objects (saved segments) that need to be built.
VMFBDSEG

builds segments.
VMFBDTLB

builds TXTLIBs.
For more information on the part handlers used by VMFBLD, see “Creating Objects with VMFBLD” on
page 328.

Product Parameter File Syntax

644 z/VM: 7.3 VMSES/E Introduction and Reference

-phexec
indicates you want to bypass the build list. If the part handler name begins with a dash (-), all objects
in the associated build list are bypassed. See Figure 186 on page 645 for an example.

String
In the syntax diagram, String is the upper-case symbolic string name to which the objects in the build
list are built. For more information on strings, see “The VMSES/E Database” on page 105. The symbolic
string must be defined in the minidisk/directory assignments section.

Valid string names are:

TASK
contains any minidisks or directories you want accessed before the service database defined for the
product.

LOCALxxx
contains customized files such as local modifications and circumventive service.

DELTAxxx
contains PTFs. PTFs contain the raw materials required to build systems after applying service:
update files, replacement parts, and PTF parts lists. The DELTA string also contains the service-level
description table, the service-level requisite table, and the service-level receive status table.

APPLYxxx
contains the files that define maintenance levels: AUX files, version vector tables, the service-level
apply status table, the select data file, and the service-level build status table.

BASExxx
contains the product raw materials: source files and base object files.

BUILDxxx
contains the usable system.

SYSTEM
contains any minidisks or directories you want accessed after the service database defined for the
product.

ftabbrev
are the file type abbreviations for the serviceable parts listed in the build list. The ftabbrev must be the
3-character PTF abbreviation or the real CMS file type for parts that are not serviced by replacement.
This field is only valid for format 1 build lists.

blopt
are build list options which are passed to the part handler. For more information on build list options,
see “Build Lists” on page 141, “VMFBLD EXEC” on page 308, or “Creating Objects with VMFBLD” on
page 328.

Example
Figure 186 on page 645 shows an example build product definition section.

:BLD.VMF
BLHLP VMFBDCOM BUILD5VMF
BLSES VMFBDCOM BUILD8VMF
BLSYS VMFBDCOM BUILD6VMF
BLSRC VMFBDCOM BUILD7VMF
MLOAD VMFBDMOD BUILD8VMF
SLOAD VMFBDMOD BUILD6VMF
BLPPF -VMFBDCOM BUILD7
:EBLD.

Figure 186. Sample :BLD Section of a PPF

In Figure 186 on page 645, the VMFBLPPF build list has been bypassed, so no objects will be built.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 645

File Type Abbreviations Extensions Section
The file type abbreviations extensions section defines file type abbreviations for the product, which
override entries in the file type abbreviation table (VM SYSABRVT). It is delimited by the :DABBV
and :EDABBV tags.

Syntax
The following shows the file type abbreviations extensions section of the product parameter file.

Source Product Parameter File ($PPF), DABBV Section Syntax

:DABBV.
1

DABBV Record

:EDABBV.
1

DABBV Record

ftabbrev realft baseft
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

The tags in this section have the following syntax:

:DABBV.
marks the beginning of the file type abbreviations extensions section for the product.

:EDABBV.
marks the end of the file type abbreviations extensions section for the product.

DABBV Record
ftabbrev

is the 3-character abbreviation for the real CMS file type.
realft

is the real CMS file type, for example, TEXT or EXEC.
baseft

is the 1-8 character file type that corresponds to the base level of a serviceable part (for example, the
level of the part that has never been serviced).

Example
Figure 187 on page 646 shows an example file type abbreviations extensions section.

:DABBV.
NXT NEWTYPE NXT00000
AXT APPTYPE AXT00000
:EDABBV.

Figure 187. Sample :DABBV Section of a PPF

Override Area
Override areas are delimited by the :overname and :END tags and may contain the :PRODID tag and any of
the following sections:

• “Control Options Section” on page 627
• “Variable Declarations Section” on page 633

Product Parameter File Syntax

646 z/VM: 7.3 VMSES/E Introduction and Reference

• “Minidisk/Directory Assignments Section” on page 635
• “Receive Installation Tape Definition Section” on page 639
• “Receive Service Media Definition Section” on page 641
• “Build Product Definition Section” on page 643
• “File Type Abbreviations Extensions Section” on page 646

These sections contain parameters for the product.

An override area should only contain tags and sections for the component areas you want to change.

With the exception of the :overname tag, all of the tags and sections in the component area of the
source PPF are the same as in the component area of the usable form PPF. The syntax of the tags that
begin sections is extended to help you define changes that you want to make to the component area.
Remember, in override areas, variables defined in the variable declarations section have not yet been
resolved.

The override area has the following syntax (see “Source Product Parameter File ($PPF), Overall Syntax”
on page 625):

:overname.
marks the beginning of an override area. :overname is a 1-8 character uppercase name or keyword
that identifies a product. The :overname tag is used by the VMFOVER EXEC to locate the override
areas listed on the :OVERLST tag.
compname

is a pointer to the component area that this override area changes.
novername

is a pointer to the next override area in the chain of override areas that eventually lead to a
component area.

ppfname
is a pointer to the source or override PPF that contains compname or novername. If ppfname is not
supplied, it defaults to the name of the source or override PPF that contains overname.

Tag Extensions
VMSES/E provides extensions for the tags in the product parameter file. The syntax diagrams in the
following sections show the extensions to the tags that begin each section of the product parameter file.

UPDATE indicates the statements in that section of the override area update the corresponding
statements in the component or override area that is pointed to on the :overname tag. When UPDATE
is used, the original data is commented out with an asterisk (*) in the first column; and the new data is
inserted on the following lines. If there is no original data that corresponds (first token matches) to the
new data, the new data is added to the end of the section.

REPLACE indicates the statements in that section of the override area replace all the statements in the
corresponding section in the component area or override area that is pointed to on the :overname tag.
When REPLACE is used, the original data is completely removed (that is, the data is not commented out).

Note: Use REPLACE not UPDATE to override an empty section of the PPF.

Override Control Records
In addition to the update and replace capabilities, VMSES/E provides override control
records to insert and delete data from updateable sections. The updateable sections
are :DCL, :MDA, :RECINS, :RECSER, :BLD and :DABBV. Override control records should be used in
conjunction with the UPDATE keyword.

In the following sections, additional notation is used to show the syntax of the override control records.
For a description of this notation, see “Syntax Notation” on page 142.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 647

Delete Override Control Record
The delete override control record has the following syntax:

./DELETE symbol

symbol

./DELETE
indicates records to be deleted from a section. Multiple ./DELETE records are allowed in a section.
symbol

is the first token of a line to be deleted from the section. All occurrences of symbol will be deleted
within the section. Leading and trailing comments are deleted along with the record.

Insert Override Control Record
The insert override control record has the following syntax:

./INSERT symbol
AFTER

BEFORE

./INSERT
indicates the start of an insert block. All of the data in an insert block is inserted, even other control
records and tags. No checking is done to ensure the validity of PPF symbols in an insert block.
symbol

is the token that indicates where to insert the block.
BEFORE

indicates the data in the insert block is to be inserted immediately preceding the first occurrence
of symbol in the section, unless there are leading comments, in which case the insertion precedes
the leading comments.

AFTER
indicates the data in the insert block is to be inserted immediately following the last occurrence of
symbol in the section, unless there are trailing comments, in which case the insertion follows the
trailing comments. AFTER is the default.

./END
indicates the end of an insert block. The ./END record is required for each insert block.

Override Area Syntax
The following sections show the syntax for the override areas in the source product parameter file.

:CNTRLOP. UPDATE
The extension to the :CNTRLOP tag introduces overrides for the control options section.

Product Parameter File Syntax

648 z/VM: 7.3 VMSES/E Introduction and Reference

Source Product Parameter File ($PPF), CNTRLOP Section Override Syntax

:CNTRLOP.
UPDATE

1

PRODDESC.  text
1

:VERSION. version
1

:BCOMPNAME.  bcompname
1

:RECID.  prodid
1

:APPID.  appid  sappid
1

:BLDID.  bldid
1

:LOG. YES

NO

1
:RECVALL YES

NO

1

:SETUP YES

NO

PREEXit

1

:SLVI x/ zz
1

:NLS. langid

language code

1
:CNTRL. cntrlfn

1

:ALTCNTRL.  altcntrlfn
1

:AXLIST.  axname
1

:EXCLIST.
exname

1
:UPDTID.  updateid

1

:CKAUX. YES

NO

1
:CKSDI. YES

NO

1

:CKVV. YES

NO

1
:CKGEN. YES

LOGMOD

NO

NOVVT

1

:RETAIN.

fm

1
:USEREXIT.

exitname

1

:PTFPFX. pp
1

:APARPFX. aa
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Note: The REPLACE keyword is not valid for this section because all of the data in this section is tagged
data.

For a complete description of the control options section, see “Control Options Section” on page 627.

:DCL. UPDATE or REPLACE
The extension to the :DCL tag introduces overrides for the variable declarations section.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 649

Source Product Parameter File ($PPF), DCL Section Override Syntax

:DCL.

1

UPDATE
2

Update Record

REPLACE
2

DCL Record

Update Record
DCL Record

./DELETE & varname
2

INSERT

INSERT

./INSERT & varname
AFTER

BEFORE

2
DCL Record ./END

2

DCL Record

& varname LINK userid vdev1vdev2linkmode

password

DIR dirid

USER userid

2

Notes:
1 The default action will be to replace the records and if used this way it will erase the information in
the section.
2 Indicates end-of-line. The next entry must start on a new line.

For a complete description of the variable declarations section, see “Variable Declarations Section” on
page 633.

:MDA. UPDATE or REPLACE
The extension to the :MDA tag introduces overrides for the minidisk/directory assignments section.

Product Parameter File Syntax

650 z/VM: 7.3 VMSES/E Introduction and Reference

:MDA.

1

UPDATE
2

Update Record

REPLACE
2

MDA Record

Update Record
MDA Record

./DELETE String
2

INSERT

INSERT

./INSERT  String
AFTER

BEFORE

2
MDA Record ./END

2

MDA Record

String

& varname

dirid

address

/

?

2

String
TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

Notes:
1 The default action will be to replace the records and if used this way it will erase the information in
the section.
2 Indicates end-of-line. The next entry must start on a new line.

Figure 188. Source Product Parameter File ($PPF), MDA Section Override Syntax

For a complete description of the minidisk/directory assignments section, see “Minidisk/Directory
Assignments Section” on page 635.

:RECINS. UPDATE or REPLACE
The extension to the :RECINS tag introduces overrides for the receive installation tape definition section.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 651

Source Product Parameter File ($PPF), RECINS Section Override

:RECINS.

1

UPDATE
2

Update Record

REPLACE
2

RECINS Record

Update Record
RECINS Record

./DELETE tapefile

PPEXIT

2

INSERT

INSERT

./INSERT tapefile

PPEXIT

AFTER

BEFORE

2
RECINS Record ./END

2

RECINS Record
tapefilephexec String

PPEXIT  ppexec

parm

2

String
TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

Notes:
1 The default action will be to replace the records and if used this way it will erase the information in
the section.
2 Indicates end-of-line. The next entry must start on a new line.

For a complete description of the receive installation tape definition section, see “Receive Installation
Tape Definition Section” on page 639.

:RECSER. UPDATE or REPLACE
The extension to the :RECSER tag introduces overrides for the receive service media definition section.

Product Parameter File Syntax

652 z/VM: 7.3 VMSES/E Introduction and Reference

Source Product Parameter File ($PPF), RECSER Section Override

:RECSER.

1

UPDATE
2

Update Record

REPLACE
2

RECSER Record

Update Record
RECSER Record

./DELETE tapefile

PPEXIT

2

INSERT

INSERT

./INSERT tapefile

PPEXIT

AFTER

BEFORE

2
RECSER Record ./END

2

RECSER Record
tapefilephexec String

PPEXIT  ppexec

parm

2

String
TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

Notes:
1 The default action will be to replace the records and if used this way it will erase the information in
the section.
2 Indicates end-of-line. The next entry must start on a new line.

For a complete description of the receive service media definition section, see “Receive Service Media
Definition Section” on page 641.

:BLD. UPDATE or REPLACE
The extension to the :BLD tag introduces overrides for the build product definition section.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 653

Source Product Parameter File ($PPF), BLD Section Override Syntax

:BLD.

1

UPDATE
2

Update Record

REPLACE
2

BLD Record

Update Record
BLD Record

./DELETE bldlist
2

INSERT

INSERT

./INSERT  bldlist
AFTER

BEFORE

2
BLD Record ./END

2

BLD Record
bldlist phexec String

ftabbrev

(

blopt

2

String
TASK

LOCAL  xxx

DELTA  xxx

APPLY  xxx

BASE xxx

BUILD xxx

SYSTEM

Notes:
1 The default action will be to replace the records and if used this way it will erase the information in
the section.
2 Indicates end-of-line. The next entry must start on a new line.

Note:
You should not remove build lists from product parameter files when you create overrides. Instead, you
should create an override and bypass them. For more information, see “Build Product Definition Section”
on page 643.

For a complete description of the build product definition section, see “Build Product Definition Section”
on page 643.

:DABBV. UPDATE or REPLACE
The extension to the :DABBV tag introduces overrides for the file type abbreviations extensions section.

Product Parameter File Syntax

654 z/VM: 7.3 VMSES/E Introduction and Reference

Source Product Parameter File ($PPF), DABBV Section Override Syntax

:DABBV.

1

UPDATE
2

Update Record

REPLACE
2

DABBV Record

Update Record
DABBV Record

./DELETE ftabbrev
2

INSERT

INSERT

./INSERT  ftabbrev
AFTER

BEFORE

2
DABBV Record ./END

2

DABBV Record
ftabbrev realftbaseft

2

Notes:
1 The default action will be to replace the records and if used this way it will erase the information in
the section.
2 Indicates end-of-line. The next entry must start on a new line.

For a complete description of the file type abbreviations section, see “File Type Abbreviations Extensions
Section” on page 646.

Override Product Parameter File Syntax
Override product parameter files may be supplied by the product or created locally. Override PPFs contain
a header area and one or more override areas.

Header Area
The header area contains only the :OVERLST tag, which is a list of override areas in the override PPF. The
header area must appear before any override areas. The syntax of the :OVERLST tag is the same as in
source PPFs.

The header area of an override PPF shown in Figure 189 on page 655.

:OVERLST. VMSESUCENG VMSESINS VMSESPTFS

Figure 189. Sample Header Area of an Overrride PPF

Override Area
Override areas in override PPFs have the same syntax as override areas in source PPFs. For more
information, see “Override Area” on page 646.

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 655

Temporary Product Parameter File Syntax
Temporary product parameter files are the output of the VMFOVER EXEC. They have the same syntax as
source product parameter files, except there can only be one component area.

For more information on the syntax of source PPFs, see “Source Product Parameter File Syntax” on page
625.

Usable Form Product Parameter File Syntax
The usable form product parameter file is the final PPF entity that is actually used to control VMSES/E
exec processing. It is made up of one or more component areas.

Usable Form Product Parameter File (PPF), Overall Syntax

:COMPNAME. compname
1

Component Area

Component Area

: compname . :PRODID. prodid

% compname

1
CNTRLOP Section

DCL Section MDA Section RECINS Section RECSER Section BLD Section

DABBV Section :END.
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

Component Area
Component areas are delimited by the :COMPNAME and :END tags and contain the :compname
and :PRODID tags plus the following sections which contain the parameters for the product:

• “Control Options Section” on page 627
• “Variable Declarations Section” on page 633
• “Minidisk/Directory Assignments Section” on page 635
• “Receive Installation Tape Definition Section” on page 639
• “Receive Service Media Definition Section” on page 641
• “Build Product Definition Section” on page 643
• “File Type Abbreviations Extensions Section” on page 646

The component area has the following syntax:

:COMPNAME.
marks the beginning of a component area in a usable form PPF. The :COMPNAME tag is inserted by
the VMFOVER EXEC when it creates a temporary PPF. A product may have multiple component areas
if there are different sets of parameters to process it. When this is done, compname can be used to
provide a meaningful name to each set of parameters for the product.
compname

1-16 character uppercase name that identifies a product. The value of compname is taken from
the :compname tag in the source PPF.

Product Parameter File Syntax

656 z/VM: 7.3 VMSES/E Introduction and Reference

Component Area
The tags in the component area are:

:compname.
marks the beginning of a component area in a source PPF and is retained in the usable form PPF.
It is a 1-16 character uppercase name that identifies a product. The :compname tag is used by the
VMFOVER EXEC to locate the component areas listed on the :COMPLST tag in source PPFs.

:PRODID.
identifies the 7-25 character product/component/version-release-modification identifier for PTF
validation and product requisites.
prodid

is the 7-8 character alphanumeric identifier assigned to each product/version-release-
modification level of the product (may also be referred to as prodid in other areas of this book).
prodid also identifies the file name of the source PPF for the product.

%compname
is the component name identifier, for example CMS, which is added to the prodid with a percent
sign (%). compname is a 1- to 16-character alphanumeric identifier.

:END.
marks the end of a component area.

For information on the:

• CNTRLOP section, see the “Control Options Section” on page 627
• DCL section, see the “Variable Declarations Section” on page 633
• RECINS section, see the “Receive Installation Tape Definition Section” on page 639
• RECSER section, see the “Receive Service Media Definition Section” on page 641
• MDA section, see the “Minidisk/Directory Assignments Section” on page 635
• BLD section, see the “Build Product Definition Section” on page 643
• DABBV section, see the “File Type Abbreviations Extensions Section” on page 646

Example
Figure 190 on page 657 shows an example of a component area.

:COMPNAME. MYCOMP
:MYCOMP.
:PRODID. 1VMVMC23%MYCOMP
⋮
:END.

Figure 190. Sample Component Area of a Usable Form PPF

Examples of Overrides
The following examples show the use of override PPFs to change a source PPF. The first three examples
show single-level overrides, in which the override area points directly to a component area. The fourth
example is a multi-level example in which an override area points to another override area, which then
points to a component area. The last example is an override file for system (multiple product) use.

Inserting a Record
This override inserts a record in the :MDA section of a source PPF.

Override PPF (INSERT $PPF)
:OVERLST. MYCOMP
:MYCOMP. MYCOMP 1VMVMC23

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 657

:MDA. UPDATE
./INSERT LOCALSAM BEFORE
LOCALMOD 3C4
./END
:END.

Source PPF (1VMVMC23 $PPF)
⋮
:MYCOMP.
⋮
:MDA.
LOCALSAM 3C2
DELTA 3D6 3D4 3D2
⋮

Usable Form PPF (INSERT PPF)
⋮
:COMPNAME.MYCOMP
:MYCOMP.
⋮
:MDA.
LOCALMOD 3C4
LOCALSAM 3C2
DELTA 3D6 3D4 3D2
⋮

Deleting Records
This override deletes two records from the :MDA section of a source PPF.

Override PPF (DELETE $PPF)
:OVERLST. MYCOMP
:MYCOMP. MYCOMP 1VMVMC23
:MDA. UPDATE
./DELETE LOCALMOD LOCALSAM
:END.

Source PPF (1VMVMC23 $PPF)
⋮
:MYCOMP.
⋮
:MDA.
LOCALMOD 3C4
LOCALSAM 3C2
DELTA 3D6 3D4 3D2
⋮

Usable Form PPF (DELETE PPF)
⋮
:COMPNAME.MYCOMP
:MYCOMP.
⋮
:MDA.
DELTA 3D6 3D4 3D2
⋮

Updating a Record - Single-Level Override
This override updates a record in the :RECSER section of the product parameter file.

Product Parameter File Syntax

658 z/VM: 7.3 VMSES/E Introduction and Reference

Override PPF (UPDATE $PPF)
:OVERLST. MYCOMP
:MYCOMP. MYCOMP 1VMVMC23
:RECSER. UPDATE
PARTLST VMFRCCOM DELTA1
:END.

Source PPF (1VMVMC23 $PPF)
⋮
:MYCOMP.
⋮
:RECSER.
AXLIST VMFRCAXL DELTA
PARTLST VMFRCCOM DELTA
TEXT VMFRCTXT DELTA
⋮

Usable Form PPF (UPDATE PPF)
⋮
:COMPNAME.MYCOMP
:MYCOMP.
⋮
:RECSER.
AXLIST VMFRCAXL DELTA
*PARTLST VMFRCCOM DELTA
PARTLST VMFRCCOM DELTA1
TEXT VMFRCTXT DELTA
⋮

Updating a Record - Multi-Level Override
The first override in this example updates the :CNTRL tag and points to the second override. The second
override is an alias override which only changes the compname. Alias override PPFs are sometimes
provided by the product to provide easy-to-remember synonyms for ppfname and compname.

Control File Override PPF (MULTI $PPF)
:OVERLST. MYCOMP
:MYCOMP. MYCOMP ESA
:CNTRL. DMSLCL
:END.

Alias Override PPF (ESA $PPF)
:OVERLST. MYCOMP
:MYCOMP. MYCOMP 1VMVMC23
:END.

Source PPF (1VMVMC23 $PPF)
⋮
:MYCOMP.
⋮
:CNTRL. DMSVM
⋮

Usable Form PPF (MULTI PPF)
⋮
:COMPNAME.MYCOMP
:MYCOMP.
⋮

Product Parameter File Syntax

Chapter 21. Product Parameter File Syntax 659

*:CNTRL. DMSVM
:CNTRL. DMSLCL
⋮

Product Parameter File Syntax

660 z/VM: 7.3 VMSES/E Introduction and Reference

Chapter 22. Software Inventory Syntax

This chapter describes the syntax of the files and tables in the Software Inventory. For an overview of the
Software Inventory, see Chapter 15, “Introduction to the Software Inventory,” on page 163.

Structure of the Data in the Software Inventory Tables
Tables in the Software Inventory are made up of logical records. A logical record consists of all the fields
between one key field and the next. A key field identifies the major grouping of information contained in
each logical record. The data in each key field is unique throughout a table, duplicate key field values are
not allowed. A field consists of everything between one tag and the next, even if it spans multiple lines.
The name of the field is the same as the tag in the field.

A tag is an alphanumeric string that starts with a colon (:) and ends with a period (.). The tag identifies the
nature of the data following the tag. Figure 191 on page 661 illustrates the data structure.

Figure 191. Software Inventory Data Structure

For example, in the system-level description table shown here, there are three fields, PPF, PRODID, and
DESC. PPF is the key field, consisting of the tag :PPF and its data ppfname compname. The PRODID field
consists of the tag :PRODID and its data prodid%compname. The percent sign (%) is a delimiter. The
DESC field consists of the tag :DESC and its data text. Each logical record in the table begins with the key
field PPF.

System-Level Description Table Syntax

:PPF. ppfname compname :PRODID. prodid

% compname
:DESC. text

Delimiters
In the syntax diagrams in the following sections, the percent sign (%) and the period (.) are entered as
delimiters to separate entries. Do not enter blank spaces before or after the delimiter.

The System-Level Software Inventory
The system-level Software Inventory files are:

• “The Product Parts (PRODPART) File” on page 662
• “The Saved Segment Data (SEGDATA) File” on page 679
• “The Migration Parts Table (prodid MIGPvrm)” on page 684
• “The System-Level Description Table (VM SYSDESCT)” on page 686
• “The System-Level Memo Table (VM SYSMEMO)” on page 687
• “The System-Level Requisite Table (VM SYSREQT)” on page 688
• “The System-Level Receive Status Table (VM SYSRECS)” on page 690

Software Inventory Syntax

© Copyright IBM Corp. 1990, 2023 661

• “The System-Level Apply Status Table (VM SYSAPPS)” on page 692
• “The System-Level Build Status Table (VM SYSBLDS)” on page 694
• “The System-Level Service Update Facility Table (VM SYSSUF)” on page 695
• “The System-Level Product Inventory Table (VM SYSPINV)” on page 698
• “The System-Level Restart Table (VM SYSREST)” on page 698
• “The System-Level Local Modification Table (VM SYSLMOD)” on page 701
• “The System-Level Base APAR Table (VM SYSAPARS)” on page 703
• “The File Type Abbreviation Table (VM SYSABRVT)” on page 704
• “The Parts Catalog (VMSES PARTCAT)” on page 705

All files in the system-level Software Inventory, with the exception of the parts catalog and the file type
abbreviation table, reside on an inventory disk.

The Software Inventory Defaults
The Software Inventory disk, by default, is the MAINTvrm 51D disk, and it is accessed as your D-disk. It
may also be a Shared File System directory. The Production Inventory disk is the PMAINT 41D disk

All files in the system-level Software Inventory, except the PRODPART file, the SEGDATA file, the file type
abbreviation table, and the parts catalog, use the system name as their file name. The default system
name is VM.

The descriptions in this chapter assume you are using the defaults for the Software Inventory disk or
directory and the system name.

Changing the Software Inventory Defaults
To change the default Software Inventory disk, you must specify the SIDISK option using the VMSES/E
commands on which it is supported. To change the file mode of the Software Inventory disk, you must
first add the new file mode to the :RETAIN tag in the product parameter file so it is not released by
VMFSETUP. You can then access it at the new file mode and use the SIMODE option.

VMSES/E commands that support the SIDISK option automatically access the Software Inventory disk. All
other VMSES/E commands assume it is already accessed.

The default system name is VM. To change the system name, specify the SYSTEM option using the
VMSES/E commands on which it is supported. You might use different system names when you are
supporting multiple systems.

The Product Parts (PRODPART) File
The product parts (PRODPART) file, prodid PRODPART, contains information used for product installation
and is supplied by the product owner or product packager on the product installation media. It resides
on the Software Inventory minidisk or directory. The information in the PRODPART file is used to update
entries in the system-level Software Inventory each time a product is loaded onto your system.

The PRODPART file has the following major sections:

• A header section to identify the product being installed
• A loadable unit section to define installable subsets of the product and identify requisite relationships
• A parts section to define the tailorable parts contained in the product
• A product parameters section to define product unique installation parameters
• A saved segment definitions section to define default information for building saved segments

The following shows the syntax of the complete PRODPART file.

Software Inventory Syntax

662 z/VM: 7.3 VMSES/E Introduction and Reference

Product Parts File (PRODPART) Overall Syntax
Header Loadable_Units Parts Product_Parameters Saved_Segment_Definitions

See “Example PRODPART File” on page 677 for a sample PRODPART file.

Header Section
The header section of the PRODPART file identifies the product being installed.

Syntax
Product Parts File (PRODPART), Header Section Syntax shows the syntax of the header section.

Product Parts File (PRODPART), Header Section Syntax
:RECID. prodid :PRODDESC. text :PONUM. ponum :PROCTYPE.

VMSES

PDI

:SERVLEV. servlvl

All tags in the header section are required and are defined as follows:

:RECID.
identifies the product.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM. This number is used
as the file name of the base product parameter file and PRODPART file for the product, and it also
identifies the product on the installation and service media.

:PRODDESC.
indicates the description for the product identified on the :RECID tag.
text

is the description of the product.
:PONUM.

indicates the product order number.
ponum

is the product order number without the dash.
:PROCTYPE.

indicates the type of VMSES/E processing supported for the product.
VMSES

indicates the product is packaged in VMSES/E format. This means the product can be installed and
serviced using VMSES/E.

PDI
indicates the product is in a format to be installed by VMSES/E.

:SERVLEV.
identifies the service level of the product on the installation media.
servlvl

is the service level of the product.

Example
The following shows an example of the header section.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 663

:RECID.1VMVMC23
:PRODDESC.MYCOMP of z/VM
:PONUM.5664123
:PROCTYPE.VMSES
:SERVLEV.910-9101

Loadable Unit Section
The loadable unit section of the PRODPART file defines installable subsets of the product being installed
and identifies their requisite relationships.

The following terms are used in the description of the entries in the loadable unit section.

• Product designates a single product or piece of a product that is installed and serviced independently.

For example, CMS is a component of z/VM. It may be installed independently and is serviced
independently of the rest of the z/VM product. PVM is another example of a product. It is a separately
installed product that is serviced independently of any other product.

Note: The term "product" refers to both products and components of products, unless there is a specific
need to differentiate between the two.

• Loadable unit designates a portion of a product that may be installed independently of the rest of the
product, but is serviced as part of the product.

For example, the NetView® DASD Conservation Option (DCO) is a loadable unit of the NetView product.
This means you load only a portion of the full NetView product from tape to the system when you install
the NetView DCO. However, when you apply service to the installed version of NetView (NetView DCO),
there is only one service stream; and the application of the service is to the entire product not just the
loadable unit.

A loadable unit is defined in the system-level Software Inventory tables as the product's prodid
and a compname (component name) that describes the loadable unit name separated by a percent
sign. For example, the prodid for NetView is 5664204. The loadable unit for the full product is
5664204%NETVIEW. The loadable unit for NetView DCO is 5664204%DCO.

Syntax
Product Parts File (PRODPART), Loadable Unit Section Syntax shows the syntax of the loadable unit
section of the PRODPART file.

Product Parts File (PRODPART), Loadable Unit Section Syntax

:LU. Loadable Unit Record :ELU.

Loadable Unit Record
:PPF. ppfname compname :PRODID. prodid

% compname
:DESC.

text Reqtypes :UMEMO. text

Reqtypes

Software Inventory Syntax

664 z/VM: 7.3 VMSES/E Introduction and Reference

:PREREQ. PRODid

ORPRODid

:REQ. PRODid

ORPRODid

:DREQ. PRODid :SUP. prodid

% compname

:IFREQ. PRODid .IF. prodid

% compname

:NPRE. prodid

% compname

PRODid
prodid

% compname . ptfnum

ORPRODid

<<

|

prodid

% compname . ptfnum

1
>>

Notes:
1 See “Using the OR Operator” on page 667.

The tags in the loadable unit section are defined as follows:

:LU.
indicates the start of the section describing the loadable units that are contained on the installation
media for the product.

Loadable Unit Record
The loadable unit record describes the loadable unit.

Note: Every product must have at least one loadable unit defined. If the product consists of only one
loadable unit, the :PPF tag contains the prodid and compname from the :RECID and :BCOMPNAME tags in
the PPF. The :DESC tag contains the same description as the :PRODDESC tag in the header section.

There can be multiple loadable unit records, and they can contain the following tags and data:

:PPF.
identifies the product parameter file for a particular loadable unit.
ppfname

is the 1-8 character file name of the product parameter file associated with the loadable unit.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 665

compname
is the 1-16 character alphanumeric identifier of the component contained within the product
parameter file associated with a loadable unit.

:PRODID.
specifies the identifier that is used for PTF validation and product requisites.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM. prodid is the file
name of the PRODPART file that is shipped with the product.

%compname
is a 1-16 character component identifier preceded by a percent sign (%). For example, the
identifier for CMS is %CMS.

:DESC.
indicates a description for the loadable unit.
text

is the description of the loadable unit.

Reqtypes
The loadable unit section also contains tags that identify the requisites for the loadable unit.

The tags defining loadable unit requisites are required only if they are applicable to the loadable unit. For
example, if the loadable unit does not contain any prerequisites, the :PREREQ tag would not be identified
in this section.

As you can see after "Reqtypes" in Product Parts File (PRODPART), Loadable Unit Section Syntax, the
following types of requisites are specified in the loadable units section:

:PREREQ.
identifies other products or loadable units that must be installed before this loadable unit can be
installed correctly.

:REQ.
identifies other products or loadable units that must be installed before this loadable unit can operate
correctly.

:DREQ.
identifies other products or loadable units that must be installed before this loadable unit can be
installed correctly. Unlike requisites defined on the :PREREQ tag, these requisites are no longer
satisfied when the requisite product or loadable unit is superseded. This occurs when a product
requires a specific level of another product and newer levels of the product will not meet the
requirements.

:SUP.
identifies other products or loadable units replaced by this product, such as a new version or release
of a product. This also implies the superseded product never needs to be installed once this loadable
unit is installed.

:IFREQ.
identifies conditional requisites. Specifically, this identifies particular products or loadable units that
must be installed before this product or loadable unit can operate if the specified product or loadable
unit is installed.

:NPRE.
identifies other products or loadable units that cannot exist on a system at the same time as this
product.

The variables specified with these tags are:

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM. prodid is the file name of
the PRODPART file that is shipped with the product.

Software Inventory Syntax

666 z/VM: 7.3 VMSES/E Introduction and Reference

%compname
is the component name identifier preceded by a percent sign (%), for example %CMS. compname is a
1-16 character alphanumeric identifier.

ptfnum
is a specific PTF number (for example UV12345). A PTF number indicates the requisite is a specific
service level of the product, and the PTF must be installed.

Using the OR Operator
If a product's requisites can be satisfied by any number of products, the "OR" operator can be used in the
requisite definition. The format of the "OR" statement is shown in Figure 192 on page 667.
 << prodid | prodid >>

 │ │ │
 │ | ↓
 │ |
 | ↓ End of OR group
 │
 ↓ OR operator

 Start of OR group

Figure 192. Requisite OR Format Syntax

Note: There must be a blank space after << and before >>. Figure 193 on page 667 shows two
prerequisites for a loadable unit: product PRODABC and any one of products PRODX, PRODY, or PRODZ.

 :PREREQ. PRODABC << PRODX | PRODY | PRODZ >>

Figure 193. :PREREQ Tag Using OR Format

:UMEMO.
identifies the start of user memo text for the loadable unit.
text

is the user memo text for the loadable unit.
:ELU.

identifies the end of the section containing the loadable units.

Example
The following shows an example of the loadable unit section.

:LU.
:PPF.1VMVMC23 MYCOMP
:DESC.MYCOMP for z/VM
:UMEMO.
Special instructions go here
:PPF.1VMVMC23 MYCOMPSRC
:PRODID.1VMVMC23%MYCOMP
:DESC.Optional Source Code for MYCOMP
:PREREQ.1VMVMP11
:SUP.1VMVMC12
:ELU.

Parts Section
The parts section of the PRODPART file defines the tailorable parts contained in the product.

Syntax
Product Parts File (PRODPART), Parts Section Syntax shows the syntax of the parts section.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 667

Product Parts File (PRODPART), Parts Section Syntax
:PARTS.

:PARTID. fn ft :PROCOPTS. RGROUP tapefile

TPART hashid

:EPARTS.

The tags in the parts section are defined as follows:

:PARTS.
identifies the start of a parts definition block.

:PARTID.
identifies the tailorable part.
fn

is the 1-8 character file name of the part.
ft

is the 1-8 character file type of the part.
:PROCOPTS.

identifies the processing options that are used when the part is installed.
RGROUP

indicates in which tape file the parts were shipped. The parts are identified on the :PARTID tag.
tapefile

is the alphanumeric identifier assigned in the :RECINS. section of the PPF to the tape file
containing the parts identified on the :PARTID tag. This data is required to allow previous levels of
the product to be deleted when you migrate to a new level.

TPART
assigns the unique identifier for the tailorable file.

hashid
is a hash code, a unique identifier assigned to a tailored part of the product being installed,
that represents the file in its unmodified form. The hashid is used during product migration to
determine if a tailored file has been modified by the user.

:EPARTS.
identifies the end of a parts definition block.

Example
The following shows an example of the parts section.

:PARTS.
:PARTID.HCPRDEVS SAMPEXEC
:PROCOPTS.RGROUP SAMPLES TPART 12A67DD8900001
:PARTID.DMKSYS 3375
:PROCOPTS.RGROUP SAMPLES TPART 12AAA238900001
:EPARTS.

Product Parameters Section
The product parameters section of the PRODPART file defines product-unique installation parameters. It
contains a resource management subsection, which is further subdivided into user definition subsections
and target subsections.

Software Inventory Syntax

668 z/VM: 7.3 VMSES/E Introduction and Reference

Syntax
Product Parts File (PRODPART), Product Parameters Section Syntax shows the syntax of the product
parameters section.

Product Parts File (PRODPART), Product Parameters Section Syntax

:PARMS. prodid compname Resource Mgmt :EPARMS.

Resource Mgmt
:RMT.

Userdef Target

:ERMT.

Userdef

:USERDEF.
REPlace

MODIFY

 directory_statement :EUSERDEF.

Target
:TARGET.

FULLpack

:TARGID. useridvdev

dirid

& variable
:SIZE. size

1

:BLKSIZE. 512

1K

2K

4K

:FORMAT.CMS

:FORMAT.
CMS

not CMS

:MODE. mode

:RECOMPED.0

:RECOMPED.
0

nnn

:PREFERRED.NO

:PREFERRED.
NO

YES

:SEPARATED. userid vdev

& variable

:OWNER. userid
2

& variable
:FULLDESC.  text

2

:ETARGET.

Notes:
1 Required except for full-pack minidisks
2 Required for full-pack minidisks

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 669

The tags in the product parameters section are defined as follows:

:PARMS.
identifies the start of the product parameters section.

The product parameters section in a PRODPART file is optional; its existence is dependent on the
product's installation requirements.

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM. prodid is the file
name of the PRODPART file that is shipped with the product.

compname
is the name of the component, for example CMS. compname is a 1-16 character alphanumeric
identifier.

Note: Each :PARMS section applies to one or more loadable units. If the prodid and compname are not
specified on the :PARMS tag, the section applies to all loadable units. If they are specified, they must
match the prodid and compname from a :PRODID tag in the loadable units section.

:RMT.
identifies the start of the resource management subsection.

:USERDEF.
identifies the start of the user definition subsection. This section defines a user ID to be added to or
modified in the CP directory before your product can be installed or used.
REPLACE

replaces the entry if the user ID is already defined in the CP directory. REPLACE is the default.
MODIFY

adds the specified lines to the existing entry.
directory_statement

defines the user ID using directory statements, excluding MDISK statements. These statements
sometimes appear exactly as they would in the directory. In other cases, there can be variable
substitution. This can be a one value substitution or a two value substitution. A two value variable
substitution is, for example,

LINK &BLD3Z 190 RR

The &BLD3Z is the user ID and the address.
:EUSERDEF.

identifies the end of the user definition subsection.
:TARGET.

identifies the start of a target subsection. This section defines the minidisk or SFS directory
requirements for the product.
FULLPACK

indicates a full-pack minidisk is required. A blank indicates either a smaller minidisk or an SFS
directory.

:TARGID.
identifies a target minidisk or SFS directory.
userid

is a user ID.
vdev

is a minidisk address.
dirid

is a fully-qualified SFS directory name.
&variable

is a variable defined for a minidisk or directory in the :DCL section of the product parameter file.
Variable names begin with an ampersand (&).

Software Inventory Syntax

670 z/VM: 7.3 VMSES/E Introduction and Reference

Note: When defining a target minidisk for a subconfiguration entry of a multiconfiguration virtual
machine definition, the subconfiguration ID must be hardcoded as the user ID in the userid vdev pair.
A variable cannot be used in the target minidisk definition.

:SIZE.
defines the size (in blocks) of the minidisk or directory. This tag is not required for a full-pack minidisk.
size

is the number of blocks used by the minidisk or directory based on the :BLKSIZE defined.
:BLKSIZE.

defines the size of the blocks for the minidisk or directory.
512, 1K, 2K, or 4K

is the block size. Shared File System directories always use 4K blocks.
:FORMAT.

is the format of the minidisk.
CMS

indicates the minidisk is in CMS format. The default is CMS.
not CMS

indicates the minidisk is not in CMS format.
:MODE.

indicates the read/write mode of the minidisk or directory.

Although this tag is required, its value is ignored for directories.

mode
is the read/write mode, for example, RR, RW, MR, and so forth.

:RECOMPED.
indicates the size of the non-CMS formatted area on the minidisk.
0

is the default.
nnn

is the number of blocks that are not to be formatted.
:PREFERRED.

indicates whether the minidisk is preferred (placed as near to the center of the pack as possible).
NO

indicates the minidisk is not preferred. NO is the default.
YES

indicates the minidisk should be placed as near to the center of the pack as possible.
:SEPARATED.

lists minidisks that must be placed on a different pack from this minidisk.
userid

is the user ID of the owner of the minidisk.
vdev

is the address of the minidisk.
&variable

is a variable defined for a minidisk in the :DCL section of the product parameter file. Variable
names begin with an ampersand (&).

:OWNER.
indicates the owner of a full-pack minidisk. This tag is required for full-pack minidisks.
userid

is the user ID of the minidisk owner.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 671

&variable
is a variable defined for a minidisk or directory in the :DCL section of the product parameter file.
Variable names begin with an ampersand (&).

:FULLDESC.
indicates the reason for using a full-pack minidisk. This tag is required for full-pack minidisks.
text

is the reason for using a full-pack minidisk.
:ETARGET.

identifies the end of the target subsection.
:EPARMS.

identifies the end of the product parameters section.

Example
the following shows an example of the product parameters section.

:PARMS.1VMVMC23 MYCOMP
:RMT.
:USERDEF.
USER &CMS1 NOLOG 24M 32M G
 AUTOLOG AUTOLOG1 OP1 MAINT
 ACCOUNT ACT4 CMSTST
 MACH XC
 IPL 190
 CONSOLE 009 3215
 SPOOL 00C 2540 READER A
 SPOOL 00D 2540 PUNCH A
 SPOOL 09E 1403 A
 LINK &BLD3Z 190 RR
 LINK &PRODZ 19E RR
 LINK &BLD5Z 19D RR
:EUSERDEF.
:TARGET.
 :TARGID.&CMSB0
 :SIZE.300
 :BLKSIZE.4K
 :FORMAT.CMS
 :MODE.MR
 :PREFERRED.YES
:ETARGET.
:TARGET.
 :TARGID.&SRVU0
 :SIZE.450
 :BLKSIZE.4K
 :FORMAT.CMS
 :MODE.MR
 :PREFERRED.YES
:ETARGET.
:ERMT.
:EPARMS.

Saved Segment Definitions Section
The saved segment definitions section of the PRODPART file defines default information for building
saved segments. It contains one or more saved segment definition blocks, each of which contains one or
more object subsections, each of which defines a saved segment.

Note: The saved segment definitions section does not define saved systems.

Syntax
Product Parts File (PRODPART), Saved Segment Definitions shows the syntax of the saved segment
definitions section.

Software Inventory Syntax

672 z/VM: 7.3 VMSES/E Introduction and Reference

Product Parts File (PRODPART), Saved Segment Definitions

:SEGDEF. prodid compname Saved Segment Def :ESEGDEF.

Saved Segment Def

:OBJNAME. segname
1

:DEFPARMS. hexpage - hexpage type

defseg_parms

:SPACE.  spacename

:TYPE. SEG

PSEG

:OBJDESC.  objdesc :OBJINFO.  objinfo

:GT_16MB. YES

NO

:DISKS. vdev

dirname

:SEGREQ.  reqsegname

:BLDPARMS. UNKNOWN

:BLDPARMS.
2

PPF (ppfname compname bldlist)

PROD(Logical Saved Segment Def)

PROD(loadfunc

 loadparm

LOADSAVE modfn

ORIGIN hexloc

SAVEONLY

)

UNKNOWN

Logical Saved Segment Def

LSEGment lfn
LSEG *

lft
*

lfm

PROFILE profn

EPIFILE epifn

Notes:
1 The remaining tags in the saved segment definition can be specified in any order.
2 This loop is valid only for a physical saved segment that contains logical saved segments. 'PSEG'
must be specified on the :TYPE tag.

The tags and data in the saved segment definitions section are defined as follows:

:SEGDEF.
indicates the start of a saved segment definition block.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM.
compname

is the 1-16 character component name.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 673

Note: The values of prodid and compname match the values on the :PRODID tag in the loadable unit
section of the PRODPART file.

:OBJNAME.
indicates the start of a saved segment definition.
segname

is the name of the saved segment.
:DEFPARMS.

indicates the storage range and other information that the VMFBLD EXEC specifies on the DEFSEG
command to define the saved segment to CP.
hexpage

is the hexadecimal address of a page in storage.
type

is a page descriptor code that indicates the type of virtual machine access that is permitted to the
page range.

defseg_parms
are optional DEFSEG command operands. The following operands are permitted: LOADNSHR,
RSTD, and SECURE.

Note: Do not specify the SPACE operand on this tag. Segment spaces are identified on the :SPACE
tag.

For information about the syntax and usage of the DEFSEG command, see z/VM: CP Commands and
Utilities Reference.

:SPACE.
lists the segment spaces in which the saved segment is a member.

Note: The VMFBLD EXEC uses the first name listed on this tag as the primary segment space when
issuing the DEFSEG command for the member.

spacename
is the name of a segment space.

:TYPE.
indicates whether the saved segment contains CMS logical saved segments.
SEG

indicates the saved segment does not contain logical saved segments. One set of build
parameters is allowed on the :BLDPARMS tag.

PSEG
indicates the saved segment is a physical saved segment that contains logical saved segments.
Multiple sets of build parameters are allowed on the :BLDPARMS tag, each set defining one or
more logical saved segments.

:OBJDESC.
provides a description of the saved segment.
objdesc

is free-format text that describes the saved segment.
:OBJINFO.

provides special installation information.
objinfo

is free-format text that describes any special requirements for installing the saved segment. This
field is informational; its content does not affect the generation of the saved segment.

:GT_16MB.
indicates whether the saved segment can be loaded above the 16MB line.
YES

the saved segment can be loaded above 16MB.

Software Inventory Syntax

674 z/VM: 7.3 VMSES/E Introduction and Reference

Note: This does not mean that the range specified on the :DEFPARMS tag actually defines the
saved segment above 16MB, only that it can.

NO
the saved segment cannot be loaded above 16MB. The range specified on the :DEFPARMS tag
must be less than 16MB.

:DISKS.
lists the minidisks and SFS directories to be accessed by the VMFBLD EXEC when building the saved
segment.

Note: If 'PPF' is specified on the :BLDPARMS tag, the minidisks and directories specified on this
tag are accessed before the minidisks and directories defined in the product parameter file. If
'UNKNOWN' is specified on the :BLDPARMS tag, the minidisks and directories specified on this tag
are not accessed.

vdev
is a minidisk virtual device number.

dirname
is a fully qualified SFS directory name.

:SEGREQ.
lists the saved segments that must be built before this saved segment is built.

Note: All requisite saved segments must be defined in the same system saved segment build list and
SEGDATA file as this saved segment.

reqsegname
is the name of a requisite saved segment.

:BLDPARMS.
identifies the parameters that the VMFBLD EXEC uses to build the saved segment.

If 'PSEG' is specified on the :TYPE tag, the VMFBLD EXEC creates a physical segment definition file
(segname PSEG) that contains the logical segment records, then issues the SEGGEN command to
build the physical and logical saved segments. Multiple sets of build parameters (for VMSES/E and
non-VMSES/E products) can be specified on this tag to identify the logical saved segments to include
in the physical saved segment.

UNKNOWN
indicates a build function for this saved segment cannot be issued by the VMFBLD EXEC. This
forces VMFBLD to issue only the DEFSEG command to define the saved segment to CP. After
VMFBLD has completed, the user must issue the function that actually loads and saves the saved
segment. This is the default.

PPF
indicates the build parameters are defined in the specified product parameter file and build list.
Depending on the build list option specified (ACCESS, LINK, or NOACCESS), VMFSETUP might be
called to link and access the disks specified in the product parameter file for the product when the
segment is built.

ppfname
is the name of the product parameter file.

compname
is the name of the component section in the product parameter file.

bldlist
is the name of the product saved segment build list.

PROD
indicates the build parameters are not specified in a product parameter file. The VMFBLD EXEC
uses the parameters specified on this tag to build the saved segment (after issuing the DEFSEG
command to define the saved segment to CP).

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 675

LSEGment
identifies a logical segment definition file, which defines a CMS logical saved segment to be
included in the physical saved segment.

Note: 'PSEG' must be specified on the :TYPE tag.

lfn
is the file name of the logical segment definition file.

lft
is the file type of the logical segment definition file. If the file type is not specified here, the
SEGGEN command uses a default of LSEG.

Note: Do not use PROFILE or EPIFILE as the file type of the logical segment definition file.

lfm
is the file mode of the logical segment definition file. If the file mode is not specified here, the
SEGGEN command uses a default of *.

PROFILE
indicates a routine is to be run before information is loaded into the logical saved segment. For
information about using a profile when building a logical saved segment, see z/VM: CP Planning
and Administration.

profn
is the file name of the profile routine.

EPIFILE
indicates a routine is to be run after information is loaded into the logical saved segment. For
information about using an epifile when building a logical saved segment, see z/VM: CP Planning
and Administration.

epifn
is the file name of the epifile routine.

loadfunc
is the name of the routine the VMFBLD EXEC calls to load and save the saved segment.

Return codes from loadfunc are processed as follows:
0

Segment built without any errors
1-4

Segment built, one or more warnings issued
all others

Segment build failed

loadparm
is a parameter to be passed to the loadfunc routine.

The following built-in variables are also available to indicate data to be passed to the loadfunc
routine. When the saved segment is built, the VMFBLD EXEC resolves the variables as indicated:
&RANGE

Gets the hexadecimal page ranges, page descriptor codes, and optional DEFSEG operands
from the :DEFPARMS tag

&SPACE
Gets the primary segment space name from the :SPACE tag

&ORIGIN
Gets the starting load address from the :DEFPARMS tag

&SEGNAME
Gets the name from the :OBJNAME tag

Software Inventory Syntax

676 z/VM: 7.3 VMSES/E Introduction and Reference

LOADSAVE
indicates the VMFBLD EXEC calls the built-in LOADSAVE function, which issues the LOADMOD
command to load a specified relocatable module. LOADSAVE then issues the SAVESEG command
to save the module as a saved segment.

See the usage notes on the LOADMOD command in z/VM: CMS Commands and Utilities Reference.

modfn
is the file name of the relocatable module. The file type must be MODULE.

SAVEONLY
indicates the VMFBLD EXEC calls the built-in SAVEONLY function, which issues only the SAVESEG
command.

ORIGIN
specifies a load address for the module.

hexloc
is the hexadecimal storage address where the module is to be loaded.

Note: It is recommended that the ORIGIN keyword be specified and that the built-in variable
&ORIGIN be used to indicate the storage location. When the saved segment is built, the VMFBLD
EXEC resolves the &ORIGIN variable to get the load address from the :DEFPARMS tag. If the
ORIGIN keyword is not specified, CMS selects any available storage location. If an actual address
is specified, it must be within the range defined on the :DEFPARMS tag.

:ESEGDEF.
identifies the end of a saved segment definition block.

Example
The following shows an example of the saved segment definitions section.

:SEGDEF.1VMVMC23 MYCOMP

:OBJNAME. HELPINST
:DEFPARMS. C00-CFF SR
:TYPE. PSEG
:OBJDESC. CMSINST AND HELP LSEGS
:GT_16MB. NO
:BLDPARMS. PPF(ESA 1VMVMC23 DMSSBINS) PPF(ESA 1VMVMC23 DMSSBHLP):OBJNAME. CMSPIPES
:DEFPARMS. 1900-19FF SR
:TYPE. PSEG
:OBJDESC. CMS PIPES SEGMENT
:GT_16MB. YES
:BLDPARMS. PPF(ESA 1VMVMC23 DMSSBPIP)

⋮

:ESEGDEF.

Example PRODPART File
The following shows an example of a complete PRODPART file.

*===
* Header Section
*===
:RECID.1VMVMC23
:PONUM.5654030
:PRODDESC.MYCOMP component for z/VM
:SERVLEV.000-0000
:PROCTYPE.VMSES*===
* Loadable Units Section - equivalent of different components
*===
:LU.
:PPF.1VMVMC23 MYCOMP
:PRODID.1VMVMC23%MYCOMP
:DESC.MYCOMP component for z/VM
:PREREQ.1VMVMP11
:DREQ.1VMVME10

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 677

:SUP.
:ELU.*===
* Parts Section - lists all files for this Product/Component
*===
:PARTS.
*----------------------------
:PARTID.SERVER PROFILE
:PROCOPTS.TPART 00000000000000

:PARTID.DMSNGP SAMPLE
:PROCOPTS.TPART 00000000000000

:PARTID.VMSYS POOLDEF
:PROCOPTS.TPART 00000000000000:PARTID.VMSYSR POOLDEF
:PROCOPTS.TPART 00000000000000

:PARTID.VMSYSU POOLDEF
:PROCOPTS.TPART 00000000000000

:PARTID.VMSERVS DMSPARMS
:PROCOPTS.TPART 00000000000000

⋮
*----------------------------
:EPARTS.*===

* Segdef Section - default segment definitions for CMS
*===

:SEGDEF.1VMVMC23 MYCOMP

:OBJNAME. HELPINST
:DEFPARMS. C00-CFF SR
:TYPE. PSEG
:OBJDESC. CMSINST AND HELP LSEGS
:GT_16MB. NO
:BLDPARMS. PPF(ESA MYCOMP DMSSBINS) PPF(ESA MYCOMP DMSSBHLP)⋮

:ESEGDEF.***

*===
* Parms Section - resource allocation information section
*===

:PARMS.1VMVMC23 MYCOMP

:RMT.
:USERDEF.
USER &CMS1 NOLOG 24M 32M G
 AUTOLOG AUTOLOG1 OP1 MAINT
 ACCOUNT ACT4 CMSTST
 MACH XC
 IPL 190
 CONSOLE 009 3215
 SPOOL 00C 2540 READER A
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK &BLD3Z 190 RR
 LINK &PRODZ 19E RR
 LINK &BLD5Z 19D RR
:EUSERDEF.*
:USERDEF.
USER &CMSBU NOLOG 24M 24M G
 ACCOUNT 3 SYSTEM
 MACH ESA
 OPTION ACCT
 IPL 190 PARM AUTOCR
 CONSOLE 009 3215
 SPOOL 00C 2540 READER *
 SPOOL 00D 2540 PUNCH A
 SPOOL 00E 1403 A
 LINK &BLD3Z 190 RR
:EUSERDEF.
*
⋮:TARGET.
 :TARGID.&CMSB0
 :SIZE.300
 :BLKSIZE.4K
 :FORMAT.CMS
 :MODE.MR

Software Inventory Syntax

678 z/VM: 7.3 VMSES/E Introduction and Reference

 :PREFERRED.YES
:ETARGET.
:TARGET.
 :TARGID.&SRVU0
 :SIZE.450
 :BLKSIZE.4K
 :FORMAT.CMS
 :MODE.MR
 :PREFERRED.YES
:ETARGET.
:TARGET.
 :TARGID.&SRVU1
 :SIZE.1500
 :BLKSIZE.4K
 :FORMAT.CMS
 :MODE.R
 :PREFERRED.YES
:ETARGET.⋮

:ERMT.

:EPARMS.

The Saved Segment Data (SEGDATA) File
The saved segment data (SEGDATA) file, bldlist SEGDATA, contains customized saved segment definitions
for building the set of saved segments identified in the system saved segment build list that has the
same file name. The SEGDATA file resides on the same disk as the system saved segment build list. It is
updated by the user through the VMFSGMAP saved segment mapping tool and is processed by VMFBLD.

Note: The SEGDATA file does not define saved systems.

Syntax
SEGDATA File Syntax shows the syntax of the SEGDATA file.

SEGDATA File Syntax

Saved Segment Definition

Saved Segment Definition

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 679

:OBJNAME. segname :DEFPARMS.

hexpage - hexpage type

defseg_parms

DELETED

hexpage - hexpage type

defseg_parms

:SPACE.  spacename

:TYPE. SEG

PSEG

:OBJDESC. objdesc :OBJINFO. objinfo

:GT_16MB. YES

NO

:DISKS. vdev

dirname

:SEGREQ.  reqsegname

:PRODID. prodid
compname

:BLDPARMS. UNKNOWN

:BLDPARMS.
1

PPF (ppfname compname bldlist)

PROD(Logical Saved Segment Def)

PROD(loadfunc

 loadparm

LOADSAVE modfn

ORIGIN hexloc

SAVEONLY

)

UNKNOWN

Logical Saved Segment Def

LSEGment lfn
LSEG *

lft
*

lfm

PROFILE profn

EPIFILE epifn

Notes:
1 This loop is valid only for a physical saved segment that contains logical saved segments. 'PSEG'
must be specified on the :TYPE tag.

The tags and data in the SEGDATA file are defined as follows:

:OBJNAME.
indicates the start of a saved segment definition.
segname

is the name of the saved segment.

Software Inventory Syntax

680 z/VM: 7.3 VMSES/E Introduction and Reference

:DEFPARMS.
indicates the storage range and other information that the VMFBLD EXEC specifies on the DEFSEG
command to define the saved segment to CP.
hexpage

is the hexadecimal address of a page in storage.
type

is a page descriptor code that indicates the type of virtual machine access that is permitted to the
page range.

defseg_parms
are optional DEFSEG command operands. The following operands are permitted: LOADNSHR,
RSTD, and SECURE.

Note: The SPACE operand is not specified on this tag. Segment spaces are identified on
the :SPACE tag.

DELETED
indicates the saved segment is to be deleted. No DEFSEG command is issued.

Note: If any DEFSEG data is specified in this field, it is saved in the SEGDATA file following the
DELETED keyword.

:SPACE.
lists the segment spaces in which the saved segment is a member.

Note: The VMFBLD EXEC uses the first name listed on this tag as the primary segment space when
issuing the DEFSEG command for the member.

spacename
is the name of a segment space.

:TYPE.
indicates whether the saved segment contains CMS logical saved segments.
SEG

indicates the saved segment does not contain logical saved segments. One set of build
parameters is allowed on the :BLDPARMS tag.

PSEG
indicates the saved segment is a physical saved segment that contains logical saved segments.
Multiple sets of build parameters are allowed on the :BLDPARMS tag, each set defining one or
more logical saved segments.

:OBJDESC.
provides a description of the saved segment.
objdesc

is free-format text that describes the saved segment.
:OBJINFO.

provides special installation information.
objinfo

is free-format text that describes any special requirements for installing the saved segment. This
field is informational; its content does not affect the generation of the saved segment.

:GT_16MB.
indicates whether the saved segment can be loaded above the 16MB line.
YES

the saved segment can be loaded above 16MB.

Note: This does not mean that the range specified on the :DEFPARMS tag actually defines the
saved segment above 16MB, only that it can.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 681

NO
the saved segment cannot be loaded above 16MB. The range specified on the :DEFPARMS tag
must be less than 16MB.

:DISKS.
lists the minidisks and SFS directories to be accessed by the VMFBLD EXEC when building the saved
segment.

Note: If 'PPF' is specified on the :BLDPARMS tag, the minidisks and directories specified on this
tag are accessed before the minidisks and directories defined in the product parameter file. If
'UNKNOWN' is specified on the :BLDPARMS tag, the minidisks and directories specified on this tag
are not accessed.

vdev
is a minidisk virtual device number.

dirname
is a fully qualified SFS directory name.

:SEGREQ.
lists the saved segments that must be built before this saved segment is built.

Note: All requisite saved segments must be defined in the same system saved segment build list and
SEGDATA file as this saved segment.

reqsegname
is the name of a requisite saved segment.

:PRODID.
identifies the PRODPART file that contains the default definition for the saved segment.
prodid

is the 7-8 character alphanumeric identifier assigned to the product.
compname

is the 1-16 character component name. The component name is necessary only if the PRODPART
file contains saved segment definitions for more than one component.

:BLDPARMS.
identifies the parameters the VMFBLD EXEC uses to build the saved segment.

If 'PSEG' is specified on the :TYPE tag, the VMFBLD EXEC creates a physical segment definition file
(segname PSEG) that contains the logical segment records, then issues the SEGGEN command to
build the physical and logical saved segments. Multiple sets of build parameters (for VMSES/E and
non-VMSES/E products) can be specified on this tag to identify the logical saved segments to include
in the physical saved segment.

UNKNOWN
indicates a build function for this saved segment cannot be issued by the VMFBLD EXEC. This
forces VMFBLD to issue only the DEFSEG command to define the saved segment to CP. After
VMFBLD has completed, the user must issue the function that actually loads and saves the saved
segment. This is the default.

PPF
indicates the build parameters are defined in the specified product parameter file and build list.
Depending on the build list option specified (ACCESS, LINK, or NOACCESS), VMFSETUP might be
called to link and access the disks specified in the product parameter file for the product when the
segment is built.

ppfname
is the name of the product parameter file.

compname
is the name of the component section in the product parameter file.

bldlist
is the name of the product saved segment build list.

Software Inventory Syntax

682 z/VM: 7.3 VMSES/E Introduction and Reference

PROD
indicates the build parameters are not specified in a product parameter file. The VMFBLD EXEC
uses the parameters specified on this tag to build the saved segment (after issuing the DEFSEG
command to define the saved segment to CP).

LSEGment
identifies a logical segment definition file, which defines a CMS logical saved segment to include in
the physical saved segment.

Note: 'PSEG' must be specified on the :TYPE tag.

lfn
is the file name of the logical segment definition file.

lft
is the file type of the logical segment definition file. If the file type is not specified here, the
SEGGEN command uses a default of LSEG.

Note: PROFILE and EPIFILE are not valid as the file type of the logical segment definition file.

lfm
is the file mode of the logical segment definition file. If the file mode is not specified here, the
SEGGEN command uses a default of *.

PROFILE
indicates a routine is to be run before information is loaded into the logical saved segment.

profn
is the file name of the profile routine.

EPIFILE
indicates a routine is to be run after information is loaded into the logical saved segment.

epifn
is the file name of the epifile routine.

loadfunc
is the name of the routine the VMFBLD EXEC calls to load and save the saved segment.

loadparm
is a parameter to be passed to the loadfunc routine.

The following built-in variables are also available to indicate data to be passed to the loadfunc
routine. When the saved segment is built, the VMFBLD EXEC resolves the variables as indicated:
&RANGE

Gets the hexadecimal page ranges, page descriptor codes, and optional DEFSEG operands
from the :DEFPARMS tag

&SPACE
Gets the primary segment space name from the :SPACE tag

&ORIGIN
Gets the starting load address from the :DEFPARMS tag

&SEGNAME
Gets the name from the :OBJNAME tag

LOADSAVE
indicates the VMFBLD EXEC calls the built-in LOADSAVE function, which issues the LOADMOD
command to load a specified relocatable module. LOADSAVE then issues the SAVESEG command
to save the module as a saved segment.

modfn
is the file name of the relocatable module. The file type must be MODULE.

SAVEONLY
indicates the VMFBLD EXEC calls the built-in SAVEONLY function, which issues only the SAVESEG
command.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 683

ORIGIN
specifies a load address for the module.

hexloc
is the hexadecimal storage address where the module is to be loaded.

Note: If the built-in variable &ORIGIN is specified, the VMFBLD EXEC resolves the variable to get
the load address from the :DEFPARMS tag. If an actual load address is specified, it must be within
the range defined on the :DEFPARMS tag.

Example
The following shows an example of the SEGDATA file.

:OBJNAME. HELPINST
:DEFPARMS. C00-CFF SR
:TYPE. PSEG
:OBJDESC. CMSINST AND HELP LSEGS
:GT_16MB. NO
:PRODID. 1VMVMC23
:BLDPARMS.PPF(ESA MYCOMP DMSSBINS) PPF(ESA MYCOMP DMSSBHLP)

The Migration Parts Table (prodid MIGPvrm)
The Migration Parts table contains a list of parts that have been changed or can be customized.

The file name of this table is the PRODID of a component, product or feature. The file type of this
table indicates the version, release and modification of a z/VM release from which you can migrate. The
Migration Parts table resides on the Software Inventory disk.

Migration Parts Table Syntax shows the syntax of the migration parts table.

Migration Parts Table Syntax

:PART.  fn ft Status Custom

Status

:STATUS. ADDED.  dcl

CHANGED

DELETED.  dcl

MIGRATED  .date.time

Custom

:CUSTYPE. LOCALMOD

CIP.  ndcl

.odcl

Custom Copy

Custom Copy

Software Inventory Syntax

684 z/VM: 7.3 VMSES/E Introduction and Reference

COPY.  nfdcl

.ofn.oft.ofdcl

:CUSPART. tfn.tft.ntdcl

.otdcl .LOG- ft

:PART.
identifies a part
fn

is the 1- to 8-character file name of the part.
ft

is the 1- to 8-character file type of the part.
:STATUS.

is the status of the part
ADDED

indicates that the part as been added to a disk
dcl

is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2), to which the part was added.

CHANGED
indicates that the contents of the part has changed. (New part is considered changed.)

DELETED
indicates that the part has been deleted from a disk.
dcl

is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2), to which the part was deleted.

MIGRATED
indicates that a customized part has been migrated.
date

indicates the month, day and year the part was migrated. The format for date is mm/dd/yy.
time

indicates the hour, minute and second the part was migrated. The format for time is hh:mm:ss.
:CUSTYPE.

inidicates how the part can be customized
LOCALMOD

indicates that this part is customized by local modification
CIP

indicates that the part is changed-in-place. This means the part is customized by being modified
on the disk where it resides.
ndcl

is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2), where the part resides in the to release.

odcl
is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2), where the part resides in the from release.

COPY
indicates that the part is customized by being copied and then modified.
nfdcl

is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2) where the unmodified part resides on the to release.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 685

ofn
is the 1- to 8-character file name of the unmodified part on the from release.

oft
is the 1- to 8-character file type of the unmodified part on the from release.

ofdcl
is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2) where the unmodified part resides on the from release.

:CUSPART.
identifies the target characteristics of a COPY part
tfn

is the 1- to 8-character file name of the modified part. It can be ? to indicate that file name
of the modified part is user-determined.

tft
is the 1- to 8-character file type of the modified part. It can be ? to indicate that the file
type of the modified part is user-determined.

ntdcl
is the variable name of the disk in the component's DCL section of its PPF, (for example,
&BUILD2) where the modified part resides on the to release.

otdcl
is the variable name of the disk in the component's DCL section of it's PPF, (for example,
&BUILD2) where the modified part resides on the from release.

LOG-ft
is 1- to 8- character file type to which the part is to be copied. LOG indicates that a product
exit log has been updated for this part.

The System-Level Description Table (VM SYSDESCT)
The system-level description table contains the descriptions of the products that have been received on
the system. The system-level description table resides on the Software Inventory disk, and it is updated
during receive processing for installation media. Information in the PRODPART files is used to update this
table.

Syntax
System-Level Description Table Syntax shows the syntax of the system-level description table.

System-Level Description Table Syntax

:PPF. ppfname compname :PRODID. prodid

% compname
:DESC. text

:PPF.
indicates a product parameter file (PPF) was used to load the product.

:PPF is the key field for the system-level description table.

ppfname
is the file name of the PPF that was used to load the product.

compname
is the name of the component in the PPF that was used to load the product. compname is a 1-16
character alphanumeric identifier.

:PRODID.
identifies the product that was loaded.

Software Inventory Syntax

686 z/VM: 7.3 VMSES/E Introduction and Reference

prodid
is the 7-8 character alphanumeric identifier from the :RECID tag (for example, 1VMVMC23).

%compname
is the component name preceded by a percent sign (%), for example, %CMS. compname is a 1-16
character alphanumeric identifier.

:DESC.
identifies the product description.
text

is the description of the product.

Example
The following shows an example of the system-level description table.

:PPF. ESAINS MYCOMP :PRODID. 1VMVMC23 :DESC. MYCOMP Component of z/VM
:PPF. 5684120A WLFS :PRODID. 5684120A :DESC. WORK STATION LAN

The System-Level Memo Table (VM SYSMEMO)
The system-level memo table contains a list of memos collected during automated service processing.
The memos included are:

• PTF APAR MEMO
• RSU MEMO
• UMEMO
• COR MEMO

This table gives you the ability to display all the memos in one place (using the VMFUPDAT EXEC).

Syntax

System Inventory Table

:MEMO. bcompname.fn.ft.fm :TYPE. UMEMO

RSUMEMO

CORMEMO

APARMEMO

:PPF. ppffn compname Status

Status
:STAT. DISPLAY

DELETED

.date.time

:MEMO.
identifies there is a Memo
bcompname

is the 7-8 character alphanumeric identifier defined on the bcompname tag in the PPF file
fn ft fm

is the fileid of the file containing the memo
:TYPE.

is the type of MEMO specified

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 687

UMEMO
indicates UMEMO data is in the PTF $PTFPART file

RSUMEMO
indicates a Product Installation Memo or latest Recommended Service Upgrade (RSU) Memo, if
the product is RSU supported

CORMEMO
indicates a CORrective Service Memo

APARMEMO
indicates an APAR MEMO, which was created from the APAR section of the CORrective Service
memo

:PPF.
identifies the product parameter file. This field is used for UMEMO display only.
ppffn

is the file name of the PPF file associated with the memo
compname

is the component name. compname is a 1-16 character alphanumeric identifier.
:STAT.

is the status of the MEMO specified
DISPLAY

indicates the record will be displayed by VMFUPDAT SYSMEMO
DELETED

indicates the record will not be displayed by VMFUPDAT SYSMEMO
date

indicates the month, day, and year the memo was processed. The format for date is mm/dd/yy.
time

identifies the hour, minute, and second the memo was processed. The format for time is
hh:mm:ss.

The System-Level Requisite Table (VM SYSREQT)
The system-level requisite table contains the relationships between products that will be installed or have
been installed on the system.

The system-level requisite table resides on the Software Inventory disk, and it is updated during receive
processing for installation media. This table is updated using information in the PRODPART files.

Syntax
System-Level Requisite Table Syntax shows the syntax of the system-level requisite table.

System-Level Requisite Table Syntax

:PRODID. prodid

% compname
Reqtypes

Reqtypes

Software Inventory Syntax

688 z/VM: 7.3 VMSES/E Introduction and Reference

:PREREQ. PRODid

ORPRODid

:REQ. PRODid

ORPRODid

:DREQ. PRODid :SUP. prodid

% compname

:IFREQ. prodid

% compname
.IF. prodid

% compname

:NPRE. prodid

% compname

PRODid
prodid

% compname . ptfnum

ORPRODid

<<

|

prodid

% compname . ptfnum

>>

:PRODID.
identifies the product.

:PRODID is the key field for the system-level requisite table.

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23). prodid is the file name of the PRODPART file that is shipped with the product.

%compname
is the component name preceded by a percent sign (%), for example %CMS. compname is a 1-16
character alphanumeric identifier.

ptfnum
is a specific PTF number, for example UV12345.

Reqtypes
The system-level requisite table shows the following types of requisites:

:PREREQ.
identifies other products or loadable units that must be installed before this loadable unit can be
installed correctly.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 689

:REQ.
identifies other products or loadable units that must be installed before this loadable unit can operate
correctly.

:DREQ.
identifies other products or loadable units that must be installed before this loadable unit can be
installed correctly. Unlike requisites defined on the :PREREQ tag, these requisites are no longer
satisfied when the requisite product or loadable unit is superseded. This occurs when a product
requires a specific level of another product and newer levels of the product will not meet the
requirements.

:SUP.
identifies other products or loadable units replaced by this product, such as a new version or release
of a product. This also implies the superseded product never needs to be installed once this loadable
unit is installed.

:IFREQ.
identifies conditional requisites. Specifically, this identifies particular loadable units that must be
installed with this product or loadable unit if and only if the specified product/loadable unit or
product/PTF is installed.

:NPRE.
identifies other products or loadable units that cannot exist on a system at the same time as this
product.

The variables specified with these tags are:

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example 1VMVMC23).
prodid is the file name of the PRODPART file that is shipped with the product.

%compname
is the component name preceded by a percent sign (%), for example %CMS. compname is a 1-16
character alphanumeric identifier.

ptfnum
is a specific PTF number (for example UV12345). Specifying a PTF number indicates the PTF must
also be installed.

Example
Figure 194 on page 690 shows an example of the system-level requisite table.

:PRODID.57000ABC%PRODABC :PREREQ.57000B40 << 57000Y40 | 57000W40 >>
 :COREQ. 57000DEF%PRODDEF
 :SUP. 57000X40
 :IFREQ. 57000W40.IF.57000T40
 :NPRE. 57000Z40

Figure 194. System-Level Requisite Table Example

The System-Level Receive Status Table (VM SYSRECS)
The system-level receive status table contains a list of all products that have been received on the
system.

The system-level receive status table resides on the Software Inventory disk, and it is updated during
receive processing for installation media.

You can access the information in this table to determine which product parameter file is used for a
specific product and to determine which products have been received on the system.

Syntax
System-Level Receive Status Table Syntax shows the syntax of the system-level receive status table.

Software Inventory Syntax

690 z/VM: 7.3 VMSES/E Introduction and Reference

System-Level Receive Status Table Syntax

:PPF. ppfname compname :PRODID. prodid

% compname
Status

Status

:STAT. RECEIVED.  date . time . userid . servlvl

DELETE. date . time . userid

DELETED.  date . time . userid

:PPF.
indicates a product parameter file (PPF) was used to load the product.

:PPF is the key field for the system-level receive status table.

ppfname
is the file name of the PPF that was used to load the product.

compname
is the name of the component in the PPF that was used to load the product.

:PRODID.
identifies the product.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23). prodid is the file name of the PRODPART file that is shipped with the product.

%compname
is the component name preceded by a percent sign (%), for example %CMS). compname is a 1-16
character alphanumeric identifier.

:STAT.
indicates the status of the product on the system.
RECEIVED

means the product has been received.
DELETE

means you have asked to delete this product and the delete is pending.
DELETED

means the product has been deleted.
date

identifies the month, day, and year the product was processed. The format for date is mm/dd/yy.
time

identifies the hour, minute, and second the product was processed. The format for time is
hh:mm:ss.

userid
is the userid that was used when the product was processed.

servlvl
identifies the service level of the product when it was processed.

Example
Figure 195 on page 692 shows an example of the system-level receive status table.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 691

:PPF.VMESA MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.RECEIVED.06/01/89.10:10:10.MAINT.9101-911
:PPF.VMESA MYCOMP2 :PRODID.1VMVMD23%MYCOMP2 :STAT.DELETED.01/02/90.11:11:11.JONES
:PPF.5684120A WLFS :PRODID.5684120A%WLFS :STAT.RECEIVED.01/02/90.11:11:11.JONES
:PPF.5684142B LANRES :PRODID.5684142B%LANRES :STAT.RECEIVED.01/02/90.11:11:11.JONES

Figure 195. System-Level Receive Status Table Example

The System-Level Apply Status Table (VM SYSAPPS)
The system-level apply status table contains a list of all products that have been applied on the system. A
product is considered to be applied when it has passed requisite checking.

The system-level apply status table resides on the Software Inventory disk, and it is updated during
receive processing for installation media.

You can access the information in this table to determine which product parameter file is used for a
specific product, which products have been applied on the system, and which products defined to the
system are enabled or disabled.

Syntax
System-Level Apply Status Table Syntax shows the syntax of the system-level apply status table.

System-Level Apply Status Table Syntax

:PPF. ppfname compname :PRODID. prodid

% compname
Status

Status

:STAT. APPLIED

SUPED

DELETE

DELETED

. date . time . userid

:ESTAT. INSTALLED

DELETED

ENABLED

ENABSYNC

DISABLED

DISABSYNC

. date . time . userid

:PPF.
indicates the product parameter file (PPF) that was used to load the product.

:PPF is the key field for the system-level apply status table.

ppfname
is the file name of the PPF that was used to load the product.

Software Inventory Syntax

692 z/VM: 7.3 VMSES/E Introduction and Reference

compname
is the name of the component in the PPF that was used to load the product. compname is a 1-16
character alphanumeric identifier.

:PRODID.
identifies the product.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23). prodid is the file name of the PRODPART file that is shipped with the product.

%compname
is the component name preceded by a percent sign (%), for example %CMS. compname is a 1-16
character alphanumeric identifier.

:STAT.
is the status of the product on the system.
APPLIED

means requisite checking as been successfully completed.
SUPED

means the product has been superseded by another product.
DELETE

means you have asked to delete the product and the delete is pending.
DELETED

means the product has been deleted.
date

identifies the month, day, and year the product was processed. The format for date is mm/dd/yy.
time

identifies the hour, minute, and second the product was processed. The format for time is
hh:mm:ss.

userid
identifies the user ID that was used when the product was processed.

:ESTAT.
is the enablement status of the product on the system.
INSTALLED

means the product is installed on the system.
DELETED

means the product has been deleted.
ENABLED

means the product is enabled to the system.
ENABSYNC

means the product is enabled to the system (same as ENABLED).
DISABLED

means the product is disabled to the system.
DISABSYNC

means the product is disabled to the system (same as DISABLED).

Example
Figure 196 on page 694 shows an example of the system-level apply status table.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 693

:PPF.VMESA MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.APPLIED.03/31/21.11:11:11.MAINT
:PPF.VMESA MYCOMP2 :PRODID.1VMVMD23%MYCOMP2 :STAT.APPLIED.03/31/21.10:11:11.MAINT
:PPF.5684120A WLFS :PRODID.5684120A%WLFS :STAT.APPLIED.03/31/21.12:10:10.TMG
:PPF.5684142B LANRES :PRODID.5684142B%LANRES :STAT.APPLIED.03/31/22.12:10:10.TMG
:ESTAT.ENABLED.03/31/22.12:10:10.TMG INSTALLED.03/31/22.12:10:10.TMG
:PPF.5684100E PVM :PRODID.5684100E%PVM :STAT.APPLIED.10/31/22.08:09:00.P684100E
:ESTAT.DISABSYNC.11/01/22.10:15:00.P684100E DISABLED.10/31/22.08:09:00.P684100E
INSTALLED.10/31/22.08:09:00.P684100E

Figure 196. System-Level Apply Status Table Example

The System-Level Build Status Table (VM SYSBLDS)
The system-level build status table contains a list of all products that have been built on the system.

The system-level build status table resides on the Software Inventory disk, and it is updated during build
processing for installation media.

You can access the information in this table to determine which products have been completely installed
on the system.

Syntax
System-Level Build Status Table Syntax shows the syntax of the system-level build status table.

System-Level Build Status Table Syntax

:PPF. ppfname compname :PRODID. prodid

% compname
Status

Status

:STAT. BUILT

SUPED

DELETE

DELETED

ERROR

. date . time . userid

:PPF.
identifies the product parameter file (PPF) that was used to build the product.

:PPF is the key field for the system-level build status table.

ppfname
is the file name of the PPF that was used to build the product.

compname
is the name of the component in the PPF that was used to build the product. compname is a 1-16
character alphanumeric identifier.

:PRODID.
identifies the product.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23). prodid is the file name of the PRODPART file that is shipped with the product.

%compname
is the component name preceded by a percent sign (%), for example %CMS. compname is a 1-16
character alphanumeric identifier.

Software Inventory Syntax

694 z/VM: 7.3 VMSES/E Introduction and Reference

:STAT.
is the status of the product on the system.
BUILT

means the product has been built.
SUPED

means the product has been superseded by another product.
DELETE

means you have asked to delete the product and the delete is pending.
DELETED

means the product has been deleted.
ERROR

means an error occurred while the product was being processed.
date

identifies the month, day, and year the product was processed. The format for date is mm/dd/yy.
time

identifies the hour, minute, and second the product was processed. The format for time is
hh:mm:ss.

userid
identifies the user ID that was used when the product was processed.

Example
The following Figure 197 on page 695 shows an example of the system-level build status table.

:PPF.ESAINS MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.BUILT.03/31/22.10:10:10.MAINT
:PPF.ESATEST MYCOMP2 :PRODID.1VMVMD23%MYCOMP2 :STAT.SUPED.04/30/22.11:11:11.MAINT
:PPF.ESATEST MYCOMP :PRODID.1VMVMC23%MYCOMP :STAT.DELETED.04/30/22.12:12:12.MAINT
:PPF.5684120A WLFS :PRODID.5684120A%WLFS :STAT.BUILT.04/02/22.01:15:15.JONES
:PPF.5684142B LANRES :PRODID.5684142B%LANRES :STAT.BUILT.04/02/22.02:15:15.JONES

Figure 197. System-Level Build Status Table Example

The System-Level Service Update Facility Table (VM SYSSUF)
The system-level service update facility table contains a list of all products that are installed on the
system and related data needed by the automated service commands. The LOCALMOD, PUT2PROD, and
SERVICE EXECs use this table.

The system-level service update facility table resides on the software inventory disk and is updated by
VMFSUFTB EXEC.

You can access the information in the system-level service update facility table to determine the
parameters used by the automated service commands. You can then tailor the table using the VMFSIM
MODIFY or VMFUPDAT SYSSUF command.

Syntax
System-Level Service Update Facility Table Syntax shows the syntax of the system-level Service Update
Facility table.

System-Level Service Update Facility Table Syntax

:PRODID. prodid

%compname

Product Data

Product Data

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 695

:SERVLEV. servlvl :DESC. text :INCLUDE. YES

NO

:INSTALL. YES

NO

:INSPPF. ppfname compname :BUILD. YES

NO

:BLDPPF. ppfname

compname

:P2PPPF. ppfname compname

:PRODLEV. systemid.prodlev

:CSM_MANAGED. YES

NO

principal_systemid

<NONE>

:PRODID.
identifies the product.
prodid

is the 7- through 8-character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23).

%compname
is the component name preceded by a percent sign (%) (for example, %CMS). compname is a 1-
through 16-character alphanumeric identifier.

:SERVLEV.
identifies the RSU, ESO, or SDO test service level. On a system managed by z/VM CSM, the value is the
z/VM CSM service level.
servlvl

is the RSU, ESO, SDO, or z/VM CSM test service level of the product.
:DESC.

identifies the product description.
text

is the description of the product.
:INCLUDE.

obsolete.
YES

default shipped value.
NO

obsolete.
:INSTALL.

indicates whether or not to install service (RSU or COR) for this product.
YES

installs the RSU or COR (this is the initial value set by VMFSUFTB).
NO

does not install the RSU or COR.
:INSPPF.

identifies the PPF used to install the RSU.
ppfname

is the file name of the PPF used to install the RSU.

Software Inventory Syntax

696 z/VM: 7.3 VMSES/E Introduction and Reference

compname
is the name of the component in the PPF used to install the RSU.

:BUILD.
indicates whether the automated service commands should run VMFBLD for the product, prodid, after
installing the RSU.
YES

runs VMFBLD (this is the initial value set by VMFSUFTB).
NO

does not run VMFBLD.
:BLDPPF.

identifies the PPF used to run VMFBLD.
ppfname

is the file name of the PPF used to run VMFBLD.
compname

is the name of the component in the PPF used to run VMFBLD.
:P2PPPF.

identifies the PPF used by the PUT2PROD EXEC.
ppfname

is the file name of the PPF used by the PUT2PROD EXEC.
compname

is the name of the component in the PPF used by the PUT2PROD EXEC.
:PRODLEV.

identifies the RSU, ESO, or SDO production service level. On a system managed by z/VM CSM, the
value is the z/VM CSM production level.
systemid.prodlev

systemid is the ID of the system and prodlev is the RSU, ESO, SDO, or z/VM CSM production service
level of the product.

The VMFUPDAT SYSSUF panel displays only one RSU, ESO, SDO, or z/VM CSM production service
level: the level associated with the ID of the system on which the VMFUPDAT command was
executed.

:CSM_MANAGED.
indicates the management state for the product, with respect to z/VM Centralized Service
Management (z/VM CSM).
YES

service for the product is actively controlled using z/VM CSM support, and is managed by the
named z/VM CSM principal system (principal_systemid).

NO
service for the product is not being controlled using z/VM CSM. If a principal system is cited,
management of the subject system by z/VM CSM has been suspended. If the principal system is
cited as <NONE>, the subject system is not being managed by z/VM CSM.

Example
Figure 198 on page 697 shows an example of the system-level Service Update Facility table.

:PRODID.1VMVMC23%MYCOMP :SERVLEV.RSU-0901 :DESC.MYCOMP z/VM
:INCLUDE.YES :INSTALL.YES :INSPPF.SERVP2P MYCOMP :BUILD.YES :BLDPPF.SERVP2P MYCOMP
:P2PPPF.SERVP2P MYCOMPP2P :PRODLEV.SYSID1.RSU-0901

Figure 198. System-Level Service Update Facility Table Example

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 697

The System-Level Product Inventory Table (VM SYSPINV)
The system-level Product Inventory table (VM SYSPINV) specifies which products are installed on which
systems or members. The system-level Product Inventory table resides on the production inventory disk
(by default, PMAINT 41D).

Syntax
System-Level Product Inventory Table Syntax shows the syntax of the system-level Product Inventory
table.

System-Level Product Inventory Table Syntax

:PRODUCT.  recid :SYSTEM. systemid

:SUP. prodid

%compname

:PRODUCT.
identifies the product.
recid

is the 1–8 character alphanumeric product identifier.
:SYSTEM.

identifies the system.
systemid

is the ID of a system.
:SUP

identifies the products replaced (superseded) by this product. That is, the value of this tag is a list
of the PRODIDs which the product in the :PRODUCT tag supersedes.

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23).

%compname
is the component name preceded by a percent sign (%) (for example, %CMS). compname is a
1-16 character alphanumeric identifier.

Example
Figure 199 on page 698 shows an example of the system-level Product Inventory table.

:PRODUCT.1VMVMC23 :SYSTEM.MEMSYS1 MEMSYS2 :SUP.1VMVMC22
:PRODUCT.5748890A :SYSTEM.MEMSYS2

Figure 199. System-Level Product Inventory Table Example

The System-Level Restart Table (VM SYSREST)
The system-level restart table contains records used to restart VMFSUFIN EXEC.

The system-level restart table resides on the software inventory disk and is updated by the VMFSUFIN
EXEC.

Software Inventory Syntax

698 z/VM: 7.3 VMSES/E Introduction and Reference

You can access the information in this table to determine which invocations of VMFSUFIN are incomplete
and are awaiting restart.

The VM SYSREST table contains these restart records:

• Checkpoint Restart Record

A checkpoint restart record is created when a VMFSUFIN service install step fails. This record, which
is identified by a status of CHKPT in the :STAT tag, allows VMFSUFIN to restart at the failing step. The
record is used when VMFSUFIN is called with the RESTART option for one of the prodids listed in the
record. The service install process is restarted using only data from the checkpoint restart record.

• Key Restart Record

A key restart record is created when VMFSUFIN is called with the KEY option and a record with a
matching key cannot be found in the SYSREST table. This record, which is identified by a status of KEY
in the :STAT tag, allows VMFSUFIN to install service from data passed by two separate calls. The record
is used when VMFSUFIN is called with a matching key. The service install process is restarted using data
from both the VMFSUFIN command and the key restart record.

• Initial Restart Record

An initial restart record is created when VMFSUFIN begins processing and remains until it is converted
into a checkpoint restart record. This record, which is identified by a status of INIT in the :STAT tag,
allows VMFSUFIN to restart from the beginning. The record is used when VMFSUFIN is called with the
RESTART option for one of the prodids listed in the record and a checkpoint restart record cannot be
found. The service install process is restarted using only data from the initial restart record.

• Local Modification Restart Record

A local modification restart record is created when VMFSUFIN does not complete build processing
because local modifications requiring rework were encountered. This record, which is identified
by a status of LMOD in the :STAT tag, allows VMFSUFIN to complete build processing after local
modifications are reworked. The record is used when VMFSUFIN is called with the RESTART option
for one of the prodids listed in the record. The service install process is restarted using only data from
the local modification restart record.

Syntax
System-Level Restart Table Syntax shows the syntax of the system-level restart table.

System-Level Restart Table Syntax

:PACKAGE. name Prodid Options Stat

PRODID

:PRODID.

ALL

 prodid
%compname

Options
RSU COR Rest LMOD

RSU

:RSUENV.  rsufn

COR

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 699

:CORENV.  corfn

Restart
:RESTART. prodid

%compname

.step

key

LMOD
:LMOD. prodid

%compname

Status
:STAT. INIT

CHKPT

KEY

LMOD

 .date.time.userid

:PACKAGE.
identifies the service package.
name

is the file name of the RSU envelope or the COR envelope (whichever is received first), the
tape name in the form dfn.dft.prod, or if the BUILD option was specified a name in the form
BUILD.prodid.
dfn

is the file name of the tape descriptor file.
dft

is the file type of the tape descriptor file.
prod

is the product identifier (prodid) of the first product on the tape.
:PRODID.

identifies the product.
ALL

indicates the ALL operand was specified on the VMFSUFIN command. The actual products to be
processed follow the ALL keyword.

prodid
is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23).

%compname
is the component name preceded by a percent sign (%) (for example, %CMS). compname is a
1-16 character alphanumeric identifier.

:RSUENV.
identifies the RSU.
rsufn

is the file name of the RSU envelope.
:CORENV.

identifies the COR bucket.

Software Inventory Syntax

700 z/VM: 7.3 VMSES/E Introduction and Reference

corfn
is the file name of the COR bucket envelope.

:RESTART.
identifies the restart data.
prodid

is the identifier of the product to restart. prodid is the 7-8 character alphanumeric identifier
assigned to the product by IBM.

%compname
is the component name of the product to restart.

step
is the service step at which to restart. The valid steps are: SETUP, MERGE, PSU, INSTALL,
APPLYRSU, RECEIVE, APPLYCOR, BUILD, CLEANUP.

key
is the character string used to match this key restart record with a call to VMFSUFIN with a KEY
option.

:LMOD.
identifies the local modification restart product.
prodid

is the identifier of the first product for which a local modification was found. prodid is the 7-8
character alphanumeric identifier assigned to the product by IBM.

%compname
is the component name of the product.

:STAT.
is the status of this restart record.
INIT

indicates this is an initial restart record.
CHKPT

indicates this is a checkpoint restart record.
KEY

indicates this is a key restart record.
LMOD

indicates this is a local modification restart record.
date

identifies the month, day, and year this record was created. The format for date is mm/dd/yy.
time

identifies the hour, minute, and second this record was created. The format for time is hh:mm:ss.
userid

identifies the user ID used when this record was created.

Example
Figure 200 on page 701 shows an example of the system-level restart table.

:PACKAGE.BUILD.7VMCMS30%CMS :PRODID.7VMCMS30%CMS :STAT.LMOD.10/03/22.12:50:48.MAINT730
:RESTART.7VMCMS30%CMS.BUILD :LMOD.7VMCMS30%CMS

Figure 200. System-Level Restart Table Example

The System-Level Local Modification Table (VM SYSLMOD)
The System-Level Local Modification table contains local modifications that were previously applied to
parts that were serviced using the VMFSUFIN EXEC or SERVICE EXEC and require work.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 701

The System-Level Local Modification table resides on the Software Inventory disk. It is updated by the
VMFSUFIN EXEC and the VMFUPDAT EXEC.

:LMOD. prodid

%compname

.fn.ftabbrev.modid.vvtft

.fn.ftabbrev.CIP.dcllabel

.fn.ftabbrev.COPY.dcllabel

Status

Status
:STAT. REWORK

REWORKED

.date.time.userid

:CUSTYPE. LOCALMOD

CIP.  mfn.mft

COPY.  mfn.mft
.LOG

.DISK

.prodid

:CUSDISK. owner address

directory

:LMOD.
identifies the local modification.
prodid

is the 7- or 8-character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23).

%compname
is the component name preceded by a percent sign (%) (for example, %CMS). compname is a 1-
through 16-character alphanumeric identifier.

fn
is the 1- through 8-character file name of the part.

ftabbrev
is the file type abbreviation for the part. ftabbrev must be the 3-character file type abbreviation for
the part or the real CMS file type of an update-only part.

modid
is the local modification number.

vvtft
is the file type of the local version vector table where the modification is identified.

CIP
indicates that the part is changed in place.

COPY
indicates that the part is copied, then modified.

dcllabel
is the variable name of the disk in the component's DCL section of its PPF, where the part resides.

:STAT.
is the status of the local modification.

Software Inventory Syntax

702 z/VM: 7.3 VMSES/E Introduction and Reference

REWORK
indicates the local modification needs to be reworked.

REWORKED
indicates the local modification has been reworked.

date
identifies the month, day, and year this record was created or last updated. The format for date is
mm/dd/yy.

time
identifies the hour, minute, and second this record was created or last updated. The format for
time is hh:mm:ss.

userid
identifies the User ID that was used when this record was created or last updated.

:CUSTYPE.
indicates how the part is customized.
LOCALMOD

indicates the part is customized by local modification.
CIP

indicates that the part is changed in place.
COPY

indicates that the part is copied, then modified.
mfn mft

is the file name and file type of the migrated part.
LOG

indicates that there is information in the product migration exit log for the migrated part.
DISK

indicates that the part was migrated by disk migration.
prodid

indicates that the part is migrated by disk migration when product prodid is migrated.
:CUSDISK.

indicates where the part resides.
owner address

the user ID and address of the minidisk.
directory

the SFS directory name.

The System-Level Base APAR Table (VM SYSAPARS)
The system-level Base APAR table (VM SYSAPARS) contains a list of all APARs included in the base of all
supported z/VM products and components. The system-level base APAR table resides on the production
inventory disk (by default, PMAINT 41D).

Syntax
The System-Level Base APAR Table Syntax shows the syntax of the system-level Base APAR table.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 703

The System-Level Base APAR Table Syntax

:PRODID. recid

:APAR. aparnum

:PRODID.
identifies the product.
recid

is the 1–8 character alphanumeric product identifier.
:APAR.

identifies the APAR.
aparnum

is the 1–8 character alphanumeric APAR number.

Example
Figure 201 on page 704 shows an example of the system-level base APAR table.

:PRODID.1VMVMC23
:APAR.VM23456 VM23457 VM23458 VM23459 VM23460

:PRODID.1VMVMC11
:APAR.VM12345 VM12346

:PRODID.1VMVMC10
:APAR.

:PRODID.1VMVMC09
:APAR.

Figure 201. System-level Base APAR Table Example

The File Type Abbreviation Table (VM SYSABRVT)
The file type abbreviation table contains a map of the 3-character abbreviations for file types to their
corresponding real CMS file types and their base file types. This translation is required by VMSES/E
when processing PTF-numbered parts. The file type abbreviation table is shipped as part of the VMSES/E
component.

Syntax
File Type Abbreviation Table Syntax shows the syntax of the file type abbreviation table.

File Type Abbreviation Table Syntax

:ABBRFT. ftabbrev :REALFT. realft :BASEFT. baseft
1

Notes:
1 Indicates end-of-line. The next entry must start on a new line.

:ABBRFT.
indicates a file type abbreviation.

Software Inventory Syntax

704 z/VM: 7.3 VMSES/E Introduction and Reference

:ABBRFT is the key field for the file type abbreviation table.

ftabbrev
is the 3-character file type abbreviation.

:REALFT.
indicates a real file type.
realft

is the 1-8 character CMS file type corresponding to the abbreviated file type.
:BASEFT.

indicates a base file type.
baseft

is the 8-character identifier assigned to identify the file type of a backup for base level parts. A
base level part is a part of the system that has never been serviced. This identifier allows the
renaming of parts that have never been serviced. These parts can be used as backups to restore
the base level of the part if a PTF that replaces the base level of the part needs to be removed.

Example
Figure 202 on page 705 shows an example of the file type abbreviation table.

:ABBRFT.CPY :REALFT.COPY :BASEFT.CPY00000
:ABBRFT.EXC :REALFT.EXEC :BASEFT.EXC00000
:ABBRFT.HCM :REALFT.HELPCMS :BASEFT.HCM00000
:ABBRFT.MAC :REALFT.MACRO :BASEFT.MAC00000
:ABBRFT.TXT :REALFT.TEXT :BASEFT.TXT00000
:ABBRFT.XED :REALFT.XEDIT :BASEFT.XED00000
:ABBRFT.$EX :REALFT.$EXEC :BASEFT.$EX00000
:ABBRFT.$XE :REALFT.$XEDIT :BASEFT.$XE00000

Figure 202. File Type Abbreviation Table Example

The Parts Catalog (VMSES PARTCAT)
The parts catalog identifies all files on a minidisk or Shared File System directory that were stored there
by VMSES/E. A parts catalog exists on every minidisk or SFS directory on which VMSES/E operates.

The parts catalog also identifies:

• To which product the file belongs
• The VMSES/E command that put the file on the minidisk or directory
• The VMSES/E command that modified the file on the minidisk or directory

Syntax
Parts Catalog Table Syntax shows the syntax of the parts catalog.

Parts Catalog Table Syntax

:PARTID. fn ft :PRODID. prodid

% compname
:STAT. command . date . time . userid

:PARTID.
identifies a part that has been created or modified on the minidisk or directory.

:PARTID is the key field for the parts catalog.

fn
is the file name of a part.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 705

ft
is the file type of a part.

:PRODID.
identifies the product to which the part belongs.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM (for example,
1VMVMC23). prodid is the file name of the PRODPART file that is shipped with the product.

%compname
is the component name preceded by a percent sign (%), for example %CMS. compname is a 1-16
character alphanumeric identifier.

:STAT.
indicates the last operation that was performed on the part.
command

is the VMSES/E command that put the part on the minidisk or SFS directory or the VMSES/E
command that last modified it on that minidisk or directory.

date
identifies the month, day, and year the part was updated. The date is in the format mm/dd/yy.

time
identifies the hour, minute, and second the part was updated. The time is in the format hh:mm:ss.

userid
identifies the user ID that was used when the part was updated.

Example
Figure 203 on page 706 shows an example of the parts catalog.

:PARTID.DMSABC COPY :PRODID.1VMVMC23 :STAT.VMFREC.11/11/22.:10:10:10.MAINT
:PARTID.DMSXXX TEXT :PRODID.1VMVMC23 :STAT.VMFREC.11/11/22.10:10:10.MAINT
:PARTID.RECEIVE EXEC :PRODID.1VMVMC23 :STAT.VMFREC.11/11/22.10:10:10.MAINT

Figure 203. Parts Catalog Table Example

The Service-Level Software Inventory
The following files are in the service-level Software Inventory:

• “The PTF Parts ($PTFPART) File” on page 707
• “The Service-Level Description Table (recid SRVDESCT)” on page 714
• “The Service-Level Requisite Table (recid SRVREQT)” on page 715
• “The Service-Level Receive Status Table (recid SRVRECS)” on page 717
• “The Service-Level Apply Status Table (appid SRVAPPS)” on page 718
• “The Service-Level Build Status Table (bldid SRVBLDS)” on page 719
• “The Service-Level Production Status Table (prodid SRVPROD)” on page 722
• “The Version Vector Table (appid VVTlvlid)” on page 723

prodid, appid, and bldid are the values assigned to the :RECID, :APPID, and :BLDID tags in the product's
product parameter file. vlev identifies the maintenance level and is taken from characters 4-n of the value
on the :UPDTID tag in the product's product parameter file.

All files in the service-level Software Inventory (including the $PTFPART files) reside on each product's
APPLY and DELTA strings. (Remember, VMSES/E maintains service-level Software Inventories only for
products that use VMSES/E for service).

Software Inventory Syntax

706 z/VM: 7.3 VMSES/E Introduction and Reference

The PTF Parts ($PTFPART) File
The PTF Parts file ($PTFPART), ptfnum $PTFPART, contains information used for product service and is
supplied by the product service packaging group on the product service media. It resides on the product's
DELTA string. The information in the $PTFPART file is used to update entries in the service-level Software
Inventory each time product service is received onto your system.

The $PTFPART file has three major sections (shown in “PTF Parts File ($PTFPART), Overall Syntax” on
page 707):

• A header section that identifies the service being received
• A requisite section that defines requisite PTF relationships
• A parts definition section that defines the parts being serviced

“PTF Parts File ($PTFPART), Overall Syntax” on page 707 shows the syntax of the complete $PTFPART
file.

PTF Parts File ($PTFPART), Overall Syntax
Header Requisite Parts

Header Section
The header section of the $PTFPART file identifies the service being received.

Syntax
PTF Parts File ($PTFPART), Header Section Syntax shows the syntax of the header section.

PTF Parts File ($PTFPART), Header Section Syntax
:PTF. ptfnum :PRODID. prodid APAR

:UMEMO. text :EUMEMO.

APAR

:APARDESC. :APARNUM. aparnum :ABSTRACT. text :EAPARDESC.

The tags in the header section are defined as follows:

:PTF.
identifies the program temporary fix (PTF).
ptfnum

is the 7-character PTF number.
:PRODID.

identifies the product the PTF belongs to.
prodid

is the 7-8 character alphanumeric identifier assigned to the product by IBM. This number is used
as the file name of the base product parameter file and PRODPART file for the product. It also
identifies the product on the installation and service media.

:APARDESC.
identifies the start of an authorized program analysis report (APAR) definition block.

:APARNUM.
identifies an APAR associated with the PTF.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 707

aparnum
is the 7-character APAR number.

:ABSTRACT.
describes the APAR. For source-maintained products, this record is used as the comment field in the
AUX file created by VMFAPPLY.
text

is the description of the APAR. text may span multiple lines and is ended by the next :APARNUM
tag or by the :EAPARDESC tag.

:EAPARDESC.
identifies the end of an APAR block.

:UMEMO.
identifies the start of the user memo block for this PTF.
text

documents the PTF. This free-form text is terminated by the :EUMEMO tag.
:EUMEMO.

identifies the end of the user memo block for this PTF.

Example
Figure 204 on page 708 shows an example of the header section.

:PTF.UV12345
:PRODID.1VMVMC23
:APARDESC.
:APARNUM.VM23456
:ABSTRACT.Support for VMSES/E
:EAPARDESC.
:UMEMO.
Special instructions go here
:EUMEMO.

Figure 204. $PTFPART File Header Section Example

Requisite Section
The requisite section of the $PTFPART file defines requisite PTF relationships.

Syntax
PTF Parts File ($PTFPART), Requisite Section Syntax shows the syntax of the requisite section.

Software Inventory Syntax

708 z/VM: 7.3 VMSES/E Introduction and Reference

PTF Parts File ($PTFPART), Requisite Section Syntax

:PREREQ. ptfnum

. prodid

:COREQ. ptfnum

. prodid

:IFREQ. ptfnum . prodid :SUP.  ptfnum

:HARDREQ. aparnum

. prodid . ptfnum

Requisite Specifications
Data on these tags can span multiple lines and is ended by the occurrence of a tag starting in column 1.
The tags in the requisite section are defined as follows:

:PREREQ.
identifies other PTFs that must be applied before this PTF is applied.

:COREQ.
identifies other PTFs that must be applied at the same time this PTF is applied. No specific order is
required for applying corequisite PTFs.

:IFREQ.
identifies PTFs for another product that must be applied to that product if the product is also installed
on your system. No specific order is required for applying if-requisite PTFs.

:SUP.
identifies PTFs that have been completely replaced by this PTF.

:HARDREQ.
identifies logical requisites and line intersection of source updates that are required for this PTF.
If this PTF supersedes another PTF all hard requisites that were identified in the superseded PTFs
should be included in this PTF.

Note: Hard requisites (HARDREQs) are a subset of the prerequisite change only. All corequisites and
if-requisites are by definition hard requisites.

The variables specified with these tags are:

ptfnum
is the 7-character PTF number.

prodid
is the 7-8 character identifier assigned to the product being serviced.

ptfnum.prodid represents a requisite relationship that is outside of the product being serviced.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 709

aparnum
is the 7-character APAR number.

aparnum.prodid.ptfnum represents a functional requisite relationship that is outside of the product
being serviced. The PTF number identified is the first PTF shipped for the product that contained the
required APAR.

Example
Figure 205 on page 710 shows an example of the requisite section.

:PREREQ.UV56789 UV00001.1VMVMC23 UV99999
:COREQ.UV00002 UV00003.1VMVMC23
:SUP.UV00008
:IFREQ.UV00010.1VMVMP11
:HARDREQ.VM22222 VM33333.1VMVMP11.UV00004 VM44444.1VMVMP11.UV00001

Figure 205. $PTFPART File Requisite Section Example

Parts Definition Section
The parts definition section of the $PTFPART file defines the parts being serviced.

Syntax
PTF Parts File ($PTFPART), Parts Definition Section Syntax shows the syntax of the parts definition
section.

PTF Parts File ($PTFPART), Parts Definition Section Syntax

:PARTS. Partdefs :APARS.  aparnum
.M

:EPARTS.

Partdefs
:PARTDEF. fn baseft

:PROCOPTS.
NOSDI

SDI

NOAUX

AUX

REPPART or UPDATES

:REPPART.  replfn replft

:UPDATES.  updtft

:NRSOURCE.  fn replft

The tags in the parts definition section are defined as follows:

:PARTS.
identifies the start of a part definition block.

:PARTDEF.
identifies the base part that is being serviced and the start of the parts definition section.

Software Inventory Syntax

710 z/VM: 7.3 VMSES/E Introduction and Reference

fn
is the 1-8 character file name of the base part being serviced.

baseft
is the 1-8 character file type of the base part being serviced.

If the part is maintained by source updates, the base part is the file name and file type of the
source file.

If the part being serviced is a TEXT deck serviced by replacement only, the base part file name is
the same as the file name of the base source file used to generate the TEXT deck. The base part
file type is TEXT.

If the part is serviced by replacement only, the base file name is the same as the file name of
the replacement part being shipped with the PTF. The base file type is the translation of the
three-character abbreviation used in the file type of replacement part being shipped.

:PROCOPTS.
identifies the options that are to be used by VMSES/E when the base part is processed.

The options specified on this tag are dependent on the characteristics of the base part or replacement
part being serviced. All options in effect, whether specified or by default, are used to process all
replacement parts following the :PROCOPTS tag until another :PROCOPTS tag is specified to redefine
the options.

NOSDI
indicates the parts identified on the :REPPART tag do not contain self-documenting information.
NOSDI is the default.

SDI
indicates parts identified on the :REPPART tag contain self-documenting information. This
information is used to verify the APARs listed for the part are included in the replacement parts
specified on the :REPPART tag.

This option is only valid for a part specified on the :REPPART tag.

NOAUX
indicates an AUX file should not be built during apply processing for the base part on
the :PARTDEF tag. NOAUX is the default.

AUX
indicates an AUX file should be built during apply processing for the base part on the :PARTDEF
tag.

:REPPART.
identifies a list of replacement files that were shipped with this PTF for the base file identified on
the :PARTDEF. tag. Each replacement part must contain all APARs identified on the :APARS tag for this
part.
replfn

is the 1-8 character file name of a replacement part.
replft

is the 8-character file type of a replacement part.
:UPDATES.

identifies a list of APAR source update files that were shipped with this PTF for the base file identified
on the :PARTDEF tag.
updtft

is the 8-character file type of a source update file. An update file identified on this tag has a file
type in this format: raaaaacm.
r

is a release identifier.
aaaaa

is characters 3-7 of the APAR number.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 711

cm
is 2-character component identifier.

For example, the file type of an update file could be R12345DS.
:NRSOURCE.

identifies a new or refreshed source file that is shipped with this PTF for the base file identified on
the :PARTDEF tag. If the new or refreshed source has APARs merged into the file, those APARs are
flagged with an M on the :APARS tag.
fn

is the 1-8 character file name of a new or refreshed source file.
replft

is the 8-character file type of a replacement part.
:APARS.

identifies all APARs that have been shipped in PTFs, including this PTF, for the base part. The APARs
are listed in the same order that they shipped in previous PTFs. The left-most APAR number is the
current APAR being fixed; the right-most APAR number was the first APAR fixed on the base part.
If the aparnum is followed by ".M", the update associated with the APAR has been merged into the
source code.

It is recommended that even though this tag is optional you should code this tag for the product. Keep
in mind that if you have a product that has already created PTFs without using this tag then you will
need to continue to not use this tag until a new version, release, or modification level of the product
becomes available. When you have the new level, start using the tag when creating PTFs.

aparnum
is the 7-character APAR number.

M
indicates an APAR that was merged into a base, updateable, source file. No blanks are allowed in
the construction of the variable.

Note: This tag is not required if the product being serviced does not ship source update files with its
PTFs. If source updates are shipped for any part in the product, the :APARS tag must be specified in
the :PARTDEF section for every part.

:EPARTS.
identifies the end of a parts definition block.

Example
Figure 206 on page 713 shows an example of the parts definition section.

Software Inventory Syntax

712 z/VM: 7.3 VMSES/E Introduction and Reference

:PARTS.

:PARTDEF.RECEIVE $EXEC
:PROCOPTS.AUX
:REPPART.RECEIVE EXC12345
:UPDATES.P23456VF
:APARS.VM23456 VM34567

:PARTDEF.DMSABC ASSEMBLE
:PROCOPTS. AUX SDI
:REPPART.DMSABC TXT12345 DMSABC TXG12345
:PROCOPTS. NOAUX NOSDI
:REPPART.DMSABC MOD12345
:UPDATES.P23456VF
:NRSOURCE.DMSABC ASM12345
:APARS.VM23456 VM34567.M

:PARTDEF.CMSCALL MACRO
:PROCOPTS. AUX
:UPDATES.P23456VF
:APARS.VM23456 VM34567

:PARTDEF.DMSXYZ TEXT
:PROCOPTS. AUX SDI
:REPPART.DMSXYZ TXT12345
:APARS.VM23456 VM34567

:EPARTS.

Figure 206. $PTFPART File Parts Section Example

Example $PTFPART File
Figure 207 on page 714 shows an example of the $PTFPART file.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 713

:PTF.UV12345
:PRODID.1VMVMC23
:APARDESC.
:APARNUM.VM23456
:ABSTRACT.Support for VMSES/E
:EAPARDESC.
:UMEMO.
Special instructions go here
:EUMEMO.
:PREREQ.UV56789 UV00001.1VMVMC23 UV99999
:COREQ.UV00002 UV00003.1VMVMC23
:SUP.UV00008
:IFREQ.UV00010.1VMVMP11
:HARDREQ.VM22222 VM33333.1VMVMP11.UV00004 VM44444.1VMVMP11.UV00001

:PARTS.
:PARTDEF.RECEIVE $EXEC
:PROCOPTS.AUX
:REPPART.RECEIVE EXC12345
:UPDATES.P23456VF
:APARS.VM23456 VM34567

:PARTDEF.DMSABC ASSEMBLE
:PROCOPTS. AUX SDI
:REPPART.DMSABC TXT12345 DMSABC TXG12345
:PROCOPTS. NOAUX NOSDI
:REPPART.DMSABC MOD12345
:UPDATES.P23456VF
:NRSOURCE.DMSABC ASM12345
:APARS.VM23456 VM34567.M

:PARTDEF.CMSCALL MACRO
:PROCOPTS. AUX
:UPDATES.P23456VF
:APARS.VM23456 VM34567

:PARTDEF.DMSXYZ TEXT
:PROCOPTS. AUX SDI
:REPPART.DMSXYZ TXT12345
:APARS.VM23456 VM34567

:EPARTS.

Figure 207. Example $PTFPART File

The Service-Level Description Table (recid SRVDESCT)
The service-level description table contains the abstract information for an APAR that has been received
on the system.

The service-level description table resides on the product's DELTA disk string and is updated by the
VMFREC EXEC during receive processing for service tapes. Information in the $PTFPART files is used to
update this table. The VMFAPPLY EXEC uses this information to add comments to the AUX file it builds for
a serviced part.

Syntax
Service-Level Description Table Syntax shows the syntax of the service-level description table.

Service-Level Description Table Syntax

:APARNUM. aparnum :ABSTRACT. text

:APARNUM.
identifies the APAR number.

:APARNUM is the key field for the service-level description table.

Software Inventory Syntax

714 z/VM: 7.3 VMSES/E Introduction and Reference

aparnum
is the 7-character APAR number.

:ABSTRACT.
identifies the beginning of the abstract. A description of the APAR is contained in the abstract.
text

a brief description of the APAR.

Example
Figure 208 on page 715 shows an example of the service-level description table.

:APARNUM.VM23456 :ABSTRACT.Fix problem with CMS IPL
:APARNUM.VM22222 :ABSTRACT.DMSABC branches to location FFFFFFFF

Figure 208. Service-Level Description Table Example

The Service-Level Requisite Table (recid SRVREQT)
The service-level requisite table contains the relationships between PTFs that have been received on a
system and a mapping of PTFs to APARs.

The service-level requisite table resides on the product's DELTA disk string and is updated by the VMFREC
EXEC during receive processing for service media. Information in the $PTFPART files is used to update
this table.

Syntax
Service-Level Requisite Table Syntax shows the syntax of the service-level requisite table.

Service-Level Requisite Table Syntax

:PTF. ptfnum :APARNUM. aparnum Reqtypes

Reqtypes

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 715

:PREREQ. ptfnum

. prodid

:COREQ. ptfnum

. prodid

:IFREQ. ptfnum . prodid :SUP. ptfnum

:HARDREQ. aparnum

. prodid . ptfnum

:PTF.
identifies the PTF number.

:PTF is the key field for the service-level requisite table.

ptfnum
is the 7-character PTF number.

:APARNUM.
identifies the APAR number.
aparnum

is the 7-character APAR number.

Reqtypes
The requisite tags are defined as follows:

:PREREQ.
identifies other PTFs that must be applied before this PTF is applied.

:COREQ.
identifies other PTFs that must be applied at the same time this PTF is applied. No specific order is
required for applying corequisite PTFs.

:IFREQ.
identifies PTFs for another product that must be applied to that product if the product is also installed
on your system. No specific order is required for applying if-requisite PTFs.

:SUP.
identifies PTFs that have been completely replaced by this PTF.

:HARDREQ.
identifies logical requisites and line intersection of source updates that are required for this PTF.
If this PTF supersedes another PTF all hard requisites that were identified in the superseded PTFs
should be included in this PTF.

Note: Hard requisites (HARDREQs) are a subset of the prerequisite change only. All corequisites and
if-requisites are by definition hard requisites.

Software Inventory Syntax

716 z/VM: 7.3 VMSES/E Introduction and Reference

The variables specified on these tags are:

ptfnum
is the 7-character PTF number.

prodid
is the 7-8 character identifier assigned to the product being serviced.

ptfnum.prodid represents a requisite relationship that is outside the product being serviced.

aparnum
is the 7-character APAR number.

aparnum.prodid.ptfnum represents a functional requisite relationship that is outside the component
being serviced. The PTF number identified is the first PTF shipped for the product that contained the
required APAR.

Example
Figure 209 on page 717 shows an example of the service-level requisite table.

:PTF.UV12345 :APARNUM.VM12345
 :PREREQ. UV23456
 :COREQ. UV45678 UV56789
 :SUP. UV77777 UV88888
 :IFREQ. UV66666.1VMVMC23
 :HARDREQ.VM00001

Figure 209. Service-Level Requisite Table Example

The Service-Level Receive Status Table (recid SRVRECS)
The service-level receive status table contains a list of all PTFs that have been received for the product.

The service-level receive status table resides on the product's DELTA disk string and is updated by the
VMFREC EXEC as PTFs are processed during receive processing for service media.

You can access the information in this table to determine which PTFs have been received for the product.

Syntax
Service-Level Receive Status Table Syntax shows the syntax of the service-level receive status table.

Service-Level Receive Status Table Syntax

:PTF. ptfnum :STAT. RECEIVED

COMMITTED

. date . time . userid

:PTF.
identifies the PTF.

:PTF is the key field for the service-level receive status table.

ptfnum
is the 7-character PTF number.

:STAT.
provides the status of the PTF.
RECEIVED

indicates the PTF has been received.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 717

COMMITTED
indicates the PTF has been committed.

date
identifies the month, day, and year the PTF was processed. The format of date is mm/dd/yy.

time
identifies the hour, minute, and second the PTF was processed. The format of time is hh:mm:ss.

userid
identifies the user ID that was used when the PTF was processed.

Example
Figure 210 on page 718 shows an example of the service-level receive status table.

:PTF.UV12345 :STAT.RECEIVED.03/03/21.11:11:11.SMITH
:PTF.UV23456 :STAT.RECEIVED.02/03/21.12:12:12.JONES
:PTF.UV01234 :STAT.COMMITTED.04/05/22.22:22:12.JONES
 RECEIVED.01/10/21.06:06:06.MIKED

Figure 210. Service-Level Receive Status Table Example

The Service-Level Apply Status Table (appid SRVAPPS)
The service-level apply status table contains a list of all PTFs that have been applied to the product.

The service-level apply status table resides on the product's APPLY disk string and is updated by the
VMFAPPLY EXEC during apply processing for service media.

You can access the information in this table to determine which PTFs have been applied or superseded for
the product.

Syntax
Service-Level Apply Status Table Syntax shows the syntax of the service-level apply status table.

Service-Level Apply Status Table Syntax

:PTF. ptfnum :STAT. APPLIED

REMOVED

SUPED

. date . time . userid

:PTF.
identifies the PTF.

:PTF is the key field for the service-level apply status table.

ptfnum
is the 7-character PTF number.

:STAT.
indicates the status of the PTF for the product.
APPLIED

indicates the PTF has been applied to the product.
REMOVED

indicates the PTF has been removed from the product.

Software Inventory Syntax

718 z/VM: 7.3 VMSES/E Introduction and Reference

SUPED
indicates the PTF has been superseded.

date
identifies the month, day, and year the PTF was processed. The format of date is mm/dd/yy.

time
identifies the hour, minute, and second the PTF was processed. The format of time is hh:mm:ss.

userid
identifies the user ID that was used when the PTF was processed.

Example
Figure 211 on page 719 shows an example of the service-level apply status table.

:PTF.UV12345 :STAT.APPLIED.03/03/22.22:22:22.JONES
:PTF.UV23456 :STAT.APPLIED.02/03/22.11:11:11.SMITH
:PTF.UV01234 :STAT.SUPED.11/10/22.12:12:12.SMITH
 APPLIED.06/06/21.02:02:02.JONES

Figure 211. Service-Level Apply Status Table Example

The Service-Level Build Status Table (bldid SRVBLDS)
The service-level build status table contains a list of all objects that have been or need to be built for the
product.

The service-level build status table resides on the product's APPLY disk and is updated by the VMFBLD
EXEC as objects are generated during build processing for service media.

You can access the information in this table to determine which objects need to be generated and which
objects have already been built.

Syntax
Service-Level Build Status Table Syntax shows the syntax of the service-level build status table.

Service-Level Build Status Table Syntax

:LASTAPP. date time appid

:BLDLIST. bldlist

UNKNOWN

:OBJECT. BLDLIST

objectname

. objectft

Status

Status

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 719

:STAT. MANUAL

SERVICED

BUILDALL

BUILT

BYPASSED

DELETE

DELETED

. date . time . userid
.ERROR

:PARTID.

fn ftabbrev

:LASTAPP.
identifies the last processed block of information in the select data file.
date

identifies the month, day, and year of the last apply that updated the table. The format of date is
mm/dd/yy.

time
identifies the hour, minute, and second of the last apply that updated the table. The format of time
is hh:mm:ss.

appid
is the file name of the select data file (appid $SELECT).

Note: The appid file name is the same value specified on the :APPID tag in the product parameter
file.

:BLDLIST.
identifies the build list that contained the object identified on the :OBJECT tag.
bldlist

is the file name of the build list.
UNKNOWN

is the name of a special build list. This build list is used as a place holder for any serviceable parts
not included in any defined objects.

Note: :BLDLIST and :OBJECT must be used together as the key field for the service-level build status
table.

:OBJECT.
identifies an object in the specified build list.
BLDLIST

identifies a special object and is used to provide the overall status of a build list. For example,
each member of a MACLIB is represented as a separate object; and the BLDLIST object gives you
the status of the entire MACLIB.

objname
is the name of the object. For format 2 build lists, the objectft must also be specified to fully
identify an object name.

objectft
is the file type of the object. It is only specified for format 2 build lists.

Software Inventory Syntax

720 z/VM: 7.3 VMSES/E Introduction and Reference

:STAT.
indicates the build status of the object.
MANUAL

indicates the object requires manual processing. This status is only assigned to the special build
list named UNKNOWN.

SERVICED
indicates the object has been serviced but not built.

BUILDALL
indicates the user requested this object be built with the ALL option on the VMFBLD command and
the object still needs to be built.

BUILT
indicates the object has been built.

BYPASSED
indicates that the building of an object has been bypassed because the object is superseded by
the same object on a higher release level.

DELETE
indicates the object has been removed from the build list and the corresponding object must be
deleted.

DELETED
indicates the object has been deleted.

date
identifies the month, day, and year the object was processed. The format of date is mm/dd/yy.

time
identifies the hour, minute, and second the object was processed. The format of time is hh:mm:ss.

userid
identifies the user ID that was used when the object was processed.

.ERROR
indicates an error was detected by the build part handler when the object was processed. .ERROR
remains in effect until the object is successfully processed.

:PARTID.
identifies one or more parts contained in an object.

This tag is only used for wildcard objects and the special build list named UNKNOWN.

fn
is the file name of a part contained in an object.

ftabbrev
is the file type abbreviation for a part contained in an object. The ftabbrev must be the 3-character
PTF abbreviation or the real CMS file type for parts not serviced by replacement.

Attention
Because entries in the select data file, service-level build status table, and build lists are used to delete
objects, you should use care when modifying these files.

Example
Figure 212 on page 722 shows an example of the service-level build status table.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 721

:LASTAPP.08/05/22 12:01:21 1VMVMC23 08/02/22 10:04:92 1VMVMP11
:BLDLIST.UNKNOWN :OBJECT.BLDLIST :STAT.MANUAL.08/05/22.12:01:21.MAINT :PARTID.HCPXYZ TXT
:BLDLIST.HCPEXC :OBJECT.ABC.EXEC :STAT.BUILT.08/05/22.10:24:13.MAINT
:BLDLIST.HCPEXC :OBJECT.BLDLIST :STAT.BUILT.08/05/22.10:24:13.MAINT

:BLDLIST.HCPMODS :OBJECT.HCPABC.MODULE :STAT.BUILT.08/05/22.10:35:21.MAINT
:BLDLIST.HCPMODS :OBJECT.HCPDEF.MODULE :STAT.BUILDALL.08/05/22.11:16:10.MAINT.ERROR
:BLDLIST.HCPMODS :OBJECT.BLDLIST :STAT.BUILDALL.08/05/22.11:16:10.MAINT.ERROR
:BLDLIST.CPLOAD :OBJECT.BLDLIST :STAT.BUILT.08/05/22.10:11:40.BILL

Figure 212. Service-Level Build Status Table Example

The Service-Level Production Status Table (prodid SRVPROD)
The service-level production status table contains a list of all PTFs that have been built into the product.

The service-level production status table resides on the Production Inventory disk (by default, PMAINT
41D) and is updated by the SERVICE EXEC and the PUT2PROD EXEC.

You can access the information in this table to determine which PTFs have been built or put into
production.

Syntax
Service-Level Production Status Table Syntax shows the syntax of the service-level production status
table.

Service-Level Production Status Table Syntax

:PTF. ptfnum :STAT. BUILT .date.time.userid

PUT2PROD .date.time.userid.systemid

:PTF.
identifies the PTF.

:PTF is the key field for the service-level production status table.

ptfnum
is the 7-character PTF number.

:STAT.
indicates the status of the PTF for the product.
BUILT

indicates the PTF has been built into the product.
PUT2PROD

indicates the PTF has been put into production for the product.
date

identifies the month, day, and year the PTF was processed. The format of date is mm/dd/yy.
time

identifies the hour, minute, and second the PTF was processed. The format of time is hh:mm:ss.
userid

identifies the user ID that was used when the PTF was processed.
systemid

identifies the ID of the system on which the PTF was processed.

Software Inventory Syntax

722 z/VM: 7.3 VMSES/E Introduction and Reference

Example
Figure 213 on page 723 shows an example of the service-level production status table.

:PTF.UV12345 :STAT.BUILT.03/03/22.22:22:22.MAINT
:PTF.UV23456 :STAT.BUILT.02/03/22.11:11:11.MAINT
:PTF.UV01234 :STAT.PUT2PROD.11/10/22.12:12:12.MAINT.SYS01
 BUILT.06/06/21.02:02:02.MAINT

Figure 213. Service-Level Apply Status Table Example

The Version Vector Table (appid VVTlvlid)
The version vector table contains a history of all PTFs that have been applied to a product at a specific
maintenance level.

The version vector table resides on the product's APPLY disk and is updated by the VMFAPPLY EXEC
as PTFs are applied. The VMFBLD EXEC uses this table to determine the current level of a part being
processed.

Syntax
Version Vector Table Syntax shows the syntax of the version vector table.

Version Vector Table Syntax

:PART. fn ftabbrev :PTF.  ptfnum
.  aparnum

. updtft

.M

:PART.
identifies the serviced part.

:PART is the key field for the version vector table.

fn
is the 1-8 character file name of the serviced part.

ftabbrev
is the 3-character file type abbreviation for the part. The ftabbrev must be the 3-character PTF
abbreviation or the real CMS file type for parts that are not serviced by replacement.

:PTF.
identifies the PTFs associated with the serviced part.
ptfnum

is the 7-character PTF number. The numeric portion of the PTF number is concatenated to the
ftabbrev to form the file type of the serviceable part associated with the PTF level of this part.

aparnum
is the 7-character APAR number associated with the PTF.

updtft
is the 8-character file type of the source update file that contains the changes for the APAR
identified.

M
indicates the PTF and APAR have been merged into a new or refreshed source file for the part.

Software Inventory Syntax

Chapter 22. Software Inventory Syntax 723

Example
Figure 214 on page 724 shows an example of the version vector table.

:PART.DMSABC TXT :PTF. UV12345.VM00001 UV23456.VM00002
:PART.RECEIVE EXC :PTF. UV12345.VM00001 UV34567.VM00003
:PART.FILELIST EXC :PTF. UV12345.VM00001.P00001DS UV34567.VM00003.M
:PART.FSOPEN MACRO :PTF. UV12345.VM00001.P00001DS

Figure 214. Version Vector Table Example

Version Vector Table Entries for Local Modifications
“Version Vector Table Syntax for Local Modifications” on page 724 shows the syntax version vector table
entries for local modifications.

Version Vector Table Syntax for Local Modifications

:PART. fn ftabbrev :MOD.  modid

. updtft

:PART.
identifies the serviced part.
fn

is the 1-8 character file name of the serviced part.
ftabbrev

is the 3-character file type abbreviation for the part. The ftabbrev must be the 3-character PTF
abbreviation or the real CMS file type for parts that are not serviced by replacement.

:MOD.
identifies the local modifications associated with the serviced part.
modid

is a 7-character local tracking number assigned to the modification. The first two characters
indicate a local tracking number follows. It is recommended the first two characters be LC.
Characters 3-7 are a 5-character identifier for your local modification, which you can create
according to your own tracking scheme. It is recommended the first character be an L. Characters
3-7 of lclmodid are concatenated to the ftabbrev to form the file type of the serviceable part
associated with this modification level of the part. For example, LCL1234 is a local modification
tracking number. In this example, L1234 would be concatenated to the ftabbrev to form the file
type of the serviceable part.

We recommend you start the local tracking number with LCL to ensure it does not interfere with
service delivered by IBM. If you use characters other than LCL, make sure they are unique for your
product.

updtft
is the 8-character file type of the source update file that contains the changes for the local
modification identified.

Figure 215 on page 724 shows an example of a version vector table entry for a local modification.

:PART.RECEIVE EXC :MOD. LCL1010.UPDT1010

Figure 215. Version Vector Table Local Modification Entry Example

Software Inventory Syntax

724 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix A. Related Commands and EXECs

This topic is a general reference for commands and EXECs related to VMSES/E that can be used during
product installation.

The tools described in this section are:

• INSTFPP EXEC
• The Patch Facility
• SNTINFO EXEC

Other tools used in system generation are described in:

• z/VM: Installation Guide
• z/VM: Service Guide
• z/VM: CP Messages and Codes
• z/VM: CMS and REXX/VM Messages and Codes
• z/VM: Other Components Messages and Codes
• z/VM: CP Planning and Administration
• z/VM: CMS Commands and Utilities Reference

Table 16 on page 229 lists the tools and indicates in which book they are described.

INSTFPP EXEC

INSTFPP

 prodspec

(
1

(
2

Options

)

Options

All

Install

NOInstall
3

Memo

NOMemo
3

Prompt

NOPrompt

Rewind

NORewind
TAPE

181

rdev

NEWTDISK

OLDTDISK

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter options in any order between the parentheses.
3 You cannot specify both NOINSTALL and NOMEMO.

Purpose

INSTFPP

© Copyright IBM Corp. 1990, 2023 725

Use the INSTFPP EXEC to install optional feature products from optional feature product tapes. INSTFPP
gets input information from the $DASD$ CONSTS file and updates the PROD LEVEL file. You can run
INSTFPP in panel mode, or you can specify products on the command line.

Operands
prodspec

is a product specification code, consisting of the product number and the feature identification code
as listed on the SDO Product tapes. You can enter multiple product specification codes to indicate the
products you want processed from the optional feature product tape.

To create the product specification code, attach the feature identification code to the end of the
product number. If no feature identification code exists for a product, specify just the product number.
Enter the codes without imbedded hyphens or other punctuation.

INSTFPP scans the files on the stacked tape and processes the selected optional feature products.

Options
All

processes all the products on the tape. ALL is the default if you do not enter product specification
codes. You cannot use this option if you enter product identification codes.

Install
installs the selected products. INSTALL is the default.

NOInstall
processes the selected products and does not install them. If you have specified NOMEMO, you
cannot specify NOINSTALL.

Memo
prints the product Memo-to-Users from the tape for each selected product. MEMO is the default.

NOMemo
processes the selected products without printing a Memo-to-Users for each product. If you have
specified NOINSTALL, you cannot specify NOMEMO.

Prompt
displays prompts that ask if you want to process the specified optional feature products. PROMPT is
the default.

NOPrompt
eliminates the prompts that ask if you want to install the specified optional feature products.

Rewind
rewinds the tape before and after product installation. REWIND is the default.

NORewind
does not rewind the tape before and after product installation. The tape must be positioned at the
start of the first tape file for a product. Only products located after that initial tape position can be
installed. This option is not available with INSTFPP panels.

TAPE
specifies the real address of the tape drive on which the optional feature product tape is mounted.
Use this option only if the tape drive is not currently attached as 181.
181

is the default. INSTFPP attaches the device as 181.
rdev

is the real address of the tape drive on which the optional feature product tape is mounted.
NEWTDISK

Allows INSTFPP to define the size of the temporary disk space to be used for staging during product
installation. NEWTDISK is the default.

INSTFPP

726 z/VM: 7.3 VMSES/E Introduction and Reference

OLDTDISK
Allows INSTFPP to use user-defined temporary disks for staging during product installation. Use this
option for products requiring a large amount of disk space for the product installation and a specific
search order to be able to run correctly. This option is not available when you use the INSTFPP panels.
See the Usage Notes for more information.

Using the INSTFPP Panels

To run INSTFPP in panel mode:

1. Enter the INSTFPP command with no parameters from a terminal that displays at least 20 lines. If you
enter any parameters, the INSTFPP panels are not displayed.

2. When the Installation Options panel (VMFINSP01) appears on your screen (see Figure 216 on page
727), enter the real tape drive address. Change the defaults, if necessary, and press Enter.

 VMFINSP01 INSTFPP INSTALLATION OPTIONS

If appropriate, change any defaults and then press the ENTER key.

 Real tape address (will be attached as 181): ____
 Process all products on the tape (Y/N)? Y
 Be prompted before each product is processed (Y/N)? Y

 Alternatives:
 (1) Install the product(s) and print the memo(s)
 (2) Only print the product memo(s)
 (3) Only install the product(s)
 Enter (1, 2, or 3): 1

PF1=Help 2= 3=Quit 4= 5= 6=
PF7= 8= 9= 10= 11= 12=Cursor

====>

Figure 216. INSTFPP Installation Options Panel

3. If you changed the default to not process all products on the tape, the Product Selection Panel
(VMFINSP02) is displayed (see Figure 217 on page 728). All products included on the tape are listed.
Type an X next to each product you want to process. Press PF5 to process the selected products, or
press PF3 to quit.

INSTFPP

Appendix A. Related Commands and EXECs 727

VMFINSP02 INSTFPP PRODUCT SELECTION PANEL Line 14 of 112
--
 Type an X next to the product(s) you want to install.
 When you have finished, press the PF5 key to begin
 the installation process.

_ 5668801 Graphical Data Display Manager/Interactive Map Definition
_ 5684007 PC Graphical Data Display Manager Base PCLK Feature
_ 5748XXB Display Management System for CMS
_ 5688004 DS Structured Query Language/Data System Full Product
_ 5688004 US Structured Query Language/Data System User Facility Subset
_ 5688004 Structured Query Language/Data System
_ 5688004 NL Structured Query Language/Data System
_ 5688004 Structured Query Language/Data System
_ 5668962 Assembler H
_ 5668909 PL/I Optimizing Compiler, Library and PLITEST Facility
_ 5668958 VS COBOL II
_ 5664318 Virtual Machine/Interactive Productivity Facility
_ 5664318 KA VM/Interactive Productivity Facility
--
PF1=Help 2= 3=Quit 4=Return 5=Execute 6=
PF7=Backward 8=Forward 9=Sort(prodid) 10=Sort(desc) 11=Sort(X) 12=Cursor

====>

Figure 217. A Sample INSTFPP Product Selection Panel

The PROD LEVEL File

INSTFPP updates a file, named PROD LEVEL, with the results of each optional feature product installation.
Figure 218 on page 728 shows examples of PROD LEVEL file entries.

5664318 Virtual Machine / Interactive Productivity Facility (VM/IPF)
VER n REL n MOD n VM PUT nnnn. SERVICE LEVEL nnn
Time and date of entry: &hms; dd mm yy
*** Product installed and verified successfully

5664282 - INTERACTIVE SYSTEM PRODUCTIVITY FACILITY 2.2.1 for VM/SP 6
VER n REL n MOD n PUT LEVEL N/A SERVICE LEVEL n
Time and date of entry: &hms; dd mm yy
*** Product installed and verified successfully

Figure 218. Sample PROD LEVEL File Entries

1. It is recommended, but not required, that you be logged on to the MAINTvrm user ID. The user ID
must have all privilege classes.

2. Your virtual storage size must be 16MB unless otherwise indicated by the product Memo-to-Users.
3. Access 5E5 as mode B.
4. By default, the PROD LEVEL file and all product memos are placed on the MAINTvrm 319 minidisk. If

your user ID does not have write access to the MAINTvrm 319 minidisk, these files will be placed on
your 191 minidisk.

5. User IDs for the optional feature products being installed must have valid nonrestricted passwords in
the CP directory. You cannot install a product whose password is set to NOLOG.

6. You must have available at least 30 contiguous cylinders of 3390 temporary disk space (or the
equivalent).

7. You should have a hardcopy of your CP directory available. Many product installation execs link to the
user minidisks in write mode using default passwords. If the link attempt fails, you might be asked to
enter the write password or multiple access password of the minidisk.

8. Appropriate spooling control options must be in effect to direct the virtual printer spool files INSTFPP
produces with the PRINT command to the desired real printer. You might have to enter the CP SPOOL
and TAG commands.

INSTFPP

728 z/VM: 7.3 VMSES/E Introduction and Reference

If your printer handles only uppercase characters, use the FOLD option of the CP LOADBUF
command. If your printer does not accept the LOADBUF command, use the PRINT command with
the UPCASE option. In addition, if your printer cannot print special characters contained in a product
Memo-to-Users, review the Memo-to-Users on the terminal.

For more information about these commands, see z/VM: CP Commands and Utilities Reference and
z/VM: CMS Commands and Utilities Reference.

9. INSTFPP requires access to the $DASD$ CONSTS file.
10. Attach the tape drive containing the feature product tape as your 181, or use the TAPE option to

specify the real address of the tape and let INSTFPP attach the drive. If a device is already defined as
181, INSTFPP issues a warning message and redefines the device before attaching the tape as 181.

11. You should review the Memo-to-Users for each product you plan to install. To print all the product
memos and save them, enter:

instfpp (noinstall memo

Each product Memo-to-Users is named Iprodid MEMOfc. fc is the 1-2 character feature code.
12. If you enter the INSTFPP command with arguments, you can specify up to 130 characters on the CMS

command line.
13. If you spooled the console STOP before invoking INSTFPP, a console log is spooled to your reader.
14. INSTFPP cannot properly restore minidisks accessed as read-only extensions with a subset defined.

INSTFPP reaccesses minidisks as read-only extensions with no subset specification.
15. INSTFPP leaves the tape drive containing the optional feature product tape attached as virtual

address 181.
16. If any products do not install correctly:

a. Try to solve the problem by using the console log, the product Memo-to-Users, the PROD LEVEL
file, and other product-specific documentation.

b. Ready the tape.
c. Enter the INSTFPP command.
d. Reinstall the products that did not install correctly. Also reinstall any products that have these

products as prerequisites.
e. If product installation is abnormally terminated (by an irrecoverable error or you enter HX) so that

INSTFPP is unable to restore the invocation environment, log off and log on again to make sure the
environment is properly restored before you reenter the INSTFPP command.

17. To use the OLDTDISK option:

a. The product should require more than 4500 4K blocks for the installation.
b. You should define two temporary disks (001 and 002) that are each slightly larger than the largest

disk required.
c. You should access 002 as the A-disk, 001 as the C-disk, and 191 as the D-disk.
d. You should issue the INSTFPP command with the OLDTDISK option. The OLDTDISK option cannot

be used with the INSTFPP panels.

Messages and Return Codes

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example DMS002E, enter:

help msg dms002e

INSTFPP

Appendix A. Related Commands and EXECs 729

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

Responses

For each entry that INSTFPP makes in the PROD LEVEL file, there is an update response associated with
it. The possible update responses and their explanations are:

*** Product installed and verified successfully
The product installed correctly and was verified successfully.

*** Product files loaded; see the Memo to Users to complete installation
The product files have been loaded successfully. See the product Memo to Users for information
about how to complete the installation of the product and how to verify that it installed correctly. In
some cases, the product Memo to Users refers to other documentation.

*** Product installed; manual verification required
The product installed, but it was not verified automatically. See the product Memo to Users for
information about how to make sure the product installed correctly. In some cases, the product Memo
to Users refers to other documentation.

*** Product installed; verification failed
The product installed, but the automatic verification failed. Try to install the product again after
correcting any problems; if it still does not verify correctly, contact your support personnel.

*** Product Installation EXEC failed; RC = rc
The product installation exec failed, and the return code passed back by this exec to INSTFPP is
rc. See the product Memo to Users or product installation exec prolog to see what this return code
means. If you cannot fix the problem, contact your support personnel.

The Patch Facility
You can use the patch facility to make changes to TEXT files in the CP module, CP nucleus, or CMS
nucleus.

The patch facility lets you maintain (patch) object code when neither source nor object deck
replacements are available. These patches are a temporary solution to object code problems until you
receive a replacement file from IBM.

The procedure for maintaining object code is similar to that for maintaining source code. However, with
object code, rather than changing source and reassembling the source file, you will apply changes directly
to the TEXT files as the nucleus is generated.

Note: Do not log patches in the version vector table (VVT). VMSES/E does not support the logging of
patches in the VVT.

Controlling Patches
You control patches with three kinds of files:

• Control files
• AUXiliary files
• Update files

Note: As with source updates to base ASSEMBLE files, patches to TEXT files do not cause any changes
to the original TEXT files because temporary TEXT files are created. The temporary TEXT files are used to
generate the nucleus, then erased.

The following section describes the files and elements you need to understand to make object code
patches.

Patch Facility

730 z/VM: 7.3 VMSES/E Introduction and Reference

Control File
The control file contains a MACLIB statement and a list of file types, one for each level of AUX file. It also
contains the text deck qualifier for each level. A keyword, TX$, must follow the last AUX file name on a
line to flag the AUX file or update as containing text patches.

Note: The patch facility creates a temporary control file with a file name of $$$TUP$$ CNTRL. The use of
this name for any control file is restricted to the patch facility.

AUX File
The AUX file contains a list of the file types of update files. The update files contain source updates to
source or updates to TEXT files.

Note: Any entry in the AUX file which contains the name of a patch update file must contain the TX$
control word between columns 8 and 13.

Load Map
The load map function contains information from both the map of CSECT external symbol resolution
and service level information. The map also includes local patches and corequisite and prerequisite
information. The date and time listed in the load map for each patched text file are the original date and
time, not the date and time when the temporary deck was created.

TEXT File
The TEXT file contains the data elements that have been assembled by the customer for source
maintenance or provided (already assembled) by IBM for object maintenance. You use it to create
executable modules. These files contain APAR corequisite and prerequisite information.

Note: The patch facility creates temporary text files with a file type of TXTTUP.

Example of a Patch Update File
The following are the functionally equivalent HCPLDR control statements contained in the update file,
which will appear as comments to the update program:

./ * * CO-REQ: nnnnnnnn

./ * * PREREQ: nnnnnnnn

./ * * IFREQ: nnnnnnnn

./ * NAME CSECTname

./ * *

./ * VER disp data

./ * REP disp data

./ * ICS name size

These statements are equivalent to the loader control statements in content. $VMFPAT$ EXEC reformats
the statements to make them acceptable to HCPLDR module. $VMFPAT$ is called by VMFBLD part
handlers, VMFBDNUC and VMFBMOD.

Note: Preallocated patch areas are not required because the loader can expand any CSECT in the
executable module as it is created from the text files. Addressability to the expanded area is available
in every CSECT although space for a patch area need not be. This results in reduced size of executable
modules because patch areas do not consume space until they are used.

The following is an explanation of each statement:

Note: Each statement below must be preceded by “./”.

* NAME CSECTname
This statement identifies which CSECT in a text file is to be patched. The CSECTname must match the
SD name from the ESD for the module. If you omit this statement, the CSECT with the same name as
the file name is patched.

* * comment
This is a comment to the loader EXEC.

Patch Facility

Appendix A. Related Commands and EXECs 731

* * CO-REQ: nnnnnnnn
This is an APAR requisite comment. Use it to indicate dependencies on APARs or other patches. The
following format is suggested:

./ * * CO-REQ: VM23418

./ * * PREREQ: VM23418

./ * * IFREQ: VM23444

When there are no dependencies, enter NONE after the keywords CO-REQ:, PREREQ:, and IFREQ:.

* VER disp data
This statement verifies the patch is applied at the correct point in the executable module. You need
at least one verify statement for each patch. As much data as is required to assure uniqueness should
be verified. For example, you may include a verify of the date in the copyright constant of the module
prologue.

The disp is the displacement, in hex, of the location to be patched in the CSECT.

The data is the existing old data in hex to be replaced. This may be up to eleven 4-digit fields
separated by commas. A comma may not follow the last halfword.

* REP disp data
This statement contains the data to be replaced in the CSECT.

The disp contains the displacement in hex of the location to be patched in the CSECT.

The data is the new data in hex that will replace the existing data. This may be up to eleven 4-digit
fields separated by commas. A comma may not follow the last halfword.

* ICS name size
This statement expands the CSECT in the executable module (nucleus).

The name is the same name used in the NAME statement. If a NAME statement is not present, name
must match the file name of the patch file in which it is included.

The size is the total size required for the CSECT.

The following are the functions used in the object service process:

• VMFBLD EXEC

The VMFBLD part handlers, VMFBDNUC and VMFBDMOD, run the $VMFPAT$ EXEC.
• $VMFPAT$ EXEC

This EXEC exploits the Verify and Replace capabilities of the loader module.

It gathers TEXT files into an executable nucleus or module based upon control information.

Note: This function does not change previous HCPLDR command syntax except to include a NOPATCH
option.

This EXEC provides the same level of control for local service, when source is not available, as is
currently provided for source file updates. This means the nucleus or module generation process
automatically locates and tries to reapply a local patch each time a replacement update file arrives from
IBM.

This results in one of two possibilities:

1. The local fix is applied and you receive replacement update files. You must then evaluate whether:

– The local fix is obsolete.

If the replacement update file contains the APAR fix that replaces the local fix, you can remove the
local fix by removing the object update from the AUX file or the control file.

– The local fix is still needed.

If the replacement update file does not contain an APAR fix that replaces the local fix you will
leave the local fix in place.

Patch Facility

732 z/VM: 7.3 VMSES/E Introduction and Reference

2. The local fix is not applied and you receive replacement service files. You must then evaluate
whether:

– The local fix is obsolete.

If the replacement update file contains an APAR fix that replaces the local fix, you just accept the
replacement deck.

– The replacement update file does not contain an APAR fix equivalent to the local fix.

If the replacement update file does not contain an APAR fix that replaces the local fix, you may:

- Choose the APAR fix as more important, and just accept the replacement update file.
- Fix both problems by accepting the replacement update file and reworking the local fix.

Compatibility with HCPLDR
A temporary composite TEXT file is created by the $VMFPAT$ EXEC; the composite TEXT file is a copy of
the IBM-supplied TEXT file with the patch update file merged into it. The temporary text deck will have
the same date and time as the original. The NAME statement is not included in a composite TEXT file. The
NAME statement is used only to identify the correct CSECT. When this statement is not present, the patch
update file changes the CSECT with the same name as the TEXT file.

A composite TEXT file may include:

• The patch AUX file entry, placed following existing comments but before the first ESD statement.
• An APAR requisite comment, placed after the AUX file comment, but before the first ESD statement.
• An optional ICS statement, placed after an APAR requisite statement, but before the first ESD

statement.
• Required VER and REP statements, placed after any ICS statement, but before the first RLD statement

or before the END statement if there is no RLD statement in the TEXT deck.
• Patch update file comments, included as they are encountered.

For each NAME statement in a patch update file and for each patch update file without a NAME statement,
a VERIFY statement must be present or the patch is not accepted by the $VMFPAT$ EXEC. The composite
TEXT file will have the same file name and its file type will be TXTTUP.

The $VMFPAT$ EXEC goes through the load list one module at a time, using the CNTRL file to determine
the file type. For each temporary composite TEXT file, the EXEC provides a file name with the file type
TXTTUP. In addition, the EXEC creates a $$$TUP$$ CNTRL file that contains the file type qualifier
(TUP that produces a file type of TXTTUP) of the composite TEXT file created by the loader EXEC.

The $VMFPAT$ EXEC calls the HCPLDR MODULE by passing it a temporary control file named $$$TUP$$
along with other parameters. All temporary files such as TXTTUP or $$$TUP$$ have a file mode of 3;
these files are erased automatically as soon as they are used.

Usage Notes
The patch facility is provided to give you:

• The same control you have with source updates and IBM update file updates.
• The same tracking capability so that no previously applied patch will be lost or ignored when IBM

replacement service is applied.

The following guidelines are recommendations to follow:

1. Keep each fix to a TEXT file in a separate update file.

This also applies to source update fixes; each source update fix should be in a separate update file.

Each fix should have an alphanumeric number that is the file type of the update file.
2. Keep all local fix descriptions for the same TEXT file in the same AUX file, unless a fix applies to a

different control file level.

Patch Facility

Appendix A. Related Commands and EXECs 733

Local fixes for the same TEXT file should not be distributed over AUX files (different control file
levels) arbitrarily. Local service should be easily distinguished from IBM service and should always be
applied last. Local service can be distributed over separate control files for the purpose of maintaining
different service levels with a single structure of AUX and update files. Each level can be built from a
different control file containing only the desired level identifiers.

3. Never place local patches in AUX files from IBM. In other words, keep your local service separate
from IBM service. Local service should be easily distinguished from IBM service and should always be
applied last.

4. Patches to TEXT files should be applied only when no source file is available. Mixing source updates
and TEXT file patches for the same module will lead to confusion and is not recommended.

Example of Local Service to TEXT Files
Table 32 on page 734 shows an example of a control structure containing patches at more than one
level. This is an appropriate use of the patch facility.

Table 32. Control Structure Containing Patches at Multiple Levels

File Name File Type Contents

PRODSYS CNTRL L3 AUXLCL3 TX$
P1 AUXP1
TEXT AUXVM

CMSSYS CNTRL L2 AUXLCL2 TX$
L3 AUXLCL3 TX$
P2 AUXP2
P1 AUXP1
TEXT AUXVM

TESTSYS CNTRL L1 AUXLCL1 TX$
L2 AUXLCL2 TX$
L3 AUXLCL3 TX$
P3 AUXP3
P2 AUXP2
P1 AUXP1
TEXT AUXVM

HCPXYZ AUXLCL1 PATCH3 TX$ APAR3

HCPXYZ PATCH3
./ * VER 24 4780,C204
./ * REP 24 4700

HCPXYZ AUXLCL2 PATCH2 TX$ APAR2

HCPXYZ PATCH2
./ * VER 254 47F0,6062
./ * REP 254 4700
./ * VER 260 5810,7042,5010
./ * REP 260 58F0,7042,50F0

HCPXYZ AUXLCL3 PATCH1 TX$ APAR1

HCPXYZ PATCH1
./ * VER 254 4740,6062
./ * REP 254 47F0

Patch Facility

734 z/VM: 7.3 VMSES/E Introduction and Reference

Table 32. Control Structure Containing Patches at Multiple Levels (continued)

File Name File Type Contents

HCPXYZ TEXT
ESD
TXT
RLD
END

Example of Local Service to ASSEMBLE Files
Table 33 on page 735 shows an example of a control structure containing a temporary patch over a
local source update. Although this works, it is not recommended. Whenever source code is available, you
should use source updates instead of patches.

Table 33. Control Structure Containing Temporary Patch Over Local Source Update

File Name File Type Contents

XASYS CNTRL
L1 AUXLCL1 TX$
P1 AUXP1
TEXT AUXVM

HCPXYZ AUXLCL1 TEMP02 TX$ PROB1
LCFIX5 TX$ APAR2

HCPXYZ TEMP02 ./ * VER 24 4780,C204
./ * REP 24 4700

HCPXYZ LCFIX5 ./ ADD 12340000
XYZLOOP TM FLAG,X'01' CHECK COMPLETE
BO DONE EXIT LOOP

HCPXYZ TXTL1 ESD
TXT
RLD
END

SNTINFO EXEC

SNTINFO dcssname

(

STACK)

Purpose

Use the SNTINFO EXEC to get discontiguous saved segment (DCSS) information directly from CP.

Operands
dcssname

is the name of the discontiguous saved segment you want information about.

SNTINFO

Appendix A. Related Commands and EXECs 735

Options
STACK

puts the saved segment information on the stack (LIFO) and does not display it on the terminal. No
error messages are issued when the STACK option is specified.

Usage Notes
1. You can run SNTINFO from the CMS command line or call it from a REXX or EXEC2 exec.
2. If you do not specify the STACK option, the following line (8 tokens) is displayed on the terminal:

START(HEX): start END(HEX): end SIZE(HEX): size CC: cc

3. If you specify the STACK option, the following line (4 tokens) is pushed LIFO onto the stack:

start end size cc

start
is the saved segment start load address in hexadecimal.

end
is the saved segment end load address in hexadecimal.

size
is the saved segment size in hexadecimal.

cc
is the saved segment condition code from the CP DIAGNOSE command.

Messages and Return Codes
For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate messages documentation. To display information on a specific
message, for example DMS002E, enter:

help msg dms002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

SNTINFO

736 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix B. Input/Output Files

Table 34 on page 737 summarizes the files used for input and output by the VMSES/E EXECs. Files are
arranged in alphabetical order by file type, with variables following special characters.

For explanations of how these files are used, see the discussions of the individual EXECs in Chapter 20,
“VMSES/E EXEC and Command Format Summaries,” on page 229.

Table 34. Input/Output Files

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

Bponum VMFINS BUILD

Vponum VMFINS BUILD

axlist APxnnnn$ VMFREC

HCPLDL ASSEMBLE GENCPBLS

$fn ASSEMBLE VMFASM, VMFHASM,
VMFHLASM, VMFNLS

fn ASSEMBLE VMFASM, VMFHASM,
VMFHLASM, VMFNLS

partname ASSEMBLE VMFBLD

fn AUX$$$$$ VMFASM, VMFHASM,
VMFHLASM, VMFNLS,
VMFSIM CHKLVL

HCPLDL AUXlvlid GENCPBLS GENCPBLS

HCPMDLAT AUXlvlid GENCPBLS

fn AUXlvlid VMFASM, VMFEXUPD,
VMFHASM, VMFHLASM,
VMFNLS

partid AUXlvlid VMFSIM CHKLVL VMFAPPLY, VMFREM

$VMFSIM CNTRL VMFASM, VMFHASM,
VMFHLASM, VMFNLS,
VMFSIM CHKLVL

cntrlfn CNTRL GENCPBLS, LOCALMOD,
VMFAPPLY, VMFASM,
VMFBLD, VMFEXUPD,
VMFHASM, VMFHLASM,
VMFNLS, VMFPSU,
VMFQOBJ, VMFREPL,
VMFSIM CHKLVL, VMFSIM
GETLVL, VMFREM

cntrlfn CNTRLEXT VMFQOBJ, VMFSIM
CHKLVL, VMFSIM GETLVL

Input and Output Files

© Copyright IBM Corp. 1990, 2023 737

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

VMFINS CONSOLE VMFINS BUILD,
VMFINS DELETE,
VMFINS INSTALL,
VMFINS MIGRATE

$DASD$ CONSTS VMFCNVT, VMFMRDSK

MLB COPY VMFBLD

CLB CSLCNTRL VMFBLD

CLB CSLLIB VMFBLD

libname CSLLIB VMFBLD

CLB CSLSEG VMFBLD

libname CSLSEG VMFBLD

VMFINS DEFAULTS VMFENRPT, VMFINS BUILD,
VMFINS DELETE, VMFINS
DISABLE, VMFINS ENABLE,
VMFINS INSTALL, VMFINS
MIGRATE, VMFUPDAT

SERVICE DISKMAP VMFREC

fn DLCS VMFNLS

fname DLKEDERR VMFBLD

DLB DLKEDIT VMFBLD

libname DLKEDIT VMFBLD

$DLBB$ DOSLIB VMFBLD

DLB DOSLIB VMFBLD

libname DOSLIB VMFBLD

fname DOSLNK VMFBLD

ppfname ERASE VMFINS DELETE,
VMFINS INSTALL,
VMFINS MIGRATE

cploadblist cploadftype GENCPBLS

bldlist EXCnnnnn VMFBLD, VMFSGMAP,
VMFREM

VMFSGMAP

prodid EXEC VMFINS DELETE,
VMFINS DISABLE,
VMFINS ENABLE,
VMFINS INSTALL,
VMFINS MIGRATE

$SRCLST$ EXEC VMFMRDSK

$TRGLST$ EXEC VMFMRDSK

$$$TLL$$ EXEC VMFBLD

Input and Output Files

738 z/VM: 7.3 VMSES/E Introduction and Reference

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

axlist EXxnnnn$ VMFREC

VMFHPBLD HPANEL VMFUPDAT

VMFHPLMD HPANEL VMFUPDAT

VMFHPMEM HPANEL VMFUPDAT

VMFHPRST HPANEL VMFUPDAT

VMFHPSEL HPANEL VMFUPDAT

VMFHPSUF HPANEL VMFUPDAT

VMFNLS LANGLIST VMFBLD, VMFINS BUILD,
VMFINS INSTALL, VMFNLS,
VMFQOBJ

VMPFXALL BITMAP VMFBTMAP VMFBTMAP

VMPFX–aa BITMAP VMFBTMAP

CLB LIBMAP VMFBLD

libname LIBMAP VMFBLD

$fn LISTING VMFNLS

fn LISTING VMFNLS

objname LISTING VMFBLD

LLB LKEDMAP VMFBLD

LLB LOADLIB VMFBLD

MLB MACLIB VMFBLD

TMP MACLIB GENCPBLS

HCPMDLAT MACRO GENCPBLS

$objname MAP VMFBLD

bldlist MAP VMFBLD

objname MAP VMFBLD

prodid MIGPvrm System upgrade utilities System upgrade
utilities

$objname MODULE VMFBLD

fn OLDDATA VMFSIM CHKLVL,
VMFSIM COMPTBL,
VMFSIM GETLVL,
VMFSIM QUERY,
VMFSIM SRVDEP,
VMFSIM SRVREQ,
VMFSIM SYSDEP,
VMFSIM SYSREQ

SUF OUT VMFSUFTB

Input and Output Files

Appendix B. Input/Output Files 739

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

VMSES PARTCAT VMFINS DELETE, VMFINS
MIGRATE

VMFAPPLY,
VMFBLD, VMFCOPY,
VMFERASE,
VMFINS BUILD,
VMFINS DELETE,
VMFINS MIGRATE,
VMFMRDSK, VMFREC,
VMFREM

prodid PLANINFO VMFINS DELETE,
VMFINS INSTALL,
VMFINS MIGRATE

ppfname PPF GENCPBLS, LOCALMOD,
SERVICE, VMFAPPLY,
VMFASM, VMFBTMAP,
VMFBLD, VMFEXUPD,
VMFHASM, VMFHLASM,
VMFINS BUILD, VMFINS
DELETE, VMFINS DISABLE,
VMFINS ENABLE, VMFINS
MIGRATE, VMFMRDSK,
VMFNLS, VMFPSU,
VMFQMDA, VMFQOBJ,
VMFREC, VMFREPL,
VMFSETUP, VMFSGMAP,
VMFSIM CHKLVL, VMFSIM
GETLVL, VMFVIEW,
VMFREM, VMFUPDAT

VMFPPF

ppfname1 PPF VMFINS INSTALL

ppfname2 PPF VMFINS INSTALL

VMFINS PRODLIST VMFINS INSTALL, VMFINS
MIGRATE

VMFINS INSTALL,
VMFINS MIGRATE

prodid PRODPART VMFINS DELETE, VMFINS
INSTALL, VMFINS
MIGRATE, VMFPSU,
VMFSGMAP, VMFSIM INIT

prodid PRODSYS VMFINS DELETE,
VMFINS DISABLE,
VMFINS ENABLE,
VMFINS INSTALL,
VMFINS MIGRATE

VMFVIEW$ PROFILE VMFVIEW

VMSESE PROFILE VMFBLD

appid PSUPLAN VMFPSU

VMFENRPT REPORT VMFENRPT

fn REPOS VMFNLS

Input and Output Files

740 z/VM: 7.3 VMSES/E Introduction and Reference

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

bldlist SEGDATA VMFBLD, VMFSGMAP VMFSGMAP

CLB SEGMAP VMFBLD

fn SEGMAP VMFSGMAP

libname SEGMAP VMFBLD

VMPUT SERVICE VMFREC

fn SERVLINK SERVICE, VMFINS,
VMFREC, VMFSUFIN

fn SIMDATA VMFSIM CHKLVL, VMFSIM
LOGMOD, VMFSIM MODIFY,
VMFSIM QUERY, VMFSIM
SRVDEP, VMFSIM SRVREQ,
VMFSIM SYSDEP, VMFSIM
SYSREQ

VMFSIM CHKLVL,
VMFSIM COMPTBL,
VMFSIM GETLVL,
VMFSIM QUERY,
VMFSIM SRVDEP,
VMFSIM SRVREQ,
VMFSIM SYSDEP,
VMFSIM SYSREQ

appid SRVAPPS SERVICE, VMFAPPLY,
VMFBLD, VMFBTMAP,
VMFINS BUILD,
VMFMRDSK, VMFSIM
SRVDEP, VMFSIM SRVREQ,
VMFREM

VMFAPPLY, VMFREM

bldid SRVBLDS VMFBLD, VMFINS BUILD,
VMFQOBJ, VMFUPDAT

VMFBLD, VMFINS
BUILD, VMFUPDAT

$$$VM$$$ SRVBLDS VMFUPDAT

recid SRVDESCT VMFREM VMFBTMAP, VMFREC,
VMFSIM INIT,
VMFREM

prodid SRVPROD SERVICE SERVICE, PUT2PROD

recid SRVRECS SERVICE, VMFBTMAP,
VMFREC, VMFREM

VMFREC, VMFSIM
INIT, VMFREM

recid SRVREQT SERVICE, VMFAPPLY,
VMFSIM SRVDEP, VMFSIM
SRVREQ, VMFREM

VMFREC, VMFSIM
INIT, VMFREM

CSM SVCSTAT SERVMGR SERVMGR

CSM SYSSTAT SERVMGR SERVMGR

VM SYSABRVT VMFBLD, VMFINS BUILD,
VMFREC, VMFSIM CHKLVL,
VMFSIM GETLVL

VM SYSAPARS VMFBLD

appid SYSAPPS VMFSIM SYSDEP, VMFSIM
SYSREQ

Input and Output Files

Appendix B. Input/Output Files 741

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

sysid SYSAPPS VMFBTMAP, VMFENRPT,
VMFINS BUILD, VMFINS
MIGRATE, VMFSUFTB,
SERVICE

VMFINS BUILD,
VMFINS DELETE,
VMFINS DISABLE,
VMFINS ENABLE,
VMFINS INSTALL,
VMFINS MIGRATE

sysid SYSBLDS VMFINS BUILD,
VMFINS DELETE

sysid SYSDESCT VMFENRPT, VMFINS
BUILD, VMFINS DELETE,
VMFINS DISABLE, VMFINS
ENABLE, VMFINS MIGRATE,
VMFSUFTB

VMFINS INSTALL,
VMFINS MIGRATE,
VMFSIM INIT

sysid SYSLMOD SERVICE, VMFUPDAT SERVICE, VMFUPDAT

sysid SYSMEMO SERVICE, VMFUPDAT SERVICE, VMFUPDAT

VM SYSLMOD LOCALMOD

$$$VM$$$ SYSLMOD VMFUPDAT

$$$VM$$$ SYSMEMO VMFUPDAT

VM SYSPINV PUT2PROD, SERVICE,
VMFBLD

sysid SYSRECS VMFINS BUILD, VMFINS
DELETE, VMFINS MIGRATE,
VMFSUFTB

VMFINS DELETE,
VMFINS INSTALL,
VMFINS MIGRATE

sysid SYSREQT VMFINS BUILD, VMFINS
DELETE, VMFINS MIGRATE,
VMFSIM SYSDEP, VMFSIM
SYSREQ

VMFINS INSTALL,
VMFINS MIGRATE,
VMFSIM INIT

sysid SYSREST SERVICE, VMFSUFIN,
VMFUPDAT

SERVICE, VMFSUFIN,
VMFUPDAT

$$$VM$$$ SYSREST VMFUPDAT

sysid SYSSUF LOCALMOD, PUT2PROD,
SERVICE, VMFBTMAP,
VMFSUFIN, VMFSUFTB,
VMFUPDAT

SERVICE, PUT2PROD,
VMFSUFTB,
VMFUPDAT

$$$VM$$$ SYSSUF VMFUPDAT

LLB TEXT VMFBLD

TLB TEXT VMFBLD

$fn TEXT VMFASM, VMFHASM,
VMFHLASM, VMFNLS

filename TEXT VMFBLD

fn TEXT VMFASM, VMFHASM,
VMFHLASM, VMFNLS

Input and Output Files

742 z/VM: 7.3 VMSES/E Introduction and Reference

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

libname TEXT VMFBLD

objname TIMESTMP VMFBLD

CLB TXTLIB VMFBLD

TLB TXTLIB VMFBLD

libname TXTLIB VMFBLD

HCPLDL TXTmodid GENCPBLS

fn TXTnnnnn VMFASM, VMFHASM,
VMFHLASM, VMFNLS

fn UPDATES VMFASM, VMFEXUPD,
VMFHASM, VMFHLASM,
VMFNLS

objname UPDATES VMFBLD

fn UPDLOG VMFEXUPD, VMFNLS

appid VVTPSU VMFPSU

appid VVTlvlid GENCPBLS, LOCALMOD,
VMFAPPLY, VMFASM,
VMFBLD, VMFEXUPD,
VMFHASM, VMFHLASM,
VMFINS BUILD, VMFPSU,
VMFQOBJ, VMFREPL,
VMFSIM CHKLVL, VMFSIM
GETLVL, VMFNLS, VMFREM

GENCPBLS,
VMFEXUPD, VMFSIM
CHKLVL, VMFNLS,
VMFREPL, VMFAPPLY,
VMFREM

VMFPSU

fn VVTlvlid VMFSIM LOGMOD VMFSIM LOGMOD

RETRY $APPLIST VMFAPPLY

fn $APPLIST VMFAPPLY VMFSIM COMPTBL,
VMFSIM SRVDEP,
VMFSIM SRVREQ,
VMFSIM SYSDEP,
VMFSIM SYSREQ

appid $APRCVRY VMFAPPLY, VMFBLD,
VMFINS BUILD,
VMFMRDSK, VMFREM

VMFAPPLY

appid $ASTATS VMFREM VMFREM

recid $BRREQT VMFREM VMFREM

fn $CONS PUT2PROD, SERVICE PUT2PROD, SERVICE

fn $CONSOLD PUT2PROD, SERVICE PUT2PROD, SERVICE

prodid $CORymdd VMFREC

recid $DSTATS VMFREM VMFREM

fn $DLCS VMFNLS

Input and Output Files

Appendix B. Input/Output Files 743

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

fn $EXCLIST VMFAPPLY, VMFPSU

$CRDSK$ $FILES$ VMFMRDSK

TLB $HISTORY VMFBLD

objname $HISTORY VMFBLD

prodid $INSnnnn VMFREC

SETUP $LINKS VMFINS BUILD, VMFINS
DELETE, VMFINS MIGRATE,
VMFSETUP

VMFSETUP

objname $MAP VMFBLD

appid $MISSING VMFAPPLY

fn $MSGLOG VMFVIEW

$CSMAGT $MSGLOG CSMAGENT

$CSMCMG $MSGLOG SERVMGR

$CSMCMG $MSGvrm SERVMGR

$VMFlogid $MSGLOG VMFOVER, VMFPSU

$VMFAPP $MSGLOG VMFAPPLY

$VMFBLD $MSGLOG VMFBLD

$VMFINS $MSGLOG VMFINS BUILD,
VMFINS DELETE,
VMFINS DISABLE,
VMFINS ENABLE,
VMFINS INSTALL,
VMFINS MIGRATE,
VMFREC

$VMFLMD $MSGLOG LOCALMOD LOCALMOD

$VMFP2P $MSGLOG PUT2PROD

$VMFREC $MSGLOG VMFREC

$VMFRM $MSGLOG VMFREM

$VMFSRV $MSGLOG SERVICE

VMFRMT $NEWCP$ VMFINS DELETE, VMFINS
INSTALL, VMFINS
MIGRATE

bldlist $NUCEXEC VMFBLD

VMSES $PARTCAT VMFMRDSK

$$PPFT$$ $PPF VMFOVER

Input and Output Files

744 z/VM: 7.3 VMSES/E Introduction and Reference

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

ppfname $PPF PUT2PROD, SERVICE,
VMFBTMAP, VMFINS
BUILD, VMFINS DELETE,
VMFINS DISABLE, VMFINS
ENABLE, VMFINS MIGRATE,
VMFOVER, VMFPPF

ppfname1 $PPF VMFINS INSTALL

ppfname2 $PPF VMFINS INSTALL

prodid $PPF VMFINS BUILD

ppfname $PPFTEMP VMFOVER VMFINS DELETE, VMFPPF

SERVICE $PRODS PUT2PROD, SERVICE PUT2PROD, SERVICE,
VMFBLD

systemid $PRODS PUT2PROD PUT2PROD, SERVICE

fn $PTFPART VMFSIM INIT, VMFAPPLY,
VMFREM

prodid $PUTnnnn VMFREC

LOCALMOD $RESTART LOCALMOD LOCALMOD

SERVICE $RESTART SERVICE, VMFUPDAT SERVICE, VMFUPDAT

appid $RMRCVRY VMFAPPLY, VMFBLD,
VMFREC, VMFMRDSK,
VMFREM, VMFINS BUILD

VMFREM

VMSBR $SELECT VMFBLD VMFBLD

appid $SELECT VMFAPPLY, VMFBLD,
VMFINS BUILD, VMFREM

GENCPBLS,
VMFEXUPD,
VMFSGMAP, VMFNLS,
VMFREPL, VMFREM

xxxPSU $SELECT VMFPSU

appid $SNAPPS VMFREM VMFREM

recid $SNDESCT VMFREM VMFREM

recid $SNRECS VMFREM VMFREM

recid $SNREQT VMFREM VMFREM

recid $SRDESCT VMFREM VMFREM

recid $SRRECS VMFREM VMFREM

recid $SRREQT VMFREM VMFREM

appid $SRVAPPS VMFAPPLY, VMFREM VMFAPPLY, VMFREM

appid $STATS VMFAPPLY VMFAPPLY

VMFRMT $TMPCP$ VMFINS DELETE, VMFINS
INSTALL, VMFINS
MIGRATE

Input and Output Files

Appendix B. Input/Output Files 745

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

CUSSRC $VMFREST VMFINS MIGRATE

IBMSRC $VMFREST VMFINS MIGRATE

appid $VNlvlid VMFREM VMFREM

appid $VVlvlid VMFAPPLY, VMFREM VMFAPPLY, VMFREM

appid $$SELECT VMFAPPLY, VMFREM VMFAPPLY, VMFREM

VMFUPDAT $$$UP$$$ VMFUPDAT

$fn $ft VMFEXUPD VMFEXUPD

fn $ft VMFEXUPD

fn $langid VMFNLS

prodid $$EXEC$$ VMFINS DELETE,
VMFINS DISABLE,
VMFINS ENABLE,
VMFINS INSTALL,
VMFINS MIGRATE

apptablefn apptableft VMFSIM SRVDEP, VMFSIM
SRVREQ, VMFSIM SYSDEP,
VMFSIM SYSREQ

objname cntrlfn VMFBLD

fn ctlfile VMFNLS

fn ft fm VMFCOPY, VMFERASE

fn2 ft2 fm2 VMFCOPY

fn listft VMFSIM INIT

listfn listft VMFBLD

VMFINFO mmddhhtt VMFINFO

INS nnnn VMFREC

PUT nnnn VMFREC

partname objtype VMFBLD

fn out_ft VMFEXUPD, VMFREPL

reqtablefn reqtableft VMFSIM SRVDEP, VMFSIM
SRVREQ, VMFSIM SYSDEP,
VMFSIM SYSREQ

table1fn table1ft VMFSIM COMPTBL

table2fn table2ft VMFSIM COMPTBL

tablefn tableft VMFSIM MODIFY, VMFSIM
QUERY

VMFSIM MODIFY

HCPLDL updtft GENCPBLS

Input and Output Files

746 z/VM: 7.3 VMSES/E Introduction and Reference

Table 34. Input/Output Files (continued)

File ID Used as input by: Provided as output
by:

Used as a temporary file
by:

fn updtft VMFASM, VMFEXUPD,
VMFHASM, VMFHLASM,
VMFNLS

fn xxxnnnnn VMFASM, VMFEXUPD,
VMFHASM,
VMFHLASM, VMFNLS,
VMFREPL

COR ymdd VMFREC

fn {EXEC|EXCnnnnn} VMFQOBJ

fn {OBJDATA|ft} VMFQOBJ VMFQOBJ

Input and Output Files

Appendix B. Input/Output Files 747

Input and Output Files

748 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix C. VMSES/E Sample Files

This topic contains information about sample files that are supplied for use with VMSES/E.
LEVELCHK SAMPEXEC

This sample can be used to perform a comparison evaluation of a given z/VM CSM service level,
and the analogous information that is created for a z/VM CSM managed system (or an intended such
system), or, a pairing of two of the same such entities.

The LEVELCHK SAMPEXEC part, which can be found on the MAINTCSM 5E6 disk, can be used to
create an executable LEVELCHK EXEC. For information about using the LEVELCHK sample, see the
comments in the LEVELCHK SAMPEXEC file.

VMSES/E Sample Files

© Copyright IBM Corp. 1990, 2023 749

VMSES/E Sample Files

750 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix D. Module Identifiers for VMSES/E
Messages

Messages issued by VMSES/E are in the following format:

VMFmmmnnnnx

where:

• VMF is the 3-character component identifier for VMSES/E.
• mmm is the 3-character identifier for the VMSES/E module that originated the message. Table 35 on

page 751 lists these identifiers in alphabetical order.
• nnnn is the 4-character message number.
• x is the 1-character severity code.

For a complete explanation of any VMSES/E message, use the HELP Facility to view the message
explanation online or see the appropriate message documentation.

Table 35. Message IDs

Message ID (mmm) Originating Module Message Format

APP VMFAPPLY EXEC VMFAPPnnnnx

ASM VMFASM EXEC VMFASMnnnnx

BDC VMFBDCOM EXEC VMFBDCnnnnx

BDP VMFBDCPY EXEC VMFBDPnnnnx

BDM VMFBDMOD EXEC VMFBDMnnnnx

BDN VMFBDNUC EXEC VMFBDNnnnnx

BDS VMFBDSEG EXEC VMFBDSnnnnx

BFS VMFBDBFS EXEC VMFBFSnnnnx

BLD VMFBLD EXEC VMFBLDnnnnx

BMP VMFBTMAP EXEC VMFBMPnnnnx

BRW VMFBRWSE XEDIT VMFBRWnnnnx

CAG CSMAGENT EXEC VMFCAGnnnnx

CHK $VMFCHK$ XEDIT VMFCHKnnnnx

CLB VMFBDCLB EXEC VMFCLBnnnnx

CMG SERVMGR EXEC VMFCMGnnnnx

CNV VMFCNVT EXEC VMFCNVnnnnx

COP VMFCOPY EXEC VMFCOPnnnnx

CPB CSMPKGBD EXEC VMFCPBnnnnx

CPL CSMPKGLD EXEC VMFCPLnnnnx

CPR CSMP2PRD EXEC VMFCPRnnnnx

CSQ CSMQUERY EXEC VMFCSQnnnnx

Module Identifiers for VMSES/E Messages

© Copyright IBM Corp. 1990, 2023 751

Table 35. Message IDs (continued)

Message ID (mmm) Originating Module Message Format

CSV CSMSRVMT EXEC VMFCSVnnnnx

CSY CSMSYSMT EXEC VMFCSYnnnnx

CTL $CSMUTL$ EXEC VMFCTLnnnnx

CTR CSMTRNSP EXEC VMFCTRnnnnx

CWS VMFCWSRC EXEC VMFCWSnnnnx

DDR VMFBDDDR EXEC VMFDDRnnnnx

DEF VMFDELF EXEC VMFDEFnnnnx

DEL VMFDEL EXEC VMFDELnnnnx

DEP VMFDEP EXEC VMFDEPnnnnx

DLB VMFBDDLB EXEC VMFDLBnnnnx

E2E VMFE2E MODULE VMFE2Ennnnx

ENR VMFENRPT EXEC VMFENRnnnnx

ERA VMFERASE EXEC VMFERAnnnnx

EXU VMFEXUPD EXEC VMFEXUnnnnx

GCB GENCPBLS EXEC VMFGCBnnnnx

GEN VMFBDGEN EXEC VMFGENnnnnx

GPA VMFGPARM EXEC VMFGPAnnnnx

HAH VMFHASHM MODULE VMFHAHnnnnx

HAM VMFHASM EXEC VMFHAMnnnnx

HAS VMFHASH EXEC VMFHASnnnnx

INF VMFINFO EXEC VMFINFnnnnx

INM VMFINMI EXEC VMFINMnnnnx

INS VMFINS EXEC VMFINSnnnnx

INT VMFINST EXEC VMFINTnnnnx

LDP VMFLDPRD EXEC VMFLDPnnnnx

LDR $$LDR$$ XEDIT VMFLDRnnnnx

LDS VMFLDS MODULE VMFLDSnnnnx

LLB VMFBDLLB EXEC VMFLLBnnnnx

LMD LOCALMOD EXEC VMFLMDnnnnx

MEM VMFMEMO EXEC VMFMEMnnnnx

MHR VMFMHR EXEC VMFMHRnnnnx

MIG VMFMIG EXEC VMFMIGnnnnx

MKO VMFMKOVR XEDIT VMFMKOnnnnx

MLB VMFBDMLB EXEC VMFMLBnnnnx

Module Identifiers for VMSES/E Messages

752 z/VM: 7.3 VMSES/E Introduction and Reference

Table 35. Message IDs (continued)

Message ID (mmm) Originating Module Message Format

MLO VMFMLOAD EXEC VMFMLOnnnnx

MRD VMFMRDSK EXEC VMFMRDnnnnx

MSG VMFMSG EXEC VMFMSGnnnnx

NLS VMFNLS EXEC VMFNLSnnnnx

OVE VMFOVER EXEC VMFOVEnnnnx

P2P PUT2PROD EXEC VMFP2Pnnnnx

PAT $VMFPAT$ EXEC VMFPATnnnnx

PLA VMFPLAN EXEC VMFPLAnnnnx

PMD VMFBDPMD EXEC VMFPMDnnnnx

PPF VMFPPF EXEC VMFPPFnnnnx

PRD PRODUTL EXEC VMFPRDnnnnx

PSU VMFPSU EXEC VMFPSUnnnnx

QMD VMFQMDA EXEC VMFQMDnnnnx

QOB VMFQOBJ EXEC VMFQOBnnnnx

RCA VMFRCALL EXEC VMFRCAnnnnx

RCX VMFRCAXL EXEC VMFRCXnnnnx

RCC VMFRCCOM EXEC VMFRCCnnnnx

RCP VMFRCPTF EXEC VMFRCPnnnnx

RDT VMFRDTBL MODULE VMFRDTnnnnx

REC VMFREC EXEC VMFRECnnnnx

REM VMFREM EXEC VMFREMnnnnx

REO VMFRECON EXEC VMFREOnnnnx

REP VMFREPL EXEC VMFREPnnnnx

REQ VMFREQC EXEC VMFREQnnnnx

RES VMFREST EXEC VMFRESnnnnx

RFL VMFRFL EXEC VMFRFLnnnnx

RMC VMFRMTC EXEC VMFRMCnnnnx

RMP VMFRMTP EXEC VMFRMPnnnnx

RMT VMFRMT EXEC VMFRMTnnnnx

RWL VMFRWLIB EXEC VMFRWLnnnnx

SAV VMFSAVE EXEC VMFSAVnnnnx

SBR VMFBDSBR EXEC VMFSBRnnnnx

SDM $VMFMSG$ XEDIT VMFSDMnnnnx

SET VMFSETUP EXEC VMFSETnnnnx

Module Identifiers for VMSES/E Messages

Appendix D. Module Identifiers for VMSES/E Messages 753

Table 35. Message IDs (continued)

Message ID (mmm) Originating Module Message Format

SGP $VMFSEG$ EXEC VMFSGPnnnnx

SGM VMFSGMAP EXEC VMFSGMnnnnx

SIM VMFSIM EXEC VMFSIMnnnnx

SIP VMFSIMPC EXEC VMFSIPnnnnx

SPC VMFSPTCC XEDIT VMFSPCnnnnx

SPL VMFSPLIT XEDIT VMFSPLnnnnx

SPP VMFSPLTP XEDIT VMFSPPnnnnx

SPT VMFSPLTC XEDIT VMFSPTnnnnx

SRV SERVICE EXEC VMFSRVnnnnx

SUI VMFSUFIN EXEC VMFSUInnnnx

SUT VMFSUFTB EXEC VMFSUTnnnnx

TBD VMFTBDEF EXEC VMFTBDnnnnx

TLB VMFBDTLB EXEC VMFTLBnnnnx

UPD VMFUPDAT EXEC VMFUPDnnnnx

UTL $VMFUTL$ EXEC VMFUTLnnnnx

VIE VMFVIEW EXEC VMFVIEnnnnx

VW1 $VMFVW1$ XEDIT VMFVW1nnnnx

VW2 $VMFVW2$ XEDIT VMFVW2nnnnx

Module Identifiers for VMSES/E Messages

754 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix E. Tape Formats Supported by VMSES/E

The VMSES/E VMFINS EXEC can process product tapes in any of these formats:

• VMSES/E product tape format
• z/VM System Delivery Offering (SDO) format
• VMSES/E service tape format

Tapes in any of these formats may have one or more physical volumes.

VMSES/E Product Media Format
This section describes the format of media containing products in VMSES/E format.

Each volume of a product tape in VMSES/E format contains the following files, in the following order:

1. VMFREC required tape file 1. This file contains:

a. A multi-volume directory, INS nnnn
b. (On the first volume only) Special installation tools, if any, for the product
c. (On the first volume only) $PPF and PPF files for all components on the tape
d. (On the first volume only) PRODPART files for all components on the tape
e. prodid or compname MEMO file

2. VMFREC required tape file 2. This file contains:

a. 0vrmnns files for each component on this tape volume. 0vrmnns is the file type associated with a
product identifier. The variables mean:
0

is constant.
v

is the version number of the prodid.
r

is the release number of the prodid.
m

is the modification level of the prodid.
nn

is the number of tape files in the product (delimited by tape marks). The number of tape files
(nn) includes one of the tape header files, all of the product header files, and all of the product
tape files.

s
is a Boolean flag that indicates the prodid is supported by VMSES/E with a product parameter
file.

b. $PPF files for each component on this tape volume
c. PRODPART files for each component on this tape volume
d. prodid or compname MEMO file

3. VMFREC required tape file for the first component. This file contains:

a. 0vrmnns files for the first component
b. A product content directory for the first component

4. prodid or compname MEMO file
5. The first code file for the first component ⋮

Tape Formats Supported by VMSES/E

© Copyright IBM Corp. 1990, 2023 755

And as many more files as necessary. Each new component begins with a VMFREC required tape file
and a MEMO file. If a component is split between two or more volumes, there is a VMFREC required
tape file and a MEMO file for the component on each volume.

z/VM System Delivery Offering Format
Product tapes in z/VM System Delivery Offering format are created by combining product tapes for several
products. Depending on the way the tapes are combined, these tapes are also called merged product
tapes or stacked product tapes.

The first volume of a stacked product tape in z/VM SDO format contains the following files, in the following
order:

1. A combined "first tape file" for all products on the tape. This file contains:

a. The installation exec for each product
b. $PPF files for each product (if they exist)
c. PRODPART files for each product (if they exist)
d. Post-processing execs for each product (if they exist)
e. A "zero file" for each product, containing the number of tape files for the product

The first tape file serves as a table of contents for the tape.
2. prodid or compname MEMOs for each product on the tape
3. The zero file, post-processing execs, and either the $PPF and PRODPART files or an installation exec

for the first product
4. The first code file for the first product ⋮

And as many more files as necessary. Each new product begins with a tape file containing the zero file,
post-processing execs, and either the $PPF and PRODPART files or an installation exec.

Subsequent volumes of a stacked product tape do not contain a first tape file or the collected MEMO files.
They simply continue the first volume.

A merged product tape in z/VM SDO format looks like the second volume of a stacked product tape. It
contains:

1. The zero file, post-processing execs, and either the $PPF and PRODPART files or an installation exec
for the first product

2. The first code file for the first product ⋮

And as many more files as necessary. Each new product begins with a tape file containing the zero file,
post-processing execs, and either the $PPF and PRODPART files or an installation exec.

VMSES/E Service Tape Formats
The RSU (recommended service upgrade) and the corrective service tape use similar formats:

• The first tape file on the service tape contains these files:

– Tape descriptor file, which is described in “The Tape Descriptor File” on page 125.
– Service tape document, which is described in “The Tape Document” on page 125.

Note: A file called $LEVEL MAP may exist in tape file 1. This file exists for compatibility with previous
versions of the service tools.

• The second tape file on the service tape contains files related to each product. This includes the
program level file, described in “The Program Level File” on page 127, and the Memo-to-Users,
described in “The Memo-to-Users” on page 127.

• The first tape file for each product contains a program level file and the product contents directory
(described in “The Product Contents Directory” on page 127). If the product or component does not

Tape Formats Supported by VMSES/E

756 z/VM: 7.3 VMSES/E Introduction and Reference

support using a product parameter file, the first tape file for the product or component contains a
program level file and a product service exec.

• The rest of the tape files for each product on the service tape contain the service for each product.

Tape Formats Supported by VMSES/E

Appendix E. Tape Formats Supported by VMSES/E 757

Tape Formats Supported by VMSES/E

758 z/VM: 7.3 VMSES/E Introduction and Reference

Appendix F. Servicing Non-VMSES/E SNA Products

This topic contains information about how to service the Systems Network Architecture (SNA) products
that are not in VMSES/E format. These products are object maintained and serviced by replacing TEXT
files.

Do not use this topic to service any products supported by VMSES/E. Although many terms used in this
topic are similar or even identical to terms used in the VM/ESA service procedures, the procedures are not
compatible. For example, a product parameter file discussed in this topic does not follow the same format
as the VM/ESA product parameter file discussed in the rest of this book. The procedures described in this
topic must stand apart from service procedures described in z/VM: Service Guide.

The service programs used in this topic are:
VMFMERGE

applies PTFs from the DELTA disk to the MERGE disk. For more information about this program, see
“VMFMERGE EXEC” on page 776.

VMFREMOV
removes PTFs applied by the VMFMERGE EXEC procedure. For more information about this program,
see “VMFREMOV EXEC” on page 779.

VMFZAP
applies ZAPs and maintains a record of them in the ZAP log. For more information about this program,
see “VMFZAP EXEC” on page 781.

Before you try to do any service processing using these execs, you must consider the following to
determine the amount of virtual storage you need to define for your virtual machine.

• The number of minidisks accessed and the number of files on each minidisk accessed.
• The size of files (merge log, reqby log, ZAP log) needing to be updated, and other files used during

processing.
• The number of execs loaded into virtual storage. You can find this out by using the CMS command

EXECMAP. See z/VM: Service Guide for more information about this command.
• The number of nucleus extensions loaded into virtual storage. You can find this out by using the CMS

command NUCXMAP. See z/VM: Service Guide for more information about this command.

A description of the types of disks, the files, logs, and lists used during service processing follows. In
addition, there are generic descriptions of how to do different types of object code service.

Types of Disks
VMFMERGE, VMFREMOV, and VMFZAP use several types of disks during processing. Although we refer to
each of these as a single disk, there may be multiple occurrences of each type. The execs access these
disks using mode letters E-N. When processing ends, the execs restore your disk hierarchy to its original
condition.

The five types of disks are:

Disk Contents

BASE Original product files as shipped on the product installation media.

DELTA Changed portions of the product. These files have different names from the
corresponding files that are found on the BASE disk. There is also a service control
file (containing all the information needed to install a program temporary fix (PTF)) for
each change on this disk. There is an exclude list, at least one apply list, and possibly a
remove list.

© Copyright IBM Corp. 1990, 2023 759

Disk Contents

MERGE Changes that have been applied. These files have been copied from the DELTA disk and
renamed to match the corresponding file on the BASE disk. There is also a log containing
changes (merge log) which have been merged into the product and a log containing the
requisite relationships (reqby log) of the merged or superseded changes.

ZAP TEXT files that have been copied from the BASE or MERGE disk and ZAPped. There is a
log containing ZAPs (ZAP log) that have been applied to the product.

RUN Actual working version of the product. The files on this disk are created by the product
build exec from the files on the BASE, MERGE, and ZAP disks. There is also a log
containing service (service log) of PTFs and ZAPs that have been applied to the product.

Service Control File
The service control file (SCF) describes a Program Temporary Fix (PTF). There is an SCF for each PTF.
SCFs are built by the change team and shipped with the PTFs in the delta file of the Program Update Tape
(PUT). The file name of the SCF is the PTF number and the file type must be SCF.

The service control file contains all the information needed to install a PTF. The following is an example of
a service control file.

:ptf.UV00006
:prodid.5664175
:prereq.UV00005 UV00007
:coreq.UV00056.5748RC2
:sup.Z00002 Z00003
:changes.
 :element.DSIMNT TEXT
 :replace.TXTP0006
 :element.DSIXXX TEXT
 :replace.TXTP0004
 :element.DSIYYY TEXT
 :replace.TXTP0001
:echanges.
:apartext.PP00004 - Split DSIXXX for new base register
:apartext.PP00009 - Update loadlist to add DSINEW

Figure 219. Example of a Service Control File (UV00006 SCF)

Where:

:ptf.
is the PTF number. This number is the same as the file name of the SCF.

:prodid.
is the seven character product identifier. (You may also specify a one character suffix for the release or
level of the product. This suffix is determined by the service group).

:prereq.
is the SCF file name of all PTFs that must be merged before you can merge the PTF specified on
the :ptf. tag. During processing, if the prerequisite cannot be found, then processing ends.

If a prerequisite change is not for this product, the associated prodid must be specified as part of the
PTF name on :prereq. tag. For example, ppppppp.prodid, where ppppppp is the PTF number within
another product. A message is displayed by VMFMERGE telling you there is a prerequisite PTF for
another product, specifically the product associated with the prodid listed on the :prereq. tag.

You can omit PRODID if the products are the same as for this PTF.

:coreq.
is the SCF file name of all PTFs that need to be merged together with this PTF.

If a corequisite change is not for this product, the same rules apply as with :prereq for specifying
prodid. A message is displayed by VMFMERGE and VMFREMOV telling you there is a corequisite PTF

760 z/VM: 7.3 VMSES/E Introduction and Reference

for another product, specifically the product associated with the prodid listed on the :coreq. tag. As
shown in the example above, the corequisite UV00056 is for product 5748RC2.

The maximum number of characters (including blanks) you can specify on a :coreq. tag is 256.

:sup.
are the PTFs or ZAPs that are no longer needed as a result of this PTF. Specifying this tag prevents
superseded PTFs or ZAPs from being reapplied.

:changes.
indicates the beginning of the list of elements changed. The change list is a table with an entry for
each element affected. Each element begins with an :element tag and ends with the next :element tag.

:element.
specifies the CMS file name and file type of an element defined or replaced by this PTF. A separate tag
is coded for every element changed.

:replace.
specifies the CMS file type of an object replacement file for the associated element.

:echanges.
indicates the ending of the list of elements changed.

:apartext.
is an APAR number followed by a description of the problem reported by the APAR. The service group
specifies this information.

Product Parameter File
The product parameter file contains records that identify the various product minidisk addresses used
for installation and service. A parameter file containing the default minidisk addresses is shipped with
the product on the product installation media. (You can change or add to the default addresses.) The
VMFMERGE, VMFREMOV, VMFZAP, and product execs read this file for the information needed to access
minidisks. Before you use these execs, you must access the minidisk containing the product parameter
file.

The file name of the file is the product identifier, and the file type must be VMFPARM.

Each record in the file contains a keyword indicating the type of disk and one or more virtual addresses.
The format of the records is a keyword followed by one or more values. VMFMERGE, VMFREMOV, and
VMFZAP recognize the following keywords.
BASE

the virtual address(es) of the minidisk(s) containing the base product code.
DELTA

the virtual address(es) of the DELTA Disk(s).
MERGE

the virtual address(es) of the MERGE Disk(s).
ZAP

the virtual address(es) of the ZAP Disk(s).
RUN

the disk for executable code.

Note: VMFMERGE, VMFREMOV, and VMFZAP ignore any records beginning with an unrecognized keyword.
This allows products to define other keywords that product execs can use.

The following is an example of a product parameter file.

Base 250
Delta 251
Merge 252
ZAP 253
Run 254

Figure 220. Example of a Product Parameter File

Appendix F. Servicing Non-VMSES/E SNA Products 761

Note: You can specify more than one address on these disks. This may be valuable if you want to keep
a record of the disks which have different levels of your system which you created from different MERGE
disks or DELTA disks. The maximum number of disks you can access is ten.

During service processing, the execs read the product parameter file and access the disks that are
needed. For example, VMFMERGE and VMFREMOV access the DELTA and MERGE disks; VMFZAP accesses
the BASE, MERGE, and ZAP disks.

How VMFMERGE, VMFREMOV, and VMFZAP Use the PPF
• VMFMERGE, VMFREMOV, and VMFZAP get the minidisk information from the parameter file and access

the needed disks using file modes E-N. Once these execs stop processing, the disk hierarchy is restored.
• VMFMERGE and VMFREMOV only access the first virtual address following the MERGE keyword.

However, these execs access multiple DELTA disks in the order in which they are listed in the parameter
file. Input files are taken from the first minidisk where they are found; output files are directed to the
first single accessed MERGE disk.

• VMFZAP only accesses the first virtual address following the ZAP keyword. However, this exec accesses
multiple MERGE and BASE disks in the order in which they are listed in the parameter file (the MERGE
disks come before the BASE disks). Input files are taken from the first minidisk where they are found;
output files are directed to the first single accessed ZAP disk.

In order to use VMFZAP, you must have an A disk accessed Read-Write. This disk must not be the ZAP
disk, MERGE disk, or BASE disk. That is, the virtual address of your A disk must not appear on the ZAP,
MERGE, or Base records of your VMFPARM file.

Merge Log
A merge log is a file maintained by the VMFMERGE and VMFREMOV EXECs. This file is a log of changes
(PTFs) which have been merged or superseded. A merge log exists for each product and is shipped on
all Program Update Tapes (PUTs) and on the product tape. Note the file name of the log is the product
identifier, and the file type must be VMFMGLOG.

VMFMERGE and VMFREMOV update the merge log on the disk where it currently exists. (The merge log
must be on the MERGE disk.) VMFMERGE and VMFREMOV stop processing if they cannot find a merge log.

The merge log has an entry for each PTF indicating the PTF number and its status. Status can be:
Merged

means the change is included in the code.
Superseded

means the change is no longer needed because some later fix has replaced it.

In addition, each entry has information on the date and time the change was processed, and a list of the
elements (TEXTs, execs, and so forth) the change affects.

Every time a change is processed, a new entry for that change is added to the merge log. This is referred
to as the "history" of the change. The merge log is a record of the history of PTFs applied to and removed
from a product. To find out the current status of a change, you need to read your merge log file starting at
the bottom. Find the PTF in question. The first noncommented entry for that PTF indicates the status of
the change.

For VMFREMOV, the merged entry is commented out and another entry is added to the end of the merge
log indicating the PTF has been removed.

Note: If you change the merge log in any way, either of the following could happen:

• A change may not be merged.
• A change may be merged but not removed.

Figure 221 on page 763 shows an example of a merge log produced by VMFMERGE1 and updated by
VMFREMOV.

762 z/VM: 7.3 VMSES/E Introduction and Reference

:entry.UV00001 Merged 12/13/21 13:09:42 DSILGN TEXT DSISRP TEXT
:entry.UV00005 Merged 12/15/21 06:28:17 DSIXSD TEXT DSIZVSIN TEXT
 DSIREP TEXT DSIMCB TEXT DSITVB COPY
 DSIMLG TEXT

:entry.UV00008 Merged 12/15/21 06:28:17 DSILMODE EXEC
*entry.UV00007 Merged 12/24/22 11:28:17 DSILMODE EXEC
:entry.UV00006 Merged 01/12/22 17:56:39 DSIXXX TEXT DSIMNT TEXT
:entry.Z00002 Superseded 01/12/22 17:56:39 By UV00006
:entry.Z00003 Superseded 01/12/22 17:56:39 By UV00006
*entry.UV00007 Removed 2/24/22 11:28:17 DSILMODE EXEC

Figure 221. Example of a Merge Log Produced by VMFMERGE

Note:

1. Comment records may be included in the merge log file.
2. Each comment record must begin with an asterisk (*) in column 1.
3. You cannot put a comment record in the middle of an entry which spans more than one line in the file.

(You should put all comment records at the beginning of the merge log file.)
4. The VMFREMOV command may also insert comment records in the merge log.
5. Blank lines are allowed between entries in the file, and are ignored.

ZAP Log
The ZAP log is a file maintained by the VMFZAP EXEC. This file is a log of applied ZAPs. A ZAP log exists
for each product and is built and maintained by the VMFZAP EXEC. Each entry has information on the date
and time the change was processed, and a list of the elements (TEXT files) the change affects. Note the
file name of the log is the product identifier and the file type must be VMFZPLOG.

The ZAP log contains information about TEXT files currently affected by ZAPs applied to a given product.
This information includes the file name(s) of the ZAP control files(s), the time and date the ZAP was
applied, and the modules affected by the ZAP. To remove ZAPs which may be superseded by service
you applied, VMFZAP first uses this list of affected modules to erase the files which were previously
ZAPped. The currently wanted ZAPs, which are not superseded by service you applied, are then applied
and VMFZAP creates a new version of the ZAP log. VMFZAP erases the old ZAP before it writes the new
one.

The ZAP log is on the ZAP disk. New ZAP logs are always created on the ZAP disk. You must not move the
ZAP log from the ZAP disk.

The ZAP log has an entry for each ZAP indicating the ZAP number and its status. Status can be:
Zapped

means the change is included in the code.
An example of a ZAP log follows.

* ZAP log for Product 5664175
:entry.Z00001 Zapped 12/31/22 12:34:56 DSINMME TEXT
:entry.Z00004 Zapped 12/31/22 12:34:56 DSIMNT TEXT
:entry.Z00005 Zapped 12/31/22 12:34:56 DSIMNT TEXT

Figure 222. Example of a ZAP Log (5664175 VMFZPLOG)

Note: Comment records may be included in the ZAP log. Such records contain an asterisk (*) in column 1.
Also, blank lines are allowed anywhere in the file and are ignored.

1 The merge log loaded from the PUT tape has a different time and date stamp.

Appendix F. Servicing Non-VMSES/E SNA Products 763

Reqby Log
A ‘required by’ log (reqby log) is a file maintained by the VMFMERGE and VMFREMOV EXECs. The reqby
log resides on the MERGE disk. This file is a log of all dependent PTFs of each PTF which has a merged or
superseded entry in the merge log. A dependent PTF is one which either has a given PTF as a prerequisite
or corequisite. A reqby log exists for each product and is shipped on all Program Updates Tapes (PUTs)
and on the product tape. Note the file name of the log is the product identifier and the file type must be
VMFREQBY.

The reqby log is not required when you issue VMFMERGE or VMFREMOV. If the log does not exist,
VMFMERGE or VMFREMOV automatically creates one using the information in the existing merge log and
all service control files.

The reqby log contains two types of entries: a comment entry and dependent entries.

A comment entry contains an asterisk (*) in column 1. Only the first non-blank line in the reqby log should
be a comment line. VMFMERGE and VMFREMOV ignore all other comments and eliminate the comments
whenever the reqby log is processed. If the first non-blank line is not a comment, one is automatically
created the next time VMFMERGE or VMFREMOV processes the reqby log.

The dependent entries are identified by an :entry tag followed by a particular PTF and its dependents.
Dependent entries can overflow to the next line (or lines) whenever there are more dependent changes
associated with the PTF than fit on one line. You can have as many overflow lines as needed to list all the
dependent changes. Blank lines are allowed anywhere in the file and are ignored.

Note: If you change the reqby log in any way, either of the following could happen:

• A change may not be merged.
• A change may be merged but not removed.

Figure 223 on page 764 shows an example of a reqby log.

* 5664167 VMFREQBY
:entry.ptf1 pft2 ptf3
:entry.ptf2 ptf1

Figure 223. Example of a Reqby Log (5664167 VMFREQBY)

In the above example, PTF1 and PTF2 are corequisites; and PTF1 is a prerequisite of PTF3.

Service Log
The service log is the merge log with the ZAP log appended on the end. It contains information about
service that has been applied to your product. A service log exists for each product and is built by the
product build execs.2 The build exec copies the merge log for the product and appends the ZAP log to it.
Note the file name of the service log is the product identifier and the file type must be VMFSVLOG.

The format of the service log is a combination of the formats of the merge log (see Figure 221 on page
763) and the ZAP Log (see Figure 222 on page 763). By viewing the service log, you can determine
whether a PTF or ZAP has been applied to your product.

An example of a service log follows.

2 The service log resides on the "run-time" disk.

764 z/VM: 7.3 VMSES/E Introduction and Reference

:entry.UV00001 Merged 12/13/21 13:09:42 DSILGN TEXT DSISRP TEXT
:entry.UV00005 Merged 12/15/21 06:28:17 DSIXSD TEXT DSIZVSIN TEXT
 DSIREP TEXT DSIMCB TEXT DSITVB COPY
 DSIMLG TEXT

*:entry.UV00007 Merged 12/15/21 06:28:17 DSILMODE EXEC
:entry.UV00006 Merged 01/12/22 17:56:39 DSIXXX TEXT DSIMNT TEXT
:entry.Z00002 Superseded 01/12/22 17:56:39
:entry.Z00003 Superseded 01/12/22 17:56:39
*:entry.UV00007 Removed 2/25/22 06:28:17 DSILMODE EXEC
* ZAP log for Product 5664175 created by MAINTvrm 12/31/21 12:34:56
:entry.Z00001 Zapped 12/31/21 12:34:56 DSINMME TEXT
:entry.Z00004 Zapped 12/31/21 12:34:56 DSIMNT TEXT
:entry.Z00005 Zapped 12/31/21 12:34:56 DSIMNT TEXT

Figure 224. Example of a Service Log (5664175 VMFSVLOG)

Note: Comment records may be included in the service log. Such records contain an asterisk (*) in column
1. Also, blank lines are allowed anywhere in the file and are ignored.

Apply List
The apply list is a file that lists PTFs to be applied to a product. There is an apply list shipped on a Program
Update Tape (PUT). That file contains the names of all PTFs in the Delta file of the PUT. (The file name of
that apply list is prodid.) The order of the PTFs in the list is not significant. Apply lists must be on a DELTA
disk.

You can build and then maintain the file yourself. There is an apply list for each product which has PTFs
applied to it. If no PTFs are applied to a product, you do not need to create an apply list.

Any apply lists you maintain should not have the prodid as the file name. Each time you load the Delta
files from the tape, the prodid apply list on the DELTA disk will be replaced with the prodid apply list from
the tape. If you want to change the supplied apply list, make a copy of the supplied apply list (give it a
different file name) and change the "copied" version of the apply list.

The first word on each line in the file is the file name of a PTF. Only one PTF name should be placed on a
line, the remaining data on a line is treated as a comment. If the first character on the line is an asterisk
(*), the whole line is treated as a comment. In addition, blank lines are allowed anywhere in the file and
are ignored.

An example of an apply list follows. Note you can specify the file name3—in this example the prodid is
used—but the file type must be APPLIST.

* apply list for Product 5664175
UV00006 PTF for maintenance program
UV00003
*UV00009

Figure 225. Example of an Apply List (5664175 APPLIST)

Remove List
The remove list is a file that lists the PTFs you want to remove from a product. You must build and
maintain the file yourself. Remove lists must be on a DELTA disk.

The first word on each line in the file is the file name of a PTF. Only one PTF name can be placed on a line.
The remaining data on a line is treated as a comment. If the first character on the line is an asterisk (*) the
whole line is treated as a comment. Blank lines are allowed anywhere in the file and are ignored.

An example of a remove list follows. Note you can specify the file name—in this example the prodid is
used—but the file type must be REMLIST.

3 The exception is you cannot have a file name of EXCLUDE.

Appendix F. Servicing Non-VMSES/E SNA Products 765

* remove listfor Product 5664175
UV00001 this is a comment for ptf1
UV00004

*UV00005 this is a comment for ptf5

Figure 226. Example of a Remove List (5664175 REMLIST)

Exclude List
An exclude list is a file listing PTFs to be excluded from a product.

There is an exclude list shipped as part of the Delta File on the Program Update Tape (PUT). This list
contains the names of PTFs known to be in error. (The file name of that exclude list is prodid.) The
VMFMERGE EXEC uses the combination of the exclude list you have and the prodid EXCLIST to obtain the
names of the PTFs to exclude from the product. Exclude lists must be on a DELTA disk.

You can build and maintain the file yourself. Any exclude lists you maintain should not have the prodid as
the file name. Each time you load the Delta files from the tape, the prodid exclude list on the DELTA disk
will be replaced with the prodid exclude list from the tape. If you want to change the supplied exclude list,
make a copy of the supplied exclude list (give it a different file name) and change the "copied" version of
the exclude list.

The first word on each line in the file is the file name of a PTF. Only one PTF name should be placed on a
line, the remaining data on a line is treated as a comment. If the first character on the line is an asterisk (*)
the whole line is treated as a comment. In addition, blank lines are allowed anywhere in the file and are
ignored.

An example of an exclude list follows. Note you can specify the file name—in this example the prodid is
used—but the file type must be EXCLIST.

* exclude list for Product 5664175
UV00002 Exclude PTF from CP ACCESS command.
UV00013
*UV00016

Figure 227. Example of an Exclude List (5664175 EXCLIST)

ZAP List
A ZAP list is a file listing ZAPs to be applied to a product. You must build and maintain the file yourself.

The VMFZAP EXEC uses this file during its processing. If no ZAPs are applied, you do not need to create a
ZAP List. ZAP lists must be on a disk listed on the BASE, MERGE, or ZAP entry record of the VMFPARM file
for the product.

The first word on each line in the file is the file name of a ZAP. Only one ZAP name should be placed on a
line; the remaining data on a line is treated as a comment. If the first character on the line is an asterisk
(*), the whole line is treated as a comment. In addition, blank lines are allowed anywhere in the file and
are ignored.

If you want to "back off" an unwanted ZAP, comment that ZAP out in the ZAP list by placing an asterisk (*)
in the first column of the line containing the ZAP file name you want to "back off". Then run VMFZAP.

An example of a ZAP list follows. Note the file name must be the prodid, and the file type must be
ZAPLIST.

* Zap List for Product 5664175
Z00001 Zap for CP ACCESS command.
Z00004
Z00005
*Z00016

Figure 228. Example of a Zap List (5664175 ZAPLIST)

766 z/VM: 7.3 VMSES/E Introduction and Reference

Object Code Service Processing
There are many ways to apply service to components of your system that are object code maintained. This
section describes, in a very generic way, how to:

• Apply

– Emergency fixes (using ZAPs)
– Corrective Service
– Preventive Service

• Merge Service
• Remove Service
• Prevent regression
• Remove a fix-in-error

Applying Emergency Fixes Using ZAPs
When you need an emergency fix, you usually call in the problem and receive a fix over the phone in the
form of a ZAP.

Suppose there is a problem with module A. Here is what you need to do.

1. First, call the IBM Support Center and report the problem.
2. You will be given a ZAP (for example, Z00005) to apply to module A.
3. You must create a ZAP control file (Z00005 ZAP).

For more information about valid records in the ZAP control file, see the description of the ZAP
command in z/VM: CMS Commands and Utilities Reference.

4. You must create a ZAP list if you do not already have one for the product. If you already have one, you
must append this new entry.

• Creating a ZAP list

Create a new file (on a disk accessed in the VMFPARM file) called prodid ZAPLIST. Enter the ZAP
name (Z00005) as the first word on the line. (The rest of the information on each line is treated as a
comment.)

• Adding to an existing ZAP list

On a new line at the bottom of the file, add the ZAP name (Z00005).

Do not delete any ZAP names from the file unless you no longer want to apply them. The VMFZAP
EXEC erases all text files that have been previously zapped for a product and then reapplies all ZAPs
found in the ZAP list. Thus, you need to make sure the ZAP list you create or add to contains all the
ZAPs you want to apply.

See Figure 228 on page 766 for an example of a ZAP list.
5. Run the VMFZAP EXEC using the prodid parameter.

VMFZAP erases all previously applied TEXT files from the ZAP disk. Then all the ZAPs listed in the
prodid ZAPLIST (including Z00005) are applied to the product.

6. Finally, run the product-supplied exec that builds the executable version of the product.

Applying Corrective Service to Object Code
Corrective service is the application of a Program Temporary Fix (PTF) or an IBM Change Team supplied
fix to correct a problem.

Corrective fixes can be:

Appendix F. Servicing Non-VMSES/E SNA Products 767

• Fixes on a PTF tape provided by Program Support Services (PSS) or by the Change Teams. These fixes
are the result of closed valid APARs.

• ZAPs provided by the Change Teams over the phone.
• Relief fixes provided by the Change Teams on a tape prior to APAR closure to fix severe problems.

Suppose you order PTF UV00007 for your product and that UV00007 affects modules A and B. Here is
what you need to do:

1. Backup your existing system and verify the backup copy you have is good.
2. Use VMFPLC2 to load the first physical file on the corrective service tape. (In the example, corrective

service tape is shipped by PSS.) The first tape file contains information for you in the cover letter and in
the Program Identification Number (PIN) pages.

For information on VMFPLC2, see z/VM: CMS Commands and Utilities Reference.
3. Use VMFPLC2 again to load the second physical file on the tape. This tape file contains the following

for UV00007:

• A service control file
• SCFs for any prerequisites
• The actual fixes
• The prerequisites

PTF UV00007 contains fixes for modules A and B, and these fixes are on the tape as CMS files A
TXT00007 and B TXT00007.

The fixes and the SCFs must be loaded to the delta disk. The other files on the tape can be loaded to
any other disk.

4. Create an apply list named FIX007 APPLIST. (You can specify any file name, but the file type must be
APPLIST.) You should save these lists so you can use them later when you apply a PUT.

It is in this apply list you specify the fixes you want to merge into the product. List one PTF per line in
the file.

Note: You must list prerequisite PTFs before the PTFs that need them.

See Figure 225 on page 765 for an example of an apply list.
5. Create an exclude list named FIX007 EXCLIST. (You can specify any file name, but the file type must

be EXCLIST.)

It is in this exclude list you specify the fixes you want to exclude from the product. List one PTF per line
in the file.

Note: If you have no fixes you want to have excluded from the product, you must create a null exclude
list.

See Figure 227 on page 766 for an example of an exclude list.
6. Run the VMFMERGE EXEC with the parameters prodid PTFLIST FIX007. VMFMERGE will merge

UV00007 into the product.
7. Now run the VMFZAP EXEC for the product. (The latest ZAP list for this product must still be available.)

Issuing VMFZAP with the latest ZAP list cleans up superseded ZAPs and prevents regression of the
corrective service just applied by old ZAPs.

Note: If ZAP Z00005 was superseded by PTF UV00007, the ZAP will not be re-applied. If ZAP Z00005
was not superseded by PTF UV00007, the ZAP will be re-applied.

8. Finally, run the product-supplied service exec (or VMSERV) to build the executable version of the
product.

768 z/VM: 7.3 VMSES/E Introduction and Reference

Applying Preventive Service to Object Code
Preventive service is the application of Program Temporary Fixes (PTFs) available on a Program Update
Tape (PUT) to avoid known problems.

VMSERV is an exec procedure included on the PUT to help you when you apply service. Suppose you
receive a PUT for your product. Here is what you need to do:

1. Use VMFPLC2 to load the first physical file on the preventive service tape. This file contains the PUT
DOCUMENT. You should read this document because it contains information about the PUT.

For information on VMFPLC2, see z/VM: CMS Commands and Utilities Reference.
2. Run VMSERV to apply the PUT. You are given the choice of loading the merge file, the delta file, or both.

(It is fastest to load just the merge file. However, if you know there is a bad PTF in the merge file you
need to load the delta file. Whether you should load the merge file or the delta file depends upon the
severity of the bad PTF.) In this case, load the merge file. This gives you a new version of the merge
log that includes all the PTFs that are now part of your product. See Figure 221 on page 763 for an
example of a merge log.

3. Run VMFMERGE using the apply lists that were saved when corrective fixes were merged.

If you apply any corrective service to your product, you should keep the apply lists you used. When
you run VMFMERGE during preventive service, you use these same apply lists. This prevents you from
losing any corrective fixes that were already merged, but are not included on the PUT.

For example, assume that FIX007 APPLIST is the only apply list used. You run VMFMERGE with the
parameter PTFLIST FIX007. If UV00007 is included in the PUT a message is displayed explaining
UV00007 has already been merged. If UV00007 is not included in the PUT a message is displayed
telling you UV00007 will be merged at this time.

4. Now run VMFZAP EXEC for the product. (You must still have the latest ZAP list for this product
available.) Issuing VMFZAP with the latest ZAP list cleans up superseded ZAPs and prevents
regression of the corrective service just applied by old ZAPs.

Note: If ZAP Z00005 was superseded by PTF UV00007, the ZAP will not be reapplied. If ZAP Z00005
was not superseded by PTF UV00007, the ZAP will be reapplied.

5. Finally, run the product-supplied service exec (or VMSERV) to build the executable version of the
product.

Merge Service

Merging a Single PTF (No Dependents or Supersedes)
To merge a PTF (for example, UV00002) that does not have any corequisite and is not a prerequisite of
any other PTF, here's the process:

Note: You must access the minidisk containing the prodid VMFPARM file before you proceed.

• You must have a merge log and service control file(s). You may also have a user exclude list and a reqby
log. Assume you have the merge log, exclude list, and service control files for product 5664167, as
shown in Figure 229 on page 769, Figure 230 on page 769, Figure 231 on page 770, and Figure 232
on page 770.

:entry.UV00001 Merged 12/13/21 13:09:42 ELEM1 TEXT ELEM2 TEXT

Figure 229. Merge Single PTF—Sample Merge Log for 5664167

*EXCLUDE list for product 5664167

Figure 230. Merge Single PTF—Sample Exclude List for 5664167

Appendix F. Servicing Non-VMSES/E SNA Products 769

:ptf.UV00001
:prodid.5664167
:changes.
 :element.ELEM1 TEXT
 :replace.TXTP0001
 :element.ELEM2 TEXT
 :replace.TXTP0002
:echanges.
:apartext.ELEM1 service fix
:apartext.ELEM2 service fix

Figure 231. Merge Single PTF—Sample SCF for UV00001

:ptf.UV00002
:prodid.5664167
:changes.
 :element.ELEM3 TEXT
 :replace.TXTP0003
:echanges.
:apartext.ELEM3 service fix

Figure 232. Merge Single PTF—Sample SCF for UV00002
• To merge UV00002, enter the following command:

vmfmerge 5664167 ptf UV00002
• VMFMERGE:

1. Reads the merge log and finds UV00002 is not already merged or superseded.
2. Reads the exclude list and finds UV00002 is not excluded either.
3. Reads the service control files and finds ELEM3 TEXT is the element affected by UV00002.

ELEM3 TEXT's replacement file (TXTP0003) is copied from the delta disk to the merge disk.
TXTP0003 replaces the element and adds service history to ELEM3 TEXT.

4. Updates the merge log to show UV00002 has been merged.

The resulting merge log looks as follows. (The service control files are not changed.)

:entry.UV00001 Merged 12/13/21 13:09:42 ELEM1 TEXT ELEM2 TEXT
:entry.UV00002 Merged 06/23/22 04:18:20 ELEM3 TEXT

Figure 233. Merge Single PTF—Changed merge log for 5664167

Merging Multiple PTFs (with Dependents and Supersedes)
To merge more than one PTF (for example, UV00004 and UV00005), each having a combination of
prerequisites, corequisites, and supersedes, here is the process:

• You must have a merge log and service control files. Assume you have the merge log and service control
files shown in the following figures.

:entry.UV00002 Merged 05/03/22 13:09:42 ELEM3 TEXT

Figure 234. Merge Multiple PTFs—Sample Merge Log for 5664167

:ptf.UV00001
:prodid.5664167
:coreq.UV00003
:changes.
 :element.ELEM1 TEXT
 :replace.TXTP0001
 :element.ELEM2 TEXT
 :replace.TXTP0002
:echanges.
:apartext.ELEM1 service fix
:apartext.ELEM2 service fix

Figure 235. Merge Multiple PTFs—Sample SCF for UV00001

770 z/VM: 7.3 VMSES/E Introduction and Reference

:ptf.UV00002
:prodid.5664167
:changes.
 :element.ELEM3 TEXT
 :replace.TXTP0003
:echanges.
:apartext.ELEM3 service fix

Figure 236. Merge Multiple PTFs—Sample SCF for UV00002

:ptf.UV00003
:prodid.5664167
:coreq.UV00001
:changes.
 :element.ELEM4 TEXT
 :replace.TXTP0004
 :element.ELEM5 TEXT
 :replace.TXTP0005
:echanges.
:apartext.ELEM4 service fix
:apartext.ELEM5 service fix

Figure 237. Merge Multiple PTFs—Sample SCF for UV00003

:ptf.UV00004
:prodid.5664167
:prereq.UV00001
:changes.
 :element.ELEM6 TEXT
 :replace.TXTP0006
:echanges.
:apartext.ELEM6 service fix

Figure 238. Merge Multiple PTFs—Sample SCF for UV00004

:ptf.UV00005
:prodid.5664167
:sup.UV00002
:changes.
 :element.ELEM3 TEXT
 :replace.TXTP003A
:echanges.
:apartext.ELEM3 service fix

Figure 239. Merge Multiple PTFs—Sample SCF for UV00005
• To merge UV00004 and UV00005 using one command, you need to create an apply list (see page “ZAP

List” on page 766 for more details). Your apply list may look like Figure 240 on page 771.

* This is my own apply list
UV00004 put on UV00004
UV00005 put on UV00005

Figure 240. MYLIST APPLIST
• After you create the apply list, enter the following command:

vmfmerge 5664167 ptflist mylist

• VMFMERGE:

1. Looks for an apply list with a file name of MYLIST.
2. Reads the merge log and finds UV00004 and UV00005 are not merged or superseded. VMFMERGE

also reads the exclude list and finds UV00004 and UV00005 are not excluded either.
3. Reads the service control files and finds:

– UV00001 is a prerequisite of UV00004 and must be merged.
– UV00003 is a corequisite of UV00001 and it too must be merged.
– UV00002 is superseded by UV00005.

Appendix F. Servicing Non-VMSES/E SNA Products 771

4. Determines ELEM1 TEXT, ELEM2 TEXT, ELEM3 TEXT, ELEM4 TEXT, ELEM5 TEXT, and ELEM6 TEXT are
the elements these PTFs affect.

VMFMERGE copies these elements’ replacement files from the DELTA disk and replaces the
appropriate files on the MERGE disk. In addition, service history for these elements is added to
the files.

5. Updates the merge log to show UV00003, UV00001, UV0004, and UV00005 are merged and
UV00002 is superseded.

The resulting merge log is shown in Figure 241 on page 772 and the reqby log is shown in Figure 242 on
page 772. (The service control files are not changed.)

:entry.UV00002 Merged 05/03/22 09:12:42 ELEM3 TEXT
:entry.UV00003 Merged 09/25/21 12:43:17 ELEM4 TEXT ELEM5 TEXT
:entry.UV00001 Merged 09/25/21 12:43:17 ELEM1 TEXT ELEM2 TEXT
:entry.UV00004 Merged 09/25/22 12:43:17 ELEM6 TEXT
:entry.UV00005 Merged 09/25/22 12:43:17 ELEM3 TEXT
:entry.UV00002 Superseded 09/25/22 12:43:17 By UV00005

Figure 241. Merge Multiple PTFs—Sample Changed Merge Log for 5664167

* reqby log for 5664167
:entry.UV00001 UV00003 UV00004
:entry.UV00003 UV00001

Figure 242. Merge Multiple PTFs—Changed Reqby Log for 5664167

Remove Service

Removing a Single PTF (No Dependents or Supersedes)
To remove a PTF (for example, UV00008) that does not have any corequisites and is not a prerequisite of
any other PTF, use the following process.

• You must have a merge log and service control files. Assume you have the merge log and service control
files shown in the following figures.

:entry.UV00001 Merged 12/13/21 13:09:42 ELEM1 TEXT
:entry.UV00004 Merged 12/15/21 06:28:17 ELEM4 TEXT ELEM5 TEXT
:entry.UV00005 Merged 12/15/21 06:28:17 ELEM5 TEXT ELEM1 TEXT
:entry.UV00006 Merged 01/12/22 17:56:39 ELEM6 TEXT ELEM1 TEXT
:entry.UV00001 Superseded 01/12/22 17:56:39 By UV00006
:entry.Z00001 Superseded 01/12/22 17:56:39 By UV00006
:entry.UV00007 Merged 01/12/22 17:56:39 ELEM6 TEXT
:entry.UV00008 Merged 01/12/22 17:56:39 ELEM7 TEXT
:entry.UV00009 Merged 01/12/22 17:56:39 ELEM8 TEXT

Figure 243. Remove Single PTF—Merge Log for 5664167

:ptf.UV00001
:prodid.5664167
:changes.
 :element.ELEM1 TEXT
 :replace.TXTP0001
:echanges.

Figure 244. Remove Single PTF—SCF for UV00001

772 z/VM: 7.3 VMSES/E Introduction and Reference

:ptf.UV00004
:prodid.5664167
:prereq.UV00001
:changes.
 :element.ELEM4 TEXT
 :replace.TXTP0004
 :element.ELEM5 TEXT
 :replace.TXTP0004
:echanges.
:apartext.PP00004 - Split DMKABN for new base register
:apartext.PP00009 - Update CP loadlist to add DMKNEW

Figure 245. Remove Single PTF—SCF for UV00004

:ptf.UV00005
:prodid.5664167
:prereq.UV00004
:coreq.UV00006
:changes.
 :element.ELEM5 TEXT
 :replace.TXTP0005
:echanges.

Figure 246. Remove Single PTF—SCF for UV00005

:ptf.UV00006
:prodid.5664167
:coreq.UV00005
:sup.UV00001 Z00001
:changes.
 :element.ELEM1 TEXT
 :replace.TXTP0006
 :element.ELEM6 TEXT
 :replace.TXTP0006
:echanges.

Figure 247. Remove Single PTF—SCF for UV00006

:ptf.UV00007
:prodid.5664167
:prereq.UV00006
:changes.
 :element.ELEM6 TEXT
 :replace.TXTP0007
:echanges.

Figure 248. Remove Single PTF—SCF for UV00007

:ptf.UV00008
:prodid.5664167
:prereq.UV00007
:changes.
 :element.ELEM7 TEXT
 :replace.TXTP0008
:echanges.

Figure 249. Remove Single PTF—SCF for UV00008

:ptf.UV00009
:prodid.5664167
:prereq.UV00004
:changes.
 :element.ELEM8 TEXT
 :replace.TXTP0009
:echanges.

Figure 250. Remove Single PTF—SCF for UV00009
• To remove UV00008, enter the following command:

vmfremov 5664167 ptf UV00008

Appendix F. Servicing Non-VMSES/E SNA Products 773

• VMFREMOV:

1. Uses the merge log and the service control files to build the reqby log shown in the following figure.
Notice there is an entry for each PTF which is a prerequisite or corequisite of another PTF which has
a entry of "merged" in the merge log.

* reqby log for 5664167
:entry.UV00005 UV00006
:entry.UV00006 UV00005 UV00007
:entry.UV00001 UV00004
:entry.UV00004 UV00005 UV00009
:entry.UV00007 UV00008

Figure 251. Remove Single PTF—Sample Reqby Log for 5664167
2. Reads the reqby log and finds UV00008 does not have any dependent PTFs that must also be

removed.
3. Reads the merge log and finds ELEM7 TEXT is the only element affected by UV00008.
4. Erases ELEM7 TEXT from the MERGE disk. Because, there are no other previously merged PTFs

affected, the text deck for ELEM7 is taken from the BASE disk with the next build.
5. Updates the merge log to show UV00008 is removed and is no longer merged.
6. Removes UV00007 from the reqby log because there are no longer any dependents (for example,

UV00008) for that PTF.

The resulting merge log is shown in Figure 252 on page 774 and the resulting reqby log is shown in
Figure 256 on page 775. (The service control files are not changed.)

:entry.UV00001 Merged 12/26/21 13:09:42 ELEM1 TEXT
:entry.UV00004 Merged 12/28/21 06:28:17 ELEM4 TEXT ELEM5 TEXT
:entry.UV00005 Merged 12/28/21 06:28:17 ELEM5 TEXT
:entry.UV00006 Merged 01/22/22 17:56:39 ELEM6 TEXT ELEM1 TEXT
:entry.UV00001 Superseded 01/22/22 17:56:39 By UV00005
:entry.Z00001 Superseded 01/22/22 17:56:39 By UV00005
:entry.UV00007 Merged 01/22/22 17:56:39 ELEM6 TEXT
*entry.UV00008 Merged 01/22/22 17:56:39 ELEM7 TEXT
:entry.UV00009 Merged 01/22/22 17:56:39 ELEM8 TEXT
*entry.UV00008 Removed 02/02/22 17:56:39

Figure 252. Remove Single PTF—Changed Merge Log for 5664167

The changed entries in the merge log are now comments; therefore, they are preceded by an asterisk (*).

* reqby log for 5664167
:entry.UV00005 UV00006
:entry.UV00006 UV00005 UV00007
:entry.UV00001 UV00004
:entry.UV00004 UV00005 UV00009

Figure 253. Remove Single PTF—Changed Reqby Log for 5664167

The reqby log no longer contains the line :entry.UV00007 UV00008.

Removing Multiple PTFs (with Dependents and Supersedes)
To remove multiple PTFs (for example, UV00005 and UV00009), each having a combination of
prerequisites, corequisites, and supersedes, use the following process:

• You must have a merge log and service control files. Assume you have the same merge log shown in
Figure 252 on page 774, the reqby log shown in Figure 253 on page 774, and the service control files
shown in Figure 244 on page 772 through Figure 250 on page 773.

• To remove UV00005 and UV00009 using one command, you need to create a remove list. Your remove
list may look like Figure 254 on page 775.

774 z/VM: 7.3 VMSES/E Introduction and Reference

* This is my own remove list
UV00005 take off UV00005
UV00009 take off UV00009

Figure 254. MYLIST REMLIST
• After you create the remove list, enter the following command:

vmfremov 5664167 ptflist mylist

• VMFREMOV:

1. Looks for the file MYLIST REMLIST on one of the DELTA disks, because you entered the keyword
ptflist followed by a listname (mylist).

2. Reads the reqby log and finds that to remove UV00005, UV00006 and UV00007 must also be
removed.

Because UV00001 and Z00001 are superseded by UV00005 (which now needs to be removed),
UV00001's status is changed back to merged and Z00001 is no longer superseded.

UV00009 has no dependents, so it can be removed without removing any other PTFs.
3. Erases from the MERGE disk, or replaces with other levels from the DELTA disk, the following

elements: ELEM5 TEXT, ELEM1 TEXT, ELEM6 TEXT, and ELEM8 TEXT.
4. Updates the merge log to show UV00005, UV00006, UV00007, and UV00009 are removed and are

no longer merged. In addition, UV00001 is no longer superseded and now has a status of merged.
Z00001 is no longer superseded.

5. Updates the reqby log by removing any entries for the removed PTFs and eliminates any dependents
for those PTFs.

The resulting merge log is shown in Figure 255 on page 775, and the resulting reqby log is shown in
Figure 256 on page 775. (The service control files are not changed.)

:entry.UV00001 Merged 01/13/22 13:09:42 ELEM1 TEXT
:entry.UV00004 Merged 01/13/22 06:28:17 ELEM4 TEXT ELEM5 TEXT
*entry.UV00005 Merged 01/13/22 06:28:17 ELEM5 TEXT ELEM1 TEXT
*entry.UV00006 Merged 02/12/22 17:56:39 ELEM6 TEXT ELEM1 TEXT
*entry.UV00001 Superseded 02/12/22 17:56:39 By UV00005
*entry.Z00001 Superseded 02/12/22 17:56:39 By UV00005
*entry.UV00007 Merged 02/12/22 17:56:39 ELEM6 TEXT
*entry.UV00008 Merged 02/12/22 17:56:39 ELEM7 TEXT
*entry.UV00009 Merged 02/12/22 17:56:39 ELEM8 TEXT
*entry.UV00008 Removed 02/22/22 05:56:39
*entry.UV00007 Removed 02/22/22 05:56:39
*entry.UV00006 Removed 02/22/22 05:56:39
*entry.UV00005 Removed 01/23/22 06:28:17
*entry.UV00009 Removed 02/22/22 05:56:39

Figure 255. Remove Multiple PTFs—Changed Merge Log for 5664167

The changed entries in the merge log are now comments; therefore, they are preceded by an asterisk (*).

* reqby log for 5664167
:entry.UV00001 UV00004

Figure 256. Remove Multiple PTFs—Changed Reqby Log for 5664167

Prevent Regression
There are precautions you can take to ensure the level of service applied to your product does not
regress. You should:

• Save apply lists. Whenever you merge corrective fixes to your product, you must save the apply lists you
use. You use these lists after you apply preventive service.

Appendix F. Servicing Non-VMSES/E SNA Products 775

• Reapply corrective fixes. If you have merged any corrective fixes into your product, you should run
VMFMERGE after applying the PUT. You should do this for each apply list you used when applying
corrective service. You should apply corrective fixes in chronological order, but you do not have to.

Note: You can create one large apply list that contains all the other apply lists and run VMFMERGE using
just the large apply list.

• Reapply ZAPs. You can run VMFZAP over and over without harming your product. Each time you do, it
erases all ZAP TEXT files that were previously ZAPped. Then all the ZAPs (except those that have been
superseded) listed in prodid ZAPLIST are reapplied.

You should run VMFZAP just before you run the product supplied exec that builds the executable
version of the product.

Removing a Fix-in-Error
Let's assume that:

PUT 1 contains PTF 10, which affects Module A

PUT 2 contains PTF 11, which affects Module A
PUT 2 contains PTF 12, which affects Module B
PUT 2 contains PTF 13, which affects Module C

PUT 3 contains PTF 14, which affects Module B and Module C
PUT 4 contains PTF 15, which affects Module A

Now, after you apply PUT 4, suppose you find an error in your product after it has been built. When you
report the error to your Support Center, they tell you the file names of the PTF(s) in error that must be
"backed off". For example, if PTF 12 is bad and you want to remove it, here's what you need to do:

1. Run VMFREMOV specifying the prodid and PTF12. VMFREMOV removes PTF12 and PTF14.
2. Run VMFZAP specifying the prodid to apply any previously applied ZAPs. If the ZAP list has not been

changed, then VMFZAP reapplies the ZAPs which were superseded by the changes just removed.
3. Finally, run the product-supplied exec that builds the executable version of the product.

VMFMERGE EXEC

VMFMERGE prodid PTF ptfnum

*

PTFLIST applist

NOHIST

HIST

EXCLUDE exclist (

VMFPARM fn)

Purpose

The VMFMERGE EXEC procedure applies PTFs (program temporary fixes) from the DELTA disk to the
MERGE disk.

Do not use this procedure to service any of the base components of z/VM. Use this procedure when
applying PTFs to System Network Architecture (SNA) products.

VMFMERGE requires a service control file (ptfnum SCF) for each requested PTF and its requisites. The
service control file contains instructions for applying the PTF. To use VMFMERGE, you must access the

VMFMERGE EXEC

776 z/VM: 7.3 VMSES/E Introduction and Reference

minidisk containing the prodid VMFPARM file. This file identifies the minidisks VMFMERGE must access to
service each product.

VMFMERGE requires the following files to be on the DELTA disks:

prodid VMFPARM
prodid VMFGLOG
prodid APPLIST or applist APPLIST
prodid EXCLIST or exclist EXCLIST
prodid SCF

Operands
prodid

is the product identifier for the product you specify.

You cannot specify a prodid of EXCLUDE, because EXCLUDE is a keyword for this exec.

PTF
applies a single PTF or all PTFs for a product.
ptfnum

is the PTF file name. If you specify a PTF file name, VMFMERGE applies a single PTF. You cannot
specify a file name of EXCLUDE, because EXCLUDE is a keyword for this exec.

*
indicates you want to apply all PTFs for a product. If you enter an asterisk (*) instead of a PTF
file name, you apply all PTFs for the product, as they are listed in the apply list (prodid APPLIST)
supplied on the service tape.

Note: If there is an exclude list file (prodid EXCLIST) on the service tape, any PTF listed in that file
is not applied.

PTFLIST
applies the selected PTFs that are listed in the apply list file (applist APPLIST).
applist

is the file name of the apply list file. The file type is APPLIST.

Note: If you specify a file name of EXCLUDE, you cannot use the EXCLUDE option to specify an
Exclude List.

If there is an exclude list file (prodid EXCLIST) on the service tape, any PTF listed in that file is not
applied.

NOHIST
does not include APAR text lines from the SCF files as comments in the text decks processed. This
option is effective unless you specifically override it with the HIST option. NOHIST is the default.

HIST
includes APAR text comments from the SCF files in the text decks processed. The APAR text
lines from the SCF files are included at the beginning of each text deck as comments. This option
is effective for the duration of the command. All text decks processed during the VMFMERGE
process will include APAR text entries as comments.

EXCLUDE
excludes the selected PTFs listed in the user-specified exclude list file (exclist EXCLIST).

PTFs listed in prodid EXCLIST are also excluded, in addition to those in the user-specified
exclude list. If you use prodid EXCLIST as the name of your exclude list, VMFMERGE ignores
any other prodid EXCLIST file (including the one that may be supplied on the service tape) during
processing. Therefore, you should use another name when you create an exclude list.

Note: If you specify EXCLUDE as the apply list file name, you cannot use the EXCLUDE option to
specify an exclude list.

VMFMERGE EXEC

Appendix F. Servicing Non-VMSES/E SNA Products 777

exclist
is the name of a user-specified exclude list.

Options
VMFPARM

indicates you want to use a VMFPARM file other than the default one, which is prodid VMFPARM.
fn

is the file name of the VMFPARM file to be used.

Usage Notes
1. You can issue VMFMERGE to process a single PTF, a list of PTFs, or all PTFs on the input disk for a

product.
2. Merged PTFs cannot be excluded, but they can be superseded.
3. Superseded PTFs cannot be merged nor excluded.
4. PTFs in the Exclude List can be superseded.
5. If VMFMERGE has the HIST operand specified, and LKED does not have the LET option specified, error

message IEW0222 will not occur and there will not be linkage editor errors due to comments (invalid
card).

VMFMERGE Processing
VMFMERGE is a service process that processes PTFs. The exec procedure:

1. Uses the parameter file (prodid VMFPARM) to determine the virtual address of the MERGE and DELTA
disks.

2. Checks the merge log to insure the PTF you select is not already merged or superseded.
3. Reads the service control file to get the prerequisite and corequisite PTFs and the elements affected

by this PTF.

• If the service control file for any of the prerequisite or corequisite PTFs is missing, processing for the
current PTF stops.

• If a prerequisite or corequisite PTF is in the exclude list, the current PTF is not merged.
• If a prerequisite or corequisite PTF has been superseded, that prerequisite or corequisite is not

merged.
• If the requisite is not within this product, the system displays a message indicating the requisite PTF

must be merged at some later time.
• When you merge a PTF that is a requisite of a change in another product, be sure to note this

requisite information. There is no automatic way to tell you of this cross-product requisite if at a later
time you remove the change that is a requisite of a change in another product.

4. Does the necessary COPY/RENAME from the DELTA disk to the MERGE disk for each element in the
prerequisite and corequisite chain that was not superseded or already merged.

Note: Temporary files are created during this COPY/RENAME process to insure system integrity.

These files are erased during normal VMFMERGE processing.
5. Adds service history to the element if it is a text deck. Element history consists of text deck comments

containing:

• The PTF or APAR number
• A time and date stamp
• Any APAR text information that was in the service control file SCF.

VMFMERGE EXEC

778 z/VM: 7.3 VMSES/E Introduction and Reference

Note: A temporary file ($APARTXT $VMFMERG) is created during this history process to ensure system
integrity. VMFMERGE erases this file during normal processing.

6. Updates the reqby log to reflect all the requisite relationships of all the merged and superseded PTFs.
7. Marks in the merge log any ZAPs and PTFs that are superseded by this PTF. Those ZAPs and PTFs are

never applied.
8. Puts entries in the merge log to show which PTFs have been merged.
9. Updates the service-level apply status table (prodid SRVAPPS).

Messages and Return Codes
Use the HELP Facility to view the message explanation online or see the appropriate messages
documentation. To display information on a specific message, for example DMS002E, enter:

help msg dms002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

VMFREMOV EXEC

VMFREMOV prodid

PTF ptfnum

*

PFTLIST remlist

CONVERT

lastfilemode

(VMFPARM prodid

(

VMFPARM prodid

VMFPARM fn)

Purpose

The VMFREMOV EXEC procedure removes PTFs applied by the VMFMERGE EXEC procedure.

Attention: Do not use this procedure to service any of the base components of z/VM. Use this
procedure when applying PTFs to System Network Architecture (SNA) products that are not in
VMSES/E format.

Operands
prodid

is the product identifier for the product.

Note:

If you want to create the ‘required by’ log and you do not want to remove any changes, use the
CONVERT keyword.

VMFREMOV EXEC

Appendix F. Servicing Non-VMSES/E SNA Products 779

PTF
removes the specified PTF.
ptfnum

is the file name of a PTF.
*

removes the PTFs listed in a remove list file (prodid REMLIST). This file must already exist on a
DELTA disk.

PTFLIST
removes the selected PTFs that are in a remove list file (remlist REMLIST)
remlist

is the name of the remove list file. This file must already exist on a DELTA disk.
CONVERT

calls the tool that creates the ‘required by’ log file (if one does not already exist), but does not remove
any changes.

lastfilemode
specifies the file mode of the last DELTA disk. VMFREMOV assumes the merge disk is always accessed
as E and that all other DELTA disks are accessed as consecutive file modes between F and the
lastfilemode. If you do not specify lastfilemode, the file modes for the MERGE and DELTA disks are
determined from the information in the VMFPARM file. Use the lastfilemode parameter only if you
know you have the correct disks accessed as the proper modes.

Options
VMFPARM

identifies the VMFPARM file to use.
prodid

is the default file name for the VMFPARM file. prodid is the product identifier for the product.
fn

is the file name of the VMFPARM file to use.

VMFREMOV Processing

VMFREMOV is a service process that removes PTFs applied by VMFMERGE. The exec procedure:

1. Obtains data from the merge log and the service control files to build the ‘required by’ log if one does
not already exist. The ‘required by’ log contains a list of all dependent PTFs that must be removed if
their requisite PTF is removed.

• If a service control file for any of the PTFs is missing, then processing continues. However, the
‘required by’ log will be incomplete if the missing service control file contains requisites. If any SCFs
were missing, processing ends after VMFREMOV completes the build of the ‘required by’ log. No
PTFs are removed.

2. Checks the merge log to insure the PTF to be removed is currently merged.
3. Reads the ‘required by’ log for the list of dependent PTFs to remove.
4. Removes a PTF (for example, UV00007) that may supersede other PTFs (for example, UV00005).

Note: The other PTF (UV00005) is no longer superseded and its status remains as it was prior to the
merge of the primary PTF (UV00007), that is, merged, superseded, or no status. If the prior status of
UV00005 is no status, then VMFREMOV removes its dependents.

5. Copies, from the DELTA disk to the MERGE disk, each element affected by the PTF being removed if
previous service for an element is merged. If the element has not been merged, VMFREMOV erases the
element from the MERGE disk.

VMFREMOV EXEC

780 z/VM: 7.3 VMSES/E Introduction and Reference

The very first line of a copied text deck is always a comment line consisting of the PTF name, and
the date and time stamp. Any information on the :apartext entry is copied, but the first line is a
comment.

Note: A temporary file (with file type of OVMFMGLG) is created during this procedure to insure system
integrity. This file is erased during normal VMFREMOV processing.

6. Removes the element's entry from the ‘required by’ log. If an element has other elements that are
dependent upon it, VMFREMOV also removes those dependent entries from the ‘required by’ log.

7. Updates the merge log with the current status of the PTFs. The merged entry is commented out.
Another comment is added to the end of the merge log (with a time and date stamp) indicating the PTF
has been removed.

In the case where a PTF that supersedes another PTF is removed, the superseded entry is
commented out.

8. Updates the service-level apply status table (prodid SRVAPPS).

Note: If you remove a change, VMFREMOV has no way of knowing if the change is a requisite of a change
in another product. You should make note of any cross-product requisite information during VMFMERGE
processing (see VMFMERGE Processing) in order to know which changes to manually remove.

Messages and Return Codes
Use the HELP Facility to view the message explanation online or see the appropriate messages
documentation. To display information on a specific message, for example DMS002E, enter:

help msg dms002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

VMFZAP EXEC

VMFZAP prodid

(VMFPARM prodid

(

VMFPARM prodid

VMFPARM fn)

Purpose

Use the VMFZAP EXEC to apply ZAPs and maintain a record of ZAPs in the ZAP Log.

Attention: Do not use this procedure to service any of the base components of z/VM. Use this
procedure only when applying PTFs to Systems Network Architecture (SNA) products.

VMFZAP uses the base minidisk, the merge minidisk, and the ZAP minidisk as inputs and produces an
updated ZAP minidisk as output.

Operands
prodid

is the identification number of the product to be updated.

VMFZAP EXEC

Appendix F. Servicing Non-VMSES/E SNA Products 781

Options
VMFPARM

indicates the VMFPARM file is to be used in place of the default file, prodid VMFPARM.
prodid

is the default file name for the VMFPARM file. prodid is the product identifier for the product that is
to be updated.

fn
is the file name of the VMFPARM file to use.

Usage Notes
1. To use VMFZAP, you must have a read/write file accessed as mode A. This file mode must not be the

ZAP minidisk, merge minidisk, or base minidisk. That is, if file mode A is a minidisk, the virtual address
must not appear on the ZAP, Merge, or Base records of your VMFPARM file.

2. VMFZAP accesses the necessary minidisks using file mode letters E-N. The merge minidisk is accessed
ahead of the base minidisk. When VMFZAP processing stops, your search hierarchy is restored.

VMFZAP Processing
The VMFZAP EXEC:

1. Uses the product parameter file (prodid VMFPARM) to determine the virtual addresses of the ZAP,
merge, and base minidisks.

2. Reads the ZAP Log file (prodid VMFZPLOG) and builds a list of TEXT file names with ZAPs applied to
them.

3. Erases all TEXT files in this list from the ZAP minidisk. ZAPs are applied to the first version of these
TEXT files found on the other accessed minidisks.

4. Erases the ZAP Log.
5. Reads the merge log file (prodid VMFMGLOG) and builds a list of ZAPs that are currently superseded.
6. Reads the ZAP list file (prodid ZAPLIST) for the names of all ZAPs you want to apply.
7. Checks each ZAP name to see if it is superseded. If it is not superseded, VMFZAP reads the control

file for that ZAP (zapname ZAP).

The control file for a ZAP may contain information for updating more than one TEXT file. VMFZAP
separates this information by TEXT file name and processes the ZAP of each TEXT file in the order
they are listed in the control file.

8. Checks each TEXT file name to make sure it resides on some minidisk other than the ZAP minidisk. It
is an error if the TEXT file already resides on the ZAP minidisk.

If the TEXT file exists on another minidisk, VMFZAP writes a temporary file called $$VMFZAP ZAP to
the ZAP minidisk containing the ZAP control records for the current TEXT file.

9. Copies the TEXT file to the ZAP minidisk under a temporary name using the format VMF$Tn TEXT,
where n is a number determined by how many TEXT files are affected by the ZAP currently being
processed. When this temporary file has been successfully updated, it is renamed to its original name
on the ZAP minidisk.

10. Invokes the ZAPTEXT EXEC and passes the $$VMFZAP name and the VMF$Tn file name to be
updated.

See “ZAPTEXT EXEC” on page 783 for more information about the ZAPTEXT EXEC.
11. Updates the ZAP log with the information about the TEXT file that was just updated.
12. Restores your minidisk search hierarchy after all ZAPs in the ZAP list have been processed.

VMFZAP EXEC

782 z/VM: 7.3 VMSES/E Introduction and Reference

Messages and Return Codes
Use the HELP Facility to view the message explanation online or see the appropriate messages
documentation. To display information on a specific message, for example DMS002E, enter:

help msg dms002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

ZAPTEXT EXEC

ZAPTEXT fn1
TEXT A1

ft
A1

fm

(INPUT fn1 PRINT

(
1

INPUT fn1

INPUT fn2

PRINT

NOPRINT)

Notes:
1 You can enter options in any order between the parentheses.

Purpose

The ZAPTEXT EXEC modifies or dumps individual text files. Use ZAPTEXT like the ZAP service program,
but only for text files, not for MODULEs, TXTLIBs, and LOADLIBs. (Use ZAP to process MODULEs, TXTLIBs,
and LOADLIBs). ZAPTEXT uses the same control information as ZAP and can also use the EXPAND control
record. Your A-disk must be accessed read/write to use ZAPTEXT.

Operands
fn1

is the file name of the text file you want to change. This file must be inactive (not pre-opened) at the
time ZAPTEXT is run or called. ZAPTEXT cannot process a file locked in another user's directory.

TEXT
is the default file type for the text file.

ft
is the file type of the text file you want to change.

A1
is the default file mode for the text file.

fm
is the file mode of the text file you want to change. The file mode must specify a read/write disk.

ZAPTEXT EXEC

Appendix F. Servicing Non-VMSES/E SNA Products 783

Options
INPUT

identifies the file that has the ZAP control records. INPUT is the default. This file must:

• Have a file type of ZAP
• Be a fixed 80-byte sequential file that resides on any file mode
• Not be either pre-opened or locked in another user's directory

fn1
is the default file name for the input file that contains the ZAP control records.

fn2
is the file name for the input file that contains the ZAP control records. If you do not specify fn2, it
defaults to whatever was specified as fn1 when you entered the ZAPTEXT command.

PRINT
prints all output produced by ZAPTEXT. The system also displays on the terminal error messages,
commands in error, and control records in error. PRINT is the default.

NOPRINT
displays all output on the terminal and does not print anything.

Input Control Records
ZAPTEXT uses the same input control records as the ZAP service program, with the addition of the
EXPAND control record. The ZAP service program ignores any EXPAND control records. For information
about the control records that both ZAP and ZAPTEXT can use, see the description of the ZAP module
in z/VM: CMS Commands and Utilities Reference. Use the ZAP control records with ZAPTEXT according to
ZAP's TXTLIB conventions.

EXPAND Control Records: The EXPAND control record lets you increase the size of a named control
section in the text file. The format of the EXPAND control record is:

EXPAND

,

csect size

csect
specifies the symbolic name of a control section whose length you want to increase.

size
specifies the decimal number of bytes for the system to add to the control section length. The system
initializes the added bytes to binary zero. The maximum number of bytes for each control section is
4095.

Control Record Usage Notes:

1. Each EXPAND control record can have multiple entries, but you must separate them with commas. Do
not spill an entry onto the next line.

2. The system processes all EXPAND control records before any other control records, regardless of their
position in the control file.

3. The effective length of the expansion, which is the actual number of bytes added to the control
section, may be greater than the length that you specify for the expansion. This may occur if, after the
specified expansion, the system must add padding bytes to align the next control section or common
area.

4. When you increase a control section's size, it could affect the offset address of any following control
section. This is important when you determine values for BASE, REP, and VER control records. Use the
effective expansion lengths when you are determining control section offsets.

ZAPTEXT EXEC

784 z/VM: 7.3 VMSES/E Introduction and Reference

Messages and Return Codes
Use the HELP Facility to view the message explanation online or see the appropriate messages
documentation. To display information on a specific message, for example DMS002E, enter:

help msg dms002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

EXPAND Command

EXPAND fn1

TEXT A1 $ fn1 = =

ft1

A1 $ fn1 = =

fm1

$ fn1 = =

fn2
= =

ft2
=

fm2

(INPUT fn1 PRINT

(
1

INPUT fn1

INPUT fn3

CSECT csect SIZE size

PRINT

NOPRINT)

Notes:
1 You can enter options in any order between the parentheses.

Purpose
ZAPTEXT EXEC calls the EXPAND command if you specify an EXPAND control record in the ZAP control
file. Use the EXPAND command to add space to a program in object deck form. The system creates object
decks when you assemble or compile a source program. This is especially useful when you do not have
the source code for a program or the program does not have a patch area.

Note: EXPAND can add extra space only at the end of named control sections (CSECTs). EXPAND cannot
expand private code (unnamed CSECT) and common areas (named or unnamed).

If EXPAND finds more than one END card in the object deck, it will treat the text located between END
cards as separate text. EXPAND will only add space to the text associated with the CSECT being expanded
and its END card.

Do not increase the length of a program beyond its design limitations. For example, if you add space to a
control section beyond the range of its base register addressability, that space is unusable.

EXPAND Command

Appendix F. Servicing Non-VMSES/E SNA Products 785

Operands
fn1

is the file name of the input text file that the system expands.
TEXT

is the default file type of the input text file that the system expands.
ft1

is the file type of the input text file that the system expands.
A1

is the default file mode of the input file.
fm1

is the file mode of the input text file that the system expands.

Note: The input text file must have valid object deck information, like that created by an assembler or
compiler. The file must not be pre-opened or locked in another user's directory.

EXPAND assumes the input text file follows OS/VS standards and the OS/VS Linkage Editor will accept
it without error. The system does a limited check for errors. If the input file is invalid, the system might
not expand the text file correctly.

$fn1
is the default file name of the output text file created by the system. fn1 is truncated to 7 characters
before ‘$’ is appended.

fn2
is the file name of the output text file created by the system. You can specify an equal sign (=) to tell
ZAPTEXT to use the same file type as was specified for fn1

ft2
is the file type of the output text file created by the system. You can specify an equal sign (=) to tell
ZAPTEXT to use the same file type as was specified for ft1

fm2
is the file mode of the output text file created by the system. You can specify an equal sign (=) to tell
ZAPTEXT to use the same file type as was specified for fm1. fm2 must be a read/write file mode. You
cannot specify an asterisk (*).

Options
INPUT

identifies an EXPAND input file that contains EXPAND control records. If you do not specify INPUT, the
file name defaults to the name of the text file you are expanding (fn1). The file type must be EXPAND.
The system searches all accessed file modes for this file. The file must not be pre-opened or locked in
another user's directory.

Note: Do not specify this option with the CSECT or SIZE options.

fn1
is the default file name of the input file.

fn3
is the file name of the input file that contains EXPAND control records.

CSECT
specifies the symbolic name of a control section whose length the system will increase. If you specify
CSECT, you must also specify SIZE.

Do not specify CSECT with the INPUT option.

csect
is the symbolic name of a control section.

EXPAND Command

786 z/VM: 7.3 VMSES/E Introduction and Reference

SIZE
specifies the decimal number of bytes the system adds to the control section length. The system
initializes the added bytes to binary zeros. If you specify SIZE, you must also specify CSECT.

Note: Do not specify SIZE with the INPUT option.

size
is the decimal number of bytes added by the system to the control section length. The maximum
number of bytes for each control section is 4095.

PRINT
prints on the printer all output that EXPAND produces. In addition, the system displays error
messages, commands in error, and control records in error at the terminal. PRINT is the default.

NOPRINT
does not print any output on the printers, and instead displays it at the terminal.

Input and Output Files
• After the system expands each CSECT you specified, the system issues a message that indicates:

– The number of bytes added to the control section.
– Whether the number of bytes is greater than the length that you specify for the expansion. This may

occur if, after the specified expansion, the system must add padding bytes to align the next control
section or common area.

– The offset, relative to the start of the specified control section where the expansion began.
• If the system finds an error during processing, it stops the update and does not do the expansions.

Messages and Return Codes
Use the HELP Facility to view the message explanation online or see the appropriate messages
documentation. To display information on a specific message, for example DMS002E, enter:

help msg dms002e

If you are unfamiliar with the z/VM HELP Facility, enter help to display the main HELP Menu. For
information on the HELP command, enter:

help cms help

EXPAND Command

Appendix F. Servicing Non-VMSES/E SNA Products 787

EXPAND Command

788 z/VM: 7.3 VMSES/E Introduction and Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2023 789

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication primarily documents information that is NOT intended to be used as Programming
Interfaces of z/VM.

This publication also documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of z/VM. This information is identified where it occurs, either by an
introductory statement to a chapter or section or by the following marking:

 PI

<...Programming Interface information...>

 PI end

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

790 z/VM: 7.3 VMSES/E Introduction and Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 791

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

792 z/VM: 7.3 VMSES/E Introduction and Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1990, 2023 793

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

794 z/VM: 7.3 VMSES/E Introduction and Reference

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580
• Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?

topic=osa-icc-3215-support), SA23-2247
• Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/ioa2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 795

https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf), GC35-0152
• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/

docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf), GC35-0151

Related Products

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

z/OS
IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

796 z/VM: 7.3 VMSES/E Introduction and Reference

https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/zos

Index

Special Characters
:ALTCNTRL. 630
:APARPFX. 632
:APPID. 629
:AXLIST. 630
:BCOMPNAME. 629
:BLD section, product parameter file 643
:BLD. 644
:BLDID. 629
:BLDREQ record (build lists) 150
:CKAUX. 631
:CKGEN. 631
:CKSDI. 631
:CKVV. 631
:CNTRL. 630
:CNTRLOP section, product parameter file 627
:CNTRLOP. 628
:COMPLST. 625
:COREQ 586, 716
:DABBV sction, product parameter file 646
:DABBV. 646
:DCL section, product parameter file 633
:DCL. 634
:DEPS 580, 592
:DREQ 598, 666, 690
:DREQDEPS 592
:EBLD. 644
:ECNTRLOP. 632
:EDABBV. 646
:EDCL. 634
:EMDA. 635
:EOBJNAME record (build lists) 152
:EP2P. 638
:ERECINS. 639
:ERECSER. 642
:EXCLIST. 630
:FORMAT record (build lists) 146
:GBLDREQ record (build lists) 150
:GGLOBAL record (build lists) 151
:GLOBAL record (build lists) 151
:GOBJPARM record (build lists) 152
:HARDREQ 586, 716
:IFREQ 586, 598, 666, 690, 716
:LIBNAME record (build lists) 147
:LOG. 629
:MDA section, product parameter file 635
:MDA. 635
:NLS. 630
:NPRE 598, 666, 690
:OBJNAME records (build lists) 148
:OPTIONS record (build lists) 149
:OUTREQS 580
:OVERLST. 626
:P2P. 638
:PARTID record (build lists) 149
:PREREQ 586, 598, 666, 689, 716

:PRODDESC. 629
:PRODID 598
:PRODID. 626, 657
:PTFPFX. 632
:PTFREQS 598
:RECID. 629
:RECINS section, product parameter file 639
:RECINS. 639
:RECSER section, product parameter file 641
:RECSER. 642
:RECVALL. 629
:REQ 598, 666, 690
:RETAIN. 632
:SETUP. 630
:SLVI. 630
:SUBHARDREQ 586
:SUBIF 586, 598
:SUBREQ 586, 598
:SUP 586, 598, 666, 690, 716
:SUPBY 580, 592
:UPDTID. 631
:USEREXIT. 632
:VERSION. 629
./DELETE 648
./INSERT 648
$DASD$ CONSTS file 370
$VMFINS $MSGLOG 14

A
accessing

minidisks read-only, VMFSETUP 505, 636
action (F10), Make Override Panel 37
action bar

help, Make Override Panel 42
using 37

add
a new release of a product 63
a single product 64
local AUX file entries to Software Inventory 188
local modifications 101
products to your system 49
several products 50, 65
single product 49

Add Segment Definition Panel 517
additional syntax notation 142
APAR Abstract(s) query output 210
APAR, definition 89
APARFIX command (ServiceLink) 101
APARS contained in PTFs 181
appid SRVAPPS 718
appid VVTlvlid 723
appliance servers

SMAPI 365
apply

a PTF 110
service 105

Index 797

apply enablement status
DELETED 693
DISABLED 693
DISABSYNC 693
ENABLED 693
ENABSYNC 693
INSTALLED 693

apply list
containing requisites of a PTF 190
example 133
overview 133
SNA service 765
syntax 133

apply missing service
status table (SRVAPPS) 718

apply processing, sample queries 178, 181
apply status

APPLIED 693, 718
DELETED 693
REMOVED 718
SUPED 693, 719

apply status table 111
APPLY string 106
ASMAHL

use with VMFASM 303
use with VMFHLASM 397

assembly functions 117
assignments

Make Override Panel function keys 35
Query NSS Map Window function keys 524
Segment Definition Panel function keys 522
Segment Map Panel function keys 514
VMFINFO panel function keys 200, 201
VMFVIEW EXEC function keys 621

associative stem input and output 532
asterisk in input field, Make Override Panel 34
auxiliary control file syntax 120

B
BASE disks 106
beginning again, Make Override Panel 39
BITMAP files

structure 368
BLD record, build product definition section, PPF 644
bldid SRVBLDS 719
build

example 77
products with VMFINS 77
recovering from errors 414
the serviced parts 105
using VMFINS BUILD

example 77
using the PPF operand 77

using VMFINS, overview 77
when to perform 77

BUILD disks 106
build list

additional syntax notation 142
comments 152
file type 141
format 1

example 144
overview 141

build list (continued)
format 1 (continued)

syntax 142
format 2

object names 148
overview 141
wildcard objects 148

format 2 and 3
general information 146
specifying object parameters 148
specifying part options 149
syntax 144

format 3
object names 148
overview 141

overview 112, 141
build list option, definition 329
build processing, sample queries 178, 183
build product definition

BLD record 644
example 645
in the product parameter file 643
syntax 643

Build Requirements Query output 219
build requisite processing 112
build status

service-level
BUILDALL 721
BUILT 721
BYPASSED 721
DELETE 721
DELETED 721
ERROR 721
MANUAL 721
SERVICED 721

system-level
BUILT 695
DELETE 695
DELETED 695
ERROR 695
SUPED 695

build status information
service-level software inventory 173
system-level software inventory 165

build status table 112
BUILD string 106
build target, definition 329
building

APPLY list containing requisites of a PTF 190
callable services libraries 329
CMS/DOS phase libraries 334
CSLLIBs 329
DOS libraries 334
EXCLUDE list of dependents of a PTF 191
generated objects 336
LOAD libraries 344
LOADLIBs 344
MACLIBs 347
MACRO libraries 347
nuclei 355
objects serviced by complete replacement 340
saved segments 358
TXTLIBs 362

built, status of 179

798 z/VM: 7.3 VMSES/E Introduction and Reference

bypassing a tape file during receive 640
bypassing build lists 644

C
calculating DASD space requirements 33, 370
callable services libraries, building 329
cancel (F12)

Make Override Panel 37
VMFINFO Panel 201

catalog of parts, VMSES PARTCAT 705
CD-ROM format, VM/ESA installation 755
Change Segment Definition Panel 516
changing

command defaults 48
defaults, product installation 53, 68
defaults, product migration 33
entry format, Make Override Panel 46
minidisk to SFS entry format 46
product installation defaults 33, 53, 68
SFS Directory File Pool Name 47
Software Inventory to SFS directory 221
the default system name 662
the Software Inventory default file name 662
the Software Inventory defaults 662
VMFINS make override prompts 48

checking
for matching AUX files and version vector tables 188

CHKAPARS EXEC 234
choosing operand for VMFINS 17
circumventing a problem through z/VM service 89
circumvention, definition 89
closer look at

the VMFAPPLY EXEC 109
the VMFBLD EXEC 112
the VMFREC EXEC 108

CMS UPDATE command 122
CMS ZAPTEXT EXEC 783
CMS/DOS phase libraries, building 334
colon (:) on Make Override Panel 34
command

defaults, VMFINS, changing 48
requirements for using VMSES/E 227
syntax, reading 227
understanding syntax diagrams 227

command (F2), Make Override Panel 35
command syntax, understanding 227
comments

format 1 build list 143
in build lists 152
product parameter file 623

Compare Table Contents Panel 218
Compare Table Contents Query output 218
comparing two Software Inventory tables

building apply list of PTFs received and not applied 189
creating apply list from two SRVAPPS tables 190
using VMFSIM COMPTBL 189

compname, definition 19
component area

source product parameter file 626
usable form PPF 656

Component Name - Help Panel 202
confirmation, new PPF override file 41
conflict (F11), Make Override Panel 37

console listing, VMFINS 14
console spooling, VMFINS 14
consolidating levels of the database 114
control file

AUX record 119
auxiliary 120
comments in 119
extensions 119
how VMSES/E uses 117
MACS record 118
secondary files 117
syntax 118
what is it? 117
when used 118

control file extension 119
control options section

source PPF 627
usable form PPF 627

control parameters for VMSES/E execs, PPF 627
controlling VMFINS prompts for creating overrides 48
converting DASD space requirements 33, 370
COR

corrective tape 92
descriptor file 126
document 125

correcting a problem through z/VM service 89
corrective

service (object code) 767
tape (COR) 92

corrective service
installing 95

create text decks 124
creating

apply list from two SRVAPPS tables, example 190
callable services libraries 329
CMS/DOS phase libraries 334
CSLLIBs 329
DDR image files 333
DOSLIBs 334
executable modules 350
executable modules, CPLINK or BIND 352
generated objects 336
LOAD libraries 344
LOADLIBs 344
MACLIBs 347
MACRO libraries 347
MODULES 350
nuclei 355
objects serviced by complete replacement 340
objects with VMFBLD 328
saved segments 358
test copy with VMFBLD 311
TEXT libraries 362
text objects serviced by complete replacement 343
TXTLIBs 362
updated source files 122

CSLLIBs, creating 329
current working file, Make Override Panel 41
customer local modifications 101
customer local service 101

D
DABBV record, product parameter file 646

Index 799

DASD space requirements, converting 370
data records, product parameter file 623
data structure

of Software Inventory tables 661
product parameter file 623

database, VMSES/E 105
DCL record, variable declarations section, PPF 634
deciding operands to use, VMFINS 17
defaults

changing
Make Override Panel, example 68
product installation defaults 33
SFS directory name 47
Software Inventory disk 662
Software Inventory to SFS directory 221
system name 662
VMFINS command option defaults 48

SFS directory name 46
Software Inventory 662

define
build processing for a product, PPF 643
file type abbreviations for products 646
layout of installation tape for product, PPF 639
layout of service tapes and envelopes for products, PPF
641

delete and insert data, updateable sections of PPF 647
delete override control record 648
deleting

a record in :MDA section of PPF, example 658
build lists from product parameter files 644
example 81
objects from build lists 146
products 81
recovering from errors 419
with the PPF operand 81

delimiters, Software Inventory syntax diagrams 661
DELTA string 106
description of APARs received 181
description of products or components received 178
description table 109
determining

all parts serviced by a PTF 182
all service applied to a part 183
if a product can be deleted 30
if a product can be installed 24
if a product can be migrated 27
local modifications requiring rework 124
objects requiring manual building 184
objects to build 184
parts serviced by an APAR 183
prerequisites for a product, example 192
the current service level, example 189
the dependents of a product, example 193
the PTFs dependent on a PTF, example 193
which operand to use 17

diagrams, syntax 227
disk management

VMFQMDA EXEC 116
VMFSETUP EXEC 116

DOS libraries, building 334
DOSLIBs, creating 334

E
ellipsis following an option, Make Override Panel 34
emergency service 101
entering TDATA statements 529
erasing all entries, Make Override Panel 39
error recovery

build 414
delete 419
install 435
migrate 443

errors
during build, recovering 414
during delete, recovering 419
during install, recovering 435
during migrate, recovering 443

ESO (Expanded Service Option) 93
established VMFINS command option defaults 48, 139
example

:MDA section of source PPF 637
:MDA section of usable form PPF 637
apply list 133
build

with the PPF operand 77
build product definition section, PPF 645
COR descriptor file 126
default SFS directory name, Make Override Panel 46
delete

with the PPF operand 81
deleting records, override PPF (:MDA section) 658
exclude list 134
F4=Expand Dirid 46
file type abbreviations extensions section, PPF 646
format 1 build list 144
format 2 build lists 152
format 3 build list 154
help, Make Override Panel 42
inserting a record, override PPF (:MDA section) 657
install

products with VMFINS 54
with the PPF operand 54

loadable unit section, PRODPART file 667
Make Override Panel 34
override PPF header area 655
overrides to product parameter files 657
product contents directory, COR tape 127
product contents directory, Install/RSU tape 127
product saved segment build list 153
program level file 128
RSU descriptor file 126
select data file 129
select data file for saved segments 130
split-screen XEDIT session 70
system saved segment build list 153
tape descriptor files 126
updating a record, multi-level override to PPF 659
updating a record, single-level override to PPF 658
variable declarations section, PPF 634, 638
version vector table 724
view-screen session 74
VMFNLS LANGLIST file 155
VMFSGMAP, displaying a segment definition record 526
VMFSGMAP, displaying the Segment Map 525
VMSESE PROFILE 132

800 z/VM: 7.3 VMSES/E Introduction and Reference

exclude list
example 134
of dependents of a PTF 191
overview 134
SNA service 766
syntax 134

EXEC statements, format 1 build lists 143
EXEC2 statements, format 1 build lists 143
EXECs, other VMSES/E 113
exit (F3)

Make Override Panel 36
VMFINFO Panel 200

EXPAND command 785
expand dirid (F4)

example 46
Make Override Panel 36

Expanded Service Option 93

F
F key help, Make Override Panel 44
figures

:BLD section, source PPF 645
:CONTRLOP section, source PPF 632
:DABBV section, source PPF 646
:DCL section, source PPF 634
:MDA section, source PPF 637
:MDA section, usable form PPF 637
:P2P section, source PPF 638
:RECINS section, source PPF 641
:RECSER section, source PPF 643
apply algorithm 110
apply list 133
apply list syntax 133
build list syntax, format 1 142
build list, format 1 144
building with VMFINS, PPF operand

$VMFINS $MSGLOG file, example 79
VMFINS CONSOLE file, example 79

command syntax
VMFINS BUILD 408
VMFINS DELETE 415
VMFINS INSTALL 428

component area, source PPF 626
component area, usable form PPF 657
control file structure 122
control file structure using version vector tables 123
COR descriptor file, example 126
deleting with VMFINS, PPF operand

$VMFINS $MSGLOG file, example 84
5654A22C ERASE file, example 83
VMFINS CONSOLE file, example 85

exclude list 134
exclude list syntax 134
format 2 and 3 build list syntax 144
format 2 build list 152
format 3 build list 154
header area, override PPF 655
header area, source PPF 626
High-Level Overview of VMFINS Command 9
installing with VMFINS, PPF operand

$VMFINS $MSGLOG file 58
5654A22C PLANINFO file 56
printing the Memo-to-Users 54

figures (continued)
installing with VMFINS, PPF operand (continued)

VMFINS CONSOLE file 59
VMFINS PRODLIST file 54

Introducing VMSES/E 1
Make Override Panel

action bar, using to save PPF override files 38
changing installation settings for migration 68
changing to SFS directory entry input 46
default SFS directory name 46
entering a SFS directory name, Expand Dirid
window 47
example 34
Expand Dirid window 46
file options 38
function key assignments 35
getting basic instructions for 45
help on F6 function key 44
help on function keys window 44
help on help window 43
help options 42
new override file name 41
returning to Make Override Panel after saving PPF
override 41
save as.... window 40
saving PPF override with a new name 40
selecting a file option 39
selecting a help option 42
selecting help on F6=Mdisk or SFS Dir function key
44
using the action bar 37

override PPF, header area 655
PLANINFO file, examples

created by a VMFINS DELETE with the PLAN option
31
created by a VMFINS INSTALL with the PLAN option
25
created by a VMFINS MIGRATE with the PLAN
option 28
created during a VMFINS MIGRATE 28
created during VMFINS DELETE 31

PPF entry in VMFINS PRODLIST file 18
PRODPART file 677
PRODPART file, header section syntax 663
product contents directory, COR tape 127
product contents directory, Install/RSU tape 127
product contents directory, PUT tape 127
product parameter file relationship 159, 624
product saved segment build list 153
program level file 128
RSU descriptor file, example 126
saved segment build parameters syntax 520
select data file for saved segments 130
select data file syntax 128
selecting the Memo-to-Users for printing 22
serviceable part to usable form relationship 90
Servicing a CMS MODULE by Module Replacement 91
Servicing a CMS MODULE by Text Replacement 91
Software Inventory data structure 528, 661
source PPF overall syntax 625
source PPF, BLD section override syntax 653
source PPF, BLD section syntax 643
source PPF, CNTRLOP section override syntax 648
source PPF, CONTRLOP section syntax 628

Index 801

figures (continued)
source PPF, DABBV section override syntax 654
source PPF, DABBV section syntax 646
source PPF, DCL section override syntax 649
source PPF, DCL section syntax 633
source PPF, MDA section override syntax 650
source PPF, MDA section syntax 635
source PPF, RECINS section override syntax 651
source PPF, RECINS section syntax 639
source PPF, RECSER section override syntax 652
source PPF, RECSER section syntax 641
system saved segment build list 153
system-level and service-level Software Inventories 12
tailoring product files, migrate

customized files message screen 69
CUTC prefix command example 71
file after CUTC and PLACE prefix commands,
example 72
final tailorings phase screen, example 72–76
PLACE prefix command example 71
Restore Tailorings Phase screen 69
split-screen XEDIT session 70
view-screen session, sample 74

tape descriptor files 126
Updating a CMS MODULE Serviced by Updates 91
Updating a MACRO Using Parts Serviced by Updates
Only 91
usable form PPF, component area 657
usable form PPF, overall syntax 656
VMFINS command defaults

VMFINS DEFAULTS file, example 48, 139
VMFINS PRODLIST file 18
VMFINS PRODLIST file updated by LIST operand and
PLAN option 21
VMFMRDSK EXEC example 114
VMFNLS LANGLIST file 155
VMFNLS LANGLIST file syntax 154
VMFPPF EXEC example 115
VMSES/E Installation/Service Tool 7, 225
VMSES/E Overview 3
VMSESE PROFILE 132
VMSESE PROFILE syntax 131

figuring DASD space requirements 33, 370
file (F5), VMFINFO Panel 201
file input to VMFSIM 530
FILE option (VMFSIM QUERY) 530
file options, Make Override Panel 38
file syntax

$PTFPART file
header section 707
parts definition section 710
requisite section 708

additional notation 142
apply list 133
auxiliary control file (AUX) 120
control file 118
control file extension 119
exclude list 134
file type abbreviation table (VM SYSABRVT) 704
format 1 build list 142
format 2 build list 144
format 3 build list 144
parts catalog (VMSES PARTCAT) 705
PRODPART file

file syntax (continued)
PRODPART file (continued)

header section 663
loadable unit section 664
overview 662
parts section 667
product parameters section 669
saved segment definitions section 672

product parameter file 623
saved segment data file (SEGDATA) 679
select data file 128
service-level apply status table (appid SRVAPPS) 718
service-level build status table (bldid SRVBLDS) 719
service-level description table (prodid SRVDESCT) 714
service-level production status table (prodid SRVPROD)
722
service-level receive status table (prodid SRVRECS) 717
service-level requisite table (prodid SRVREQT) 715
Software Inventory tables 661
source product parameter file

BLD Section 643
BLD section override 653
CNTRLOP Section 628
CNTRLOP section override 648
DABBV Section 646
DABBV section override 654
DCL Section 633
DCL section override 649
MDA Section 635
MDA section override 650
overview 625
RECINS Section 639
RECINS section override 651
RECSER Section 641
RECSER section override 652

system-level apply status table (VM SYSAPPS) 692
system-level build status table (VM SYSBLDS) 694
system-level description table (VM SYSDESCT) 686
system-level receive status table (VM SYSRECS) 690
system-level requisite table (VM SYSREQT) 688
understanding how to read it 227
usable form product parameter file 656
version vector table (appid VVTlvlid) 723
VMFNLS LANGLIST 154
VMSESE PROFILE 131

file type abbreviation table (VM SYSABRVT) 170
file type abbreviations extensions section

example 646
in the product parameter file 646
syntax 646

File Type Abbreviations Panel 219
File Type Abbreviations Query output 220
file type, build list 141
files

created during VMFINS INSTALL and MIGRATE 13
for your information and use (VMFINS commands) 14
input and output 737
on installation media 13
retailoring 68
SERVICE $PRODS 135

files, moving into BFS 339
finding out which products are on installation media 18
first install

with PPF operand 54

802 z/VM: 7.3 VMSES/E Introduction and Reference

fixes using ZAPs (object code) 767
format 1 build list

comments 143
example 144
EXEC and EXEC2 statements 143
loader cards 143
overview 141
serviceable parts records 143
syntax 142

format 2 and 3 build lists
specifying object parameters 148
specifying part options 149

format 2 build list
object names 148
overview 141
syntax 144
wildcard objects 148

format 3 build list
object names 148
overview 141
syntax 144

function keys
getting help on, Make Override Panel 44
Make Override Panel 35
Query NSS Map Window 524
Segment Definition Panel 522
Segment Map Panel 514
VMFINFO Panel 200
VMFVIEW EXEC 621

G
GENCPBLS EXEC 237
general help

on the Make Override Panel 45
on the VMFINFO Panel 201

general information
format 2 and 3 build lists 146
Make Override Panel 34
VMFINFO command 200
VMFSGMAP panels 510

generated objects, building 336
get

help 42
help on help 43
information for decisions 18
list of products on installation media 18
list of products that can be migrated 18
Memo-to-Users 21
online help

Make Override Panel 45
split-screen XEDIT session 70
view-screen session 74

products installed with VMFINS 49
started with VMFINS 10

H
header area

override product parameter file 655
source product parameter file 625

help
examples, Make Override Panel 42

help (continued)
F keys, Make Override Panel 44
F6=mdisk to sfs dir 46
general, Make Override Panel 34
general, VMFINFO Panel 200
mdisk to sfs dir (F6) 46
on function keys window, Make Override Panel 44
on function keys, Make Override Panel 44
on help, Make Override Panel 43
online

Make Override Panel 45
split-screen XEDIT session 70
view-screen session 74
VMFINFO panel 201

options, Make Override Panel 42
help (F1)

Make Override Panel 35
VMFINFO Main Panel 200

HELP, online 227
HELP, using online 227
highlighting, Make Override Panel 34
how to build products using VMFINS 77
how to delete using VMFINS 81
how to get VMFINS CONSOLE file 14
how to install using VMFINS 54
how to migrate using VMFINS 63
how VMFINS MIGRATE works with the ADD option 63
how VMFINS MIGRATE works with the REPLACE option 65
how VMFSIM processes tagged data 530
how VMSES/E uses control files 117

I
IBM local service 101
identifiers

for message modules 751
identifying

MACLIBs 124
requisites, specifying 664
saved segments to be built 357
symbolic strings of minidisks or SFS directories, PPF
635
system objects to be built 357
variables and values assigned, PPF 633

identifying the latest version of a part
determining the current service level 189
using VMFSIM GETLVL 189

INFO operand
output file 18
using 18

initializing Software Inventory tables 195
input file for VMFBLD command with LIST operand 314
input files for VMSES/E EXECs 737
input to other commands, LIST operand 20
input to VMFSIM from a file 530
inputs to VMFSIM 177, 529
insert and delete data, updateable sections of PPF 647
insert override control record 648
inserting a record in :MDA section of PPF, example 657
install

and replacing products with VMFINS 51
and replacing several products with VMFINS 52
changing product installation defaults 53
errors, recovering 435

Index 803

install (continued)
examples 54
local service and modifications 101
new products 49
product, recommended approach 49
several products 50
single product 49
using PPF operand, example 54
using VMFSIM EXEC during 61
with the PPF operand, example 54
with VMFINS 49

installation
of corrective service 95
scenarios 54

installation descriptor file 126
installation media

products on 19
INSTFPP EXEC 725
introduction

override product parameter file 160
software inventory 11
source product parameter file 159
temporary product parameter file 160
to the product parameter file 159
to the VMFINS EXEC 9
to VMSES/E 9
usable form product parameter file 160

L
latest level serviceable parts

creating executable modules 350
creating executable modules with CPLINK or BIND 352
creating text objects serviced by complete replacement
343

LIST operand, VMFBLD command input file 314
LIST operand, VMFINS command 20
listing dependents

for products 193
for PTFs 192
of a product, example 193
PTFs on another PTF 193

listing requisites
determining prerequisites for a product 192
for products 192
for PTFs 191

loadable unit, definition 664
loader cards, format 1 build list 143
LOADLIBs, creating 344
local modifications

adding local replacement files to Software Inventory
194
adding local source update modifications to Software
Inventory 194
adding to the Software Inventory 188, 193
installing 101
procedure overview 102
requiring rework, determining 124
tracking number 89
using the LOGMOD option 193, 301, 391, 398, 452, 537
using the VMFSIM LOGMOD command 193
VMFREPL, used with local mods replacement parts 497

local service
definition 101

local service (continued)
electronically received 101
preparation 101

LOCAL string 106
LOCALMOD EXEC 245

M
MACLIBs

creating 347
identifying 124

MACS records 118
main panel, VMFINFO command 203
maintenance-level information (service-level software) 172
Make Override Panel

asterisk as input 34
colon preceding input field 34
default SFS directory name 46
ellipsis following an option 34
example 34
Expand Dirid window 46
F1=Help 35
F12=Cancel 35
file options 38
function keys 35
general instructions 34
getting online help 45
highlighting 34
more: 34
naming conventions 34
new override file name 41
period preceding input field 34
using 33

make override prompts, changing VMFINS 48
manage

disks for the service database 116
objects 116
product parameter files 115
saved segments 116

MDA record, source product parameter file 636
mdisk or sfs dir (F6)

getting help 46
overview 36

Memo-to-Users
printing 21
using while applying service 127

merge function
example 114
VMFMRDSK EXEC 114
with VMSES/E 114

merge log (SNA service) 762
message examples, notation used in xxxi
message logs

viewing 117
messages

module identifiers 751
MIGPvrm 684
migrating

new products, overview 63
recovering from errors 443
retailoring product files after 68
several products 67
several products, overview 65

migration

804 z/VM: 7.3 VMSES/E Introduction and Reference

migration (continued)
adding a new release of a product 63
adding a single product 64
adding several products 65
changing current product installation settings 68
overview 63
replacing a single product 66
replacing products 65
replacing several products 67
retailoring the product files 68
using VMFSIM during a migration 76
VMPSFS: file pool requirements 63
with VMFINS 63

migration parts table 684
Minidisk/Directory Access Query output 217
minidisk/directory assignments section, syntax, PPF 635
minidisk/directory assignments, product parameter file 635
minidisks, accessing read-only for VMFSETUP 505
Miscellaneous Queries Panel 216
missing requisites 24
modifications, added locally 89
module replacement, servicing usable forms 91
more:

on the Make Override Panel 34
on the VMFINFO panels 200

moving files into BFS 339
moving product from test mode to production mode 48
multiple products

adding new products with the LIST operand 50
replacing products with the LIST operand 52

N
NAME statement, patch update file

NAME statement 122
naming PPF override file 40
National Language Support Table (VMFNLS LANGLIST) 154
new products, adding 49, 63
notation used in message and response examples xxxi

O
Object Build Dependencies Query output 214
Object Build Requisites Query output 214
object management

overview 116
VMFQOBJ EXEC 116

object names
in format 2 build lists 148
in format 3 build lists 148

object parameters
definition 329
specifying 148
used by VMFBDCLB 331
used by VMFBDCOM 342
used by VMFBDCPY 344
used by VMFBDDLB 335
used by VMFBDGEN 337
used by VMFBDLLB 345
used by VMFBDMLB 349
used by VMFBDMOD 351
used by VMFBDNUC 356
used by VMFBDPMD 353

object parameters (continued)
used by VMFBDSBR 357
used by VMFBDSEG 359
used by VMFBDTLB 364

Object Part Handler/Target Query output 215
Object Status Query output 213
objects serviced by complete replacement, building 340
objects, replacement

used by VMFBDCOM 342
obtain

information for decisions 18
Memo-to-Users 21

online HELP Facility, using 227
operand LIST, input to other VMFINS command 20
option defaults, VMFINS 48, 139
options for filing, Make Override Panel 38
options, part

used by VMFBDCOM 342
other

files used for service 125
VMSES/E EXECs 113
VMSES/E functions 117

output files
SERVICE $PRODS 135

output files for VMSES/E EXECs 737
outputs from VMFSIM 529
override

installation defaults 33
override area

override product parameter file 655
source product parameter file 646

override control record
delete 648
insert 648
source product parameter file 647

override product parameter file
header area 655
syntax 655

overview
adding products 49, 63
building products using VMFINS 77
deleting products using VMFINS 81
high-level VMFINS command 9
migrating products using VMFINS 63
parts catalog 170
replacing products 51
Software Inventory (service-level) 171
Software Inventory (system-level) 164
VMFINS EXEC 9
VMSES/E 105
VMSES/E Installation/Service Tool 3

P
P2P record, variable declarations section, PPF 638
panels

Add Segment Definition Panel 517
Change Segment Definition Panel 516
Compare Table Contents Panel 218
Component Name - Help Panel 202
File Type Abbreviations Panel 219
Make Override Panel, using 33
Miscellaneous Queries Panel 216
PPF Fileid - Help Panel 202

Index 805

panels (continued)
PTF/APAR Query Panel 206
Query NSS Map Window 523
Query Output - APAR Abstract(s) 210
Query Output - Build Requirements 219
Query Output - Compare Table Contents 218
Query Output - File Type Abbreviations 220
Query Output - Minidisk/Directory Access 217
Query Output - Object Build Dependencies 214
Query Output - Object Build Requisites 214
Query Output - Object Part Handler/Target 215
Query Output - Object Status 213
Query Output - Part Service History 216
Query Output - Part Service Level 215
Query Output - Product Dependencies 205
Query Output - Product Description 204
Query Output - Product Requisites 205
Query Output - Product Status 204
Query Output - PTF Dependencies/Superseding
209
Query Output - PTF Requisites/Supersedes 208
Query Output - PTF Serviceable Parts 210
Query Output - PTF Status 207
Query Output - PTF User Memo 209
Segment Definition Panel 516
Segment Map Panel 510
Serviceable Parts/Usable Forms Query Panel 211
VMFINFO 199
VMFINFO Main Panel 203

parameters, object
used by VMFBDCOM 342

part handlers
VMFBDBFS 339
VMFBDCLB 329
VMFBDCOM 340
VMFBDCPY 343
VMFBDDDR 333
VMFBDDLB 334
VMFBDGEN 336
VMFBDLLB 344
VMFBDMLB 347
VMFBDMOD 350
VMFBDNUC 355
VMFBDPMD 352
VMFBDSBR 357
VMFBDSEG 358
VMFBDSSP 365
VMFBDTLB 362
VMFBLD 328
VMFREC 108

part options
definition 329
specifying in build lists 149
used by VMFBDBFS 340
used by VMFBDCLB 331
used by VMFBDCOM 342
used by VMFBDCPY 344
used by VMFBDDLB 335
used by VMFBDGEN 338
used by VMFBDLLB 345
used by VMFBDMLB 349
used by VMFBDMOD 351
used by VMFBDNUC 357
used by VMFBDPMD 354

part options (continued)
used by VMFBDSBR 358
used by VMFBDSEG 360
used by VMFBDTLB 364

Part Service History Query output 216
Part Service Level Query output 215
parts catalog 705
parts records, format 1 build lists 143
patch facility

controlling patches 730
HCPLDR compatibility

local service to ASSEMBLE files 735
local service to TEXT files 734

overview 730
patch update files 121
path to choose, VMFINS 17
period (.) on Make Override Panel 34
PF key assignments, default (VMFVIEW) 621
picking the correct VMFINS operand 17
plan

for a Product Service Upgrade 465
results 24
to delete a product with VMFINS 30
to install a product with VMFINS 24
to migrate a product with VMFINS 27
with VMFINS 23

PLAN option, using 23
PLANINFO file

for delete 31
for install 25
for migrate 28

PPF Fileid - Help Panel 202
PPF management

example 115
VMFOVER EXEC 115
VMFPPF EXEC 115
with VMSES/E 115

PPF operand
overview 20
using

to build 77
to delete 81
to install 54

PPF, override syntax 655
ppfname ERASE file 15, 30
ppfname, definition 13
preface xxix
prerequisites

determining for PTF 191
primary service tasks

applying service 105
building the serviced parts 105
overview 105
receiving service 105

printing, memo-to-users 21
processing

build requisites 112
by product format 11
install tapes with VMFINS 10
multiple service tapes 108
product parameter files 624
products with VMFINS 17

PROD operand
overview 20

806 z/VM: 7.3 VMSES/E Introduction and Reference

PROD operand (continued)
using 20

prodid $APPLIST 15
prodid $PPF File 13
prodid SRVDESCT 714
prodid SRVPROD 722
prodid SRVREQT 715
prodid, definition 13
PRODPART file

example 677
file syntax 662
header section 663
loadable unit section 664
overview 166, 662
parts section 667
product parameters section 668
saved segment definitions section 672

product
applying service to 95

product and service structure 89
product contents directory 127
product dependencies query, VMFINFO 205
product dependency query 203
product description query 203
product files, retailoring 68
product information (system-level software) 165
product installation parameters for changing 33
product parameter file

BLD record 644
build product definition section 643
comments 623
component area

in source PPF 626
in usable form PPF 656

control options section 627
DABBV record 646
data records 623
data structure 623
deleting build lists 644
file structure 623
file type abbreviations extensions section 646
general description 159
header area

in override PPF 655
in source PPF 625

minidisk/directory assignments section 635
override area

examples 657
in override PPF 655
in source PPF 646

override control records, examples 657
override PPF, examples 657
override syntax 655
processing 624
product parameter file, temporary syntax 656
receive installation tape definition section 639
receive service media definition section 641
syntax 623
updating a record

multiple-level override 659
single-level override 658

usable form, syntax 656
variable declarations section 633

product parameter file (SNA service) 761

product queries, VMFINFO 203
product requisites query, VMFINFO 205
product service upgrade (PSU) 92
product service upgrade, using 97
product status query 203
product, definition 664
production mode, moving from test mode to 48
production status

BUILT 722
PUT2PROD 722

products
adding 49
on installation media 18, 19
processing with VMFINS 17
replacing 51, 65

program level file
example 128
overview 127

program temporary fix (PTF)
definition 89
within service structure 90

prompts, changing VMFINS 48
providing input to VMFSIM 177
PSU (Product Service Upgrade)

effect on tailored files 97
overview 92
planning for use 97
procedure 92

PTF
determining prerequisites for 191

PTF (program temporary fix)
contents 90
definition 89

PTF Dependencies/Superseding Query output 209
PTF information (service-level software) 172
PTF Parts File 109
PTF Parts file ($PTFPART) 707
PTF Requisites/Supersedes Query output 208
PTF Serviceable Parts query output 210
PTF Status Query output 207
PTF User Memo query output 209
PTF/APAR Query Panel 206
PUT2PROD EXEC 258

Q
query the Software Inventory

is a specific APAR applied? 185
using VMFSIM QUERY 177
what are the direct requisites of a specific PTF? 185
what do I have installed that relates to a specific
product? 179
what is the service history for a part? 186
what options are coded in the PPF? 179
what parts are affected by a specific PTF? 186
which PTFs are applied? 185
which PTFs have a direct requisite of a specific PTF? 184

querying APARS applied 182
querying multiple tables with FILE option 530
querying PTFs applied 182
querying status of an object 183

Index 807

R
read-only access with VMFSETUP 636
reading

syntax diagrams 142, 227
the Make Override Panel 34
the VMFINFO Panel 200

receive installation tape definition section, PPF 639
receive processing, sample queries 177, 180
receive service definition section, PPF 641
receive status

COMMITTED 718
DELETE 691, 693
DELETED 691
RECEIVED 691, 717

receive status of all PTFs on an APAR 181
receive status table 109
receiving output from VMFSIM 177
receiving service 105
receiving VMFINS CONSOLE file 14
recid SRVRECS 717
RECINS record, source product parameter file 639
recommendations

installing single product with VMFINS 49
way to migrate a single product using VMFINS 64
way to migrate several products using VMFINS 65
way to replace an existing product with VMFINS 51
way to replace an existing product with VMFINS and
keep tailorings 66, 67

recovering
from an unsuccessful build 414
from an unsuccessful delete 419
from an unsuccessful migration 443
from errors during install 435
service-level Software Inventories 196

recovering the system-level Software Inventory 195
recovery procedures

CHKAPARS EXEC 236
during a VMFINS BUILD 414
during a VMFINS DELETE 419
during a VMFINS INSTALL 435
during a VMFINS MIGRATE 443
LOCALMOD EXEC 248
PUT2PROD EXEC 260
SERVICE EXEC 268
VMFAPPLY EXEC 298
VMFASM EXEC 305
VMFBLD EXEC 328
VMFCNVT EXEC 371
VMFCOPY EXEC 375
VMFERASE EXEC 383
VMFHASM EXEC 396
VMFHLASM EXEC 404
VMFINFO EXEC 406
VMFMRDSK EXEC 450
VMFNLS EXEC 458
VMFOVER EXEC 461
VMFPPF EXEC 463
VMFQMDA EXEC 474
VMFQOBJ EXEC 479
VMFREC EXEC 486
VMFREM EXEC 494
VMFREPL EXEC 496
VMFSETUP EXEC 508

recovery procedures (continued)
VMFSGMAP EXEC 527
VMFSIM CHKLVL 540
VMFSIM COMPTBL 545
VMFSIM GETLVL 552
VMFSIM INIT 558
VMFSIM LOGMOD 564
VMFSIM MODIFY 569
VMFSIM QUERY 575
VMFSIM SRVDEP 581, 593
VMFSIM SRVREQ 587
VMFSIM SYSDEP 581, 593
VMFSIM SYSREQ 599
VMFSUFIN EXEC 604
VMFVIEW EXEC 622

RECSER record, source product parameter file 642
refreshing Make Override Panel 39
regenerating parts locally 117
relationship between serviceable parts and usable form 90
remove list (SNA service) 765
removing all inputs, Make Override Panel 39
REP statement, patch update file

REP statement 122
replacement maintained parts

VMFREPL, used with local mods 497
replacement objects

used by VMFBDCOM 342
replacing

a single product 51
several products 52

replacing products
several products 67
single product 66
while keeping tailorings 65
with VMFINS MIGRATE 51, 65

reqby log (SNA) 764
required by log (reqby log) 764
requirements for using VMFINS 10
requisite processing, VMFBLD 112
requisite table 109
requisites missing, install or migrate 24
response examples, notation used in xxxi
restrictions on using stem input and output 533
results, planning 24
retailoring product files 68
retrieve (F9), Make Override Panel 37
rework local service 102
RSU (Recommended Service Upgrade)

document 125
RSU descriptor file 126

S
sample queries, apply processing 181
save

changes on Make Override Panel 38
PPF override files 38

save as... (F5), Make Override Panel 36
saved segment data file 113
saved segment definition record 517
saved segments

building 358
identifying to be built 357

scenarios

808 z/VM: 7.3 VMSES/E Introduction and Reference

scenarios (continued)
build

using the PPF operand 77
delete

using the PPF operand 81
install

using VMFINS INSTALL 54
with the PPF operand 54

SEGBLD $SELECT, example 130
SEGDATA file

example 684
overview 166

segment management
VMFSGMAP EXEC 116
with VMSES/E 116

segments (saved), building 358
select data file

contents 128
example 129
for saved segments 130
overview 111, 113
saved segments, example 130
syntax 128

select level of serviceable part, no version vector table 123
selecting

a VMFINS operand 17
the serviceable part version 123

service
applying to product 95
corrective

installing 95
SERVICE $PRODS 135
service application using PSU procedure 97
service concepts,z/VM 89
service control file (SNA service) 760
SERVICE EXEC 261
service log (SNA) 764
service media definition, receive processing, PPF 641
service procedures, object code

applying corrective service 767
applying fixes using ZAPs 767
applying preventive service

merging a single PTF 769
merging multiple PTFs 770
removing a single PTF 772
removing multiple PTFs 774

merge service 767
prevent regression 775
remove service 767
removing fix-in-error 776

service queries, VMFINFO 203
service supported by VMSES/E 92
service tape formats 756
service tasks, primary 105
service to a product, definition 89
service types, VMSES/E supported 92
service with VMSES/E, overview 105
service-level

apply status table (SRVAPPS) 175
build status

BUILDALL 721
BUILT 721
BYPASSED 721
DELETE 721

service-level (continued)
build status (continued)

DELETED 721
ERROR 721
MANUAL 721
SERVICED 721

build status table (SRVBLDS) 175, 719
description table (SRVDESCT) 173, 714
production status table (SRVPROD) 722
receive status table (SRVRECS) 174, 717
requisite table (SRVREQT) 174, 715
Software Inventory 163, 706
Software Inventory tables 706

serviceable parts
creating by complete replacement 343
creating executable module 350
creating executable module with CPLINK 352
restoring DDR image files 333
serviced by updates only, servicing usable forms 91
version selection 123
within service structure 90

serviceable parts records, format 1 build lists 143
Serviceable Parts/Usable Forms Query Inputs and Outputs
211–213
Serviceable Parts/Usable Forms Query Panel 211
ServiceLink APARFIX command 101
SERVMGR EXEC 269
SERVMGR INITIALIZE 271
SERVMGR MANAGED 291
SERVMGR REMOVE 288
SERVMGR SRVLVL 281
SERVMGR SYSTEM 274
several products

installing 50
migrating 65
replacing using VMFINS INSTALL 52
replacing using VMFINS MIGRATE 67

SFS directory name, Make Override Panel 46
simple stem input and output 532
single product

install
with PPF operand, example 54

installing 49
migrating 64
replacing 66
replacing using VMFINS INSTALL command 51

SMAPI
appliance servers 365

SNA, service products
apply list 765
exclude list 766
merge log 762
product parameter file 761
remove list 765
reqby log 764
service control file 760
service log 764
ZAP list 766
ZAP log 763

SNTINFO EXEC 735
software inventory

introduction 11
Software Inventory

$PTFPART file 707

Index 809

Software Inventory (continued)
changing the defaults 662
changing to SFS directory 221
default

changing 662
changing to SFS directory 221
file name 662
minidisk 662
system name 662

files, system-level 661
levels 163
parts catalog 705
PRODPART file 662
product parts file (PRODPART) 662
PTF parts file 707
service-level 706
service-level apply status table (SRVAPPS) 718
service-level build status table (SRVBLDS) 719
service-level description table (SRVDESCT) 714
service-level production status table (SRVPROD) 722
service-level receive status table (SRVRECS) 717
service-level requisite table (SRVREQT) 715
SRVAPPS file 718
SRVBLDS file 719
SRVDESCT file 714
SRVPROD file 722
SRVRECS file 717
SRVREQT file 715
SYSABRVT file 704
SYSAPPS file 692
SYSBLDS file 694
SYSDESCT file 686
SYSMEMO file 687
SYSRECS file 690
SYSREQT file 688
system-level 661
system-level apply status table (SYSAPPS) 692
system-level base APAR table (SYSAPARS) 703
system-level build status table (SYSBLDS) 694
system-level description table (SYSDESCT) 686
system-level file type abbreviation table (SYSABRVT)
704
system-level memo table (SYSMEMO) 687
system-level Product Inventory table (SYSSUF) 698
system-level receive status table (SYSRECS) 690
system-level requisite table (SYSREQT) 688
system-level restart table (SYSREST) 698
system-level Service Update Facility table (SYSSUF) 695
version vector table 723
VMSES PARTCAT file

example 706
Software Inventory syntax 661
Software Inventory tables, data structure 661
source files, creating updated 122
source product parameter file

component area 626
header area 625
introduction 13
MDA record 636
override area 646
override control records 647
overview 159
RECINS record 639
RECSER record 642

source product parameter file (continued)
syntax 625
tag extensions 647

source, product installation parameters 33
space requirements, converting 370
specifying

object parameters 148
part options 149

split-screen XEDIT session
example 70
PF keys 70
using PF keys 70

spooling the console 14
SRVAPPS file 718
SRVBLDS file 719
SRVDESCT file 714
SRVPROD file 722
SRVRECS file 717
SRVREQT file 715
stand-alone dump utility 365
starting over, Make Override Panel 39
status information, build (system-level software) 165
status of APARS received 180
status of applied products 178
status of products received 178
status of received PTFs 180
stem

associative 532
restrictions 533
REXX 531
simple 532
variables (VMFSIM QUERY) 531

strings 106, 636, 640, 642, 645
structure of data, Software Inventory tables 528, 661
structure of file, product parameter file 623
supported tape formats 10
supporting information (system-level software) 166
syntax

auxiliary control files 120
control files 118
diagrams, how to read them 227
format 1 build lists 142
format 2 and 3 build lists 144
national language support table (VMFNLS LANGLIST)
154
notation 227
other files used by VMSES/E 128
product parameter files 623
Software Inventory tables 661
TDATA statements 529

syntax diagrams, how to read xxix
SYSABRVT file 704
SYSAPARS 703
SYSAPPS file 692
SYSBLDS file 694
SYSDESCT file 686
SYSLMOD 701
SYSMEMO fle 687
SYSPINV 698
SYSRECS file 690
SYSREQT file 688
SYSREST 698
SYSSUF 695
SYSTEM disks 106

810 z/VM: 7.3 VMSES/E Introduction and Reference

system information (system-level software) 165
system objects

identifying those to be built 357
system-level

apply status table (VM SYSAPPS) 168
build status

BUILT 695
DELETE 695
DELETED 695
ERROR 695
SUPED 695

build status table (VM SYSBLDS) 168
description table (VM SYSDESCT) 166
receive status table (VM SYSRECS) 167
requisite table (VM SYSREQT) 167
Software Inventory tables 166

system-level Base APAR table 113
system-level Product Inventory table 113
system-level Software Inventory

overview 163, 164, 661

T
tables

build list format by VMFBLD part handler 141
COR descriptor file, example 126
function key assignments, make override panel 35
function key assignments, VMFINFO panels 200, 201
methods of installation and service 5
PF keys for split-screen XEDIT session, VMFINS
MIGRATE 70
PF keys for view-screen session, VMFINS MIGRATE 74
product contents directory 127
product contents directory, COR tape 127
product contents directory, Install/RSU tape 127
RSU descriptor file, example 126
tape descriptor files 126
VMFINS processing by product format 11
VMSES/E database 105, 106

tables (system-level Software Inventory)
VM SYSABRVT 170
VM SYSAPARS 703
VM SYSAPPS 168
VM SYSBLDS 168
VM SYSDESCT 166
VM SYSPINV 698
VM SYSRECS 167
VM SYSREQT 167
VM SYSREST 698
VM SYSSUF 695

tables in the parts catalog 170
tag extensions

:BLD 653
:CNTRLOP 648
:DABBV 654
:DCL 649
:MDA 650
:RECINS 651
:RECSER 652
source product parameter file 647

tagged data 530
tagged data statements (TDATA), VMFSIM 529
tailorable file 68
tailored file 68

tape descriptor file 125
tape document 125
tape formats

processed by VMFINS 10
VM/ESA system delivery offering (SDO) 755
VMSES/E 755

TASK string 106
TDATA 530
TDATA statements, VMFSIM 529
temporary files for VMSES/E EXECs 737
temporary product parameter file

syntax 656
using 160

test mode to production mode moves 48
text replacement, servicing usable forms 91
tools for system generation tasks

online HELP 227
syntax conventions 229

trademarks 790
TXTLIBs, building 362
types of product parameter files

PPF types 159
types of requisites, system-level requisite table 689
types of service supported by VMSES/E 92

U
understanding

help options, Make Override Panel 42
syntax diagrams 227

updated source files, creating 122
updates 90
updates to service usable forms 91
updating

a record in :RECSER section of PPF, example 658
a record, multiple-level override, PPF 659
a record, single-level override, PPF 658
PTF level information 124
SRVBLDS after manual build processing 187

updating the Software Inventory
adding a product to the system-level Software Inventory
186
updating the SRVBLDS table after manual build
processing 187
with VMFSIM MODIFY 186

usable form product parameter file
overview 160
syntax 656

usable forms
overview 90
serviced by module replacement 91
serviced by parts serviced by updates only 91
serviced by text replacement 91
serviced by updates 91

using
F4=Expand Dirid function key 46
file input for VMFSIM commands 530
function keys, Make Override Panel 35
function keys, Query NSS Map Window 524
function keys, Segment Definition Panel 522
function keys, Segment Map Panel 514
function keys, VMFINFO Panel 200
LIST operand

to install several products 50

Index 811

using (continued)
LIST operand (continued)

to process products 20
to replace several products 52

Make Override Panel 33
PLAN option, results 24
PPF operand

to build a product 77
to delete a product 81
to install a product 54
to process products 20
to replace an existing product 51

PROD operand
to process products 20

product service upgrade (PSU) 97
split-screen XEDIT session 70
the action bar 37
the INFO operand 18
the PLAN option 23
the PPF operand 20
the PROD operand 20
the VMFINFO panels 199
tools for service and system generation 229
view-screen session 74
VMFINS

an overview 17
operands 17
to build, example 77
to delete, example 81
to install, examples 54
who can use 10

VMFSGMAP panels 510
VMFSIM

during install 61
during migrate 76

VMSES/E for service 105
VMSES/E reference information 227
wildcard objects in build lists 148

utilities, using during migrate 76

V
variable declarations section

syntax 633
usable form PPF 633

vendor service or updates 101
VER statement, patch update file

VER statement 122
version vector table

example 176, 724
overview 111, 176
syntax 121
when none exists, selecting serviceable parts 123

view-screen session
example 74
PF keys 74
using PF keys 74

VM service
adding function 89
circumventing a problem 89
correcting a problem 89
introduction 89
local modifications 89

VM SYSABRVT 704

VM SYSAPARS 703
VM SYSAPPS 692
VM SYSBLDS 694
VM SYSDESCT 686
VM SYSMEMO 687
VM SYSPINV 698
VM SYSRECS 690
VM SYSREQT 688
VM SYSREST 698
VM SYSSUF 695
VM/ESA HELP Facility, using 227
VM/ESA, CD-ROM format 755
VMFAPPLY EXEC

a closer look 109
command syntax 294
local modifications requiring rework 124
software inventory files used 111

VMFASM EXEC 300
VMFBDBFS part handler 339
VMFBDCLB part handler 329
VMFBDCOM

object parameters 342
part options 342
replacement objects 342

VMFBDCOM part handler 340
VMFBDCPY part handler 343
VMFBDDDR part handler 333
VMFBDDLB part handler 334
VMFBDGEN part handler 336
VMFBDLLB part handler 344
VMFBDMLB part handler 347
VMFBDMOD part handler 350
VMFBDNUC part handler 355
VMFBDPMD part handler 352
VMFBDSBR part handler 357
VMFBDSEG part handler 358
VMFBDSSP part handler 365
VMFBDTLB part handler 362
VMFBLD BLDDATA File 314
VMFBLD command, input file for LIST operand 314
VMFBLD EXEC

a closer look 112
command syntax 308
part handlers 328
requisite processing 112
software inventory files used 112

VMFBTMAP EXEC 367
VMFCNVT EXEC 370
VMFCOPY EXEC 372
VMFENRPT EXEC 376
VMFERASE EXEC 380
VMFEXUPD EXEC 384
VMFHASM EXEC 390
VMFHLASM EXEC 397
VMFINFO

APAR Abstract(s) query output 210
Build Requirements Query output 219
Compare Table Contents Panel 218
Compare Table Contents Query output 218
Component Name - Help Panel 202
File Type Abbreviations Panel 219
File Type Abbreviations Query output 220
general information 200
Main Panel 203

812 z/VM: 7.3 VMSES/E Introduction and Reference

VMFINFO (continued)
Minidisk/Directory Access Query output 217
Miscellaneous Queries Panel 216
Object Build Dependencies Query output 214
Object Build Requisites Query output 214
Object Part Handler/Target Query output 215
Object Status Query output 213
Part Service History Query output 216
Part Service Level Query output 215
PPF Fileid - Help Panel 202
product dependencies query 205
product dependency query 203
product description query 203, 204
product queries 203
product requisite query 203
product requisites query 205
product status query 203, 204
PTF Dependencies/Superseding query output 209
PTF Requisites/Supersedes query output 208
PTF Serviceable Parts query output 210
PTF status query output 207
PTF User Memo query output 209
PTF/APAR Query Panel 206
service queries 203
Serviceable Parts/Usable Forms Query Panel 211
Serviceable Parts/Usable Forms Query Panel, inputs/
outputs 211–213
using the panels 199
where does the information come from? 199

VMFINFO EXEC 405
VMFINS

adding a new release of a product 63
adding products 49
BUILD

command syntax 408
example 77
recovering from errors 414

building products 77
command defaults, changing 48
command syntax 407
DELETE

command syntax 415
deleting products, overview 81
example 81
recovering from errors 419

deleting products 81
DISABLE

command syntax 420
ENABLE

command syntax 424
INSTALL

command syntax 429
examples 54
recovering from an unsuccessful installation 435

installing products 49
MIGRATE

adding products, overview 63
command syntax 436
recovering from errors 443
replacing products, overview 65

migrating products 63
overview 9
processing products 17
processing, by product format 11

VMFINS (continued)
replacing products 49

VMFINS BUILD
command syntax 408
overview 77
recovering from errors 414

VMFINS CONSOLE file 14
VMFINS DEFAULTS file 139
VMFINS DEFAULTS file, which one used 411, 417, 421, 425,
432, 441
VMFINS DELETE

command syntax 415
example 81
overview 81
recovering from errors 419

VMFINS DISABLE
command syntax 420

VMFINS ENABLE
command syntax 424

VMFINS INSTALL
command syntax 429
examples 54
overview 49
recovering from an unsuccessful installation 435

VMFINS MIGRATE
command syntax 436
how it works with the ADD option 63
how it works with the REPLACE option 65
overview 63
recovering from errors 443
replacing a product 66

VMFINS override prompts, changing 48
VMFINS PRODLIST file 18
VMFINS, console spooling 14
VMFMERGE EXEC 776
VMFMRDSK EXEC 447
VMFNLS EXEC 451
VMFNLS LANGLIST file

example 155
file syntax 154
overview 154

VMFOVER EXEC 115, 459
VMFPPF EXEC 115, 461
VMFPSU EXEC 465
VMFQMDA EXEC 472
VMFQOBJ EXEC 116, 475
VMFREC EXEC

a closer look 108
bypassing tape files 640, 642
command syntax 480
part handlers 108
processing multiple service tapes 108
software inventory files used 109

VMFREM EXEC
command syntax 488
examples 492

VMFREMOV EXEC 779
VMFREMOV processing 780
VMFREPL EXEC

command syntax 496
examples 500

VMFSETUP EXEC 503
VMFSETUP, accessing disks as read-only 636
VMFSETUP, accessing disks read-only 505

Index 813

VMFSGMAP EXEC
Add Segment Definition Panel 517
Change Segment Definition Panel 516
command syntax 509
examples 525
managing saved segments 116
Query NSS Map Window 523
Query NSS Map Window, function keys 524
saved segment build parameters syntax 520
saved segment definition record 517
Segment Definition Panel 516
Segment Definition Panel, function keys 522
Segment Map Panel 510
segment map record 511, 514
subcommands 524

VMFSIM CHKLVL 534
VMFSIM COMPTBL 541
VMFSIM EXEC

associative stems 532
command syntax 528
how it processes tagged data 530
introduction 177
providing input to 529
querying multiple tables with the FILE option 530
receiving output from 529
simple stems 532
stem restrictions 533
tree structure format, associative stems 533
using during install 61
using file input 530
using the STEM variable 531

VMFSIM GETLVL 546
VMFSIM INIT 553
VMFSIM LOGMOD 559
VMFSIM MODIFY 565
VMFSIM QUERY 570
VMFSIM SRVDEP 576
VMFSIM SRVREQ 582
VMFSIM stem input (associative) 532
VMFSIM stem input (simple) 532
VMFSIM SYSDEP 588
VMFSIM SYSREQ 594
VMFSIM: tagged data (TDATA) 530
VMFSUFIN EXEC 600
VMFSUFTB EXEC 605
VMFUPDAT EXEC 607
VMFVIEW EXEC 618
VMFZAP EXEC 781
VMSBR $SELECT, example 130
VMSES PARTCAT 705
VMSES/E

database 105
input files 737
output files 737
temporary files 737
types of service supported 92

VMSES/E commands
CHKAPARS EXEC 234
GENCPBLS EXEC 237
LOCALMOD EXEC 245
PUT2PROD EXEC 258
SERVICE EXEC 261
SERVMGR EXEC 269
SERVMGR INITIALIZE 271

VMSES/E commands (continued)
SERVMGR MANAGED 291
SERVMGR REMOVE 288
SERVMGR SRVLVL 281
SERVMGR SYSTEM 274
VMFAPPLY EXEC 294
VMFASM EXEC 300
VMFBLD EXEC 308
VMFBTMAP EXEC 367
VMFCNVT EXEC 370
VMFCOPY EXEC 372
VMFENRPT 376
VMFERASE EXEC 380
VMFEXUPD EXEC 384
VMFHASM EXEC 390
VMFHLASM EXEC 397
VMFINFO EXEC 405
VMFINS BUILD 408
VMFINS DELETE 415
VMFINS DISABLE 420
VMFINS ENABLE 424
VMFINS EXEC 407
VMFINS INSTALL 429
VMFINS MIGRATE 436
VMFMRDSK EXEC 447
VMFNLS EXEC 451
VMFOVER EXEC 459
VMFPPF EXEC 461
VMFPSU EXEC 465
VMFQMDA EXEC 472
VMFQOBJ EXEC 475
VMFREC EXEC 480
VMFREM EXEC 488
VMFREPL EXEC 496
VMFSETUP EXEC 503
VMFSGMAP EXEC 509
VMFSIM CHKLVL 534
VMFSIM COMPTBL 541
VMFSIM EXEC 528
VMFSIM GETLVL 546
VMFSIM INIT 553
VMFSIM LOGMOD 559
VMFSIM MODIFY 565
VMFSIM QUERY 570
VMFSIM SRVDEP 576
VMFSIM SRVREQ 582
VMFSIM SYSDEP 588
VMFSIM SYSREQ 594
VMFSUFIN EXEC 600
VMFSUFTB EXEC 605
VMFUPDAT EXEC 607
VMFVIEW EXEC 618

VMSES/E Installation/Service Tool introduction 9
VMSESE profile

description 131
example 132
syntax 131

W
what is z/VM product service? 89
when to perform a build 77
where to find more information xxxii

814 z/VM: 7.3 VMSES/E Introduction and Reference

which VMFINS DEFAULTS file used 411, 417, 421, 425, 432,
441
which VMFINS operand to use 17
who can use VMFINS 10
wildcard objects

in format 2 build lists 148
working with

product files 68
tailored files 68

Z
z/VM service concepts 89
ZAP list (SNA service) 766
ZAP log (SNA service) 763
ZAPs, applying fixes (object code) 767
ZAPTEXT EXEC 783

Index 815

816 z/VM: 7.3 VMSES/E Introduction and Reference

IBM®

Product Number: 5741-A09

Printed in USA

GC24-6336-73

	Contents
	Figures
	Tables
	About this Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information

	How to provide feedback to IBM
	Summary of Changes for z/VM: VMSES/E Introduction and Reference
	GC24-6336-73, z/VM 7.3 (May 2023)
	GC24-6336-73, z/VM 7.3 (September 2022)
	GC24-6336-01, z/VM 7.2 (August 2021)
	GC24-6336-01, z/VM 7.2 (September 2020)

	Part 1. Introduction
	Chapter 1. Introducing VMSES/E
	Installing Products
	Servicing Products
	Servicing Non-VMSES/E Products
	Managing Saved Segments
	Managing Product Inventories
	Selecting the Correct Method for Installation and Service
	Finding Out Where to Begin

	Part 2. Installing, Migrating, Building, and Deleting Products
	Chapter 2. Introducing the VMFINS EXEC
	Overview
	VMFINS INSTALL
	VMFINS MIGRATE
	VMFINS BUILD
	VMFINS DELETE

	Who Can Use VMFINS?
	What Tape Formats Does VMFINS Support?
	What Type of Processing Does VMFINS Provide?
	What Is the Software Inventory?
	Where Does It Reside?
	Files Shipped on the Product Installation Media
	The Product Parts File
	The Source Product Parameter File

	Files Created and Updated during Installation and Migration
	Product-Level Files
	Files for Your Information and Use

	Chapter 3. Using the VMFINS EXEC
	Determining Which Operand to Use: INSTALL, MIGRATE, BUILD, or DELETE?
	Installing a Product
	Migrating a Product
	Building a Product
	Deleting a Product
	Installing a Recommended Service Upgrade (RSU)

	Using the INFO Operand
	The VMFINS PRODLIST File
	Product Parameter File Entries
	Product-Level Entries

	Which Products Can You Install?
	Which Products Can You Migrate?

	Using the PROD Operand
	Using the PPF Operand
	Using the LIST Operand
	Using the LIST Operand with the PLAN Option

	Printing the Memo-to-Users
	Using the INFO Operand and the MEMO Option
	Using the LIST Operand and the MEMO Option
	Using the PROD Operand and the MEMO Option
	Using the PPF Operand and the MEMO Option

	Using the PLAN Option
	Missing Requisites
	During PLAN Processing
	During Installation and Migration Processing

	Determining Whether a Product Can Be Installed
	What Information Does the PLANINFO File Provide?
	5654A22C PLANINFO File

	Determining Whether a Product Can Be Migrated
	What Information Does the PLANINFO File Provide?
	5654A22C PLANINFO File

	Determining Whether a Product Can Be Deleted
	What Information Does the PLANINFO File Provide?
	5654A22C PLANINFO File

	Calculating Space Requirements for Installation and Migration
	Overriding Product Installation Defaults
	Using the Make Override Panel
	Where Do the Product Installation Parameters Come From?
	Understanding the Make Override Panel Information
	Using the Function Keys
	Using the Action Bar
	Understanding the File Options
	Saving a Product Parameter File Override
	Understanding the Help Options
	Getting Help on Help
	Getting Help on the Function Keys
	Getting Basic Instructions on the Make Override Panel
	Online Help
	Changing from Minidisk to SFS Directory Entry Format
	The Default Shared File System Directory Name
	Changing the Shared File System Directory File Pool Name

	Controlling the VMFINS Prompts
	Changing the VMFINS Command Defaults
	Moving a Product from Test Mode to Production Mode

	Chapter 4. Installing Products with VMFINS
	Adding Products to Your System
	Adding a Single Product
	Adding Several Products

	Replacing Products on Your System
	Replacing a Single Product
	Replacing Several Products

	Changing the Product Installation Defaults
	Scenario 1: Installing a Product with the PPF Operand
	Step 1. Create the VMFINS PRODLIST File and Print Memo-to-Users
	Step 2. Find the Product Identifiers for IBM XL C/C++ for z/VM Compiler
	Step 3. Determine if You Have a Usable Form PPF
	Step 4. Run the PLAN Option
	Step 5. Review the 5654A22C PLANINFO File
	5654A22C PLANINFO File

	Step 6. Install CCXX
	Step 7. Review the Output Files
	The $VMFINS $MSGLOG File
	The VMFINS CONSOLE File

	Summary

	Using the VMFSIM EXEC during an Installation

	Chapter 5. Migrating Products with VMFINS
	Adding a New Release of a Product to Your System
	Adding a Single Product
	Adding Several Products

	Replacing Products on Your System
	Replacing a Product
	Replacing Several Products

	Changing the Current Product Installation Settings
	Retailoring Your Product Files
	Split-Screen XEDIT Session
	View-Screen Session

	Using the VMFSIM EXEC during a Migration

	Chapter 6. Building Products with VMFINS
	When Should You Perform a Build?
	Building Products on Your System
	Scenario 1: Building a Product with the PPF Operand
	Step 1. Find the ppfname for the Product
	Step 2. Build CCXX
	Step 3. Review the Output Files
	The $VMFINS $MSGLOG File
	The VMFINS CONSOLE File

	Summary

	Chapter 7. Deleting Products with VMFINS
	Deleting Products from Your System
	Scenario 1: Deleting a Product with the PPF Operand
	Step 1. Find the ppfname for the Copy We Want to Delete
	Step 2. Run the PLAN Option
	Step 3. Review the 5654A22C PLANINFO and 5654A22C ERASE Files
	Step 4. Delete CCXX
	Step 5. Review the Output Files
	The $VMFINS $MSGLOG File
	The VMFINS CONSOLE File

	Summary

	Part 3. Servicing Products
	Chapter 8. z/VM Service Concepts
	What is z/VM Product Service?
	Correcting a Problem
	Circumventing a Problem
	Adding Function
	Applying Local Service or Modifications

	Product and Service Structure
	Usable Forms
	Serviceable Parts
	Updates
	Program Temporary Fixes (PTFs)
	Relationship Between Serviceable Parts and the Usable Form
	Usable Forms Serviced by Updates
	Usable Forms Serviced by Text Replacement
	Usable Forms Serviced by Module Replacement
	Usable Forms Serviced by Parts that are Serviced by Updates Only

	Types of Service Supported by VMSES/E
	Product Service Upgrade (PSU)
	Corrective Service (COR)
	Expanded Service Option (ESO)

	Chapter 9. Installing Corrective Service
	Chapter 10. Using the Product Service Upgrade (PSU)
	Chapter 11. Installing Local Service and Modifications
	Introduction
	Overview for Local Service Procedure
	Overview for Rework Local Service Procedure
	Obtaining File Type Abbreviations

	Chapter 12. Using VMSES/E for Service
	The VMSES/E Database
	Servicing a Product with VMSES/E
	Receiving Service
	Applying Service
	Reapplying Local Service
	Building New Levels
	Placing the Serviced Components into Production

	A Closer Look at the VMFREC EXEC
	Processing Multiple Service Tapes at One Time
	Part Handlers
	Software Inventory Files Used by the VMFREC EXEC
	PTF Part File
	Receive Status Table
	Requisite Table
	Description Table

	A Closer Look at the VMFAPPLY EXEC
	Applying a PTF
	Software Inventory Files Used by the VMFAPPLY EXEC
	Apply Status Table
	Version Vector Table
	Select Data File

	A Closer Look at the VMFBLD EXEC
	Requisite Processing
	Software Inventory Files Used by the VMFBLD EXEC
	Build Status Table
	Build Lists
	Saved Segment Data File
	Select Data File
	System-Level Product Inventory Table
	System-Level Base APAR Table

	Other VMSES/E EXECs
	Consolidating Levels of the Database

	Managing Product Parameter Files
	The VMFOVER EXEC
	The VMFPPF EXEC

	Managing Disks for the Service Database
	The VMFSETUP EXEC
	The VMFQMDA EXEC

	Managing Objects
	The VMFQOBJ EXEC

	Managing Saved Segments
	The VMFSGMAP EXEC

	Other VMSES/E Functions
	Regenerating Parts Locally
	Viewing Message Logs

	How VMSES/E Uses Control Files
	Control Files
	MACS Record
	AUX Record
	Comments

	Control File Extensions
	Auxiliary Control Files
	Version Vector Tables
	Patch Update Files
	Creating Updated Source Files
	Selecting the Latest Version of the Serviceable Part
	When No Version Vector Table Exists

	Creating Text Decks
	Identifying MACLIBs
	Determining Local Modifications Requiring Rework

	Chapter 13. Other Files Used in the Service Process
	The Tape Document
	The Tape Descriptor File
	For Installation, RSU, and COR Descriptor File
	For Installation and RSU Descriptor File
	For COR Descriptor File

	The Product Contents Directory
	The Memo-to-Users
	The Program Level File
	The Select Data File
	File Syntax
	Example
	Select Data File Used for System Objects

	The VMSESE PROFILE
	File Syntax
	Example

	The Apply List
	File Syntax
	Example

	The Exclude List
	File Syntax
	Example

	Place Into Production Files
	The SERVICE $PRODS File
	The systemid $PRODS file

	The Message Log
	The VMFINS DEFAULTS File
	Syntax
	Example
	Usage Notes

	Build Lists
	Syntax Notation
	Format 1 Build List Syntax
	EXEC or EXEC2 Statements
	Serviceable Part Records
	Loader Cards
	Comments

	Format 1 Build List Example
	Format 2 and 3 Build List Syntax
	General Information
	Deleting Objects from Build Lists
	:FORMAT Record
	:LIBNAME Records
	Part Handlers
	Example
	:OBJNAME Records
	Object Names in Format 2 Build Lists
	Using Wildcard Objects in Format 2 Build Lists
	Object Names in Format 3 Build Lists
	Specifying Object Parameters

	:OPTIONS Records
	Specifying Part Options

	:PARTID Records
	:GBLDREQ Records
	:BLDREQ Records
	:GGLOBAL Records
	:GLOBAL Records
	:GOBJPARM Records
	:EOBJNAME Records
	Comments

	Format 2 Build List Examples
	Format 3 Build List Example

	The National Language Support Table (VMFNLS LANGLIST)
	File Syntax
	Example

	Part 4. Planning and Managing Your Software Inventories
	Chapter 14. Introduction to the Product Parameter File
	Types of Product Parameter Files
	Source Product Parameter Files
	Override Product Parameter Files
	Temporary Product Parameter Files
	Usable Form Product Parameter Files

	Sections of the Product Parameter File
	The Control Options Section
	The Variable Declarations Section
	The Minidisk/Directory Assignments Section
	The Receive Installation Tape Definition Section
	The Receive Service Media Definition Section
	The Build Product Definitions Section
	The File Type Abbreviations Extensions Section

	Syntax of the Product Parameter File

	Chapter 15. Introduction to the Software Inventory
	Overview of the System-Level Software Inventory
	Types of Information Provided
	System Information
	Product Information
	Build Status Information
	Supporting Information

	The Contents of the System-Level Software Inventory
	The Product Parts (PRODPART) File
	The Saved Segment Data (SEGDATA) File
	The System-Level Description Table (VM SYSDESCT)
	Example
	Contents

	The System-Level Requisite Table (VM SYSREQT)
	Example
	Contents

	The System-Level Receive Status Table (VM SYSRECS)
	Example
	Contents

	The System-Level Apply Status Table (VM SYSAPPS)
	Example
	Contents

	The System-Level Build Status Table (VM SYSBLDS)
	Example
	Contents

	The System-Level Service Update Facility Table (VM SYSSUF)
	Example
	Contents

	The System-Level Restart Table (VM SYSREST)
	Example
	Contents

	The File Type Abbreviation Table (VM SYSABRVT)
	Example
	Contents

	The Parts Catalog (VMSES PARTCAT)
	Example
	Contents
	How Receive Processing Affects the Parts Catalog
	How Apply Processing Affects the Parts Catalog
	How Build Processing Affects the Parts Catalog

	Overview of the Service-Level Software Inventory
	Types of Information Provided
	PTF Information
	Maintenance-Level Information
	Build Status Information

	The Contents of the Service-Level Software Inventory
	The $PTFPART File
	The Service-Level Description Table (VM SRVDESCT)
	Example
	Contents

	The Service-Level Requisite Table (VM SRVREQT)
	Example
	Contents

	The Service-Level Receive Status Table (VM SRVRECS)
	Example
	Contents

	The Service-Level Apply Status Table (appid SRVAPPS)
	Example
	Contents

	The Service-Level Build Status Table (bldid SRVBLDS)
	Example
	Contents

	The Version Vector Table (appid VVTlvlid)
	Example
	Contents

	Chapter 16. Introduction to the VMFSIM EXEC
	Providing Input to VMFSIM
	Receiving Output from VMFSIM
	Querying the Software Inventory
	Querying the System-Level Software Inventory after Receive Processing
	Determining the Status of Products Received
	Finding the Description of Products Received

	Querying the System-Level Software Inventory after Apply Processing
	Querying the Status of Products Applied

	Querying the System-Level Software Inventory after Build Processing
	Querying the Status of Products Built

	Performing Additional Queries on the System-Level Software Inventory
	What Do I Have Installed that is Related to a Specific Product?
	What Options are Coded in the Product Parameter File (PPF)?

	Querying the Service-Level Software Inventory after Receive Processing
	Querying the Status of PTFs Received
	Determining the Status of APARs Received
	Querying the Description of APARs Received
	Determining APARs Contained in PTFs
	Determining the Receive Status of All PTFs Containing an APAR

	Querying the Service-Level Software Inventory after Apply Processing
	Querying the Status of PTFs Applied
	Querying the Status of APARs Applied
	Determining All Parts Serviced by a Specific PTF
	Determining All Parts Serviced by a Specific APAR
	Determining All Service Applied to a Specific Part

	Querying the Service-Level Software Inventory after Build Processing
	Querying the Status of an Object
	Determining Which Objects to Build
	Determining Objects Requiring Manual Build Processing

	Performing Additional Queries on the Service-Level Software Inventory
	Which PTFs Have a Direct Prerequisite of a Specific PTF?
	What Are the Direct Requisites for a Specific PTF?
	Which PTFs Are Applied?
	Is a Specific APAR Applied?
	What Is the Service History for a Part?
	What Parts are Affected by a Specific PTF?

	Updating the Software Inventory
	Adding A Product to the System-Level Software Inventory
	Updating the SRVBLDS Table after Manual Build Processing

	Comparing the Version Vector Table to the AUX File Structure
	Checking that the AUX Files and Version Vector Table Match
	Adding Local AUX File Entries to the Service-Level Software Inventories

	Identifying the Latest Version of a Part
	Determining the Current Service Level of a Part

	Comparing Two Software Inventory Tables
	Building an APPLY List of All PTFs Received and Not Applied
	Creating an APPLY List from Two SRVAPPS Tables

	Building Apply and Exclude Lists after Receive Processing
	Building an APPLY List Containing All Requisites of a PTF
	Building an EXCLUDE List Containing All Dependents of a PTF

	Listing the Requisites for PTFs
	Determining the Prerequisites for a PTF

	Listing the Requisites for a Product
	Determining the Prerequisites for a Product

	Listing the Dependent PTFs for Another PTF
	Determining the PTFs Dependent on a PTF

	Listing the Dependent Products for Another Product
	Determining the Dependents of a Product

	Adding Local Modifications to the Software Inventory
	Adding Local Source Update Modifications to Service-Level Software Inventories
	Adding Local Replacement Files to Service-Level Software Inventories

	Initializing and Recovering the Software Inventory Tables
	Recovering the System-Level Software Inventories
	Recovering Service-Level Software Inventories

	Chapter 17. Using the VMFINFO Panels
	Where Does the Information Come From?
	Understanding the VMFINFO Panel Information
	General Information
	Using the Function Keys
	Getting Online Help for the VMFINFO Panels

	Getting Started
	Selection Panels
	PPF Fileid - Help Panel
	Component Name - Help Panel

	VMFINFO Main Panel
	Product Queries
	Service Queries

	Product Description Query
	Product Status Query
	Product Requisites Query
	Product Dependencies Query
	PTF/APAR Query Panel
	PTF Status Query Output
	PTF Requisites/Supersedes Query Output
	PTF Dependencies/Superseding Query Output
	PTF User Memo Query Output
	PTF Serviceable Parts Query Output
	APAR Abstract Query Output

	Serviceable Parts/Usable Forms Query Panel
	Object Status Query Output
	Object Build Requisites Query Output
	Object Build Dependencies Query Output
	Object Part Handler/Target Query Output
	Part Service Level Query Output
	Part Service History Query Output

	Miscellaneous Queries Panel
	Minidisk/Directory Access Query

	Compare Table Contents Panel
	Compare Table Contents Query Output
	Build Requirements Query

	File Type Abbreviations Panel
	File Type Abbreviations Query Output

	Chapter 18. Changing the Software Inventory to an SFS Directory
	Create the SFS Directory
	Initialize the VMPSFS:MAINTvrm.SIDISK Directory
	Change the Software Inventory Default from Minidisk to SFS Directory
	Enroll Users and Give Them Access Authority

	Part 5. Reference
	Chapter 19. Using the VMSES/E Reference Information
	Understanding Syntax Diagrams
	Using the Online HELP Facility
	Using the VMSES/E Commands

	Chapter 20. VMSES/E EXEC and Command Format Summaries
	Using Tools for Service and System Generation
	CHKAPARS EXEC
	GENCPBLS EXEC
	LOCALMOD EXEC
	PRODUTL EXEC
	PRODUTL File Exclusion Support
	Messages and Return Codes
	CATALOG Files
	Purpose
	Catalog File Structure
	Operands
	Entry Processing Options
	Catalog Entry Types
	Conventional Catalog Definitions
	Configuration, Notify and Sample Definitions
	General Catalog Definitions

	File Exclusion Definitions
	Customization Notes

	PUT2PROD EXEC
	SERVICE EXEC
	SERVMGR EXEC
	SERVMGR INITIALIZE
	SERVMGR SYSTEM
	SERVMGR SRVLVL
	SERVMGR REMOVE
	SERVMGR MANAGED
	VMFAPPLY EXEC
	VMFASM EXEC
	ASSEMBLE Options Supported by VMFASM
	HASM Options Supported by VMFASM

	VMFBLD EXEC
	VMFBLD BLDDATA File
	Build List Options
	Usage Notes
	Examples
	Input and Output Files
	Messages and Return Codes
	Recovery Information
	Creating Objects with VMFBLD
	Callable Services Libraries (CSL)
	Build List Format (CSL)
	Example (CSL)

	Build List Restrictions (CSL)
	Build List Options (CSL)
	Library Parameters (CSL)
	Object Parameters (CSL)
	Part Options (CSL)
	Usage Notes (CSL)

	Restore from DDR Image Files
	Build List Format (DDR Image Files)
	Example (DDR Image Files)

	Build List Restrictions (DDR Image Files)
	Build List Options (DDR Image Files)
	Object Parameters (DDR Image Files)
	Part Options (DDR Image Files)
	Usage Notes (DDR Image Files)

	CMS/DOS Phase Libraries (DOSLIB)
	Build List Format (DOSLIB)
	Example (DOSLIB)

	Build List Restrictions (DOSLIB)
	Build List Options (DOSLIB)
	Library Parameters (DOSLIB)
	Object Parameters (DOSLIB)
	Part Options (DOSLIB)
	Usage Notes (DOSLIB)

	Generated Objects
	Build List Format (Generated Objects)
	Example (Generated Objects)

	Build List Restrictions (Generated Objects)
	Build List Options (Generated Objects)
	Object Parameters (Generated Objects)
	Part Options (Generated Objects)
	Usage Notes (Generated Objects)

	Load to the Byte File System
	Build List Format (Byte File System)
	Example (Byte File System)

	Build List Restrictions (Byte File System)
	Build List Options (Byte File System)
	Object Parameters (Byte File System)
	Part Options (Byte File System)
	Usage Notes (Byte File System)

	Objects Serviced by Complete Replacement
	Build List Format (Replacement Objects)
	Example (Replacement Objects)

	Build List Restrictions (Replacement Objects)
	Build List Options (Replacement Objects)
	Object Parameters (Replacement Objects)
	Part Options (Replacement Objects)
	Usage Notes (Replacement Objects)

	Text Objects Serviced by Complete Replacement (Format 1 Build List)
	Build List Format (Text Objects)
	Example (Text Objects)
	Build List Restrictions (Text Objects)
	Build List Options (Text Objects)
	Object Parameters (Text Objects)
	Part Options (Text Objects)
	Usage Notes (Text Objects)

	LOADLIBs
	Build List Format (LOADLIBs)
	Example (LOADLIBs)

	Build List Restrictions (LOADLIBs)
	Build List Options (LOADLIBs)
	Library Parameters (LOADLIBs)
	Object Parameters (LOADLIBs)
	Part Options (LOADLIBs)
	Usage Notes (LOADLIBs)

	MACLIBs
	Build List Format (MACLIBs)
	Example (MACLIBs)

	Build List Restrictions (MACLIBs)
	Build List Options (MACLIBs)
	Library Parameters (MACLIBs)
	Object Parameters (MACLIBs)
	Part Options (MACLIBs)
	Usage Notes (MACLIBs)

	Executable Modules
	Build List Format (Modules)
	Example (Modules)

	Build List Restrictions (Modules)
	Build List Options (Modules)
	Object Parameters (Modules)
	Part Options (Modules)
	Usage Notes (Modules)
	Executable Modules When Using CPLINK or BIND
	Build List Format (Modules using CPLINK or BIND)
	Example (Modules using CPLINK or BIND)

	Build List Restrictions (Modules using CPLINK or BIND)
	Build List Options (Modules using CPLINK or BIND)
	Object Parameters (Modules using CPLINK or BIND)
	Part Options (Modules using CPLINK or BIND)
	Usage Notes (Modules using CPLINK or BIND)

	Nuclei
	Build List Format (Nuclei)
	Example (Nuclei)

	Build List Restrictions (Nuclei)
	Build List Options (Nuclei)
	Object Parameters (Nuclei)
	Part Options (Nuclei)
	Usage Notes (Nuclei)

	Identifying System Objects to be Built
	Build List Format (System Objects)
	Example (System Object)

	Build List Restrictions (System Objects)
	Build List Options (System Objects)
	Object Parameters (System Objects)
	Part Options (System Objects)
	Usage Notes (System Objects)

	Saved Segments
	Build List Format (Saved Segments)
	Example (Saved Segments)

	Build List Restrictions (Saved Segments)
	Build List Options (Saved Segments)
	Object Parameters (Saved Segments)
	Part Options (Saved Segments)
	Usage Notes (Saved Segments)

	TXTLIBs
	Build List Format (TXTLIBs)
	Examples (TXTLIBs)

	Build List Restrictions (TXTLIBs)
	Build List Options (TXTLIBs)
	Library Parameters (TXTLIBs)
	Object Parameters (TXTLIBs)
	Part Options (TXTLIBs)
	Usage Notes (TXTLIBs)

	SMAPI Appliance Servers and Stand-Alone Dump Utility
	Build List Format (SMAPI/Stand-Alone Dump Utility)
	Example (SMAPI/Stand-Alone Dump Utility)

	Build List Restrictions (SMAPI/Stand-Alone Dump Utility)
	Build List Options (SMAPI/Stand-Alone Dump Utility)
	Object Parameters (SMAPI/Stand-Alone Dump Utility)
	Part Options (SMAPI/Stand-Alone Dump Utility)
	Usage Notes (SMAPI/Stand-Alone Dump Utility)

	VMFBTMAP EXEC
	The BITMAP File Structure

	VMFCNVT EXEC
	VMFCOPY EXEC
	VMFENRPT EXEC
	VMFERASE EXEC
	VMFEXUPD EXEC
	EXECUPDT Options Supported by VMFEXUPD
	UPDATE Options Supported by VMFEXUPD

	VMFHASM EXEC
	VMFHLASM EXEC
	VMFINFO EXEC
	VMFINS EXEC
	VMFINS BUILD Command
	VMFINS DELETE Command
	VMFINS DISABLE Command
	VMFINS ENABLE Command
	VMFINS INSTALL Command
	VMFINS MIGRATE Command
	Step 1. Re-IPL CMS
	Step 2. Try to Determine What Stopped Your Migration
	Step 3. Correct the Problem
	Step 4. Finish Your Migration
	Step 5. Manually Complete Your Migration (Optional)

	VMFMRDSK EXEC
	VMFNLS EXEC
	VMFOVER EXEC
	VMFPPF EXEC
	VMFPSU EXEC
	VMFQMDA EXEC
	VMFQOBJ EXEC
	VMFREC EXEC
	Filespec Operands
	CMS File Specifications
	Tape File Specifications
	Target Specifications

	VMFREM EXEC
	VMFREPL EXEC
	VMFSETUP EXEC
	VMFSGMAP EXEC
	VMFSIM EXEC
	VMFSIM: Tagged Data (TDATA)
	Using File Input
	Querying Multiple Tables Using the File Option
	Using the STEM Variable
	Simple Stems
	Associative Stems

	Considerations for Using Stem Input and Output

	VMFSIM CHKLVL
	VMFSIM COMPTBL
	VMFSIM GETLVL
	VMFSIM INIT
	VMFSIM LOGMOD
	VMFSIM MODIFY
	VMFSIM QUERY
	VMFSIM SRVDEP
	VMFSIM SRVREQ
	VMFSIM SYSDEP
	VMFSIM SYSREQ
	VMFSUFIN EXEC
	VMFSUFTB EXEC
	VMFUPDAT EXEC
	VMFVIEW EXEC

	Chapter 21. Product Parameter File Syntax
	Structure of the Data in Product Parameter Files
	Data Records
	Comments

	File Structure of Product Parameter Files
	Product Parameter File Processing

	Source Product Parameter File Syntax
	Header Area
	Example

	Component Area
	Example

	Control Options Section
	Syntax
	Example

	Variable Declarations Section
	Syntax
	DCL Record

	Example

	Minidisk/Directory Assignments Section
	Syntax
	MDA Record

	Example

	Place Into Production Section
	Syntax
	P2P Record

	Example

	Receive Installation Tape Definition Section
	Syntax
	RECINS Record
	String

	Example

	Receive Service Media Definition Section
	Syntax
	RECSER Record:
	String

	Example

	Build Product Definition Section
	Syntax
	BLD Record
	String

	Example

	File Type Abbreviations Extensions Section
	Syntax
	DABBV Record

	Example

	Override Area
	Tag Extensions
	Override Control Records
	Delete Override Control Record
	Insert Override Control Record

	Override Area Syntax
	:CNTRLOP. UPDATE
	:DCL. UPDATE or REPLACE
	:MDA. UPDATE or REPLACE
	:RECINS. UPDATE or REPLACE
	:RECSER. UPDATE or REPLACE
	:BLD. UPDATE or REPLACE
	:DABBV. UPDATE or REPLACE

	Override Product Parameter File Syntax
	Header Area
	Override Area

	Temporary Product Parameter File Syntax
	Usable Form Product Parameter File Syntax
	Component Area
	Component Area
	Example

	Examples of Overrides
	Inserting a Record
	Override PPF (INSERT $PPF)
	Source PPF (1VMVMC23 $PPF)
	Usable Form PPF (INSERT PPF)

	Deleting Records
	Override PPF (DELETE $PPF)
	Source PPF (1VMVMC23 $PPF)
	Usable Form PPF (DELETE PPF)

	Updating a Record - Single-Level Override
	Override PPF (UPDATE $PPF)
	Source PPF (1VMVMC23 $PPF)
	Usable Form PPF (UPDATE PPF)

	Updating a Record - Multi-Level Override
	Control File Override PPF (MULTI $PPF)
	Alias Override PPF (ESA $PPF)
	Source PPF (1VMVMC23 $PPF)
	Usable Form PPF (MULTI PPF)

	Chapter 22. Software Inventory Syntax
	Structure of the Data in the Software Inventory Tables
	Delimiters

	The System-Level Software Inventory
	The Software Inventory Defaults
	Changing the Software Inventory Defaults
	The Product Parts (PRODPART) File
	Header Section
	Syntax
	Example

	Loadable Unit Section
	Syntax
	Loadable Unit Record
	Reqtypes
	Using the OR Operator
	Example

	Parts Section
	Syntax
	Example

	Product Parameters Section
	Syntax
	Example

	Saved Segment Definitions Section
	Syntax
	Example

	Example PRODPART File

	The Saved Segment Data (SEGDATA) File
	Syntax
	Example

	The Migration Parts Table (prodid MIGPvrm)
	The System-Level Description Table (VM SYSDESCT)
	Syntax
	Example

	The System-Level Memo Table (VM SYSMEMO)
	Syntax

	The System-Level Requisite Table (VM SYSREQT)
	Syntax
	Reqtypes

	Example

	The System-Level Receive Status Table (VM SYSRECS)
	Syntax
	Example

	The System-Level Apply Status Table (VM SYSAPPS)
	Syntax
	Example

	The System-Level Build Status Table (VM SYSBLDS)
	Syntax
	Example

	The System-Level Service Update Facility Table (VM SYSSUF)
	Syntax
	Example

	The System-Level Product Inventory Table (VM SYSPINV)
	Syntax
	Example

	The System-Level Restart Table (VM SYSREST)
	Syntax
	Example

	The System-Level Local Modification Table (VM SYSLMOD)
	The System-Level Base APAR Table (VM SYSAPARS)
	Syntax
	Example

	The File Type Abbreviation Table (VM SYSABRVT)
	Syntax
	Example

	The Parts Catalog (VMSES PARTCAT)
	Syntax
	Example

	The Service-Level Software Inventory
	The PTF Parts ($PTFPART) File
	Header Section
	Syntax
	Example

	Requisite Section
	Syntax
	Requisite Specifications
	Example

	Parts Definition Section
	Syntax
	Example

	Example $PTFPART File

	The Service-Level Description Table (recid SRVDESCT)
	Syntax
	Example

	The Service-Level Requisite Table (recid SRVREQT)
	Syntax
	Reqtypes

	Example

	The Service-Level Receive Status Table (recid SRVRECS)
	Syntax
	Example

	The Service-Level Apply Status Table (appid SRVAPPS)
	Syntax
	Example

	The Service-Level Build Status Table (bldid SRVBLDS)
	Syntax
	Example

	The Service-Level Production Status Table (prodid SRVPROD)
	Syntax
	Example

	The Version Vector Table (appid VVTlvlid)
	Syntax
	Example
	Version Vector Table Entries for Local Modifications

	Appendix A. Related Commands and EXECs
	INSTFPP EXEC
	The Patch Facility
	Controlling Patches
	Control File
	AUX File
	Load Map
	TEXT File

	Example of a Patch Update File
	Compatibility with HCPLDR
	Usage Notes
	Example of Local Service to TEXT Files
	Example of Local Service to ASSEMBLE Files

	SNTINFO EXEC

	Appendix B. Input/Output Files
	Appendix C. VMSES/E Sample Files
	Appendix D. Module Identifiers for VMSES/E Messages
	Appendix E. Tape Formats Supported by VMSES/E
	VMSES/E Product Media Format
	z/VM System Delivery Offering Format
	VMSES/E Service Tape Formats

	Appendix F. Servicing Non-VMSES/E SNA Products
	Types of Disks
	Service Control File
	Product Parameter File
	How VMFMERGE, VMFREMOV, and VMFZAP Use the PPF

	Merge Log
	ZAP Log
	Reqby Log
	Service Log
	Apply List
	Remove List
	Exclude List
	ZAP List
	Object Code Service Processing
	Applying Emergency Fixes Using ZAPs
	Applying Corrective Service to Object Code
	Applying Preventive Service to Object Code
	Merge Service
	Merging a Single PTF (No Dependents or Supersedes)
	Merging Multiple PTFs (with Dependents and Supersedes)

	Remove Service
	Removing a Single PTF (No Dependents or Supersedes)
	Removing Multiple PTFs (with Dependents and Supersedes)

	Prevent Regression
	Removing a Fix-in-Error
	VMFMERGE EXEC
	VMFREMOV EXEC
	VMFZAP EXEC
	ZAPTEXT EXEC
	EXPAND Command

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

