z/VM
7.3

TCP/IP Programmer's Reference

—

—

- - .

- Y E————
[—— -
- - . .
I S S W E—
I 7 E—

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
359.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-09-18

© Copyright International Business Machines Corporation 1987, 2023.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

LT =T] =R 'd | ||

1= 1+ 1 (=3 -SRI 14

ADOUL ThisS DOCUMENT......cieierieirerietereerereseesesesessesessssesessasessssasessssesessssesessnsessssns XIX

INTENAEA AUGIENCE. ...ttt eete e e eerbaeeeeesbaeeeeeesbaeeeeessasseesesssasessassessessessseneeennnnes Xix
Conventions and TEIMINOLOZYcccuiiiiiieeiiie ettt e ertee e s e e e ete e e s e e eebee e s baeeesbaeesnseeesaseaessseeesnseesansees Xix
How the Term “internet” Is Used in ThiS DOCUMENT.........iiiiiiiiiiiiiiiieeceeiieeeceeireeeceeireeeecenvreeeeeennnes XiX
How Numbers Are Used in ThiS DOCUMENT........eiiiiiiiiieiiiiieee et cecireeeeeetreeeeeeeareeeeeeesneeeeeenaneereeen XiX
Syntax, Message, and ReSPONSE CONVENTIONS......ccccuiiiiiieeiieeciieeecteeectee e ecteeeeteeestee e ebeeesaaeesabeeesnsaeesnseas XX
Where to FINAd MOre INfOrMIAtiON......iiiiiiiiiii ittt ettt eetree e e erareeeeeetbaeeeeenssareeesesseneesennneees XXii
Links to Other DOCUMENtS aNd WEDSITES....uuiiiiiiieieiieiiiiie ettt ceeiree e eeribeeeeeeeaaeeeeeensrereeeenns xxiii

How to provide feedback to IBM........ccccciieiieiieieiiiiiniienieiienienienienieiecscsscsacsassss XXV

Summary of Changes for z/VM: TCP/IP Programmer's Reference.........cccccceeauees XXVii

SC24-6332-73,z/VM 7.3 (September 2023)...cc.ccciieiciieeerieeiesessresseeseeeeessesssessesssessesssessssssessessessens XXVii
SC24-6332-73,2z/VM 7.3 (SePtemMber 2022).....c.ccciviiriieeenieeiesessieseesseseessessessesssessesssesssssessssssesssens XXVii
SC24-6332-03,2/VM 7.2 (DECEMDBET 2021)....uiiiierieierienreeiesreenseseesseseessesssessesssesseessesssessesssessesssennes XXVii
SC24-6332-03,Z/VM 7.2 (MArCh 2021)...ccueiiieiiieeirieeesieseesiessesseessesseessessessessessesssessesssessesssesssessenns XXVii
SC24-6332-03,z/VM 7.2 (September 2020)......ccccviirriieeereerienessieseesieeeessesssssesssesesssessssssessssssesssens XXVii
SC24-6332-02,Z/VM 7.1 (MY 2020)..c.ucicveereeiereenieseesieeeessesssessesssesseessesssessesssessesssessesssessesssessesssesses XXViii
SC24-6332-01, /VM 7.1 (DeCEMDBET 2018).....cccvirrieiirieenieeeenieeiesiesssesseesseseessessessesssessesssesasssesseenns XXViii
SC24-6332-00, Z/VM 7.1 (September 20L8)....c.cccirriereeeeeeerieseeseseeseessesessseseessesssessesssessesssessaessenns XXiX
Chapter 1. z/VM C Socket Application Programming Interface.......cccccecevenvvncinnnnnn. 1
TCP/IP NetWorK COMMUNICATION . cccccevireiiiieeeeeeeeeeeiiiteeee e eeee e e eeeeebater e reeeeeeessssssssareereeeeeeessessssssrsrreesesees 2
LI R E] oo T A Te) Fo oo] =TSSR 2
WRNAT IS @ SOCKET?...uiiiiiiiiiiieeieet sttt sttt st e st st s e e st e s be e s st e s beesbaesabeesbeesaseensaesasessseasssesaseenseesssaens 2
AAAreSS FAMILIES....iiiiiiiiiiriiiieerie ettt ettt e s e s st e st e s teesbe s beesatessbeessaesaseensaesaseenseesssesnseesseenn 3
Yo Lol (] A] 0= 4
Domain-specific SOCKEt AQAIESSES.uiiciiiieiie ettt e e te e e e te e e e tee s rteesesteessstesenseaeannes 5
(o111 oL AT AV G 00 a AV L= §oT 1 o) ORI 8
Server PerspeCtive fOr AF_INET ...ttt etee e ee e tee e s tee e s vae e e baeeeabaeesataeesasaeesnsaessnsasennsens 9
Client PerspeCtive fOr AF_INETo iiee et eete e cete e eette e eerte e s tee e sente e seneeessaessseessnaaesnseessnseaesnsens 11
TYPICAL TCP SOCKET SESSION....uiiieiieeciieietteeetteee e eete e e e tee e e rtee e s tee e etaeesbeeesasaeeentaseensaeesnsaseassaeessneannes 11
TYPICAl UDP SOCKET SESSION....cciciieeeiieieiee ettt et eete e et e et e e e te e e eteeesteeesbaeesssaeeensaeesnsaeesnsasannes 12
LOCAtING the SEIVEI'S POI.....eii ettt et e e e te e e e te e e e be e e e abeesenteessntaesnnsaeenenas 13
Network AppLliCation EXAMPLE.....cccuii ittt ettt re e e te e e tae e e ate e e abe e s ateeenaeeenntae e ntaeenes 14
Z/VM C SOCKEt IMPLEmMENTATION..c..uiiiiciie ettt e e e re e e te e s abe e e abeeesaseeenbeesnreesnseean 18
HEAUET FIlES. . iiiiiiiieiieiieeteete ettt ettt ettt st e bt e st e s be e s ate s be e seesata e beesabeenbeesasesnbaessaesnseenseessseenses 18
UL SR a1 a=Y Vo L1 = TSRSt 19
POSIX Signals and Thread CanCellation..........ocueieciee e e ee e e ree e e 20
Sockets and Their Relationship to Other POSIX FUNCLIONS......ccvieeiiieieiieeciee et eeiee e e vee s 20
Secure ConnNection CoONSIAEIATIONS.uiiiciieciiieeite ettt e e e e re e ere e e saaeeeaaeeesaeeesseessaeesneeean 21
Miscellaneous IMplementation NOES......uiiciii ittt te e e te e e rte e esnteeeeneeeenns 22
Incompatibilities with the VM TCP/IP C SOCKetS LIDrary.....ccoeeeceeeecieeecieeccieeecieeeecireeecveeecne e 23
Incompatibilities with z/OS and 0S/390 C SOCKELS......ccccuiiieiieeeiieeette et vre e ree e ane e 25
Incompatibilities with the Berkeley Socket Implementation..........cccveeecieeecieeciieecceeeeee e 25

Compiling and Linking @ SOCKETS PrOZIam.......cccuiiiviiiiiiieeiiieeesieessieessteessee e ssiee e sseesssaeeessseesssneesssneessnnens 26

Compiling and Linking a z/VM C SOCKETS PrOogram.....c..coeciiiriieriiieeniiieesieessieeesieessseeeessseesssassssseesnns 26
Compiling and Linking a TCP/IP C SOCKEtS PrOZram......cccceiecieirriieeniiieeniiieesiireessineesseseessseeessseeessseeens 28
RUNNING @ SOCKETS PrOZram..ccicciiieiieieiieieiiteeeite st ss it sssee s sttt s s sbee s s bee s sbeessbeesssbeessseessseeesnnsesenseessnnens 29
Preparing to RUN @ SOCKETS PrOZIam.....cciciiiiiiiiiiiieriieesiieessieessteessieeesssreessseeessseeesssseesssseesssseessnseens 29
UsSIiNg ENVIroNmMENt Variables.ottt e s e s be e e saeas 30
Running a Program Residing in the BFS........cooiiiiiiiieeteeteceee sttt s see s s s 31
Running a Program Residing on an Accessed Minidisk or SFS DireCtory....cccccccevvveerrceennieessieennnnen. 32
C SOCKETS QUICK RETFEIENCE....ccci ittt e e e e e s e e e abbabaeeeeeeeeeeesenassssseaeeereeas 32
IO A1 T=T 0} o o =1 =T o o FO RS 35
TCP SO VI PrOZIaM. .. eeiiieiteeeeeettee e et te e ettt e e ee s et e e e e e abe e e e e easeteeaeansteeee s nseeeeesanneeeessannseaessasnsneeesannnneeas 36
UDP ClLIENT PrOBIam...ciicieeieieeiiieeieteeseieessteessteessseeessseeessneeessseesssseesssseesssseesssseesssssesssseesssseesssseesssseessssees 38
UDP SEIVEE PrOSIAM.. . eiiiieeitieeeeeitte et e ettt e e ettt e e s ettt e e sesseteeeeenseeeeaeuseteeseanseeeesaanneaeessaneeaeeaaanseeeesannnne 38

Chapter 2. TCP/UDP/IP API (Pascal Language).......ccceeeeereecrnncrnceesiansraccrscsnsssncnnes 41

Yol N R Yo LU T =T 0 01T o £ S 41
DY = B A 0 (o1 (U1 =TSRSS 41
(OfeTaTaT=Tor (o A IR =1 (TSRS PO 42
Connection INfOrmMation RECOIM......cooociuiiiiiiieieee et e e e e e e e e eeessssaareeeeeseeeeesennnns 43
SOCKET RECOIM..ccciiiiieiiittieeeee ettt e e et e e eee bbb e e e e eeeeseesassssbsbaesaeeaeeesesasssssssearaeseseessensnsssssenes 44
NOTITICATION RECOI. ..ottt e e e e e e e e ee e absbbebeeeeeeeeesesesanssssssaseeseeeeessennnes 45
L ERS] o T Yotk o= N To T 2 {=Tod o] e U 53
USING ProCEAUIE CallS..ciiuiiiiciieiiiieieiiee ettt stte s stte e stte s stee e sat e e sbaeesbeeesabaeesbeessaseeesseessnseessnsanennn 53
o] A1 Tor= 1 A (o] =TSSP 54
TCP/UDP INitialization ProCEAUIES.......ccoiiiiieeeeeeeeeeeeee et e et e e e e e e e e e e e e e e e e sa b e e s s e as 54
TCP/UDP Termination ProCEAUIE........coooi it e e e e e e e e e e e e e e e ee e eaaa s s s s s s eesaaeaaaes 55
Handling EXtErNal INterTUPTS...ci ittt sre e s see e s aee e s saee e ssaeeesssteessseaessnseesnnes 55
TCP COMMUNICATION PrOCEAUIES.....cciiieeeittteteeeeee ettt e e et e e e e e abbrar e e e e eeeesesessssssseaseereeeeeens 55
T o= o] =Y - U T PSPPSR 57
MONIEOE PrOCEAUIES.....cci i i ettt e e e e et e e e e bbbaee e e e e eeaeesseseassssssassaesaeseeeeessasssssraraeeeeeens 57
UDP COMMUNICATION PrOCEAUIES....iiiiiiii ettt ettt e e e e e e e s eeeesassaaaeeeeeeeseeesessssssseseesreeaens 57
RAW TP LTI ACE utteiiiieiii e e e e e e e e e e aab b areeeeeeeeeeesessssssssasresreeaeessesaassssarseareesaens 58
TIMIEE ROUTINES.cciiiiiiieetiittteeeeee ettt e e e et e e e e e e bbb e areeeeeeeeeeees s ssbabaeaseeseseeesesassssssssasreeeeeseesannnns 58
[Lo oY) WY oI 2 (o TN A1 =TS 58
OthEr ROUTINES .o c i ittt e e e ee et e e e e e e e seeesesssbsbaesaeeeeeeeesessssssssbasanseseeseesennnnsssnes 59
PrOCEAUIE CallS..ciiiieicitieiieeeee e e e e e e e e e e e ee s e e s s sabeareeseeeeeseesasssssbasaneeseseeeseansssssssrnnns 60
AGAUSEINOTE. ..ttt e e e eeeee bt e e e e e eeeeeseesssabbeareeseeeeeseasasssssraesreeseseessensnsssrsrareeseens 60
27=T= 0] 01 Kod o o JO OO PSPPSR 60
(01 =T T T T=T SRS OO PRSP 60
(01 =T 1= W] g =T SRRSO ORI 61
LTS3 1 o)V 0 =Y SRR UROE 61
] g T I o o) o F SRR 61
[C1Y 1 2 (o] N TV T 0] o Y=Y SO TURRRRURR SRR 62
GETHOSTRESOL.c.ci i i ittt ee e e e e e e e e e e e e s babbaaeeeeeeeeesesasssssaseasaeseeseeesnennsssranns 62
GEEHOSTSTIIING. ..viiietieieiie ettt ettt s et e st e e sttt e s bt e e s bt e e sabeeesabeeesssaeesasaeessseesasaeesseeesseeenn 62
(CT=] 8 Ka [T o {1 /SR 63
[Ty AN LoD g o) = T RRPPRPPRRRRNt 63
(G101 411 - SO OO OO TP TR PSPPSR 64
[=Y Lo | 1TSS UR SRR PRSP 64
J K WoTor= 172X [o 1 £=YT T USRS 65
LK Mo Tor= 11 o [o1=) ST TSSO TR RRRT PP 65
1 [eTa16do] aaYa 0 F=1 2 o IR RSOOSR 66
17 o T a1 18 =T o PSSR 67
N0 1172 (o TSR 68
PN G REQUEST ... etei ettt ettt ettt s bt e e st e e s bt e e s bt e e s bt e e s bt e e e ba e e st ee e e baeeebaee e beeeebaeeebaeeeraeeans 69
L@ LU T Y R SUPRRRN 70
B =TV N o1 Fo T = TSRt 70

= LT o 10 o 1= o 1 SUURPROt 71

RAWIPRECEIVE. ..ceiietteee ettt ettt e et e e e et e e e s e e et e e e e e s taseeeeesstaeeeeastaseesessaneeasansanessssnsseneessnes 72
8 = TV N o 11T T SRR 72
T 1o D N LY - o] (= TSROSO 73
R P EXTR UL et eee et eree s e e s s e e s e e e e e e e e ettt et e e et e e e e s s e s sassassassaesaeeeeeeseeseeseessesssssnnnnnns 74
o o 02V 003 12U T o) SRS 74
ST N0 1L -SRI 75
ST= YA 1] |2 L= TSR 75
RS- Y60 1 S PPN 75
ST= 172 a1 7Y S 76
IS Y= 172 1 1 1[0 T o PSR 76
= 1Y\ (o 1 =1 T UURPRRN 76
Y=Y 2o T i N 2SR 77
Y=Y (o] Y25 UPPPRPR 77
Y=Y 0T USROS SPOS 77
) = L i o 1 1\ £ o= TR 78
BEelo110] o1 K- U B Kof o 1o X A2 UL { @ o =T o TSRS 79
o] 0 1C 35 = U PSR 81
o]0 AN o o SRR 81
]] O L 1= =TSRSS 82
o] 0] =5 U] o1 S UPPPRRRN 83
TcpFReceive, TcpReceive, and TCPWaItRECEIVE.ccceviiiii ettt 83
TcpFSend, TepSend, and TCPWAITSENG......uivi it e e e e e e rae e e s e s ea e e e e anreeas 86
TCPNAMECNANGE. ..ttt ettt et e st e s st e s s te e e s be e s s beessabeesssteeesasaesnneaesnssaesnnsaesnsenas 88
o010] oT=TaT=YaTe B Kol o) L Z- 1) @] oY o TSRS 88
o301 o) 4o o 1SR URRROE 90
B o] o151 00T o { B - L - VR SUURRR Rt 91
3015 O =T o | R 94
o] 015 O o T 98
B o oI Y= Y= U UUUPRRRPNE 98
o] 013 =1 {1 SR 99
o] 513 €= L 17U 100
L3 04 4T 2o ST 101
(0 Ta ST =1 3 VOSSNt 102
[0 Fa T 11T T RS 102
0 Fa 101 L 11 TSR 103
UAPNRECEIVE. .. eeee ettt sttt e ettt e e e e et e e e et e e e e s steeeeeesttaeeseesstaeaesanssaesesansseneassnnsennannns 104
6 Fa 1010 oY o TSRS 104
0 Ta o] 2T oL =T 1Y TSR 105
(6 Fa 0 1S 7= 2 e 1S SRR 106
[0 o] o =13 T 1T TP 107
L0 LYo 1Y o TS 107
SaAMPLE PASCAl PrOZIami. ... iiieiiieeiieeeiie ettt e st e ettt ste e stee e s bee e s abe e sbeeesseeessseeesseeesnssaesssessnssaesnnees 108

Chapter 3. Virtual Machine Communication Facility Interface........c.cccceccencrnnnena. 113

(CT a1 = 1 Kl (o] 81 0 F= 1 4 (o] VRSO UPTRN 113
DY -) U o (U1 =TSR USSRt 113
VM CF FUNCHIONS. . utttttiiiiieeee e eeeeceiittre e et e e eeee s abaraeeeeeseeeeeeeessssssaeaseeseeeeeesasassssasaessseeesesesansnsssrrrneeees 115
VMCF TCPIP Communication CALLCODE REQUESTS......cccuutieeeeciiieeeeciteee e ccitre e e setee e e s eereeeeeesanaeeeeea 115
VMCF TCPIP Communication CALLCODE NOtifiCatioNS......ccceuvrviriiieeeiiiieccicirrreeee e eeeennnneeeeeee 117

TCP/UDP/IP Initialization and Termination ProCeAUIES....... e e e e e 119
2] SN\ (of o1 =Y VTl RSN 119
LN od o) Y= Y ot TSRS 119
HAN D LENOTICE. . ittt e ee et e e e e e e eeses e sasbsbbaeereeeeseeesesssssssaseeesesesseesennsnsrares 119

TCP CALLCODE REQUESTS....etitiieieieieiiecccciittteeee e e s e s eeeeeaaaeaeeeeeeseesessssnssssseasesesessesesssasnssssnnaseseeesssenanes 120
{08 0 1) = (o o TSR 120
] O] = Y {od o TSRS 120

vi

L0] =1 | o o R SSUURRRRN 121

L0] I 0 11 {od o T SUURPR 122

oy =L 08 23 V= (o] o T USSR 123
Y=V (el o I Ua T] = V1 {of o TSR 123

ST ATUSECP ttttt ittt ettt ettt e st e st e s s te e s et e e s e ate e s e ata e s steesesteessstae s sbaesassaesstaesassaesassaesssseesnsseesnnsaesnnen 124
TLSSCERTDATAREQICP wtetiettteiitetiiieeseteeseteeseiteeseteeeseteeesseeesseessseessseessseesssseessseesssseesssseesssseessnnes 124

B IS O 1 =V I (o o PR PSPPSR 124
LIS 1 0 1S = (o] o J PR RRUOURRPPPROt 125

T LSS S ERVERLCP. .ttt ieutttiiiieieite sttt eete e st e s st e s te e s sttt e s ateessateesssteesssteessseeesastaesansaessnsaesasseesansaesasseesnns 125
TS S S TATUSTICD et iutttieiieieiteeeit e e ettt e sttt e sttt e sttt e s bt e e s beeesbee e s bee e s saeesseeesabaeessseesnseaesssnessseesnssnesnsees 126

RV ST o =1) (o] o F OSSPSR 126
RIS Y U (o] o T PSPPSR 127
UDP CALLCODE REOQUESTS. . .uuteitiiteeeeiiiieececiierttreeseeeseseseesianasseareesessseseesasssssssesseesesssesesssssssssssneseeesesseanans 127
L0110 1] =1 T | o USSRt 127
NRECEIVEUAP...ciicttiiiiteeiitessit ettt et e st e st e s te e s te e ssabeesssae e s aseeessbaessasaesssbaesssseessnsaesnnseessnsees 128

L0] o =1\ 1 T o TSRS 128

Y =111 50T o TSR 128
VOOPENUAP. ..ttt itte ittt ettt e st e st e e s bte e s bte e sbteessteesaseeessteesseeesastaesneassaseeesasseesaseessnne 129
VOSENDUAP .« utteietieieitee ettt ssit e sttt e sttt e st e e st e e s bteesabeeesbaeessbeesseeesssseessseaesseeesnseeesnssaesnsseesnssaesnnsas 129

TP CALLCODE REOQUESTS....uuiieiiiieeeiiieececccitttteeeeeeesseseeesaseaaeeeeeasaesessaessssssasaasseesessesasssnsssssennesesesessnnnannes 130
(010 1] =1 = 1Yo T PSSR 130

(0] o =] = 1T T TS 130
L8 = YA = =NV o YR 130

ST =V = ATV o J S 131
CALLCODE SYStEM QUETIES.cccccutreeeeecitiieeeeccitieeeeesteeeeeeesteeesseistasesaessasessssssssssssssssessssssssessssesassssssssnsssnees 131
TSNOSTLOCAL. .. uteiittee ettt ettt et e ettt e st e e st e e st e e s bt e e sbee s sbee e sbeeesaseeesabaeesasaeesssaesssseessnsaessaseesnnses 131
MONITORCOMMEANT....tiiiiiiiiiiieiiitetsiee et e s st e s st e ssttessbeessbeeessbeeessbeeesssaessssaesansseesseessssaessnsaeenssees 132
MONITORGUETY etteteeei e ettt e e e e e e e eercteree e e e e s e e e s ss e aatereeeeeeaesesasanssssesanaaeessesesssansssssananaeeseseeannns 132
1 T o USSR 133

I SO U= P SSUPPRRN 133
CALLCODE NOTHICATIONS. ..cictteiiiiieiciieeseieeseieeseieeseiteeseieeessieeesenteessseeesaseeesneessaseassaseesssssessaseesssssesssseessns 134
F X O Y = o] o] o 1TSSt 134
BUFFERSPACEAVAILABLE..... ottt ittt ettt st e st e s ba e e saa e e s ba e e ssaeesssaaesaseaesnneaean 134
CERTAALACOMPLETE....cicctttietteeite ettt ettt s e e st e e s bt e e s aa e e s beeesbaeessaeesasbaesassaesseaesnssnesssnenn 134
CLEARLEXTIRESUMED..... ..ttt ete e s eate e seate e s eate e ssaeesseeesstaessaaesaseaesaseeesaneessans 135
CONNECTIONSTAtECHANGED........iiiiitieiriteeeitecete ettt e s sbe e s s e e e s ba e e s baeesbaeesseeessseeenn 135
BN I aNo 1= AV =T =Y FO O TR SPTSPP 136

DL 1N A o] o= TSR 136
€ =17 oo 11 =TSP 136
QUERYLISCOMPLETE......ciiiitttieiieeeitte ettt eeiee ettt ssrete s steessteessaeaessabaessabeessaseessstaessssaesnssaesnnsessnsseesnnsnas 136
RAWIPPACKEISDELIVERED.......ciiiiiiiiieiiiiee ittt ste s ssiee s s saee e siee e svee s sbee s sseeessbeaesaneessaneessnsens 137
RAWIPSPACEAVAILABLE......coi ittt ettt e st e st e st essbe e s s e e s sba e s s beesssbeessssaesssseessnseessnses 137
READYTOrHANDSHAKE. ... ettt ettt sttt ettt e stte s st e s s be e s s bt e s sbae s sbeessasaessasaessaseessasaessasens 137
RESOURCESAVAILADLE.viiiiiiiiieeiteciee ettt ettt s st e s be e s s be e s s beessabaesssbaesssseesnsseeann 138
SECUREhANAShAKECOMPLETE......ccccottiiiiieeiirieeiiieeeiieessireessireessieeesseeessseeesssaeesssseesasseesssnesnssaesnnsaeen 138
UDPdatagramDELIVERED.......ccutiiiittiiiee ittt eeiee st esste s ssiteessiee s satesssneesssseessseessseeessseessnseessnseessnsens 138
UDPdatagramSPACEAVAILaDLE.......cciiiiiee ettt st 139
UDPresOUrCESAVAILABLE...... .. ettt ettt e e sttt e e s et e e e e st e e e e et eee e e nneeeeean 139
URGENTPENAING. ...eiieiieieitteeiteeeiteeeit e sttt eesit e s sttt e s bte e sbteessbeeessteessseaessseaessseesnsseesssaesssnesnsseessssnenn 139
Chapter 4. Inter-User Communication Vehicle Sockets........cccccceruceiecencecracencenns. 141
PrerequUISite KNOWLEAZE.c.uiiiiiiiiieeiee ettt sttt et e s be e s te e s s be e s s sbaeesabeesssbaesssbaesnnseeens 141
AVAILADLE FUNCLIONS. ..ciiiitiiicieeiciee sttt e e e s ee e s stee e s ebeeesebteesbteesseaessteesaseaesaseessaseessaseessaseaesans 141
Socket Programming With TUCVcouiiiiiiiiiiectecete ettt et esaee s s ate e saee e saeas 141
Preparing to use the IUCV SOCKET APL.....cuiiiieiieeciec ettt sttt e st esate e s see e ssseeessneeesans 142
Establishing an IUCV connection 10 TCP/IP.....ccciiiiiiiiiieieieeeite ettt e s e s e s bae e baessnee s 143
Initializing the TUCY CONNECTION.....ctiiiiieeieiee st sie ettt eserte e sete e seree e seaeeeseaeeeseseeesnaeesseaesseessaseessan 143

Severing the IUCY CONNECTION.....iiiiiiiieeiciee ettt et e sete e sete e s sateeseaeeessateesenteeseneeesnteesneaessssessaseeesans 144

Y=V o)V H AT AN o] o] o=\) o TSR 145
Y=LY=l o)V O SR 145
ISSUING SOCKET CallS.ciiuiiiiiiiiiieeiiee ettt ee e s te e st e e s bt e e s aee e s bee e sseeesseeesseessnseeesases 145
OVerlapping SOCKET REGUESTS....civiiiieiiiirieeecite ettt see e s sae e s sbee e s sbae e ssaee e ssseeessseeesseaesnseeesnnes 146
TCP/IP Response t0 an IUCY REQUEST.......uiii ettt e e e e etre e e e svee e e s e sbe e e e e e e nreae e e enneees 147
Encrypting Data on an IUCY SOCKET........iiiiiiiiiieiiiieeiiee sttt sttt st e ssaeessate e ssseeessaeeesnee 147
Cancelling @ SOCKET REGUEST....ciiiiiiiiieieieereite sttt st s sttt s st e s st e e s sbe e s s beessabeesssbaessasaesnnsaesas 147
TUCY SOCKET Call SYNTAX..uuiiiiiiiiiiieeieeiiteeeeecitee e s esttee e e e sctte e e s e enbeeeessesteeessessstsessesnstesessenssenesssnnsseseessnnsenes 148
TUCY SOCKET CallS...uuviiieiieiiiieieiie ittt seiteseite et s st e s ste e s s tee s s te e e sstaessstaessateessstaesssseesssseesssseessseesnseesnns 159
YO 01 =1 i ISP UUPPPR 159
BIND..eiiiotteiitie ittt et e st e s te e s e e e s eate e s ae e e s bt e e s bt e e s a e e e s e a e e e e er e e e e a e e e e ate e et aeeaataesentaesanteesantaesarteesans 160
CANCEL @Nd CANGCELZ....utiiiiieeetteeeite ettt stt e stte s sstte e stte e sbaeesbeessbaessasaeesasaeesnsaeessaessssaessnsaeenns 161
L0110 1 = SRR 162
(010 1111] = [P 162
FON T L. ettt ettt ettt te e s ete e st e e sbt e e s bt e e sabte e sbeeesaseeesaseeesabeeesaseaesaseeessseeesaseeesnseeesnseessseesnnsens 163
GETCLIENTID i ittttectteeetteeetteeeetteesiteeesreeesteeesbeeessaeesbaeesasaeesasaaessaesssaeesseesssaessnseeesnseesssseessnsaesnnne 164
GETHOSTID...ceiiiteeieiee ettt e st et eseee e st te e s eate e seate e s steesbtaessstaesseeesstaesastaesseaesaseaesaseeesaseessaneessnns 165
GETHOSTNAME. ...ttt s e e s be e e st e e e s bee e s beeesabeeessbeeessbeeesnseeesnseeesseeessens 165
GETPEERNAME ...ttt ettt sttt e site e sttt e s ate e sate e sbtaessteesstaesstaesaseaesasteesantaesansaesaseeenane 166
GETSOCKNAME. ...ttt ettt ettt e et e sttt e st e e sttt e s bte e ssateesasteessaeesaseeessaaessseessseesssaesssaesasseesnnsaenn 167
(€] = IS 0161 1@ 1 PSPPSR 168
GIVES O CKET . tttietee ittt ettt st e sste e s ste e s s te e ssste e s sateeseaeeessseee s steesseeesseeesseeesnseessseeesnseessnseesssseeessens 169
(0 104) OSSP URPRPPR 170
LISTEN ettt ietteeetteeeie e e ettt e st e e st e e st e s sabe e s st e e s s abeeesabaeeeasaeeassaeesssaeesssaeesssaeesssaesassaesassaeesnseesanseeesnsaesnnes 173
MAXDESC.....teeietee ettt ettt ettt st e s st e s st e e sttt s s bt e s s st e e e s st e eassaeesasaeeaaseeeassaeeenbaeeaabaeeassaeeanbeeenareeeanaeenn 174
READ, READVutiiiitieiette ettt ettt e s st e s st e s sste e sssta e ssstaessataesestaessseaessssaesastaesnssaesassaessssaessnseesnnes 174
RECV, RECVFROM, RECVMSG.....cccccttiiiieiiiieeeiteseite s siee s stee s s iee s st e ssteessteessataessaeeessasaesnssaesnnsaesnnns 175
SELECT, SELECTEX .iiiitttiittiiiitesiitessitessieessteessteesssbeesssseesssseessssaesssseesssseesssseesssesssnseessssesssssesssssees 176
IS =1 N 5 OO PP 178
SENDMSG ... ittt ettt ettt ettt st e st e s s abe e s s e e e s s aba e e s abe e e e abae s e abae e e abae e ate e e eee e ataeeanaeesaaeaeenes 179
S =1 V] 5 O TSP SPOT 180
Y= 1 0104 10 | i IO RSOSSN 181
SHUTDOWN. ..ttt ette ettt e st seitt e s st e s st e s st e e s s beessabeessssaeesabaesassaeeassaesanseeeasseessnseesssenssnseeesssenesnsens 182
1510104 14 S OO SPORSPURTTPPR 183
TAKESO CKET . ttteteitteeeiitte et e sttt e sstte s srtee s s stee e sbeessbeessabaessbeeesbeesssseesssseesssseessaseessssaesssnesssseesssseesnnses 184
WRITE, WRITEV ...ciiiiiiiiiitiiiitescieessie e st e ssite e seateesateesssteessteessseessseesssaesssseessssaesnsseesssseesnsseessseenas 185
LASTERRNO ..ttt ette ettt ettt st st e e st e s sbe e s sbee e sabee s s baessasaessabaessasaeesaseessssaessssaessnseeessaesnnsees 186

Chapter 5. Remote Procedure Calls......ccccceieinieieiincenieneienieceniececensecececsecesseess 187

Bl L= 24 o O (g =Y o - Tl TR 187
Lo T 0 0 =1 0] o 1= R SUPPPRRN 190
(036] 0} v Tox (T a Y =3 2oT 10 4 =Yoo =1 SO 190
BN R (oL T 1] - U a o TP PP 190
RPCGEN COMMEANG...uiiiiiiiiiiiieeiiieeeiieeseieesiteeseiteessseeessseeesasseesasseesasseesasseesssseesssseesssseesssseessnseesssseessseesns 190
ENUM CLNT_STAt STIUCTUIE . uutiiiiiiiiee et e e et e e e e eeeabbbaeaeeeeeeeeesesesssssssasseeeeeeeessesnnnnes 191
0] 1 o =SOSR 192
AcCeSSING SYStEM RETUIN MESSAZES...ciicuiiieiiiiiiiieieiiee st ssteessite e sttt e s sbeeesssaeesssaeesssaeessaeesseeesasseenn 192
Printing SyStem RETUIN MESSAZES.uiiiciiiiiiiiiiiieieitteste ettt esiteesre e e s beessbeeessbaeessaeesssaeessseeesseesan 192
Lo T8 gT=T = VAT o 1TSS 192
Compiling, Linking, and RUNNING an RPC Program.......ccecueiiiiieriiieesieessieeeseeesseeessieeessneeesssssessssnessses 192
RPC GLODAL VAriables. ..o uviiiiiiiiiieeeciees ettt sttt ettt ssaae e s te e sate e sateesssseessseesaateesasseesnsaenas 193
o ToR ol (==Y (=T o PRSP 193
LY ol o [T 193
LY ol (o [1=) SO 193
Remote Procedure Calls and External Data Representation........ccccevccuieeeecccieieececiiee e ceciee e eeieee e e 194
AULN _ABSTIOY () e eeeutieieiie et et et eete e et et e ettt e e ettt eesateeeesbeeeesseeeeaseeaassesaensaeaessesaenseeasssasasnseeaanseaann 194

vii

viii

LU N aLaTe LT (= (= RO 194

AUEAUNIX_CIEALE() e eeeiiiereeie ittt eee ettt e e e e ettt e e e e s abee e e s seabeeeessesaeeessesssaeeeesssseeessensreneessasres 194
authunix_create_default(). .ot e e e e s e ebae e e e s eeare e e e e e nreees 195
Lor=Y | [o o1 (USSR 195
(o 1] N o o Y=To [oz=Y=y { § FE RO 196
Lo 1o A or= L TR 197
(o1} A ote] a1 {fo] (TSRS 198
(o] A o1 (== | (=1 O 198
(ol Y B0 [=Y) o)V F TR U TSRS 199
Lo A L= T=L (=TT RN 199
(ol 0N A= LT =Y o SRS 200
oY B o Yol Lot (=TT o) T U USSR 200
(oY S o 1= o Vo T OO U USROS 201
CLNE _PEITOI() tteeetiee et ettt ettt ettt ettt e et e e ettt e e e ebeeeebaeeeebaeeebaeeesaaesasaeessaaeansaaesnsaaesnsasesnsaeasnsaeesasenannns 201
CLNt_SPCIEATEEITOI() . urieiiiieeeiie ettt et e et e et e et e ettt e e e bt e e e beeeeabeeessseseessasaesseeeensesassseeasssasasnsesannseaann 201
CLNT_SPEITINO() et iuiieeeiee ettt ettt et e et e et e e e tteeeettee e steesestaeeeseeeeassaaeassaesassaesassaesassaesastassasseennns 202
CLNT _SPBITON() e ietieeeiee et et et e et e ee e e et e e e tteeeeteeeesteeeesteeeeabeeeestaseessasaassasaassasaassasaassasaassasannsaeannes 202
(o] 1 2=V ol (== L (=1 PN 203
(oY nde o ol ¢ =- | L=Y () O USSP 203
CLNEUAP_CrEATE() . ueee it ettt ettt et e ete e e et te e e bt e e etee e e baeeebeeeebaeesasasesnsasasnsaeesnsaeasnsasassaeanns 204
(= S 0177 T [0 [=YY (TSRS 205
(= (o od o To T 1 FE S 205
PMAP_EEEMAPS()ereeureerreeereerieesiieeieesteesteeseesteeseestessseesseeessaesseessseesseesseessesssseesseessseesseesssesssesssessnses 205
(oL AE= Yo TR = (= o Yo (TSRS 206
(oY aat= o T g gl o= L[TS OO 206
PIMIAP_SET() e reeerrieeiieeeitieeiteeeet e e e eteeeeteeeetteeeeseeessseeeasseeaassaesassasaassaeaassesaassaseansesaanseeeansesaansesaanseeeanses 207
PIMAP_UNSET()eeeitieeeitieeeiie e et eeciteeectteeeitteeeeteeeebeeeeebeeeesaeeeseeeeseaesnsasesnsasasnsaaaansasasnsaeassaeesasseesasanennss 208
=Y =13 =Y o o) TSR 208
SV _ABSTIOY()reeeeureeeeiieeeitieeeiteeeecteeee it e e eteeee bt e e e beeeeteeeebaeeestaseessaeaensaeeansaeaassasaassasaassaaaessasaanseeaansaaannnn 209
Vo (= T=Y- V=L RSP 210
LY o - (=Y =V =] (TP URRPSRR 210
LYV o ==Y o=V (=T T 210
L o - (=Y 1 =Y [TS 211
Vo (=Y 1 =Y 11 (USROS 211
Vo =Y = 13 1= o (T USSR 212
LY {o2 1 [a1 TR 212
SVC_SENATEPLY () ureeeeiieeeiieieiie et eete e et e ee e e e e teeeetteeeetteeeeateeeessaeeesseeeessaeeassaeaassaeeassaeeasseeaassessnnsaennes 213
SVC_UNTEEZISEEI()urerteeeureeiieesteeitteeiessteesee st estee st esreesteesseessteesseessseenseessseesseassseensessseesnseesseesnseesseesnsenn 213
Vo1 A - 1011 o 1 TR 213
Vo1 e [=Telo Lo [=Y) TR 214
YV el=T4 gl aTe] o o Yol | T U USROS 214
LYol =Y o S aToT o e} = RS 215
SVCEIT_PIOZBVEIS().ueesureestereeeriteeseeesteestesteesseeatessseesseeasseesseessssassesssesssesssseesseessssessessssssssessssesnsesssesans 215
SVCRIT_SYSTEMEBIT() . ureiieiieeeiiieeetieeetteeect e ee e ee bt e e e teeeeteeeebeeeebeeeeataeeessasaensaeaassaeaassaeasssasesnsaeesnsaeannes 215
Yot V=T L= LU L1 a1 TSRO 216
Yol =V Ao (=T= 1 (<] R 216
Vo1 (o] o I ol (==Y (=1 § T OO USRS 216
SVCUAP_CIEALE() eeeuriieeiie it ettt ettt et e et e e et e e e bt e e e bee e e beeeebaeaeseseesaeaensasaansssasnsseaansseesnsseesssaesnnees 217
(o i Tolol=Y o} 1=Te JNE =Y o1 1Y/ TSROSOt 217
XA _AITAY () e tteeeeteee et e ettt e e cte e et e e e ette e e ette e e eteeeebeeeetseeeebeeaensaseassaseansaseessaeeansaaeassaeeanseseansassanseesansaeennsens 218
XAT_AUTAUNIX _PAIMIS()eeeeeriieeiiiieeiieeecteeecitee ettt e ettt eeetteeeeateeeesaeeessseeeesseeesseeesseassseeaasseesssessassaasnsaenn 218
DrCe [oo Yo YL T 219
Do [l o)V AT=TY TSRS 219
prce [oz=1 11 T [P 220
Dra [o=V (o' =Y~ TSP PPSRR 220
DCe [e [1U] o1 1= T 220
DCe [=T 101 0 TS 221
DCe R (o T L TR 222

DCe [T o 11 = R 222

DCe [T a1 TR 223

Dr(a [T o = PR USRE 223

p(o [l o] o =To [UL=T (OO OO 224

(o o] oY= Yo (VLI L] { 11 FO U USROS PR R 224
XOAT PIMIAP () e etteeieiee et et e et e ettt e eete e eetteeeetteeeetteeeasteeeesteeeassaeeastaeeasteesassaeaassaeeastaeeastaeeassaeeastaeeantaeanns 224
XAT_PMIAPLST() e eereieieiiee ettt ettt ettt ecte e e ctte e e ette e s beeeeebeeesebaeeeabaeesasaeessaaessaeeesaeeasaeaaseeesasaeaanns 225

p(o [l o To 10N £ T T OO USRS 225

(e [=N T=T = A [oL=T TR 226

Do [l ¢ =Y[=Tea =Y B =T 01 Y7 FO OO OO 226

Dr(a [=T o 1R Ty USRS 227

DCe L] a1 o TS 227

DrCa L3 1T = TSP 228

DCe VT 4 N 228

DrCa [V e = PSSR 228

DCe [V=] 1o { TR 229

DCe [V a1 To) a0 T 229

DCe [YZ=Te3 (o] {0 TN 230

DCe [0 1T [TR 231

DCa [T = Vo 1] 4T Y= PSS 231

(e [=T a oL (== =1 SR 231

D(e [(=Tol o =T 1 1= § TN 232

(e [=ToR =Y aTe [oY i w=Todo] e [TR 232

DCe [(=IO =T Y T 233
XAITEC_SKIPIECOIA (). uveeiiieeiiiiieeiiee ettt ettt ettt etee e etee e e etee e ebaeesbaeeebeeesbaeesaseeessaeessaeessaeessaeesaseeennns 233

(e [(o [To T oT ¢ =Y=1 11§ TR 233

Do A =Y =13 (= TSR 234

Do AT =T =1y 4= (S 234
SAMPLE RPC PrOZIamsS. .. .uiiieiieeeiieieiteesitteessiteeesttee sttt essteessseeesseeessseesssseesssseesssseesssssesssssesssseesssenesssnens 234
Running the Geneserv server and Genesend CLIENT.....cciiiiiiiieiiiirieeeeeeree e 235
RUNNING the RAWEX PrOZIaMi....uciiicieieitieeeiiieeeirteesieeesirteesseeessseesssseesssseesssseesssseesssseesssseesssseesssseesssseessnnes 235
RPC GENESENA CLIENT..ciuiiiieiieiiiie ettt ettt e st e st e e s te e s sbe e e sbeeessbeessasaessssaessssaesasseessseessssaeenns 236
RPC GENESEIY SEIVE ... eiiiiiittee ettt et e e et e e e e ettt e e e e et e e s e e areee e e e aseeeeeeeuneeeessesraeeesensaaeesesnseeeeenanne 236
RPC RAWEX RAW Data STr @AM .ccc i iiiiiieitee ettt ettt ettt ettt e sttt e e e et e e s e ease e e e e s s nneeeeesanneeeeesanne 238
Chapter 6. SNMP Agent Distributed Programming Interface.......ccccececreirncrncrannans 241
SNMP AZENTS ANA SUDQEENTS. ..ciiiiiiiiiiiieiieete ettt bee s bee e s sbee e sbee e ssee e s sbaesnseeesnnes 241
ProCESSING DPI REQUESTS....utiiiiiieiiiieiiiee st ssie e st e st e s bt e s st esseeessabee s abeesssbeessssaesssseessssaesnssaessnseesnn 241
Processing @ GET REQUEST.....ccccuiiiiiieeiiee ettt ettt site e st e e stee s sbe e e sbe e e sbeeessaessseeesseesssanesane 242
ProCesSing @ SET REQUEST.....ccciiiiiiieiiiieerite st et ssire e st e s te e s st e s sbeessaseessabaesssbaessbaeessseesssseessnses 243
Processing @ GET_INEXT REQUEST....ccccuiiiiiieiiieieite sttt stee st e st e st e s sae e s ste e ssataessaseessneaesnaeeas 243
Processing @ REGISTER REQUEST.....cuutiiiiiiiiiieiiieeeciite st e st e saeesseee e sssteesssteesssteesssseesssseesssaessenesas 244
Processing @ TRAP REGQUEST......ciiiciiiiiieieieeeite e eite s siee s siee e svte s st e s stee s sbeesssbaessabeessaraessasaessasaesnnseas 244
(000] 0] o1 T aT=3=YaTe I T 1 (] = PR 244
SN A B o B oY (=Y =T o (o TSP PPPPR 244
D] N T o] =T VA 2o 10 {1 ST 245
DPIACDUZ() v vvveieeecectetetete ettt ettt bbbt et b bbb ss s s e b s e bbb ssas s et e bbb b s s s anae st senanas 245

LB o 0T T T § T OO U 245
0] o TSy TR 246
MKDPIFEGISEEI().veeeureeereeeieeiieeteeiees e et eseesteesteeste e teessaeesbeessse e seesseeenseessseenseesseesnsaesaesnsennseesssensees 246
MKDPIFESPONSE().reeeeurieeeiriieeitieeeitieeeiteeeitteeeitteeeiteeeeiseeeeasaseeseeassssasssssassasassssassssassaeesssseanssseansseenn 247

g B o Y=Y S 248
MNKDPTEFAP() e e eteeeeiiee et ettt ectee e ectee e etee e et e e e eteeeeebeeeebeeeebeeeeasaeaeasaeeansaeeansaeaanseeeasseeeansaesansaesanseesansens 249
MNKDPTEFAPE() . ctteeeettee ettt e ettt e et e eete e e ette e eete e eette e e teeesebeeeeseeesaseeaeseeesaseeessesaanseeeansesasnsesesnseesssesannsens 249
Example of an EXENAEA Trap....ceeiccciieeeieciiieececciee e et ee e sreee e s e etae e e s e ssae e e s eeabeeeeeesnsseeeessssenasssnnns 250
PDPIPACKET()eeeeeureeeeiieieciee et et e et e e et e ee e e e et e e e e teeeeabeeeebeeeebeeesasaeeessasaassaseassaeaansaeaansasaansaeaansaeannns 251

Lo LUL=Y oV DL =l N o o] { OO 252

Sample SNMP DPI CLENT PrOSram.....ccueiicieeicieeiiteescitessiitesssieeessitesssseesssseessseessseessssessssseesssseesssseessnsees 252

The DPISAMPLE Program (Sample DPI SUDQZENT)......iiciieieriieriecieeeeete et e teeveesee e e sreesee e e enee s 253
DPISAMPLE TABLE. ... ettt ettt tee e e e e tee e e s et e e s senbte e e s sessaeeesesssaeeeesssseeessensreneesssnraeneas 255
CLIENT SAMPLE PrOZIam....iiiciieiiiieieiiee ettt esite et e s st e e stte e stt e s sbe e e sbeeesbaessssaeesasaessssaeesssaessseesssseessssaeenns 255
Compiling and Linking the DPISAMPLE.C SOUICE COE.......civriiiiiiiiiiiieiniiennieesnieeseieesseeesseeesnee 270
Chapter 7. SMTP Virtual Machine Interfaces.....c.cccceiereeieiieceienieceiececennececceceeeeas 273
SIMT P TrANSACTIONS. ..uuuttieeeiieiieiieeeeeiitrrrer e e ettt et eeeesssrrtreeeeeeeeeeesaassssssstaresaeeeeesessssssssssesrssseseesseesassssssssnnnes 273
SIMTP COMMANAS. ..utttttiiiiiieeeeieeeeiiirrtrree et ettt eeseessssaraerrereeeeeseesaasssssasasseeeseeessassssssssasesseesesseesaassssssssneesess 273
1= O TR 274
O RN 274
MAIL FROM..cueeiii ettt ettt e et e e ettt e e s s esate e e s sabtee e s sensaaeessesssaeesessssbesessenssesesssanseseessssreneessnnns 275
O = I O TSR 276
D SRR 276
] N ST 277

(0 16) RO 277
N0 1 = 277
1= SRR 277

[0 16 1 278
RV TSN 280
) N PR 280
RV 4= TSR 281

1 O SRR 281
SMTP CoOMMAN EXAMIPLE..uiiiiiiiiieeiecciiee e ettt e et e e e ctee e e s e ete e e e e e e abee e e esnbeeeesenbaaeeeeansseseesensseneesennsenes 281
SMTP COMMANG RESPONSES. .. .uuviiieieiiiieeeeectieeeeesiteeeeseitteeeeeeatasessesstsessesasseeesssassessssssassassessasseseessnssnns 282
Path Address MO iCAtIONS......ueiii it e e e e ee e reeeeeeesesessssssssaereeeeeeeeesesnnnnes 283
BatCh SMTP COMMEANG FIlES..uuuuiiiiiiiiiiiiiieciititieeee e e e e e e e eeeeeaaabaeareeseeeeeeeessssssssaeseeeeeseeesenns 283
S ol a Y I Il =5 =Y 1101 o] (=R 283
Sending Mail to a TCP Network RECIDIENT......iiiiiiiiieieeeieeeite ettt te e sr e s saa e e s baeesbaeesnaeeas 284
QUErYING SMTP DELIVEIY QUEUES.....iiiiiiiiiiieeiite st e st e st e st e s st e s sreessbeesssbeessbeesssbeesssseessaseessnnes 284
SMTP EXIt ROUTINES.cciiiiiiiiiiiiitittiieie e e eeeectrttee e e et e et ee e sbabaaeeeeeeseeesesaasssssaaeeeeeeeeesessaasssssraeseesseseessennans 285
CLIENT VEITICATION EXiTeciiieiciiiiiieiiiiee ettt e eeeeccrbrre e e e e e e e e e se s aasaaaeeeseeeeeeeesssssssrsesreseesesssesnnnnes 285
Built-in Client Verification FUNCHION......cocuvviiiiiiiec ettt e e e e ee e e nnrrrereeeeeeeeesens 285
Client Verification EXit Parameter LiStS....cccvvuueeeeiieiiiiieecciiiiteeeeeeee e e e e e e e e e seeesaraaaeeeeeseeeens 286
UsiNg the Mail FOrWarding EXit.....c..eiiciieriiieniiieriieesiieessie e st e s sieessee e sste e ssbeessiaeesssaeessasaessssaessaseesnnnes 291
Mail Forwarding EXit Parameter LISTS....uiuiiiiiiiiiiieiiiiesiiee st st e s e ssieesseeesste e ssaeeesssseesssseesnnseess 292
Using the SMTP CoOMMANT EXitecc.viiiiiiiiiiiiiiiiiieiteeeite st site s siee s iee e ssbee s saee e saee e sseaesneessnneas 297
SMTP Command EXit Parameter LiSTS. ...t e e e e e eeeeeassraeeeeeseeeeeseessnnnssnees 298

Chapter 8. Telnet EXitS....cccciuiieiiuiiiieiieieiianiieniecniteniecastessecassecssessscsssessssassecsssssses 30D

Telnet SeSSION CONNECTION EXitu.riiiiiiiiiiieiiiieiiieeiiee sttt e seie e ssee e sseeessaeeeseaeeesenteeseseaesseeesneeessseaesnns 305
Telnet EXit Parameter LiST. ...ttt sttt et e s ste e s sae e s sbe e s sabeessabeessvaessaneas 305
SF= Y] 0] (= (L SRS 306
Telnet Printer Management EXit......civciiiriiinieieie ettt ettt s e e s sae e s aae e s s aaessaeaesnaeeas 306
Telnet Printer Management EXit Parameter LiSt.....cciiriieiriiiiiiienieensiee et ssveessveessveesseeeeas 307
SF= Y] 0] (=T (L SRS 307

Chapter 9. FTP Server EXit....cccciciieieiieiiieiieneieniececiecicentecacessecsssessscassesssssssscasss 309

THE FTP SEIVEE EXitenuiieiiiiiiieiieiteetee ettt sttt sttt se e st e e st esme e saee e neesaeeebeesaeesabeesneesaneenne 309
SF= Y] 0] (= (L SR 309
AUAIT PrOCESSING. . uviiiiieiiiieeicieeecite ettt e sttt e sete e seate e sebte s sbeeesbeeesbteesbeessseessasaessssaesssseessseessseessnseesssees 309
Audit Processing Parameter LiST... .o iciieiiiieeciieecie sttt ettt e st e ssite s saaeessseeessseesnneaesneaens 310
Audit Processing Parameter DESCHIPLIONS.ccciiiriieiiiieieiteeeteesitessiee s st e s see e s stee s s aeessreessaeeesnaees 311
Return Codes from AUt PrOCESSING....cccuiiiriiiiiieieieessitessiee st e st e ssreessseessseessasaessssaesssseesssseeas 312
General CommaNnd PrOCESSING......uuiiiiiiriitiiiiieriitesritessree st e s st e s sbeesssbeesssbeesssbaesssbeesssseesssseesssseesssees 312
General Command Processing Parameter LiSt.......cciiviiiiiieiiieeiieeniee st essieesseeessseeessneeesnne 313

General Command Processing Parameter DeSCriPtiONS......cucuieviiieiniieeinieesrieessieessieeeseeessvee s 313

Return Codes from General Command ProCESSING......ccccuiriviierriieeiniiieisiiessieessieeesseessseessseesssees 315

Change DirECtOrY PrOCESSING. ..cccuitieiieeeitieieitteeeite e ettt e ettt e estteesrare e sttt esbeeessteesssaeessseesseeesssseesssseessseaenn 315
Change Directory Processing Parameter LiST........cccvvcieiriieriiieiniieeseesssiee e ssieessiee s sveessveessanes 316
Chapter 10. Remote authorization and auditing through LDAP...........ccccccvvvveennnne 319
Using remote authorization and aUAItiNG........cocviiiiiiiiiiieiiieeeieeeree sttt see e s sae e s e s sareessaseeeas 319
Setting up authorization for working with remote SErVICES.......cuciiiriiiiriieirteeree e 320
Remote authorization extended OPEratioN.........ciiicciiie i e e e e s e raee e e e nbeee e e eanes 320
Remote authorization extended operation reSPONSE COUES......cccciiiiiiiiiiieeeecieee e ecveee e e eaees 322
Remote authorization audit CONTIOLS.....cuvcuiiiiiiiiieeeeeeete e e s e s 324
Remote auditing extended OPeratioN......iuiiiiciiiiiieeiriee ettt st e s te e s sate e s s aeeessseeessneaesans 324
Remote auditing extended operation reSPONSE COUES.....cuiiiiiriiiiriiieriiieeriee et e s sreessbeessaeeeas 328
REMOTE QUAIT CONTIOLS. . ciiiiiiiiieieieeecee ettt e s e s s e e e s be e s s bee e s beeessbeeesbeeessseeesaseeesnnes 330
Chapter 11. Building an LDAP Server PlUg=iN......ccccccivireireirenreinenianiacacaecsessessenns 333
Steps for Writing an LDAP PLUE=IN .ttt ettt sete e s ste e st e s te e s s beessataesssbeessnbaessssaesnsseesas 333
Note about LDAP SUPPOIt ON Z/VM....uoii ettt ettt e e e ttee e s e arae e s s eenbee e e s senntaee s eensaaessennnes 334
Appendix A. TCPLOAD EXEC......cccccicttiteiteienientecestecssassecasssssssassssssssssossssssssssssasans 335
USING TCPLOAD. ...ttt eceiteecitte et ettt e sttt e st e st e s it e e s aeeessaaeessaeeesasbaessssaessaseesasseessssaesssseesssseessnsaesnsseessnses 335
Appendix B. Pascal Return Codes.......cccciuiiuinieiieieiinieienieceieniecestecascessscassessacanss 337
0] K=Y =1 (o] AN VL) (=T 7 SRS 340
Appendix C. C API System Return Codes.......ccccvruieieinnieniecaieniecenieneecestecscecsones 341
Appendix D. Well-Known Port ASSignments.......ccccccieiiineciennecieniesraniscacsecsecseses 345
TCP Well-KnoWn Port ASSIZNMENTS...c.cuuiiiiiieiiieeiiieescieeseteeseteesetteessteeeseseesssteesseeesstessaseessaseessaseessans 345
UDP Well-KNOWN POrt ASSISNMENTS...ccccuiiiiiieiiiieiriteesieeesiee st e ssteessteesseeessteessseeessssaesssseesssseessssaesnns 346
Appendix E. Related Protocol Specifications......cccccccceiieiinieiieiiceniecenieciecenceceecenns 349
Appendix F. Abbreviations and ACroNyMS.......ccccceeieieieiiecenieceitentecestecscessecasanes 355
NOTICES.cuuiiniiiiitiitirtirt ittt st cree e reetseaessraneseassseasssnsesensenansenes 359
Programming Interface INformation......couciei ettt e s e s 360

= e (=100 =T OO OO URROPPRRUPRPRNt 360
Terms and Conditions for Product DOCUMENTAtION.....ccuiiiiieiirieerie ettt ere e see e sree e sveeeeas 361
IBM ONliNg Privacy Stat@mMENt....cc i iiee ettt e e cttee e e e e tee e e e e etee e e e s nee e e e s ntaaeesennsaneeeennnsenensan 361
=11 FT0 Y= ¥] 1) 363
Where 10 Get Z/VM INTOrmMation....c.coii oo e e e e e e e e e e e e e e e e e ee e ae b sesseeeeeeaanes 363
Z/VM BASE LIDIAIY...ueiiiieiicciiiee ettt e et e e e et e e e s et e e e e e e e baaeeeeeanteeeeeenbeeeesanseeaeeeanssteeeeanseaeesennseens 363
Z/VM FaCIlitieS AT FOATUIES....coiiiiiiieeeeeeeeeet ettt e et e e e ettt e s esssssseseaaesaaeseeeserssssssnns 364
PrErEQUISITE PrOQUCTS. . uiiiiiciieei ettt ettt e e ectte e e e e ctte e e s e e bte e e e seateeeeeeeasteeeseenssaeeeeessasessannssneessasseneesannes 366
[T =T o o T [E ot £ ST SPUPR 366
Other TCP/IP Related PUBDLICAtIONS. ..uuu it eeersas s as 366
INO@Xcteuireiireiineiinenieiraiireiieesiaesrassressrsstssstassssssssssssssssssassrassrsssssssasssssssssssnsssnssnnss 369

xi

Figures

1. An Electrical Analogy Showing the SOcket CONCEPL....ccuiiicciiiciicceeeete e e aae e 3
2. ATypical STream SOCKEE SESSION......uuiiiiiciieee ettt e eccree e eectee e e e etree e e e s treee e e e sbaeeeesesssaseesessaaessesssseeessnnnes 12
3. ATypical Datagram SOCKET SESSION....ccccuiiiiiieeeiieeeite et e e cteeecte e e sre e e stte e s bee e e aaeeesaeesseeeesteseseeeansseesnnens 13
4. AN ApPLICation USING SOCKEL().eeveirieeiieieieeitiesieeiteestessteesteeste e eesseesseessseeseesseessseesssessseesssessseesssesssesssennns 14
5. An Application USING DINA()....eccueeiciieeiiieecieeecteeectee et esteeeeteeeeve e e teeseateessaseessnseessssaesnsseesnssessnnsaesnnsenan 14
6. AN AppPLication USING LISTEN()...ueicieecieeieecieeie ettt st et te et e s e e e e s ae st e e saae s e e s saeenseesseesnseeseesnseanseesnsenn 14
VAN WAYoT ol KTt 14 1o sl U Y[oY= ot] ol a =Tt £ FO SR 15
8. A connect() Function Using gethostbynName()......ccueeieecierieeeiece ettt eeeeeas 15
9. An AppLication USING ACCEPT() .uueierreieiiiiieiiieeeiteeeeteeeeteeeeteeeeteeesteeeeteeseteeesteesssseessssaeesssaessssasssssesssseesnnes 15
10. An Application Using send() @nd FECV()..eccveeereeceerieeiieseeerieeseessteesteesteesseeseeesseesssesseesssesnseesssesnsesssenans 16
11. An Application Using sendto() and reCVirom (). .cc.ueeeciee et ra e e 16
12. An Application USING SELECT()..uiiuiiieiieiiieieeiitecie et e te et et e e te et este e e e s aeebe e s e e e teessaesnseeseessseenseesssennsenn 17
13. An Application USING I0CEL)...uuiiecieeeciieecciie ettt ettt ee e e etee e este e e e te e e e ba e e sbaeesbaeesasaeesnvaeesnsaeesnsneennns 17
14. An Application USING CLOSE()..uuiiiierieeieeitieeieecitesie et este e e esteeste e seesseeessaesasessseessaesnseasseeenseeseesnseensennnes 17
15. Pascal Declaration of CONNECtioN State TYPE...iiciiiiciieeciieectie ettt et ree e re e e e e s e e e rae e aaee s 42
16. Pascal Declaration of Connection Information RECOId.......c.ceevieriiriiieniieiierie et 43
17. IPv6 Pascal Declaration of Connection Information RECOI........ccoerviereenereesiinieneneeneeeeseeseeeeneenne 44
18. Pascal Declaration 0f SOCKET TYPE....uuii i iieeeeeciiee e ettt e e crte e e e ecte e e e e treee e eseasraeeeesnseseesenseeeesennssseeennas 44
19. IPv6 Pascal Declaration 0f SOCKEt TYPE...cccuiiic ettt ettt tee et e s te e e te e e ae e s aree s naeeeaes 45
20. NOtIfication RECOII (PArt L Of 2).iiiiiieeeceieeeieeeeeeeeieeeeeeeeretteeeeeeeseesessssssesteeeeessssssssssssssssseseseessesssssssssssssees 46
271. Notification ReCOrd (Part 2 0f 2)....cc.eeciiieriieereeesteee ettt sttt sb ettt s e sbe s sneens 47
22. Pascal Declaration of File Specification RECOIT..........uuiiiiiciiiie et ee e e rre e e e tree e e e eanes 53
W2 T o YoVl o T @ TN =T YA 2 =Tolo T o FO RS SR 68

xiii

xiv

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Assembler Format of the VMCF Parameter List Fields.......ccoovieiiiriieiiieieeeeeeeeeeeeeee e 113
Equates for Notification Mask in the HANDLENOtICE Call.......eeeeueiieciieeiieeeeeeeeeecee e 120
Assembler Format of the Connection Information Record for VM......c.cceceriiriieniiniieneeeeeee e 122
Miscellaneous Assembler CONSTANTS.......ccciiiiriireree ettt sttt 122
Assembler Format of the IPv6 Connection Information Record for VM.......cceceviniiiiienienieeneeeen, 126
Miscellaneous Assembler CONSTANTS.......ccirieriirerere ettt st 126
Pascal Format of the IPv6 Datagram Information Record for VM.coocieviiiiniieiniienreecseeeeee e 129
Assembler Format of the SpecOfFileType ReCord for VM......c..ciiciiiieiieecieeeeieeecee ettt 132
Equates for MonQueryRecordType used in the MONITORquery Call.......cccoccveeeeecciiiieeeeeciieeeeecieeeene 132
Assembler Format of the MonQueryRecordTyPefor VM. .. .o cie ettt vee et svee e 132
Assembler format of the QueryRequest record fOr VM. ... ettt eree e 133
Remote Procedure Call (CLIENT).....coirererereneeterestesiestestest ettt st ettt et s sbesbesbesbesbesbesbesbesbesbens 188
REMOtE ProCedUIe Call (SEIVED)....ci i ettt ettt e e st be st e b st esbe e e e b aee 189
SNMP DPT OVEIVIEW...eeiiiiieiirtesteeiesitet sttt s et e e st e e st e st e ae st e b e s et e bt eaee s st emeesae e st smeesbeeneesreeasesaeenne 242
DPISAMPLE Table MIB deSCIPTIONS......uiiiiicciieeeeceitieeeeeciteeeeseetteeeeeecrteeeseeesseseeesesseeessssnsenesssanssneensanne 255

Tables

1. Examples of Syntax Diagram CONVENTIONS.cccuiiecieeeciieeeiteeeiteeeireeesteeesteeesssaeessseeeessseessseesssseesnsssesssseens XX
2. TCP/IP TXTLIB Files and APPLiCatioNS....ciiicciieeeeeciieeeeeciieee e ecttee e eecrre e e e eetreeeeesnteee e s nraeeesennraaeeeesnssesesnns 26
3. TCP/IP TXTLIB Files and APPLiCAtIONS.....ccccuiiieiieeeiieeecite et ecte e ete e e rte e e ste e s ae e esate e e sabe e e saeesensaeennsaesnnenas 29
A, C SOCKEES QUICK RETEIENCE...ciiiiiiii ittt ettt e e e e e e e e e e e s eee s sssssseereeeeeeeesesssssnssnnns 33
5. TCP CONNECTION STALES.c..eiitiiiiiieieeiet ettt ettt ettt b et sh et s st e s b e e e sbe st e s st e b e st e sbesasesneensennes 42
6. Pascal Language Interface SUMMary—NOtifiCAtIONS......iiiciiiriiiieieeeeceec s e 54
7. Pascal Language Interface Summary—TCP/UDP Initialization........ccccoveeeeieeeiiieeiieeeciee e e ecvee e 54
8. Pascal Language Interface Summary—TCP/UDP Termination.....cccceccveeievieeieieeisieeseieessieesseeessneesseneessans 55
9. Pascal Language Interface Summary—Handling External INterrupts....ccccoeeecieeeceececiee e, 55
10. Pascal Language Interface Summary—TCP Communication ProCceduUres........ccccvvceeirieeercreeeesieeesieeennns 55
11. Pascal Language Interface Summary—Ping INterface......cccciiieciiiiccieicieeceeeee e e 57
12. Pascal Language Interface SUMmary—Monitor ProCEAUIES.....cocuiiviiieriiieriiierrreessreessveessreessreesseees 57
13. Pascal Language Interface Summary—UDP Communication Procedures........cccovveeeveeeeceeeecreeeecneeeennn. 57
14. Pascal Language Interface Summary—Raw IP INterface......cccceviiiriiiiniieiniieeccie et 58
15. Pascal Language Interface Summary—Timer ROULINES......cceiiciieeciieeciie ettt ere e et ecvee e svne e 58
16. Pascal Language Interface Summary—Host LOOKUP ROUEINES.......ccccviiiiiiiiiiieiriiecsiee e ssvee e 59
17. Pascal Language Interface Summary—Other ROULINES......c.uciccuiiiiciii et 59
18. AVailable VIMCF FUNCHIONS. ...cociiieeieetteeee ettt ettt sttt sttt st e bt e st e bt e st e e bt e sneesabeesneesaseeneesanenn 115
19. VMCF TCPIP CALLCODE REQUESTS..c..etiuteiirierierieettestestestestestte e st eeesatesseseesseeeeseeesesmeenbesmeessesasenseen 115
20. VMCF TCPIP CALLCODE NOIfICATIONS.c.cuttiietieieitteeeiieesiiteesiteesee e s seeessraeesiee s s eesssseeessnsesesnsesssneessnnenas 117
21. C Structures in Assembler Language FOrMAL.......ciiicieeeiieeeiiecccee et evee e vee e vee e s vae e svae e eaes 148
22. Values for cmd Argument in T0CTL Call.....iiiciiiieiiieeiieeeieeeee e e s e e sre e e raeeas 171
23. Option name values for SETSOCKOPTot eieeeiteeeiteeerte e e teeerreeere e s s e e esaeeesaeessaeesssaeessaeeasseenn 181

XV

xvi

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

SNMP DPI REFEIENCE....e ittt ettt e s e st e s e st e b e sae e e b e e saeeeabeesneeennes 245
Client Verification REXX EXit Parameter LiSt......c.cocirierereieneeeieneeneeeeeesieeee st 287
Client Verification ASSEMBLER Exit Parameter LiSt......cocveieririenieienieeeesee e 287
Client Verification EXit RETUIN COUES.....c.ciiiiirieiiiieieeee ettt s s 290
Mail Forwarding REXX EXit Parameter LiSt.....cuiiiciiirieeiiieeiriee et ssie st sssie e ssee e ssee s ssee s ssaeeessneeesnees 292
Mail Forwarding ASSEMBLER EXit Parameter LiSt.......cccieecieeeiiieeiiieeiieeecreeeceeeeeeesvee e vneessvae e ane s 293
Mail Forwarding EXit RETUIN COUES...ccuuiiiiiiiiiieiiie ettt et e st e s ste e s sbe e s saeeesseeessasaesnns 296
SMTP Commands REXX EXit Parameter LiSt........cociriererrenirereeeneeeneeeeeesie et 298
SMTP Commands ASSEMBLER Exit Parameter LiSt......cocieieriieienieeeneeeeneeee e e 299
SMTP Command EXit RETUIN COUES....cuuiriiiireeieeteieeee ettt sttt s e e 302
Telnet Session Connection Exit Parameter List......coo et 305
Telnet EXit PArameter LiST. ..o ittt ettt st st 307
FTP EXit AUudit Parameter LISt ..o oottt sttt st s e s s 310
FTP EXIt ParameEter LiST......ooeererieenieiteeeeete sttt sttt ettt sst b s snesnenne s 313
FTP EXit PArameter LiST.....c.ce ittt ettt sttt e s e s me e st e me e saeeebe e smeesaneenne 316
Remote authorization reSPONSECOUES......cccuiiiciieccieeetee ettt et e e re e s re e s baeesasaeesssaeeas 322
Remote authorization MajorCOUES.uuiiiiiciiiee et e e et e e e e ate e e e eeabee e e e e nbeeeeeesnsseeeeesnnsenes 323
Remote authorization MINOrCOUES.cc.iiviiriirerieeetee ettt nne s 324
Remote auditing reSPONSECOUES. ...ccivciiiiiiieietieeeite ettt et ete e st e s s te e e s te e s ssbeesssbaessnbaesssseessssaesnnes 328
Remote auditing MajOrCOUES. ...cciuiiiiiieecie ettt etee et e e s e e e e te e s e tee s sabeeesabeeesssaessaseeesnseeenseneennens 328
Remote auditing MINOTCOUES. .. .uiiiciiirieeeciee ettt sttt s st e s ste e s ate e s st e e s sseessaseesssseesassaesansaesnsseesan 330
REMOtE AUt EVENT COURS...c..eiiiiiiiiiieiteer ettt et st s b s sre e s aee 331
Remote audit event COAe QUALITIEISuiiiei ettt e e et e e e e eee e s e ra e e e e e saeeeeenanes 331
Event-specific fields for remote audit @VENTS ...ccueiiicieiceeece e s 331
Pascal Language RETUIN COUES....cuuuiiiiiiiiriiieeiteeeiteesiteesiteesiteesiaeessbaeesseeessteessaeessaeessaeessssessenens 337

YA (=1 T 2SN 0] 1O Lo [URRNt 341
50. TCP Well-KnowWn Port ASSIGNMENTS......uiiiiciieieiieieiieeeteeeerteeesrteeeeteeesteeseteessstaessssaeesseeesssassssssssssessnnes 345

51. UDP Well-KnoWn Port ASSISNMENTS...cccuiiiiiiiiiiieiiiteseieessiee st e st e ssteessieeesssbeesssseesssseessssesssssesssseesas 346

Xvii

About This Document

z/VM: TCP/IP Programmer's Reference describes the routines for application programming in IBM
Transmission Control Protocol/Internet Protocol for z/VM 7.3.0.

This document contains information about the following application programming interfaces (APIs):
- Csockets

» Pascal

« Virtual Machine Communication Facility (VMCF)

« Inter-User Communication Vehicle sockets

« Remote Procedure Calls (RPCs)

« Simple Network Management Protocol (SNMP) agent distributed program interface

« Conversational Monitor System (CMS) command interface to the name server

« Simple Mail Transfer Protocol (SMTP)

The descriptive information in the chapters is supplemented with appendixes that contain sample
programs and quick references.

For comments and suggestions about this document, use the Reader’s Comment Form located at the
back of this document. This form gives instructions on submitting your comments by mail, by FAX, or by
electronic mail.

Intended Audience

This document is intended for users and programmers who are familiar with z/VM and the Control
Program (CP) and the Conversational Monitor System (CMS) components. You should also be familiar with
the C or Pascal programming language and the specific application programming interface (API) that you
are using.

Before using this document, you should be familiar with z/VM, CP, and CMS. In addition, TCP/IP for z/VM
at function level 730 should already be installed and customized for your network.

Conventions and Terminology

This topic describes important style conventions and terminology used in this document.

How the Term “internet” Is Used in This Document

In this document, an internet is a logical collection of networks supported by routers, gateways, bridges,
hosts, and various layers of protocols, which permit the network to function as a large, virtual network.

Note: The term "internet" is used as a generic term for a TCP/IP network, and should not be confused
with the Internet, which consists of large national backbone networks (such as MILNET, NSFNet, and
CREN) and a myriad of regional and local campus networks worldwide.

How Numbers Are Used in This Document

In this document, numbers over four digits are represented in metric style. A space is used rather than
a comma to separate groups of three digits. For example, the number sixteen thousand, one hundred
forty-seven is written 16 147.

© Copyright IBM Corp. 1987, 2023 xix

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kiml0_v7r3.pdf#nameddest=kiml0_v7r3

Syntax, Message, and Response Conventions

The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

e The = »——symbol indicates the beginning of the syntax diagram.

« The — symbol, at the end of a ling, indicates that the syntax diagram is continued on the next line.

« The ——— symbol, at the beginning of a line, indicates that the syntax diagram is continued from the
previous line.

« The — < symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xx.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants »»— KEYWORD -»<

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or

constant in uppercase letters, lowercase letters, or

any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

Abbreviations »— KEYWOrd -»<

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

xx About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example
Symbols *
You must specify these symbols exactly as they appear in the Asterisk
syntax diagram. :
Colon
Comma
Equal Sign
Hyphen
0
Parentheses
Period

Variables »— KEYWOrd — var_name >«

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

Repetitions
An arrow returning to the left means that the item can be { . l
repea

repeated.
A character within the arrow means that you must separate ,
each repetition of the item with that character. £
repeat

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated. £ 1

. . repeat
Syntax notes may also be used to explain other special
aspects of the syntax. Notes:

1 Specify repeat up to 5 times.

Required Item or Choice — A -pd

When an item is on the line, it is required. In this example,

you must specify A. A
B
When two or more items are in a stack and one of them is c

on the line, you must specify one item. In this example, you
must choose A, B, or C.

Optional Item or Choice »ﬁn
A

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of A
them are optional. In this example, you can choose A, B, C, B
or nothing at all. c

About This Document xxi

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the ling, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

O W >

In this example, A is the default. You can override A by
choosing B or C.

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

. 0O w »

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

A Fragment

In this example, the fragment is named "A Fragment."

O W >

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

XXX
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

Brackets enclose optional text that might be displayed.
{1
Braces enclose alternative versions of text, one of which will be displayed.

The vertical bar separates items within brackets or braces.

The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information

Appendix F, “Abbreviations and Acronyms,” on page 355, lists the abbreviations and acronyms that are
used throughout this document.

For more information about related publications, see the documents listed in the “Bibliography” on page
363.

xxii About This Document

Links to Other Online Documents

The online version of this document contains links to other online documents. These links are to editions
that were current when this document was published. However, due to the nature of some links, if a

new edition of a linked document has been published since the publication of this document, the linked
document might not be the latest edition. Also, a link from this document to another document works only
when both documents are in the same directory.

Links to Other Documents and Websites

The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

About This Document xxiii

xxiv z/VM: 7.3 TCP/IP Programmer's Reference

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1987, 2023 XXV

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xxvi z/VM: 7.3 TCP/IP Programmer's Reference

Summary of Changes for z/VM: TCP/IP Programmer's
Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (]) to the
left of the change.

SC24-6332-73, z/VM 7.3 (September 2023)

This edition supports product changes that were provided or announced after the general availability of
z/VM 7.3.

[PH56199, VM66698] System SSL z/0S 2.5 Equivalence

With the PTFs for APARs PH56199 (TCP/IP) and VM66698 (LE), z/VM 7.3 provides an update to
the cryptographic services library, which includes certificate diagnostic enhancements and improved
algorithmic support and allows for enablement of TLS 1.3, for secure connectivity to the z/VM platform.

SC24-6332-73, z/VM 7.3 (September 2022)

This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

Miscellaneous updates for z/VM 7.3
The following topic is updated:
« “IUCV Socket Call Syntax” on page 148

SC24-6332-03, z/VM 7.2 (December 2021)

This edition includes terminology, maintenance, and editorial changes.

The following topics are updated to clarify client certificate verification:

« “Starting a Secure Connection” on page 21

« “Stopping a Secure Connection” on page 21
« “IUCV Socket Call Syntax” on page 148

SC24-6332-03, z/VM 7.2 (March 2021)

This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.2.

Miscellaneous updates for March 2021
The following topic is updated:
« “IUCV Socket Call Syntax” on page 148

SC24-6332-03, z/VM 7.2 (September 2020)

This edition includes changes to support the general availability of z/VM 7.2.

© Copyright IBM Corp. 1987, 2023 XXVii

SC24-6332-02, z/VM 7.1 (May 2020)

This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.1.

[PH18435, VM66348, VM66349] TLS Certificate Verification

With the PTFs for APARs PH18435 (TCP/IP), VM66348 (CMS), and VM66349 (LE), the TCP/IP TLS/SSL
server has been enhanced to allow authentication of client certificates, host name validation, and
extraction of fields from a certificate.

The following changes have been made as a result of this support:

 “Starting a Secure Connection” on page 21 is updated.

« “Requesting Details from a Partner Certificate” on page 22 is added.
« “Determining if a TLS/SSL Server is Available” on page 22 is updated.
« CertDataComplete is added to “Notification Record” on page 45. AlertDescription is updated.

« TcpSCertData is added to “Other Routines” on page 59.

« “TcpSCertData” on page 91 is added.

« SecureDetailType is updated in “TcpSClient” on page 94.

e TLSSCERTDATAREQtcp is added to “VMCF TCPIP Communication CALLCODE Requests” on page 115.
« CERTdataCOMPLETE is added to “VMCF TCPIP Communication CALLCODE Notifications” on page 117.
« “TLSSCERTDATAREQtcp ” on page 124 is added.

« “CERTdataCOMPLETE” on page 134 is added.

« Return code 1025 is added to “TCP/IP Response to an IUCV Request” on page 147.

« CertDataCompleteDetailType, CertDataReqDetailType, and SecureHSCompleteDetailType are added to
“IUCV Socket Call Syntax” on page 148. SecureDetail is updated.

« SIOCGCERTDATA is added to “IOCTL” on page 170.
» Return code -110 is added to Appendix B, “Pascal Return Codes,” on page 337.

« Appendix C, “C API System Return Codes,” on page 341 is updated.

SC24-6332-01, z/VM 7.1 (December 2018)

This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.1.

[P199184] TLS/SSL Server Elliptic Curve Support

With the PTF for APAR P199184, z/VM 7.1 provides stronger security ciphers for the TLS/SSL server.
This support introduces elliptic curve cryptography, a faster and more secure mechanism for asymmetric
encryption than standard RSA or DSS algorithms.

The following changes have been made as a result of this support:

« The CipherDetails operand of the TcpSStatus procedure includes information about the new and
deprecated cipher suites.

For more information, see “TcpSStatus” on page 99.

« The cipher details listed under the SecStatus C structure include additional information related to the
new cipher suites.

For more information, see “IUCV Socket Call Syntax” on page 148.

xxviii z/VM: 7.3 TCP/IP Programmer's Reference

Miscellaneous Updates for December 2018
The following topics are updated:

« “QueryTLS” on page 70

« “TcpSClient” on page 94

« “IUCV Socket Call Syntax” on page 148

« “IOCTL” on page 170

SC24-6332-00, z/VM 7.1 (September 2018)

This edition includes changes to support the general availability of z/VM 7.1.

GDDMXD/VM Support Removed

The z/VM Graphical Data Display Manager (GDDM) interface to the X Window System (GDDMXD/VM) is no
longer supported. The interfaces and associated documentation have been removed.

IMAP Support Removed

The z/VM Internet Message Access Protocol (IMAP) server is no longer supported. The interfaces and
associated documentation have been removed.

Summary of Changes for z/VM: TCP/IP Programmer's Reference xxix

xxx z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

Chapter 1. z/VM C Socket Application Programming
Interface

This chapter describes the z/VM C socket application programming interface (API). z/VM C sockets are
C Language functions that closely correspond to the sockets used by UNIX applications that use the
Berkeley Software Distribution (BSD) 4.4.

z/VM C sockets are intended as replacements for VM TCP/IP C sockets (formerly documented in this
chapter). Although TCP/IP C sockets are still supported for compatibility, the z/VM C socket API is
preferred.

This chapter describes how to write, compile, and run applications that use z/VM C sockets. Existing
applications that use the VM TCP/IP C sockets library may continue to do so without any modification. To
use the z/VM C socket functions, existing TCP/IP C socket applications may need to be recompiled, but no
source changes are required. Instructions are provided in this chapter.

Note:

1. To run programs that use z/VM C sockets, you must have Language Environment® (supplied with
z/VM) installed on your system. Language Environment provides header files and the object code and
run-time library for the z/VM C socket functions.

To compile programs that use the z/VM C socket API, you also need the IBM C for VM/ESA (C/VM)
Compiler 3.1 (5654-033).

For specific program requirements, see the z/VM: General Information.

2. This chapter provides a guide to using the z/VM C socket API. For complete reference information on
the z/VM C socket functions, see the XL C/C++ for z/VM: Runtime Library Reference.

This chapter contains the following sections:

« “TCP/IP Network Communication” on page 2 defines some of the basic networking terms.

« “What is a Socket?” on page 2 provides an overview of socket programming concepts.

« “Client/Server Conversation” on page 8 shows how a client and server use sockets to exchange
information.

« “Network Application Example” on page 14 shows how sockets are used in a network application
program.

« “z/VM C Socket Implementation” on page 18 explains how z/VM has implemented the support for
C sockets. This section also explains the incompatibilities between z/VM C sockets and VM TCP/IP C
sockets.

« “Compiling and Linking a Sockets Program” on page 26 describes how to compile and link programs to
use the z/VM C sockets library.

« “Running a Sockets Program” on page 29 describes how to run programs that use the z/VM C sockets
library.

« “C Sockets Quick Reference” on page 32 lists the z/VM C socket calls.
« “TCP Client Program” on page 35 shows an example of a TCP client program using z/VM C sockets.

« “TCP Server Program” on page 36 shows an example of a TCP server program using z/VM C sockets.

« “UDP Client Program” on page 38 shows an example of a UDP client program using z/VM C sockets.

« “UDP Server Program” on page 38 shows an example of a UDP server program using z/VM C sockets.

© Copyright IBM Corp. 1987, 2023 1

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

C Sockets API

TCP/IP Network Communication

Network communication, or "internetworking", defines a set of protocols that allow application programs
to talk with each other without regard to the hardware and operating systems where they are run.
Internetworking allows application programs to communicate independently of their physical network
connections.

TCP/IP is an internetworking technology and is named after its two main protocols: Transmission
Control Protocol (TCP), and Internet Protocol (IP). You should also be familiar with the following basic
internetworking terms:

client
A process that requests services on the network.

server
A process that responds to a request for service from a client.

datagram
A basic unit of information, consisting of one or more data packets, which are passed across an
internet at the transport level.

packet
The unit or block of a data transaction between a computer and its network. A packet usually contains
a network header, at least one high-level protocol header, and data blocks. Generally, the format of
data blocks does not affect how packets are handled. Packets are the exchange medium used at the
Internetwork layer to send data through the network.

Transport Protocols

There are two general types of transport protocols:

« A connectionless protocol treats each datagram as independent from all others. Each datagram must
contain all the information required for its delivery.

An example of such a protocol is User Datagram Protocol (UDP). UDP is a datagram-level protocol built
directly on the IP layer and used for application-to-application programs on a TCP/IP host. UDP does
not guarantee data delivery, and is therefore considered unreliable. Application programs that require
reliable delivery of streams of data should use TCP.

- A connection-oriented protocol requires that hosts establish a logical connection with each other
before communication can take place. This connection is sometimes called a "virtual circuit", although
the actual data flow uses a packet-switching network. A connection-oriented exchange includes three
phases:

1. Start the connection.
2. Transfer data.

3. End the connection.

An example of such a protocol is Transmission Control Protocol (TCP). TCP provides a reliable vehicle
for delivering packets between hosts on an internet. TCP breaks a stream of data into datagrams,
sends each one individually using IP, and reassembles the datagrams at the destination node. If any

datagrams are lost or damaged during transmission, TCP detects this and re-sends the missing or
damaged datagrams. The data stream that is received is therefore a reliable copy of the original.

These types of protocols are illustrated in Figure 2 on page 12, and in Figure 3 on page 13.

What is a Socket?

A socket can be thought of as an endpoint in a two-way communication channel. Socket routines create
the communication channel, and the channel carries data between application programs either locally or
over networks. Each socket open by a process — like any open file in a POSIX process — has a unique
(within the process) number associated with it called a "file descriptor", an integer that designates a
socket and allows the application program to refer to it when needed.

2 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

Using an electrical analogy, you can think of the communication channel as the electrical wire with its plug
and the port, or socket, as the electrical socket or outlet, as shown in Figure 1 on page 3.

Appl Eation 11] Ap pligatiﬂn EJ
.- @ &
Appllgatmn @J Appligation E]
Application m Application ﬁ]
G _i C _
Application = icati e
PP o i Apphl{:})atmn ILIJ
APP“EHHD” E Application T_l]
- - @ E E
Appllgatmn 1 AppliEatiDn I'J
System EP System
Software | p|| Software

Figure 1. An Electrical Analogy Showing the Socket Concept

Figure 1 on page 3 shows many application programs running on a client and many application programs
on a server. When the client starts a socket call, a socket connection is made between an application on
the client and an application on the server.

Another analogy used to describe socket communication is a telephone conversation. Dialing a phone
number from your telephone is similar to starting a socket connection. The telephone switching unit
knows where to logically make the correct switch to complete the call at the remote location. During your
telephone conversation, this connection is present and information is exchanged. After you hang up, the
connection is broken and you must start it again. The client uses the connect() function call to start the
logical switch mechanism to connect to the server.

User processes ask the sockets library to create a socket when one is needed. The sockets library returns
an integer, the file descriptor that the application uses every time it wants to refer to that socket.

Sockets perform in many respects like UNIX files or devices, so they can be used with such traditional
operations as read() or write(). For example, after two application programs create sockets and open a
connection between them, one program can use write() to send a stream of data, and the other can use
read() to receive it. Because each file or socket has a unique descriptor, the system knows exactly where
to send and to receive the data.

Address Families

The z/VM C socket API supports four address families (also called domains):

Chapter 1. z/VM C Socket Application Programming Interface 3

C Sockets API

AF_INET and AF_INET6
AF_INET and AF_INET6 (internet domain) sockets provide a means of communicating between
application programs that are on different systems using the TCP and UDP transport protocols
provided by a TCP/IP product. These address families support both stream and datagram sockets.
TCP/IP for z/VM must be configured for you to be able to use these address families.

AF_IUCV
AF_IUCV (VM IUCV) sockets provide communication between processes on a single VM system, or on
a group of systems that share IUCV connectivity. VM IUCV sockets allow interprocess communication
within VM independent of TCP/IP. The AF_IUCV domain supports only stream sockets.

AF_UNIX
AF_UNIX sockets (also called local sockets) provide communication between processes on a single
VM system, or on a group of systems that share a single Byte File System (BFS) server. UNIX domain
sockets allow interprocess communication within VM independent of TCP/IP. On z/VM, the AF_UNIX
domain supports only stream sockets.

The primary difference between VM IUCV sockets and UNIX sockets is how partners are identified (for
example, how they are named).

Socket Types

The z/VM C socket API provides application programs with an interface that hides the details of the
physical network. The API supports stream sockets, datagram sockets, and raw sockets, each providing
different services for application programs. Stream and datagram sockets interface to the network layer
protocols, and raw sockets interface to the network interface layers. You choose the most appropriate
interface for an application.

Stream Sockets

The stream sockets interface provides a connection-oriented service. After the partner applications
connect, the data sent on stream sockets acts like a stream of information. There are no boundaries
between data, so communicating processes must agree on their own mechanism to distinguish
information. For example, the process sending information could first send the length of the data,
followed by the data itself. The process receiving information reads the length and then loops, reading
data until all of it has been transferred. Stream sockets guarantee delivery of the data in the order it was
sent and without duplication. The stream socket interface provides a reliable connection-oriented service.
Data is sent without errors or duplication and is received in the same order as it is sent. Flow control is
built in, to avoid data overruns. No boundaries are imposed on the data; the data is considered to be a
stream of bytes.

Stream sockets are the most-commonly used, because the burden of transferring the data reliably is
handled by the system rather than by the application.

Datagram Sockets

The datagram socket interface provides a connectionless service. Datagrams are sent as independent
packets. The service provides no guarantees; datagrams can be lost, duplicated, and can arrive out of
order. The size of a datagram is limited to the size that can be sent in a single transaction.

Raw Sockets

The raw socket interface provides direct access to lower layer protocols, such as the Internet Protocol
(IP) and Internet Control Message Protocol (ICMP or ICMPV6). You can use raw sockets to test new
protocol implementations. You can extend the socket interface; you can define new socket types to
provide additional services. Because they isolate you from the communication functions of the different
protocol layers, socket interfaces are largely independent of the underlying network. In the AF_INET
address family, stream sockets interface to TCP, datagram sockets interface to UDP, and raw sockets
interface to ICMP and IP. In the AF_INET6 address family, stream sockets interface to TCP, datagram
sockets interface to UDP, and raw sockets interface to ICMPv6 and IP.

4 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

Guidelines for Using Socket Types
The following criteria will help you choose the appropriate socket type for an application program.

If you are communicating with an existing application program, you must use the same protocol as the
existing application program. For example, if you want to communicate with an application that uses TCP,
you must use AF_INET or AF_INET6 stream sockets. For new application programs, you should consider
the following factors:

« Reliability: Stream sockets provide the most reliable connection. Datagram sockets are unreliable,
because datagrams can be discarded, corrupted, or duplicated during transmission. This may be
acceptable if the application program does not require reliability, or if the application program
implements the reliability on top of the sockets interface. The trade-off is the improved performance
available with datagram sockets.

- Performance: The overhead associated with reliability, flow control, packet reassembly, and connection
maintenance degrade the performance of stream sockets in comparison with datagram sockets.

« Data transfer: Datagram sockets impose a limit on the amount of data transferred in a single
transaction. If you send less than 2048 bytes at a time, use datagram sockets. As the amount of data in
a single transaction increases, use stream sockets.

If you are writing a new protocol on top of IP, or wish to use the ICMP protocol, then you must use raw
sockets.

Domain-specific Socket Addresses

The following sections describe the different ways to address processes who communicate with each
other using sockets.

Address Families

Each address family defines a different style of addressing. All hosts in the same address family use

the same scheme for addressing socket endpoints. The AF_INET and AF_INET6 address families identify
processes by IP address and port number. The AF_UNIX address family identifies processes by file name
in the Byte File System. The AF_IUCV address family identifies processes by VM user ID and application
name.

Socket Address

A socket address is defined by the sockaddr structure in the sys/socket.h header file. The structure has
three fields, as shown in the following example:

struct sockaddr §

unsigned char sa_len;

unsigned char sa_family;

char sa_data[14]; /* variable length data =/
iH

The sa_len field contains the length of the entire sockaddr structure, in bytes. The sa_family field contains
a value identifying the address family. It is AF_INET or AF_INET®6 for the internet domain, AF_UNIX for the
UNIX domain, and AF_IUCV for the IUCV domain. The sa_data field is different for each address family.
Each address family defines its own structure, which can be overlaid on the sockaddr structure. See
“Addressing within the AF_INET and AF_INET6 Domains” on page 5, “Addressing within the AF_UNIX
Domain” on page 7, and “Addressing within the AF_IUCV Domain” on page 8.

Addressing within the AF_INET and AF_INET6 Domains

Before discussing the contents of the AF_INET and AF_INET6 sockaddr structures, the following terms
must be introduced:

Chapter 1. z/VM C Socket Application Programming Interface 5

C Sockets API

Internet Addresses

Internet addresses represent a network interface. Every internet address within an administered domain
is unique. On the other hand, it is not necessary that every host have a single internet address; in fact, a
host has as many internet addresses as it has network interfaces.

Internet addresses can be in one of two formats: IPv4 (IP version 4) or IPv6 (IP version 6). Hosts can

support either addressing format or both. IPv4 internet addresses are 32-bit quantities. The AF_INET
address family communicates through IPv4 addresses. IPv6 internet addresses are 128-bit quanities.
The AF_INET6 address family communicates through IPv6 addresses.

Ports

A port distinguishes between different application programs using the same AF_INET network interface.
It is an additional qualifier used by the system software to get data to the correct application program.
Physically, a port is a 16-bit integer. Some ports are reserved for particular application programs or
protocols and are called well-known ports.

Network byte order and host byte order

Ports and addresses are always specified in calls to the socket functions using the network byte order
convention. This convention is a method of sorting bytes that is independent of specific machine
architectures. Host byte order, on the other hand, sorts bytes in the manner which is most natural to
the host software and hardware. There are two common host byte order methods:

- Little-endian byte ordering places the least significant byte first. This method is used in Intel
microprocessors, for example.

« Big-endian byte ordering places the most significant byte first. This method is used in IBM z/
Architecture® and S/390° mainframes and Motorola microprocessors, for example.

The network byte order is defined to always be big-endian, which may differ from the host byte order on

a particular machine. Using network byte ordering for data exchanged between hosts allows hosts using
different architectures to exchange address information without confusion because of byte ordering. The
following C functions allow the application program to switch numbers easily back and forth between the
host byte order and network byte order without having to first know what method is used for the host byte
order:

« htonl() translates an unsigned long integer into network byte order.
« htons() translates an unsigned short integer into network byte order.
« ntohl() translates an unsigned long integer into host byte order.

« ntohs() translates an unsigned short integer into host byte order.

See Figure 5 on page 14, Figure 7 on page 15, and Figure 8 on page 15 for examples of using the
htons() call to put port numbers into network byte order.

The C functions inet_ntop() and inet_pton() are used to manipulate IPv6 addresses. For more information
on these functions, see XL C/C++ for z/VM: Runtime Library Reference.

AF_INET addresses

A socket address in the AF_INET address family is defined by the sockaddr_in structure, which is defined
in the netinet/in.h header file:

typedef unsigned long in_addr_t;
struct in_addr
in_addr_t s_addr;

i

struct sockaddr_in {
unsigned char sin_len; /* length of sockaddr struct =/
unsigned char sin_family; /* addressing family x/
unsigned short sin_port; /* port number x/
struct in_addr sin_addr; /* IP address =/
unsigned char sin_zero[8]; /* unassigned x/

i

6 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

C Sockets API

The sin_len field is set to either 0 or sizeof (struct sockaddr_in) when providing a sockaddr _in
structure to the sockets library. Both values are treated the same. When the sockets library provides a
sockaddr_in structure to the application, the sin_len field is set to sizeof(struct sockaddr_in).

The sin_family field is set to AF_INET.
The sin_port field is set to the port to which the process is bound, in network byte order.

The sin_addr field is set to the internet address (IP address) of the interface to which the process is
bound, in network byte order.

The sin_zero field is not used and must be set to all zeros.

AF_INET6 addresses

If the socket descriptor socket was created in the AF_INET6 domain, the format of the name buffer is
expected to be sockaddr_iné, as defined in the netinet/in.h:

struct sockaddr_iné §

uint8_t siné6_len; /* length of sockaddr structure x/
sa_family_t sin6_family; /* addressing family x/

in_port_t sin6_port; /* port number x/

uint32_t siné_flowinfo; /* ignored =%/

struct iné_addr siné_addr; /* IP address =/

*
uint32_t siné_scope_id; /* scope ID */

55

The sin6_len field must be set to either © or sizeof(struct sockaddr_iné). Both values are treated
the same.

The sin6_family must be set to AF_INET6.

The sin6_port field is set to the port to which the socket is bound. It must be specified in network byte
order.

The sin6_flowinfo field is currently unsupported so its contents are ignored.

The sin6_addr.s6_addr field is set to the internet address of the interface to which the socket is bound. It
must be specified in network byte order.

The sin6_scope_id field identifies a set of interfaces as appropriate for the scope of the address carried
in the sin6_addr field. For link local addresses, the sin6_scope_id can be used to specify the outgoing
interface index. The z/VM stack supports sin6_scope_id for link local addresses only

Addressing within the AF_UNIX Domain

A socket address in the AF_UNIX address family is defined by the sockaddr_un structure, which is defined
in the sys/un.h header file:

struct sockaddr_un {
unsigned char sun_len; /* length of sockaddr struct x/
unsigned char sun_family; /* addressing family =/
char sun_path[108]; /* file name x/
[if:

When the application provides a sockaddr_un structure to the sockets library, the sun_len field should

be set to either 0 or a value greater than or equal to SUN_LEN (&sa), where sa is the name of the
sockaddr_un variable, but less than or equal to sizeof(struct sockaddr_un). The SUN_LEN() macro,
which is defined in sys/un.h, evaluates to an expression which returns the total length of the used portion
of the sockaddr_un structure, when sun_path has been filled in with a null-terminated file name. The
length returned by SUN_LEN() does not include the terminating null character. If a 0 is specified for
sun_len, the sockaddr length provided on the specific socket function call determines how long the path
name is. If sun_len is nonzero, the lesser of sun_len and the provided length is used. In either case, if

a null character appears in the string before the given length, the path name is considered to end there.
When the sockets library provides a sockaddr_un structure to the application, the sun_len field is set to
SUN_LEN(&sa)+1, where sa is the name of the sockaddr_un variable. This length thus includes the null
byte which terminates the file name.

Chapter 1. z/VM C Socket Application Programming Interface 7

C Sockets API

The sun_family field is set to AF_UNIX.

The sun_path field contains the name of the file which represents the open socket. It need not be null
delimited, although it is recommended that it is, so that the SUN_LEN() macro can be used. A file by this
name will be created in the Byte File System by the bind() function call, and must exist there for the
connect() function call to succeed. Because the Byte File System contains the file, the form of the path
name should follow the POSIX conventions. Generally, an absolute path name (one that begins with a
slash) should be specified, so that the client and the server can both use the same path name to identify
the file. If an AF_UNIX socket is not yet bound when a client calls the connect() function, it will be bound
to the null path name string (for example, the string ""). In this case, no file is created in the Byte File
System.

For more information about the Byte File System, see the z/VM: OpenExtensions User's Guide.

Addressing within the AF_IUCV Domain

A socket address in the AF_IUCV address family is defined by the sockaddr_iucv structure, which is
defined in the saiucv.h header file:

struct sockaddr_iucv $

unsigned char siucv_len; /* length of sockaddr struct =/
unsigned char siucv_family; /* addressing family x/
unsigned short siucv_port; /* port number x/

unsigned long siucv_addr; /* address */

unsigned char siucv_nodeid[8]; /* nodeid to connect to *x/
unsigned char siucv_userid[8]; /* userid to connect to */
unsigned char siucv_name[8]; /* iucvname for connect */

53

The siucv_len field is set to either © or sizeof (struct sockaddr_iucv) when providing a
sockaddr_iucv structure to the sockets library. Both values are treated the same. When the sockets
library provides a sockaddr_iucv structure to the application, the siucv_len field is set to sizeof (struct
sockaddr_iucv).

The siucv_family field is set to AF_TIUCV.

The siucv_port, siucv_addr, and siucv_nodeid fields are reserved for future use. The siucv_port and
siucv_addr fields must be zeroed. The siucv_nodeid field must be set to exactly eight blank characters.

The siucv_userid field is set to the VM user ID of the application which owns the address. This field must
be eight characters long, padded with blanks on the right. It cannot contain the null character.

The siucv_name field is set to the application name by which the socket is known. A server advertises
a particular application name, and this is the name used by the client to connect to the server. The
recommended form of the name contains eight characters, padded with blanks to the right.

For more information about IUCV, see z/VM: CMS Application Development Guide for Assembler.

Client/Server Conversation

The client and server exchange data using a number of socket functions. They can send data using send(),
sendto(), sendmsg(), write(), or writev(). They can receive data using recv(), recvfrom(), recvmsg(), read(),
or readv(). The following is an example of the send() and recv() calls:

send(s, addr_of_data, len_of_data, 0);
recv(s, addr_of_ buffer, len_of_buffer, 0);

The send() and recv() functions specify the socket s on which to communicate, the address in memory

of the buffer that contains, or will contain, the data (addr_of data, addr_of_buffer), the size of this buffer
(len_of _data, len_of buffer), and a flag that tells how the data is to be sent. Using the flag 0 tells TCP/IP
to transfer the data normally. The server uses the socket that is returned from the accept() call. The client
uses the socket that is returned from the socket() call.

These functions return the amount of data that was either sent or received. Because stream sockets send
and receive information in streams of data, it can take more than one call to send() or recv() to transfer all

8 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

C Sockets API

the data. It is up to the client and server to agree on some mechanism of signaling that all the data has
been transferred.

When the conversation is over, both the client and server call the close() function to end the connection.
The close() function deallocates the socket, freeing its space in the table of connections. To end a
connection with a specific client, the server closes the socket returned by accept(). If the server closes its
original socket, the "listening" socket, it can no longer accept new connections, but it can still converse
with the clients it is connected to. The following is an example of the close() call:

close(s);

Server Perspective for AF_INET

Before the server can accept any connections with clients, it must register itself with TCP/IP and "listen"
for client requests on a specific port.

socket()

The server must first allocate a socket. This socket provides an endpoint that clients connect to.

Opened sockets are identified by file descriptors, like any open files in a POSIX environment. The
programmer calls the socket() function to allocate a new socket, as shown in the following example:

socket (AF_INET, SOCK_STREAM, 0);

The socket() function requires the address family (AF_INET), the type of socket (SOCK_STREAM), and the
particular networking protocol to use (when 0 is specified, the system automatically uses the appropriate
protocol for the specified socket type). A new socket is allocated and its file descriptor is returned.

bind()

At this point, an entry in the table of communications has been reserved for your application program.
However, the socket has no port or IP address associated with it until you use the bind() function, which
requires three parameters:

« The socket the server was just given
« The number of the port on which the server wishes to provide its service

« The IP address of the network connection on which the server is listening (to understand what is meant
by "listening", see “listen()” on page 9).

The server puts the port number and IP address into a sockaddr_in structure, passing it and the socket
file descriptor to the bind() function. For example:

struct sockaddr_in sa;

bind(s, (struct sockaddr *) &sa, sizeof sa);

listen()

After the bind, the server has specified a particular IP address and port. Now it must notify the system
that it intends to listen for connections on this socket. The listen() function puts the socket into passive
open mode and allocates a backlog queue of pending connections. In passive open mode, the socket is
open for clients to contact. For example:

listen(s, backlog_number);

The server gives the file descriptor of the socket on which it will be listening and the number of requests
that can be queued (the backlog_number). If a connection request arrives before the server can process
it, the request is queued until the server is ready.

Chapter 1. z/VM C Socket Application Programming Interface 9

C Sockets API

The SOMAXCONN statement in the TCP/IP configuration file (PROFILE TCPIP) determines the maximum
length that backlog_number can be. For more information on the SOMAXCONN statement, see z/VM:
TCP/IP Planning and Customization.

accept()

Up to this point, the server has allocated a socket, bound the socket to an IP address and port, and issued
a passive open. The next step is for the server to actually establish a connection with a client. The accept()
call blocks the server until a connection request arrives, or, if there are connection requests in the backlog
queue, until a connection is established with the first client in the queue. The following is an example of
the accept() call:

struct sockaddr_in sa;
int addrlen;

Elient_sock = accept(s, (struct sockaddr *) &sa, &addrlen);

The server passes the file descriptor of its socket to the accept() call. When the connection is established,
the accept() call creates a new socket representing the connection with the client, and returns its file
descriptor. When the server wishes to communicate with the client or end the connection, it uses the

file descriptor of this new socket, client_sock. The original socket s is now ready to accept connections
with other clients. The original socket is still allocated, bound, and opened passively. To accept another
connection, the server calls accept() again. By repeatedly calling accept(), the server can establish many
connections simultaneously.

select()

The server is now ready to start handling requests on this port from any client with the server's IP address
and port number. If the server handles just one client at a time, it can just start sending or receiving data.
A server is not limited to one active socket, though. Often a server processes requests from several clients
at the same time, and additionally listens for new clients wanting to establish connections. For maximum
performance, such a server should either create a new thread to handle each client request, or set all of
its sockets to "nonblocking" mode, so that a delay in handling one client request does not affect other
client requests. Using nonblocking mode allows a single-threaded server to operate only on those sockets
that are ready for communication. The select() call allows an application program to test for activity on a
group of sockets.

Note: The select() function can also be used with other descriptors, such as file descriptors, pipes, or
character special files such as the tty.

To allow you to test any number of sockets with just a single call to select(), place the file descriptors of
the sockets to test into a "bit set", passing the bit set to the select() call. A bit set is a string of bits where
each possible member of the set is on or off. If the member's bit is off, the member is not in the set. If the
member's bit is on, the member is in the set. If the socket with file descriptor 3 is a member of a bit set,
then the bit that represents it is on.

The following macros are provided to manipulate the bit sets:
Macro
Description
FD_ZERO
Clears the whole bit set
FD_SET
Sets the bit corresponding to a particular file descriptor

FD_CLR
Clears the bit corresponding to a particular file descriptor

FD_ISSET
Tests whether the bit corresponding to a particular file descriptor is set or cleared

10 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

C Sockets API

To be active, a socket must be ready for reading data or for writing data, or an exceptional condition must
have occurred. Therefore, the server specifies three bit sets of file descriptors in its call to the select()
function: one bit set for file descriptors on which to receive data, another for file descriptors on which to
write data, and one for sockets with exception conditions. The select() call tests each file descriptor in
each bit set for activity and returns only those file descriptors that are active.

A server that processes many clients simultaneously can be written so that it processes only those clients
that are ready for activity.

Client Perspective for AF_INET
The client first issues the socket() function call to allocate a socket on which to communicate:

socket (AF_INET, SOCK_STREAM, 0);

To connect to the server, the client places the port number and the IP address of the server into a
sockaddr_in structure, like the one used by the server of its bind() call. If the client does not know the
server's IP address, but does know the server's host name, the gethostbyname() function may be called
to translate the host name into its IP address. The client then calls connect():

struct sockaddr_in sa;

Eonnect(s, (struct sockaddr_in *) &sa, sizeof sa);

When the connection is established, the client uses its socket to communicate with the server.

Typical TCP Socket Session

You can use TCP sockets for both passive (server) and active (client) processes. Whereas some functions
are necessary for both types, some are role-specific. After you make a connection, it exists until you close
the socket. During the connection, data is either delivered or an error code is returned by TCP/IP.

See Figure 2 on page 12 for the general sequence of calls to be followed for most socket routines using
TCP, or stream sockets.

Chapter 1. z/VM C Socket Application Programming Interface 11

C Sockets API

Client

Server

Create a stream socket s with the
socket() call.

Create a stream socket s with the
socket() call

1

[Cptional)

y Bind socket s to a local address with the
' bind() call

———

—

Bind sockef stoa local address with the

Connect socket 1o a foreign host with the
connect() call

bind() call.

With the listen() call, alert TCP/F of
of your willingness to accept connections.

Forthe server, socket & remaing available
to accapt new cornections. Socket ns
is dedicated to the client.

Read and write data on socket s
using the send() and recw() calls,
until all the data has been exchanged.

—
.‘

Accept the connection and receive a second
socketfor example, nswith the

accept() call

Read and wiite data on socket ns
using the send() and recv() calls,

Close socket s and end the TCP/AP session
with the closed) call.

Figure 2. A Typical Stream Socket Session

Typical UDP Socket Session

until all the data has been exchanged

Cloze socket ns with the close() call.

Accept anather connection trom a clhent,
or close the original socket s with the
close() call

UDP socket processes, unlike TCP socket processes, are not clearly distinguished by server and client
roles. The distinction is between connected and unconnected sockets. An unconnected socket can be
used to communicate with any host; but a connected socket, because it has a dedicated destination, can
send data to, and receive data from, only one host.

12 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

Both connected and unconnected sockets send their data over the network without verification.
Consequently, after a packet has been accepted by the UDP interface, the arrival and integrity of the

packet cannot be guaranteed.

See Figure 3 on page 13 for the general sequence of calls to be followed for most socket routines using

UDP, or datagram, sockets.

Client

Create a datagram socket s
with the socket() call.

Bind socket s to alocal address with
the bind{) call.

' (Optional)
1Connect sacket s using the connect()
:call to associate s with the server address.

Send and recelve data on socket s,

using the sendto() and recvirom() calls,
until all the data has been exchanged.

Use the send() and recv() calls if connect()
was called.

Close socket s and end the session
with the close() call.

Figure 3. A Typical Datagram Socket Session

Locating the Server's Port

Server

Create a datagram socket s
with the socket() call.

Bind socket s to alocal address with
the bind() call.

' (Optional)
1 Connect socket s using the connect()
:call to associate s with the client address.

Send and receive data on socket s,

—"|using the sendto() and recvfrom() calls,

until all the data has been exchanged.

Use the send() and recv{) calls if connect()
was called.

Close socket s and end the session
with the close() call.

In the client/server model, the server provides a resource by listening for clients on a particular port. Such
application programs as FTP, SMTP, and Telnet listen on a well-known port, a port reserved for use by a
specific application program or protocol. However, for your own client/server application programs, you
need a method of assigning port numbers to represent the services you intend to provide. One general
method of defining services and their ports is to enter them into the ETC SERVICES file. The programmer
uses the getservbyname() function to determine the port for a particular service. If the port number for a
particular service changes, only the ETC SERVICES file must be modified.

Note: TCP/IP for z/VM is shipped with an ETC SERVICES file containing such well-known services as FTP,

SMTP, and Telnet.

Chapter 1. z/VM C Socket Application Programming Interface 13

C Sockets API

Network Application Example

The following steps illustrates using socket functions in an AF_INET network application program.

Note: Error checking has been omitted from the examples. Error checking is very important, and has been
omitted only to avoid complicating the examples.

1. First, an application program must open a socket using the socket() call, as shown in Figure 4 on page
14.

int s;

s = socket(AF_INET, SOCK_STREAM, 0);

Figure 4. An Application Using socket()

This example allocates a socket s in the AF_INET address family, with socket type SOCK_STREAM

and protocol 0. Passing 0 for the protocol chooses the default, which for the AF_INET domain and
SOCK_STREAM type is IPPROTO_TCP. The supported values for the socket domain, type, and protocol
are defined in the netinet/in.h header file.

If successful, the socket() call returns a positive integer called a file descriptor that is used in
subsequent function calls to identify the socket.

2. After an application program creates a socket, it can explicitly bind a unique address to the socket, as
shown in Figure 5 on page 14.

int rc;
int s;
struct sockaddr_in myname;

/* Clear the structure to be sure that the sin_len and */
/* sin_zero fields are clear */
memset (&myname, 0, sizeof myname);

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = INADDR_ANY; /* any interface x/
myname.sin_port = htons(5001);

rc = bind(s, (struct sockaddr %) &myname, sizeof myname);

Figure 5. An Application Using bind()

This example binds the socket with file descriptor s to port 5001, allowing it to accept connections
from any interface available to the host in the internet domain. Servers must bind to an address and
port to become accessible to the network. Also shown in this example is a handy utility routine called
htons(), which takes a short integer (like a port number) in host byte order and returns it in network
byte order.

3. After binding to a socket, a server that uses stream sockets must indicate its readiness to accept
connections from clients. The server does this with the listen() call, as shown in Figure 6 on page 14.

int s;
int rc;

rc = listen(s, 5);

Figure 6. An Application Using listen()

This example tells TCP/IP that the server is ready to begin accepting connections, and that a
maximum of five connection requests can be queued for the server. Additional requests are ignored.

14 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

4. Clients using stream sockets begin a connection request by calling connect(), as shown in Figure 7 on
page 15.

int s;

struct sockaddr_in servername;

int rc;

memset (&servername, 0, sizeof servername);
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = inet_addr("129.5.24.1");
servername.sin_port = htons (5001) ;

rc = connect(s, (struct sockaddr *) &servername, sizeof servername);

Figure 7. An Application Using connect()

This example attempts to connect the socket with file descriptor s to the server with an address
specified in the servername variable. This could be the server that was used in Figure 5 on page

14. After a successful return, the socket with file descriptor s is associated with the connection to
the server. This example also uses another handy utility routine, inet_addr(), which takes an internet
address in dotted-decimal form and returns it as a long integer in network byte order.

Figure 8 on page 15 shows another example of the connect() call. It uses the utility routine
gethostbyname() to find the internet address of the host rather than using inet_addr() with a specific
address.

int rc;

int s;

char xhostname = "jphhost.ibm.com";
struct sockaddr_in servername;
struct hostent xhp;

hp = gethostbyname (hostname) ;

/* Clear the structure to be sure that the sin_len and */
/* sin_zero fields are clear. */
memset (&servername, 0, sizeof servername);
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = *(in_addr_t %) hp->h_addr;
servername.sin_port = htons(5001);

rc = connect(s, (struct sockaddr %) &servername, sizeof servername);

Figure 8. A connect() Function Using gethostbyname()

5. Servers using stream sockets accept a connection request with the accept() call, as shown in Figure 9
on page 15.

int clientsocket;

int s;

struct sockaddr_in clientaddress;
int addrlen;

addrlen = sizeof clientaddress;
clientsocket = accept(s, (struct sockaddr %) &clientaddress, &addrlen);

Figure 9. An Application Using accept()

If connection requests are not pending on the socket with file descriptor s, the accept() call blocks
the server (unless s is in nonblocking mode). When a connection request is accepted, the socket,
the name of the client, and length of the client name are returned, along with a file descriptor
representing a new socket. The new socket is associated with the client that began the connection,
and s is again available to accept new connections.

Chapter 1. z/VM C Socket Application Programming Interface 15

C Sockets API

6. Clients and servers have many calls from which to choose for data transfer. The send() and recv(),
readv() and writev(), and read() and write() calls can be used only on sockets that are in the
connected state. The sendto() and recvfrom(), and sendmsg() and recvmsg() calls can be used at
any time on datagram sockets. Figure 10 on page 16 illustrates the use of send() and recv().

int bytes_sent;

int bytes_received;

char data_sent[256];
char data_received[256];
int S;

bytes_sent = send(s, data_sent, sizeof data_sent, 0);

bytes_received = recv(s, data_received, sizeof data_received, 0);

Figure 10. An Application Using send() and recv()

This example shows an application program sending data on a connected socket and receiving data
in response. The flags field can be used to specify additional options to send() or recv(), such as
sending out-of-band data. (In this case no flags are being used, so 0 is passed.)

7. If the socket is not in a connected state, additional address information must be passed to sendto()
and can be optionally returned from recvfrom(). An example is shown in Figure 11 on page 16.

int bytes_sent;

int bytes_received;

char data_sent[256];
char data_received[256];
struct sockaddr_in to;
struct sockaddr_in from;
int addrlen;

int s;

memset (&to, 0, sizeof to);
to.sin_family = AF_INET;
to.sin_addr.s_addr = inet_addr("129.5.24.1");
to.sin_port = htons(5001);
bytes_sent = sendto(s, data_sent, sizeof data_sent, 0O,
(struct sockaddr *) &to, sizeof to);

éddrlen = sizeof from; /* must be initialized =*/

bytes_received = recvfrom(s, data_received,
sizeof data_received, 0, (struct sockaddr x) &from, &addrlen);

Figure 11. An Application Using sendto() and recvfrom()

The sendto(), recvfrom(), sendmsg(), and recvmsg() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the data. Usually, sendto(),
recvfrom(), sendmsg(), and recvmsg() are used for datagram sockets, and send() and recv() are used
for stream sockets.

8. The writev(), readv(), sendmsg(), and recvmsg() calls provide the additional features of "scatter"
and "gather" buffers, two related operations where data is received and stored in multiple buffers
(scatter data), and then taken from multiple buffers and transmitted (gather data). The writev() and
sendmsg() calls gather the data and send it. The readv() and recvmsg() calls receive data and scatter
it into multiple buffers.

9. Applications can handle multiple file descriptors. In such situations, use the select() call to determine
the file descriptors that have data to be read, those that are ready for data to be written, and those
that have pending exceptional conditions. Figure 12 on page 17 is an example of how the select()
call is used.

16 z/VM: 7.3 TCP/IP Programmer's Reference

10.

11.

C Sockets API

fd_set readsocks;
fd_set writesocks;
fd_set exceptsocks;
struct timeval timeout;
int number_found;

/* set bits in read, write, and except bit masks x/
FD_ZERO (&readsocks) ;

FD_ZERO (&writesocks);

FD_ZERO (&exceptsocks) ;

FD_SET (s, &readsocks);
FD_SET (s, &writesocks);
FD_SET (s, &exceptsocks);

timeout.tv_sec=5; /* Wait up to 5 seconds for activity x/
timeout.tv_usec=0; /* No additional microseconds =*/

/* First argument is number of bits in masks to check x/

number_found = select(s+1,
&readsocks, &writesocks, &exceptsocks, &timeout);

Figure 12. An Application Using select()

In this example, the application program uses bit sets to indicate that the sockets are being tested for
certain conditions and also indicates a timeout. If the timeout parameter is a null pointer, the select()
call blocks until a socket becomes ready. If the timeout parameter is nonnull, select() waits up to this
amount of time for at least one socket to become ready on the indicated conditions. This is useful for
application programs servicing multiple connections that cannot afford to block, waiting for data on
one connection.

In addition to select(), application programs can use the fcntl() or ioctl() calls to help perform
asynchronous (nonblocking) socket operations. An example of the use of the ioctl() call is shown in
Figure 13 on page 17.

int s;
int dontblock;
char buf[256];
int zrc;

dontblock = 1;

ic = joctl(s, FIONBIO, &dontblock);

if (recv(s, buf, sizeof buf, 0) == -1 && errno == EWOULDBLOCK)
/* no data available =x/

else
/* either got data or some other error occurred x/

Figure 13. An Application Using ioctl()

In this example, the socket with file descriptor s is placed into nonblocking mode. When this file
descriptor is passed as a parameter to calls that would block, such as recv() when data is not present,
it causes the call to return with an error code, and the global errno value is set to ENOULDBLOCK or
EAGAIN. Setting the mode of the socket to be nonblocking allows an application program to continue
processing without becoming blocked.

A socket with file descriptor s is deallocated with the close() call, as shown in Figure 14 on page 17.

int rc;
int s;
rc = close(s);

Figure 14. An Application Using close()

Chapter 1. z/VM C Socket Application Programming Interface 17

C Sockets API

z/VM C Socket Implementation

The following sections describe some important implementation details of the z/VM C socket APL.

Header Files

Most of the socket header files used by the z/VM C sockets library are shipped with Language
Environment. The only header file that is unique to the z/VM library is saiucv.h, which contains the
sockaddr structure definition for AF_IUCV sockets.

_OE_SOCKETS Preprocessor Symbol

In general, the Language Environment header files are sensitive to whether the _OE_SOCKETS
preprocessor symbol has been defined. In order to use the Language Environment header files for sockets
programming, you must define the _OE_SOCKETS preprocessor symbol before you include any Language
Environment header files. You can do this in your program by placing a statement similar to the following
at the top of each source file:

#tdefine _OE_SOCKETS

Alternatively, you can cause the _OE_SOCKETS preprocessor symbol to be defined by the compiler, by
using the -D option on the c89 command line. See “Compiling and Linking a Sockets Program” on page
26 for more information on compiling sockets programs.

For IPv6 sockets programming (AF_INET6 sockets), the symbol _OPEN_SYS_SOCK_IPV6 must also be
defined.

Function Prototypes

Although they contain function prototypes for all of the POSIX.1 functions, the Language Environment
header files do not contain prototypes for all of the socket functions. Specifically, when _OE_SOCKETS is
defined, the following socket functions are available, but have no prototypes provided:

Header File
Functions

sys/socket.h
accept(), bind(), connect(), getpeername(), getsockname(), getsockopt(), listen(), recv(), recvfrom(),
recvmsg(), send(), sendmsg(), sendto(), setsockopt(), shutdown(), socket()

netdb.h
endhostent(), endnetent(), endprotoent(), endservent(), sethostent(), setnetent(), setprotoent(),
setservent()

arpa/inet.h
inet_Llnaof(), inet_netof()

sys/uio.h
readv(), writev()

Because the socket functions were designed to be useful for any networking interface, the types of

the parameters declared for the functions do not always exactly match the types of the arguments
provided. In one sense, therefore, it is convenient that prototypes are not always provided, as it reduces
the number of possible compiler warning messages because of type mismatches. On the other hand,
socket programs may contain subtle bugs because of misunderstandings about the type definitions of the
function parameters, so care should be taken when coding a function call. One way to ensure care is to
use prototypes and to explicitly cast function arguments when necessary (and only when necessary). For
example, the connect() function call accepts a pointer to a sockaddr structure, but the sockaddr structure
is a generic structure not associated with any particular address family. A program using AF_INET sockets
might provide a pointer to a sockaddr_in structure for this connect() parameter. Because these two
pointer types are not compatible, an explicit cast should be used on the function call to convert the
sockaddr_in pointer into a generic sockaddr pointer.

18 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

Suppressing Function Prototypes

If you are porting a large program that you know is coded correctly, you may at first receive a lot of
type-mismatch compiler errors if the program is not coded to explicitly cast function arguments to their
proper types. This is common when porting code from other systems, because not all systems provide
function prototypes for the socket functions. To avoid correcting the function calls to perform the explicit
cast operations, you can define the _NO_PROTO preprocessor symbol before including any header files.
If the _NO_PROTO preprocessor symbol is defined before including any Language Environment or z/VM
header file, function prototypes will be suppressed, or at least modified to omit type declarations for the
function arguments. Use of this preprocessor symbol will avoid the compiler warning messages and make
porting easier, but be aware that it may also obscure coding errors in the program.

If you wish to define the _NO_PROTO preprocessor symbol, you can do so by placing a statement similar
to the following at the top of each source file of your program:

##define _NO_PROTO

Alternatively, you can cause the _NO_PROTO preprocessor symbol to be defined by the compiler, by using
the -D option on the c89 command line. See “Compiling and Linking a Sockets Program” on page 26 for
more information on compiling sockets programs.

Multithreading

The z/VM C sockets library is a multithreading sockets library. This means that you can write programs to
exploit the z/VM multithreading capabilities provided for POSIX programs, and still use socket functions
without worrying about socket calls by one thread interfering with calls by another thread, or about the
entire process being blocked just because one thread is blocked.

The z/VM C sockets library protects its internal data structures with mutexes, and uses thread-local data
areas, where necessary, to ensure that socket calls by different threads can occur "concurrently". The
z/VM C sockets library is careful to never hold one of these internal mutexes when it might block for a
substantial period of time, so multiple threads can use socket functions with as much concurrency as
possible.

Some function calls in the z/VM C sockets library are not "primitive" socket function calls, however. For
example, the gethostbyname() function call is really a procedure which tries to resolve a host name by
reading data from local files and by communicating with Domain Name Servers in the network.

Multithreading versus Nonblocking Sockets

In a single-threaded program, a server that wants to handle concurrent requests from multiple clients
usually sets all of its sockets to nonblocking mode, so that if a socket call on behalf of one client can

not be processed immediately, other client requests are not delayed. In a multithreaded server, another
approach is available. Instead of setting the sockets to be nonblocking, the server can create a separate
thread to handle each client request. If a call to a socket function by one thread blocks, only that client
request is affected; other threads are free to continue processing requests from other clients. Using
multiple threads can therefore simplify the programming model, because each thread can concentrate
on a single client without worrying about any other client. Either approach is available with the z/VM C
sockets library.

Conflicts Between Socket Calls

When one thread of a multithreaded program is issuing a socket function call for a given socket,

other threads are restricted from issuing certain socket function calls against that same socket.
These restrictions are enforced by the TCP/IP service virtual machine. The following list describes the
restrictions for each type of socket call:

« Multiple read-type calls (read(), readv(), recv(), recvfrom(), or recvmsg()) and multiple write-type calls
(write(), writev(), send(), sendto(), or sendmsg()) for the same socket can be in progress simultaneously.
The read-type calls are satisfied in the order they are issued, independently of the write-type calls.

Chapter 1. z/VM C Socket Application Programming Interface 19

C Sockets API

Similarly, the write-type calls are satisfied in the order they are issued, independently of the read-type
calls.

« Multiple accept() calls for the same listening stream socket can be in progress simultaneously. They are
satisfied in the order they are issued.

« Multiple select() calls referring to any combination of sockets (or other file descriptors) may be in
progress simultaneously. When the state of a socket or other file descriptor changes, all active select()
calls are checked; any that are then satisfied will return.

« Calls other than the read-type, write-type, accept(), and select() calls may not be in progress
simultaneously for the same socket. For example, your program must wait for a write-type call to
complete (or interrupt it) before issuing a close() call for the same socket.

If your program violates one of these restrictions, the function call that violates it will fail with an
ECONFLICT error, except a close() call, which will fail with an EAGAIN error.

POSIX Signals and Thread Cancellation

The POSIX.1 standard greatly enhances the ANSI C Language definition by defining and guaranteeing
certain aspects of signal processing. For example, many POSIX.1 function calls are defined to unblock,
returning the EINTR error code, if a signal is delivered to a thread while it is blocked in a function call.
POSIX.1 also defines what function calls a program may safely make while in a signal handler. Similarly,
the (draft) POSIX.1c threading standard defines the conditions under which a thread may be "cancelled"
by a call to the pthread_cancel() function, and what function calls are considered to be "cancellation
points". The intent of this section is to define these attributes for the z/VM C sockets library.

Any socket function call which blocks may return EINTR if interrupted by a signal. That is, if a signal is
caught by a thread which is blocked in a call to a socket function, that socket function will unblock and
return the EINTR error code when the signal handler returns. The z/VM C sockets library blocks signal
delivery in places when it is holding any internal mutexes, so signal delivery will occur only when the z/VM
C sockets library can tolerate it. However, the following strict restriction does exist: It is not supported
for a signal handler to use longjmp() or siglongjmp() to exit from a signal handler. In order for the z/VM
C sockets library to properly recover from being interrupted, the signal handler must return, allowing the
interrupted function call to resume from the point of interruption. This restriction only exists for signal
handlers which might run because the thread was interrupted in the middle of a call to a socket function.

All z/VM C socket functions are async signal safe, and may thus be called without restriction from signal
handlers.

All z/VM C socket functions are defined to possibly be thread cancellation points, as defined in the (draft)
POSIX.1c threading standard, and no socket functions are defined to be async cancel safe. Any socket
function which blocks will be a cancellation point. Although it is not supported by POSIX, it is safe for

a cancellation cleanup handler to use longjmp() or siglongjmp() to exit, even if a function in the z/VM C
sockets library was interrupted by the thread cancellation request.

Note: The difference between using longjmp() from a cancellation cleanup handler and using longjmp()
from a signal handler is that in the case of cancellation, the z/VM C sockets library uses a cancellation
cleanup handler of its own (which gets invoked before the application's cleanup handler) to clean up
outstanding socket activity.

Sockets and Their Relationship to Other POSIX Functions

The z/VM C sockets library allocates file descriptors for sockets from the same pool of numbers that

CMS uses for other open files in the POSIX environment. Among other things, this means that non-socket-
specific POSIX functions can be called for file descriptors allocated to sockets. For example, the fstat()
function can be called to retrieve information about an open socket. In the case of a socket, the st_mode
field of the stat structure returned will indicate that the file descriptor is a socket. The S_ISSOCK() macro,
defined in sys/stat.h, can be used to test the st_mode field. The S_ISSOCK() macro is analogous to the
S_ISREG(), S_ISFIFO(), and other related macros provided in sys/stat.h to test for other file types.

Examples of other POSIX functions which can be called for socket file descriptors are fchmod(), fchown(),
dup(), and dup2(). Note that using fcntl(), dup(), or dup2(), it is possible to open several file descriptors for

20 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

the same socket. When this is done, all of the file descriptors are considered to be equivalent, in the sense
that none of them has any special status over the rest. A socket is closed when the last file descriptor
which refers to a socket is closed.

When using AF_UNIX sockets, files are created by the bind() function call in the Byte File System, CMS's
implementation of a POSIX-compliant file system. These files cannot be opened with the open() function,
and are used only by the connect() function in the z/VM C sockets library. If stat() or Istat() is used on

one of these files, the st_mode field in the return stat structure indicates that the file is a socket. The
S_ISSOCK() macro can be used to test for this file type.

Note: Certain other function calls in the BPX layer of interfaces may report these files to be "external
links".

Secure Connection Considerations

Applications can set up connections to be secure using the secure ioctl commands and data structures
defined in Table 21 on page 148 and Table 22 on page 171. Secure connections flow through a TLS/SSL
server. Once a connection is secure, any data that the application sends is encrypted by the TLS/SSL
server before it is sent over the TCP connection. Any data that the application receives is decrypted by the
TLS/SSL server before it is returned to the application.

Starting a Secure Connection

Use the SioCSecServer ioctl command to indicate to the TLS/SSL server that a connection is to be secure
and that the TLS/SSL server must wait for an incoming handshake. Use the SioCSecClient ioctl command
to indicate to the TLS/SSL server that a connection is to be secure and that the TLS/SSL server must
initiate an outbound handshake on behalf of the application. The SecureDetail structure must be provided
on these ioctl commands. Refer to Table 21 on page 148 for details.

If non-blocking sockets are used, the application can wait for the handshake to complete by waiting for
the socket to become writable or post an exception. In this case, the ioctl command completes with a
return code of -1 and an ErrNo of EINPROGRESS. If the handshake fails for any reason, an exception

is raised on the socket. The ErrNo presented on the subsequent read reflects the handshake error. If
blocking sockets are used, the ioctl command blocks until the handshake completes.

Security can be negotiated by specifying data in the buffer field of the SecureDetail structure that
gets passed on the SioCSecServer or SioCSecClient command. The buffer data can indicate to the
partner application that the partner application must make the appropriate command (SioCSecServer
or SioCSecClient) to secure the connection. The buffer data is sent in clear text to the partner:

1. The TLS/SSL server receives the ioctl command.
2. The TLS/SSL server immediately sends the buffer data in clear text to the partner application.
3. After sending the buffer data to the partner application, the TLS/SSL server waits for the handshake.

Stopping a Secure Connection

Use the SioCSecClose ioctl command and pass in the CloseReq structure to stop encrypted data from
flowing on a TCP connection. The server application or the client application can initiate the return to a
clear text connection. In the following steps, the server application initiates the process.

1. The server application issues an SioCSecClose ioctl command.

« The SioCSecClose ioctl command can contain data in the CloseBuff buffer of the CloseReq structure.
The buffer data is the last encrypted data that is sent before the SSL tunnel is closed. Any data that
has not been delivered when the SioCSecClose ioctl command is issued is discarded.

2. After the server application issues the SioCSecClose ioctl command and before the client application
issues the SioCSecClose ioctl command, the following events can occur:

« The client application receives ErrNo EIBMCLRTEXT on the next read or write of the socket.

- If the client application attempts to transmit data, the transmission fails with ErrNo of EIBMSCLSIP,
which indicates that a close is in progress.

Chapter 1. z/VM C Socket Application Programming Interface 21

C Sockets API

3. When the client application issues the SioCSecClose ioctl command, the server application's
SioCSecClose ioctl command completes and the connection returns to clear text.

- If non-blocking sockets are used, the ioctl command completes with a return code of -1 and an
ErrNo of EINPROGRESS. The return code and ErrNo indicate that the ioctl command was processed
and is waiting for SSL to close the secure tunnel. When the client issues the SioCSecClose ioctl
command, the secure tunnel is closed and the socket becomes writable.

- If blocking sockets are used, data transmission is blocked until the SioCSecClose ioctl command
completes.

Note: It is the server application's responsibility to process all data before the server application issues
the SioCSecClose ioctl command. Any unprocessed data is discarded by the TLS/SSL server.
Requesting Details for a Secure Connection

Use the SIOCSECSTATUS ioctl command to request details about a session such as whether or not it is
secure and the encryption suite being used. The SecStatus structure is returned. This structure provides
the security level and cipher details.

Requesting Details from a Partner Certificate

Use the SIOCGCERTDATA ioctl command to request specific fields from the local or partner certificate.
The CertDataCompleteDetailType structure is returned. Refer to Table 21 on page 148 for details.

If using blocking sockets, the ioctl will block until the certificate request completes.

If using non-blocking sockets, the application can wait for the certificate data to be returned by waiting
for a read or an exception to be posted. In this case, the ioctl will complete with a return code of -1 and
an ErrNo of EINPROGRESS. If the request completes with data returned, the socket will be woken up for
read. The CertDataCompleteDetailType structure that is returned on the subsequent read will need to be
parsed to determine the result of the request. If the certificate request fails and no data is returned, the
socket will be woken up for exception. The error will be returned in the ErrNo field on the subsequent
read. An ErrNo in the 40000 range indicates a System SSL error. Subtract 40000 from the ErrNo and
refer to Messages and codes in z/0S Cryptographic Services System Secure Sockets Layer Programming
(publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf) for details.

Determining if a TLS/SSL Server is Available

Use the SIOCTLSQUERY ioctl command, passing in the QueryTls structure, to determine if a TLS/SSL
server is available, and if a label is specified, if it is known to the TLS/SSL server.

If using blocking sockets, the ioctl will block until the Query completes.

If using non-blocking sockets, the application can wait for the Query to complete by waiting for the socket
to become writable or post an exception. In this case, the ioctl request will complete with a return code
of -1 and an ErrNo of EINPROGRESS. If the Query fails for any reason, an exception will be raised on the
socket. The ErrNo presented on the subsequent read will reflect the Query error.

Miscellaneous Implementation Notes

The following are some miscellaneous points to consider when writing socket programs for the z/VM C
sockets library:

1. Most of the socket functions are defined to return an EFAULT error if an address is passed which
cannot be used by the sockets library. In certain cases, your program may receive a signal such as
SIGSEGV instead. A multithreading library such as the z/VM C sockets library has difficulty prechecking
for all of the conditions that could cause an EFAULT error, so invalid addresses may sometimes be used
instead of causing EFAULT. In the worst case, if using AF_INET sockets, the library's IUCV connection
with the TCP/IP service virtual machine may be severed by TCP/IP when it receives an IUCV error
because of an invalid address or length.

22 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/sssl2msg1000613.htm
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf

C Sockets API

2. If you receive an error from a sockets function call, you may call the perror() or strerror() functions
to translate the errno into an error message. These routines can decode socket error codes as well
as error codes from non-socket functions. For compatibility with the VM TCP/IP C sockets library,
the z/VM C sockets library defines a tcperror() function which invokes perror(). A small difference
between tcperror() and perror() is that if the sockets library encountered an error during its most
recent IUCV communication on the invoking thread, the tcperror() function will report that error as well
as the one represented in the errno variable. It is not necessary to use tcperror() unless this additional
information concerning IUCV errors is needed.

3. If you wish to use the AF_UNIX or AF_IUCV addressing domains, the virtual machines that connect to
each other need authorization in their user directory entries to allow the connection to be established.
This is usually handled by placing a statement in the user directory entry of the server virtual machine
like the following:

TUCV ALLOW

This statement tells CP to allow any virtual machine to establish an IUCV connection to the server.

Another possibility is to place a statement like the following in the user directory entry for each client
virtual machine:

IUCV ANY

This statement tells CP to allow the client virtual machine to establish an IUCV connection with any
other virtual machine.

The requirement that virtual machines need authorization to connect through IUCV is true for the
AF_INET and AF_INET6 connections, but this is usually not a problem. AF_INET and AF_INET6
connections connect through the TCP/IP server virtual machine, and that virtual machine is expected
to have an IUCV ALLOW statement in its directory entry, which permits any client virtual machine to
establish a connection with it.

Incompatibilities with the VM TCP/IP C Sockets Library

The goal of the z/VM C sockets library is to allow easier porting of UNIX programs that use sockets,

and to provide a sockets API which can coexist with, and is more compatible with, the POSIX.1 API. To
achieve this goal, it was often necessary to introduce incompatibilities with the TCP/IP C sockets library,
because it has many incompatibilities with typical UNIX implementations. The following are some of the
incompatibilities between the VM TCP/IP C sockets library and the z/VM C sockets library:

1. The names of the socket header files differ a great deal between the two libraries. For example, the
z/VM C sockets library does not have a manifest.h header file, and you should not attempt to include
one in your program. Another example is that the old bsdtypes.h header file has been replaced with
a sys/types.h header file. The time.h header file has been replaced with two header files, time.h and
sys/time.h. It is necessary for you to include the correct one (or both, if necessary) in your program.
Be sure to use the header file names required by the functions as documented in this reference
guide.

Do not omit the path name prefixes which are documented. For example, do not include time.h when
you really should be including sys/time.h. The path name prefixes are significant.

2. Most of the header files to be used with the z/VM C sockets library are provided with Language
Environment. Because those header files support several levels of socket functionality (on z/0S®), it
is necessary for all z/VM C socket programs to declare the level of functionality they want by defining
the _OE_SOCKETS preprocessor symbol before including any Language Environment header files.
Failure to do so will usually cause several confusing compilation error messages. One way to define
this preprocessor symbol is to place a statement similar to the following at the top of each source file
of your program:

#define _OE_SOCKETS

Chapter 1. z/VM C Socket Application Programming Interface 23

C Sockets API

Alternatively, you can cause the _OE_SOCKETS preprocessor symbol to be defined by the compiler,
by using the -D option on the c89 command line. See “Compiling and Linking a Sockets Program” on
page 26 for more information on compiling sockets programs.

3. The BSD 4.4 UNIX system introduced a new field into the sockaddr structures used by many socket
functions. For each socket address family, there is a sockaddr_xx structure which contains fields that
define the address. For example, in the AF_INET address family, the structure is called sockaddr_in
and primarily contains an IP address and port number. In the AF_UNIX address family, the structure
is called sockaddr_un and primarily contains a file name. There is also a generic structure called
sockaddr.

In the TCP/IP C sockets library definitions, such structures do not contain self-defining length fields.
Each socket function that accepts a sockaddr structure also accepts a length, so there is really no
need for them to contain lengths within the structure. In the 4.4 BSD UNIX implementation, however,
there is now a length field in the sockaddr structure, so the Language Environment header files have
them too. The z/VM C sockets library uses them, therefore, when processing those functions. When a
sockaddr structure is given to the z/VM C sockets library, the length fields are handled as follows:

« For AF_INET and AF_INET®6 sockets, the library verifies that the length field is either @ or
sizeof(struct sockaddr_in). If the library sees a zero length, it assumes that the application
does not know about length fields, and uses sizeof (struct sockaddr_in) instead. If it sees
any other length value, it rejects the socket request with EINVAL.

« For AF_UNIX sockets, if the length field is nonzero, the library uses it to limit how much of the file
name is examined; a zero length field is ignored.

« For AF_IUCV sockets, if the length field is nonzero, the library checks to make sure it is equal to
sizeof(struct sockaddr_iucv).

If you do not explicitly initialize the sockaddr length field, then, depending on how the storage is
allocated, you might have an unintended value there, and get unexpected EINVAL errors. This is
more of a problem for AF_UNIX sockets than for AF_INET and AF_INET6 sockets. The reason is
that an AF_INET or AF_INET6 sockaddr structure already contains a field which must be zeros,

so most robust applications use memset() to zero the entire sockaddr structure before filling

it in. Because the z/VM C sockets library treats a zero sockaddr_in length field the same as if
sizeof(struct sockaddr_in) were specified, robust AF_INET and AF_INET6 applications need
no changes to deal with sockaddr length fields. AF_UNIX sockaddr structures have no fields which
must be zero, however, so it is less likely that the structure will be cleared before filling it in,
especially since the full size is so much bigger. Having un-initialized data in that length field might
cause the socket library to use less of the file name than you intend.

A simple method to check code you are porting for proper length-field handling is to search for places
that initialize the "family" field, which is called sin_family for AF_INET, sin6_family for AF_INET6
sockets, and sun_family for AF_UNIX sockets. If there is a call to memset() just before this code to
clear the entire structure, you are probably safe. If not, you should fill in the length field. For AF_INET
sockets, either fill it in with @ or sizeof (struct sockaddr_in). For AF_INET6 sockets, either fill
itin with @ or sizeof (struct sockaddr_iné). For AF_UNIX sockets, either fill it in with @ or a
value greater than or equal to SUN_LEN (&sa), where sa is the name of the sockaddr_un variable, but
less than or equal to sizeof(struct sockaddr_un). For more information and examples of how
to initialize the sockaddr length fields, see the bind() and connect() functions in XL C/C++ for z/VM:
Runtime Library Reference.

4. The z/VM C sockets library supports the selectex() function call. No WAITECBs are done, because the
CMS 0S WAIT and POST are not multitasking-aware and are not interruptable. Instead, the ECB post
bits are checked directly during a polling loop that processes socket and file descriptors. If a set post
bit is found, then selectex() stops processing and returns to its caller.

Consider replacing the usage of ECBs with POSIX constructs such as condition variables. You can
then create a thread that waits on the condition variable, and when the condition being waited for
has really occurred, it could signal a thread blocked in a select() call, if necessary, to cause it to exit
the select(). In may cases, the signal is not even necessary; the thread that waited on the condition
variable could process the event itself without disturbing the other threads.

24 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

5

10.

C Sockets API

. If your program calls tcperror() instead of perror(), you must define the constant _OPEN_SOURCE as
follows:

#tdefine _OPEN_SYS_SOCK_EXT

This will cause tcperror() to be mapped to perror().

. If you used the TCP/IP C sockets library, and did not call the maxdesc() function to increase the
number of sockets you could open, your program was guaranteed that no socket descriptor would
be greater than 49. This guarantee may have been exploited by programs, allowing them to set
the FD_SETSIZE preprocessor symbol to a very small value. The FD_SETSIZE preprocessor symbol
is used by the sys/time.h header file to control how much storage it takes to hold an fd_set, as
used by the select() function call. When using the z/VM C sockets library, there is no relationship
between file descriptor numbers as allocated by CMS and the value of the FD_SETSIZE preprocessor
symbol. Another change to keep in mind is that the default FD_SETSIZE in the Language Environment
sys/time.h header file is 2048, much larger than the default of 256 in the TCP/IP bsdtypes.h header
file.

. Programs compiled with the TCP/IP C sockets library header files must be recompiled before they
can be link edited to the z/VM C sockets library. The two sets of header files do not produce
object-compatible code. For example, the external symbol names associated with socket functions
have changed, and the errno mapping is quite different.

. If your program includes BSD header files (bsdtypes.h, bsdtime.h, bsdtocms.h), you must remove
those includes. The z/VM C sockets library covers BSD functions, but it does not provide those header
files.

. In the TCP/IP C sockets library, getdtablesize() returns the maximum number of socket descriptors.
In the z/VM C sockets library, getdtablesize() functions as it really should, returning the maximum
number of file descriptors. The z/VM C sockets library provides getstablesize() for determining the
maximum number of socket descriptors. If an existing TCP/IP application that uses getdtablesize() is
being rebuilt with the z/VM C sockets library, to get the same results as before you must either use
the APPTYPE environment variable or change the getdtablesize() call to getstablesize().

The TCP/IP remote procedure calls library (RPCLIB) cannot be used with the z/VM C sockets library.
Use the VMRPC library instead. For more information about RPC, see Chapter 5, “Remote Procedure
Calls,” on page 187.

Incompatibilities with z/0S and 0S/390 C Sockets

The z/VM C socket API is equivalent to the 0S/390° Language Environment 2.5 sockets subset, except the

foll
- a
- a
- a

°p

owing functions have not been implemented in z/VM:
ccept_and_recv()

io_read()

io_write()

oll()

« send_file()
« socketpair()

*S

rx_np()

Incompatibilities with the Berkeley Socket Implementation

The following list summarizes some of the differences between the z/VM C socket implementation and

the

1.
2.

Berkeley socket implementation:

The z/VM ioctl() implementation may be different from the current Berkeley ioctl() implementation.

The z/VM getsockopt() and setsockopt() calls support only a subset of the options available, and only
for the AF_IUCV, AF_INET, and AF_INET6 address families.

Chapter 1. z/VM C Socket Application Programming Interface 25

C Sockets API

3. In the z/VM C socket API, the AF_UNIX address family does not support datagram sockets or
nonblocking mode.

4. In the z/VM socket API, select() is used to determine when an asynchronous secure ioctl call
completes.

Compiling and Linking a Sockets Program

This section describes how to compile and link-edit C Language programs that use the z/VM C sockets
library.

Note: An existing application that currently uses the VM TCP/IP C sockets library (COMMTXT) may
continue to do so in exactly the same way it did before, without any modification. Also, the application
may also continue to use the RPCLIB TXTLIB without modification. See “Running a Sockets Program” on
page 29. However, to use the z/VM C socket functions, the application may need to be recompiled. See
“Compiling and Linking a TCP/IP C Sockets Program” on page 28.

Compiling and Linking a z/VM C Sockets Program

To compile z/VM C socket programs, you must have the IBM C for VM/ESA Compiler 3.1 (5654-033) and
IBM Language Environment (supplied with z/VM) installed on your z/VM system. In order to use AF_INET
sockets, you must have TCP/IP installed and running.

To compile and link-edit a z/VM C sockets application program, use the c89 utility. You must make sure
that c89 has access to the files it needs to compile and link-edit. The VM-unique header files reside on
the CMS S-disk. The Language Environment object code and header files reside on the Y-disk.

Another aspect to ensuring that c89 has all required files available is to make sure that you have a Byte
File System mounted and available. The files and directories in this Byte File System must be arranged
in the manner done by the BFS installation procedures. Specifically, the fusr/include/sys/time.h file is
assumed to be an external link of type CMSDATA to the SYS_TIME H file.

The c89 program can be run from the CMS command line (or equivalent) or from within a POSIX
command shell, if you are running with a command shell. The syntax is the same in both cases. For

example, if you wish to compile the testprog. c file in your current Byte File System (BFS) directory and
bind the socket function stubs to it, use a command like the following:

c89 -o testprog -D_OE_SOCKETS testprog.c

Depending on the TCP/IP functions your application uses, additional libraries (listed in Table 2 on page
26) may be required. For example, if testprog. c uses RPC functions, the command would be:

c89 -o testprog -D_OE_SOCKETS testprog.c -1//VMRPC

Table 2. TCP/IP TXTLIB Files and Applications

TXTLIB File Application

VMRPC Remote procedure calls
SCEELKED C APIs

SCEEOBJ C writable static variables

The previous examples assume that testprog. c is the only source file in the program, and that the
_OE_SOCKETS preprocessor symbol is not defined in the source file itself. If it is, then do not specify the
-D option. To avoid having to type the -D option all the time, or including it in your make file, put the

following statement in the beginning of every source file of your program, before it includes its first header
file:

#define _OE_SOCKETS

26 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

If you want to use the Language Environment extended socket and bulkmode support, define the feature
test macro _OPEN_SYS_SOCK_EXT using a preprocessor directive, either on the c89 compile command
line:

c89 filename -D_OPEN_SYS_SOCK_EXT
or in the source code before including any header files:

#define _OPEN_SYS_SOCK_EXT

For more information about this macro, see XL C/C++ for z/VM: Runtime Library Reference.

Sometimes defining _OE_SOCKETS in the source program itself is inconvenient because, for example,
you are porting many source files from another system, and you would rather not change them all.

In this case, define _OE_SOCKETS on the c89 command line with the -D option, either by hand or in
your make file, if you are using the make utility. For more information about the make utility, see z/VM:
OpenExtensions Advanced Application Programming Tools.

The -0 option in the example above tells c89 to store the final executable file with the name testprog.
This overrides the default name of a. out.

When you compile, be very careful not to have the disk containing the header files for TCP/IP accessed
ahead of the disk containing the Language Environment header files. Because both TCP/IP and Language
Environment ship socket header files with the same names, it is important to use the correct Language
Environment header files, and not the TCP/IP files. No TCP/IP header files are needed to compile z/VM

C socket programs. However, if you are using RPC functions, then header files on the TCP/IP disk are
required.

If you would rather have ¢89 produce a MODULE file on a CMS minidisk or accessed SFS directory, then
specify something like the following on your c89 command:

c89 -o //testprog -D_OE_SOCKETS testprog.c

This will cause c89 to create a CMS file called TESTPROG MODULE A instead of an executable file in the
BFS.

If the source file itself is on a CMS minidisk or accessed SFS directory, then use a c89 command like the
following:

c89 -D_OE_SOCKETS //testprog.c

This example adds // to the front of the name of the source file, and removes the -o option. It

adds the // because the source file resides on a CMS minidisk. The -0 option is removed because
when the testprog. c source file is on a minidisk, the c89 default name for the executable file is //
testprog.module.a, so there is no need to specify it explicitly.

Note: It is not necessary to use uppercase letters in the name, type, or mode of a CMS file when the file ID
is preceded with //. The file ID is converted to uppercase automatically.

If your program is composed of several source files, for example progfilel.c and progfile2.c, you
can use either of the two following sequences to produce an executable file.

c89 -c -D_OE_SOCKETS progfilel.c
c89 -c -D_OE_SOCKETS progfile2.c
c89 -o testprog progfilel.o progfile2.o

orx

c89 -o testprog -D_OE_SOCKETS progfilel.c progfile2.c
In the first sequence, the source files are first compiled (the - ¢ option prevents c89 from trying to link
edit them) and then link-edited in a separate c89 command. In the second sequence, the source files are

compiled and link-edited in one command. The point being demonstrated in this example is that the -D
option is needed only for the compilation step.

Chapter 1. z/VM C Socket Application Programming Interface 27

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3

C Sockets API

Many other variations of the c89 command are possible. See z/VM: OpenExtensions Commands Reference
for a complete description of the c89 command.

After you have created an executable program, you can use the OPENVM GET and OPENVM PUT
commands to move it back and forth between a CMS minidisk or accessed SFS directory and the Byte File
System. See z/VM: OpenExtensions Commands Reference for information on those commands.

Compiling and Linking a TCP/IP C Sockets Program

If you want to recompile and relink an existing application that was built with VM TCP/IP C sockets, you
have three choices:

 Convert the program to use the z/VM C sockets library
« Recompile and relink using the z/VM C sockets library with minimal changes to the program source
« Recompile using the TCP/IP C sockets library

Converting Your Program to Use z/VM C Sockets
To convert a TCP/IP C sockets program to use z/VM C sockets:

1. Go to “Incompatibilities with the VM TCP/IP C Sockets Library” on page 23. Make the necessary
changes to your program to resolve the incompatibilities.

2. Go to “Compiling and Linking a z/VM C Sockets Program” on page 26 and follow the instructions.

Using the z/VM C Sockets Library with Minimal Changes to Program Source

You can recompile and relink your VM TCP/IP C sockets program to use the z/VM C sockets library
(SCEELKED) with little or no source code modification:

- If your program uses remote procedure calls, you must use the VMRPC library instead of RPCLIB.

« If your program includes BSD header files (bsdtypes.h, bsdtime.h, bsdtocms.h), you must remove
those includes. Language Environment covers BSD functions, but it does not provide those header files.

« Define the feature test macro _TCPVM_SOCKETS using a preprocessor directive, either on the c89
command line:

c89 filename -D_TCPVM_SOCKETS
or in the source code before including any header files:

j#tdefine _TCPVM_SOCKETS

Recompiling with the TCP/IP C Sockets Library
To recompile with the TCP/IP C sockets library:

1. Access the TCP/IP Client-code minidisk (usually TCPMAINT 592) ahead of the disk that contains the
Language Environment header files (usually the Y-disk) to avoid conflicts.

2. Establish the C development environment:
a. Access the C compiler.
b. Issue GLOBAL LOADLIB SCEERUN.

3. Compile your program. Make sure that the preprocessor symbol VM is defined; if it is not already
defined in your program, you can specify it on the compile command:

CC myprog (DEF (VM)

With OpenExtensions, you can also use the c89 command or the make utility.

4. Select the link libraries your application needs and put them on a GLOBAL TXTLIB command.
COMMTXT and SCEELKED are the minimum required:

28 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3

C Sockets API

GLOBAL TXTLIB COMMTXT SCEELKED

Additional libraries (listed in Table 3 on page 29) may be required, depending on the functions your
application uses. For example, programs that use RPC must issue:

GLOBAL TXTLIB COMMTXT RPCLIB SCEELKED

Note that the Language Environment text library, SCEELKED, should always be listed last.

Table 3. TCP/IP TXTLIB Files and Applications

TXTLIB File Application

COMMTXT TCP/IP C sockets and Pascal API
RPCLIB Remote procedure calls

X11LIB Xlib, Xmu, Xext, and Xau routines
OLDXLIB X Release 10 compatibility routines
XTLIB X Intrinsics

XAWLIB Athena widget set

XMLIB OSF/Motif-based widget set
DPILIB SNMP DPI

SCEELKED C APIs

SCEEOBJ C writable static variables

5. Link-edit your programs into an executable module. The sample applications in this book are built
using the TCPLOAD utility. Your own applications should be built using the CMOD command. For
example,

TCPLOAD sample@c c
or

CMOD myprogl myprog2 (AUTO

Complete information on compiling and link-editing C programs can be found in the
z/0S: Language Environment Programming Guide (https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/
ceea200_v2r5.pdf). For information about TCPLOAD, see Appendix A, “TCPLOAD EXEC,” on page 335.

Running a Sockets Program

After building your executable sockets program, the next step is to run the program. Before you do,
however, some preparation may be necessary. In addition, you may want to consider using environment
variables to affect certain aspects of the execution. There are also differences between running a program
from the BFS and running it from an accessed minidisk or SFS directory.

Preparing to Run a Sockets Program

If your program uses AF_INET sockets, then you should access the TCP/IP "client" minidisk or SFS
directory that contains the TCP/IP configuration files. Usually you can LINK to TCPIP 592 to access the
disk. Your installation may have assigned a VMLINK nickname to this minidisk (for example, TCPIP). Issue
a VMLINK command (with no arguments) to see if one has been assigned. In the compilation step, it

was noted that this disk contains some header files with the same names as Language Environment and
VM-unique header files. If you might compile your program again after running it, be sure to access the
TCP/IP client disk at a mode after the disk that contains the Language Environment header files.

Chapter 1. z/VM C Socket Application Programming Interface 29

https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ceea200_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ceea200_v2r5.pdf

C Sockets API

To run your POSIX program, it should reside on an accessed minidisk or SFS directory, or in a mounted
BFS file system. As described below, if it resides on an accessed minidisk or SFS directory, you can run it
by either typing the name of the executable module on the CMS command line, or by using the OPENVM
RUN command. If it resides in the BFS, you can run it by either typing the name of the executable file on a
POSIX shell command line, or by using the OPENVM RUN command. Before running a module that resides
on an accessed minidisk or SFS directory, either by using the OPENVM RUN command or by simply typing
the name of the module on the CMS command line, you must establish the proper run-time Language
Environment load library with the following CMS command:

GLOBAL LOADLIB SCEERUN

Note: If you have a TCP/IP C sockets application that you have recompiled and relinked with the z/VM
C sockets library, with no source changes, but you want the maxdesc() and getdtablesize() functions to
operate the same way they did in the TCP/IP C socket API, you must set the APPTYPE environment
variable (to the value OLDAPP) before running your program. For example:

GLOBALV SELECT CENV SETLP APPTYPE OLDAPP

This will cause the maxdesc() default to be 50 and getdtablesize() to return a maximum of 50.

Using Environment Variables

Environment variables can be used to affect certain aspects of the execution of a z/VM C sockets program.
If the z/VM C sockets program is executed from the OpenExtensions shell, the shell controls the contents
of the program's environment. For example, the following shell command could be used to set the
APPTYPE environment variable:

export APPTYPE=0LDAPP

If the z/VM C sockets program is being run from the CMS command line (or equivalent), then the global
variables existing in the CENV group managed by the GLOBALV command are used as the environment
variables for the process. In this case, a CMS command like the following could be used to temporarily set
the APPTYPE environment variable:

GLOBALV SELECT CENV SET APPTYPE OLDAPP

Note: Be aware, however, that some of the environment variables described below accept values which
are case sensitive, and which will often be set to lowercase values. It can be difficult, using the GLOBALV
command, to set lowercase values, because commands typed in from the CMS command line are
automatically uppercased by CMS before processing. One way to set the variable to a mixed-case value is
to issue the GLOBALV command from a REXX exec with "Address Command" in effect.

Some of the environment variables described below are set to values which represent file names. For
these environment variables, the given file names are interpreted as POSIX-style file names, which means
that case is significant, and that the file name is interpreted as residing in the Byte File System unless

you precede the file name with two slashes. To specify the name of a file which resides on a minidisk or
accessed SFS directory instead of in the BFS, precede the name of the file with two slashes, and separate
the CMS file name and type (and mode, if specified) with a period.

The following environment variables can be used to affect the execution of the Language Environment
sockets library:

Variable
Description

APPTYPE
This environment variable forces the z/VM C socket functions maxdesc() and getdtablesize() to return
the same values that those functions returned in the TCP/IP C socket API.

HOSTALIASES
This environment variable tells the socket library resolver code to use the named file when searching
for aliases for AF_INET host names. For example, setting the variable to the string /etc/aliases

30 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

tells the resolver to use the /etc/aliases file when needed. By default, no aliases files is used by the
resolver. If you intend to transfer an aliases file into the BFS using the OPENVM PUTBFS command, be
sure to specify the BFSLINE NL option, or let it default.

X_ADDR
This environment variable tells the socket library resolver code to use the named file in place of the
HOSTS ADDRINFO file, which contains information about AF_INET networks known to this host. For
example, setting the variable to the string /etc/addzs tells the resolver to use the /etc/addrs file in
place of the default file, which is //HOSTS . ADDRINFO. If you intend to transfer the HOSTS ADDRINFO
file into the BFS using the OPENVM PUTBFS command, be sure to specify the BFESLINE NONE option.
This environment variable is used by the gethostbyaddr() function call, the getnetent() function call,
and several others.

Note: When using the TCP/IP C sockets library, the format of this environment variable is X~ADDR.

X_SITE
This environment variable tells the socket library resolver code to use the named file in place of
the HOSTS SITEINFO file, which contains information about AF_INET hosts known to this host. For
example, setting the variable to the string /etc/hosts tells the resolver to use the /etc/hosts file in
place of the default file, which is / /HOSTS . SITEINFO. If you intend to transfer the HOSTS SITEINFO
file into the BFS using the OPENVM PUTBFS command, be sure to specify the BFESLINE NONE option.
This environment variable is used by the gethostbyname() function call, the gethostent() function call,
and several others.

Note: When using the TCP/IP C sockets library, the format of this environment variable is X-SITE.

X_XLATE
This environment variable tells the socket library resolver code to use the named file in place of the
STANDARD TCPXLBIN file, which contains ASCII to EBCDIC and EBCDIC to ASCII translation tables
for use by the resolver when sending or receiving information from an AF_INET network. For example,
setting the variable to the string /etc/x1late tells the resolver to use the /etc/xlate file in place of
the default file, which is //STANDARD . TCPXLBIN. If you intend to transfer the STANDARD TCPXLBIN
file into the BFS using the OPENVM PUTBFS command, be sure to specify the BFESLINE NONE option.
This environment variable is used by the gethostbyname() and gethostbyaddr() function calls.

Note: When using the TCP/IP C sockets library, the format of this environment variable is X-XLATE.

Running a Program Residing in the BFS

If you are using a POSIX command shell, and the executable file is in your path, then simply type the
name of the program to run it:

testprog
or
/dirname/dirname/../testprog
In this scenario, the shell will spawn a process to run your program. Any program which is spawned

is automatically considered by CMS to be a POSIX program, and will have access to OpenExtensions
services.

If you are not using a POSIX command shell, then use the OPENVM RUN command to execute the
program. For example:

OPENVM RUN /dirname/dirname/../testprog
In this scenario, the OPENVM RUN command will spawn a process to run your program. As before, your

program will automatically have access to OpenExtensions services. Be aware that path name arguments
to the OPENVM RUN command are case sensitive.

Chapter 1. z/VM C Socket Application Programming Interface 31

C Sockets API

Running a Program Residing on an Accessed Minidisk or SFS Directory

If the executable file is on an accessed minidisk or SFS directory, then there are several ways to execute
it.

The OPENVM RUN command, which was mentioned earlier to run a program residing in the BFS, can also
run a MODULE file. To do so, uppercase the file name on the command ling, as follows:

OPENVM RUN TESTPROG

If the executable file is on an accessed minidisk or SFS directory, you can type the name of the module
on the CMS command line to run it, but you must also tell CMS that the program is a POSIX program and
should be given access to the OpenExtensions services.

The following are the two techniques for establishing your program as a POSIX program when you run it:

1. Specify the Language Environment POSIX(ON) run-time option on the CMS command line. In order to
be able to pass run-time options to a program, the EXECOPS compiler option must be in effect when
the program is compiled. Because it is the default setting, EXECOPS is in effect unless overridden with
the NOEXECOPS option. Specify the run-time options by separating them from the program arguments
with a slash (/) as you run your program:

testprog runoptl runopt2 .. / argl arg2 arg3 ..

To specify the POSIX (ON) run-time option, use a command like the following:
testprog posix(on)/argl arg2 arg3 ..

2. Specify the Language Environment POSIX (ON) run-time option by putting it in the source file
containing the main function. If you plan to run the program often by simply typing its name on
the CMS command line, the most convenient way to get the program recognized as a POSIX program is
to place a pragma like the following in the source file which contains the main function:

#pragma runopts(posix(on))

With this pragma, you never need to type the POSIX(ON) run-time option.

When you run a program by typing its name on the CMS command line, and the EXECOPS compiler option
was in effect when you compiled your program (it is by default), then everything before the first slash,

if there is a slash on the command line, will be interpretted as a run-time option. Because POSIX path
names often contain slashes, this can cause program arguments to be misinterpreted as run-time options
if your program accepts a POSIX path name as an argument. To avoid this, consider placing a pragma like
the following in the source file containing the main function:

#pragma runopts(noexecops,posix(on))

This will prevent POSIX path names from accidentally being interpreted as run-time options, and cause
the POSIX(ON) run-time option to always be in effect.

Using pragma statements such as the ones discussed above is necessary only when you intend to run
your program from the CMS command line by typing its name. If you use OPENVM RUN to run the
program, or run it from a POSIX command shell, all operands are interpreted as program arguments, and
the program is automatically treated as a POSIX program.

C Sockets Quick Reference

This section provides brief descriptions of the z/VM C socket calls. For additional information about these
socket functions, see the XL C/C++ for z/VM: Runtime Library Reference.

32 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

C Sockets API

Table 4. C Sockets Quick Reference

Socket() Call Description

accept() Accepts a connection request from a foreign host.
bind() Assigns a local address to a socket.

close() Closes a socket.

connect() Requests a connection to a foreign host.
endhostent() Closes the HOSTS SITEINFO file.

endnetent() Closes the HOSTS ADDRINFO file.

endprotoent() Closes the ETC PROTO file.

endservent() Closes the ETC SERVICES file.

fentl() Controls socket operating characteristics.
freeaddrinfo() Frees one or more addrinfo structures returned by getaddrinfo()

gai_strerror()

Returns information on errors returned by getaddrinfo() and getnameinfo()

getaddrinfo() Resolves IP addresses (IPv4 or IPv6)

getclientid() Returns the identifier by which the calling application is known to the
TCPIP virtual machine.

gethostbyaddr() Returns information about a host specified by an address.

gethostbyname() Returns information about a host specified by a name.

gethostent() Returns the next entry in the HOSTS SITEINFO file.

gethostid() Returns the unique identifier of the current host.

gethostname() Returns the standard name of the current host.

getnameinfo()

Translates a socket address to a node name and service location

getnetbyaddr() Returns the network entry specified by address.
getnetbyname() Returns the network entry specified by name.

getnetent() Returns the next entry in the HOSTS ADDRINFO file.
getpeername() Returns the name of the peer connected to a socket.
getprotobyname() Returns a protocol entry specified by name.
getprotobynumber() Searches the ETC PROTO file for a specified protocol number.
getprotoent() Returns the next entry in the ETC PROTO file.
getservbyname() Returns a service entry specified by name.

getservbyport() Returns a service entry specified by port number.
getservent() Returns the next entry in the SERVICES file.

getsockname() Obtains the local socket name.

getsockopt() Gets options associated with sockets in the AF_IUCV, AF_INET, and

AF_INET6 domains.

givesocket()

Tells TCPIP to make the specified socket available to a takesocket() call
issued by another application.

Chapter 1. z/VM C Socket Application Programming Interface 33

C Sockets API

Table 4. C Sockets Quick Reference (continued)

Socket() Call Description
htonl() Translates host byte order to network byte order for a long integer.
htons() Translates host byte order to network byte order for a short integer.

if_freenameindex()

Frees storage allocated by if_nameindex()

if_indextoname()

Maps a network interface index to its corresponding name

if_nameindex()

Returns all network interface names and indexes

if_nametoindex()

Maps a network interface name to its corresponding index

inet_addr() Constructs an internet address from character strings set in standard
dotted-decimal notation.
inet_Llnaof() Returns the local network portion of an internet address.

inet_makeaddr()

Constructs an internet address from a network number and a local
address.

inet_netof()

Returns the network portion of the internet address in network byte order.

inet_network()

Constructs a network number from character strings set in standard
dotted-decimal notation.

inet_ntoa() Returns a pointer to a string in dotted-decimal notation.

inet_ntop() Converts a binary IP address (IPv4 or IPv6) into string format

inet_pton() Converts an IP address (IPv4 or IPv6) in string format to binary format

ioctl() Performs special operations on a socket.

listen() Indicates that a stream socket is ready for a connection request from a
foreign host.

maxdesc() Allows socket numbers to extend beyond default range of O - 49.

ntohl() Translates network byte order to host byte order for a long integer.

ntohs() Translates network byte order to host byte order for a short integer.

read() Reads a set number of bytes into a buffer.

readv() Obtains data from a socket and reads this data into specified buffers.

recv() Receives messages from a connected socket.

recvfrom() Receives messages from a datagram socket, regardless of its connection
status.

recvmsg() Receives messages on a socket into an array of buffers.

select() Monitors activity on a set of sockets.

selectex() Monitors activity on a set of different sockets.

send() Transmits messages to a connected socket.

sendmsg() Sends messages on a socket from an array of buffers.

sendto() Transmits messages to a datagram socket, regardless of its connection
status.

sethostent() Opens the HOSTS SITEINFO file at the beginning.

34 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

Table 4. C Sockets Quick Reference (continued)

Socket() Call Description

setnetent() Opens the HOSTS ADDRINFO file at the beginning.

setprotoent() Opens the ETC PROTO file at the beginning.

setservent() Opens the ETC SERVICES file at the beginning.

setsockopt() Sets options associated with a socket in the AF_IUCV, AF_INET, and
AF_INET6 domains.

shutdown() Shuts down all or part of a full-duplex connection.

socket() Requests that a socket be created.

takesocket() Acquires a socket from another application.

write() Writes a set number of bytes from a buffer to a socket.

writev() Writes data in the buffers specified by an array of iovec structures.

TCP Client Program

The following is an example of a C socket TCP client program.

/*
* Include Files.
*/
#define VM
jtfdefine _XOPEN_SOURCE_EXTENDED 1
#include <arpa/inet.h>
##include <in.h>
f##include <socket.h>
#include <netdb.h>
#include <stdio.h>

/*

* Client Main.

*/

main(argc, argv)

int argc;

char x%argv;
unsigned short port; /* port client will connect to */
char buf[12]; /*data buffer for sending and receiving */
struct hostent xhostnm; /*server host name information */
struct sockaddr_in server; /*server address */
int s; /* client socket */
/*
*/Check Arguments Passed. Should be hostname and port.
*

if (arge != 3)
1

fprintf(stderr, “Usage: %s hostname port\n”, argv[0]);
exit(-1);
%

/*

* The host name is the first argument. Get the server address.
*/

hostnm = gethostbyname (argv[1]);

if (hostnm == (struct hostent %) 0)

i

fprintf(stderr, “Gethostbyname failed\n”);
exit(-1);

/*

* The port is the second argument.

*/

port = (unsigned short) atoi(argv[2]);

Chapter 1. z/VM C Socket Application Programming Interface 35

C Sockets API

/*

* Put a message into the buffer.
*/

strcpy (buf, “the message”);

/*

* Put the server information into the server structure.
* The port must be put into network byte order.
*/
server.sin_family AF_INET;
server.sin_port htons (port);
server.sin_addr.s_addr = x((unsigned long *)hostnm->h_addr);

/*

* Get a stream socket.

*/
if ((s = socket(AF_INET,SOCK_STREAM, 0)) < 0)
i
perror (“Socket()");
exit(-1);
/*
* Connect to the server.
*/
if (connect(s, &server, sizeof(server)) < 0)
perror (“Connect()");
exit(-1);
if (send(s, buf, sizeof(buf), 0) < 0)
i

perror (“Send()");

exit(-1);
/*
* The server sends back the same message. Receive it into the buffer.
*/

if (recv(s, buf, sizeof(buf), 0) < 0)
i

perror (“Recv()");

exit(-1);
/*
* Close the socket.
*/
close(s);

printf(“Client Ended Successfully\n");
exit(0);

TCP Server Program

The following is an example of a C socket TCP server program.

/*
* Include Files.
*/
#define VM
jtdefine _XOPEN_SOURCE_EXTENDED 1
#include <arpa/inet.h>
#include <in.h>
#include <socket.h>
f##include <stdio.h>

/*

* Server Main.
*/

main(argc, argv)
int argc;

char xxargv;

unsigned short port; /*port server binds to */

36 z/VM: 7.3 TCP/IP Programmer's Reference

C Sockets API

char buf[12]; /*buffer for sending and receiving data =/
struct sockaddr_in client; /*client address information */
struct sockaddr_in server; /xserver address information */
int s; /*socket for accepting connections */
int ns; /*socket connected to client */
int namelen; /*xlength of client name */
/*

* Check arguments. Should be only one: the port number to bind to.
*/

if (arge != 2)
$

fprintf(stderr, “Usage:%s port\n”, argv([0]);

exit(-1);
k)
/*
* First argument should be the port.
*/
port = (unsigned short)atoi(argv[1]);
/*
* Get a socket for accepting connections.
*/

if ((s = socket(AF_INET,SOCK_STREAM, 0)) < 0)
$

perroxr (“Socket()"”);

exit(-1);
/*
* Bind the socket to the server address.
*/
server.sin_family = AF_INET;
server.sin_port = htons(port);

server.sin_addr.s_addr = INADDR_ANY;
if (bind(s, &server, sizeof(server)) < 0)

perror (“Bind()");

exit(-1);
/*
* Listen for connections. Specify the backlog as 1.
*/

if (listen(s, 1) != 0)
i

perror(“Listen()");
exit(-1);

/*

* Accept a connection.

x/

namelen = sizeof(client);

if ((ns = accept(s, &client,&namelen)) == -1)
{

perror(“Accept()”);
exit(-1);

/*

* Receive the message on the newly connected socket.
*/

if (recv(ns, buf, sizeof(buf),0) == -1)

$

perror (“Recv()");
exit(-1);
/*
* Send the message back to the client.
*/
if (send(ns, buf, sizeof(buf),0) < 0)
1
perror (“Send()");

exit(-1);

close(ns);
close(s);

Chapter 1. z/VM C Socket Application Programming Interface 37

C Sockets API

printf(“Server ended successfully\n");
exit(0);

UDP Client Program

The following is an example of a C socket UDP client program.

#define _XOPEN_SOURCE_EXTENDED 1

#include
#include
#include
#include
f#include

<arpa/inet.h>
<in.h>
<socket.h>
<netdb.h>
<stdio.h>

main(argc, argv)

int argc;

char xxargv;

int s;

unsigned short port;
struct sockaddr_in server;
char buf[32];

/> argv[1l] is internet address of server argv[2] is port of server.

* Con
* ord

*/

vert the port from ascii to integer and then from host byte
er to network byte order.

if(argec != 3)
$

printf("Usage: %s <host address> <port> \n",argv[0]);
exit(1);

3
port = htons(atoi(argv[2]));

/* Cre
* def

*/
if ((s
i

pe
ex

/* Set

server.sin_family
server.sin_port

server
strcpy

/* Sen
if (se

pe
ex

¥

/* Dea
close(

UDP Serve

ate a datagram socket in the internet domain and use the
ault protocol (UDP).

= socket (AF_INET, SOCK_DGRAM, 0)) < 0)

rror("socket()");
it(1);

up the server name */

AF_INET; /* Internet Domain */
port; /* Server Port */
inet_addr(argv[1]); /* Server's Address */

.sin_addr.s_addr
(buf, "Hello");

d the message in buf to the server =/
ndto(s, buf, (strlen(buf)+l1l), 0, &server, sizeof(server)) < 0)

rror("sendto()");
it(2);

llocate the socket %/
s);

r Program

The followi

jtdefine _
#include
#include
f##include
#include
#include

ng is an example of a C socket UDP server program.

XOPEN_SOURCE_EXTENDED 1
<arpa/inet.h>

<in.h>

<socket.h>

<netdb.h>

<stdio.h>

38 z/VM: 7.3 TCP/IP Programmer's Reference

main()

int s, namelen, client_address_size;
struct sockaddr_in client, server;
char buf[32];

/*
* Create a datagram socket in the internet domain and use the
* default protocol (UDP).

*/
if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

$

perror("socket()");

exit(1);
¥
/*
* Bind my name to this socket so that clients on the network can
* send me messages. (This allows the operating system to demultiplex
* messages and get them to the correct server)
*
* Set up the server name. The internet address is specified as the
* wildcard INADDR_ANY so that the server can get messages from any
* of the physical internet connections on this host. (Otherwise we
* would limit the server to messages from only one network
* interface.)
*/

AF_INET; /% Server is in Internet Domain =%/
0; /* Use any available port */
INADDR_ANY; /* Server's Internet Address */

server.sin_family
server.sin_port
server.sin_addr.s_addr

if (bind(s, &server, sizeof(server)) < 0)

perror("bind()");
exit(2);

/* Find out what port was really assigned and print it =/
namelen = sizeof(server);
if (getsockname(s, (struct sockaddr %) &server, &namelen) < 0)

perror ("getsockname()");
exit(3);

printf("Port assigned is %d\n", ntohs(server.sin_poxrt));

/*
* Receive a message on socket s in buf of maximum size 32

* from a client. Because the last two paramters

* are not null, the name of the client will be placed into the

* client data structure and the size of the client address will
* be placed into client_address_size.

*

client_address_size = sizeof(client);

if(recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr %) &client,
&client_address_size) <0)
i

perror("recvirom()");
exit(4);

~un

* ok K ok k ko X

Print the message and the name of the client.

The domain should be the internet domain (AF_INET).

The port is received in network byte order, so we translate it to
host byte order before printing it.

The internet address is received as 32 bits in network byte order
so we use a utility that converts it to a string printed in
/dotted decimal format for readability.

*

printf("Received message %s from domain %s port %d internet"

"address %s\n",

buf,

(client.sin_family == AF_INET?"AF_INET":"UNKNOWN"),
ntohs(client.sin_poxrt),
inet_ntoa(client.sin_addr));

/*
* Deallocate the socket.
*/

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 39

C Sockets API

close(s);

40 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 2. TCP/UDP/IP API (Pascal Language)

This chapter describes the Pascal language application program interface (API) provided with TCP/IP for
z/VM. This interface allows programmers to write application programs that use the TCP, UDP, and IP
layers of the TCP/IP protocol suite.

You should have experience in Pascal language programming and be familiar with the principles of
internetwork communication to use the Pascal language APL.

Your program uses procedure calls to initiate communication with the TCPIP virtual machine. Most of
these procedure calls return with a code that indicates success, or the type of failure incurred by the call.
The TCPIP virtual machine starts asynchronous communication by sending you notifications.

The general sequence of operations is:

1. Start TCP/UDP/IP service (BeginTcplp, StartTcpNotice).

2. Specify the set of notifications that TCP/UDP/IP may send you (Handle).
3. Establish a connection (TcpOpen, UdpOpen, RawIpOpen, TcpWaitOpen).

If using TcpOpen, you must wait for the appropriate notification that a connection has been
established.

4. Transfer data buffer to or from the TCPIP virtual machine (TcpSend, TcpFSend, TcpWaitSend,
TcpReceive, TcpFReceive, TcpWaitReceive, UdpSend, UdpNReceive, RawlpSend, RawIpReceive).

Note: TcpWaitReceive and TcpWaitSend are synchronous calls.
5. Check the status returned from the TCPIP virtual machine in the form of notifications (GetNextNote).

6. Repeat the data transfer operations (steps “4” on page 41 and “5” on page 41) until the data is
exhausted.

7. Terminate the connection (TcpClose, UdpClose, RawIpClose).

If using TcpClose, you must wait for the connection to terminate.
8. Terminate the communication service (EndTcplIp).

Control is returned to you, in most instances, after the initiation of your request. When appropriate, some
procedures have alternative wait versions that return only after completion of the request. The bodies of
the Pascal procedures are in the TCPIP ATCPPSRC file.

A sample program is supplied with the TCP/IP program, see “Sample Pascal Program” on page 108.

Software Requirements

To develop programs in Pascal that interface directly to the TCP, UDP, and IP protocol boundaries, you
require the IBM VS Pascal Compiler & Library (5668-767).

Data Structures

Programs containing Pascal language API calls must include the appropriate data structures. The data
structures are declared in the CMCOMM COPY and CMCLIEN COPY. The CMCOMM and CMCLIEN are
included in the ALLMACRO MACLIB shipped with TCP/IP. To include these files in your program source,
enter:

%include CMCOMM
%include CMCLIEN

Additional include statements are required in programs that use certain calls. The following list shows the
members of the ALLMACRO MACLIB that need to be included for the various calls.

© Copyright IBM Corp. 1987, 2023 41

« CMRESGLB for GetHostResol
« CMINTER for GetHostNumber, GetHostString, IsLocalAddress, and IsLocalHost.

The load modules are in the TCPIP COMMTXT file. Include this file in your GLOBAL TXTLIB command
when you are creating a load module to link an application program.

Connection State

ConnectionState is the current state of the connection. For the Pascal declaration of the
ConnectionStateType data type, see Figure 15 on page 42. ConnectionStateType is used in
StatusInfoType and NotificationInfoType. It defines the client program’s view of the state of a TCP
connection, in a form more readily usable than the formal TCP connection state defined by RFC 793.
For the mapping between TCP states and ConnectionStateType, see Table 5 on page 42.

ConnectionStateType =

CONNECTIONclosing,
LISTENING,
NONEXISTENT,
OPEN,
RECEIVINGonly,
SENDINGonly,

) TRYINGtoOPEN

Figure 15. Pascal Declaration of Connection State Type

CONNECTIONCclosing
Indicates that no more data can be transmitted on this connection, because it is going through the
TCP connection closing sequence.

LISTENING
Indicates that you are waiting for a foreign site to open a connection.

NONEXISTENT
Indicates that a connection no longer exists.

OPEN
Indicates that data can go either way on the connection.

RECEIVINGonly
Indicates that data can be received, but cannot be sent on this connection, because the client has
done a TcpClose.

SENDINGonly
Indicates that data can be sent out, but cannot be received on this connection, because the foreign
application has done a TcpClose or equivalent.

TRYINGtoOPEN
Indicates that you are trying to contact a foreign site to establish a connection.

Table 5. TCP Connection States

TCP State ConnectionStateType

CLOSED NONEXISTENT

LAST-ACK, CLOSING, TIME-WAIT If there is incoming data that the client program has not
received, then RECEIVINGonly, else CONNECTIONCclosing.

CLOSE-WAIT If there is incoming data that the client program has not
received, then OPEN, else SENDINGonly.

ESTABLISHED OPEN

FIN-WAIT-1, FIN-WAIT-2 RECEIVINGonly

42 z/VM: 7.3 TCP/IP Programmer's Reference

Table 5. TCP Connection States (continued)

TCP State ConnectionStateType
LISTEN LISTENING
SYN-SENT, SYN-RECEIVED TRYINGtoOPEN

Connection Information Record

The connection information record is used as a parameter in several of the procedure calls. It enables you
and the TCP/IP program to exchange information about the connection. There are two types of records,
one used for IPv4 calls and one used for IPv6. The IPv4 Pascal declaration is shown in Figure 16 on

page 43. For more information about the use of each field, see “TcpOpen and TcpWaitOpen” on page

88 and “TcpStatus” on page 100. The IPv6 declaration is shown in Figure Figure 17 on page 44.

For more information about the use of each field, see “Tcp60pen and Tcp6WaitOpen” on page 79 and
“Tcp6Status” on page 81.

StatusInfoType =
record
Connection: ConnectionType;
OpenAttemptTimeout: integer;
Security: SecurityType;
Compartment: CompartmentType;
Precedence: PrecedenceType;
BytesToRead: integer;
UnackedBytes: integer;
ConnectionState: ConnectionStateType;
LocalSocket: SocketType;
ForeignSocket: SocketType;
end;

Figure 16. Pascal Declaration of Connection Information Record

Connection
Specifies a number identifying the connection that is described. This connection number is different

from the connection number displayed by the NETSTAT command. For more information about the
NETSTAT command, see z/VM: TCP/IP User's Guide.

OpenAttemptTimeout

Specifies the number of seconds that TCP continues to attempt to open a connection. You specify this

number. If the limit is exceeded, TCP stops trying to open the connection and shuts down any partially
open connection.

Security, Compartment, Precedence
Specifies entries used only when working within a multilevel secure environment.

BytesToRead
Specifies the number of data bytes received from the foreign host by TCP, but not yet delivered to the
client. TCP maintains this value.

UnackedBytes
Specifies the number of bytes sent by your program, but not yet sent to the foreign TCP, or the number
of bytes sent to the foreign TCP, but not yet acknowledged.

LocalSocket
Specifies the local internet address and local port. Together, these form one end of a connection. The
foreign socket forms the other end. For the Pascal declaration of the SocketType record, see Figure 18
on page 44.

ForeignSocket

Specifies the foreign, or remote, internet address and its associated port. These form one end of a
connection. The local socket forms the other end.

Chapter 2. TCP/UDP/IP API (Pascal Language) 43

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

Statusé6InfoType =
record
Connection: ConnectionType;
OpenAttemptTimeout: integer;
Security: SecurityType;
Compartment: CompartmentType;
Precedence: PrecedenceType;
BytesToRead: integer;
UnackedBytes: integer;
ConnectionState: ConnectionStateType;
LocalSocket: Socket6Type;
ForeignSocket: Socket6Type;
end;

Figure 17. IPv6 Pascal Declaration of Connection Information Record

Connection
Specifies a number identifying the connection that is described. This connection number is different
from the connection number displayed by the NETSTAT command. For more information about the
NETSTAT command, see z/VM: TCP/IP User's Guide.

OpenAttemptTimeout
Specifies the number of seconds that TCP continues to attempt to open a connection. You specify this

number. If the limit is exceeded, TCP stops trying to open the connection and shuts down any partially
open connection.

Security, Compartment, Precedence
Specifies entries used only when working within a multilevel secure environment. These fields only
have meaning when returned on a Tcp6Status call for an IPv4 connection. When specified for IPvé
connection requests, they will be ignored.

BytesToRead
Specifies the number of data bytes received from the foreign host by TCP, but not yet delivered to the
client. TCP maintains this value.

UnackedBytes
Specifies the number of bytes sent by your program, but not yet sent to the foreign TCP, or the number
of bytes sent to the foreign TCP, but not yet acknowledged.

LocalSocket
Specifies the local internet address, in IPv6 format, and local port. Together, these form one end of
a connection. The foreign socket forms the other end. For the Pascal declaration of the Socket6Type
record, see Figure 19 on page 45.

ForeignSocket

Specifies the foreign, or remote, internet address, in IPv6 format, and its associated port. These form
one end of a connection. The local socket forms the other end.

Socket Record

InternetAddressType = UnsignedIntegerType;
PortType = UnsignedHalfWordType;
SocketType =

record

Address: InternetAddressType;

Port: PortType;

end;

Figure 18. Pascal Declaration of Socket Type

Field
Description

44 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

Address
Specifies the internet address.

Port
Specifies the port.

IPv6AddressType = packed array (.1..16.) of char;
Socket6Type =

record

Address6: IPv6AddressType;

Port: PortType;

Flow: UnsignedIntegerType;

Scope: UnsignedIntegerType;

end; i Socket6Type }

Figure 19. IPv6 Pascal Declaration of Socket Type

Field
Description
Address6
Specifies the internet address. This can be specified as an IPv6 address or an IPv6 mapped IPv4
address (refer to RFC 4291).
Port
Specifies the port.
Flow
This field is ignored.

Scope
The scope field identifies a set of interfaces as appropriate for the scope of the address carried in
the Socket6Type record address field. For link local address, the scope can be used to specify the
outgoing interface index. The z/VM stack supports scope for link local addresses only.

Notification Record

The notification record is used to provide event information. You receive this information by using the
GetNextNote call. For more information, see “GetNextNote” on page 63. It is a variant record; the
number of fields is dependent on the type of notification. For the Pascal declaration of this record. see
Figure 20 on page 46.

Chapter 2. TCP/UDP/IP API (Pascal Language) 45

NotificationInfoType =
record
Connection: ConnectionType;
Protocol: ProtocolType;
case NotificationTag: NotificationEnumType of
BUFFERspaceAVAILABLE:
(
AmountOfSpaceInBytes: integer
)
CertDataComplete
(
CertDataPtr: CertDataCmplPtrType;
I
CLEARtextRESUMED
(
Connection: ConnectionType;
CONNEéTIONstateCHANGED:

(
NewState: ConnectionStateType;
Reason: CallReturnCodeType

DATAdelivered:
BytesDelivered: integer;
LastUrgentByte: integer;
PushFlag: Boolean
)8

EXTERNALinterrupt:

(
RuptCode: integer

FRECEIVEerTor:

(

ReceiveTurnCode: CallReturnCodeType;
ReceiveRequestErr: Boolean;

FSENDiesponse:

(
SendTurnCode: CallReturnCodeType;
SendRequestErr: Boolean;

T0interrupt:
DeviceAddress: integer;
UnitStatus: UnsignedByteType;
ChannelStatus: UnsignedByteType
E
IUCVinterrupt:
(
IUCVResponseBuf: IUCVBufferType
PINGIésponse:
(
PingTurnCode: CallReturnCodeType;
ElapsedTime: TimeStampType

1

Figure 20. Notification Record (Part 1 of 2)

46 z/VM: 7.3 TCP/IP Programmer's Reference

QueryTLSComplete:
(
QTLSTurnCode: CallReturnCodeType;
)
RAWIPpacketsDELIVERED:
(

RawIpDatalength: integer;
RawIpFulllength: integer;

RAWI%épaceAVAILABLE:
éawIpSpaceInBytes: integer;
READonrHANDSHAKE:
éSTurnCode: CallReturnCodeType;

RESOURCESavailable: ();
SecureHandshakeComplete:

(
SecHSCompleteDetail: SecureHSCompleteDetailType;

SMSGreceived: 0O
TIMERexpired:
(

Datum: integer;
AssociatedTimer: TimerPointerType

)8
UDPdatagramDELIVERED:

(

DataLength: integer;

ForeignSocket: SocketType;

FullLength: integer

)¢
UDPdatagramSPACEavailable: ();
UDPresourcesAVAILABLE: ();
URGENTpending:

BytesToRead: integer;
UrgentSpan: integer

USERdefinedNOTIFICATION:
(
UserData: UserNotificationDataType

end;

Figure 21. Notification Record (Part 2 of 2)

Connection
Indicates the client’s connection number to which the notification applies. In the case of
USERdefinedNOTIFICATION, this field is as supplied by the user in the AddUserNote call.

Protocol
In the case of USERdefinedNOTIFICATION, this field is as supplied by the user in the AddUserNote
call. For all other notifications, this field is reserved.

NotificationTag
Is the type of notification being sent, and a set of fields dependent on the value of the tag. Possible
tag values relevant to the TCP/UDP/IP interface and the corresponding fields are:

BUFFERspaceAVAILABLE
Notification given when space becomes available on a connection for which TcpSend previously
returned NObufferSPACE. For more information about these procedures, see “TcpFSend,
TcpSend, and TcpWaitSend” on page 86.

AmountOfSpacelnBytes
Indicates the minimum number of bytes that the TCP/IP service has available for buffer space
for this connection. The actual amount of buffer space might be more than this number.

CertDataComplete
The results of the certificate data request.

CertDataCmplPtxrType = @ CertDataCompleteDetailType
CertDataCompleteDetailType =

Chapter 2. TCP/UDP/IP API (Pascal Language) 47

packed record
CDComp: CertDataCompleteHdrType;
CDData: packed array (. 1..CDDatalLen.) of char;
end;
CertDataCompleteHdrType =
packed recozxd
CDRetCode: integer;
CDRetCnt: integer;
CDDatalen: UnsignedHalfwordType;
CDRes: UnsignedHalfwordType;
end;

CDData
Is requested data from the certificate. The format is as follows:

B e e e +
| Len | Code | CertData | Len | Code | CertData.....
B e e +
where
Len

Is a halfword field that contains the total length of the item (Len+Code+CertData). The
total of all of the Len fields in the buffer is returned in CDDatalen.

Code
Is a halfword that contains the certificate field code (600-677).

CertData
Is the certificate data that corresponds to the requested code. Note that a single field
could appear multiple times in the returned buffer if more than one "answer" is valid.

CDRetCode
Indicates the return code from the certificate request. Possible values are:

0 - No errors.
4021 - The partner value is not valid.
4023 - The partner certificate is not available.
4024 - The certificate does not contain any values.
4025 - The buffer length passed is too large.
4026 - The returned data will not fit in the provided buffer. Partial data is returned.
4027 - The passed buffer pointer is null.
4028 - The number of certificate fields requested (CDReqNum) is O.
4029 - The number of certificate fields requested (CDRegNum) is greater than 64.
4030 - The requested certificate field is not found.
4031 - The requested certificate field is not valid.
4032 - Both of these errors exist in the return data: A requested certificate field
is not found and a requested certificate field is not valid.

CDRetCnt
Is the number of certificate fields returned in CDData.

CDDatalLen
Is the length of the returned certificate data.

CDRes
Is reserved - will be 0.

Usage Notes

- Certificate fields will be placed in the CDData buffer in the order in which they appear in the
CertReqCodes input structure.

« The CDData buffer will contain as many certificate fields as will fit completely. If a requested
certificate field does not fit in the buffer, it will not be returned and subsequent fields in the

48 z/VM: 7.3 TCP/IP Programmer's Reference

CertReqCodes input structure will also fail. CDRetCode will indicate that not all of the data will fit
in CDData. CDRetCnt will reflect the number of completed requests.

- If the requested field cannot be found in the certificate, CDData will contain a Len of 4 along
with the requested Code. No data will be returned. CDRetCode will be updated to indicate that
one or more fields are not present in the certificate.

CLEARtextRESUMED
Notification given when a Close_Notify command is received on the connection.

Con

nection

Indicates the connection number which received the Close_notify command.

CONNECTIONstateCHANGED
Indicates that a TCP connection has changed state.

NewState

Rea

Indicates the new state for this connection.

son

Indicates the reason for the state change. This field is meaningful only if the NewState field

has a value of NONEXISTENT.

Note:

1. The following is the sequence of state notifications for a connection.

For active open:
— OPEN

CONNECTIONCclosing
NONEXISTENT.

For passive open:

— TRYINGtoOPEN

- OPEN

CONNECTIONCclosing
NONEXISTENT.

RECEIVINGonly or SENDINGonly

RECEIVINGonly or SENDINGonly

Your program should be prepared for any intermediate step or steps to be skipped.

2. The normal TCP connection closing sequence can lead to a connection staying in
CONNECTIONCclosing state for up to two minutes, corresponding to the TCP state TIME-WAIT.

3. Possible Reason codes giving the reason for a connection changing to NONEXISTENT are:

OK (means normal closing)
UNREACHABLEnetwork
TIMEOUTopen
OPENTrejected
REMOTEreset
WRONGsecORprc
UNEXPECTEDsyn
FATALerror
KILLEDbyCLIENT
TIMEOUTconnection
TCPipSHUTDOWN
DROPPEDbyOPERATOR.

Chapter 2. TCP/UDP/IP API (Pascal Language) 49

DATAdelivered
Notification given when your buffer (hamed in an earlier TcpReceive or TcpFReceive request)
contains data.

Note: The data delivered should be treated as part of a byte-stream, not as a message. There is no
guarantee that the data sent in one TcpSend (or equivalent) call on the foreign host is delivered in
a single DATAdelivered notification, even if the PushFlag is set.

BytesDelivered
Indicates the number of bytes of data delivered to you.

LastUrgentByte
Indicates the number of bytes of urgent data remaining, including data just delivered.

PushFlag
TRUE if the last byte of data was received with the push bit set.

EXTERNALinterrupt
Notification given when a simulated external interrupt occurs in your virtual machine. The
Connection and Protocol fields are not applicable.

RuptCode
The interrupt type.

FRECEIVEerror
Notification given in place of DATAdelivered when a TcpFReceive that initially returned OK has
terminated without delivering data.

ReceiveTurnCode
Specifies the reason the TcpFReceive has failed or was canceled. If ReceiveRequestErr
is set to FALSE, ReceiveTurnCode contains the same reason as the Reason field in
the CONNECTIONstateCHANGED with NewState set to NONEXISTENT notification for this
connection (see “2” on page 49). ReceiveTurnCode could be OK, if the connection closed
normally.

ReceiveRequestErr
If TRUE, the TcpFReceive was rejected during initial processing. If FALSE, the TcpFReceive
was initially accepted, but was terminated because of connection closing.

Note: Normally, you do not need to take any action upon receipt of this notification with
ReceiveRequestErr set to FALSE, because your program receives a CONNECTIONstateCHANGED
notification informing it that the connection has been terminated.

FSENDresponse
Notification given when a TcpFSend request is completed, successfully or unsuccessfully.

SendTurnCode
Indicates the status of the send operation.
SendRequestErr

If TRUE, the TcpFSend was rejected during initial processing or during retry after buffer space
became available. If FALSE, the TcpFSend was canceled because of connection closing.

IOinterrupt
Notification given when a simulated I/O interrupt occurs in your virtual machine. The Connection
and Protocol fields are not applicable.

DeviceAddress
This address corresponds to the DEVICE statement.

UnitStatus
Specifies the status returned by the device.

ChannelStatus
Specifies the status returned by the channel.

50 z/VM: 7.3 TCP/IP Programmer's Reference

IUCVinterrupt
Notification given when a simulated IUCV interrupt occurs in your virtual machine. The Connection
and Protocol fields are not applicable.

IUCVResponseBuf
Contains the information returned from the application.

PINGresponse
Notification given when a PINGresponse is received.

PingTurnCode
Specifies the status of the ping operation.

ElapsedTime
Indicates the time elapsed between the sending of a request and the reception of a response.
This time does not include the time spent in the simulated Virtual Machine Communication
Facility (VMCF) communication between your program and the TCPIP virtual machine. This
field is valid only if PingTurnCode has a value of OK.

QUERYtlsCOMPLETE
Notification given when the SSL server has completed verification of the label passed on the
QueryTLS command.

ReturnCode
Indicates the status of the QUERYtlsCOMPLETE operation. READYforHANDSHAKE to read:
‘Any other return code indicates a handshake failure.'

RAWIPpacketsDELIVERED
Notification given when your buffer (indicated in an earlier RawIpReceive request) contains a
datagram. Only one datagram is delivered on each notification. Your buffer contains the entire IP
header, plus as much of the datagram as fits in your buffer.

RawIpDataLength
Specifies the actual data length delivered to your buffer. If this is less than RawIpFullLength,
the datagram was truncated.

RawlIpFullLength
Specifies the length of the packet, from the TotalLength field of the IP header.

RAWIPspaceAVAILABLE
When space becomes available after a client does a RawIpSend and receives a NObufferSPACE
return code, the client receives this notification to indicate that space is now available.

RawlIpSpacelnBytes
Specifies the amount of space available always equals the maximum size IP datagram.

READYforHANDSHAKE
Notification given when a TcpSServer command is issued with a null data buffer. It indicates that
the connection is now waiting for a handshake.

ReturnCode
Indicates status of the handshake. A return code of OK indicates that the connection is waiting
for a handshake. Any other return code indicates that there was a problem and the handshake
cannot be done.

RESOURCESavailable
Notice given when resources needed for a TcpOpen or TcpWaitOpen are available. This notification
is sent only if a previous TcpOpen or TcpWaitOpen returned ZEROresources.

SECUREhandshakeCOMPLETE
Notification given when SSL has completed the handshake (either inbound or outbound).

SecureHSCompleteDetailType =

record
ReturnCode: SecureTurnCodeType;
AlertlLevel: SecureAlertlevelType;

Chapter 2. TCP/UDP/IP API (Pascal Language) 51

AlertDescription: SignedHalfwordType;
end

ReturnCode
Indicates the status of the handshake.

SecureTurnCodeType = (NOALERT, ALERT, TIMEOUT)

NOALERT
The handshake completed successfully.

ALERT
Problems were encountered during the handshake.

TIMEOUT
The handshake did not complete within the time allotted.

AlertLevel
When the ReturnCode is ALERT, this classifies the level of the alert.

SecureAlertLevelType = (AlertOK, Warning, Fatal)

AlertDescription
When ReturnCode is ALERT, this field contains the details of the failure. An AlertDescription
value in the 4000 range indicates an SSL server error as follows:

4001 - The type is not valid.

4002 - The integer format of the IP address is not valid.

4003 - ValidationBuffer is too long.

4004 - Len is either too big or extends beyond the buffer.

4005 - The maximum number of validation fields has been exceeded.
4006 - The dotted decimal format of the IPv4 address is not valid.
4007 - The dotted decimal format of the IPv6 address is not valid.
4008 - Validation of a host name or fully-qualified domain name failed.
4009 - Validation of an IPv4 or IPv6 address failed.

4010 - Validation failed.

An AlertDescription value in the 40000 range indicates a System SSL error. Subtract 40000
from the AlertDescription value and refer to Messages and codes in z/OS Cryptographic
Services System Secure Sockets Layer Programming (publibz.boulder.ibm.com/epubs/pdf/
gsk2aa00.pdf) for details.

SMSGreceived
Notification given when one or more Special Messages (Smsgs) arrive. The GetSmsg call is used to
retrieve queued Smsgs. For information on the SMSG command, see z/VM: TCP/IP User's Guide.

TIMERexpired
Notification given when a timer set through SetTimer expires.

Datum
Indicates the data specified when SetTimer was called.

AssociatedTimer
Specifies the address of the timer that expired.

UDPdatagramDELIVERED
Notification given when your buffer, indicated in an earlier UdpNReceive or UdpReceive request,
contains a datagram. Your buffer contains the datagram excluding the UDP header.

Note: If UdpReceive was used, your buffer contains the entire datagram excluding the header,
with the length indicated by DatalLength. If UdpNReceive was used, and DatalLength is less than
FullLength, your buffer contains a truncated datagram. The reason is that the length of your buffer
was too small to contain the entire datagram.

52 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/sssl2msg1000613.htm
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

DataLength

Specifies the length of the data delivered to your buffer.
ForeignSocket

Specifies the source of the datagram.
FullLength

Specifies the length of the entire datagram, excluding the UDP header. This field is set only if
UdpNReceive was used.

UDPdatagramSPACEavailable
Notification given when buffer space becomes available for a datagram for which UdpSend
previously returned NObufferSPACE because of insufficient resources.
UDPresourcesAVAILABLE
Notice given when resources needed for a UdpOpen are available. This notification is sent only if a
previous UdpOpen returned UDPzeroRESOURCES.
URGENTpending
Notification given when there is urgent data pending on a TCP connection.
BytesToRead
Indicates the number of incoming bytes not yet delivered to the client.
UrgentSpan
Indicates the number of undelivered bytes to the last known urgent pointer. No urgent data is
pending if this is negative.
USERdefinedNOTIFICATION
Notice generated from data passed to AddUserNote by your program.
UserData

A 40-byte field supplied by your program through AddUserNote. The Connection and Protocol
fields are also set from the values supplied to AddUserNote.

File Specification Record

The file specification record is used to fully specify a file. The Pascal declaration is shown in Figure 22 on
page 53.

SpecOfFileType =
record
Owner: DirectoryNameType;
Case SpecOfSystemType of
VM:

VirtualAddress:VirtualAddressType;
NewVirtualAddress:VirtualAddressType;
DiskPassword: DirectoryNameType;
Filename: DirectoryNameType;
Filetype: DirectoryNameType;
Filemode: FilemodeType

);
MVS:
(* The MVS declaration is listed here. *)

P
end;

Figure 22. Pascal Declaration of File Specification Record

Using Procedure Calls

Your program uses procedure calls to initiate communication with the TCPIP virtual machine. Most of
these procedure calls return with a code, which indicates success or the type of failure incurred by the
call. For an explanation of the return codes, see Table 48 on page 337.

Chapter 2. TCP/UDP/IP API (Pascal Language) 53

Before invoking any of the other interface procedures, use BeginTcpIp or StartTcpNotice to start up the
TCP/UDP/IP service. Once the TCP/UDP/IP service has begun, use the Handle procedure to specify a set
of notifications that the TCP/UDP/IP service can send you. To terminate the TCP/UDP/IP service, use the
EndTcplp procedure.

Notifications

The TCPIP virtual machine sends you notifications to inform you of asynchronous events. Also, some
notifications are generated in your virtual machine by the TCP interface. Notifications can be received only
after BeginTcp or StartTcpNotice.

The notifications are received by the TCP interface and kept in a queue. Use GetNextNote to get the next
notification. The notifications are in Pascal variant record form. For more information (see Figure 20 on

page 46.

The following table provides a short description of the Notification procedure calls and gives the page
number where each call’s detailed description is located.

Table 6. Pascal Language Interface Summary—Notifications

Procedure Call Description Location
GetNextNote Retrieves the next notification. “GetNextNote” on page
63

Handle Specifies the types of notifications that your program “Handle” on page 64
can process.

Notifylo Requests that an IOinterrupt notification be sent to “Notifylo” on page 68
you when an I/O interrupt occurs on a given virtual
address.

Unhandle Specifies notification types that your program canno “Unhandle” on page 107

longer process.

UnNotifylo Indicates that you no longer wish to be sent a “UnNotifylo” on page 107
notification when an I/O interrupt occurs on a given
virtual address.

TCP/UDP Initialization Procedures

The UDP initialization procedures affect all present and future connections. Use these procedures to
initialize the TCP/IP environment for your program.

The following table provides a short description of the TCP/UDP Initialization procedure calls and gives
the page number where each call’s detailed description is located.

Table 7. Pascal Language Interface Summary—TCP/UDP Initialization

Procedure Call Description Location
TcpNameChange Identifies the name of the virtual machine running the “TcpNameChange” on
TCP/IP program when the virtual machine has aname page 88
other than TCPIP.
BeginTcpIp Establishes communication with the TCP/IP services. “BeginTcpIp” on page 60
StartTcpIpNotice Establishes communication with the TCP/IP services. “StartTcpNotice” on page
78

54 z/VM: 7.3 TCP/IP Programmer's Reference

TCP/UDP Termination Procedure

The Pascal API has one termination procedure call. You should use the EndTcplp call when you have
finished with the TCP/IP services.

The following table provides a short description of the TCP/UDP Termination procedure call and gives the
page number where the call’s detailed description is located.

Table 8. Pascal Language Interface Summary—TCP/UDP Termination

Procedure Call Description Location

EndTcplp Terminates communication with the TCP/IP services. “EndTcpIp” on page 61

Handling External Interrupts

The handling external interrupts procedures allow you to pass simulated external interrupts to the TCP
interface. You must call the StartTcpNotice initialization routine before you can begin using the external
interrupt calls.

The following table provides a short description of the Handling External Interrupts and gives the page
number where each call’s detailed description is located.

Table 9. Pascal Language Interface Summary—Handling External Interrupts
Procedure Call Description Location
TcpExtRupt Notifies the TCP interface of the arrival of a simulated “TcpExtRupt” on page
external interrupt. 83
RTcpExtRupt A version of TcpExtRupt. “RTcpExtRupt” on page
74
TepVmcfRupt Notifies the TCP interface of the arrival of a simulated “TcpVmcfRupt” on page
external VMCF interrupt. 101
RTcpVmcfRupt A version of TcpVmcfRupt. “RTcpVmcfRupt” on page
74

TCP Communication Procedures

The TCP communication procedures apply to a particular client connection. Use these procedures to
establish a connection and to communicate. You must call either the BeginTcplp or the StartTcpNotice
initialization routine before you can begin using TCP communication procedures.

The following table provides a short description of the TCP communication procedures and gives the page
number where each call’s detailed description is located.

Table 10. Pascal Language Interface Summary—TCP Communication Procedures

Procedure Call Description Location

Tcp60pen Initiates a TCP IPv6 connection. “Tcp60pen and
Tcp6WaitOpen” on page
79

Tcp6Status Obtains the current status of a TCP IPv6 connection. “TcpéStatus” on page 81

Tcp6WaitOpen Initiates a TCP IPv6 connection and waits for the “Tcp60pen and

establishment of the connection. Tcpb6WaitOpen” on page

79

Chapter 2. TCP/UDP/IP API (Pascal Language) 55

Table 10. Pascal Language Interface Summary—TCP Communication Procedures (continued)

Procedure Call

Description

Location

TcpNameChange Is used if the virtual machine running the TCP/IP “TcpNameChange” on
program is not using the default name, TCPIP, and page 88
is not the same as specified in the TCPIPUSERID
statement of the TCPIP DATA file.
TcpOpen Initiates a TCP IPv4 connection. “TcpOpen and
TcpWaitOpen” on page
88
TcpOption Sets an option for a TCP connection. “TcpOption” on page 90
TcpSClient Indicates to the SSL server that the connection is to “TcpSClient” on page 94
be secure and that the SSL server needs to initiate an
outbound handshake.
TcpSClose Performs Close_Notify on a TLS connection but leave “TcpSClose” on page 98
the TCP session up.
TcpSServer Indicates to the SSL server that the connection is to “TcpSServer” on page 98
be secure and that the SSL server needs to wait for an
incoming handshake.
TcpSStatus Returns details about a session, such as whether or “TcpSStatus” on page
not it is secure and the encryption suite. 99.
TcpWaitOpen Initiates a TCP IPv4 connection and waits for the “TcpOpen and
establishment of the connection. TcpWaitOpen” on page
88
TcpFSend Sends TCP data. “TcpFSend, TcpSend, and
TcpWaitSend” on page
86
TcpSend Sends TCP data. “TcpFSend, TcpSend, and
TcpWaitSend” on page
86
TcpWaitSend Sends TCP data and waits until TCPIP accepts it. “TcpFSend, TcpSend, and

TcpWaitSend” on page
86

TcpFReceive

Establishes a buffer to receive TCP data.

“TcpFReceive,
TcpReceive, and
TcpWaitReceive” on page
83

TcpReceive Establishes a buffer to receive TCP data. “TcpFReceive,
TcpReceive, and
TcpWaitReceive” on page
83

TcpWaitReceive Establishes a buffer to receive TCP data and waits for ~ “TcpFReceive,

the reception of the data. TcpReceive, and

TcpWaitReceive” on page
83

TcpClose Begins the TCP one-way closing sequence. “TcpClose” on page 82

TcpAbort Shuts down a TCP connection immediately. “TcpAbort” on page 81

56 z/VM: 7.3 TCP/IP Programmer's Reference

Table 10. Pascal Language Interface Summary—TCP Communication Procedures (continued)

Procedure Call Description Location

Obtains the current status of a TCP IPv4 connection.

TcpStatus “TcpStatus” on page 100

Ping Interface

The Ping interface lets a client send an ICMP echo request to a foreign host. You must call either the
BeginTcplIp or the StartTcpNotice initialization routine before you can begin using the Ping Interface.

The following table provides a short description of the Ping interface procedures and gives the page
number where each call’s detailed description is located.

Table 11. Pascal Language Interface Summary—Ping Interface

Procedure Call Description Location

Sends an Internet Control Message Protocol (ICMP) “PingRequest” on page
echo request. 69

PingRequest

Monitor Procedures

Two monitor procedures, MonCommand and MonQuery, provide a mechanism for querying and controlling
the TCPIP virtual machine.

The following table provides a short description of the Monitor procedures and gives the page number
where each call’s detailed description is located.

Table 12. Pascal Language Interface Summary—Monitor Procedures

Procedure Call Description Location

MonCommand Instructs TCP to read a specific file and execute the “MonCommand” on page
commands that it contains. 66
MonQuery Performs control functions and retrieves internal “MonQuery” on page 67

TCPIP control blocks.

UDP Communication Procedures

The UDP communication procedures describe the programming interface for the User Datagram Protocol
(UDP) provided in the TCP/IP product.

The following table provides a short description of the UDP communication procedures and gives the page
number where each call’s detailed description is located.

Table 13. Pascal Language Interface Summary—UDP Communication Procedures

Procedure Call

Description

Location

Udp60pen Requests communication with UDP on a specified “Udp60pen” on page 102
socket using IPv4 or IPv6 protocols.

Udp6Send Sends a UDP datagram to a specified foreign socket. “Udp6Send” on page 102

UdpOpen Requests communication with UDP on a specified “UdpOpen” on page 104
socket using IPv4 protocols.

UdpSend Sends a UDP datagram to a specified foreign socket. “UdpSend” on page 106

UdpNReceive Notifies the TCPIP virtual machine that you are willing “UdpNReceive” on page

to receive UDP datagram data.

104

Chapter 2. TCP/UDP/IP API (Pascal Language) 57

Table 13. Pascal Language Interface Summary—UDP Communication Procedures (continued)

Procedure Call

Description

Location

UdpReceive Notifies the TCPIP virtual machine that you are willing “UdpReceive” on page
to receive UDP datagram data. 105
UdpClose Terminates use of a UDP socket. “UdpClose” on page 103

Raw IP Interface

The Raw IP interface lets a client program send and receive arbitrary IP packets on any IP protocol except
TCP and UDP. Only one client can use any given protocol at one time. Only clients in the obey list can
use the Raw IP interface. For further information about the obey list, see z/VM: TCP/IP Planning and

Customization.

The following table provides a short description of the Raw IP interface procedures and gives the page

number where each call’s detailed description is located.

Table 14. Pascal Language Interface Summary—Raw IP Interface

Procedure Call

Description

Location

RawIpOpen

Informs the TCPIP virtual machine that the client
wants to send and receive IP packets of a specified

“RawIpOpen” on page
71

RawIpReceive

Specifies a buffer to receive raw IP packets of a
specified protocol.

“RawlIpReceive” on page
72

RawIpSend Sends raw IP packets of a specified protocol. “RawlIpSend” on page
72
RawIpClose Informs the TCPIP virtual machine that the client no “RawIpClose” on page

longer handles the protocol.

70

Timer Routines

The timer routines are used with the TCP/UDP/IP interface. You must call either the BeginTcpIp or the
StartTcpNotice initialization routine before you can begin using the timer routines.

The following table provides a short description of the Timer routines and gives the page number where

each call’s detailed description is located.

Table 15. Pascal Language Interface Summary—Timer Routines

Procedure Call

Description

Location

CreateTimer

Allocates a timer.

“CreateTimer” on page
61

ClearTimer

Resets a timer.

“ClearTimer” on page 60

SetTimer

Sets a timer to expire after a specified interval.

“SetTimer” on page 77

DestroyTimer

Deallocates a timer.

“DestroyTimer” on page
61

Host Lookup Routines

The host lookup routines (with the exception of GetHostResol) are declared in the CMINTER member of
the ALLMACRO MACLIB. The host lookup routine GetHostResol is declared in the CMRESGLB member of

58 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

the ALLMACRO MACLIB. Any program using these procedures must include CMINTER or CMRESGLB after
the include statements for CMCOMM and CMCLIEN.

The following table provides a short description of the host lookup routines and gives the page number
where each call’s detailed description is located.

Table 16. Pascal Language Interface Summary—Host Lookup Routines

Procedure Call

Description

Location

GetHostNumber Converts a host name to an internet address using “GetHostNumber” on
static tables. page 62

GetHostResol Converts a host name to an internet address using a “GetHostNumber” on
domain name resolver. page 62

GetHostString Converts an internet address to a host name using “GetHostString” on page
static tables. 62

Getldentity Returns environment information. “GetlIdentity” on page 63

IsLocalAddress

Determines if an internet address is local.

“IsLocalAddress” on page
65

IsLocalHost

Determines if a host name is local, remote, loopback,
or unknown.

“IsLocalHost” on page
65

Other Routines

The following table provides a short description of these procedure calls and gives the page number
where the detailed description is located.

Table 17. Pascal Language Interface Summary—Other Routines

Procedure Call

Description

Location

AddUserNote Adds a USERdefinedNOTIFICATION notification to the “AddUserNote” on page
note queue. 60

GetSmsg Retrieves one queued special message (Smsg). “GetSmsg” on page 64

QueryTLS Determines if the security server is available, and if the “QueryTLS” on page 70.

label is specified, is it known to the security server.

ReadXlateTable

Reads a binary translation table file.

“ReadXlateTable” on page
73

SayCalRe Converts a return code into a descriptive message. “SayCalRe” on page 75

SayConSt Converts a connection state into a descriptive “SayConSt” on page 75
message.

SayIntAd Converts an internet address into a name or dotted- “SayIntAd” on page 76
decimal form.

SayIntNum Converts an internet address into its dotted-decimal ~ “SayIntNum” on page 76
form.

SayNotEn Converts a notification enumeration type into a “SayNotEn” on page 76
descriptive message.

SayPorTy Converts a port number into a descriptive message or “SayPorTy” on page 77
into EBCDIC.

SayProTy Converts the protocol type into a descriptive message “SayProTy” on page 77

or into EBCDIC.

Chapter 2. TCP/UDP/IP API (Pascal Language) 59

BeginTcplp

Table 17. Pascal Language Interface Summary—Other Routines (continued)

Procedure Call Description Location

SaySsl|Re Returns a printable string describing the “SaySslRe” on page 75
AlertDescription returned when a handshake
completes. The AlertDescription is passed in

CallReturn.
TcpSCertData For a secure connection, use this function to request ~ “TcpSCertData” on page
specific fields from the local or partner certificate. 91

Procedure Calls

This section provides the syntax, operands, and other appropriate information for each Pascal procedure
call supported by TCP/IP for VM.

AddUserNote

The AddUserNote procedure can be called to add a USERdefinedNOTIFICATION notification to the
note queue and wake up GetNextNote if it is waiting for a notification. For more information, see
“RTcpExtRupt” on page 74 and “RTcpVmcfRupt” on page 74.

BeginTcplp

The BeginTcpIp procedures inform the TCPIP virtual machine that you want to start using its services. If
your program handles simulated external interrupts itself, use StartTcpNotice rather than BeginTcplIp. For
information about simulated external interrupt support, see Chapter 3, “Virtual Machine Communication
Facility Interface,” on page 113.

procedure BeginTcpIp
(
var ReturnCode: integer

r
external;

Operand
Description

ReturnCode
Indicates success or failure of call. Possible return values are:

- OK
- ABNORMALcondition
- fatalerror
« NOtcpIPservice
« TCPipALREADYstarted
« TCPipshutdown
e VIRTUALmemoryTOOsmall
If ReturnCode is OK, you must call EndTcpIp when you have finished with the TCP/IP services.

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

ClearTimer

The ClearTimer procedure resets the timer to prevent it from timing out.

60 z/VM: 7.3 TCP/IP Programmer's Reference

CreateTimer

procedure ClearTimer

T: TimerPointexrType
)i

external;

Operand
Description

T
Specifies a timer pointer, as returned by a previous CreateTimer call.
CreateTimer

The CreateTimer procedure allocates a timer. The timer is not set in any way. For the procedure to activate
the timer, see “SetTimer” on page 77.

procedure CreateTimer

var T: TimerPointerType
).

5
external;

Operand
Description

T
Sets to a timer pointer that can be used in subsequent SetTimer, ClearTimer, and DestroyTimer calls.

DestroyTimer

The DestroyTimer procedure deallocates or frees a timer that you created.

procedure DestroyTimer

var T: TimerPointexrType
) .

H
external;

Operand
Description

T
Specifies a timer pointer, as returned by a previous CreateTimer call.

EndTcplp

The EndTcplp procedure releases ports and protocols in use that are not permanently reserved. It causes
TCP to clean up any data structures it has associated with you. Use EndTcpIp when you have finished with
the TCP/IP services.

It is safe to call EndTcpIp even if BeginTcpIp or StartTcpNotice did not previously succeed.

procedure EndTcpIp;
external;

The EndTcplp procedure has no operands.

Chapter 2. TCP/UDP/IP API (Pascal Language) 61

GetHostNumber

GetHostNumber

The GetHostNumber procedure resolves a host name into an internet address.

GetHostNumber uses a table lookup to convert the name of a host to an internet address, and returns
this address to the HostNumber field. When the name is a dotted-decimal number, GetHostNumber
returns the integer represented by that dotted-decimal. The dotted-decimal representation of a 32-bit
number has one decimal integer for each of the 4 bytes, separated by dots. For example, 14.0.0. 7 for
X'0E000007'. For information about how to create host lookup tables, see z/VM: TCP/IP Planning and
Customization.

The HostNumber field is set to NOhost if the host is not found.

procedure GetHostNumber

const Name: string;

var HostNumber: InternetAddressType
eiternal;
Operand
Description
Name
Specifies the name or dotted-decimal number to be converted.
HostNumber

Set to the converted address, or NOhost if conversion fails.

GetHostResol

The GetHostResol procedure resolves a host name into an internet address by using a name server.

GetHostResol passes the query to the remote name server through the resolver. The name server
converts the name of a host to an internet address, and returns this address in the HostNumber field.
If the name server does not respond or does not find the name, the host name is converted to a host
number by table lookup. When the name is a dotted-decimal number, the integer represented by that
dotted-decimal is returned. The dotted-decimal representation of a 32-bit number has one decimal
integer for each of the 4 bytes, separated by dots. For example, 14.0.0.7 for X'0OEO00007".

The HostNumber field is set to NOhost if the host is not found.

procedure GetHostResol

(

const Name: string;
var HostNumber: InternetAddressType
e%ternal;
Operand
Description
Name

Specifies the name or dotted-decimal number to be converted.

HostNumber
Set to the converted address, or NOhost if conversion fails.

GetHostString

The GetHostString procedure uses a table lookup to convert an internet address to a host name, and
returns this string in the Name field. The first host name found in the lookup is returned. If no host name

62 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

GetIdentity

is found, a gateway or network name is returned. If no gateway or network name is found, a null string is
returned.

procedure GetHostString

Address: InternetAddressType;

var Name: SiteNameType
eiternal;
Operand
Description
Address

Specifies the address to be converted.

Name
Set to the corresponding host, gateway, or network name, or to null string if no match found.

GetIdentity

The Getldentity procedure returns the following information:

The user ID of the VM user
The host machine name

The network domain name
« The user ID of the TCPIP virtual machine.

The host machine name and domain name are extracted from the HOSTNAME and DOMAINORIGIN
statements, respectively, in the user_id DATA file. If the user_id DATA file does not exist, the TCPIP DATA
file is used. If a HOSTNAME statement is not specified, then the default host machine name is the name
specified by the TCP/IP installer during installation. See z/VM: TCP/IP Planning and Customization. The
TCPIP virtual machine user ID is extracted from the TCPIPUSERID statement in the user_id DATA file; if
the statement is not specified, the default is TCPIP.

procedure GetIdentity
(
var UserId: DirectoryNameType;
var HostName, DomainName: String;
var TcpIpServiceName: DirectoryNameType;
var Result: integer
)5
external;
Operand
Description
Userld

Specifies the user ID of the VM user or the job name of a batch job that has invoked Getldentity.

HostName
Specifies the host machine name.

DomainName
Specifies the network domain name.

TcpIpServiceName
Specifies the user ID of the TCPIP virtual machine.

GetNextNote

The GetNextNote procedure retrieves notifications from the queue. This procedure returns the next
notification queued for you.

Chapter 2. TCP/UDP/IP API (Pascal Language) 63

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

GetSmsg

procedure GetNextNote
var Note: NotificationInfoType;
ShouldWait: Boolean;
var ReturnCode: integer

r
external;

Operand
Description

Note
Indicates that the next notification is stored here when ReturnCode is OK.

ShouldWait
Sets ShouldWait to TRUE if you want GetNextNote to wait until a notification becomes available. Set
ShouldWait to FALSE if you want GetNextNote to return immediately. When ShouldWait is set to
FALSE, ReturnCode is set to NOoutstandingNOTIFICATIONS if no notification is currently queued.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK
« NOoutstandingNOTIFICATIONS
« NOTyetBEGUN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

GetSmsg

The GetSmsg procedure is called by your program after receiving an SMSGreceived notification. Each
call to GetSmsg retrieves one queued Smsg. Your program should exhaust all queued Smsgs, by calling
GetSmsg repeatedly until the Success field returns with a value of FALSE. After a value of FALSE is
returned, do not call GetSmsg again until you receive another SMSGreceived notification.

For information about the SMSG command, see z/VM: TCP/IP User's Guide

procedure GetSMsg
(

var Smsg: SmsgType;
var Success: Boolean;

H
external;

Operand
Description

Smsg
Set to the returned Smsg if Success is set to TRUE.

Success
TRUE if Smsg returned, otherwise FALSE.

Handle

The Handle procedure specifies that you want to receive notifications in the given set. You must always
use it after calling the BeginTcpIp procedure and before accessing the TCP/IP services. This Pascal set
can contain any of the NotificationEnumType values shown in Figure 20 on page 46.

64 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

IsLocalAddress

procedure Handle

Notifications: NotificationSetType;
var ReturnCode: integer
).

5
external;

Operand
Description

Notifications
Specifies the set of notification types to be handled.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« NOTyetBEGUN

« TCPipSHUTDOWN

« ABNORMALcondition
« FATALerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

IsLocalAddress

The IsLocalAddress procedure queries the TCPIP virtual machine to determine whether the HostAddress
is one of the addresses recognized for this host. If the address is local, it returns OK. If the address is not
local, it returns NONlocalADDRESS.

procedure IslLocalAddress

HostAddress: InternetAddressType;

var ReturnCode: integer
eiternal;
Operand
Description
HostAddress

Specifies the host address to be tested.

ReturnCode
Indicates whether the host address is local, or may indicate an error. Possible return values are:

- OK

« NONlocalADDRESS
« TCPipSHUTDOWN

« ABNORMALcondition
« FATALerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

IsLocalHost

The IsLocalHost procedure returns the correct host class for Name, which may be a host name or a
dotted-decimal address.

The host classes are:

Chapter 2. TCP/UDP/IP API (Pascal Language) 65

MonCommand

Host Class
Description
HOSTlocal
Specifies an internet address for the local host.
HOSTloopback
Specifies one of the dummy internet addresses used to designate various levels of loopback testing.
HOSTremote
Specifies a known host name for some remote host.

HOSTunknown
Specifies an unknown host name (or other error).

procedure IsLocalHost

const Name: string;
var Class: HostClassType
)i
external;
Operand
Description
Name

Specifies the host name.

Class
Specifies the host class.

MonCommand

The MonCommand procedure instructs the TCPIP virtual machine to read a specific file and execute

the commands found there. This procedure updates TCPIP internal tables and parameters while the
TCPIP virtual machine is running. For example, the type and destination of run-time tracing can be
modified dynamically using MonCommand. This procedure is used by the OBEYFILE command. For more
information about the OBEYFILE command, see z/VM: TCP/IP Planning and Customization. You must be in
the TCPIP obey list to use the MonCommand procedure.

procedure MonCommand

(
const FileSpec: SpecOfFileType;

var ReturnCode: integer
eiternal;
Operand
Description
FileSpec

Specifies a file in a manner that allows access to that file. The TCPIP virtual machine must be
authorized to access the file.

The SpecOfFileType record is listed in Figure 22 on page 53.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« ABNORMALcondition
« ERRORINPROFILE

« HASnoPASSWORD

66 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

MonQuery

« INCORRECTpassword

« INVALIDuserID

« INVALIDvirtualADDRESS
« MINIDISKinUSE

« MINIDISKnotAVAILABLE
« NOTyetBEGUN

« PROFILEnotFOUND

« SOFTWAREerror

e TCPipSHUTDOWN

« UNAUTHORIZEDuser

« UNIMPLEMENTEDrequest

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

MonQuery

The MonQuery procedure obtains status information, or requests TCPIP to perform certain actions. This
procedure is used by the NETSTAT command. For more information about the NETSTAT command, see
z/VM: TCP/IP User's Guide.

procedure MonQuery

QueryRecord: MonQueryRecordType;
Buffer: integer;
BufSize: integer;

var ReturnCode: integer;

var Length: integer

H
external;

Operand
Description

Buffer
Specifies the address of the buffer to receive data.

BufSize
Specifies the size of the buffer.

ReturnCode
Indicates the success or failure of the call.

Length
Specifies the length of the data returned in the buffer.

QueryRecord
Sets up a QueryRecord to specify the type of status information to be retrieved. The
MonQueryRecordType is shown in Figure 23 on page 68.

Chapter 2. TCP/UDP/IP API (Pascal Language) 67

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

NotifyIo

MonQueryRecordType =

record
case QueryType: MonQueryType of
QUERYhome, QUERYgateways, QUERYcontrolBLOCKS,
QUERYstartTIME, QUERYtelnetSTATUS,
QUERYdevicesANDlinks,
QUERYhomeONLY: ();
QUERYudpPORTownex:
(

QueryPort: PortType
COMMANDCpCMD :
(

CpCmd: WoxdType
)5
COMMANDdropCONNECTION:
(

Connection: ConnectionType

)i
end; { MonQueryRecordType %

Figure 23. Monitor Query Record

The only QueryType values available for your use are:
QUERYhomeONLY

Used to obtain a list of the home internet addresses recognized by your TCPIP virtual machine. Your
program sets the Buffer to the address of a variable of type HomeOnlyListType, and the BufSize to its
length. When MonQuery returns, Length is set to the length of the Buffer that was used, if ReturnCode
is OK. Divide the Length by size of (InternetAddressType) to get the number of the home addresses
that are returned.

COMMANDdropCONNECTION

Used to instruct the TCPIP virtual machine to drop a TCP connection. The connection is reset, and the
client process owning the connection is sent a NONEXISTENT notification with the Reason field set to
DROPPEDbyOPERATOR. Your program sets the Connection field to the number of the connection to
be dropped. The connection number is the number displayed by the NETSTAT CONN or the NETSTAT
TELNET command, and is not the same number used to refer to the connection by the client program
that owns the connection. For information about the NETSTAT command, see z/VM: TCP/IP User's
Guide. The virtual machine running your program that uses COMMANDdropCONNECTION must be in
the TCPIP virtual machine.

ReturnCode

Indicates the success or failure of the call. Possible return values are:
- OK

« ABNORMALcondition

« FATALerror

« NOTyetBEGUN

« TCPipSHUTDOWN

« UNAUTHORIZEDuser

« UNIMPLEMENTEDrequest

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Notifylo

The NotifyIo procedure is used to request that an IOinterrupt notification be sent to you when an I/O
interrupt occurs on a given virtual address. You can specify that you wish notifications on up to 10
different virtual device addresses (by means of individual NotifyIo calls). This notification is intended for
unsolicited interrupts, not for interrupts showing the completion of a channel program.

68 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

PingRequest

procedure NotifyIo

DeviceAddress: integer;
var ReturnCode: integer;
).

5
external;

Operand
Description

DeviceAddress
Specifies the address of the device for which IOinterrupt notifications are to be generated.

ReturnCode
Indicates success or failure of the call. Possible return values are:

« OK
« TOOmManyOPENS
- SOFTWAREerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

PingRequest

The PingRequest procedure sends an ICMP echo request to a foreign host. When a response is received or
the time-out limit is reached, you receive a PingResponse notification.

The PingRequest procedure is used by the PING user command. For more information about the PING
command, see z/VM: TCP/IP Planning and Customization.

procedure PingRequest
(

ForeignAddress: InternetAddressType;
Length: integer;
Timeout: integer;

var ReturnCode: integer
)i
external;
Operand
Description
ForeignAddress
Specifies the address of the foreign host to be pinged.
Length

Specifies the length of the ping packet, excluding the IP header. The range of values for this field are 8
to 512 bytes.

Timeout
Specifies how long to wait for a response, in seconds.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

- ABNORMALcondition

« BADlengthARGUMENT
CONNECTIONalreadyEXISTS
NObufferSPACE

« NOTyetBEGUN

Chapter 2. TCP/UDP/IP API (Pascal Language) 69

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

QueryTLS

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: CONNECTIONalreadyEXISTS, in this context, means a ping request is already outstanding.

QueryTLS

The QueryTLS with an optional label determines if the security server is available, and if the label is

specified, is it known to the security server.

Procedure QueryTLS
(

TLSLabel: DirectoryNameType;
TLSKeyring: KeyringType;
var ReturnCode: CallReturnCodeType
)5
KeyringType

= packed array(. 1..KEYRINGlength .) of char;
KEYRINGlength = ;

50;

Operand
Description

TLSLabel
The certificate label passed along to the security server for verification.

TLSKeyring

Specifies the group that the label resides in. This capability is not yet available. The value must be

blank.

ReturnCode
Indicates success or failure of the call. Possible return code values are:

- OK

« BACKlevelSSL

« KEYRINGnotPERMITTED
« KEYRINGNnotRECOGNIZED
« LABELnotPERMITTED

« LABELNotRECOGNIZED
« NOTyetBEGUN

« SOFTWAREError

« SSLnotAVAILABLE

» SSLnotRESPONDING

e TCPipSHUTDOWN

e TLSnotAVAILABLE

« UNAUTHORIZEDuser

RawIpClose

The RawIpClose procedure tells the TCPIP virtual machine that the client does not handle the protocol

any longer. Any queued incoming packets are discarded.

When the client is not handling the protocol, a return code of NOsuchCONNECTION is received.

70 z/VM: 7.3 TCP/IP Programmer's Reference

RawIpOpen

procedure RawIpClose

ProtocolNo: integer;

var ReturnCode: integer
)2
external;
Operand
Description
ProtocolNo
Specifies the number of the IP protocol.
ReturnCode
Indicates the success or failure of the call. Possible return values are:
« OK

« NOsuchCONNECTION
« NOTyetBEGUN

« SOFTWAREerror

« TCPipSHUTDOWN

« UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

RawIpOpen

The RawIpOpen procedure tells the TCPIP virtual machine that the client wants to send and receive
packets of the specified protocol.

You cannot use protocols 6 and 17. They specify the TCP (6) and UDP (17) protocols. When you
specify 6, 17, or a protocol that has been opened by another virtual machine, you receive the
LOCALportNOTavailable return code.

procedure RawIpOpen

ProtocolNo: integer;

var ReturnCode: integer
eiternal;
Operand
Description
ProtocolNo
Specifies the number of the IP protocol.
ReturnCode
Indicates the success or failure of the call. Possible return values are:
« OK

LOCALportNQOTavailable
« NOTyetBEGUN

- SOFTWAREerror

« TCPipSHUTDOWN

« UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Chapter 2. TCP/UDP/IP API (Pascal Language) 71

RawIpReceive

Note: You can open the ICMP protocol, but your program receives only those ICMP packets that are not
interpreted by the TCPIP virtual machine.

RawIpReceive

The RawIpReceive procedure specifies a buffer to receive Raw IP packets of the specified protocol. You
get the notification RAWIPpacketsDELIVERED when a packet is put in the buffer.

procedure RawIpReceive

ProtocolNo: integer;
Buffer: Address31Type;
BufferlLength: integer;

var ReturnCode: integer
e%ternal;

Operand

Description
ProtocolNo

Specifies the number of the IP protocol.
Buffer

Specifies the address of your buffer.
BufferLength

Specifies the length of your buffer. If you specify a length greater than 8492 bytes, only the first 8492
bytes are used.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« NOsuchCONNECTION
« NOTyetBEGUN

« SOFTWAREerror

« TCPipSHUTDOWN

« UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

RawIpSend

The RawIpSend procedure sends IP packets of the given protocol number. The entire packet, including
the IP header, must be in the buffer. The TCPIP virtual machine uses the total length field of the IP
header to determine where each packet ends. Subsequent packets begin at the next doubleword (8-byte)
boundary within the buffer.

The packets in your buffer are transmitted as is with the following exceptions.

« They can be fragmented. The fragment offset and flag fields in the header are filled.
« The version field in the header is filled.

« The checksum field in the header is filled.

- The source address field in the header is filled.

You get the return code NOsuchCONNECTION if the client is not handling the protocol, or if a packet in the
buffer has another protocol. The return code BADlengthARGUMENT is received when:

« The DataLength is less than 40 bytes or more than 8K bytes.
« NumPackets is 0.

72 z/VM: 7.3 TCP/IP Programmer's Reference

ReadXlateTable

« A packet is greater than 2048 bytes.
« All packets do not fit into DataLength.

A ReturnCode value of NObufferSPACE indicates that the data is rejected because TCPIP is out of buffers.
When buffer space is available, the notification RAWIPspaceAVAILABLE is sent to the client.

procedure RawIpSend

ProtocolNo: integer;
Buffer: Address31Type;
DatalLength: integer;
NumPackets: integers;
var ReturnCode: integer
).

H
external;

Operand
Description

ProtocolNo
Specifies the number of the IP protocol.

Buffer
Specifies the address of your buffer containing packets to send.

DataLength
Specifies the total length of data in your buffer.

NumPackets
Specifies the number of packets in your buffer.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

« OK

- BADlengthARGUMENT
« NObufferSPACE

e NOsuchCONNECTION
« NOTyetBEGUN

« SOFTWAREerror

» TCPipSHUTDOWN

« UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: If your buffer contains multiple packets to send, some of the packets may have been sent even if
ReturnCode is not OK.

ReadXlateTable

The ReadXlateTable procedure reads the binary translation table file specified by TableName, and fills in
the AtoETable and EtoATable translation tables.

procedure ReadXlateTable
(

var TableName: DirectoryNameType;
var AtoETable: AtoEType;
var EtoATable: EtoAType;
var TranslateTableSpec: SpecOfFileType;
var ReturnCode: integer
) .

H
external;

Chapter 2. TCP/UDP/IP API (Pascal Language) 73

RTcpExtRupt

Operand
Description

TableName
Specifies the name of the translate table. ReadXlateTable tries to read TableName TCPXLBIN. If that
file exists but it has a bad format, ReadXlateTable returns with a ReturnCode FILEformatINVALID. If
user_id TCPXLBIN does not exist, ReadXlateTable tries to read TCPIP TCPXLBIN. ReturnCode reflects
the status of reading that file.

AtoETable
Contains an ASCII-to-EBCDIC table if the return code is OK.

EtoATable
Contains an EBCDIC-to-ASCII table if the return code is OK.

TranslateTableSpec
If ReturnCode is OK, TranslateTableSpec contains the complete specification of the file that
ReadXlateTable used. If the ReturnCode is not OK, TranslateTableSpec contains the complete
specification of the last file that ReadXlateTable tried to use.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK
« ERRORopeningORreadingFILE
 FILEformatINVALID

RTcpExtRupt

The RTcpExtRupt procedure is a version of the TcpExtRupt Pascal procedure and can be called directly
from an assembler interrupt handler.

Note: The content of this section is Internal Product Information and must not be used as programming
interface information.

The following is a sample of the assembler calling sequence.

LA R13,PASCSAVE

LA R1,EXTPARM

L R15,=V (RTCPEXTR)
BALR R14,R15

RUPTCODE DS H Store interrupt code here before calling XTCPEXTR
PASCSAVE DS 18F Register save area
ENV DC F'o' Zero initially. It will be filled with

an environment address. Pass it unchanged
in subsequent calls to RTCPEXTR.
EXTPARM DC A(ENV)
DC A(RUPTCODE)

The RTcpExtRupt procedure has no operands.

RTcpVmcfRupt

The RTcpVmcfRupt procedure is a version of the TcpVmcfRupt Pascal procedure and can be called directly
from an assembler interrupt handler.

Note: The content of this section is Internal Product Information and must not be used as programming
interface information.

The following is a sample assembler calling sequence.

74 z/VM: 7.3 TCP/IP Programmer's Reference

SayCalRe

LA R13,PASCSAVE

LA R1,VMCFPARM

L R15,=V (RTCPVMCF)
BALR R14,R15

PASCSAVE DS 18F Register save area
ENV DC F'o' Zero initially. It will be filled with
an environment address. Pass it unchanged
in subsequent calls to RTCPVMCF.
VMCFPARM DC A(ENV)
DC A(VMCFBUF) Address of your VMCF interrupt buffer.

The RTcpVmcfRupt procedure has no operands.

SayCalRe

The SayCalRe function returns a printable string describing the return code passed in CallReturn.

function SayCalRe

CallReturn: integer

):
WoxrdType;
external;
Operand
Description
CallReturn

Specifies the return code to be described.

SaySslRe

The SaySslRe function returns a printable string describing the AlertDescription returned when a
handshake completes. The AlertDescription is passed in CallReturn.

function SaySslRe
CallReturn: SignedHalfwordType

):
WoxdType;
external;
Operand
Description
CallReturn

Specifies the return code to be described.

SayConSt

The SayConSt function returns a printable string describing the connection state passed in State. For
example, if SayConSt is invoked with the type identifier RECEIVINGonly, it returns the message Receiving
only.

Chapter 2. TCP/UDP/IP API (Pascal Language) 75

SayIntAd

function SayConSt
(

State: ConnectionStateType

)
Wordtype;
external;
Operand
Description
State

Specifies the connection state to be described.

SayIntAd

The SayIntAd function converts the internet address specified by InternetAddress to a printable string.
The address is looked up in HOSTS ADDRINFO file, and the name is returned if found. If it is not found, the
dotted-decimal format of the address is returned.

function SayIntAd
InternetAddress: InternetAddressType

):
WoxrdType;
external;

Operand
Description

InternetAddress
Specifies the internet address to be converted.

SayIntNum

The SayIntNum function converts the internet address specified by InternetAddress to a printable string,
in dotted-decimal form.

function SayIntNum

InternetAddress: InternetAddressType
):
Wordtype;
external;

Operand
Description

InternetAddress
Specifies the internet address to be converted.

SayNotEn

The SayNotEn function returns a printable string describing the notification enumeration type passed in
Notification. For example, if SayNotEn is invoked with the type identifier EXTERNALinterrupt, it returns the
message, Other external Interrupt received.

76 z/VM: 7.3 TCP/IP Programmer's Reference

SayPorTy

function SayNotEn
(

Notification: NotificationEnumType

)8
Woxrdtype;
external;
Operand
Description
Notification

Specifies the notification enumeration type to be described.

SayPorTy

The SayPorTy function returns a printable string describing the port number passed in Port, if it is a
well-known port number such as the Telnet port. Otherwise, the EBCDIC representation of the number is
returned.

function SayPorTy
(

Poxrt: PoxrtType

):
WoxrdType;
external;
Operand
Description
Port

Specifies the port number to be described.

SayProTy

The SayProTy function converts the protocol type specified by Protocol to a printable string, if it is a
well-known protocol number such as 6 (TCP). Otherwise, the EBCDIC representation of the number is
returned.

function SayProTy
(

Protocol: ProtocolType

):
WoxrdType;
external;
Operand
Description
Protocol

Specifies the number of the protocol to be described.

SetTimer

The SetTimer procedure sets a timer to expire after a specified time interval. Specify the amount of time
in seconds. When it times out, you receive the TIMERexpired notification, which contains the data and the
timer pointer.

Note: This procedure resets any previous time interval set on this timer.

Chapter 2. TCP/UDP/IP API (Pascal Language) 77

StartTcpNotice

procedure SetTimer

T: TimexPointexType;
AmountOfTime: integer;
Data: integer

).

r
external;

Operand
Description
T
Specifies a timer pointer, as returned by a previous CreateTimer call.

AmountOfTime
Specifies the time interval in seconds.

Data
Specifies an integer value to be returned with the TIMERexpired notification.

StartTcpNotice

The StartTcpNotice procedure establishes your own external interrupt handler. Use this procedure rather
than BeginTcplp when you want to handle simulated external interrupts yourself.

If your program does not use simulated VMCF, set the ClientDoesVmcf parameter to FALSE. For more
information about the simulated Virtual Machine Communication Facility interface, see Chapter 3, “Virtual
Machine Communication Facility Interface,” on page 113. Later, when your program receives a simulated
external interrupt that it does not handle, including a VMCF interrupt, inform the TCP interface by calling
TcpExtRupt. The TCP interface then processes the interrupt.

If your program uses simulated VMCEF itself, set the ClientDoesVmcf parameter to TRUE. Your program
must use the VMCF AUTHORIZE function to establish a VMCF interrupt buffer. Later, when your program
receives a VMCF interrupt that it does not handle, inform the TCP interface by calling TcpVmcfRupt with
the address of your VMCF interrupt buffer. When your program receives a non-VMCF simulated external
interrupt that it does not handle, call TcpExtRupt, as explained previously.

procedure StartTcpNotice

ClientDoesVmcf: Boolean;

var ReturnCode: integer
)8
external;
Operand
Description
ClientDoesVmcf
Set to FALSE if your program does not use simulated VMCF. Otherwise, set to TRUE.
ReturnCode
Indicates the success or failure of the call. Possible return values are:
« OK

« ABNORMALcondition

- ALREADYclosing

« NOtcplIPservice

« TCPipALREADYstarted

e VIRTUALmemoryTOOsmall
« FATALerror

78 z/VM: 7.3 TCP/IP Programmer's Reference

Tcp60pen and Tcp6WaitOpen

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

If ReturnCode is OK, you must call EndTcpIp when you have finished with the TCP/IP services.

Tcp60pen and Tcp6WaitOpen

The Tcp60pen or Tcp6WaitOpen procedures initiate a TCP connection. The Tcp60pen or

Tcp6WaitOpen should be used for IPv6 connecections or for a mix of IPv4 and IPv6 connections.
Tcp60pen returns immediately, and connection establishment proceeds asynchronously with your
program’s other operations. The connection is fully established when your program receives a
CONNECTIONstateCHANGED notification with NewState set to OPEN. Tcp6WaitOpen does not return until
the connection is established, or until an error occurs.

procedure Tcp60pen
(

var ConnectionInfo: StatuséInfo;
var ReturnCode: integer;

eiternal;
procedure Tcp6bWaitOpen
(

var ConnectionInfo: Statusé6Info;
var ReturnCode: integer;

r
external;

Operand
Description

ConnectionInfo
Specifies a connection information record.

Connection
Set this field to UNSPECIFIEDconnection. When the call returns, the field contains the number of
the new connection if ReturnCode is OK.

ConnectionState
For active open, set this field to TRYINGtoOPEN. For passive open, set this field to LISTENING.

OpenAttemptTimeout
Set this field to specify how long, in seconds, TCP is to continue attempting to open the
connection. If the connection is not fully established during that time, TCP reports the error to
you. If you used Tcp60pen, you receive a notification. The type of notification that you receive is
CONNECTIONstateCHANGED. It has a new state of NONEXISTENT and a reason of TIMEOUTopen.
If you used Tcp6WaitOpen, it returns with ReturnCode set to TIMEOUTopen.

Security
This field is reserved. Set it to DEFAULTsecurity.

Compartment
This field is reserved. Set it to DEFAULTcompartment.

Precedence
This field is reserved. Set it to DEFAULTprecedence.

LocalSocket
Active Open: You can use an address of UNSPECIFIEDipv6address (the TCPIP virtual machine
uses the home address corresponding to the network interface used to route to the foreign
address) and port of UNSPECIFIEDport (the TCPIP virtual machine assigns a port number, in the
range of 1024 to 65 534). You can specify the address, the port, or both if particular values are
required by your application. The address must be a valid home address for your node and must
be specified as an IPv6 address. IPv6 mapped IPv4 addresses are acceptable, refer to RFC 4291
for details. The port must not be reserved via a PORT statement in Profile TCPIP or in use by
another application.

Chapter 2. TCP/UDP/IP API (Pascal Language) 79

Tcp60pen and Tcp6WaitOpen

Passive Open: A predetermined port number is specified which allows other programs to connect
to your program using the port. Alternatively, you can use UNSPECIFIEDport to let the TCPIP
virtual machine assign a port number, obtain the port number through Tcp6Status for Tcp60pen
or using the NETSTAT CONN command for Tcp6WaitOpen, and transmit it to the other program
through an existing TCP connection or manually. (For more information about the NETSTAT CONN
command, see z/VM: TCP/IP User's Guide). Generally, an address of UNSPECIFIEDipvéaddress is
specified so that the active open to the port succeeds regardless of the home addresses to which
it was sent.

ForeignSocket

Active Open: The address and port must both be specified, because the TCPIP virtual machine
cannot actively initiate a connection without knowing the destination address and port. The
address must be specified as an IPvé6 address. IPv6 mapped IPv4 addresses are acceptable,
refer to RFC 4291 for details.

Note: Attempting to specify an IPv6 link local address will produce unpredictable results.

Passive Open: If your program is offering a service to anyone who wants it, specify an address of
UNSPECIFIEDipv6address and a port of UNSPECIFIEDport. You can specify a particular address
and port if you want to accept an active open only from a certain foreign application.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

OK

ABNORMALcondition

FATALerror

CONNECTIONalreadyEXISTS
DROPPEDbyOPERATOR (TcpWaitOpen only)
IPv6connection

LOCALportNQOTavailable
MIXEDaddresses

NOsuchCONNECTION

NOTyetBEGUN

OPENrejected (TcpWaitOpen only)
PARAMlocalADDRESS

PARAMstate

PARAMtimeout

PARAMunspecADDRESS
PARAMunspecPORT

REMOTEreset (TcpWaitOpen only)
SOFTWAREerror

TCPipSHUTDOWN

TIMEOUTconnection (TcpWaitOpen only)
TIMEOUTopen (TcpWaitOpen only)
TOOmManyOPENS

UNEXPECTEDsyn (TcpWaitOpen only)
UNREACHABLEnetwork (TcpWaitOpen only)
WRONGsecORprc (TcpWaitOpen only)
ZEROresources

80 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

TcpAbort

Tcp6Status

The Tcp6Status procedure obtains the current status of a TCP connection. Your program sets the
Connection field of the ConnectionInfo record to the number of the connection whose status you want.

procedure Tcp6Status
(

var ConnectionInfo: StatuséInfo;
var ReturnCode: integer;

5
external;

Operand
Description
ConnectionInfo
If ReturnCode is OK, the following fields are returned:

Field
Description

OpenAttemptTimeout
If the connection is in the process of being opened (including a passive open), this field is set
to the number of seconds remaining before the open is terminated if it has not completed.
Otherwise, it is set to WAITforever.

BytesToRead
Specifies the number of bytes of incoming data queued for your program (waiting for TcpReceive,
TcpFReceive, or TcpWaitReceive).

UnackedBytes
Specifies the number of bytes sent by your program but not yet sent to the foreign TCP, or the
number of bytes sent to the foreign TCP, but not yet acknowledged.

ConnectionState
Specifies the current connection state.

LocalSocket
Specifies the local socket, consisting of a local address and a local port. The local address will be
returned as an IPv6 address. If the address is an IPv4 address, it will be returned as a mapped
IPv6 address.

ForeignSocket
Specifies the foreign socket, consisting of a foreign address and a foreign port. The foreign address
will be returned as an IPv6 address. If the address is an IPv4 address, it will be returned as a
mapped IPv6 address.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

-« ABNORMALcondition
« NOsuchCONNECTION
« NOTyetBEGUN

« TCPipSHUTDOWN

TcpAbort

The TcpAbort procedure shuts down a specific connection immediately. Data sent by your application on
the aborted connection can be lost. TCP sends a reset packet to notify the foreign host that you have
aborted the connection, but there is no guarantee that the reset will be received by the foreign host.

Chapter 2. TCP/UDP/IP API (Pascal Language) 81

TcpClose

procedure TcpAbort
(
Connection: ConnectionType;
var ReturnCode: integer

)5
external;

Operand

Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp60pen or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« ABNORMALcondition
« FATALerror

« NOsuchCONNECTION
» NOTyetBEGUN

« SSLcloseINprogress
e TCPipSHUTDOWN

The connection is fully terminated when you receive the notification CONNECTIONstateCHANGED
with the NewState field set to NONEXISTENT.

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

TcpClose

The TcpClose procedure begins the TCP one-way closing sequence. During this closing sequence, you, the
local client, cannot send any more data. Data can be delivered to you until the foreign application also
closes. TcpClose also causes all data sent on that connection by your application, and buffered by TCPIP,
to be sent to the foreign application immediately.

procedure TcpClose

Connection: ConnectionType;

var ReturnCode: integer
e%ternal;
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp60pen or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

« OK
« ABNORMALcondition
- ALREADYclosing

82 z/VM: 7.3 TCP/IP Programmer's Reference

TcpExtRupt

NOsuchCONNECTION

« NOTyetBEGUN

e SSlLcloseINprogress

- SSLhandshakeINprogress
« TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.
Note:

1. If you receive the notification CONNECTIONstateCHANGED with a NewState of SENDINGonly, the
remote application has done TcpClose (or equivalent function) and is receiving only. Respond with
TcpClose when you have finished sending data on the connection.

2. The connection is fully closed when you receive the notification CONNECTIONstateCHANGED, with a
NewState field set to NONEXISTENT.

TcpExtRupt

Use the TcpExtRupt procedure when:

1. You initiated the TCP/IP service by calling StartTcpNotice with ClientDoesVmcf set to TRUE, and
your external interrupt handler receives a non-VMCF interrupt not handled by your program. For the
handling of VMCF interrupts, see “TcpVmcfRupt” on page 101.

2. You initiated the TCP/IP service by calling StartTcpNotice with ClientDoesVmcf set to FALSE, and your
external interrupt handler receives any interrupt not handled by your program.

RTcpExtRupt is a version of TcpExtRupt. For more information, see “RTcpExtRupt” on page 74 and
“RTcpVmcfRupt” on page 74.

procedure TcpExtRupt
(

const RuptCode: integer
) .

H
external;

Operand
Description

RuptCode
Specifies the external interrupt code you received.

TcpFReceive, TcpReceive, and TcpWaitReceive

TcpFReceive and TcpReceive are the asynchronous ways of specifying a buffer to receive data for a

given connection. Both procedures return to your program immediately. A return code of OK means

that the request has been accepted. When received data has been placed in your buffer, your program
receives a DATAdelivered notification. If your program uses TcpFReceive, it can receive an FRECEIVEerror
notification rather than DATAdelivered, indicating that the receive request was rejected, or that it was
initially accepted but was later canceled because of connection closing.

TcpWaitReceive is the synchronous interface for receiving data from a TCP connection. TcpWaitReceive
does not return to your program until data has been received into your buffer, or until an error occurs.
Therefore, it is not necessary that TcpWaitReceive receive a notification when data is delivered. The
BytesRead parameter is set to the number of bytes received by the data delivery, but if the number is less
than zero, the parameter indicates an error.

TcpReceive uses a complete VMCF transaction (SEND by your virtual machine followed by REJECT by

the TCPIP virtual machine) to tell the TCPIP virtual machine that your program is ready to receive, and
another complete VMCF transaction (SEND by TCPIP virtual machine followed by RECEIVE by your virtual
machine) to deliver the received data. In contrast, the entire TcpFReceive cycle is completed in one VMCF

Chapter 2. TCP/UDP/IP API (Pascal Language) 83

TcpFReceive, TcpReceive, and TcpWaitReceive

transaction. The TCP interface does a VMCF SEND/RECEIVE to inform TCPIP that your program is ready to
receive. This transaction remains uncompleted until data is ready to be placed in your buffer. At that time
the TCPIP virtual machine does a VMCF REPLY, completing the transaction.

TcpFReceive requires fewer VMCF transactions to receive data, thus increasing efficiency. The
disadvantage is that each outstanding TcpFReceive means an outstanding VMCF transaction. You
are limited to 50 outstanding VMCF transactions (for each virtual machine), thus 50 outstanding
TcpFReceives.

With TcpReceive, you are not subject to the limit of 50 outstanding receives (for each virtual machine).
The disadvantage is that there are twice as many VMCF transactions involved in receiving data, thus more
overhead.

The only programming difference between TcpFReceive and TcpReceive is the generation of
FRECEIVEerror notifications for TcpFReceive.

procedure TcpFReceive

Connection: ConnectionType;
Buffer: Address31Type;
BytesToRead: integer;

var ReturnCode: integer

H
external;

procedure TcpReceive

Connection: ConnectionType;
Buffer: Address31Type;
BytesToRead: integer;
var ReturnCode: integer
)i

external;

procedure TcpWaitReceive

Connection: ConnectionType;
Buffer: Address31Type;
BytesToRead: integer;

var BytesRead: integer
e%ternal;
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp60pen or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

Buffer
Specifies the address of the buffer to contain the received data.

BytesToRead
Specifies the size of the buffer. TCPIP usually buffers the incoming data until this many bytes are
received. Data is delivered sooner if the sender specified the PushFlag, or if the sender does a
TcpClose or equivalent. The largest usable buffer is 8192 bytes. Specifying BytesToRead of more than
8192 bytes may not cause an error return, but only 8192 bytes of the buffer are used.

Note: The order of TcpFReceive or TcpReceive calls on multiple connections, and the order of
DATAdelivered notifications among the connections, are not necessarily related.

84 z/VM: 7.3 TCP/IP Programmer's Reference

TcpFReceive, TcpReceive, and TcpWaitReceive

BytesRead
Indicates a value when TcpWaitReceive returns. If it is greater than ZERO, it indicates the number of
bytes received into your buffer. If it is less than or equal to ZERO, it indicates an error.

Possible BytesRead values are:

OK*
ABNORMALcondition
FATALerror
TIMEOUTopen™*
UNREACHABLEnetwork*
BADlengthARGUMENT
NOsuchCONNECTION
NOTyetBEGUN
NOTyetOPEN
OPENrejected*
RECEIVESstillPENDING
REMOTEreset*
UNEXPECTEDsyn*
WRONGsecORprc*
DROPPEDbyOPERATOR*
FATALerror*
KILLEDbyCLIENT*
TCPipSHUTDOWN'*
TIMEOUTconnection*
REMOTEclose

ReturnCode:
Indicates the success or failure of the call. Possible return values are:

OK

ABNORMALcondition
BEGUNLlengthARGUMENT
fatalerror
NOsuchCONNECTION
NOTyetBEGUN
NOTyetOPEN
RECEIVEstillPENDING
REMOTEclose
TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note:

1. For BytesRead OK, the function was initiated, but the connection is no longer receiving for an
unspecified reason. Your program does not have to issue TcpClose, but the connection is not
completely terminated until a NONEXISTENT notification is received for the connection.

2. For BytesRead REMOTEclose, the foreign host has closed the connection. Your program should
respond with TcpClose.

Chapter 2. TCP/UDP/IP API (Pascal Language) 85

TcpFSend, TcpSend, and TcpWaitSend

3. If you receive any of the codes marked with *, the function was initiated but the connection has now
been terminated (see “2” on page 49). Your program should not issue TcpClose, but the connection is
not completely terminated until NONEXISTENT notification is received for the connection.

4. TcpWaitReceive is intended to be used by programs that manage a single TCP connection. It is not
suitable for use by multiconnection servers.

5. A return code of TCPipSHUTDOWN can be returned either because the connection initiation has failed,
or because the connection has been terminated, because of shutdown. In either case, your program
should not issue any more TCP/IP calls.

TcpFSend, TcpSend, and TcpWaitSend

TcpFSend and TcpSend are the asynchronous ways of sending data on a TCP connection. Both procedures
return to your program immediately (do not wait under any circumstance).

TcpWaitSend is a simple synchronous method of sending data on a TCP connection. It does not return
immediately if the TCPIP virtual machine has insufficient space to accept the data being sent.

TcpFSend and TcpSend differ in the way that they handle VMCF when the TCPIP virtual machine has
insufficient buffer space to accept the data being sent. Both start by issuing a VMCF SEND function to
transfer your data. Normally, the TCPIP virtual machine issues a VMCF RECEIVE, thus completing the
VMCF transaction.

In the case of insufficient buffer space, TCPIP responds to TcpSend with a VMCF REJECT, completing the
VMCF transaction (unsuccessfully). When space becomes available, another complete VMCF transaction
is performed to send a BUFFERspaceAVAILABLE notification.

In the case of a TcpFSend with insufficient buffer space, TCPIP does not respond to the VMCF SEND until
buffer space becomes available, at which time the transaction is completed with a VMCF RECEIVE.

TcpSend returns to your program after the VMCF response from TCPIP is received. In contrast, because
the VMCF response from TcpFSend may be delayed, TcpFSend returns before the VMCF response

is received. An OK return code from TcpFSend indicates only the successful initiation of the VMCF
transaction.

The advantage of TcpFSend is that the VMCF transactions necessary to send data are reduced in the case
where a program can send data faster than the TCP connection can carry it. Its disadvantages are that it
is limited to 50 outstanding VMCF sends and therefore 50 TcpFSends, and is slightly more complicated
to use, because you have to wait for an FSENDresponse notification (generated internally by the TCP
interface) between successive TcpFSends.

The advantage of TcpSend is that it does not involve an outstanding VMCF transaction. Thus, there is no
imposed VMCF-related limit. Also, TcpSend is simpler to use because you can issue successive TcpSends
without waiting for a notification. The disadvantage of TcpSend is that it is less efficient than TcpFSend if
your program can send data faster than the TCP connection can carry it.

Your program can issue successive TcpWaitSend calls. Buffer shortage conditions are handled
transparently. Any errors that occur are likely to be nonrecoverable errors, or are caused by a connection
that has terminated.

If you receive any of the codes listed for Reason in the CONNECTIONstateCHANGED notification, except
for OK, the connection was terminated for the indicated reason. Your program should not issue a
TcpClose, but the connection is not completely terminated until your program receives a NONEXISTENT
notification for the connection.

86 z/VM: 7.3 TCP/IP Programmer's Reference

TcpFSend, TcpSend, and TcpWaitSend

procedure TcpFSend
(

Connection: ConnectionType;
Buffer: Address31Type;
BufferlLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;
var ReturnCode: integer
).

r
external;

procedure TcpSend

Connection: ConnectionType;
Buffer: Address31Type;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer

5
external;

procedure TcpWaitSend

Connection: ConnectionType;
Buffer: Address3iType;
BufferLength: integer;
PushFlag: Boolean;
UrgentFlag: Boolean;

var ReturnCode: integer
)i
external;
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp60Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

Buffer
Specifies the address of the buffer containing the data to send.

BufferLength
Specifies the length of data in the buffer. Maximum is 8192.

PushFlag
Forces the data, and previously queued data, to be sent immediately to the foreign application.

UrgentFlag
Marks the data as urgent. The semantics of urgent data is dependent on your application.

Note: Use urgent data with caution. If the foreign application follows the Telnet-style use of urgent
data, it may flush all urgent data until a special character sequence is encountered.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

« OK

- ABNORMALcondition
« BADlengthARGUMENT
« CANNOTsendDATA

Chapter 2. TCP/UDP/IP API (Pascal Language) 87

TcpNameChange

« FATALerror

- FSENDstillpending

« NObufferSPACE (TcpSend only)
« NOsuchCONNECTION

« NOTyetBEGUN

« NOTyetOPEN

« SSlLcloseINprogress

« SSLhandshakeINprogress

e TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.
Note:

1. A successful TcpFSend, TcpSend, and TcpWaitSend means that TCP has received the data to be sent
and stored it in its internal buffers. TCP then puts the data in packets and transmits it when the
conditions permit.

2. Data sent in a TcpFSend, TcpSend, or TcpWaitSend request may be split up into numerous packets by
TCP, or the data may wait in TCP’s buffer space and share a packet with other TcpFSend, TcpSend, or
TcpWaitSend, requests.

3. The PushFlag gives the user the ability to affect when TCP sends the data.

Setting the PushFlag to FALSE allows TCP to buffer the data and wait until it has enough data to
transmit so as to utilize the transmission line more efficiently. There can be some delay before the
foreign host receives the data.

Setting the PushFlag to TRUE instructs TCP to packetize and transmit any buffered data from previous
Send requests along with the data in the current TcpFSend, TcpSend, or TcpWaitSend request without
delay or consideration of transmission line efficiency. A successful send does not imply that the foreign
application has actually received the data, only that the data will be sent as soon as possible.

4. TcpWaitSend is intended for programs that manage a single TCP connection. It is not suitable for use
by multiconnection servers.

TcpNameChange

The TcpNameChange procedure is used if the virtual machine running the TCP/IP program is not using the
default name, TCPIP, and is not the same as specified in the TCPIPUSERID statement of the TCPIP DATA
file. For more information, see z/VM: TCP/IP Planning and Customization.

If required, this procedure must be called before the BeginTcpIp or the StartTcpNotice procedure.

procedure TcpNameChange
NewNameOfTcp: DirectoryNameType

'
external;

Operand
Description

NewNameOfTcp
Specifies the name of the virtual machine running TCP/IP.

TcpOpen and TcpWaitOpen

The TcpOpen or TcpWaitOpen procedures initiate a TCP IPv4 connection. TcpOpen returns immediately,
and connection establishment proceeds asynchronously with your program’s other operations. The
connection is fully established when your program receives a CONNECTIONstateCHANGED notification

88 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

TcpOpen and TcpWaitOpen

with NewState set to OPEN. TcpWaitOpen does not return until the connection is established, or until an
error occurs.

There are two types of TcpOpen calls: passive open and active open. A passive open call sets the
connection state to LISTENING. An active open call sets the connection state to TRYINGtoOPEN.

If a TcpOpen or TcpWaitOpen call returns ZEROresources, and your application handles
RESOURCESavailable notifications, you receive a RESOURCESavailable notification when sufficient
resources are available to process an open call. The first open your program issues after a
RESOURCESavailable notification is guaranteed not to get the ZEROresources return code.

procedure TcpOpen
(

var ConnectionInfo: StatusInfoType;
var ReturnCode: integer

5
external;

procedure TcpWaitOpen
(

var ConnectionInfo: StatusInfoType;
var ReturnCode: integer
ekternal;
Operand
Description

ConnectionInfo
Specifies a connection information record.

Connection

Set this field to UNSPECIFIEDconnection. When the call returns, the field contains the number of
the new connection if ReturnCode is OK.

ConnectionState
For active open, set this field to TRYINGtoOPEN. For passive open, set this field to LISTENING.

OpenAttemptTimeout
Set this field to specify how long, in seconds, TCP is to continue attempting to open the
connection. If the connection is not fully established during that time, TCP reports the error to
you. If you used TcpOpen, you receive a notification. The type of notification that you receive is
CONNECTIONstateCHANGED. It has a new state of NONEXISTENT and a reason of TIMEOUTopen.
If you used TcpWaitOpen, it returns with ReturnCode set to TIMEOUTopen.

Security
This field is reserved. Set it to DEFAULTsecurity.

Compartment
This field is reserved. Set it to DEFAULTcompartment.

Precedence
This field is reserved. Set it to DEFAULTprecedence.

LocalSocket
Active Open: You can use an address of UNSPECIFIEDaddress (the TCPIP virtual machine uses
the home address corresponding to the network interface used to route to the foreign address)
and a port of UNSPECIFIEDport (the TCPIP virtual machine assigns a port number, in the range of
1024 to 65 534). You can specify the address, the port, or both if particular values are required by
your application. The address must be a valid home address for your node, and the port must be
available (not reserved, and not in use by another application).

Passive Open: A predetermined port number is specified which allows other programs to connect
to your program using the port. Alternatively, you can use UNSPECIFIEDport to let the TCPIP

Chapter 2. TCP/UDP/IP API (Pascal Language) 89

TcpOption

virtual machine assign a port number, obtain the port number through TcpStatus for TcpOpen

or using the NETSTAT CONN command for TcpWaitOpen, and transmit it to the other program
through an existing TCP connection or manually. (For more information about the NETSTAT CONN
command, see z/VM: TCP/IP User's Guide). Generally, an address of UNSPECIFIEDaddress is
specified so that the active open to the port succeeds regardless of the home addresses to which
it was sent.

ForeignSocket

Active Open: The address and port must both be specified, because the TCPIP virtual machine
cannot actively initiate a connection without knowing the destination address and port.

Passive Open: If your program is offering a service to anyone who wants it, specify an address of
UNSPECIFIEDaddress and a port of UNSPECIFIEDport. You can specify a particular address and
port if you want to accept an active open only from a certain foreign application.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

OK

ABNORMALcondition

FATALerror

CONNECTIONalreadyEXISTS
DROPPEDbyOPERATOR (TcpWaitOpen only)
IPv6connection

LOCALportNQOTavailable
NOsuchCONNECTION

NOTyetBEGUN

OPENTrejected (TcpWaitOpen only)
PARAMlocalADDRESS

PARAMstate

PARAMtimeout

PARAMunspecADDRESS
PARAMunspecPORT

REMOTEreset (TcpWaitOpen only)
SOFTWAREerror

TCPipSHUTDOWN

TIMEOUTconnection (TcpWaitOpen only)
TIMEOUTopen (TcpWaitOpen only)
TOOmanyOPENS

UNEXPECTEDsyn (TcpWaitOpen only)
UNREACHABLEnetwork (TcpWaitOpen only)
WRONGsecORprc (TcpWaitOpen only)
ZEROresources

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

TcpOption

The TcpOption procedure sets an option for a TCP connection.

90 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

TcpSCertData

procedure TcpOption
(

Connection: ConnectionType
OptionName: integer;
OptionValue: integer;

var ReturnCode: integer
)i
external;
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp60Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

OptionName
Specifies the code for the option.

OPTIONtcpKEEPALIVE
If OptionValue is zero, the keep-alive mechanism is deactivated for the connection. If OptionValue
is nonzero, the keep-alive mechanism is activated for the connection. This mechanism sends a
packet on an otherwise idle connection. If the remote TCP does not respond to the packet, the
connection state will be changed to NONEXISTENT with TIMEOUTconnection as the reason.

OptionValue
Specifies the value for the option.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

e NOsuchCONNECTION
- NOTyetBEGUN

e TCPipSHUTDOWN

« INVALIDrequest

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

TcpSCertData

For a secure connection, use this function to request specific fields from the local or partner certificate.

procedure TcpSCertData
(

Connection: ConnectionType;
Wait: boolean;
CertRegDetail: CertReqDetailType;
var ReturnCode: CallReturnCodeType;
)8
external;
Operand
Description
Connection

Specifies the connection nhumber, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

Chapter 2. TCP/UDP/IP API (Pascal Language) 91

TcpSCertData

Wait
Is set to true if your program will wait for the certificate data request to complete. This is set to false if
your program will process the CERTdataCOMPLETE notification.

CertReqDetail
Sets up the details of the certificate request.

CertRegDetailType = packed record

CertReqgNum: UnsignedByteType;

CertReqgSide: CertReqSideType;

CertReqRes1: UnsignedHalfwordType;

CertReqRes2: integer;

CertReglen: integer;

CertReqPtr: integer;

CertReqCodes: array (. 1..64 .) of UnsignedHalfwordType;
end;

CertRegNum - Number of certificate fields requested in CertReqCodes

CertReqSideType =
(
Local, { Field in local certificate I3
Partner i Field in partner certificate %

’

CertRegResl and CertRegRes2 are reserved fields and must be
set to 0.

CertReglLen - Length of the data buffer pointed to by CertReqPtr.

CertRegPtr - Pointer to a data buffer. This buffer must be large
enough to contain the CertDataCompleteDetailType structure that
is returned. Note that CDDatalen is limited to 16K.

CertReqCodes - List of certificate fields to be returned. See
below for valid field codes.

The fields that can be requested from a certificate along with the request code to specify in the
CertReqCodes field are as follows. More information about the structure and additional information
about the fields in an x.509 certificate can be found in RFC 5280.

600 - CERT_BODY_DER

601 - CERT_BODY_BASE64

602 - CERT_SERIAL_NUMBER

610 - CERT_COMMON_NAME

611 - CERT_LOCALITY

612 - CERT_STATE_OR_PROVINCE
613 - CERT_COUNTRY

614 - CERT_ORG

615 - CERT_ORG_UNIT

616 - CERT_DN_PRINTABLE

617 - CERT_DN_DER

618 - CERT_POSTAL_CODE

619 - CERT_EMAIL

620 - CERT_DOMAIN_COMPONENT
621 - CERT_SURNAME

622 - CERT_STREET

623 - CERT_TITLE

650 - CERT_ISSUER_COMMON_NAME
651 - CERT_ISSUER_LOCALITY

652 - CERT_ISSUER_STATE_OR_PROVINCE
653 - CERT_ISSUER_COUNTRY

654 - CERT_ISSUER_ORG

655 - CERT_ISSUER_ORG_UNIT

656 - CERT_ISSUER_DN_PRINTABLE
657 - CERT_ISSUER_DN_DER

92 z/VM: 7.3 TCP/IP Programmer's Reference

TcpSCertData

658 - CERT_ISSUER_POSTAL_CODE

659 - CERT_ISSUER_EMAIL

660 - CERT_ISSUER_DOMAIN_COMPONENT
661 - CERT_ISSUER_SURNAME

662 - CERT_ISSUER_STREET

663 - CERT_ISSUER_TITLE

664 - CERT_NAME

665 - CERT_GIVENNAME

666 - CERT_INITIALS

667 - CERT_GENERATIONQUALIFIER

668 - CERT_DNQUALIFIER

669 - CERT_MAIL

670 - CERT_SERIALNUMBER

671 - CERT_ISSUER_NAME

672 - CERT_ISSUER_GIVENNAME

673 - CERT_ISSUER_INITIALS

674 - CERT_ISSUER_GENERATIONQUALIFIER
675 - CERT_ISSUER_DNQUALIFIER

676 - CERT_ISSUER_MAIL

677 - CERT_ISSUER_SERIALNUMBER

Upon return, the ReturnCode field will be set indicating that there was an error on the call, or, if
Wait=TRUE, the data will be returned in the buffer that was provided.

ReturnCode
Is one of the following;:

- CERTdataNOTavail

« CONNECTIONNoOtSECURE
-« ENOBUFS

« INVALIDrequest

» SSlLcloseINprogress

e SSLNotRESPONDING

e TCPipSHUTDOWN

» TLSnotAVAILABLE

Return Data
When the wait flag is set to true, the results of the certificate request will be provided in the buffer
pointed to by CertReqPtr. The format of the buffer is below. If the wait flag is set to false, the results of
the certificate request will be reflected in the CertDataComplete notification (see CertDataComplete).

CertDataCmplPtrType = @ CertDataCompleteDetailType
CertDataCompleteDetailType =
packed recozxd
CDComp: CertDataCompleteHdrType;
CDData: packed array (. 1..CDDatalLen.) of char;
end;
CertDataCompleteHdrType =
packed recozxd
CDRetCode: integer;
CDRetCnt: integer;
CDDatalen: UnsignedHalfwordType;
CDRes: UnsignedHalfwordType;
end;

CDData
Is requested data from the certificate. The format is as follows:

Chapter 2. TCP/UDP/IP API (Pascal Language) 93

TcpScClient

Len
Is a halfword field that contains the total length of the item (Len+Code+CertData). The total
of all of the Len fields in the buffer is returned in CDDatalen.

Code
Is a halfword that contains the certificate field code (600-677).

CertData
Is the certificate data that corresponds to the requested code. Note that a single field could
appear multiple times in the returned buffer if more than one "answer" is valid.

CDRetCode
Indicates the return code from the certificate request. Possible values are:

0 - No errors.
4021 - The partner value is not valid.
4023 - The partner certificate is not available.
4024 - The certificate does not contain any values.
4025 - The buffer length passed is too large.
4026 - The returned data will not fit in the provided buffer. Partial data is returned.
4027 - The passed buffer pointer is null.
4028 - The number of certificate fields requested (CDReqNum) is 0.
4029 - The number of certificate fields requested (CDReqNum) is greater than 64.
4030 - The requested certificate field is not found.
4031 - The requested certificate field is not valid.
4032 - Both of these errors exist in the return data: A requested certificate field
is not found and a requested certificate field is not valid.

CDRetCnt
Is the number of certificate fields returned in CDData.

CDDatalLen
Is the length of the returned certificate data.

CDRes
Is reserved - will be 0.

Usage Notes

« Certificate fields will be placed in the CDData buffer in the order in which they appear in the
CertReqCodes input structure.

« The CDData buffer will contain as many certificate fields as will fit completely. If a requested certificate
field does not fit in the buffer, it will not be returned and subsequent fields in the CertReqCodes input
structure will also fail. CDRetCode will indicate that not all of the data will fit in CDData. CDRetCnt will
reflect the number of completed requests.

- If the requested field cannot be found in the certificate, CDData will contain a Len of 4 along with the
requested Code. No data will be returned. CDRetCode will be updated to indicate that one or more
fields are not present in the certificate.

TcpSClient

Indicates to the SSL server that the connection is to be secure and that the SSL server needs to initiate an
outbound handshake.

94 z/VM: 7.3 TCP/IP Programmer's Reference

TcpSClient

procedure TcpSClient
(

Connection: ConnectionType;
Wait: boolean;
SecureClientDetail: SecureDetailType;
var HandshakeCompleteDetail:SecureHSCompleteDetailType;
var ReturnCode: CallReturnCodeType
ekternal;
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

Wait

Set to true if your program should wait for the Close_Notify to complete. Set to false otherwise.

SecureClientDetail
Sets up the details of the request to be sent to the SSL server.

SecureDetailType =
record
TLSLabel: DirectoryNameType;
TLSTimeout: integer;

RequestClientCert: boolean;

ValidatePeerCert: ValidateCertType;

CipherRequest: CipherSuiteType;

Version: UnsignedByteType;

Keyring: KeyringType;

Buffer: string[255];

SecDetailExt: SecureDetailExtensionType;
end;

ValidateCertType =

Full_Check,
No_Check
)8

CipherSuiteType =
(

Default,
NoV2
)8

KeyringType = packed array (. 1.. KEYRINGlength .) of char;
KEYRINGlength = 50;

SecureDetailExtensionType =
packed recozxd
ValidationFlags: integer;
ValidationLen: integer;
ValidationBuffer array (.1..512.) of char;
end;

Operand

Description

TLSLabel

The label associated with the certificate in the certificate database.

TLSTimeout

This capability is not yet available. The value must be 0.

RequestClientCert

See ValidatePeerCert.

Chapter 2. TCP/UDP/IP API (Pascal Language) 95

TcpScClient

ValidatePeerCert
The RequestClientCert and ValidatePeerCert flags are used in combination to determine the level
of client certificate checking that will be done during a secure server call. The level and the flag
settings are as follows:

None
A client certificate will not be requested.

0
1 (No_Check)

RequestClientCert
ValidatePeerCert

Preferred
A client certificate is requested. If a client certificate is not received, the connection will
proceed without it. If a client certificate is received, it will be authenticated. If the client
certificate is not valid, the failure will be logged in the SSL console log and the connection will
continue as a secure connection protected by the server certificate.

RequestClientCert = 1
ValidatePeerCert = 1 (No_Check)
Required

A client certificate will be authenticated. If a client certificate is not received, the connection
will be terminated with a fatal TLS error. If the certificate fails authentication, the handshake
will fail.

RequestClientCert = 1
ValidatePeerCert = 0 (Full_Check)

Note: For a secure client call, the server certificate is always validated. Set these flags to indicate
a level of None.

CipherRequest
This field is set to NoV2 for clients that do not want to use SSL V2. When set to Default, default
cipher suite values will be used.

Version
When set to 0, the SecDetailExt is not passed on the call. When set to 1, the SecDetailExt is filled
in and passed on the call to tell the SSL/TLS server to compare the passed-in host name, domain
name, or IP address against the server certificate. A value of 1 is valid only when securing the
client side of the connection.

Keyring
This capability is not yet available. The value must be blank.

Buffer
Contains the string that the SSL server will send out on the connection before waiting for the
handshake. After this command is sent, the initiation of the handshake is expected on the
connection. If an empty buffer is sent, a READYforHANDSHAKE notification will be sent to indicate
that this side of the connection is waiting for the handshake.

ValidationFlags
Possible values:
0 indicates not required. If the validation text does not match what is in the server certificate,
the mismatch will be logged and the handshake will continue.
1 indicates required. At least one of the specified validation items must match what is in the
server certificate. If there are no matching items, the handshake will fail.

ValidationLen
The total length of ValidationBuffer.

ValidationBuffer
Contains multiple items to validate against the certificate. Each item has the following format:

96 z/VM: 7.3 TCP/IP Programmer's Reference

TcpSClient

The total length of all items (Len+Type+Text) must not exceed 512 bytes.

Len

A halfword field that contains the total length of the item (Len+Type+Text). The total of all of
the Len fields in the buffer should equal ValidationLen.

Type

A halfword field that contains the type of the Text data:

0 indicates an IPv4 address in integer format with 4-byte hexadecimal representation. For

example: 093C1C66.

1 indicates an IPv6 address in integer format with 16-byte hexadecimal representation. For
example: 50C6 C2C1 0000 0000 0GE9 0060 0028 0102.

2 indicates a fully-qualified domain name (FQDN) in EBCDIC format.

3 indicates a host name in EBCDIC format.

4 indicates an IPv4 address in dotted decimal format. For example: 9.60.28.102.
5 indicates an IPv6 address in dotted decimal format. For example:

50C6:C2C1::9.60.28.102.

Text

The string that is compared to the common name, domain name, or in a subject alternate
name extension marked as an IP address in the server certificate.

Note: When Version is 1, the caller must allocate and send the full length of the ValidationBuffer (512

bytes) even though it might be partially filled in.

HandshakeCompleteDetail
When the wait flag is set to true, the results of the handshake will be returned here. If the wait
flag is set to false, the results of the handshake will be reflected in the SecureHandshakeComplete

notification (see SECUREhandshakeCOMPLETE).

ReturnCode
Indicates the success or failure of the call. Possible return values include:

OK

BACKlevelSSL
KEYRINGnotPERMITTED
KEYRINGnotRECOGNIZED
LABELNnotPERMITTED
LABELNotRECOGNIZED
NOsuchCONNECTION
NOTyetBEGUN
SOFTWAREerror
SSLcloseINprogress
TCPipSHUTDOWN
TLSnotAVAILABLE
UNAUTHORIZEDuser
ALREADYsecured
STATICALLYsecured
INVALIDrequest
ALREADYclosing

Chapter 2. TCP/UDP/IP API (Pascal Language) 97

TcpSClose

» ZeroResources

TcpSClose
Perform Close_Notify on a TLS connection but leave the TCP session up.
procedure TcpSClose
Connection: ConnectionType;
Wait: boolean;
Buffer: string[255];
var ReturnCode: CallReturnCodeType
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

Wait
Set to true if your program should wait for the Close_Notify to complete. Set to false otherwise.

Buffer
Contains a string of data that the SSL server will send out on the connection prior to switching the
connection to clear text.

ReturnCode
Indicates the success or failure of the call. Possible return codes include:

- OK

« NOsuchCONNECTION
« NOTyetBEGUN

- SOFTWAREerror

» SSLcloseINprogress
« TCPipSHUTDOWN

e TLSnotAVAILABLE

« UNAUTHORIZEDuser

TcpSServer

The TcpSServer procedure indicates to the SSL server that the connection is to be secure and that the SSL
server needs to wait for an incoming handshake.

procedure TcpSServer
Connection: ConnectionType;
SecureServerDetail: SecureDetailType;
var ReturnCode: CallReturnCodeType

5
external;

Operand
Description

Connection
Specifies the connection nhumber, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

98 z/VM: 7.3 TCP/IP Programmer's Reference

TcpSStatus

SecureServerDetail
Sets up the details of the request to be sent to the SSL server. See SecureDetailType.

ReturnCode
Indicates the success or failure of the call. Possible return values include:

- OK

« BACKlevelSSL

« KEYRINGNnotPERMITTED
« KEYRINGNnotRECOGNIZED
e LABELNOtPERMITTED

e LABELNotRECOGNIZED
« NOsuchCONNECTION

« NOTyetBEGUN

- SOFTWAREerror

» SSlLcloseINprogress

e TCPipSHUTDOWN

« TLSnotAVAILABLE

« UNAUTHORIZEDuser

- ALREADYsecured

« STATICALLYsecured

« INVALIDrequest

- ALREADYclosing

« ZeroResources

TcpSStatus

The TcpSStatus procedure returns details about a session such as whether or not it is secure and the
encryption suite.

procedure TcpSStatus
Connection: ConnectionType;
var Secure: SecureType;
var CipherDetails: CipherDetailsType;
var ReturnCode: CallReturnCodeType
e%ternal;
Operand
Description
Connection

Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

Secure
Describes how the connection is secured.

SecureType = (SecNone, SecStatic, SecDynamic)

SecNone
The connection is not secure.

SecStatic
The connection is statically secured.

Chapter 2. TCP/UDP/IP API (Pascal Language) 99

TcpStatus

SecDynamic
The connection is dynamically secured.

CipherDetails
When a connection is secure, this field describes the cipher details that are in effect.

CipherDetailsType =
recoxrd
CipherClass: CipherClassType;
CipherHash: CipherHashType;

CipherAlgorithm: CipherSymmetricAlgorithmType;
CipherPkAlgorithm: CipherPkAlgorithmType;
CipherKeylLength: integer;
end;
CiphexClassType = (NULLclass, SSLV2, SSLV3, TLS,
TLS10, TLS11, TLS12);
CipherSymmetricAlgorithmType = (NULLalgorithm,

RC2, ideprecated?
RC4,
DES, fdeprecated?
DES3,

FIPSDES, ideprecated?
FIPS3DES, {deprecated?
AES,
AESGCM,
AES128,
AES128GCM,
AES256,
AES256GCM) ;
CipherPkAlgorithmType = (NULLpkAlgorithm, RSA, DH_DSS,
DH_RSA, DHE_DSS, DHE_RSA,
ECDH_ECDSA, ECDHE_ECDSA,
ECDH_RSA, ECDHE_RSA);
CipherHashType = (SHA1, MD5, NULLhash, SHA2, SHA256,

SHA384);
ReturnCode
Indicates the success or failure of the call. Possible return values are:
« OK

« NOsuchCONNECTION
« NOTyetBEGUN

- SOFTWAREerror

« TCPipSHUTDOWN
UNAUTHORIZEDDuser

TcpStatus

The TcpStatus procedure obtains the current status of a TCP connection. Your program sets the
Connection field of the ConnectionInfo record to the number of the connection whose status you want.

procedure TcpStatus

var ConnectionInfo: StatusInfoType;
var ReturnCode: integer
eiternal;
Operand
Description
ConnectionInfo

If ReturnCode is OK, the following fields are returned:

100 z/VM: 7.3 TCP/IP Programmer's Reference

TcpVmcfRupt

Field
Description

OpenAttemptTimeout
If the connection is in the process of being opened (including a passive open), this field is set
to the number of seconds remaining before the open is terminated if it has not completed.
Otherwise, it is set to WAITforever.

BytesToRead
Specifies the number of bytes of incoming data queued for your program (waiting for TcpReceive,
TcpFReceive, or TcpWaitReceive).

UnackedBytes
Specifies the number of bytes sent by your program but not yet sent to the foreign TCP, or the
number of bytes sent to the foreign TCP, but not yet acknowledged.

ConnectionState
Specifies the current connection state.

LocalSocket
Specifies the local, consisting of a local address and a local port.

ForeignSocket
Specifies the foreign , consisting of a foreign address and a foreign port.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« ABNORMALcondition
- IPv6Connection

e NOsuchCONNECTION
« NOTyetBEGUN

« TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: Your program cannot monitor connection state changes exclusively through polling with TcpStatus.
It must receive CONNECTIONstateCHANGED notifications through GetNextNote, for the TCP interface to
work properly.

TcpVmcfRupt

The TcpVmcfRupt procedure is used when you initiate the TCP/IP service by calling StartTcpNotice with
ClientDoesVmcf set to TRUE, and your external interrupt handler receives a VMCF interrupt not handled by
your program.

RTcpVmcfRupt is a version of TcpVmcfRupt that can be called directly from an assembler interrupt
handler. For more information, see “RTcpExtRupt” on page 74 and “RTcpVmcfRupt” on page 74.

procedure TcpVmcfRupt
(
VmcfHeaderAddress: integer

'
external;

Operand
Description

VmcfHeaderAddress
Indicates the address of your VMCF interrupt buffer as specified in the VMCF AUTHORIZE function
that your program issued at initialization.

Chapter 2. TCP/UDP/IP API (Pascal Language) 101

Udp60pen

Udp60pen

The Udp60pen procedure requests acceptance of UDP datagrams on the specified socket and allows
datagrams to be sent from the specified socket. Udp60pen should be used for IPv6 connections, or for
a mix of IPv4 and IPv6 connections. When the socket port is unspecified, UDP selects a port and returns
it to the socket port field. When the socket address is unspecified, UDP uses the default local address. If
specified, the address must be a valid home address for your node.

Note: When the local address is specified, only the UDP datagrams addressed to it are delivered.

If the ReturnCode indicates the open was successful, use the returned ConnIndex value on any further
actions pertaining to this UDP socket.

procedure Udp60pen
(
var LocalSocket: Socket6Type;
var ConnIndex: ConnectionIndexType;
var ReturnCode: CallReturnCodeType

r
external;

Operand
Description

LocalSocket
Specifies the local socket (address and port pair).

ConnlIndex
Specifies the ConnIndex value returned from UdpOpen.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

- ABNORMALcondition

« FATALerror

« LOCALportNOTavailable
« NOTyetBEGUN

« SOFTWAREerror

e TCPipSHUTDOWN

« UDPlocalADDRESS

« UDPzeroRESOURCES

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: If a Udp60pen call returns UDPzeroRESOURCES, and your application handles
UDPresourcesAVAILABLE notifications, you receive a UDPresourcesAVAILABLE notification when
sufficient resources are available to process a Udp60pen call. The first Udp60pen your program issues
after a UDPresourcesAVAILABLE notification is guaranteed not to get the UDPzeroRESOURCES return
code.

Udp6Send

The Udp6Send procedure sends a UDP datagram to the specified foreign socket. Udpésend should be
used for IPv6 connections, or for a mix of IPv4 and IPvé6 connections. The source socket is the local
socket selected in the Udp60pen that returned the ConnIndex value that was used. The buffer does not
include the UDP header. This header is supplied by the TCPIP virtual machine.

When there is no buffer space to process the data, an error is returned. In this case, wait for a subsequent
UDPdatagramSPACEavailable notification.

102 z/VM: 7.3 TCP/IP Programmer's Reference

UdpClose

procedure Udp6Send
(

ConnIndex: ConnectionIndexType;
ForeignSocket: Socket6Type;
BufferAddress: integer;
Length: integer;

var ReturnCode: CallReturnCodeType

eiternal;
Operand
Description
Connlndex

Specifies the ConnIndex value returned from UdpOpen.

ForeignSocket
Specifies the foreign socket (address and port) to whom the datagram is to be sent.

BufferAddress
Specifies the address of your buffer containing the UDP datagram to be sent, excluding UDP header.

Length
Specifies the length of the datagram to be sent, excluding UDP header. Maximum is 8192 bytes.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« BADlengthARGUMENT
- MIXEDaddress

« NObufferSPACE

« NOsuchCONNECTION
« NOTyetBEGUN

« SOFTWAREerror

« TCPipSHUTDOWN

e UDPunspecADDRESS
e UDPunspecPORT

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpClose

The UdpClose procedure closes the UDP specified in the ConnIndex field. All incoming datagrams on this
connection are discarded.

procedure UdpClose

ConnIndex: ConnectionIndexType;
var ReturnCode: CallReturnCodeType
)i

external;

Operand
Description

ConnlIndex
Specifies the ConnIndex value returned from UdpOpen.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

Chapter 2. TCP/UDP/IP API (Pascal Language) 103

UdpNReceive

- OK
ABNORMALcondition
FATALerror

« NOsuchCONNECTION
« NOTyetBEGUN

- SOFTWAREerror

e TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpNReceive

The UdpNReceive procedure notifies the TCPIP virtual machine that you can receive UDP datagram data.
This call returns immediately. The data buffer is not valid until you receive a UDPdatagramDELIVERED
notification.

procedure UdpNReceive

ConnIndex: ConnectionIndexType;
BufferAddress: integer;
BufferlLength: integer;
var ReturnCode: CallReturnCodeType
) .

H
external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

BufferAddress
Specifies the address of your buffer that will be filled with a UDP datagram.

BufferLength
Specifies the length of your buffer. If you specify a length larger than 8192 bytes, only the first 8192
bytes are used.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

- ABNORMALcondition
- FATALerror

« NOsuchCONNECTION
« NOTyetBEGUN
RECEIVEstillPENDING
e TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpOpen

The UdpOpen procedure requests acceptance of UDP datagrams on the specified socket and allows
datagrams to be sent from the specified socket. When the socket port is unspecified, UDP selects a port
and returns it to the socket port field. When the socket address is unspecified, UDP uses the default local
address. If specified, the address must be a valid home address for your node.

Note: When the local address is specified, only the UDP datagrams addressed to it are delivered.

104 z/VM: 7.3 TCP/IP Programmer's Reference

UdpReceive

If the ReturnCode indicates the open was successful, use the returned ConnIndex value on any further
actions pertaining to this UDP socket.

procedure UdpOpen
(
var LocalSocket: SocketType;
var ConnIndex: ConnectionIndexType;
var ReturnCode: CallReturnCodeType

r
external;

Operand
Description

LocalSocket
Specifies the local socket (address and port pair).

ConnlIndex
Specifies the ConnIndex value returned from UdpOpen.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

- ABNORMALcondition

« FATALerror

« LOCALportNOTavailable
« NOTyetBEGUN

« SOFTWAREerror

e TCPipSHUTDOWN

« UDPlocalADDRESS

« UDPzeroRESOURCES

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: If a UdpOpen call returns UDPzeroRESOURCES, and your application handles
UDPresourcesAVAILABLE notifications, you receive a UDPresourcesAVAILABLE notification when
sufficient resources are available to process a UdpOpen call. The first UdpOpen your program issues after
a UDPresourcesAVAILABLE notification is guaranteed not to get the UDPzeroRESOURCES return code.

UdpReceive

The UdpReceive procedure notifies the TCPIP virtual machine that you are willing to receive UDP
datagram data.

UdpReceive is for compatibility with old programs only. New programs should use the UdpNReceive
procedure, which allows you to specify the size of your buffer.

If you use UdpReceive, TCPIP can put a datagram of up to 2012 bytes in your buffer. If a larger datagram
is sent to your port when UdpReceive is pending, the datagram is discarded without notification.

Note: No data is transferred from the TCPIP virtual machine in this call. It only tells TCPIP that you
are waiting for a datagram. Data has been transferred when a UDPdatagramDELIVERED notification is
received.

Chapter 2. TCP/UDP/IP API (Pascal Language) 105

UdpSend

procedure UdpReceive
ConnIndex: ConnectionIndexType;
DatagramAddress: integer;
var ReturnCode: CallReturnCodeType

r
external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

DatagramAddress
Specifies the address of your buffer that will be filled with a UDP datagram.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

- ABNORMALcondition
« FATALerror

« NOsuchCONNECTION
« NOTyetBEGUN

« SOFTWAREerror

e TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpSend

The UdpSend procedure sends a UDP datagram to the specified foreign socket. The source socket is the
local socket selected in the UdpOpen that returned the ConnIndex value that was used. The buffer does
not include the UDP header. This header is supplied by the TCPIP virtual machine.

When there is no buffer space to process the data, an error is returned. In this case, wait for a subsequent
UDPdatagramSPACEavailable notification.

procedure UdpSend
(

ConnIndex: ConnectionIndexType;
ForeignSocket: SocketType;
BufferAddress: integer;
Length: integer;

var ReturnCode: CallReturnCodeType

e%ternal;
Operand
Description
ConnIndex

Specifies the ConnIndex value returned from UdpOpen.

ForeignSocket
Specifies the foreign socket (address and port) to whom the datagram is to be sent.
BufferAddress
Specifies the address of your buffer containing the UDP datagram to be sent, excluding UDP header.

Length
Specifies the length of the datagram to be sent, excluding UDP header. Maximum is 8192 bytes.

106 z/VM: 7.3 TCP/IP Programmer's Reference

Unhandle

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« BADlengthARGUMENT
« NObufferSPACE

« NOsuchCONNECTION
- NOTyetBEGUN

- SOFTWAREerror

e TCPipSHUTDOWN

» UDPunspecADDRESS
« UDPunspecPORT

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Unhandle

The Unhandle procedure specifies that you no longer want to receive notifications in the given set.

If you request to unhandle the DATAdelivered notification, the Unhandle procedure returns with a code of
INVALIDrequest.

procedure Unhandle

Notifications: NotificationSetType;
var ReturnCode: integer

r
external;

Operand
Description

Notifications
Specifies the set of notifications that you no longer want to receive.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

- OK

« ABNORMALcondition
« FATALerror

« INVALIDrequest

« NOTyetBEGUN

« TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UnNotifyIo

The UnNotifylo routine is used to indicate that you no longer wish to be sent a notification when an I/O
interrupt occurs on the specified virtual address.

Chapter 2. TCP/UDP/IP API (Pascal Language) 107

Sample Pascal Program

procedure UnNotifyIo

DeviceAddress: integer;

var ReturnCode: integer
)3
external;
Operand
Description
DeviceAddress
Specifies the address of the device for which IOinterrupt notifications are no longer to be generated.
ReturnCode
Indicates the success or failure of the call. Possible return values are:
- OK

*« NOsuchCONNECTION
« SOFTWAREerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Sample Pascal Program

The following is an example of a sample Pascal program.

%UHEADER 5741-A05 (C) COPYRIGHT 1991, 2004 BY IBM, PSAMPLE.

1
Licensed Materials - Property of IBM
This product contains "Restricted Materials of IBM"
5741-A05 (C) Copyright IBM Corp. - 1991, 2004
All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.
See IBM Copyright Instructions.
%
Change Activity
VREBA - IPv6 Stage 1 line item
b
HEFIKKFIKKE KKK K KIKE KKK EKIKE KKK AKIRKEIIRE KKK EKIREFIIRAFIIAEF KA A KK KA b
i* *t
$* Memory-to-memory Data Transfer Rate Measurement *3
i* *t
i* Pseudocode: Establish access to TCP/IP Services *}
i* Prompt user for operation parameters *3
$x Open a connection (Sender:passive, Receiver:active) *}
$% If Sender: *1
% Send 5M of data using TcpFSend *1
$x Use GetNextNote to know when Send is complete *}
% Print transfer rate after every 1M of data *%
ix else Receiver: *1
$x Receive 5M of data using TcpFReceive *}
% Use GetNextNote to know when data is delivered *3
i* Print transfer rate after every 1M of data *3
$x Close connection *}
$* Use GetNextNote to wait until connection is closed *3
i* *t
HEHIKKFIKKE KRR KIIKE KKK EKIKEFIIKE KKK K IIKE KKK A KKK FIIIAFKIKAF KA A KK KA %
program PSAMPLE;
%include CMALLCL
%include CMINTER
%include CMRESGLB
const
BUFFERlength = 8192; i1 same as MAXdataBUFFERsize t
PORTnumber = 9876; 3 constant on both sides 1

108 z/VM: 7.3 TCP/IP Programmer's Reference

CLOCKunitsPERthousandth = '3E8000'x;

static

Buffer : packed array (.1..BUFFERlength.) of char;
BufferAddress : Address31Type;
ConnectionInfo : StatusInfoType;

Count . integer;

DataRate . real;

Difference : TimeStampType;

HostAddress : IPAddressType; $QVRFBAQP}
AddrSpec : IPv6AddrSpecType; 1@QVRFBAQP?
Lookup : LookupSetType; $@QVRFBAQP}
IbmSeconds . integer;

Ignored : integer;

Line : string(80);

Note : NotificationInfoType;

PushFlag : boolean; i for TcpFSend I3
RealRate : real;

ReturnCode . integer;

SendFlag : boolean; i are we sending or receiving t
StartingTime : TimeStampType;

Thousandths . integer;

TotalBytes : integer;

UrgentFlag : boolean; i for TcpFSend t

var RoundRealRate : integer;

i* Print message, release resources and reset environment *1
{**}
procedure Restore (const Message: string;
const ReturnCode: integer);
begin
Write(Message);
if ReturnCode <> OK then
i* Write(SayCalRe(ReturnCode));
Writeln(''); *}
Msgl(Output,1, addr(SayCalRe(ReturnCode)))
else Msg0(Output,2);

EndTcpIp;

Close (Input);
Close (Output);
end;

begin

TexrmOut (Output);
TexmIn (Input);

§ Establish access to TCP/IP services %

BeginTcpIp (ReturnCode);

if ReturnCode <> 0K then begin

ix Writeln('BeginTcpip: ',SayCalRe(ReturnCode)); *}
Msgl(Output,4, addr(SayCalRe(ReturnCode)));
return;

end;

i Inform TCPIP which notifications will be handled by the program %
Handle ((.DATAdelivered, BUFFERspaceAVAILABLE,
CONNECTIONstateCHANGED, FRECEIVEerrorx,
FSendResponse.), ReturnCode);
if ReturnCode <> 0K then begin

Restore ('Handle: ', ReturnCode);
return;
end;
i Prompt user for operation parameters I3

$*% Writeln('Transfer mode: (Send or Receive)'); =%

Msg0O (Output,5);

ReadlLn (Line);

if (Substr(Ltrim(Line),1,1) 's")

or (Substr(Ltrim(Line),1,1) 'S') then
SendFlag := TRUE

else
SendFlag := FALSE;

$% Writeln('Host Name or Internet Address :'); =%

Msg0O (Output,6);
ReadlLn (Line);
Lookup := [IPv4]; $QVRFBAQP?
if not (GetIPAddr(Trim(Ltrim(Line)), HostAddress, $QVRFBAQP}

Sample Pascal Program

Chapter 2. TCP/UDP/IP API (Pascal Language) 109

Sample Pascal Program

AddrSpec, Lookup)) then {@VRFBAQP}

begin $QVRFBAQP$
Restore ('GetIPAddr failed. ', OK); $QVRFBAQP?
return; $QVRFBAQP}
end; $QVRFBAQP$

i Open a TCP connection: active for Send and passive for Receive %
i - Connection value will be returned by TcpIp

) - initialize IBM reserved fields: Security, Compartment

3 and Precedence

i for Active open - set Connection State to TRYINGtoOPEN

) - must initialize foreign socket

i for Passive open - set ConnectionState to LISTENING

i - may leave foreign socket uninitialized to
) accept any open attempt

with ConnectionInfo do begin

UNSPECIFIEDconnection;

WAITforever;

DEFAULTsecurity;

DEFAULTcompartment;
DEFAULTprecedence;

L Ly Ly L Ly by Ly Ly

Connection

OpenAttemptTimeout :

Security

Compartment

Precedence :

if SendFlag then begin
ConnectionState
LocalSocket.Address
LocalSocket.Port
ForeignSocket.Address
ForeignSocket.Port

end

else begin
ConnectionState
LocalSocket.Address
LocalSocket.Port
ForeignSocket.Address :

ForeignSocket.Port

end;

end;

TcpWaitOpen (ConnectionInfo, ReturnCode);

if ReturnCode <> 0K then begin
Restore ('TcpWaitOpen: ', ReturnCode);
return;

end;

TRYINGtoOPEN;

UNSPECIFIEDaddress;

UNSPECIFIEDport;

HostAddress.IPv4Addr; $QVRFBAQP$
PORTnumber;

LISTENING;

HostAddress.IPv4Addr; $QVRFBAQP}
PORThumber;

UNSPECIFIEDaddress;

UNSPECIFIEDport;

3 Initialization %

BufferAddress := Addr(Buffer(.1.));
StartingTime ClockTime;
TotalBytes ;
Count
PushFlag
UrgentFlag

0;
false; i let TcpIp buffer data for efficiency %
false; i none of out data is Urgent %

¥ Issue first TcpFSend or TcpFReceive %
if SendFlag then
TcpFSend (ConnectionInfo.Connection, BufferAddress,
BUFFERlength, PushFlag, UrgentFlag, ReturnCode)
else
TcpFReceive (ConnectionInfo.Connection, BufferAddress,
BUFFERlength, ReturnCode);

if ReturnCode <> 0K then begin

$*% Writeln('TcpSend/Receive: ', SayCalRe(ReturnCode)); =*%
Msgl(Output,7, addr(SayCalRe(ReturnCode)));
return;

end;

§ Repeat until 5M bytes of data have been transferred %
while (Count < 5) do begin
i Wait until previous transfer operation is completed %
GetNextNote(Note, True, ReturnCode);
if ReturnCode <> 0K then begin
restore ('GetNextNote :',6 ReturnCode);
return;
end;

i Proceed with transfer according to the Notification received t
i Notifications Expected : 1
i DATAdelivered - TcpFReceive function call is now complete t
') - receive buffer contains data t
i FSENDresponse - TcpFSend function call is now complete t
i - send buffer is now available for use t
¥ FRECEIVEerror - if there was an error on TcpFReceive function %
case Note.NotificationTag of

110 z/VM: 7.3 TCP/IP Programmer's Reference

Sample Pascal Program

DATAdelivered:
begin
TotalBytes := TotalBytes + Note.BytesDelivered;
iissue next TcpFReceive
TcpFReceive (ConnectionInfo.Connection, BufferAddress,
BUFFERlength, ReturnCode);
if ReturnCode <> 0K then begin
Restore ('TcpFReceive: ',Note.SendTurnCode);
retuzrn;
end;
end;
FSENDxresponse:
begin
if Note.SendTurnCode <> OK then begin
Restore ('FSENDresponse: ', Note.SendTurnCode);
return;
end
else begin
iissue next TcpFSend
TotalBytes := TotalBytes + BUFFERlength;
TcpFSend (ConnectionInfo.Connection, BufferAddress,
BUFFERlength, PushFlag, UrgentFlag, ReturnCode);
if ReturnCode <> 0K then begin
Restore('TcpFSend: ', Note.SendTurnCode);
return;
end;
end;
end;
FRECEIVEerroxr:
begin
Restore('FRECEIVEerror: ', Note.ReceiveTurnCode) ;
return;
end;
OTHERWISE
begin
Restore('UnExpected Notification ',0K);
return;
end;
end; {1 Case on Note.NotificationTag }

§ is it time to print transfer rate? %
if TotalBytes < 1048576 then
continue;

i Print transfer rate after every 1M bytes of data transferred %
DoubleSubtract (ClockTime, StartingTime, Difference);
DoubleDivide (Difference, CLOCKunitsPERthousandth, Thousandths,
Ignored);

RealRate := (TotalBytes/Thousandths) * 1000.0;

$*% Writeln('Transfer Rate ', RealRate:1:0,' Bytes/sec.'); =%
RoundRealRate := Round(RealRate);
Msgl(Output,8, addr(RoundRealRate));

StartingTime := ClockTime;

TotalBytes = 0;

Count := Count + 1;
end; {Loop while Count < 5 %

¥ Close TCP connection and wait till partner also drops connection %
TcpClose (ConnectionInfo.Connection, ReturnCode);
if ReturnCode <> 0K then begin
Restore ('TcpClose: ', ReturnCode);
return;
end;

i when partner also drops connection, program will receive t
i CONNECTIONstateCHANGED notification with NewState = NONEXISTENT %
repeat
GetNextNote (Note, True, ReturnCode);
if ReturnCode <> OK then begin
Restore ('GetNextNote: ', ReturnCode);
return;
end;
until (Note.NotificationTag = CONNECTIONstateCHANGED) &
((Note.NewState = NONEXISTENT) |
(Note.NewState = CONNECTIONclosing));

Restore ('Program terminated successfully. ', OK);
end.

Chapter 2. TCP/UDP/IP API (Pascal Language) 111

Sample Pascal Program

112 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

Chapter 3. Virtual Machine Communication Facility
Interface

The Virtual Machine Communication Facility (VMCF) is part of the Control Program (CP) of VM. VMCF
enables virtual machines to send data to and receive data from any other virtual machine.

You can communicate directly with the TCPIP virtual machine using VMCF calls, rather than Pascal API or
C socket calls. You can use VMCF calls when:

« You want to write your program in assembler.

 You add TCP/IP communication to an existing complex program, and it can be difficult or impossible for
your program to monitor TCP/IP events through the Pascal GetNextNote interface.

If your program drives the VMCF interface directly, do not link any of the TCP interface library modules
with your program. Consequently, you cannot use any of the auxiliary routines, such as the Say functions
and timer routines. (You must use VM timer support, or support provided by your existing program).
VMCF consists of data transfer functions, control functions, a special external interrupt for pending
messages, and an external interrupt message header to pass control information and data to another
virtual machine.

For more information about the VMCF interface, see VM/ESA: CP Programming Services.

General Information

The following section describes the data structure of the VMCF interrupt header used by TCP/IP for VM.
The section also lists the VMCF functions available with TCP/IP for VM. Tables summarizing the CALLCODE
for making VMCF requests and receiving notifications from TCPIP virtual machine are provided. The
remainder of the chapter describes these CALLCODE calls in details.

Data Structures

VMCF is implemented with functions invoked using DIAGNOSE X'68' and a special 40-byte parameter list.
A VMCEF function is requested by a particular function subcode in the FUNC field in the parameter list.

Your program uses the standard 40-byte VMCF parameter list to submit VMCF requests to the TCPIP
virtual machine. The TCPIP virtual machine returns VMCF interrupts results in the similar 40-byte VMCF
parameter list. The parameter list is the interrupt header being stored in your virtual machine. In this
chapter, fields in the parameter list and interrupt header are referred to using the data structure header
names in Figure 24 on page 113.

Vi DS X
V2 DS X
FUNC DS H
MSGID DS F
JOBNAME DS CL8
VADA DS A
LENA DS F
VADB DS A
LENB DS F

* User-doubleword field is divided into the following fields:
ANINTEGR DS F
CONN DS H
CALLCODE DS X
RETCODE DS X

Figure 24. Assembler Format of the VMCF Parameter List Fields

© Copyright IBM Corp. 1987, 2023 113

VMCF Interface

VMCF Parameter List Fields

The following describes the VMCF parameter list fields.

vl
Used for security and data integrity. You can enable your virtual machine for VMCF communication
to the TCPIP virtual machine by executing the AUTHORIZE control function. The AUTHORIZE control
function is set by issuing a DIAGNOSE Code X'68' Subcode X'0000' assembler call. If you do not set
the AUTHORIZE function in V1, check the JOBNAME field when processing each interrupt to ensure
that interrupts from other virtual machines are not misinterpreted as coming from TCPIP. V1 must be
zero for all VMCF functions other than AUTHORIZE. To terminate VMCF activities for a virtual machine,
issue the UNAUTHORIZE control function. The UNAUTHORIZE control function is set by issuing a
DIAGNOSE Code X'68' Subcode X'0001" assembler call.

FUNC
The IUCV operation.

V2
Reserved for IBM use, and should be X'00" initially.

MSGID
Contains a unique message identifier associated with a transaction. You must use a unique, even
number for each outstanding transaction. A simple method is to use consecutive, even numbers for
each transaction.

JOBNAME
Specifies the user ID of the virtual machine making VMCF requests. You must set this field to the user
ID of the TCPIP virtual machine.

VADA
Contains the address of the source or destination address depending on the VMCF function requested.

LENA
Contains the length of the data sent by a user, the length of a RECEIVE buffer, or the length of an
external interrupt buffer, whichever is specified in the VADA field.

VADB
Contains the address of a source virtual machine’s REPLY buffer for VMCF request.

LENB
Specifies the length of the source virtual machine’s REPLY buffer.

The use of each field is described individually for each TCP/IP function.

VMCF Interrupt Header Fields

The following describes the VMCF parameter list fields for the interrupt header.

vl
Sets the VMCMRESP flag, which is the interrupt in response to a transaction initiated by your virtual
machine. If the TCPIP virtual machine responds using the REJECT function, the VMCMRJCT flag is also
set. This flag by itself does not usually indicate that the transaction was unsuccessful. Your program
should check the completion status code in the RETCODE field, as described for each function.

ANINTEGR
Checks the status of VMCF transactions. It is a field, of fullword length (four bytes), used to check the
status of VMCF transactions. The field is described for each function.

CONN
Establishes a TCP connection. If a connection between your virtual machine and TCPIP virtual
machine was established successfully and the RETCODE field indicates OK, the connection number of
the new connection is stored in this field.

CALLCODE
Calls instructions to be passed by your program when initiating a VMCF function to interface with
TCPIP virtual machine. If the interrupt is in response to a transaction initiated by your virtual machine

114 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

(VMCMRESP flag set in V1), the CALLCODE value is the same as the value set by your program when it

initiated the transaction.
RETCODE

Contains the completion status codes of a transaction. Return codes reported in this field are taken
from the same set used by Pascal programs (see Appendix B, “Pascal Return Codes,” on page 337).
Further information is given in the description of each function.

VMCF Functions

Table 18 on page 115 lists the available VMCF functions, with descriptions, to communicate with the

TCPIP virtual machine.

Table 18. Available VMCF Functions

Function Code Description

AUTHORIZE Control Initializes VMCF for a given virtual machine. Once AUTHORIZE is
executed, the virtual machine can execute other VMCF functions and
receive messages or requests from other users.

UNAUTHORIZE Control Terminates VMCF activity.

SEND Data Directs a message or block of data to another virtual machine.

SEND/RECV Data Directs a message or block of data to another virtual machine, and
requests a reply.

RECEIVE Data Allows you to accept selective messages or data sent using the SEND
or SEND/RECYV functions.

REPLY Data Allows you to direct data back to the originator of a SEND/RECV
function, simulating duplex communication.

REJECT Data Allows you to reject specific SEND or SEND/RECV requests pending
for your virtual machine.

Note:

Data

Indicates a data transfer
Control

Indicates a VMCF control function

VMCF TCPIP Communication CALLCODE Requests

Table 19 on page 115 lists the equate values and available calls for initiating a VMCF TCPIP request; it
also includes a description of each CALLCODE request.

Table 19. VMCF TCPIP CALLCODE Requests

Call Code Equates Description

CONNECTIONCclosing 00 Data may no longer be transmitted on this connection since
the TCP/IP service is in the process of closing down the
process.

LISTENING 01 Waiting for a foreign site to open a connection.

NONEXISTENT 02 The connection no longer exists.

OPEN 03 Data can go either way on the connection.

Chapter 3. Virtual Machine Communication Facility Interface 115

VMCF Interface

Table 19. VMCF TCPIP CALLCODE Requests (continued)

Call Code Equates Description

RECEIVINGonly 04 Data can be received but not sent on this connection,
because the client has done a one-way close.

SENDINGonly 05 Data can be sent out but not received on this connection.
This means that the foreign site has done a one way close.

TRYINGtoOPEN 06 Trying to contact a foreign site to establish a connection.

V60OPENtcp 33 Initiates a TCP connection (IPv4 or IPv6).

V6STATUStcp 34 Obtains the IPv6 Connection Information Record giving the
current status of a TCP connection (IPv4 or IPv6).

ABORTtcp 100 Terminates a TCP connection.

BEGINtcpIPservice 101 Initializes a TCP/IP connection between your program and
the TCPIP virtual machine.

CLOSEtcp 102 Initiates the closing of a TCP connection.

CLOSEudp 103 Initiates the closing of a UDP connection.

ENDtcplIPservice 104 Terminates the use of TCPIP services. All existing TCP

connections are reset, all open UDP ports are canceled, and
all IP protocols are released.

HANDLEnNotice 105 Specifies the types of notifications to be received from
TCPIP.

IShostLOCAL 106 Determines whether a given internet address is one of your
host’s local addresses.

MONITORcommand 107 Instructs TCPIP to obey a file of commands.

MONITORquery 108 Obtains status information from the TCPIP virtual machine or
requests that it performs certain functions.

OPENtcp 110 Initiates a TCP connection for IPv4 only.

OPENudp 111 Initiates a UDP connection for IPv4 only.

OPTIONtcp 112 Sets an option for a TCP connection.

RECEIVEtcp 113 Tells TCPIP that you are ready to receive data on a specified

TCP connection.

NRECEIVEudp 115 Tells TCPIP that your program is ready to receive a UDP
datagram on a particular port.

SENDtcp 118 Sends data on a TCP connection. The SENDtcp transaction
is unsuccessful if the receiving TCPIP virtual machine has
insufficient buffer space to receive the data.

SENDudp 119 Sends a UDP datagram.

STATUStcp 120 Obtains a Connection Information Record giving the current
status of a TCP IPv4 connection.

FRECEIVEtcp 121 Tells TCPIP virtual machine that you are ready to receive
data on a specified TCP connection. TCPIP does not respond
or send a notification until the data has been placed in the
receiving buffer or the connection has been closed.

116 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

Table 19. VMCF TCPIP CALLCODE Requests (continued)

Call Code Equates Description

FSENDtcp 122 Sends data to a TCP connection. FSENDtcp waits for
available receiving buffer space in the TCPIP virtual machine
before completing the VMCF transaction.

CLOSErawlIP 123 Tells TCPIP that your program does not handle the protocol
any longer. Any queued incoming packets are discarded.

OPENrawIP 124 Initiates a connection and tells TCPIP virtual machine that
your program is ready to send and receive packets of a
specified IP protocol.

RECEIVErawlIP 125 Tells TCPIP that your program is ready to receive raw
IP packets of a given protocol. Your program receives
a RAWIPpacketsDELIVERED notification when a packet
arrives.

SENDrawIP 126 Tells TCPIP virtual machine to send raw IP packets of a given
protocol number.

PINGreq 127 Sends an ICMP echo request to a specified host and wait a
specified time for a response.

TLSQuery 128 Sends a query to determine if the SSL server is available and,
if so, if the label specified is known.

TLSSCLOSEtcp 132 Indicates to the SSL Server that secure communication
on this connection should stop and communication should
continue in the clear.

TLSSSTATUStcp 129 Returns details about a session, such as whether or not it is
secure and the encryption suite.

TLSSSERVERtcp 130 Indicates to the SSL server that the connection is to be
secure and that the SSL server needs to wait for an incoming
handshake.

TLSSCLIENTtcp 131 Indicates to the SSL server that the connection is to be
secure and that the SSL server needs to initiate an outbound
connection.

V60PENudp 135 Initiates a UDP connection (IPv4 or IPv6).

V6SENDudp 136 Sends a UDP datagram (IPv4 or IPv6).

TLSSCERTDATAREQtcp 137 Requests specific fields from the partner or local certificate.

VMCF TCPIP Communication CALLCODE Notifications

Table 20 on page 117 lists the equate values for the CALLCODE field when VMCF TCPIP sends a
notification to your program. The table includes a description of each CALLCODE response.

Table 20. VMCF TCPIP CALLCODE Notifications

Notification Code

Equates Description

BUFFERspaceAVAILABLE

10 Notification that there is space available to send
data on this connection. The space is currently set
to 8192 bytes of buffer space.

Chapter 3. Virtual Machine Communication Facility Interface 117

VMCF Interface

Table 20. VMCF TCPIP CALLCODE Notifications (continued)

Notification Code

Equates Description

CONNECTIONstateCHANGED

11

Notification that the state of the connection
between the TCPIP virtual machine and your
program has changed.

DATAdelivered

12

Notification that the TCPIP virtual machine data
was delivered to your program, after issuing a
RECEIVEtcp or FRECEIVEtcp call.

URGENTpending

15

Notification that there is queued data on a TCP
connection not yet received by your program.

UDPdatagramDELIVERED

16

Notification that UDP datagram has been delivered
to your program after issuing a NRECEIVEudp call
to the TCPIP virtual machine.

UDPdatagramSPACEavailable

17

Notification that buffer space is available to
process the data, after an error occurred
performing a SENDudp call.

RAWIPpacketsDELIVERED

24

Notification that your buffer has received the raw
IP packets.

RAWIPspaceAVAILABLE

25

Notification that buffer space is available to
process the data. This notification is sent after
the SENDrawip call was rejected by TCPIP virtual
machine.

RESOURCESavailable

28

Notification that the resources needed to initiate a
TCP connection are now available. This notification
is sent only if a previous OPENtcp call received a
ZEROresources return code.

UDPresourcesAVAILABLE

29

Notification that the resources needed to initiate a
UDP connection are now available. This notification
is sent only if a previous OPENudp call received a
UDPzeroRESOURCES return code.

PINGresponse

30

Notification that your ping request from the
PINGzxeq call has been received or that the time-
out limit or your request has been reached.

DUMMYprobe

32

Notification that the TCPIP virtual machine is
monitoring your machine

ACTIVEprobe

33

Notification that the TCPIP virtual machine is
monitoring your machine for responsiveness

CLEARtextRESUMED

34

Notification that the SSL Server has stopped secure
communication on the connection

QUERYtlsCOMPLETE

35

Notification that the SSL server has completed
verification of the label

SECUREhandshakeCOMPLETE

36

Notification that the Inbound or Outbound
handshake has completed.

READYforHANDSHAKE

37

Notification that the server side is set up to receive
a secure handshake.

118 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

Table 20. VMCF TCPIP CALLCODE Notifications (continued)

Notification Code Equates Description
CERTdataCOMPLETE 38 Notification that the requested certificate data is
available.

TCP/UDP/IP Initialization and Termination Procedures

This section contains information about procedures for initializing and terminating TCP/UDP/IP
connections.

BEGINtcpIPservice

Your program performs the BEGINtcpIPservice call after doing a VMCF AUTHORIZE function, but before
performing any other TCP/IP functions. The BEGINtcpIPservice call informs TCPIP that your virtual
machine uses TCPIP services. An ENDtcpIPservice callis logically performed first, in the case where
your virtual machine already has TCPIP resources allocated.

FUNC: SEND

VADA: 0

LENA: 1

VADB: 0 or, if your application supports probe messages (see the

descriptions of the DUMMYprobe and ACTIVEprobe CALLCODE
notifications), X'80000000'
LENB: 0
CONN: 0 or, if your application does not provide the client level in
ANINTEGR, any non-zero value
ANINTEGR: the client level, in the form X'vvrlE000', where 'vv' is the
version number, 'r' is the release number, and 'l' is the
level number
CALLCODE: BEGINtcpIPservice

The TCPIP virtual machine responds using the VMCF REJECT function. The VMCF interrupt header, stored
in your virtual machine by the response interrupt, contains a return code in the RETCODE field. The return
code can be any of those listed for the BeginTcpIp Pascal procedure (see “BeginTcpIp” on page 60).

The VMCF interrupt header also includes values in the CONN and ANINTEGR fields that reflect the level
information for the TCPIP virtual machine. If CONN is zero, then ANINTEGR contains the TCPIP virtual
machine's level; otherwise, no level information is returned.

ENDtcpIPservice

Your program performs the ENDtcpIPsexvice call when it has finished using TCPIP services. All existing
TCP connections are reset (aborted), all open UDP port opens are canceled, and all IP protocols are

released.
FUNC: SEND
VADA: 0]
LENA: 1
VADB: 0
LENB: 0]
CALLCODE: ENDtcpIPservice

The TCPIP virtual machine responds using the VMCF REJECT function. The VMCF interrupt header
indicates a return code of OK in the RETCODE field.

HANDLEnNotice

Your program performs the HANDLEnotice call to specify the types of notifications to be received from
TCPIP. The VADB field in the VMCF parameter list contains a notification mask, with 1 bit set for each

Chapter 3. Virtual Machine Communication Facility Interface 119

VMCF Interface

notification you want to handle. The bit to be set for each notification type is shown in Figure 25 on page

120.

Figure 25 on page 120 shows the equates used for notification mask in the HANDLEnotice call.
MaskBUFFERspaceAVAILABLE EQU X'00000001"
MaskCONNECTIONstateCHANGED EQU X'00000002"
MaskDATAdelivered EQU X'00000004'
MaskURGENTpending EQU X'00000020'
MaskUDPdatagramDELIVERED EQU X'00000040"
MaskUDPdatagramSPACEavailable EQU X'00000080"'
MaskRAWIPpacketsDELIVERED EQU X'00004000'
MaskRAWIPspaceAVAILABLE EQU X'00008000"
MaskRESOURCESavailable EQU X'00040000'
MaskUDPresourcesAVAILABLE EQU X'00080000"'
MaskPINGresponse EQU X'00100000'

Figure 25. Equates for Notification Mask in the HANDLEnotice Call

Each HANDLEnotice call must specify all the notification types to be handled. Notification types
specified in previous HANDLEnotice calls are not stored.

FUNC: SEND
VADA: 0

LENA: 1

VADB: Note mask
LENB: 0

CALLéODE: HANDLEnotice

The TCPIP virtual machine responds using the VMCF REJECT function. The VMCF interrupt header
contains a return code in the RETCODE field. The return code can be any of those listed for the Handle
Pascal procedure (see “Handle” on page 64).

TCP CALLCODE Requests

The following sections describe the VMCF interrupt headers that are stored in your virtual machine for
CALLCODE calls used to make TCP requests.

CLOSEtcp

The CLOSEtcp call initiates the closing of a TCP connection. For more information about the close
connection call, see the Pascal procedure, “TcpClose” on page 82.

FUNC: SEND

VADA: 0

LENA: 1

VADB: 0

LENB: 0

CONN: Connection number from open

CALLCODE: CLOSEtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer contains
the return code. The return code is one of those listed for the TcpClose Pascal procedure, see “TcpClose”
on page 82.

FRECEIVEtcp

The FRECEIVEtcp call tells TCPIP that you are ready to receive data on a specified TCP connection.
TCPIP does not respond or send a notification notice until data is received or the connection is closed.
Consequently, each outstanding FRECEIVEtcp function results in an outstanding VMCF transaction.
There is a limit of 50 outstanding VMCF transactions for each virtual machine; you can therefore have

120 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FRECEIVEtcp functions outstanding on only 50 connections at one time. If your application needs more
outstanding receives, use the RECEIVEtcp function.

Your program does not need to wait for a response from FRECEIVEtcp. It can issue functions involving
other connections, before receiving a response from FRECEIVEtcp.

For general information about receiving TCP data, see the TcpFReceive Pascal procedure under
“TcpFReceive, TcpReceive, and TcpWaitReceive” on page 83.

FUNC: SEND/RECV

VADA: 0

LENA: 1

VADB: Address of buffer to receive data
LENB: Length of buffer to receive data
CONN: Connection number from open

CALLéODE: FRECEIVEtcp

If TCPIP accepts the request, your program receives no response until TCPIP is ready to deliver data to
your buffer, or until the request is canceled, because the connection has closed without delivering data.

When TCPIP is ready to deliver data for this connection, it issues a VMCF REPLY function. Significant fields
in the VMCF interrupt header are:

LENB
Indicates the residual count. Subtract this from the size of your buffer (LENB value in parameter list)
to determine the number of bytes actually delivered.

ANINTEGR
Contains a value where the high-order byte is nonzero if data was pushed; otherwise, it is zero. The
low-order three bytes are interpreted as a 24-bit integer, indicating the offset of the byte following the
last byte of urgent data, measured from the first byte of data delivered to your buffer. If it is zero or a
negative number, then there is no urgent data pending.

CONN
Specifies the connection number.

RETCODE
OK

If TCPIP responds with the VMCF REJECT function (VMCFRJCT flag set in the VMCF interrupt header),
then one of the following occurred:

- TCPIP did not accept the request, in which case the ANintegerFLAGrequestERR bit in ANINTEGR is on.

« TCPIP accepted the request initially, but the connection closed before data was delivered.
ANintegerFLAGrequestERR bit in ANINTEGR is off. In this case, the RETCODE field indicates one of
the reason codes listed for CONNECTIONstateCHANGED with the NewState field set to NONEXISTENT.
For more information, see “2” on page 49.

Note: Your program does not have to take any special action in this case, because it receives one or
more CONNECTIONstateCHANGED notifications indicating that the connection is closing.

OPENtcp

The OPENtcp callinitiates a TCP connection for IPv4 only. Your program sends a Connection Information
Record to TCPIP. Figure 26 on page 122 gives the assembler format of the record. Figure 27 on page 122
gives the equates for the assorted constants used to set up the record. For more information about the
usage of the fields of the Connection Information Record, see “TcpOpen and TcpWaitOpen” on page 88.

Chapter 3. Virtual Machine Communication Facility Interface 121

VMCF Interface

Connection DS H
OpenAttemptTimeout DS F
Security DS H
Compartment DS H
Precedence DS X
BytesToRead DS F
UnackedBytes DS F
ConnectionState DS X
LocalSocket.Address DS F
LocalSocket.Port DS H
ForeignSocket.Address DS F
ForeignSocket.Port DS H

Figure 26. Assembler Format of the Connection Information Record for VM

UNSPECIFIEDconnection EQU -48

DEFAULTsecurity EQU (0]
DEFAULTcompartment EQU 0
DEFAULTprecedence EQU 0
UNSPECIFIEDaddress EQU 0
UNSPECIFIEDport EQU X'FFFF'
ANintegerFLAGrequestERR EQU X'80000000'

Figure 27. Miscellaneous Assembler Constants

FUNC: SEND/RECV

VADA: Address of Connection Information Record initialized by
your program

LENA: Length of Connection Information Record

VADB: Address of Connection Information Record to be filled in
with TCPIP zreply

LENB: Length of Connection Information Record

CONN: UNSPECIFIEDconnection

CALLCODE: OPENtcp

If the open attempt cannot be initiated, the TCPIP virtual machine responds using the VMCF REJECT
function. The VMCF interrupt header, contains a return code in the RETCODE field. The return code can be
any of those listed for the Tcp60pen Pascal procedure.

If the OPENtcp call was rejected because not enough TCPIP resources were available, a ZEROresources
code is returned. When the TCPIP resources are available, a notice of RESOURCESavailable is sent to your
program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the VMCF RECEIVE
function to receive the Connection Information Record describing the connection to be opened. If the
connection then cannot be initiated, TCPIP responds using the VMCF REJECT function. The RETCODE field
in the VMCF interrupt header is set as described in the previous paragraph.

If the open was successfully initiated, the TCPIP virtual machine responds using the VMCF REPLY function
to send back the updated Connection Information Record. The Connection field of the Connection
Information Record contains the connection number of the new connection. The RETCODE field in

the VMCF interrupt header indicates OK, and the CONN field also contains the connection number of

the new connection. The connection is not yet open; your program receives notification(s) during the
opening sequence. For more information about NotificationInfoType, see the section on the Pascal under
“Notification Record” on page 45 and see also “CALLCODE Notifications” on page 134.

OPTIONtcp

The OPTIONtcp call sets an option for a TCP connection for IPv4 only. For more information about the
connection options, see the Pascal procedure, “TcpOption” on page 90.

122 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC: SEND

VADA: 0

LENA: 1

VADB: Option name
LENB: Option value

CONN: Connection number from open
CALLCODE: OPTIONtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer contains
the return code. The return code is one of those listed for the Pascal TcpOption procedure.

RECEIVEtcp

The RECEIVEtcp call tells TCPIP that you are ready to receive data on a specified TCP connection. Unlike
FRECEIVEtcp, TCPIP responds immediately to RECEIVEtcp. You can have more than 50 receive requests
pending using RECEIVEtcp without exceeding the limit of 50 outstanding VMCF transactions.

For more information about receiving TCP data, see the TcpReceive Pascal procedure under
“TcpFReceive, TcpReceive, and TcpWaitReceive” on page 83.

FUNC: SEND

VADA: 0

LENA: 1

VADB: 0]

LENB: Length of buffer to receive data
CONN: Connection number from open

CALLCODE: RECEIVEtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
indicates whether the request was successful. If the request was successful, with a RETCODE of OK, the
data is delivered to your buffer and a notification of DATAdelivered is sent to your program. If the request
was not successful, then the return code is one of those listed for the TcpReceive Pascal procedure.

SENDtcp and FSENDtcp

The SENDtcp or FSENDtcp calls send data on a TCP connection. For the advantages and disadvantages
of using each function, and for information about sending TCP data, see “TcpFSend, TcpSend, and
TcpWaitSend” on page 86.

FUNC: SEND

VADA: Address of data

LENA: Length of data

VADB: 1 if push desired, else O
LENB: 1 if urgent data, else 0
CONN: Connection number from open

CALLCODE: SENDtcp or FSENDtcp

If TCPIP can successfully queue the data for sending, it responds with the VMCF RECEIVE function. The
VMCEF interrupt header indicates a RETCODE of OK.

If TCPIP cannot queue the data for sending, it responds with the VMCF REJECT function. The RETCODE
field indicates the type of error. The return code can be any of those listed for the TcpSend Pascal
procedure. For a list of the return codes, see “TcpFSend, TcpSend, and TcpWaitSend” on page 86.

If the SENDtcp transaction is unsuccessful, because of insufficient space in the buffer of the receiving
TCPIP virtual machine, a return code of NObufferSPACE is placed in the RETCODE field. A notification of
BUFFERspaceAVAILABLE is sent, on this connection, when the space is available to process data.

TcpFSend is the same as FSENDtcp. If TCPIP cannot accept the data, because of a buffer shortage, it
does not respond immediately. Instead, it waits until space is available, and then uses VMCF RECEIVE

Chapter 3. Virtual Machine Communication Facility Interface 123

VMCF Interface

to receive the data. While it is waiting, if the connection is reset, it responds with VMCF REJECT, with a
return code as described previously. In summary, TCPIP may not respond immediately to FSENDtcp, and
the response, after waiting, may indicate either success or failure. If TCPIP responds with REJECT, your
program can check the ANintegerFLAGrequestERR bit in the ANINTEGR field to determine if the request
was rejected during initial or retry processing (bit on) or because of connection closing (bit off).

Your program does not need to wait for a response from SENDtcp or FSENDtcp VMCF transaction. It
can issue functions involving other connections, before receiving a response from making a SENDtcp or
FSENDtcp VMCF transaction.

There is a limit of 50 outstanding VMCF transactions for each virtual machine; therefore, your program
can have FSENDtcp functions outstanding on only 50 connections at a time. If your application needs
more outstanding sends, use the SENDtcp function.

STATUStcp

The STATUStcp call obtains a Connection Information Record giving the current status of a TCP
connection for IPv4 only. For the assembler format of the Connection Information Record, see Figure
26 on page 122. For more information about the connection status call, see the Pascal procedure,
“TcpStatus” on page 100.

FUNC: SEND/RECV

VADA: 0

LENA: 1

VADB: Address of Connection Information Record to fill in
LENB: Length of Connection Information Record to fill in
CONN: Connection number from open

CALLCODE: STATUStcp

TCPIP responds with the VMCF REPLY function, filling in the record whose address you supplied in LENB.
The record is valid only if the return code, in the RETCODE field of the VMCF interrupt header, returns OK.
Otherwise, the return code is one of those listed for the TcpStatus Pascal procedure.

TLSSCERTDATAREQtcp

The TLSCERTDATAREQtcp call indicates to the SSL server that certificate data is being requested
for the local or partner certificate. For more information about the certificate data request call, see
“TcpSCertData” on page 91.

FUNC: SEND/RECEIVE

VADA: Address of CertRegDetailType recoxd
LENA: Size of CertRegDetailType record
VADB: ANYoldADDRESS

LENB: 0

CONN: Connection number from open

CALLéODE: TLSSCERTDATAREQtcp

TCP/IP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
contains the return code from the preprocessing of this command. The return code is one of those listed
for the TcpSCertData procedure. The results of the actual certificate data request will be returned with the
CERTdataCOMPLETE notification.

TLSSCLIENTtcp

The TLSSCLIENTtcp call indicates to the SSL server that the connection is to be secure and that the SSL
server needs to initiate an outbound connection. For more information about the secure client call, see
the Pascal Procedure , “TcpSClient” on page 94.

124 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV

Address of SecureDetailType recoxd
Length of SecureDetailType recozrd
0

1
Connection number from open
TLSSCLIENTtcp

See “TcpSClient” on page 94 for details of the SecureDetailType structure.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
contains the return code from the preprocessing of this command. The return code is one of those
listed for the TcpSClient procedure. The results of the actual handshake will be returned with the
SECUREhandshakeCOMPLETE notification.

TLSSCLOSEtcp

The TLSSCLOSEtcp call indicates to the SSL Server that the connection should no longer be secure. The
SSL server issues a Close_Notify command on the connection and sends a notification to indicate that
data transmission can continue in the clear. For more information about the secure close call, see the
Pascal Procedure, “TcpSClose” on page 98.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

Conection number from open
TLSSCLOSEtcpFUNC: SEND/RECV

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer contains
the return code from the pre-processing of this command. The return code is one of those listed for

the TcpSClose procedure. The results of the actual Close_Notify command will be returned with the
CLEARtextRESUMED notification.

TLSSSERVERtcp

The TLSSSERVERtcp call indicates to the SSL server that the connection is to be secure and that the SSL
server needs to wait for an incoming handshake. For more information about the secure server call, see
“TcpSClient” on page 94.

FUNC:
VADA:
LENA:
VADB:
LENB:
CONN:
CALLCODE:

SEND/RECV

Address of SecureDetailType record
Length of SecureDetailType record
0

1
Connection number from open
TLSSSERVERtcp

See “TcpSServer” on page 98 for details of the SecureDetailType structure.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
contains the return code from the preprocessing of this command. The return code is one of those
listed for the TcpSServer procedure. The results of the actual handshake will be returned with the
SECUREhandshakeCOMPLETE notification.

Chapter 3. Virtual Machine Communication Facility Interface 125

VMCF Interface

TLSSSTATUStcp

The TLSSSTATUStcp call returns details about a session, such as whether or not it is secure and the
encryption suite. For more information about the connections security status, see the Pascal Procedure,

“TcpSStatus” on page 99.
FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of CipherDetails Record to be filled in

LENB:
CONN:
CALLCODE:

Length of CipherDetails Record to be filled in
Connection number from open
TLSSSTATUStcp

See “TcpSStatus” on page 99 for details of the CipherDetails structure. TCPIP responds with the VMCF

REPLY function, filling in the record whose address you supplied in VADB. The record is only valid if the

return code, i

n the RETCODE field of the VMCF interrupt header, returns OK; otherwise, the return code is

one of those listed for the TcpSStatus Pascal Procedure.

V60PENtcp

The V60OPENtcp call initiates a TCP connection. Your program sends an IPvé6 Connection Information
Record to TCPIP. Figure 28 on page 126 gives the assembler format of the record. Figure 29 on page 126
gives the equates for the assorted constants used to set up the record. For more information about the
usage of the fields of the Connection Information Record, see “Tcp60pen and Tcp6WaitOpen” on page

79.
Connection DS H
OpenAttemptTimeout DS F
Security DS H
Compartment DS H
Precedence DS X
BytesToRead DS F
UnackedBytes DS F
ConnectionState DS X
LocalSocket.Address DS XL16
LocalSocket.Port DS H
ForeignSocket.Address DS XL16
ForeignSocket.Port DS H

Figure 28. Assembler Format of the IPv6 Connection Information Record for VM

UNSPECIFIE
DEFAULTsec
DEFAULTcom
DEFAULTpzre
UNSPECIFIE
UNSPECIFIE
ANintegerF

Dconnection EQU -48

urity EQU 0

partment EQU 0

cedence EQU 0
Dipvé6address EQU 0

Dport EQU X'FFFF'
LAGrequestERR EQU X'380000000'

Figure 29. Miscellaneous Assembler Constants

126 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC: SEND/RECV

VADA: Address of the IPvé6 Connection Information Record initialized
by your program

LENA: Length of IPv6 Connection Information Recoxd

VADB: Address of the IPvé6 Connection Information Recoxrd to be filled
in with TCPIP reply

LENB: Length of IPv6 Connection Information Recoxd

CONN: UNSPECIFIEDconnection

CALLCODE: V60PENtcp

If the open attempt cannot be initiated, the TCPIP virtual machine responds using the VMCF REJECT
function. The VMCF interrupt header, contains a return code in the RETCODE field. The return code can be
any of those listed for the TcpOpen Pascal procedure.

If the V6OPENtcp call was rejected because not enough TCPIP resources were available,
a ZEROresources code is returned. When the TCPIP resources are available, a notice of
RESOURCESavailable is sent to your program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the VMCF RECEIVE
function to receive the Connection Information Record describing the connection to be opened. If the
connection then cannot be initiated, TCPIP responds using the VMCF REJECT function. The RETCODE field
in the VMCF interrupt header is set as described in the previous paragraph.

If the open was successfully initiated, the TCPIP virtual machine responds using the VMCF REPLY
function to send back the updated IPv6 Connection Information Record. The Connection field of the
Connection Information Record contains the connection number of the new connection. The RETCODE
field in the VMCF interrupt header indicates OK, and the CONN field also contains the connection number
of the new connection. The connection is not yet open; your program receives notification(s) during the
opening sequence. For more information about NotificationInfoType, see the section on the Pascal under
“Notification Record” on page 45 and see also “CALLCODE Notifications” on page 134.

V6STATUStcp

The V6STATUStcp call obtains an IPvé Connection Information Record giving the current status of a TCP
connection. For the assembler format of the IPv6 Connection Information Record, see Figure 28 on page
126. For more information about the connection status call, see the Pascal procedure, “Tcp6Status” on

page 81.
FUNC: SEND/RECV
VADA: (0]
LENA: 1
VADB: Address of the IPv6 Connection Information Record to fill in
LENB: Length of IPv6 Connection Information Record to fill in
CONN: Connection number from open
CALLCODE: V6STATUStcp

TCPIP responds with the VMCF REPLY function, filling in the record whose address you supplied in LENB.
The record is valid only if the return code, in the RETCODE field of the VMCF interrupt header, returns OK.
Otherwise, the return code is one of those listed for the Tcp6Status Pascal procedure.

UDP CALLCODE Requests

The following sections describe the VMCF interrupt headers, which are stored in your virtual machine, for
CALLCODE calls used to make UDP requests.

CLOSEudp

The CLOSEudp call closes a UDP port. For more information about the CLOSEudp call, see the Pascal
procedure, “UdpClose” on page 103.

Chapter 3. Virtual Machine Communication Facility Interface 127

VMCF Interface

FUNC: SEND

VADA: 0]

LENA: 1

VADB: 0

LENB: 0]

CONN: Connection number

CALLCODE: CLOSEudp

TCPIP responds with the VMCF REJECT function. The RETCODE field in the VMCF interrupt header can
be any of the return codes listed for the UdpClose Pascal procedure. If the return code is OK, and your
program specified UNSPECIFIEDport as the port number, the actual port number assigned is encoded in
the CONN field of the interrupt header. Add the value of 32 768 to the value in the CONN field, using
unsigned arithmetic, to compute the port number.

NRECEIVEudp

The NRECEIVEudp call tells TCPIP that your program is ready to receive a UDP datagram on a particular
port. TCPIP responds immediately to inform you whether it accepted the request. If TCPIP has accepted
your request, your program receives a UDPdatagramDELIVERED notification when a datagram arrives.
For more information about receiving UDP datagrams, see the Pascal procedure, “UdpNReceive” on page

104.
FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: Size of your buffer to receive datagram
CONN: Connection number
CALLCODE: NRECEIVEudp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt header
contains one of the return codes listed for the UdpNReceive Pascal procedure.

OPENudp

The OPENudp call opens a UDP port. For more information about the UDP open function, see the Pascal
procedure, “UdpOpen” on page 104.

FUNC: SEND

VADA: (0]

LENA: 1

VADB: Local port number or UNSPECIFIEDport

LENB: Local address

CONN: Connection number: An arbitrary number, which your program

uses in subsequent actions involving this port.
CALLCODE: OPENudp

TCPIP responds with the VMCF REJECT function. The RETCODE field in the VMCF interrupt header can
be any of the return codes listed for the UdpOpen Pascal procedure. If the OPENudp call was rejected,
because not enough TCPIP resources were available, a UDPzeroRESOURCES code is returned. When the
TCPIP resources are available, a notice of UDPresourcesAVAILABLE is sent to your program.

SENDudp

The SENDudp call sends a UDP datagram. For more information about the UDP send function, see the
Pascal procedure, “UdpSend” on page 106.

128 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC: SEND

VADA: Address of datagram data

LENA: Length of datagram data (up to 8492 bytes)
VADB: Destination port number

LENB: Destination address

CONN: Connection number

CALLCODE: SENDudp

If TCPIP can send the datagram, it responds with the VMCF RECEIVE function. The RETCODE field in the
VMCEF interrupt header contains a return code of OK. If TCPIP cannot send the datagram, it responds with
the VMCF REJECT function. The RETCODE field contains one of the return codes listed for the UdpSend
Pascal procedure. When the buffer space is not available to process the data, an error is returned. The
notification message of UDPdatagramSPACEavailable is sent to your program when the buffer space is
available to process data.

V60PENudp

The V60PENudp call opens a UDP port. For more information about the UDP open function, see the Pascal
procedure, “Udp60pen” on page 102.

FUNC: SEND/RECV

VADA: Address of the local socket

LENA: Length of the local socket

VADB: 0

LENB: 0

CONN: Connection number: An arbitrary number, which your program

uses in subsequent actions involving this port.
CALLCODE: V60PENudp

If the open attempt cannot be initiated, the TCPIP virtual machine responds using the VMCF REJECT
function. The VMCF interrupt header, contains a return code in the RETCODE field. The return code can be
any of those listed for the Udp60pen Pascal procedure.

If the V6OPENudp call was rejected, because not enough TCPIP resources were available, a
UDPzeroRESOURCES code is returned. When the TCPIP resources are available, a notice of
UDPresourcesAVAILABLE is sent to your program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the VMCF RECEIVE
function to receive the local socket information. If the connection then cannot be initiated, TCPIP
responds using the VMCF REJECT function. The RETCODE field in the VMCF interrupt header is set as
described in the previous paragraph.

V6SENDudp

The V6SENDudp call sends a UDP datagram. Your program sends an IPv6 Datagram Information Record
to TCPIP. Figure 30 on page 129 gives the pascal format of the record. It includes foreign socket,
datagram data, and length of datagram data. For more information about the UDP send function, see the
Pascal procedure, “Udp6Send” on page 102.

UdpSendPacket6InfoType = record
Socket: Socket6Type;
BufferlLen: integer;
Packet: packed array (.1..65535.) of char ;
end;

Figure 30. Pascal Format of the IPv6 Datagram Information Record for VM

Chapter 3. Virtual Machine Communication Facility Interface 129

VMCF Interface

FUNC: SEND/RECEIVE

VADA: Address of IPv6 Datagram Information Record initialized
by your program

LENA: Length of IPv6 Datagram Information Recoxd

VADB: 0

LENB: (0]

CONN: Connection number

CALLCODE: V6SENDudp

TCPIP virtual machine will first responds with the VMCF RECEIVE function to get the IPv6 Datagram
Information Record. Then if TCPIP can send the datagram, it responds with the VMCF REJECT function
and the RETCODE field in the VMCF interrupt header contains a return code of OK. If TCPIP cannot

send the datagram, it responds with the VMCF REJECT function. The RETCODE field contains one of the
return codes listed for the Udp6Send Pascal procedure. When the buffer space is not available to process
the data, an error is returned. The notification message of UDPdatagramSPACEavailable is sent to your
program when the buffer space is available to process data.

IP CALLCODE Requests

The following sections describe the VMCF interrupt headers, which are stored in your virtual machine, for
CALLCODE calls used to make IP requests.

CLOSErawip

The CLOSExawip call tells TCPIP that your program is ready to cease sending and receiving packets of a
specified IP protocol. For more information, see the Pascal procedure, “RawlIpClose” on page 70.

FUNC: SEND/RECV

VADA: 0]

LENA: 1

VADB: 0

LENB: 0]

CONN: Protocol number

CALLCODE: CLOSErawip

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE field of the VMCF
interrupt header contains one of the return codes listed for the RawIpClose Pascal procedure.

OPENrawip

The OPENTrawip call tells TCPIP that your program is ready to send and receive packets of a specified IP
protocol. For more information, see the Pascal procedure, “RawIpOpen” on page 71.

FUNC: SEND/RECV

VADA: 0

LENA: 1

VADB: 0

LENB: 0

CONN: Protocol number

CALLCODE: OPENrawip

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE field of the VMCF
interrupt header contains one of the return codes listed for the RawIpOpen Pascal procedure.

RECEIVErawip

The RECEIVErawip call tells TCPIP that your program is ready to receive raw IP packets of a
given protocol. Your program receives a RAWIPpacketsDELIVERED notification when a packet arrives.
For information about the RAWIPpacketsDELIVERED notification record, see the Pascal procedure,

130 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

“RawIpReceive” on page 72, and the section on the Pascal NotificationInfoType under “Notification
Record” on page 45.

FUNC: SEND/RECV

VADA: 0

LENA: 1

VADB: 0

LENB: Length of your buffer
CONN: Protocol number

CALLCODE: RECEIVErawip

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt header
contains one of the return codes listed for the RawlIpReceive Pascal procedure.

SENDrawip

The SENDrawip call sends raw IP packets of a given protocol number. For more information, see the
Pascal procedure, “RawlIpSend” on page 72.

FUNC: SEND/RECV

VADA: Address of buffer containing packets to send

LENA: Length of buffer

VADB: 0]

LENB: 0

CONN: (Number of packets shifted left 8 bits) + protocol number

CALLCODE: SENDrawip

If TCPIP immediately determines that the request cannot be fulfilled, It responds with the VMCF
REJECT function. Otherwise, it uses the VMCF RECEIVE function to receive your data, followed by
VMCF REJECT. The RETCODE field of the VMCF interrupt header contains one of the return codes listed
for the RawIpSend Pascal procedure. If TCPIP virtual machine is out of buffers, the data is rejected
and a return code of NObufferSPACE is returned. When buffer space is available, the notification of
RAWIPspaceAVAILABLE is sent to your program.

CALLCODE System Queries

The following sections describe the VMCF interrupt headers, which are stored in your virtual machine, for
CALLCODE calls used to make system queries.

IShostLOCAL

The IShostLOCAL call determines whether a given internet address is one of your host’s local addresses.
For more information about this procedure, see the Pascal procedure “IsLocalAddress” on page 65.

FUNC: SEND

VADA: 0

LENA: 1

VADB: Internet address to be tested
LENB: 0

CONN: UNSPECIFIEDconnection
CALLCODE: IShostLOCAL

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt header
contains the return code, as described in the IsLocalAddress Pascal procedure section.

Chapter 3. Virtual Machine Communication Facility Interface 131

VMCF Interface

MONITORcommand

The MONITORcommand call instructs TCPIP to obey a file of commands. For more information, see the
Pascal procedure, “MonCommand” on page 66, and for more information about the OBEYFILE command,
which uses the MonCommand procedure, see z/VM: TCP/IP Planning and Customization.

Owner DS CL8
DatasetPassword DS CL8
FullDatasetName DS CL44
MemberName DS CL8
DDName DS CcL8

Figure 31. Assembler Format of the SpecOfFileType Record for VM

FUNC: SEND/RECV

VADA: Address of SpecOfFile record
LENA: Length of SpecOfFile record
VADB: 0

LENB: 0

CONN: UNSPECIFIEDconnection

CALLCODE: MONITORcommand

If TCPIP cannot process the request, it responds immediately with the VMCF REJECT function. Otherwise,
it uses the VMCF RECEIVE function to receive the SpecOfFile record provided by your program. It then
attempts to process the file, and uses the VMCF REJECT function to report the return code. In either case,
the return code is one of those specified for the MonCommand Pascal procedure.

MONITORquery

The MONITORquery call obtains status information from the TCPIP virtual machine or to request that
it performs certain functions. For more information, see the Pascal procedure, “MonQuery” on page 67.
Assembler formats of constants and records used with MONITORquezy are:

COMMANDCpCMD EQU 6
COMMANDdropCONNECTION EQU 8
QUERYhomeONLY EQU 9

Figure 32. Equates for MonQueryRecordType used in the MONITORquery Call

QueryType DS X
* For QueryType QUERYhomeONLY: No other fields
* For QueryType COMMANDcpCMD :
CpCmd DS H Length of command
DS 100C Command
* For QueryType = COMMANDdropCONNECTION:
ORG CpCmd
Connection DS H

Figure 33. Assembler Format of the MonQueryRecordTypefor VM

The Pascal type HomeOnlyListType is an array of 64 InternetAddressType elements found in the
COMMMAC MACLIB file. The size of InternetAddressType is a fullword.

132 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

VMCF Interface

FUNC: SEND/RECV

VADA: Address of MonQueryRecord describing request
LENA: Length of MonQueryRecord

VADB: Address of return buffer

LENB: Length of return buffer

CONN: UNSPECIFIEDconnection

CALLCODE: MONITORquery

If TCPIP cannot process the request, it responds immediately with the VMCF REJECT function.
Otherwise, it uses the VMCF RECEIVE function to receive the MonQueryRecord describing your request,
followed by either a VMCF REPLY to send the response to your return buffer (not applicable to
COMMANDdropCONNECTION), or a VMCF REJECT to send a return code but no return data. For
information about the return codes and the data returned (if any), see the Pascal procedure, “MonQuery”
on page 67.

PINGreq

The PINGzreq call sends an ICMP echo request (PING request) to a specified host and wait a specified
time for a response. For more information, see the Pascal procedure “PingRequest” on page 69.

FUNC: SEND

VADA: (0]

LENA: 1

VADB: Internet address of foreign host
LENB: Length of ping packet

ANINTEGR: Timeout
CALLCODE: PINGreq

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE field of the VMCF
interrupt header contains one of the return codes listed for the PingRequest Pascal procedure. If the
return code is OK, your program receives a PINGresponse notification later.

TLSQuery

The TLSQuery call sends a query to determine if the SSL server is available, and if so, if the label specified
is known. For more information, see the Pascal Procedure, “QueryTLS” on page 70.

QuerylLabel DS CL8
QueryKeyring DS CL50

Figure 34. Assembler format of the QueryRequest record for VM

FUNC: SEND/RECV

VADA: Address of QueryRequest record
LENA: Length of QueryRequest record
VADB: 0

LENB: 0

CIBB: UNSPECIFIED

CALLCODE: TLSQuery

TCPIP responds with the VMCF REPLY function. The RETCODE field of the VMCF interrupt buffer contains
the return code from the preprocessing of this command. The return code is one of those listed for

the QueryTLS procedure. The results of the actual query will be returned with the QUERYtlsCOMPLETE
notification.

Chapter 3. Virtual Machine Communication Facility Interface 133

VMCF Interface

CALLCODE Notifications

The following sections describe the VMCF interrupt headers that are stored in your virtual machine for the
various types of notifications. The action that your program should take is also indicated.

For more information about the various notification types, see the Pascal NotificationInfoType record
under “Notification Record” on page 45.

The VMCF transaction for a notification must be completed before TCPIP sends your program another
notification. You must ensure that your program takes the VMCF actions in the following sections, or
TCPIP cannot communicate further with your program.

ACTIVEprobe

This interrupt header notifies you that the TCPIP virtual machine is monitoring your machine so it can
determine if it is still responsive.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
CALLCODE: ACTIVEprobe

RETCODE: OK

Your program should issue the VMCF REJECT function, with the VMCF
parameter list copied from the interrupt header and with the
following fields changed:

V1: 0
V2: 0]
FUNC: REJECT

The response to this message must be made within one minute after the
associated interrupt is received.

BUFFERspaceAVAILABLE

This interrupt header notifies you that there is space available to send data on this connection. The space
is currently set to 8192 bytes of buffer space. The notification is sent after making a SENDtcp call and
receiving an unsuccessful return code of NObufferSPACE in the RETCODE field.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine

VADB: Space available to send on this connection, in bytes.
Currently always 8192

CONN: Connection number

CALLCODE: BUFFERspaceAVAILABLE

RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: 0

V2: 0]

FUNC: REJECT
CERTdataCOMPLETE

This interrupt header notifies you that certificate data is available from a TcpSCertData call.

134 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC: SEND

JOBNAME : Name of the TCPIP virtual machine
LENB: Length of the data being delivered
CONN: Connection Number

CALLCODE: CERTdataCOMPLETE

RETCODE : OK

Your program should issue the VMCF RECEIVE function, with the VMCF parameter list copied from the
interrupt header, with the following fields changed:

V1: (0]

V2: (0]

FUNC: RECEIVE

VADA: Address of your buffer to receive data. Buffer should be at least as long as

indicated by LENB.

CLEARtextRESUMED

The interrupt header notifies you that the Close_Notify on the connection is complete and data
transmission is now in the clear.

FUNC: SEND

JOBNAME: Name of TCPIP virtual machine
VADB: 0

CONN: Conection number

CALLCODE: CLEARtextRESUMED

RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm list copied from the interrupt
header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

CONNECTIONstateCHANGED

This interrupt header notifies you that the state of the connection between the TCPIP virtual machine and
your program has changed.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine

VADB: New connection state

LENB: Reason for state change, if new state is NONEXISTENT
CONN: Connection number

CALLCODE: CONNECTIONstateCHANGED

RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: 0]
V2: 0
FUNC: REJECT

Chapter 3. Virtual Machine Communication Facility Interface 135

VMCF Interface

DATAdelivered

This interrupt header notifies you that the TCPIP virtual machine data was delivered to your program,
after issuing a RECEIVEtcp or FRECEIVEtcp call.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine

LENA: Length of data being delivered

VADB: Non-zero if data was pushed, else zero.

LENB: The offset of the byte following the last byte of urgent

data, measured from the first byte of data delivered to your
buffer. If zero or negative then there is no urgent data

pending.
CONN: Connection number
CALLCODE: DATAdelivered
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: 0

V2: (0]

FUNC: RECEIVE

VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA. LENA is no
larger than the buffer length you specified using the
RECEIVEtcp function.

DUMMYprobe

This interrupt header notifies you that the TCPIP virtual machine is monitoring your machine so it can
determine if it logs off or resets unexpectedly.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
CALLCODE: DUMMYprobe

RETCODE: OK

Your program should leave this message pending.

PINGresponse

This interrupt header notifies you that your ping request from the PINGreq call has been received or that
the time-out limit or your request has been reached.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine

VADB: High order word of elapsed time, in TOD clock format
Valid only if ANINTEGR is zero

LENB: Low order word of elapsed time, in TOD clock format

Valid only if ANINTEGR is zero
ANINTEGR: Return code from ping operation
CALLCODE: PINGresponse
RETCODE: OK
Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: 0

V2: 0

FUNC: REJECT
QUERYtlsCOMPLETE

The interrupt header notifies you that the Query is complete and returns the status of the query.

136 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC:
JOBNAME :
VADB:
CONN:
CALLCODE:
RETCODE:

V1:
V2:
FUNC:

Your program should issue the VMCF REJECT function, with the VMCF parm list copied from the
interrupt header, with the following fields changed:

SEND

Name of the TCPIP virtual machine

0]

UNSPECIFIEDconnection.

QUERYt1sCOMPLETE

return code. If 0,indicates that the label is ok.

0
0
REJECT

RAWIPpacketsDELIVERED

This interrupt header notifies you that your buffer has received the raw IP packets.

FUNC:
JOBNAME :
ANINTEGR:
LENA:

CONN:

CALLCODE:
RETCODE:

Your program should issue the VMCF RECEIVE function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

SEND

Name of the TCPIP virtual machine

Total length of datagram being delivered (including IP header)
Length of data (including IP header) that TCPIP

delivers to you.

Low-order byte is protocol number, 3 high order bytes

is number of packets, currently always 1.
RAWIPpacketsDELIVERED

0K

V1: 0
V2: (0]
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be
at least as long as indicated by LENA.
RAWIPspaceAVAILABLE

This interrupt header notifies you that buffer space is available to process the data. This notification is
sent after the SENDrawip call was rejected by TCPIP virtual machine because of insufficient buffer space.

FUNC:
JOBNAME :
LENB:
CONN:
CALLCODE:
RETCODE:

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

SEND

Name of the TCPIP virtual machine

Space available. Always equals maximum IP datagram size.
Protocol number

RAWIPspaceAVAILABLE

0K

V1: 0

V2: 0

FUNC: REJECT
READYforHANDSHAKE

The interrupt header notifies you whether or not this connection is ready for the initiation of an SSL

handshake.

Chapter 3. Virtual Machine Communication Facility Interface 137

VMCF Interface

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
VADB: 0

CONN: Connection Number

CALLCODE: REAQDYforHANDSHAKE
RETCODE: Return code. If 0,indicates that a handshake can be
initiated on this connection

Your program should issue the VMCF REJECT function, with the VMCF parm list copied from the
interrupt header, with the following fields changed:

V1: 0

V2: 0

FUNC: REJECT
RESOURCESavailable

This interrupt header notifies you that the resources needed to initiate a TCP connection are now
available. This notification is sent only if a previous OPENtcp call received a ZEROresources return code.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
CALLCODE: RESOURCESavailable

RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: 0]
V2: 0]
FUNC: REJECT

SECUREhandshakeCOMPLETE

The interrupt header notifies you that the SSL handshake on this connection is complete and indicates the
status of that handshake.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
VADB: SecureHSCompleteDetail

CONN: Connection Number

CALLCODE: SECUREhandshakeCOMPLETE

RETCODE: OK

Refer to “Notification Record” on page 45 for details of SecureHSCompleteDetail.

Your program should issue the VMCF REJECT function, with VMCF parm list copied from the interrupt
header, with the following fields changed:

V1: (0]

V2: 0

FUNC: REJECT
UDPdatagramDELIVERED

This interrupt header notifies you that the UDP datagram has been delivered to your program after issuing
a NRECEIVEudp call to the TCPIP virtual machine.

138 z/VM: 7.3 TCP/IP Programmer's Reference

VMCF Interface

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
LENA: Length of data being delivered.
VADB: Source port

LENB: Source address

ANINTEGR: Length of entire datagram excluding UDP header. If larger
than LENA then the
datagram was too large to fit into the buffer size specified
in NRECEIVEudp call, and has been truncated.

CONN: Connection number
CALLCODE: UDPdatagramDELIVERED
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: (0]

V2: 0

FUNC: RECEIVE

VADA: Address of your buffer to receive data. Buffer should be

at least as long as indicated by LENA.

UDPdatagramSPACEavailable

This interrupt header notifies you that buffer space is available to process the data, after an error
occurred performing a SENDudp call.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
CONN: Connection number

CALLCODE: UDPdatagramSPACEavailable
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

Vi1: 0]
V2: 0]
FUNC: REJECT

UDPresourcesAVAILABLE

This interrupt header notifies you that the resources needed to initiate a UDP connection are now

available. This notification is sent only if a previous OPENudp call received a UDPzeroRESOURCES return
code.

FUNC: SEND

JOBNAME: Name of the TCPIP virtual machine
CALLCODE: UDPresourcesAVAILABLE

RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields

changed:

V1: (0]

V2: (0]

FUNC: REJECT
URGENTpending

This interrupt header notifies you that there is queued incoming data on a TCP connection not yet
received by your program.

Chapter 3. Virtual Machine Communication Facility Interface 139

VMCF Interface

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: Number of bytes of queued incoming data not yet received
by your program.
LENB: Subtract 1 from LENB to get the offset of the byte following

the last byte of urgent data, measured from the first byte not
yet received by your program. If this quantity is zero or
negative then there is no urgent data pending.

CONN: Connection number
CALLCODE: URGENTpending
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF pazrm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

140 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 4. Inter-User Communication Vehicle
Sockets

The Inter-User Communication Vehicle (IUCV) socket API is an assembler language application
programming interface that can be used with TCP/IP. While not every C socket library function is provided,
all of the basic operations necessary to communicate with other socket programs are present.

Prerequisite Knowledge

This chapter assumes you have a working knowledge of IUCV, as documented in z/VM: CP Programming
Services.

You must also know how and when to use the CMS CMSIUCV macro or the GCS IUCVCOM macro,
depending on the execution environment, as documented in z/VM: CMS Application Development Guide for
Assembler or z/VM: Group Control System, respectively.

You should also have a working knowledge of TCP/IP sockets.

Available Functions

Only these functions are available when you use the IUCV socket interface:

ACCEPT READ
BIND READV
CLOSE RECV
CONNECT RECVFROM
FCNTL RECVMSG
GETCLIENTID SELECT
GETHOSTID SELECTEX
GETHOSTNAME SEND
GETPEERNAME SENDMSG
GETSOCKNAME SENDTO
GETSOCKOPT SETSOCKOPT
GIVESOCKET SHUTDOWN
IOCTL SOCKET (AF_INET sockets only)
LISTEN TAKESOCKET
MAXDESC WRITE
WRITEV

Socket Programming with IUCV

TCP/IP sockets are manipulated by using the following assembler macros:

Macro Library Description

Iucv HCPGPI Provides the mechanisms for setting values in the IUCV input
parameter list and for executing the IUCV instruction

© Copyright IBM Corp. 1987, 2023 141

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3

Macro Library Description

IPARML HCPGPI Mapping macro for the IUCV parameter list and the external
interrupt buffer.

HNDIUCV DMSGPI Informs CMS that your program wishes to handle IUCV or
APPC/VM interrupts. Only those interrupts occurring on IUCV
paths that your application created will be routed to your
program.

CMSIUCV DMSGPI Used to perform IUCV CONNECT and SEVER functions. It
enables multiple IUCV or APPC/VM applications to run at the
same without interference.

IUCVINI GCTGPI Similar to HNDIUCYV, but for the GCS execution environment.

IUCVCOM GCTGPI Similar to CMSIUCYV, but for the GCS execution environment.
In addition to providing multiple application support, it
provides a way for GCS programs running in problem state
to use IUCV services.

A typical socket application uses only four IUCV operations: CONNECT, SEND (with reply), PURGE, and
SEVER. CONNECT establishes the IUCV connection with the TCP/IP virtual machine, SEND performs
initialization and socket operations, PURGE cancels an outstanding socket operation, and SEVER deletes
the IUCV connection.

If an IUCV operation completes with condition code 0, the requested operation was successfully started.
An IUCV interrupt will be received when the operation completes. When your interrupt routine receives
control, it receives a pointer to the external interrupt buffer which contains information about the IUCV
function that completed. The IPTYPE field of the external interrupt buffer (mapped by IPARML) identifies
the interrupt:

IPTYPE Interrupt Name Description

X'02' Connection Complete Acknowledgement that TCP/IP has accepted your
request to establish an IUCV connection (IUCV
CONNECT)

X'03' Connection Severed Your IUCV connection has been deleted by TCP/IP

X'07' Message complete The requested socket function has completed

Note: IPTYPE is byte 3 of the external interrupt buffer.

While there are other types of IUCV interrupts, they are not normally seen on TCP/IP IUCV socket paths.
z/VM: CP Programming Services has a complete description of each interrupt type.

If an IUCV operation completes with condition code 1, the requested function could not be performed.
The exact cause of the error is stored in byte 3 of the IUCV parameter list IPRCODE). See the description
of each IUCV function in z/VM: CP Programming Services for the possible return codes.

Note: CMSIUCV and IUCVCOM use return codes in general register 15 to indicate the success or failure
of the operation. Refer to z/VM: CMS Application Development Guide for Assembler or z/VM: Group Control
System for details on these system services.

If an IUCV PURGE operation completes with condition code 2, it means that TCP/IP has already finished
processing the socket request.

Preparing to use the IUCV Socket API

Before the socket functions can be used, an IUCV socket API environment must be established. This is
done in two steps:

142 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3

1. Establish an IUCV connection to the TCP/IP service virtual machine.

2. Send an initialization message to TCP/IP, identifying your application and defining how the IUCV
connection will be used.

Establishing an IUCV connection to TCP/IP

To create an IUCV connection to the TCP/IP service virtual machine, issue IUCV CONNECT with the
following parameters:

Keyword
Value

USERID
The user ID of the TCP/IP virtual machine.

PRTY
NO

PRMDATA
YES

QUIESCE
NO

MSGLIM
If this IUCV connection may have more than one outstanding socket function on it at the same time,
set MSGLIM to the maximum number of socket calls that may be outstanding simultaneously on this
path. Otherwise, set it to zero.

USERDTA
Binary zeros

CONTROL
NO

If IUCV CONNECT returns condition code 0, you subsequently receive either a Connection Complete
external interrupt or a Connection Severed external interrupt. If you receive a Connection Severed
interrupt now or later, see “Severing the IUCV Connection” on page 144 for more information.

To ensure that your program does not interfere with other IUCV or APPC/VM applications, your program
should use the HNDIUCV and CMSIUCV macros in CMS, or the IUCVINI and IUCVCOM macros in GCS.

Initializing the IUCV Connection

If you receive a Connection Complete interrupt in response to IUCV CONNECT, then TCP/IP has accepted
the connection request.

Your program responds by sending an (nitialization message using IUCV SEND to TCP/IP, identifying your
application and the way that it will use the IUCV socket interface.

When the IUCV SEND completes, then, if the IPAUDIT field shows no error, the reply buffer has been
filled. The maxsock field indicates that maximum number of sockets you can open on this IUCV path at
the same time.

Your program can now issue any supported socket call. See “Issuing Socket Calls” on page 145.

The initialization message is sent using an IUCV SEND with the following parameters:

Keyword
Value

TRGCLS
0

DATA
BUFFER

Chapter 4. Inter-User Communication Vehicle Sockets 143

BUFLEN

20
TYPE
2WAY
ANSLEN
8
PRTY
NO
BUFFER
Points to a buffer in the following format:

Offset Name Length Comments

0 8 Constant 'IUCVAPI . The trailing blank is required.

8 2 Halfword integer. Maximum number of sockets that can
be established on this IUCV connection. minimum: 50,
Default: 50.

10 apitype 2 X'0002'. Provided for compatibility with prior
implementations of TCP/IP. Use X'0003" instead.
X'0003'. Any number of socket requests may be
outstanding on this IUCV connection at the same time.
For AF_INET sockets only.

X'0004'. Any number of socket requests may be
outstanding on this IUCV connection at the same time.
For AF_INET6 sockets only.

For more information, see “Overlapping Socket
Requests” on page 146.

12 subtaskname 8 Eight printable characters. The combination of your user
ID and subtaskname uniquely identifies the TCP/IP client
using this path. This value is displayed by the NETSTAT
CLIENT command.

Keyword
Value
ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 4 Reserved

4 maxsock 4 The maximum socket number that your application can

use on this path. The minimum socket number is always
0. Your application chooses a socket number for the
accept, socket, and takesocket calls.

Note: A single virtual machine can establish more than one IUCV path to TCP/IP, but a different
subtaskname must be specified on each IUCV path. If the same subtaskname is specified for more than
one IUCV path, TCP/IP severs the existing path with that subtaskname.

Severing the IUCV Connection

An IUCV connection to TCP/IP can be severed (deleted) by your application or by TCP/IP at any time.

144 z/VM: 7.3 TCP/IP Programmer's Reference

Sever by the Application

Your application can sever a socket API IUCV path at any time by calling IUCV SEVER with USERDTA
specified as 16 bytes of binary zeros. TCP/IP cleans up all sockets associated with the IUCV path.

Clean-Up of Stream Sockets

The TCP connection corresponding to each stream socket associated with the IUCV path is reset. In the
case of a listening socket, all connections in the process of opening, or already open and in the accept
queue, are reset.

If your program closed a stream socket earlier, the corresponding TCP connection might still be in the
process of closing. Such connections, which are no longer associated with any socket, are not reset when
your program severs the IUCV path.

Sever by TCP/IP

TCP/IP severs a socket API IUCV path only in case of shutdown or an unexpected error. The 16-byte
IPUSER field in the SEVER external interrupt indicates the reason for the sever. The reason is coded in
EBCDIC. The following are possible reason codes and explanations:

Reason Code
Explanation

BAD API TYPE
The apitype field in your initialization message contained an incorrect value.

BAD INIT MSG LEN
Your program sent an initialization message that was not of the expected length.

BAD PATH ID
An attempt was made to exceed the maximum number of IUCV connections support by the target
TCPIP virtual machine.

IPV6 NOT ENABLED
Your program sent an initialization message with apitype 4, but TCP/IP is not enabled for IPv6
communications.

IUCVCHECKRC
IUCV error detected. This code is used only before or during processing of the initialization message.
NO ccB!!!!
A software error occurred in TCP/IP. Contact your system support personnel or the IBM Support
Center.

NO MORE CCBS
Your IUCV path cannot be accepted because there are no more client control blocks available in the
TCPIP virtual machine.

NULL SAVED NAME
A software error occurred in TCP/IP. This code is used only before or during processing of the
initialization message.

REQUIREDCONSTANT
The first 8 bytes of your initialization message were not "IUCVAPI ".

RESTRICTED
Your virtual machine is not permitted to use TCP/IP.

SHUTTINGDOWN
TCP/IP service is being shut down. This code is used only in response to the Pending Connection
interrupt.

Issuing Socket Calls

The following section describes how to issue an IUCV socket call.

Chapter 4. Inter-User Communication Vehicle Sockets 145

All socket calls are invoked by issuing an IUCV SEND with the following parameters:

Keyword
Value

TRGCLS
The high-order halfword specifies the socket call. For most calls, the low-order halfword specifies the
socket descriptor.

DATA
BUFFER or PRMMSG, depending on call

BUFLIST
If DATA=BUFFER, then either YES or NO as desired. If DATA=PRMMSG, not applicable.

BUFFER
If DATA=BUFFER, points to the buffer (or buffer list) in the format required by the call. If
DATA=PRMMSG, not applicable.

BUFLEN
If DATA=BUFFER, length of buffer. If DATA=PRMMSG, not applicable.

PRMMSG
If DATA=PRMMSG, data as required by the call. DATA=PRMMSG is not allowed when ANSLIST=YES. If
DATA=BUFFER, not applicable.

TYPE
2WAY

ANSLIST
Either YES or NO as desired. DATA=PRMMSG is not allowed when ANSLIST=YES.

ANSBUF
Points to a buffer to contain the reply from TCP/IP.

ANSLEN
Length of the reply buffer

PRTY
NO

SYNC
YES or NO as desired. Applications that need to serve multiple clients at the same time should
specify SYNC=NO. SYNC=YES will block the entire virtual machine from execution until the function is
complete.

Overlapping Socket Requests

Your program may have more than one socket call outstanding on the same IUCV path. There are some
restrictions on the types of calls that are queued simultaneously for the same socket descriptor.

The following list describes the restrictions for each type of socket call:

« Multiple read-type calls (READ, READV, RECV, RECVFROM, RECVMSG) and multiple write-type calls
(WRITE, WRITEV, SEND, SENDTO, SENDMSG), for the same socket, can be queued simultaneously. The
read-type calls are satisfied in order, independently of the write-type calls. Similarly, the write-type calls
are satisfied in order, independently of the read-type calls.

« Multiple ACCEPT calls, for the same listening stream socket, can be queued simultaneously. They are
satisfied in order.

 Multiple SELECT calls, referring to any combination of sockets, can be queued simultaneously on an
IUCV path. TCP/IP checks all queued SELECT calls when an event occurs and responds to any that are
satisfied.

« Calls other than the read-type, write-type, ACCEPT, and SELECT calls, cannot be queued simultaneously
for the same socket. For example, your program must wait for TCP/IP’s response to a write-type call
before issuing a CLOSE call for the same socket.

146 z/VM: 7.3 TCP/IP Programmer's Reference

TCP/IP Response to an IUCV Request

TCP/IP’s response to your socket call is signaled by the Message Complete external interrupt. When the
Message Complete external interrupt is received, if the IPAUDIT field shows no error, your program’s reply
buffer has been filled. The IPBFLN2F field indicates how many bytes of the reply buffer were not used.

If the IPADRJCT bit of the IPAUDIT field is set, then TCP/IP was unable to use IUCV REPLY to respond,
and instead used IUCV REJECT. Your program issues the special LASTERRNO function (see “LASTERRNO”
on page 186) to retrieve the return code and errno for the rejected call. TCP/IP’s use of IUCV REJECT does
not necessarily mean the socket call failed.

The following errno values (shown in decimal) are seen only by a program using the IUCV socket interface.
Errno Value
Description

1000
An unrecognized socket call constant was found in the high-order halfword of the Target Message
Class.

1001
A request or reply length field is incorrect

1002
The socket number assigned by your program for ACCEPT, SOCKET, or TAKESOCKET is out of range.
1003
The socket number assigned by your program for ACCEPT, SOCKET, or TAKESOCKET is already in use.
1008
This request conflicts with a request already queued on the same socket (see “Overlapping Socket
Requests” on page 146).
1009
The request was canceled by the CANCEL call (see “CANCEL and CANCEL2” on page 161).
1011
The user ID issuing this request does not match the user ID specified on the SSLServerID statement in
the configuration file.
1025

The local or partner certificate was not requested on the SSL handshake, therefore, no fields can be
obtained from that certificate.

Encrypting Data on an IUCV Socket

Once a connection has been established, ioctl() commands can be used to direct the data through the
TLS/SSL server so that it is encrypted when sent and decrypted when received. Refer to the section,
“Secure Connection Considerations” on page 21 for details.

Cancelling a Socket Request

Your socket program can use the CANCEL call to cancel a previously issued socket call. Read-type calls,
write-type calls, ACCEPT calls, and SELECT calls can be canceled using this function. See “CANCEL and
CANCEL2” on page 161 for more information about using the CANCEL call.

IUCV PURGE can also be used to cancel a call, but it does not stop TCP/IP processing the same way as the
CANCEL call.

Each IUCV SEND operation that completes with condition code zero is assigned a unique message
identification number. This number is placed in the IUCV parameter list. To use the CANCEL or IUCV
PURGE functions, your program must keep track of the message ID numbers assigned to each socket
request.

Chapter 4. Inter-User Communication Vehicle Sockets 147

IUCV Socket Call Syntax

Each of the IUCV Socket calls described includes the C language syntax for the call. IUCV SEND
parameters and buffer contents are described using variable names from the C syntax. Call types are
in capital letters. For example, the accept call is ACCEPT.

The parameter lists for some C language socket calls include a pointer to a data structure defined by a C
structure. When using the IUCV socket interface, the contents of the data structure are passed in the send
buffer, the reply buffer, or both. Table 21 on page 148 shows the C structures used, and the corresponding
assembler language syntax.

Table 21. C Structures in Assembler Language Format

C Structure Assembler Language Equivalent
structure CertDataCompleteDetailType 1 CDRetCode DS F
int CDRetCode; CDRetCnt DS F
int CDRetCnt; CDDatalLen DS H
short CDDatalen; CDRes DS H
short CDRes; CDData DS x
char CDData[CDDatalLen]
58
where:
CDRetCode

Indicates the return code from the certificate request. Possible values:

0 - No errors

4021 - The partner value is not valid.

4023 - The partner certificate is not available.

4024 - The certificate does not contain any values.

4025 - The buffer length passed is too large.

4026 - The returned data will not fit in the provided buffer. Partial data is returned.
4027 - The passed buffer pointer is null.

4028 - The number of certificate fields requested (CDRegNum) is O.

4029 - The number of certificate fields requested (CDReqNum) is greater than 64.
4030 - The requested certificate field is not found.

4031 - The requested certificate field is not valid.

4032 - Both of these errors exist in the return data: A requested certificate field is not found and
a requested certificate field is not valid.

CDRetCnt

Is the number of certificate fields returned in CDData.
CDDatalLen

Is the length of the returned certificate data.

CDRes
Is reserved (will be 0).

148 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

CDData
Is requested data from the certificate. The format is as follows:

B e e +
| Len | Code | CertData | Len | Code | CertData.....
B R e R T T P P P +
where
Len

Is a halfword field that contains the total length of the item (Len+Code+CertData). The total of
all of the Len fields in the buffer is returned in CDDatalen.

Code
Is a halfword that contains the certificate field code (600-677).

CertData
Is the certificate data that corresponds to the requested code. Note that a single field could
appear multiple times in the returned buffer if more than one "answer" is valid.

X
Is the value that is specified for CDDatalen.

Usage Notes:

« Certificate fields will be placed in the CDData buffer in the order in which they appear in the
CertReqCodes input structure.

» The CDData buffer will contain as many certificate fields as will fit completely. If a requested certificate
field does not fit in the buffer, it will not be returned and subsequent fields in the CertReqCodes input
structure will also fail. CDRetCode will indicate that not all of the data will fit in CDData. CDRetCnt will
reflect the number of completed requests.

- If the requested field cannot be found in the certificate, CDData will contain a Len of 4 along with the
requested Code. No data will be returned. CDRetCode will be updated to indicate that one or more
fields are not present in the certificate.

structure CertReqDetailType { CexrtRegNum DS X
char CertReqNum; CertReqSide DS X
char CertReqSide; CertRegResl DS H
short CertReqRes1; CertRegRes2 DS F
int CertReqRes2; CertReqglLen DS F
int CertReqlLen; CertRegPtr DS F
int CexrtReqPtr; CertReqCodes DS 64H

short CertReqCodes[64];

Chapter 4. Inter-User Communication Vehicle Sockets 149

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

where:

CertReqNum

Is the number of certificate fields requested.
CertReqSide

Is O for local or 1 for partner.

CertReqRes1
Is reserved for future use and must be 0.

CertReqRes2
Is reserved for future use and must be 0.

CertReqLen
Is the length of the buffer (not to exceed 16K + 12).

CertReqPtr
Is a pointer to the returned CertDataCompleteDetailType structure for C programs. In the Assembler
case, this field is ignored.

150 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure

Assembler Language Equivalent

CertReqCodes

Is a list of requested certificate fields. The valid codes are:

600 - CERT_BODY_DER

601 - CERT_BODY_BASE64

602 - CERT_SERIAL_NUMBER

610 - CERT_COMMON_NAME

611 - CERT_LOCALITY

612 - CERT_STATE_OR_PROVINCE
613 - CERT_COUNTRY

614 - CERT_ORG

615 - CERT_ORG_UNIT

616 - CERT_DN_PRINTABLE

617 - CERT_DN_DER

618 - CERT_POSTAL_CODE

619 - CERT_EMAIL

620 - CERT_DOMAIN_COMPONENT
621 - CERT_SURNAME

622 - CERT_STREET

623 - CERT_TITLE

650 - CERT_ISSUER_COMMON_NAME
651 - CERT_ISSUER_LOCALITY

652 - CERT_ISSUER_STATE_OR_PROVINCE
653 - CERT_ISSUER_COUNTRY

654 - CERT_ISSUER_ORG

655 - CERT_ISSUER_ORG_UNIT

656 - CERT_ISSUER_DN_PRINTABLE
657 - CERT_ISSUER_DN_DER

658 - CERT_ISSUER_POSTAL_CODE
659 - CERT_ISSUER_EMAIL

660 - CERT_ISSUER_DOMAIN_COMPONENT
661 - CERT_ISSUER_SURNAME

662 - CERT_ISSUER_STREET

663 - CERT_ISSUER_TITLE

664 - CERT_NAME

665 - CERT_GIVENNAME

666 - CERT_INITIALS

667 - CERT_GENERATIONQUALIFIER
668 - CERT_DNQUALIFIER

669 - CERT_MAIL

670 - CERT_SERIALNUMBER

671 - CERT_ISSUER_NAME

672 - CERT_ISSUER_GIVENNAME
673 - CERT_ISSUER_INITIALS

674 - CERT_ISSUER_GENERATIONQUALIFIER
675 - CERT_ISSUER_DNQUALIFIER
676 - CERT_ISSUER_MAIL

677 - CERT_ISSUER_SERIALNUMBER

Chapter 4. Inter-User Communication Vehicle Sockets 151

Table 21. C Structures in Assembler Language Format (continued)

C Structure

Assembler Language Equivalent

struct clientid {
int domain;
char name[8];
char subtaskname[8];
char reserved[20];

DOMAIN DS F

NAME DS CL8
SUBTASK DS CL8
RESERVED DC XL20'00'

struct CloseReq [

short Closelen;

char CloseBuff[255];
iE

CloseLen DS H
CloseBuff DS CL255

where:

CloselLen

Is the length of the message in the CloseBuff buffer.

CloseBuff

Specifies a message to be sent to the partner over the encrypted connection before the SSL tunnel
is closed. The message indicates that the partner's very next step must be to issue the SioCSecClose
ioctl call to close the partner's side of the SSL tunnel and return to unencrypted communication.

struct ifconf { IFCLEN DS F
int ifc_len; IGNORED DS F
union §
caddr_t ifcu_buf;
struct ifreq xifcu_req;
t ifc_ifcu;
struct ifreq i NAME DS CL16
##define IFNAMSIZ 16 ADDR.FAMILY DS H
char ifr_name[IFNAMSIZ]; ADDR.PORT DS H
union % ADDR.ADDR DS F
struct sockaddr ifru_addr; ADDR.ZERO DC XL8'00'

struct sockaddr ifru_dstaddr;

ORG ADDR.FAMILY

struct sockaddr ifru_broadaddr; DST.FAMILY DS H
short ifru_flags; DST.PORT DS H
int ifru_metric; DST.ADDR DS F
caddr_t ifru_data; DST.ZERO DC XL8'00'
t ifr_ifru; ORG ADDR.FAMILY
3, BRD.FAMILY DS H
BRD.PORT DS H
BRD.ADDR DS F
BRD.ZERO DC XL8'00'
ORG ADDR.FAMILY
FLAGS DS H
ORG ADDR.FAMILY
METRIC DS F
struct linger { ONOFF DS F
int 1_onoff; LINGER DS F

int 1_linger;

i

152 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent
struct QueryTls { TLSLabel DS CL8
char TLSLabel[8]; TLSKeyring DS CL50

char TLSKeyring[50];
BE:

The QueryTLS call can determine whether the security server is available and if the security server
recognizes the TLSLabel. The call can include the following parameters:

TLSLabel
If the optional TLSLabel is specified, the call determines whether the security server recognizes the
TLSLabel.

TLSKeyring
Is not yet available. The value must be blank.

struct SecStatus { SeclLevel DS F
int Seclevel; CipherClass DS X
char CiphezxClass; CipherHash DS X
char CiphexHash; CipherAlgorithm DS X
char CipherAlgorithm; CipherPKAlgorithm DS X
char CipherPKAlgorithm; CipherKeylLength DS F

int CiphexKeylLength;

Chapter 4. Inter-User Communication Vehicle Sockets 153

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

where:
SeclLevel

0 - Not Secure
1 - Statically Secured
2 - Dynamically Secured

CipherClass

0 - NULLclass
1-SSLV2

2 -SSLV3
3-TLS

4 -TLS10
5-TLS11
6-TLS12

CipherHash

0 - SHA1
1-MD5
2 - NULL
3 - SHA2
4 - SHA256
5-SHA384

CipherAlgorithm

0 - NULL

2-RC4

4 - DES3

7 - AES

8 - AESGCM

9 - AES128

10 - AES128GCM
11 - AES256

12 - AES256GCM

CipherPKAlgorithm

0 - NULL

1-RSA

2 - DH_DSS
3-DH_RSA

4 - DHE_DSS

5 - DHE_RSA

6 - ECDH_ECDSA
7 - ECDHE_ECDSA
8 - ECDH_RSA

9 - ECDHE_RSA

154 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct SecureDetail { TLSLabel DS CL8
char TLSLabel[8]; TLStimeout DS F
int TLStimeout; requestClientCert DS X
char requestClientCert; validatePeerCert DS X
char validatePeerCert; cipher_request DS X
char cipher_request; version DS X
char version; keyring DS CL50
char keyring[50]; buflen DS H
short buflen; buffer DS CL255
char buffer[255]; DS XL3
struct SecureDetailExtension; validationFlags DS F

i validationLen DS F

validationBuffer DS CL512
struct SecureDetailExtension {
int validationFlags
int validationLen
char validationBuffer([512];
G2

Chapter 4. Inter-User Communication Vehicle Sockets 155

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent
where:
TLSLabel
Is the label associated with the certificate in the certificate database.
TLStimeout

Is not yet available. The value must be 0.

requestClientCert
See validatePeerCert.

validatePeerCert
The requestClientCert and validatePeerCert flags are used in combination to determine the level of
client certificate checking that will be done during a secure server call. The level and the flag settings
are as follows:

None
A client certificate will not be requested.

requestClientCert = 0O
validatePeerCert =1
Preferred

A client certificate is requested. If a client certificate is not received, the connection will proceed
without it. If a client certificate is received, it will be authenticated. If the client certificate is

not valid, the failure will be logged in the SSL console log and the connection will continue as a
secure connection protected by the server certificate.

requestClientCert = 1
validatePeerCert =1
Required

A client certificate will be authenticated. If a client certificate is not received, the connection will
be terminated with a fatal TLS error. If the certificate fails authentication, the handshake will fail.

requestClientCert = 1
validatePeerCert = 0

Note: For a secure client call, the server certificate is always validated. Set these flags to indicate a
level of None.

cipher_request
Indicates whether SSL V2 will be used. Possible values:

0 - The default cipher suite values will be used.
1 - The client does not want to use SSL V2.

version
When set to 0, the SecDetailExt is not passed on the call.

When set to 1, the SecDetailExt is filled in and passed on the call to tell the SSL/TLS server to
compare the passed-in host name, domain name, or IP address against the server certificate. A
value of 1 is valid only when securing the client side of the connection.

keyring
Is not yet available. The value must be blank.

156 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

buffer
Contains the string that the SSL server will send out on the connection before waiting for the
handshake. After this command is sent, the initiation of the handshake is expected on the
connection. If an empty buffer is sent, a READYforHANDSHAKE notification will be sent to indicate
that this side of the connection is waiting for the handshake.

ValidationFlags
Possible values:

0 indicates not required. If the validation text does not match what is in the server certificate, the
mismatch will be logged and the handshake will continue.

1 indicates required. At least one of the specified validation items must match what is in the
server certificate. If there are no matching items, the handshake will fail.

ValidationLen
Is the total length of the validation buffer.

ValidationBuffer
Contains multiple items to validate against the certificate. Each item is in the following format:

The total length of all items (Len+Type+Text) must not exceed 512 bytes.

Len
A halfword field that contains the total length of the item (Len+Type+Text). The total of all of the
Len fields in the buffer should equal ValidationLen.
Type
A halfword field that contains the type of the Text data. Possible values:
0 indicates an IPv4 address in integer format with 4-byte hexadecimal representation. For
example: 093C1C66.
1 indicates an IPv6 address in integer format with 16-byte hexadecimal representation. For
example: 50C6 C2C1 0000 0000 OOO9 0060 0028 0102.
2 indicates a fully-qualified domain name (FQDN) in EBCDIC format.
3 indicates a host name in EBCDIC format.
4 indicates an IPv4 address in dotted decimal format. For example: 9.60.28.102.

5 indicates an IPv6 address in dotted decimal format. For example:
50C6:C2C1::9.60.28.102.

Text
The string that is compared to the common name, domain name, or in a subject alternate name
extension marked as an IP address in the server certificate.

Note: When Version is 1, the caller must allocate and send the full length of the ValidationBuffer (512
bytes) even though it might be partially filled in.

Handshake Complete

The SecureHSCompleteDetailType structure contains the result of the handshake request. For a blocking
socket, the SecureHSCompleteDetailType structure is returned in the ErrNo field. An ErrNo of O indicates
a successful completion. A non-blocking socket is woken up for write or exception. If the socket is
woken up for write, it is assumed that the SecureHSCompleteDetailType structure contains all 0's and

is not returned. If the socket is woken up for exception, the SecureHSCompeteDetailType structure is
returned in the ErrNo field on the subsequent read and provides the details of the handshake failure.

Refer to the SecureHSCompleteDetailType structure for details.

Chapter 4. Inter-User Communication Vehicle Sockets 157

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent
struct SecureHSCompleteDetailType $ ReturnCode DS X
char ReturnCode; Alertlevel DS X
char AlertlLevel; AlertDescription DS XL2

short AlertDescription;

’

where:

ReturnCode
Indicates the status of the handshake.

0 - NOALERT - The handshake completed successfully.
1 - ALERT - Problems were encountered during the handshake.
2 - TIMEOUT - The handshake did not complete within the time allotted.

AlertLevel
When the ReturnCode is ALERT, this classifies the level of the alert:

0 - AlertOK
1 - Warning
2 - Fatal

AlertDescription
When ReturnCode is ALERT, this field contains the details of the failure. An AlertDescription value in
the 4000 range indicates an SSL server error as follows:

4001 - The type is not valid.

4002 - The integer format of the IP address is not valid.

4003 - ValidationBuffer is too long.

4004 - Len is either too big or extends beyond the buffer.

4005 - The maximum number of validation fields has been exceeded.
4006 - The dotted decimal format of the IPv4 address is not valid.
4007 - The dotted decimal format of the IPv6 address is not valid.
4008 - Validation of a host name or fully-qualified domain name failed.
4009 - Validation of an IPv4 or IPv6 address failed.

4010 - Validation failed.

An AlertDescription value in the 40000 range indicates a System SSL error. Subtract 40000 from
the AlertDescription value and refer to Messages and codes in z/OS Cryptographic Services System
Secure Sockets Layer Programming (publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf) for details.

struct sockaddr_in { FAMILY DS H
short sin_family; PORT DS H
ushort sin_port; ADDR DS F
struct in_addr sin_addr; ZERO DC XL8'00'
char sin_zero[8];

G2

struct sockaddr_in6 { FAMILY DS H
short sin6_family; PORT DS H
ushort siné6_port; FLOWINFO DS F
uint sin6_flowinfo; ADDR6 DS 4F
struct in6_addr siné6_addr; SCOPEID DS F
uint sin6_scope_id;

it

158 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/sssl2msg1000613.htm
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf

ACCEPT

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent
struct timeval { TVSEC DS F
long tv_sec; TVUSEC DS F

long tv_usec;

IUCV Socket Calls

This section provides the C language syntax, parameters, and other information about each IUCV socket
call supported by TCP/IP. For information about C socket calls, see Chapter 1, “ z/VM C Socket Application
Programming Interface,” on page 1.

Note: In the following socket descriptions, structures labelled For AF_INET: are for the AF_INET address
family and structures labelled For AF_INET6: are for the AF_INET6 address family.

ACCEPT

The ACCEPT call is issued when the server receives a connection request from a client. ACCEPT points
to a socket that was created with a socket call and marked by a LISTEN call. ACCEPT can also be used
as a blocking call. Concurrent server programs use the ACCEPT call to pass connection requests to child
servers.

When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections

2. Creates a new socket with the same properties as the socket used in the call and returns the address
of the client for use by subsequent server calls. The new socket cannot be used to accept new
connections, but can be used by the calling program for its own connection. The original socket
remains available to the calling program for more connection requests.

3. Returns the new socket descriptor to the calling program.
For AF_INET:

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr_in *addr;

int xaddrlen;

For AF_INET6:

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr_in6é xaddr;
int *addrlen;

Keyword
Value

TRGCLS
High-order halfword = 1

Low-order halfword =s

DATA
PRMMSG

PRMMSG
High-order fullword =0

Low-order fullword = socket number for the new socket, chosen by your program, in the range 0
through maxsock. If you wish the stack to choose an available socket number for you, specify any

Chapter 4. Inter-User Communication Vehicle Sockets 159

BIND

negative value (bit 0 is 1). See “Initializing the IUCV Connection” on page 143 for more information on
maxsock.

ANSLEN
For AF_INET: 24

For AF_INET6: 36

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 ns 4 The new socket number assigned to this connection.
A value of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When ns is -1, this field contains a reason code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *addr For AF_INET: The remote address and port of the new socket. See
16 Table 21 on page 148 for format.
For
AF_INET6:
28
BIND
In a typical server program, the BIND call follows a SOCKET call and completes the new socket creation
process.

The BIND call can either specify the port or let the system choose the port. A listener program should
always bind to the same well-known port so that clients know what socket address to use when issuing a
CONNECT call.

For AF_INET:

rc = bind(s, name, namelen)
int rc, s;

struct sockaddr_in *name;
int namelen;

For AF_INET6:

rc = bind(s, name, namelen)
int rc, s;

struct sockaddr_in6 *name;
int namelen;

Keyword
Value

TRGCLS
High-order halfword = 2

Low-order halfword = s

DATA
BUFFER

BUFLEN
For AF_INET: 16

For AF_INET6: 28

160 z/VM: 7.3 TCP/IP Programmer's Reference

CANCEL

BUFFER
Points to a buffer in the following format:
Offset Name Length Comments
0 *name For AF_INET: The local address and port to which the socket is to be
16 bound. See Table 21 on page 148 for format.
For
AF_INET6:
28
ANSLEN
8
ANSBUF
Points to a buffer to contain the reply from TCP/IP:
Offset Name Length Comments
0 rc 4 The return code from the BIND call. A return code of O

indicates that the call was successful. A return code of
-1 indicates that the function could not be completed
and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

CANCEL and CANCEL2

The CANCEL and CANCEL?2 calls are used to cancel a previously issued socket call. For the CANCEL
call, TCP/IP responds to the canceled call with a return code of -1 and an errno value of 1009. For the
CANCEL2 call, TCP/IP does not send a response to the canceled call.

Keyword
Value

TRGCLS
High-order halfword = 42 (CANCEL)

High-order halfword = 43 (CANCEL2)
Low-order halfword = Low-order halfword of TRGCLS from call to be canceled.

DATA
PRMMSG

PRMMSG
High-order fullword = High-order halfword of TRGCLS from call to be canceled.

Low-order fullword = IUCV message ID of call to be canceled.

ANSLEN
8
ANSBUF
Points to a buffer to contain the reply from TCP/IP:
Offset Name Length Comments
0 rc 4 The return code from the CANCEL call. A return code

of 0 indicates that the call was successful. A return
code of -1 indicates that the function could not be
completed and that errno contains a reason code.

Chapter 4. Inter-User Communication Vehicle Sockets 161

CLOSE

Offset Name Length Comments

4 errno 4 When the return code is -1, this field contains a reason
code. Possible errno values are:
3

Specifies that the call cannot be found. TCP/IP
might have already responded to it.

22
Specifies that the call is not a type that may be
canceled.

CLOSE
The CLOSE call shuts down the socket and frees the resources that are allocated to the socket.

rc = close(s)
int rc, s;

Keyword
Value

TRGCLS
High-order halfword = 3

Low-order halfword =s

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
8

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the CLOSE call. A return code of O
indicates that the call was successful. A return code of
-1 indicates that the function could not be completed
and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.
CONNECT
The CONNECT call is used by a client to establish a connection between a local socket and a remote
socket.

For stream sockets, the CONNECT call:

« Completes the binding process for a stream socket if a BIND call has not been previously issued.

« Attempts a connection to a remote socket. This connection must be completed before data can be
transferred.

For datagram sockets, a CONNECT call is not essential, but you can use it to send messages without
including the destination.

162 z/VM: 7.3 TCP/IP Programmer's Reference

FCNTL

For AF_INET:

rc = connect(s, name, namelen)
int rc, s;

struct sockaddr_in xname;

int namelen;

For AF_INET6:

rc = connect(s, name, namelen)
int rc, s;

struct sockaddr_iné *name;

int namelen;

Keyword
Value

TRGCLS
High-order halfword = 4

Low-order halfword = s

DATA
BUFFER

BUFLEN
For AF_INET: 16

For AF_INET6: 28

BUFFER
Points to a buffer in the following format:

Offset Name Length Comments
0 *name For AF_INET: The remote address and port to which the socket is to
16 be connected. See Table 21 on page 148 for format.
For
AF_INET6:
28
ANSLEN
8
ANSBUF
The pointer to the buffer that is filled with a reply in the following format:
Offset Name Length Comments
0 rc 4 The return code from the CONNECT call. A return code

of 0 indicates that the call was successful. A return
code of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

FCNTL
The blocking mode for a socket can be queried or set using the FNDELAY flag described in the FCNTL call.

See “IOCTL” on page 170 for another way to control blocking for a socket.

retval = fcntl(s, cmd, arg)
int retval;
int s, cmd, arg;

Chapter 4. Inter-User Communication Vehicle Sockets 163

GETCLIENTID

Keyword
Value

TRGCLS
High-order halfword = 5

Low-order halfword = s

DATA
PRMMSG
PRMMSG
High-order fullword:
F GETFL (X'00000003"
F SETFL (X'00000004"

The low-order fullword is used only for the F_SETFL command:

Zero (X '00000000'") Socket will block
FNDELAY (X'00000004") Socket is non-blocking
ANSLEN
8
ANSBUF
Points to a buffer that is filled with a reply in the format described as follows:
Offset Name Length Comments
0 retval 4 For F_SETFL, the return code. A value of zero indicates

FNDELAY flag was set. For F_GETFL, the value of

the FNDELAY flag. Zero means the socket will block.

A value of FNDELAY (4) means the socket is non-
blocking. A return code of -1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

GETCLIENTID

The GETCLIENTID call returns the identifier by which the calling application is known to the TCPIP
address space. The client ID structure that is returned is used in the GIVESOCKET and TAKESOCKET calls.

rc = getclientid(domain, clientid)
int rc, domain;
struct clientid *clientid;

Keyword
Value

TRGCLS
High-order halfword = 30

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

164 z/VM: 7.3 TCP/IP Programmer's Reference

GETHOSTID

ANSLEN
48
ANSBUF
Points to the buffer that is filled with a reply in the following format:
Offset Name Length Comments
0 rc 4 The return code from the GETCLIENTID call. A return

code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *clientid 40 See Table 21 on page 148 for format.

Note: domain is not passed to TCP/IP. It is implicitly AF_INET.

GETHOSTID

The GETHOSTID call gets the unique 32-bit identifier for the current host. This value is the default home
internet address.

hostid = gethostid
unsigned long hostid;

Keyword
Value

TRGCLS
High-order halfword =7

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 hostid 4 The default home internet address.

4 4 Your program should ignore this field.

GETHOSTNAME

The GETHOSTNAME call returns the name of the host processor on which the program is running. Up to
namelen characters are copied into the name field.

rc = gethostname(name, namelen)
int rc;

char xname;

int namelen;

Chapter 4. Inter-User Communication Vehicle Sockets 165

GETPEERNAME

Keyword
Value

TRGCLS
High-order halfword = 8
Low-order halfword =0
DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
namelen + 8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GETHOSTNAME call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *name namelen The host name, not null-terminated.
GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local socket is connected.
For AF_INET:

rc = getpeername(s, name, namelen)
int rc, s;

struct sockaddr_in *name;

int xnamelen;

For AF_INET6:

rc = getpeername(s, name, namelen)
int rc, s;

struct sockaddr_in6 xname;

int *namelen;

Keyword
Value

TRGCLS
High-order halfword =9

Low-order halfword =s

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
For AF_INET: 24

166 z/VM: 7.3 TCP/IP Programmer's Reference

GETSOCKNAME

For AF_INET6: 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GETPEERNAME call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *name For AF_INET: The remote address and port to which the socket is
16 connected. See Table 21 on page 148 for format.
For
AF_INET6:
28
GETSOCKNAME

The GETSOCKNAME call stores the name of the socket into the structure pointed to by the name
parameter and returns the address to the socket that has been bound. If the socket is not bound to
an address, the call returns with the family field completed and the rest of the structure set to zeros.

For AF_INET:

rc = getsockname(s, name, namelen)
int rc, s;

struct sockaddr_in *name;

int xnamelen;

For AF_INET6:

rc = getsockname(s, name, namelen)
int rc, s;

struct sockaddr_in6é *name;

int xnamelen;

Keyword
Value

TRGCLS
High-order halfword = 10

Low-order halfword = s

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
For AF_INET: 24

For AF_INET6: 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Chapter 4. Inter-User Communication Vehicle Sockets 167

GETSOCKOPT

Offset Name Length Comments

0 rc 4 The return code from the GETSOCKNAME call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *name For AF_INET: The local address and port to which the socket is
16 bound. See Table 21 on page 148 for format.
For
AF_INET6:
28
GETSOCKOPT

The GETSOCKOPT call returns the current setting of an option for a specific socket. Some of these options
are under program control and can be changed using the SETSOCKOPT call.

rc = getsockopt(s, level, optname, optval, &optlen)
int rc, s, level, optname, optlen;
char *optval;

Keyword
Value

TRGCLS
High-order halfword =11

Low-order halfword =s

DATA
PRMMSG
PRMMSG
High-order fullword = level. Possible values are:
Value C Symbol Comments
X'FFFF' SOL_SOCKET Socket option
X'0006' IPPROTO_TCP TCP protocol option

Low-order fullword = optname. Possible values are:

Value Option Name Returned Value

X'0001" SO_DEBUG Returns current setting.

X'0004' SO_REUSEADDR Returns current setting.

X'0008' SO_KEEPALIVE Returns current setting.

X'0010' SO_DONTROUTE Returns current setting.

X'0020' SO_BROADCAST Returns current setting.

X'0080' SO_LINGER Returns current setting in a C language struct linger.
See Table 21 on page 148 for the assembler language
equivalent.

168 z/VM: 7.3 TCP/IP Programmer's Reference

GIVESOCKET

Value Option Name Returned Value
X'0100' SO_OOBINLINE Returns current setting.
X'1001" SO_SNDBUF Returns the size of the TCP/IP send buffer.
X'1007' SO_ERROR Returns any pending error code and clears any error
status conditions.
X'1008' SO_TYPE Socket type is returned:
Value
Type
1
Stream
2
Datagram
3
Raw
X'0001" TCP_NODELAY Returns current setting.

Note: This option applies only to level=IPPROTO_TCP

ANSLEN
16 for option SO_LINGER, 12 for all other options
ANSBUF
Points to a buffer to contain the reply from TCP/IP:
Offset Name Length Comments
0 rc 4 The return code from the GETSOCKOPT call. A return

code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *optval 40r8 The value of the requested option. If the option
SO_LINGER was requested, 8 bytes are returned. For
all other options, 4 bytes are returned.

GIVESOCKET

The GIVESOCKET call makes the socket available for a TAKESOCKET call issued by another program. The
GIVESOCKET call can specify any connected stream socket. Typically, the GIVESOCKET call is issued by a
concurrent server program that creates sockets to be passed to a child server.

The GIVESOCKET sequence is:

 To pass a socket, the concurrent server first calls GIVESOCKET. If the optional parameters, name of the
child server's virtual machine and subtask ID are specified in the GIVESOCKET call, only a child with a
matching virtual machine and subtask ID can take the socket.

« The concurrent server then starts the child server and passes it the socket descriptor and concurrent
server’s ID that were obtained from earlier SOCKET and GETCLIENTID calls.

« The child server calls TAKESOCKET, with the concurrent server’s ID and socket descriptor.

Chapter 4. Inter-User Communication Vehicle Sockets 169

IOCTL

« The concurrent server issues the select call to test the socket for the exception condition,
TAKESOCKET completion.

« When the TAKESOCKET has successfully completed, the concurrent server issues the CLOSE call to free
the socket.

rc = givesocket(s, clientid)
int rc, s;
struct clientid xclientid;

Keyword
Value

TRGCLS
High-order halfword = 31

Low-order halfword =s

DATA
BUFFER

BUFLEN
40

BUFFER
Points to the message in the following format:

Offset Name Length Comments

0 *clientid 40 See Table 21 on page 148 for format.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GIVESOCKET call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

IOCTL

The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL call, you must load a value representing the characteristic that you want to
control into the cmd field.

rc = ioctl(s, cmd, arg)
int rc, s;

unsigned long cmd;

char xarg;

Keyword
Value

TRGCLS
High-order halfword = 12

Low-order halfword =s

170 z/VM: 7.3 TCP/IP Programmer's Reference

I0CTL

DATA
BUFFER
BUFLEN
Request arg length + 4
BUFFER
The pointer to the message in the format described in the following format:
Offset Name Length Comments
0 cmd 4 The type of request. See Table 22 on page 171 for
values.
4 *arg See Table 22 The request data, if any.
on page 171.
ANSLEN
Reply arg length + 8
ANSBUF
The pointer to the buffer that is filled with a reply in the following format:
Offset Name Length Comments
0 rc 4 A return code of 0 indicates that the call was
successful. A return code of -1 indicates that the
function could not be completed and that errno
contains a reason code.
4 errno 4 When the return code is -1, this field contains a reason
code.
Note: The rest of the reply buffer is filled only if the call
was successful.
8 *arg See Table 22 The response data, if any.

on page 171.

Table 22. Values for cmd Argument in ioctl Call

Request Reply arg

C Symbol Value arg Length Length Comments

FIONBIO X'8004A77E' 4 0 Request arg data is a fullword
integer.

FIONREAD X'4004A77F 0 4 Reply arg data is a fullword
integer.

SIOCADDRT X'8030A70A' 48 0 For IBM use only.

SIOCATMARK X'4004A707' 0 4 Reply arg data is a fullword
integer.

SIOCDELRT X'8030A70B' 48 0 For IBM use only.

Chapter 4. Inter-User Communication Vehicle Sockets 171

IOCTL

Table 22. Values for cmd Argument in ioctl Call (continued)

Request Reply arg
C Symbol Value arg Length Length Comments

SIOCGCERTDATA X'C090DAO07' 144 * arg data is the C language
struct CertReqgDetailType
for the request and
CertDataCompleteDetailType for
the reply. See Table 21 on page
148 for the assembler language
equivalent.

For more information, see
“Requesting Details from a
Partner Certificate” on page 22.

* Length of
CertDataCompleteDetailType

SIOCGIBMIFMTU X'C020D903' 32 32 For IBM use only.
SIOCGIBMOPT X'C048D900' 72 * For IBM use only.
SIOCGIFADDR X'C020A70D' 32 32 arg data is the C language struct

ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFBRDADDR X'C020A712' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFCONF X'CO08A714' 8 * Request arg data is the C-
language struct ifconf. See Table
21 on page 148 for the
assembler language equivalent.
Your program sets ifc_len to the
reply length. The other field is
ignored. Response arg data is an
array of C language struct ifreq
structures, one for each defined
interface.

Note: * = the maximum number
of interfaces multiplied by 32.

SIOCGIFDSTADDR X'C020A70F! 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFFLAGS X'C020A711" 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFMETRIC X'C020A717' 32 32 For IBM use only.

172 z/VM: 7.3 TCP/IP Programmer's Reference

LISTEN

Table 22. Values for cmd Argument in ioctl Call (continued)

Request Reply arg
C Symbol Value arg Length Length Comments

SIOCGIFNETMASK X'C020A715' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCSECCLIENT X'8143DA01" 323 0 arg datais the C language struct
SecureDetail. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSECCLOSE X'8101DA04" 257 0 arg data is the C language
struct CloseReq. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSECERT X'8008DA06' 8 * For IBM use only.

SIOCSECSERVER X'8143DA02' 323 0 arg data is the C language struct
SecureDetail. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSECSTATUS X'400CDAO5' 0 12 arg datais the C language struct
SecStatus. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSIBMOPT X'8048D900" * 0 For IBM use only.
SIOCSIFDSTADDR X'8020A70E' 32 0 For IBM use only.
SIOCSIFFLAGS X'8020A710" 32 0 For IBM use only.
SIOCSIFMETRIC X'8020A718' 32 0 For IBM use only.
SIOCTLSQUERY X'803ADA03' 58 0 arg data is the C language
struct QueryTLS. See Table 21 on
page 148 for assembler language
equivalent. 1
LISTEN

The LISTEN call:

« Completes the bind, if BIND has not already been called for the socket.
« Creates a connection-request queue of a specified length for incoming connection requests.

The LISTEN call is typically used by a concurrent server to receive connection requests from clients. When
a connection request is received, a new socket is created by a later ACCEPT call. The original socket
continues to listen for additional connection requests. The LISTEN call converts an active socket to a
passive socket and configures it to accept connection requests from client programs. If a socket is passive
it cannot initiate connection requests.

1 For additional information on using secure ioctls, refer to “Secure Connection Considerations” on page 21.

Chapter 4. Inter-User Communication Vehicle Sockets 173

MAXDESC

rc = listen(s, backlog)
int rc, s, backlog;

Keyword
Value

TRGCLS
High-order halfword = 13

Low-order halfword =s

DATA
PRMMSG

PRMMSG
High-order fullword =0

Low-order fullword = backlog

ANSLEN
8
ANSBUF
Points to the buffer that is filled with a reply in the following format:
Offset Name Length Comments
0 rc 4 The return code from the LISTEN call. A return code

of 0 indicates that the call was successful. A return
code of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

MAXDESC

Your program specifies the maximum number of Internet domain (AF_INET and AF_INET6) sockets in the
initialization message. For more information about the initialization message, see “Initializing the IUCV
Connection” on page 143.

READ, READV

From the point of view of TCP/IP, the READ and READV calls are identical. From the point of view of the
application, they differ only in that the buffer for READ is contiguous in storage, while the buffer for READV
might not be contiguous.

Your program, utilizing the direct IUCV socket interface, can use the ANSLIST=YES parameter on IUCV

SEND to specify a noncontiguous READ buffer. You can choose to use ANSLIST=YES even if your READ
buffer is contiguous, so that the reply area for cc and errno need not adjoin the READ buffer in storage.

This section does not distinguish between READ and READV. IUCV usage is described in terms of variable
names from the C language syntax of READ.

cc = read(s, buf, len)
int cc, s;

char xbuf;

int len;

Keyword
Value

TRGCLS
High-order halfword = 14

Low-order halfword = s

174 z/VM: 7.3 TCP/IP Programmer's Reference

RECV, RECVFROM, RECVMSG

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
For AF_INET: len + 24

For AF_INET6: len + 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes read. A value of zero means
the partner has closed the connection. A value of -1
indicates that the function could not be completed and
that errno contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 For AF_INET: Your program should ignore this field.
16

For
AF_INET6:
28

24 *buf len The received data.

RECV, RECVFROM, RECVMSG
From the point of view of TCP/IP, the RECV, RECVFROM, and RECVMSG calls are identical.

From the point of view of the application, RECVFROM differs from RECV in that RECVFROM additionally
provides the source address of the message. Your program, using the direct IUCV socket interface, must
provide space to receive the source address of the message, even if the source address is not required.

From the point of view of the application, RECVMSG differs from RECVFROM in that RECVMSG additionally
allows the buffer to be in noncontiguous storage. Your program, utilizing the direct IUCV socket interface,
can use the ANSLIST=YES parameter on IUCV SEND to specify a noncontinuous read buffer. You can
choose to use ANSLIST=YES even if your read buffer is contiguous, so that the reply area for cc and errno,
and the space to receive the source address of the message, need not adjoin the read buffer in storage.

For AF_INET:

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char xbuf;

int len, flags;

struct sockaddr_in *from;

int xfromlen;

For AF_INET6:

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char xbuf;

int len, flags;

struct sockaddr_in6 *from;

int xfromlen;

Chapter 4. Inter-User Communication Vehicle Sockets 175

SELECT, SELECTEX

Keyword
Value

TRGCLS
High-order halfword = 16

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword = 0.

Low-order fullword = flags:

MSG_OO0B (X'00000001")
MSG_PEEK (X'00000002")
ANSLEN
For AF_INET: len + 24
For AF_INET®6: len + 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes read. A value of zero indicates
that communication is closed. A value of -1 indicates
that the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *from For AF_INET: The source address and port of the message. See Table
16 21 on page 148 for format.
For
AF_INET6:
28
24 *buf len The received data.

SELECT, SELECTEX

From the point of view of the TCP/IP, the SELECT and SELECTEX calls are identical. From the point of view
of the application, they differ in that return from SELECTEX can be triggered by the posting of an ECB as
well as the selection of a descriptor or a time-out.

Multiple SELECT calls, referring to any combination of sockets, can be queued simultaneously on an IUCV
path.

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set *readfds, xwritefds, xexceptfds;

struct timeval *timeout;

Descriptor Sets

A descriptor set is an array of fullwords. The following is the required array size in integer arithmetic:

176 z/VM: 7.3 TCP/IP Programmer's Reference

SELECT, SELECTEX

number_of_fullwords = (nfds + 31) / 32
number_of_bytes = number_of_fullwords * 4

DESCRIPTOR_SET, FD_CLR, FD_ISSET Calls

The following describes how to perform the function of these C language calls, which set, clear, and test
the bit in the specified descriptor set corresponding to the specified descriptor number.

You can compute the offset of the fullword containing the bit (integer arithmetic) as follows:

offset = (descriptor_number [32) * 4

Compute a mask to locate the bit within the fullword by:

bitmask = X'00000001' << (descriptor_number modulo 32)

(“<<” is the left-shift operator).

Then use the mask, or a complemented copy of the mask, to set, clear, or test the bit, as appropriate.

The IUCV SEND parameters particular to select are:

Keyword
Value
TRGCLS
High-order halfword = 19

Low-order halfword = descriptor set size in bytes (fdsize). See “Descriptor Sets” on page 176.

DATA

BUFFER
BUFLEN

(3*fdsize)+28
BUFFER

The pointer to the message in the following format:

Offset Name Length Number of file descriptors

0 nfds 4 To improve processing efficiency, nfds should be no

greater than one plus the largest descriptor number
actually in use.

4 4 Set this field to zero if you want select to block.
Otherwise set this field to any nonzero value and fill in
*timeval.

8 4 If any descriptor bits are set in readfds, your program

sets this field to a nonzero value. If no descriptor bits
are set in readfds, your program can set this field to
zero, to improve processing efficiency

12 4 If any descriptor bits are set in writefds, your program
sets this field to a nonzero value. If no descriptor bits
are set in writefds, your program can set this field to
zero to improve processing efficiency.

16 4 If any descriptor bits are set in exceptfds, your
program sets this field to a nonzero value. If no
descriptor bits are set in exceptfds your program can
set this field to zero to improve processing efficiency.

20 *timeval 8 See Table 21 on page 148 for format. If field at offset
4 is zero, then set this field to binary zeros.

Chapter 4. Inter-User Communication Vehicle Sockets 177

SEND

Offset Name Length Number of file descriptors
28 *readfds fdsize If field at offset 8 is zero, then this field is not used.
28 + *writefds fdsize If field at offset 12 is zero, then this field is not used.
fdsize
28+ (2* “*exceptfds fdsize If field at offset 16 is zero, then this field is not used.
fdsize)
ANSLEN
(3*fdsize)+16
ANSBUF
The pointer to the buffer that is filled in with a reply in the following format:
Offset Name Length Comments
0 nfound 4 The total number of ready sockets (in all bit masks).

A value of zero indicates an expired time limit. A
value of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When nfound is -1, this field contains a reason code.

8 8 Your program ignores this field.

Note: The rest of the reply buffer is filled only if the
call was successful.

16 *readfds fdsize If field at offset 8 in request data was zero, then
your program ignores this field.

16 + fdsize *writefds fdsize If field at offset 12 in request data was zero, then
your program ignores this field.

16 +(2* *exceptfds fdsize If field at offset 16 in request data was zero, then

fdsize) your program ignores this field.

SEND

The SEND call sends datagrams on a specified connected socket.
The flags field allows you to:

- Send out-of-band data, for example, interrupts, aborts, and data marked urgent.

« Suppress use of local routing tables. This implies that the caller takes control of routing, writing network
software.

For datagram sockets, the entire datagram is sent if the datagram fits into the buffer. Excess data is
discarded.

For stream sockets, data is processed as streams of information with no boundaries separating data the
data. For example, if a program is required to send 1000 bytes, each call to this function can send any
number of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in errno Therefore,
programs using stream sockets should place this call in a loop, reissuing the call until all data has been
sent.

cc = send(s, msg, len, flags)
int cc, s;

char *msg;

int len, flags;

Keyword
Value

178 z/VM: 7.3 TCP/IP Programmer's Reference

SENDMSG

TRGCLS
High-order halfword = 20

Low-order halfword =s

BUFLEN
For AF_INET: len + 20

For AF_INET6: [en + 32

DATA
BUFFER
BUFFER
The pointer to the message in the following format:
Offset Name Length Comments
0 flags 4 MSG_0OB (X'00000001")
MSG_DONTROUTE (X'00000004")
4 For AF_INET: Your program should set this field to binary zeros.
16
For
AF_INET6:
28
20 *msg len The data to be sent.
ANSLEN
8
ANSBUF
The pointer to the buffer that is filled in with a reply in the following format:
Offset Name Length Comments
0 cc 4 The number of bytes sent. A value of -1 indicates that

the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

SENDMSG

From the point of view of TCP/IP, the SENDMSG call with a null msg->msg_name parameter is identical to
the SEND call. Similarly, the SENDMSG call with a non-null msg->msg_name parameter is identical to the
SENDTO call.

From the point of view of the application, SENDMSG differs from SEND and SENDTO in that SENDMSG
additionally allows the write buffer to be in noncontiguous storage.

Your program, using the direct IUCV socket interface can use the BUFLIST=YES parameter on IUCV SEND
to specify a noncontiguous write buffer. You can choose to use BUFLIST=YES even if your write buffer is
contiguous, so that the fields preceding the write data in the request format need not adjoin the write data
in storage.

See “SEND” on page 178 and “SENDTO” on page 180 for more information.

Chapter 4. Inter-User Communication Vehicle Sockets 179

SENDTO

SENDTO

SENDTO is similar to SEND, except that it includes the destination address parameter. You can use the
destination address on the SENDTO call to send datagrams on a UDP socket that is connected or not
connected.

Use the flags parameter to :

- Send out-of-band data such as, interrupts, aborts, and data marked as urgent.

« Suppress the local routing tables. This implies that the caller takes control of routing, which requires
writing network software.

For datagram sockets, the SENDTO call sends the entire datagram if the datagram fits into the buffer.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each SENDTO call can send any number of
bytes, up to the entire 1000 bytes, with the number of bytes sent returned in errno. Therefore, programs
using stream sockets should place SENDTO in a loop that repeats the call until all data has been sent.

For AF_INET:

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char xmsg;

int len, flags;

struct sockaddr_in *to;

int tolen;

For AF_INET6:

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char xmsg;

int len, flags;

struct sockaddr_iné xto;

int tolen;

Keyword
Value

TRGCLS
High-order halfword = 22

Low-order halfword =s

DATA
BUFFER

BUFLEN
For AF_INET: len + 20

For AF_INET6: [en + 32

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments

0 flags 4 MSG_0OB (X'00000001")

MSG_DONTROUTE (X'00000004")

4 *to For AF_INET: See Table 21 on page 148 for format.
16

For
AF_INET6:
28

180 z/VM: 7.3 TCP/IP Programmer's Reference

SETSOCKOPT

Offset Name Length Comments

20 *msg len The data to be sent.
ANSLEN

8
ANSBUF

The pointer to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of -1 indicates that

the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket.

rc = setsockopt(s, level, optname, optval, optlen)
int rc, s, level, optname;

char *optval;

int optlen;

Keyword
Value

TRGCLS
High-order halfword = 23

Low-order halfword = s

DATA
BUFFER
BUFLEN
16 for option SO_LINGER, 12 for all other options
BUFFER
Points to a buffer in the following format:
Offset Name Length Comments
0 level 4 X'FFFF' - SOL_SOCKET - Socket option

X'0006' - IPPROTO_TCP - TCP protocol option

4 optname 4 Option to set. See Table 23 on page 181 for values.

8 *optval 40r8 The value of the specified option. If the option
SO_LINGER is specified, 8 bytes are needed. For all
other options, 4 bytes are needed.

Table 23. Option name values for SETSOCKOPT

Value Option Name Option Value

X'0001' SO_DEBUG On (1) or Off (0). Option may be set, but has no effect.
X'0004' SO_REUSEADDR Yes (1) or No (0).

X'0008' SO_KEEPALIVE Yes (1) or No (0).

X'0010' SO_DONTROUTE Yes (1) or No (0). Option may be set, but has no effect. Use

MSG_DONTROUTE on write-type calls instead.

Chapter 4. Inter-User Communication Vehicle Sockets 181

SHUTDOWN

Table 23. Option name values for SETSOCKOPT (continued)

Value Option Name Option Value
X'0020' SO_BROADCAST Yes (1) or No (0).
X'0080' SO_LINGER Value is a C language struct linger. See Table 21 on page 148 for the

assembler language equivalent.

X'0100' SO_OOBINLINE Yes (1) or No (0).
Note: The following option applies only to level=IPPROTO_TCP

X'0001' TCP_NODELAY Yes (1) or No (0).
ANSLEN
8
ANSBUF
Points to a buffer to contain the reply from TCP/IP:
Offset Name Length Comments
0 rc 4 The return code from the SETSOCKOPT call. A return

code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

SHUTDOWN

The normal way to terminate a network connection is to issue the CLOSE call which attempts to complete
all outstanding data transmission requests prior to breaking the connection. The SHUTDOWN call can be
used to close one-way traffic while completing data transfer in the other direction. The how parameter
determines the direction of the traffic to shutdown.

A client program can use the SHUTDOWN call to reuse a given socket with a different connection.

rc = shutdown(s, how)
int rc, s, how;

Keyword
Value

TRGCLS
High-order halfword = 24

Low-order halfword =s

DATA
PRMMSG

PRMMSG
High-order fullword =0

Low-order fullword = how:

0 = receive
1 =send
2 = both
ANSLEN
8
ANSBUF

Points to the buffer that is filled with a reply in the following format:

182 z/VM: 7.3 TCP/IP Programmer's Reference

SOCKET

Offset Name Length Comments

0 rc 4 The return code from the SHUTDOWN call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

SOCKET

The SOCKET call creates an endpoint for communication and returns a socket descriptor representing the
endpoint. Different types of sockets provide different communication services.

s
i

Keyword
Value

TRGCLS

High-order halfword = 25

Low-order halfword = 0

= socket(domain, type, protocol)
nt s, domain, type, protocol

DATA
BUFFER
BUFLEN
16
BUFFER
The pointer to the message in the following format:
Offset Name Length Comments
0 domain 4 Values are:
AF_INET (X'00000002")
AF_INET6 (X'00000013")
4 type 4 Fullword integer:
SOCK_STREAM (X'00000001")
SOCK_DGRAM (X'00000002"
SOCK_RAW (X'00000003")
8 protocol 4 Fullword integer:
IPPROTO_ICMP (X'00000001")
IPPROTO_TCP (X'00000006")
IPPROTO_UDP (X'00000011")
IPPROTO_RAW (X'000000FF")
12 S 4 Socket number for the new socket, chosen by your
program, in the range 0 through maxsock. See
“Initializing the IUCV Connection” on page 143.
ANSLEN
8

Chapter 4. Inter-User Communication Vehicle Sockets 183

TAKESOCKET

ANSBUF
Points to the buffer that is filled with a reply in the following format:
Offset Name Length Comments
0 S 4 The socket number assigned to this communications

end point. A value of -1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When s is -1, this field contains a reason code.

TAKESOCKET

The TAKESOCKET call acquires a socket from another program and creates a new socket. Typically,

a child server issues this call using client ID and socket descriptor data which it obtained from the
concurrent server. When TAKESOCKET is issued, a new socket descriptor is returned in errno. You should
use this new socket descriptor in later calls such as GETSOCKOPT, which require the s (socket descriptor)
parameter.

Note: Both concurrent servers and iterative servers are used by this interface. An iterative server handles
one client at a time. A concurrent server receives connection requests from multiple clients and creates
child servers that process the client requests. When a child server is created, the concurrent server gets
a new socket, passes the new socket to the child server, and dissociates itself from the connection. The
TCP/IP Listener program is an example of a concurrent server.

s = takesocket(clientid, hisdesc)
int s;

struct clientid *clientid;

int hisdesc;

Keyword
Value

TRGCLS
High-order halfword = 32

Low-order halfword = 0

DATA
BUFFER
BUFLEN
48
BUFFER
The pointer to the message in the following format:
Offset Name Length Comments
0 *clientid 40 See Table 21 on page 148 for format.
40 hisdesc 4
44 S 4 Socket number for the new socket, chosen by your

program, in the range 0 through maxsock. See
“Initializing the IUCV Connection” on page 143.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

184 z/VM: 7.3 TCP/IP Programmer's Reference

WRITE, WRITEV

Offset Name Length Comments

0 S 4 The socket number assigned to this communications
end point. A value of -1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When s is -1, this field contains a reason code.

WRITE, WRITEV

From the point of view of TCP/IP, the WRITE and WRITEV calls are identical. From the point of view of
the application, WRITEV differs from WRITE in that WRITEV additionally allows the write buffer to be in
noncontiguous storage.

Your program, using the direct IUCV socket interface, can use the BUFLIST=YES parameter on IUCV SEND
to specify a noncontiguous write buffer. You can choose to use BUFLIST=YES even if your write buffer is
contiguous, so that the 20-byte prefix need not adjoin the write buffer in storage.

This section does not distinguish between WRITE and WRITEV. IUCV usage is described in terms of
variable names from the C language syntax of WRITE.

cc = write(s, buf, len)
int cc, s;

char xbuf;

int len;

Keyword
Value

TRGCLS
High-order halfword = 26

Low-order halfword =s

DATA
BUFFER

BUFLEN
For AF_INET: len + 20

For AF_INET6: len + 32

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments
0 For AF_INET: Your program sets this parameter to binary zeros.
20
For
AF_INET6:
32
20 *buf len The data to be sent.
ANSLEN
8
ANSBUF

Points to the buffer that is filled with a reply in the following format:

Chapter 4. Inter-User Communication Vehicle Sockets 185

LASTERRNO

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of -1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

LASTERRNO

As explained in “TCP/IP Response to an IUCV Request” on page 147, if TCP/IP uses IUCV REJECT to
respond to a socket request, your program uses the LASTERRNO special request to retrieve the return
code and errno.

Keyword
Value

TRGCLS
High-order halfword = 29

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
8

ANSBUF
Points to the buffer that is filled in with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the last rejected call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

186 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 5. Remote Procedure Calls

This chapter describes the high-level remote procedure calls (RPCs) implemented in TCP/IP, including the
RPC programming interface to the C language, and communication between processes.

The RPC protocol permits remote execution of subroutines across a TCP/IP network. RPC, together

with the eXternal Data Representation (XDR) protocol, defines a standard for representing data that is
independent of internal protocols or formatting. RPCs can communicate between processes on the same
or different hosts.

The RPC Interface

To use the RPC interface, you must be familiar with programming in the C language, and you should have a
working knowledge of networking concepts.

The RPC interface enables programmers to write distributed applications using high-level RPCs rather
than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a procedure to send a call
message to the server. When the message arrives, the server calls a dispatch routine, and performs the
requested service. The server sends back a reply message, after which the original procedure call returns
to the client program with a value derived from the reply message.

For sample RPC client, server, and raw data stream programs, see “Sample RPC Programs” on page 234.
Figure 35 on page 188 and Figure 36 on page 189 provide an overview of the high-level RPC client and
server processes from initialization through cleanup.

© Copyright IBM Corp. 1987, 2023 187

{Begin)

> |
TCP or UDP get_myaddress UDP anly
pmap_rmicall
pmap_getmaps
— top — pmap_getport
cint] udp | _create
b [
Initialize
—None=q_create
auth] unix J_create
L Unix < _create_default
SLCCess error
1 Y
Olmtcall clni_pcreatearror callrpe
cint_broadcast P P
A v
Process XOR routines XOR routines
Call
' l
¥
SUCCess error SLCCas S arror
clmt_perror clnt_permao
cint_geterr
¥
Free clnt_freeres
Hezources
Final auth_destroy
Cleanup clnt_destroy

(End)

Figure 35. Remote Procedure Call (Client)

188 z/VM: 7.3 TCP/IP Programmer's Reference

TGP or UDP UDP only

} —
tep b
VG |: :l_create registerpc
udp
Initialize }:prt_reg_ister
Ve _register
pmap_set
>
Receive ¢
Request
Y
SVC_getraq
svC_getrequest
svG_getargs
Process _
XDR encode decode routines
error SUCCESS
Reply l l
SYCEIT Mo sve_zendreply
v
. sve_freeangs
Transaction - 9
Cleanup and
Final ¥
Cleanup pmap_unset

¥pri_unregister
SVC_Unregister
svi_destroy

SVG_IUn —

¥

v

(End)

Figure 36. Remote Procedure Call (Server)

Chapter 5. Remote Procedure Calls 189

Portmapper

Portmapper is the software that supplies client programs with the port numbers of server programs.

You can communicate between different computer operating systems when messages are directed to
port numbers rather than to targeted remote programs. Clients contact server programs by sending
messages to the port numbers where receiving processes receive the message. Because you make
requests to the port number of a server rather than directly to a server program, client programs need a
way to find the port number of the server programs they wish to call. Portmapper standardizes the way
clients locate the port number of the server programs supported on a network.

Portmapper resides on all hosts on well-known port 111.

The port-to-program information maintained by Portmapper is called the portmap. Clients ask
Portmapper about entries for servers on the network. Servers contact Portmapper to add or update
entries to the portmap.

Contacting Portmapper

To find the port of a remote program, the client sends an RPC to well-known port 111 of the server’s host.
If Portmapper has a portmap entry for the remote program, Portmapper provides the port numberin a
return RPC. The client then requests the remote program by sending an RPC to the port number provided
by Portmapper.

Clients can save port numbers of recently called remote programs to avoid having to contact Portmapper
for each request to a server.

To see all the servers currently registered with Portmapper, use the RPCINFO command in the following
manner:

RPCINFO -p host_name

For more information about Portmapper and RPCINFO, see z/VM: TCP/IP User's Guide and z/VM: TCP/IP
Planning and Customization.

Target Assistance

Portmapper offers a program to assist clients in contacting server programs. If the client sends
Portmapper an RPC with the target program number, version number, procedure number, and arguments,
Portmapper searches the portmap for an entry, and passes the client’s message to the server. When the
target server returns the information to Portmapper, the information is passed to the client, along with the
port number of the remote program. The client can then contact the server directly.

RPCGEN Command

RPCGEN is a tool that generates C code to implement an RPC protocol. The input to RPCGEN is a language
similar to C, known as RPC language. For RPCGEN to work correctly you must have access to the CC EXEC
that is a part of the C compiler and have accessed the TCPIP Client-code minidisk (usually the TCPMAINT
592).

RPCGEN infile is normally used when you want to generate all four of the following output files. For
example, if the infile is named proto.x, RPCGEN generates:

A header file called PROTO.H

XDR routines called PROTOX.C

- Server-side stubs called PROTOS.C
Client-side stubs called PROTOC.C

Note: A temporary file called PROTO.EXPANDED or PROTO.EXPAND is created by the RPCGEN command.
During normal operation, this file is also subsequently erased by the RPCGEN command.

190 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

For additional information about the RPCGEN command, see the Sun Microsystems publication, Network
Programming.

»— RPCGEN L J infile »«
-C -0 — outfile

M—— -0 — outfile —

— -5 LTCP_J
ubP

J

Operand
Description

-C
Compiles into XDR routines.

-h
Compiles into C data definitions (a header file).

-l
Compiles into client-side stubs.

-m
Compiles into server-side stubs without generating a main routine. This option is useful for call-back
routines and for writing a main routine for initialization.

-s TCP|UDP
Compiles into server-side stubs using the given transport. The TCP option supports the TCP transport
protocol. The UDP option supports the UDP transport protocol.

-0 outfile
Specifies the name of the output file. If none is specified, standard output is used for -c, -h, -1, -m, and
-s modes.

infile
Specifies the name of the input file written in the RPC language. infile should be a variable record
format file (RECFM V).

enum clnt_stat Structure

The enumerated set clnt_stat structure is defined in the CLNT.H header file.

RPCs frequently return the enumerated set clnt_stat information. The following is the format and a
description of the enumerated set clnt_stat structure:

enum clnt_stat $

RPC_SUCCESS=0, /* call succeeded */

/*

* local errors

*/

RPC_CANTENCODEARGS=1, /* can't encode arguments x/
RPC_CANTDECODERES=2, /* can't decode results */
RPC_CANTSEND=3, /* failure in sending call =/
RPC_CANTRECV=4, /* failure in receiving result x/
RPC_TIMEDOUT=5, /* call timed out =*/

/*

* remote errors

*/

RPC_VERSMISMATCH=6, /* RPC versions not compatible %/
RPC_AUTHERROR=7, /* authentication error */
RPC_PROGUNAVAIL=8, /* program not available x*/

RPC_PROGVERSMISMATCH=9, /* program version mismatched */

Chapter 5. Remote Procedure Calls 191

RPC_PROCUNAVAIL=10, /* procedure unavailable x/
RPC_CANTDECODEARGS=11, /* decode arguments error */
RPC_SYSTEMERROR=12, /* generic “other problem” x/

/*

* callrpc errors

*/

RPC_UNKNOWNHOST=13, /* unknown host name */

/*

* create errors

*/

RPC_PMAPFAILURE=14, /> the pmapper failed in its call x/
RPC_PROGNOTREGISTERED=15, /x remote program is not registered */
/*

* unspecified error

*/

RPC_FAILED=16, /* call failed */
RPC_UNKNOWNPROTO=17 /* unknown protocol x/

’

Porting

This section contains information about porting RPC applications.

Accessing System Return Messages

To access system return values, you need only use the ERRNO.H include statement supplied with the
compiler. To access network return values, you must add the following include statement:

#include <tcperrno.h>

Printing System Return Messages

To print only system errors, use perror(), a procedure available in the C compiler run-time library. To print
both system and network errors, use tcperror(), a procedure included with TCP/IP.

Enumerations

To account for varying length enumerations, use the xdr_enum() and xdr_union() macros. xdr_enum()
cannot be referenced by callrpc(), svc_freeargs(), svc_getargs(), or svc_sendreply(). An XDR routine for
the specific enumeration must be created. The xdr_union() is not eligible for reference by these calls in
any RPC environment. For more information, see “xdr_enum()” on page 221.

Compiling, Linking, and Running an RPC Program

Note: If your program uses z/VM C sockets, follow the instructions in this section. If your program uses
VM TCP/IP C sockets, see “Recompiling with the TCP/IP C Sockets Library” on page 28.

Before you compile and link an RPC program, read the information under “Compiling and Linking a z/VM C
Sockets Program” on page 26 and “Running a Sockets Program” on page 29.

To compile, link and run an RPC program:

1. Access the TCP/IP Client-code disk (usually TCPMAINT 592), which contains the header files for RPC
and the VMRPC TXTLIB, after the disk that contains the Language Environment header files (usually
the Y-disk).

2. Specify the _OE_SOCKETS and VM preprocessor symbols in your source code or on the c89 command.

3. Compile the program using c89. The following are examples of how to compile the sample RPC
programs shown at the end of this chapter (see “Sample RPC Programs” on page 234):

c89 //genesend.c -D_OE_SOCKETS -1//VMRPC
c89 //geneserv.c -D_OE_SOCKETS -1//VMRPC
c89 //rawex.c -D_OE_SOCKETS -1//VMRPC

192 z/VM: 7.3 TCP/IP Programmer's Reference

svc_fds

Note the use of the // syntax before the name of the c part. This convention informs c89 that the ¢
source part will be found in the CMS search order. The previous three c89 commands will produce the
GENESEND MODULE, GENESERV MODULE, and RAWEX MODULE, respectively. Additionally, note that
-DVM is not specified on these compiles because the define for VM is in the C source.

4. Make sure that the SCEERUN LOADLIB is GLOBALed by issuing the command: GLOBAL LOADLIB
SCEERUN

5. Run your program from either the CMS command line or from a POSIX shell command line. For
example, run the GENESERV MODULE from the CMS command line as follows:

openvm run GENESERV
or

GENESERV

RPC Global Variables

This section describes the RPC global variables, rpc_createerr, svc_fds, and svc_fdset.

rpc_createerr

Description: A global variable that is set when any RPC client creation routine fails. Use
clnt_pcreateerror() to print the message.

f#include <rpc.h>

struct 1rpc_createerr rpc_createerr;

See Also: clntraw_create(), clnttcp_create(), clntudp_create().

svc_fds

f#include <rpc.h>

int svc_1fds;

Description: A global variable that specifies the read descriptor bit set on the service machine. This is

of interest only if the service programmer decides to write an asynchronous event processing routine;
otherwise svc_run() should be used. Writing asynchronous routines in the VM environment is not simple,
because there is no direct relationship between the descriptors used by the socket routines and the Event
Control Blocks commonly used by VM programs for coordinating concurrent activities.

Attention: Do not modify this variable.

See Also: svc_getreq().

svc_fdset

#include <xpc.h>

fd_set svc_£fdset;

Description: A global variable that specifies the read descriptor bit set on the service machine. This is
of interest only if the service programmer decides to write an asynchronous event processing routine;
otherwise svc_run() should be used. Writing asynchronous routines in the VM environment is not simple,

Chapter 5. Remote Procedure Calls 193

auth_destroy()

because there is no direct relationship between the descriptors used by the socket routines and the Event
Control Blocks commonly used by VM programs for coordinating concurrent activities.

Attention: Do not modify this variable.

See Also: svc_getreqset().

Remote Procedure Calls and External Data Representation

This section provides the syntax, operands, and other appropriate information for each remote procedure
and external data representation call supported by TCP/IP.

auth_destroy()

f#include <rpc.h>

void auth_destroy(auth)
AUTH *xauth;

Operand
Description

auth
Points to authentication information.

Description: The auth_destroy() call deletes the authentication information for auth. Once this procedure
is called, auth is undefined.

See Also: authnone_create(), authunix_create(), authunix_create_default().

authnone_create()

f##include <rpc.h>
AUTH *
authnone_create()

The authnone_create() call has no operands.

Description: The authnone_create() call creates and returns an RPC authentication handle. The handle
passes the NULL authentication on each call.

See Also: auth_destroy(), authunix_create(), authunix_create_default().

authunix_create()

f##include <rpc.h>

AUTH *

authunix_create(host, uid, gid, len, aup_gids)
char *host;

int uid;

int gid;

int len;

int *aup_gids;

Operand
Description

194 z/VM: 7.3 TCP/IP Programmer's Reference

authunix_create_default()

host
Specfies a pointer to the symbolic name of the host where the desired server is located.

uid

Identifies the user’s user ID.
gid

Identifies the user’s group ID.

len
Specifies the length of the information pointed to by aup_gids.

aup_gids
Specifies a pointer to an array of groups to which the user belongs.

Description: The authunix_create() call creates and returns an authentication handle that contains
UNIX-based authentication information.

See Also: auth_destroy(), authnone_create(), authunix_create_default().

authunix_create_default()

#include <xpc.h>

AUTH *
authunix_create_default()

The authunix_create_default() call has no operands.
Description: The authunix_create_default() call calls authunix_create() with default operands.

See Also: auth_destroy(), authnone_create(), authunix_create().

callrpc()

f#include <rpc.h>

enum clnt_stat

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;

u_long prognum;

u_long versnum;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

Operand
Description

host
Specifies a pointer to the symbolic name of the host where the desired server is located.

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Specifies the XDR procedure used to encode the arguments of the remote procedure.

Chapter 5. Remote Procedure Calls 195

clnt_broadcast()

in
Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote procedure.

out
Specifies a pointer to the results of the remote procedure.

Description: The callrpc() call calls the remote procedure described by prognum, versnum, and procnum

running on the host system. callrpc() encodes and decodes the operands for transfer.
Note:

1. clnt_perrno() can be used to translate the return code into messages.

2. callrpc() cannot call the procedure xdr_enum. See “xdr_enum()” on page 221 for more information.

3. This procedure uses UDP as its transport layer, see “clntudp_create()” on page 204 for more
information.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the

remote procedure call are returned to out.

See Also: clnt_broadcast(), clnt_call(), clnt_perrno(), clntudp_create(), clnt_sperrno(), xdr_enum().

clnt_broadcast()

#include <xpc.h>

enum clnt_stat

clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult)
u_long prognum;

u_long versnum;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

resultproc_t eachresult;

Operand
Description

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc

Specifies the XDR procedure used to encode the arguments of the remote procedure.
in

Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote procedure.

out
Specifies a pointer to the results of the remote procedure.

eachresult
Specifies the procedure called after each response.

Note: resultproc_t is a type definition:

196 z/VM: 7.3 TCP/IP Programmer's Reference

clnt_call()

#include <rpc.h>
typedef bool_t (*resultproc_t) ();
Description: The clnt_broadcast() call broadcasts the remote procedure described by prognum, versnum,

and procnum to all locally connected broadcast networks. Each time clnt_broadcast() receives a response
it calls eachresult(). The format of eachresult() is:

f#include <rpc.h>

bool_t eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

Operand
Description

out
Has the same function as it does for clnt_broadcast(), except that the output of the remote procedure
is decoded.

addr
Points to the address of the machine that sent the results.

Return Values: If eachresult() returns 0, clnt_broadcast() waits for more replies; otherwise, eachresult()
returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the data link.

See Also: callrpc(), clnt_call().

clnt_call()

#include <rpc.h>

enum clnt_stat

clnt_call(clnt, procnum, inproc, in, outproc, out, tout)
CLIENT *clnt;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char *out;

struct timeval tout;

Operand
Description

cint
Points to a client handle that was previously obtained using clntraw_create(), clnttcp_create(), or
clntudp_create().

procnum
Identifies the remote procedure number.

inproc

Identifies the XDR procedure used to encode procnum’s arguments.
in

Points to the remote procedure’s arguments.

outproc
Specifies the XDR procedure used to decode the remote procedure’s results.

out
Points to the remote procedure’s results.

Chapter 5. Remote Procedure Calls 197

clnt_control()

tout
Specifies the time allowed for the server to respond.

Description: The clnt_call() call calls the remote procedure (procnum) associated with the client handle
(cint).

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the
remote procedure call are returned to out.

See Also: callrpc(), clnt_broadcast(), clnt_geterr(), clnt_perror(), clnt_sperror(), clntraw_create(),
clnttcp_create(), clntudp_create().

clnt_control()

#include <rpc.h>

bool_t

clnt_control(clnt, request, info)
CLIENT *clnt;

int request;

void *info;

Operand
Description

cint
Specifies the pointer to a client handle that was previously obtained using clntraw_create(),
clnttcp_create(), or clntudp_create().

request
Determines the operation (either CLSET_TIMEOUT, CLGET_TIMEOUT, CLGET_SERVER_ADDR,
CLSET_RETRY_TIMEOQUT, or CLGET_RETRY_TIMEOQUT).

info

Points to information used by the request.
Description: The clnt_control() call performs one of the following control operations.
« Control operations that apply to both UDP and TCP transports:

CLSET_TIMEOUT
Sets time-out (info points to the timeval structure).

CLGET_TIMEOUT
Gets time-out (info points to the timeval structure).

CLGET_SERVER_ADDR
Gets server’s address (info points to the sockaddr_in structure).

« UDP only control operations:

CLSET_RETRY_TIMEOUT
Sets retry time-out (information points to the timeval structure).

CLGET_RETRY_TIMEOUT
Gets retry time-out (info points to the timeval structure). If you set the timeout using clnt_control(),
the timeout operand to clnt_call() will be ignored in all future calls.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: clnt_create(), clnt_destroy(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_create()

198 z/VM: 7.3 TCP/IP Programmer's Reference

clnt_destroy()

f##include <rpc.h>

CLIENT =%

clnt_create(host, prognum, versnum, protocol)
char *host;

u_long prognum;

u_long versnum;

char *protocol;

Operand
Description

host
Points to the name of the host at which the remote program resides.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

protocol
Points to the protocol, which can be either tcp or udp.

Description: The clnt_create() call creates a generic RPC client transport handle for the remote program
specified by (prognum, versnum). The client uses the specified protocol as the transport layer. Default
timeouts are set, but can be modified using clnt_control().

Return Values: NULL indicates failure.
See Also: clnt_create(), clnt_destroy(), clnt_pcreateerror(), clnt_spcreateerror(), clnt_sperror(),
clnttcp_create(), clntudp_create().

clnt_destroy()

#include <rpc.h>

void
clnt_destroy(clnt)
CLIENT *clnt;

Operand
Description

cint

Points to a client handle that was previously created using clnt_create(), clntudp_create(),
clnttcp_create(), or clntraw_create().

Description: The clnt_destroy() call deletes a client RPC transport handle. This procedure involves the
deallocation of private data resources, including cint. Once this procedure is used, cint is undefined. If the
RPC library opened the associated socket, it will close it also. Otherwise, the socket remains open.

See Also: clnt_control(), clnt_create(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_freeres()

#include <rpc.h>

bool_t

clnt_freeres(clnt, outproc, out)
CLIENT *clnt;

xdrproc_t outproc;

char *out;

Chapter 5. Remote Procedure Calls 199

clnt_geterr()

Operand
Description

cint
Points to a client handle that was previously obtained using clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create().

outproc
Specifies the XDR procedure used to decode the remote procedure’s results.

out
Points to the results of the remote procedure.

Description: The clnt_freeres() call deallocates any resources that were assigned by the system to
decode the results of an RPC.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: clntraw_create(), clnttcp_create(), clntudp_create().

clnt_geterr()

#include <rpc.h>

void

clnt_geterr(clnt, errp)
CLIENT *clnt;

struct rpc_err *errp;

Operand
Description

cint

Points to a client handle that was previously obtained using clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create().

errp
Points to the address into which the error structure is copied.

Description: The clnt_geterr() call copies the error structure from the client handle to the structure at
address errp.

See Also: clnt_call(), clnt_pcreateerror(), clnt_perrno(), clnt_perror(), clnt_spcreateerror(),
clnt_sperrno(), clnt_sperror(), clnt_create(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_pcreateerror()

#include <rpc.h>

void
clnt_pcreateerrox(s)
char x*s;

Operand
Description

Specifies a NULL or NULL-terminated character string. If s is non-NULL, clnt_pcreateerror() prints the
string s followed by a colon, followed by a space, followed by the error message, and terminated with
a newline character. If s is NULL or points to a NULL string, just the error message and the newline
character are output.

200 z/VM: 7.3 TCP/IP Programmer's Reference

clnt_perrno()

Description: The clnt_pcreateerror() call writes a message to the standard error device, indicating
why a client handle cannot be created. This procedure is used after the clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create() calls fail.

See Also: clnt_create(), clnt_geterr(), clnt_perrno(), clnt_perror(), clnt_spcreateerror(), clnt_sperrno(),
clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_perrno()

f##include <rpc.h>

void
clnt_perrno(stat)
enum clnt_stat stat;

Operand
Description

stat
Specifies the client status.

Description: The clnt_perrno() call writes a message to the standard error device corresponding to the
condition indicated by stat. This procedure should be used after callrpc() if there is an error.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperrno(),
clnt_sperror().

clnt_perror()

f##include <rpc.h>

void
clnt_perror(clnt, s)
CLIENT *clnt;

char *s;

Operand
Description

cint
Points to a client handle that was previously obtained using clnt_create(), clntudp_create(),
clnttcp_create(), or clntraw_create().

Specifies a NULL or NULL-terminated character string. If s is non-NULL, clnt_perror() prints the string
s followed by a colon, followed by a space, followed by the error message, and terminated with a
new-line character. If s is NULL or points to a NULL string, just the error message and the new-line
character are output.

Description: The clnt_perror() call writes a message to the standard error device, indicating why an RPC
failed. This procedure should be used after clnt_call() if there is an error.

See Also: clnt_call(), clnt_create(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(), clnt_spcreateerror(),
clnt_sperrno(), clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_spcreateerror()

Chapter 5. Remote Procedure Calls 201

clnt_sperrno()

f##include <rpc.h>

char *
clnt_spcreateerror(s)
char *s;

Operand
Description

Specifies a NULL or NULL-terminated character string. If s is non-NULL, clnt_spcreateerror() prints the
string s followed by a colon, followed by a space, followed by the error message, and terminated with
a new-line character. If s is NULL or points to a NULL string, just the error message and the new-line
character are output.

Description: The clnt_spcreateerror() call returns the address of a message indicating why a
client handle cannot be created. This procedure is used after the clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create() calls fail.

Return Values: Returns a pointer to a character string in a static data area. This data area is overwritten
with each subsequent call. This function is not thread-safe.

See Also: clnt_create(), clnt_geterr(), clnt_perrno(), clnt_perror(), clnt_pcreateerror(), clnt_sperrno(),
clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_sperrno()

f#include <rpc.h>

char *
clnt_sperrno(stat)
enum clnt_stat stat;

Operand
Description

stat
Specifies the client status.

Description: The clnt_sperrno() call returns the address of a message corresponding to the condition
indicated by stat. This procedure should be used after callrpc() if there is an error.

Return Values: Returns a pointer to a character string ending with a newline. This data area is overwritten
with each subsequent call. This function is not thread-safe.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_spcreateerror(), clnt_sperror(), clnt_perrno(),
clnt_perror().

clnt_sperror()

f##include <rpc.h>

char *
clnt_sperror(clnt, s)
CLIENT *clnt;

char *s;

Operand
Description

202 z/VM: 7.3 TCP/IP Programmer's Reference

clntraw_create()

cint
Points to a client handle that was previously obtained using clnt_create(), clntudp_create(),
clnttcp_create(), or clntraw_create().

Specifies a NULL or a NULL-terminated character string. If s is non-NULL, clnt_sperror() prints the
string s followed by a colon, followed by a space, followed by the error message, and terminated with
a newline character. If s is NULL or points to a NULL string, just the error message and the newline
character are output.

Description: The clnt_sperror() call returns the address of a message indicating why an RPC failed. This
procedure should be used after clnt_call() if there is an error.

Return Values: Returns a pointer to a character string in a static data area. This data area is overwritten
with each subsequent call. This function is not thread-safe.

See Also: clnt_call(), clnt_create(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(), clnt_perror(),
clnt_spcreateerror(), clnt_sperrno(), clntraw_create(), clnttcp_create(), clntudp_create().

clntraw_create()

#include <xpc.h>

CLIENT *

clntraw_create(prognum, versnum)
u_long prognum;

u_long versnum;

Operand
Description

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

Description: The clntraw_create() call creates a dummy client for the remote double (prognum,
versnum). Because messages are passed using a buffer within the virtual machine of the local process,
the server should also use the same virtual machine, which simulates RPC programs within one virtual
machine. For more information, see “svcraw_create()” on page 216.

Return Values: NULL indicates failure.

See Also: clnt_call(), clnt_destroy(), clnt_freeres(), clnt_geterr(), clnt_pcreateerror(), clnt_perror(),
clnt_spcreateerror(), clnt_sperror(), clntudp_create(), clnttcp_create(), svcraw_create().

clnttcp_create()

#include <xpc.h>

CLIENT *

clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in xaddr;

u_long prognum;

u_long versnum;

int *sockp;

u_int sendsz;

u_int recvsz;

Operand
Description

Chapter 5. Remote Procedure Calls 203

clntudp_create()

addr
Points to the internet address of the remote program. If the addr port number is zero (addr ->
sin_port), addr is set to the port on which the remote program is receiving.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

sockp
Points to the socket. If *sockp is RPC_ANYSOCK, then this routine opens a new socket and sets
*sockp.

sendsz
Specifies the size of the send buffer. Specify 0 to choose the default.

recvsz
Specifies the size of the receive buffer. Specify 0 to choose the default.

Description: The clnttcp_create() call creates an RPC client transport handle for the remote program
specified by (prognum, versnum). The client uses TCP as the transport layer.

Return Values: NULL indicates failure.

See Also: clnt_call(), clnt_control(), clnt_create(), clnt_destroy(), clnt_freeres(), clnt_geterr(),
clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperror(), clntraw_create(), clntudp_create().

clntudp_create()

f#include <rpc.h>

CLIENT *

clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in xaddr;

u_long prognum;

u_long versnum;

struct timeval wait;

int *sockp;

Operand
Description

addr
Points to the internet address of the remote program. If the addr port number is zero (addr->
sin_port), addr is set to the port on which the remote program is receiving. The remote portmap
service is used for this.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

wait
Indicates that UDP resends the call request at intervals of wait time, until either a response is
received or the call times out. The time-out length is set using the clnt_call() procedure.

sockp
Points to the socket. If *sockp is RPC_ANYSOCK, this routine opens a new socket and sets *sockp.

Description: The clntudp_create() call creates a client transport handle for the remote program
(prognum) with version (versnum). UDP is used as the transport layer.

Note: This procedure should not be used with procedures that use large arguments or return large results.
While UDP packet size is configurable to a maximum of 64-1 kilobytes, the default UDP packet size is only
eight kilobytes.

204 z/VM: 7.3 TCP/IP Programmer's Reference

get_myaddress()

Return Values: NULL indicates failure.

See Also: call_rpc(), clnt_call(), clnt_control(), clnt_create(), clnt_destroy(), clnt_freeres(), clnt_geterr(),
clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperror(), clntraw_create(), clnttcp_create().

get_myaddress()

f##include <rpc.h>

void
get_myaddress (addr)
struct sockaddr_in *addr;

Operand
Description

addr
Points to the location where the local internet address is placed.

Description: The get_myaddress() call puts the local host’s internet address into addr. The port number
(addr—>sin_port) is set to htons (PMAPPORT), which is 111.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

getrpcport()

f##include <rpc.h>

u_short

getrpcport(host, prognum, versnum, protocol)
char *host;

u_long prognum;

u_long versnum;

int protocol;

Operand
Description

host
Points to the name of the foreign host.

prognum
Specifies the program number to be mapped.

versnum
Specifies the version number of the program to be mapped.

protocol
Specifies the transport protocol used by the program (IPPROTO_TCP or IPPROTO_UDP).

Description: The getrpcport() call returns the port number associated with the remote program
(prognum), the version (versnum), and the transport protocol (protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the remote portmap could
not be contacted. If Portmapper cannot be contacted, rpc_createerr contains the RPC status.

See Also: get_myaddress(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set(),
pmap_unset().

pmap_getmaps()

Chapter 5. Remote Procedure Calls 205

pmap_getport()

f##include <rpc.h>
f#include <pmap_pro.h>
#include <pmap_cln.h>

struct pmaplist *
pmap_getmaps (addr)
struct sockaddr_in xaddr;

Operand
Description

addr
Points to the internet address of the foreign host.

Description: The pmap_getmaps() call returns a list of current program-to-port mappings on the foreign
host specified by addr.

Return Values: Returns a pointer to a pmaplist structure or NULL.

See Also: getrpcport(), pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

pmap_getport()

#include <xpc.h>
#include <pmap_pro.h>
f#include <pmap_cln.h>

u_short

pmap_getport(addr, prognum, versnum, protocol)
struct sockaddr_in *addr;

u_long prognum;

u_long versnum;

int protocol;

Operand
Description

addr
Points to the internet address of the foreign host.

prognum
Identifies the program number to be mapped.

versnum
Identifies the version number of the program to be mapped.

protocol
Specifies the transport protocol used by the program (IPPROTO_TCP or IPPROTO_UDP).

Description: The pmap_getport() call returns the port number associated with the remote program
(prognum), the version (versnum), and the transport protocol (protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the remote portmap could
not be contacted. If Portmapper cannot be contacted, rpc_createerr contains the RPC status.

See Also: getrpcport() pmap_getmaps(), pmap_rmtcall(), pmap_set(), pmap_unset().

pmap_rmtcall()

206 z/VM: 7.3 TCP/IP Programmer's Reference

pmap_set()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

enum clnt_stat
pmap_rmtcall (addr, prognum, versnum, procnum, inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum;

u_long versnum;

u_long procnum;

xdrproc_t inproc;

char *in;

xdrproc_t outproc;

char xout;

struct timeval tout;
u_long *portp;

Operand
Description

addr
Points to the internet address of the foreign host.

prognum
Identifies the remote program number.

versnum
Identifies the version number of the remote program.

procnum
Identifies the procedure to be called.

inproc

Identifies the XDR procedure used to encode the arguments of the remote procedure.
in

Points to the arguments of the remote procedure.

outproc
Identifies the XDR procedure used to decode the results of the remote procedure.

out
Points to the results of the remote procedure.

tout
Identifies the time-out period for the remote request.

portp
If the call from the remote portmap service is successful, portp contains the port number of the triple
(prognum, versnum, procnumy.

Description: The pmap_rmtcall() call instructs Portmapper on the host at addr to make an RPC call to a
procedure on that host, on your behalf. This procedure should be used only for ping type functions.

Return Values: Returns a clnt_stat enumerated type.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_set(), pmap_unset().

pmap_set()

Chapter 5. Remote Procedure Calls 207

pmap_unset()

f##include <rpc.h>
f#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t

pmap_set(prognum, versnum, protocol, port)
u_long prognum;

u_long versnum;

int protocol;

u_short port;

Operand
Description

prognum
Identifies the local program number.

versnum
Identifies the version number of the local program.

protocol
Specifies the transport protocol used by the local program.

port
Identifies the port to which the local program is mapped.

Description: The pmap_set() call sets the mapping of the program (specified by prognum, versnum,
and protocol) to port on the local machine. This procedure is automatically called by the svc_register()
procedure.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_unset().

pmap_unset()

f#include <rpc.h>
#include <pmap_pzro.h>
#include <pmap_cln.h>

bool_t

pmap_unset (prognum, versnum)
u_long prognum;

u_long versnum;

Operand
Description

prognum
Identifies the local program number.

versnum
Identifies the version number of the local program.

Description: The pmap_unset() call removes the mappings associated with prognum and versnum on

the local machine. All ports for each transport protocol currently mapping the prognum and versnum are
removed from the portmap service.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set().

registerrpc()

208 z/VM: 7.3 TCP/IP Programmer's Reference

svc_destroy()

f##include <rpc.h>

int

registerrpc(prognum, versnum, procnum, prochame, inproc, outproc)
u_long prognum;

u_long versnum;

u_long procnum;

char x(xprocname) ();

xdrproc_t inproc;

xdrproc_t outproc;

Operand
Description

prognum
The program number to register.

versnum
Identifies the version number to register.

procnum
Specifies the procedure number to register.

prochame
Specifies the procedure that is called when the registered program is requested. procname must
accept a pointer to its arguments, and return a static pointer to its results.

inproc
Specifies the XDR routine used to decode the arguments.

outproc
Specifies the XDR routine that encodes the results.

Description: The registerrpc() call registers a procedure (prognum, versnum, procnum) with the local
Portmapper, and creates a control structure to remember the server procedure and its XDR routine.

The control structure is used by svc_run(). When a request arrives for the program (prognum, versnum,
procnum), the procedure procname is called. Procedures registered using registerrpc() are accessed using
the UDP transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See “xdr_enum()” on page 221 for more
information.

Return Values: The value 0 indicates success; the value -1 indicates an error.

See Also: svc_register(), svc_run().

svc_destroy()

#include <xpc.h>

void
svc_destroy (aprt)
SVCXPRT *xprt;

Operand
Description

Xxprt
Points to the service transport handle.

Description: The svc_destroy() call deletes the RPC service transport handle xprt, which becomes
undefined after this routine is called.

See Also: svcraw_create(), svctcp_create(), svcudp_create().

Chapter 5. Remote Procedure Calls 209

svc_freeargs()

svc_freeargs()

f#include <rpc.h>

bool_t

svc_freeargs(axprt, inproc, in)
SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

Operand
Description

xprt

Points to the service transport handle.
inproc

Specifies the XDR routine used to decode the arguments.
in

Points to the input arguments.

Description: The svc_freeargs() call frees storage allocated to decode the arguments to a service
procedure using svc_getargs().

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: svc_getargs().

svc_getargs()

#include <rpc.h>

bool_t

svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

Operand
Description

xprt

Points to the service transport handle.
inproc

Specifies the XDR routine used to decode the arguments.
in

Points to the decoded arguments.

Description: The svc_getargs() call uses the XDR routine inproc to decode the arguments of an RPC
request associated with the RPC service transport handle xprt. The results are placed at address in.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: svc_freeargs().

svc_getcaller()

210 z/VM: 7.3 TCP/IP Programmer's Reference

svc_getreq()

f##include <rpc.h>

struct sockaddr_in *
svc_getcaller(axprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: This macro obtains the network address of the client associated with the service transport
handle xprt.

Return Values: Returns a pointer to a sockaddr_in structure.

See Also: get_myaddress().

svc_getreq()

f##include <rpc.h>

void
svc_getreq(rdfds)
int rdfds;

Operand
Description

rdfds
Specifies the read descriptor bit mask.

Description: The svc_getreq() call is used rather than svc_run() to implement asynchronous event
processing. The routine returns control to the program when all sockets have been serviced.

Note: svc_getreq() limits you to 32 socket descriptors, of which 3 are reserved. Use svc_getreqgset() if you
have more than 29 socket descriptors.

See Also: svc_run().

svc_getreqset()

f#include <rpc.h>
void

svc_getreqset (rdfds)
fd_set rdfds;

Operand
Description

rdfds
Specifies the read descriptor bit set.

Description: The svc_getregset() call is used rather than svc_run() to implement asynchronous event
processing. The routine returns control to the program when all sockets have been serviced.

A server would use a select() call to determine if there are any outstanding RPC requests at any of the
sockets created when the programs were registered. The read bit descriptor set returned by select() is
then used on the call to svc_getreqset().

Note that you should not pass the global bit descriptor set svc_fdset on the call to select(), because
select() changes the values. Instead, you should make a copy of svc_fdset before you call select().

Chapter 5. Remote Procedure Calls 211

svc_register()

See Also: svc_run().

svc_register()

f##include <rpc.h>

bool_t

svc_register(axprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;

u_long prognum;

u_long versnum;

void (*dispatch) ();

int protocol;

Operand
Description

xprt
Points to the service transport handle.

prognum
Specifies the program number to be registered.

versnum
Specifies the version number of the program to be registered.

dispatch
Specifies the dispatch routine associated with prognum and versnum.

Specifies the structure of the dispatch routine is:

#include <rpc.h>
dispatch(request, xprt)

struct svc_req *request;
SVCXPRT *xprt;

protocol
Specifies the protocol used. The value is generally one of the following:
« 0 (zero)
« IPPROTO_UDP
« IPPROTO_TCP

When a value of O is used, the service is not registered with Portmapper.

Note: When using a dummy RPC service transport created with svcraw_create(), a call to xprt_register()
must be made immediately after a call to svc_register().

Description: The svc_register() call associates the program described by (prognum, versnum) with the
service dispatch routine dispatch.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: registerrpc(), svc_unregister(), xprt_register().

svc_run()

f#include <rpc.h>

void
svc_run()

The svc_run() call has no operands.

212 z/VM: 7.3 TCP/IP Programmer's Reference

svc_sendreply()

Description: The svc_run() call does not return control. It accepts RPC requests and calls the appropriate
service using svc_getreqset().

See Also: svc_getreqset().

svc_sendreply()

f##include <rpc.h>

bool_t

svc_sendreply (xprt, outproc, out)
SVCXPRT *xprt;

xdrproc_t outproc;

char *out;

Operand
Description

xprt
Points to the caller’s transport handle.

outproc
Specifies the XDR procedure used to encode the results.

out
Points to the results.

Description: The svc_sendreply() call is called by the service dispatch routine to send the results of the
call to the caller.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_call().

svc_unregister()

#include <rpc.h>

void

svc_unregistexr(prognum, versnum)
u_long prognum;

u_long versnum;

Operand
Description

prognum
Specifies the program number that is removed.

versnum
Specifies the version number of the program that is removed.

Description: The svc_unregister() call removes all local mappings of (prognum, versnum) to dispatch
routines and (prognum, versnum, *) to port numbers.

See Also: svc_register().

svcerr_auth()

Chapter 5. Remote Procedure Calls 213

svcerr_decode()

f##include <rpc.h>

void

svcerr_auth(xprt, why)
SVCXPRT *xprt;

enum auth_stat why;

Operand
Description

xprt

Points to the service transport handle.
why

Specifies the reason the call is refused.

Description: The svcerr_auth() call is called by a service dispatch routine that refuses to execute an RPC
request because of authentication errors.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

svcerr_decode()

f##include <rpc.h>

void
svcerr_decode (xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The svcerr_decode() call is called by a service dispatch routine that cannot decode its
operands.

See Also: svcerr_auth(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

svcerr_noproc()

f##include <rpc.h>

void
svcerr_noproc (xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The svcerr_noproc() call is called by a service dispatch routine that does not implement the
requested procedure.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noprog(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

214 z/VM: 7.3 TCP/IP Programmer's Reference

svcerr_noprog()

svcerr_noprog()

f##include <rpc.h>

void
svcerr_noprog(xprt)
SVCXPRT *xprt;

Operand
Description
xprt
Points to the service transport handle.

Description: Description: The svcerr_noprog() call is used when the desired program is not registered.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_progvers(), svcerr_systemerr(),

svcerr_weakauth().

svcerr_progvers()

f#include <rpc.h>

void

svcerr_progvers (xprt, low_vers, high_vers)
SVCXPRT *xprt;

u_long low_vers;

u_long high_vers;

Operand
Description
xprt
Points to the service transport handle.
low_vers
Specifies the low version number that does not match.
high_vers
Specifies the high version number that does not match.

Description: The svcerr_progvers() call is called when the version numbers of two RPC programs do
not match. The low version number corresponds to the lowest registered version, and the high version
corresponds to the highest version registered on the Portmapper.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

svcerr_systemerr()

#include <rpc.h>

void
svcerr_systemerr(xprt)
SVCXPRT *xprt;

Operand
Description
xprt
Points to the service transport handle.

Chapter 5. Remote Procedure Calls 215

svcerr_weakauth()

Description: The svcerr_systemerr() call is called by a service dispatch routine when it detects a system
error that is not handled by the protocol.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_weakauth().

svcerr_weakauth()

f#include <rpc.h>

void
svcerr_weakauth (xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Note: This is the equivalent of: svcerr_auth(xprt, AUTH_TOOWEAK).

Description: The svcerr_weakauth() call is called by a service dispatch routine that cannot execute an
RPC because of correct but weak authentication operands.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr().

svcraw_create()

f#include <rpc.h>

SVCXPRT *
svcraw_create()

The svcraw_create() call has no operands.

Description: The svcraw_create() call creates a local RPC service transport used for timings, to which it
returns a pointer. Messages are passed using a buffer within the virtual machine of the local process; so,
the client process must also use the same virtual machine. This allows the simulation of RPC programs
within one computer. See “clntraw_create()” on page 203 for more information.

Return Values: NULL indicates failure.

See Also: clntraw_create(), svc_destroy(), svctcp_create(), svcudp_create().

svctcp_create()

#include <xpc.h>

SVCXPRT *

svctcp_create(sock, send_buf_size, recv_buf_size)
int sock;

u_int send_buf_size;

u_int recv_buf_size;

Operand
Description

216 z/VM: 7.3 TCP/IP Programmer's Reference

svcudp_create()

sock

Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new socket is created. If the socket is not
bound to a local TCP port, it is bound to an arbitrary port.

send_buf _size
Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size
Specifies the size of the receive buffer. Specify 0 to choose the default.

Description: The svctcp_create() call creates a TCP-based service transport to which it returns a pointer.
xprt—>xp_sock contains the transport’s socket descriptor. xprt—>xp_port contains the transport’s port
number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcraw_create(), svcudp_create().

svcudp_create()

f##include <rpc.h>

SVCXPRT *

svcudp_create(sock, sendsz, recvsz)
int sock;

u_int sendsz;

u_int recvsz;

Operand
Description

sock

Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new socket is created. If the socket is not
bound to a local UDP port, it is bound to an arbitrary port.

sendsz
Specifies the size of the send buffer.

recvsz
Specifies the size of the receive buffer.

Description: The svcudp_create() call creates a UDP-based service transport to which it returns a pointer.
xprt—>xp_sock contains the transport’s socket descriptor. xprt—>xp_port contains the transport’s port
number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcraw_create(), svctcp_create().

xdr_accepted_reply()

f#include <rpc.h>

bool_t
xdr_accepted_reply (xdrs, ar)
XDR *xdrs;

struct accepted_reply *ar;

Operand
Description

xdrs
Points to an XDR stream.

Chapter 5. Remote Procedure Calls 217

xdr_array()

ar
Points to the reply to be represented.

Description: The xdr_accepted_reply() call translates RPC reply messages.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_array()

#include <rpc.h>

bool_t

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;

char *xarrp;

u_int *sizep;

u_int maxsize;

u_int elsize;

xdrproc_t elproc;

Operand
Description

xdrs
Points to an XDR stream.

arrp
Specifies the address of the pointer to the array.

sizep
Points to the element count of the array.

maxsize
Specifies the maximum number of elements accepted.

elsize
Specifies the size of each of the array’s elements, found using sizeof().

elproc
Specifies the XDR routine that translates an individual array element.

Description: The xdr_array() call translates between an array and its external representation.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_authunix_parms()

#include <xpc.h>

bool_t
xdr_authunix_parms (xdrs, aupp)
XDR *xdrs;

struct authunix_parms *aupp;

Operand
Description

xdrs
Points to an XDR stream.

218 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_bool()

aupp
Points to the authentication information.

Description: The xdr_authunix_parms() call translates UNIX-based authentication information.
Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_bool()

#include <rpc.h>

bool_t

xdr_bool (xdrs, bp)
XDR *xdrs;

bool_t xbhp;

Operand
Description

xdrs
Points to an XDR stream.

bp
Points to the Boolean.

Description: The xdr_bool() call translates between Booleans and their external representation.
Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_bytes()

#include <rpc.h>

bool_t

xdxr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;

char **sp;

u_int *sizep;

u_int maxsize;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to a pointer to the byte string.

sizep
Points to the byte string size.

maxsize
Specifies the maximum size of the byte string.

Description: The xdr_bytes() call translates between byte strings and their external representations.

Return Values: The value 1 indicates success; the value O indicates an error.

Chapter 5. Remote Procedure Calls 219

xdr_callhdr()

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_callhdr()

f#include <rpc.h>

bool_t
xdr_callhdr(axdrs, chdr)
XDR *xdrs;

struct rpc_msg *chdr;

Operand
Description

xdrs
Points to an XDR stream.

chdr
Points to the call header.

Description: The xdr_callhdr() call translates an RPC message header into XDR format.
Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_callmsg()

f##include <rpc.h>

bool_t
xdr_callmsg(xdrs, cmsg)
XDR *xdrs;

struct rpc_msg *cmsg;

Operand
Description

xdrs
Points to an XDR stream.

cmsg
Points to the call message.

Description: The xdr_callmsg() call translates RPC messages (header and authentication, not argument
data) to and from the xdr format.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_double()

220 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_enum()

f##include <rpc.h>

bool_t

xdr_double (xdrs, dp)
XDR *xdrs;

double *dp;

Operand
Description

xdrs
Points to an XDR stream.

dp
Points to a double-precision number.

Description: The xdr_double() call translates between C double-precision numbers and their external
representations.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_enum()

f##include <rpc.h>

bool_t
xdr_enum(xdrs, ep)
XDR *xdrs;

enum_t *ep;

Operand
Description

xdrs
Points to an XDR stream.

ep
Points to the enumerated number. enum_t can be any enumeration type such as enum colozxs, with
colors declared as enum colors (black, brown, red).

Description: The xdr_enum() call translates between C-enumerated groups and their external
representation. When calling the procedures callrpc() and registerrpc(), a stub procedure must be created
for both the server and the client before the procedure of the application program using xdr_enum(). The
following is the format of the stub procedure.

#include <rpc.h>

enum colors (black, brown, red)
void

static axdr_enum_t(xdrs, ep)

XDR *xdrs;

enum colors xep;

xdr_enum(xdrs, ep)

3

The xdr_enum_t procedure is used as the inproc and outproc in both the client and server RPCs.

For example, an RPC client would contain the following lines:

Chapter 5. Remote Procedure Calls 221

xdr_float()

error = callrpc(argv[1],ENUMRCVPROG,VERSION, ENUMRCVPROC,
xdr_enum_t ,&innumber,xdr_enum_t,
&outnumber) ;

An RPC server would contain the following line:

registerrpc (ENUMRCVPROG, VERSION, ENUMRCVPROC,
xdr_enum_t ,xdr_enum_t) ;

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_float()

f##include <rpc.h>

bool_t

xdr_float (xdrs, fp)
XDR *xdrs;

float *fp;

Operand
Description

xdrs
Points to an XDR stream.

Ip

Points to the floating-point number.

Description: The xdr_float() call translates between C floating-point numbers and their external
representations.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_inline()

f##include <rpc.h>

long *
xdr_inline(axdrs, len)
XDR *xdrs;

u_int len;

Operand
Description

xdrs
Points to an XDR stream.

len
Specifies the byte length of the desired buffer.

222 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_int()

Description: The xdr_inline() call returns a pointer to a continuous piece of the XDR stream’s buffer. The
value is long * rather than char %, because the external data representation of any object is always an
integer multiple of 32 bits.

Note: xdr_inline() can return NULL if there is not sufficient space in the stream buffer to satisfy the
request.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_int()

f##include <rpc.h>

bool_t
xdr_int(axdrs, ip)
XDR *xdrs;

int *ip;

Operand
Description

xdrs
Points to an XDR stream.

ip

Points to the integer.
Description: The xdr_int() call translates between C integers and their external representations.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_long()

f##include <rpc.h>

bool_t
xdr_long(xdrs, Llp)
XDR *xdrs;

long *lp;

Operand
Description

xdrs
Points to an XDR stream.

Ip
Points to the long integer.

Description: The xdr_long() call translates between C long integers and their external representations.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

Chapter 5. Remote Procedure Calls 223

xdr_opaque()

xdr_opaque()

f##include <rpc.h>

bool_t

xdr_opaque (xdrs, cp, cnt)
XDR *xdrs;

char *cp;

u_int cnt;

Operand
Description

xdrs
Points to an XDR stream.

cp
Points to the opaque object.

cnt
Specifies the size of the opaque object.

Description: The xdr_opaque() call translates between fixed-size opaque data and its external
representation.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_opaque_auth()

#include <rpc.h>

bool_t

xdr_opaque_auth (xdrs, ap)
XDR *xdrs;

struct opaque_auth *ap;

Operand
Description

xdrs
Points to an XDR stream.

ap
Points to the opaque authentication information.

Description: The xdr_opaque_auth() call translates RPC message authentications.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pmap()

224 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_pmaplist()

f##include <rpc.h>
f#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
xdxr_pmap(xdrs, regs)
XDR *xdrs;

struct pmap *regs;

Operand
Description

xdrs
Points to an XDR stream.

regs
Points to the portmap operands.

Description: The xdr_pmap() call translates an RPC procedure identification, such as is used in calls to
Portmapper.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pmaplist()

#include <xpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t

xdr_pmaplist (xdrs, 7p)
XDR *xdrs;

struct pmaplist **1p;

Operand
Description

xdrs
Points to an XDR stream.

rp
Points to a pointer to the portmap data array.

Description: The xdr_pmaplist() call translates a variable number of RPC procedure identifications, such
as Portmapper creates.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pointer()

f##include <rpc.h>

bool_t

xdr_pointer(xdrs, pp, size, proc)
XDR *xdrs;

char **pp;

u_int size;

xdrproc_t proc;

Chapter 5. Remote Procedure Calls 225

xdr_reference()

Operand
Description

xdrs
Points to an XDR stream.

pp
Points to a pointer.

size
Specifies the size of the target.

proc
Specifies the XDR procedure that translates an individual element of the type addressed by the
pointer.

Description: The xdr_pointer() call provides pointer-chasing within structures. This differs from the
xdr_reference() call in that it can serialize or deserialize trees correctly.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_reference()

#include <xpc.h>

bool_t

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;

u_int size;

xdrproc_t proc;

Operand
Description

xdrs
Points to an XDR stream.

pp
Points to a pointer.

size
Specifies the size of the target.

proc
Specifies the XDR procedure that translates an individual element of the type addressed by the
pointer.

Description: The xdr_reference() call provides pointer-chasing within structures.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_rejected_reply()

f##include <rpc.h>

bool_t
xdr_rejected_reply (xdrs, rr)
XDR *xdrs;

struct rejected_reply *rr;

226 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_replymsg()

Operand
Description

xdrs
Points to an XDR stream.

rr
Points to the rejected reply.

Description: The xdr_rejected_reply() call translates rejected RPC reply messages.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_replymsg()

f#include <rpc.h>

bool_t
xdr_replymsg(xdrs, rmsg)
XDR *xdrs;

struct rpc_msg xrmsg;

Operand
Description

xdrs
Points to an XDR stream.

rmsg
Points to the reply message.

Description: The xdr_replymsg() call translates RPC reply messages.
Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_short()

f#include <rpc.h>

bool_t

xdr_short (xdrs, sp)
XDR *xdrs;

short *sp;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to the short integer.

Description: The xdr_short() call translates between C short integers and their external representations.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

Chapter 5. Remote Procedure Calls 227

xdr_string()

xdr_string()

f#include <rpc.h>

bool_t

xdr_string(axdrs, sp, maxsize)
XDR *xdrs;

char *x*sp;

u_int maxsize;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to a pointer to the string.

maxsize
Specifies the maximum size of the string.

Description: The xdr_string() call translates between C strings and their external representations. The
xdr_string() call is the only xdr routine to convert ASCII to EBCDIC.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_int()

#include <rpc.h>

bool_t

xdr_u_int (xdrs, up)
XDR *xdrs;

unsigned *up;

Operand
Description

xdrs
Points to an XDR stream.

up
Points to the unsigned integer.

Description: The xdr_u_int() call translates between C unsigned integers and their external
representations.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_long()

228 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_u_short()

f##include <rpc.h>

bool_t
xdr_u_long(axdrs, ulp)
XDR *xdrs;

u_long *ulp;

Operand
Description

xdrs
Points to an XDR stream.

ulp
Points to the unsigned long integer.

Description: The xdr_u_long() call translates between C unsigned long integers and their external
representations.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_short()

f##include <rpc.h>

bool_t
xdr_u_short(xdrs, usp)
XDR *xdrs;

u_short xusp;

Operand
Description

xdrs
Points to an XDR stream.

usp
Points to the unsigned short integer.

Description: The xdr_u_short() call translates between C unsigned short integers and their external
representations.

Return Values: The value 1 indicates success; the value O indicates an error.

xdr_union()

#include <rpc.h>

bool_t

xdr_union(axdrs, dscmp, unp, choices, dfault)
XDR *xdrs;

enum_t *dscmp;

char *unp;

struct xdr_discrim *choices;

xdrproc_t dfault;

Operand
Description

xdrs
Points to an XDR stream.

Chapter 5. Remote Procedure Calls 229

xdr_vector()

dscmp
Points to the union’s discriminant. enum_t can be any enumeration type.
unp
Points to the union.
choices
Points to an array detailing the XDR procedure to use on each arm of the union.

dfault
Specifies the default XDR procedure to use.

Description: The xdr_union() call translates between a discriminated C union and its external
representation.

Return Values: The value 1 indicates success; the value O indicates an error.
The following is an example of this call:

#include <xpc.h>
enum colors (black, brown, red);

bool_t

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;

enum colors *dscmp;

char *unp;

struct xdr_discrim xchoices;

xdrproc_t dfault;

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_vector()

#include <rpc.h>

bool_t

xdr_vector(xdrs, basep, nelem, elemsize, xdr_elem)
XDR *xdrs;

char *basep;

u_int nelem;

u_int elemsize;

xdrproc_t xdr_elem;

Operand
Description

xdrs
Points to an XDR stream.

basep
Specifies the base of the array.

nelem

Specifies the element count of the array.
elemsize

Specifies the size of each of the array’s elements, found using sizeof().
xdr_elem

Specifies the XDR routine that translates an individual array element.

Description: The xdr_vector() call translates between a fixed length array and its external representation.

Unlike variable-length arrays, the storage of fixed length arrays is static and unfreeable.
Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

230 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_void()

xdr_void()

f##include <rpc.h>

bool_t
xdr_void()

The xdr_void() call has no operands.

Description: The xdr_void () call is used like a command that does not require any other xdr functions.
This call can be placed in the inproc or outproc operand of the clnt_call function when the user does not
need to move data.

Return Values: Always a value of 1.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_wrapstring()

#include <xpc.h>

bool_t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;

char *x*sp;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to a pointer to the string.

Description: The xdr_wrapstring() call is the same as calling xdr_string() with a maximum size of
MAXUNSIGNED. It is useful because many RPC procedures implicitly invoke two-operand XDR routines,
and xdr_string() is a three-operand routine.

Return Values: The value 1 indicates success; the value O indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdrmem_create()

f#include <rpc.h>

void

xdrmem_create (xdrs, addr, size, op)
XDR *xdrs;

char *addr;

u_int size;

enum xdr_op op;

Operand
Description

xdrs
Points to an XDR stream.

Chapter 5. Remote Procedure Calls 231

xdrrec_create()

addr
Points to the memory location.

size
Specifies the maximum size of addr.
op
Determines the direction of the XDR stream (XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Description: The xdrmem_create() call initializes the XDR stream pointed to by xdrs. Data is written to, or
read from, addr.

xdrrec_create()

f#include <rpc.h>

void

xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;

u_int sendsize;

u_int recuvsize;

char *handle;

int (%readit) ();

int (xwriteit) ();

Operand
Description

xdrs
Points to an XDR stream.
sendsize
Indicates the size of the send buffer. Specify 0 to choose the default.

recvsize
Indicates the size of the receive buffer. Specify 0 to choose the default.

handle
Specifies the first operand passed to readit() and writeit().

readit()
Called when a stream’s input buffer is empty.

writeit()
Called when a stream’s output buffer is full.

Description: The xdrrec_create() call creates a record-oriented stream and initializes the XDR stream
pointed to by xdrs.

Note:

1. The x_op field must be set by the caller.
2. This XDR procedure implements an intermediate record string.
3. Additional bytes in the XDR stream provide record boundary information.

xdrrec_endofrecord()

f#include <rpc.h>

bool_t

xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;

int sendnow;

Operand
Description

232 z/VM: 7.3 TCP/IP Programmer's Reference

xdrrec_eof()

xdrs
Points to an XDR stream.

sendnow
Specifies nonzero to write out data in the output buffer.

Description: The xdrrec_endofrecord() call can be invoked only on streams created by xdrrec_create().
Data in the output buffer is marked as a complete record.

Return Values: The value 1 indicates success; the value O indicates an error.

xdrrec_eof()

#include <xpc.h>

bool_t
xdrrec_eof (xdrs)
XDR *xdrs;

Operand
Description

xdrs
Points to an XDR stream.

Description: The xdrrec_eof() call can be invoked only on streams created by xdrrec_create().

Return Values: The value 1 indicates the current record has been consumed; the value 0 indicates
continued input on the stream.

xdrrec_skiprecord()

#include <xpc.h>

bool_t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

Operand
Description

xdrs
Points to an XDR stream.

Description: The xdrrec_skiprecord() call can be invoked only on streams created by xdrrec_create(). The
XDR implementation is instructed to discard the remaining data in the input buffer.

Return Values: The value 1 indicates success; the value O indicates an error.

xdrstdio_create()

#include <xpc.h>
#include <stdio.h>

void

xdrstdio_create(xdrs, file, op)
XDR *xdrs;

FILE xfile;

enum xdr_op op;

Chapter 5. Remote Procedure Calls 233

xprt_register()

Operand
Description

xdrs
Points to an XDR stream.

file
Specifies the file name for the I/O stream.

op
Determines the direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Description: The xdrstdio_create() call initializes the XDR stream pointed to by xdrs. Data is written to, or
read from, file.

Note: fflush() is the destroy routine associated with this procedure. fclose() is not called.

xprt_register()

##include <rpc.h>

void
xprt_register(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The xprt_register() call registers service transport handles with the RPC service package.
This routine also modifies the global variable svc_fds

See Also: svc_register(), svc_fds.

xprt_unregister()

#include <rpc.h>

void
xprt_unregister (xprt)
SVCXPRT *xprt;

Operand
Description
xprt
Points to the service transport handle.

Description: The xprt_unregister() call unregisters an RPC service transport handle. A transport handle
should be unregistered with the RPC service package before it is destroyed. This routine also modifies the
global variable svc_fds and svc_fdset.

See also: svc_fds, svc_fdset.

Sample RPC Programs

This appendix provides examples of the following programs:

« RPC Genesend client (see “RPC Genesend Client” on page 236)
« RPC Geneserv server (see “RPC Geneserv Server” on page 236)

234 z/VM: 7.3 TCP/IP Programmer's Reference

Sample RPC Programs

« RPC Rawex raw data stream (see “RPC Rawex Raw Data Stream” on page 238)

Refer back to “Compiling, Linking, and Running an RPC Program” on page 192 for examples of how to
compile, link, and run RPC programs.

Running the Geneserv server and Genesend client

The Geneserv server and Genesend client are a pair of client-server programs. Typically, the Geneserv

server is run in one virtual machine and the Genesend client in another. If a POSIX shell command line is
available, both can be run in the same virtual machine by starting the Geneserv server in the background
and running the Genesend client in the foreground. The steps for running these programs are as follows:

1. Make sure the TCPIP Client-code disk is accessed (usually TCPMAINT 592).

2. Before the Geneserv server can be started, the Portmapper must be running. To determine if the
Portmapper is running, contact the Portmapper with the command RPCINFO -p

3. Start the Geneserv server. From the CMS command line issue:

openvm run GENESERV

To start in the foreground from a POSIX shell command line issue:
geneserv

To start in the background from a POSIX shell command line issue:

geneserv &

After starting the Geneserv server you should see output similar to the following:

openvm run GENESERV

Intrcv Registration with Port Mapper completed
Floatrcv Registration with Port Mapper completed
integer received: 10

integer being returned: 10

4. Start the Genesend client. From the CMS command line issue:

openvm run GENESEND hostname some_number
To start in the foreground from a POSIX shell command line issue:
genesend hostname some_number

To start in the background from a POSIX shell command line issue:

genesend hostname some_number &

The hostname argument is the host running the Geneserv server. The some_number argument is an
integer value that will be sent to the Geneserv server and then returned.

The following is a sample run of the Genesend client:

openvm run GENESEND myvmhost 10
value sent: 10 value received: 10
Ready;

Running the Rawex program

The rawex program uses the raw RPC interfaces and is a client and server program in the same program.
To start Rawex from a CMS command line issue:

openvm run RAWEX some_number

Chapter 5. Remote Procedure Calls 235

RPC Client

To start in the foreground from a POSIX shell command line issue:
rawex some_number

To start in the background from a POSIX shell command line issue:
rawex some_number &

The following is a sample run of Rawex:

openvm run RAWEX 5678
Argument: 5678
Received: 5678

Sent: 5678
Result: 5678
Ready;

RPC Genesend Client

The following is an example of an RPC client program.

/* GENESEND.C */
/* Send an integer to the remote host and receive the integer back */
/* PORTMAPPER AND REMOTE SERVER MUST BE RUNNING */

#define VM

#include <stdio.h>
#include <rpc.h>
##include <socket.h>

#define intrcvprog ((u_long)l150000)
#tdefine version ((u_long)1)
#define intrcvproc ((u_long)l)

main(argc, argv)
int argc;
char xargv[];

int innumberx;
int outnumber;
int error;

if (argec != 3) §
fprintf(stderr,“usage: %s hostname integer\n”, argv[0]);
exit (-1);

t /% endif x/

innumber = atoi(argv([2]);

/*

* Send the integer to the server. The server should

* return the same integer.

*/

error = callrpc(argv[1],intrcvprog,version,intrcvproc,xdr_int,

(char *)&innumber,xdr_int, (char *)&outnumber);

if (error != 0) {
fprintf(stderr,“error: callrpc failed: 9%d \n",error);
fprintf(stderr,“intrcprog: %d version: %d intrcvproc: %d",
intrcvprog, version,intrcvproc);
exit(1);
t /* endif */

printf(“value sent: % value received: %d\n”, innumber, outnumber);
exit(0);

RPC Geneserv Server

The following is an example of an RPC server program.

236 z/VM: 7.3 TCP/IP Programmer's Reference

RPC Server

/* GENERIC SERVER */
/* RECEIVE AN INTEGER OR FLOAT AND RETURN THEM RESPECTIVELY =%/
/* PORTMAPPER MUST BE RUNNING */

jftdefine VM

#include <zpc.h>
#include <stdio.h>

#define intrcvprog ((u_long)l50000)
#define fltrcvprog ((u_long)150102)
jidefine intvers ((u_long)1)
f#fdefine intrcvproc ((u_long)l)
#define fltrcvproc ((u_long)l)
fdefine fltvers ((u_long)1)

main ()

int *intrcv();
float *floatrcv();

/*REGISTER PROG, VERS AND PROC WITH THE PORTMAPPER%/

/*FIRST PROGRAM%/
registerrpc(intrcvprog,intvers,intrcvproc,intrcv,xdr_int,xdr_int);
printf(“Intrcv Registration with Port Mapper completed\n”);

/*0R MULTIPLE PROGRAMS%*/
registerrpc(fltrcvprog, fltvers, fltrcvproc,floatrcv,xdr_float,xdr_float);
printf(”“Floatrcv Registration with Port Mapper completed\n”);

/*
* svc_run will handle all requests for programs registered.
*/
svc_run();
printf(“Error:svc_run returned!\n");
exit(1);
¥
/*
* Procedure called by the server to receive and return an integer.
*/
int *
intrcv(in)
int *xin;
(I
int *out;
printf(“integer received: %d\n",*in);
out = in;
printf(“integer being returned: %d\n”,xout);
return (out);
}
/*
* Procedure called by the server to receive and return a float.
*/
float *
floatrcv(in)
float *in;
1
float *out;
printf(“float received: %e\n”,xin);
out=in;
printf(“float being returned: %e\n”,xout);
return(out);
}

Chapter 5. Remote Procedure Calls 237

RPC Raw Data Stream

RPC Rawex Raw Data Stream

The following is an example of an RPC raw data stream program.

/*RAWEX */

/* AN EXAMPLE OF THE RAW CLIENT/SERVER USAGE =x/
/* PORTMAPPER MUST BE RUNNING */
/*

* This program does not access an external interface. It provides
* a test of the raw RPC interface allowing a client and server
* program to be in the same process.
*/
#define VM
{#include <zpc.h>
#include <stdio.h>
#define rawprog ((u_long)150104)
#define rawvers ((u_long)l)
#define rawproc ((u_long)l)

extern enum clnt_stat clntraw_call();
extern void raw2();

main(argc,argv)
int argc;
char xargv[];

SVCXPRT *transp;

struct hostent xhp;

struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;

int bout,in;

register CLIENT *clnt;

enum clnt_stat cs;

int addrlen;

/*
* The only argument passed to the program is an integer to
* be transferred from the client to the server and back.

*
if(argc!=2) %
printf(“usage: %s integer\n”, argv[0]);
exit(-1);

in = atoi(argv[1]);

/*
* Create the raw transport handle for the server.
*/
transp = svcraw_create();
if (transp == NULL) {
fprintf(stderr, “can’t create an RPC server transport\n”);
exit(-1);
%

/* In case the program is already registered, deregister it x/
pmap_unset(rawprog, rawvers);

/* Register the server program with PORTMAPPER x/

if (!svc_register(transp,rawprog,rawvers,raw2, 0)) i
fprintf(stderr, “can’t register service\n”);
exit(-1);

%

/*

* The following registers the transport handle with internal

* data structures.

*/

xprt_register(transp);

238 z/VM: 7.3 TCP/IP Programmer's Reference

RPC Raw Data Stream

/*
* Create the client transport handle.
*/
if ((clnt = clntraw_create(rawprog, rawvers)) == NULL) {
clnt_pcreateerror(“clntudp_create”);
exit(-1);
%
total_timeout.tv_sec = 60;
total_timeout.tv_usec = 0;
printf(“Argument: 9%d\n",in);

/*
* Make the call from the client to the server.
*/
cs=clnt_call(clnt, rawproc,xdr_int,
(char *)&in,xdr_int, (char *)&bout,total_timeout);

printf(“Result: %d",bout);

if(cs!=0) $
clnt_perror(clnt,”“Client call failed”);
exit(1);

t
exit(0);
¥

/*
* Service procedure called by the server when it receives the client
* request.
*/
void raw2(rgstp,transp)
struct svc_req xrqstp;
SVCXPRT xtransp;

int in,out;
if (rqstp->rq_proc=rawproc) 1
/*

* Unpack the integer passed by the client.

*/

svc_getargs(transp,xdr_int,&in);

printf(“Received: %d\n",in);

/*

* Send the integer back to the client.

*/

out=in;

printf(“Sent: %d\n"”,out);

if (!svc_sendreply(transp, xdr_int,&out)) {
printf(“Can’t reply to RPC call.\n");
exit(1);

Chapter 5. Remote Procedure Calls 239

RPC Raw Data Stream

240 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 6. SNMP Agent Distributed Programming
Interface

The Simple Network Management Protocol (SNMP) agent distributed programming interface (DPI)
permits end users to dynamically add, delete, or replace management variables in the local Management
Information Base (MIB) without requiring you to recompile the SNMP agent.

SNMP Agents and Subagents

SNMP defines an architecture that consists of network management stations (SNMP clients), network
elements (hosts and gateways), and network management agents and subagents. The network
management agents perform information management functions, such as gathering and maintaining
network performance information and formatting and passing this data to clients when requested. This
information is collectively called the Management Information Base (MIB). For more information about
clients, agents, and the MIB, see z/VM: TCP/IP User's Guide.

A subagent provides an extension to the functionality provided by the SNMP agent. The subagent allows
you to define your own MIB variables, which are useful in your environment, and register them with the
SNMP agent. When requests for these variables are received by the SNMP agent, the agent passes the
request to the subagent. The subagent then returns a response to the agent. The SNMP agent creates an
SNMP response packet and sends the response to the remote network management station that initiated
the request. The existence of the subagent is transparent to the network management station.

To allow the subagents to perform these functions, the SNMP agent binds to an arbitrarily chosen TCP
port and listens for connection requests. A well-known port is not used. Every invocation of the SNMP
agent potentially results in a different TCP port being used.

A subagent of the SNMP agent determines the port number by sending a GET request for the MIB
variable, which represents the value of the TCP port. The subagent is not required to create and parse
SNMP packets, because the DPI C language application program interface (API) has a library routine
query_DPI_port(). This routine handles the GET request and response called Protocol Data Units (PDUs)
necessary to obtain the port number of the TCP port used by the agent for DPI requests. After the
subagent obtains the value of the DPI TCP port, it should make a TCP connection to the appropriate port.
After a successful connect(), the subagent registers the set of variables it supports with the SNMP agent.
When all variable classes are registered, the subagent waits for requests from the SNMP agent.

Processing DPI Requests

The SNMP agent can initiate three DPI requests: GET, SET, and GET-NEXT. These requests correspond
to the three SNMP requests that a network management station can make. The subagent responds to a
request with a response packet. The response packet can be created using the mkDPIresponse() library
routine, which is part of the DPI API library.

The SNMP subagent can initiate only two requests: REGISTER and TRAP. For an overview of the SNMP
DPI, see Figure 37 on page 242.

© Copyright IBM Corp. 1987, 2023 241

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

Network
Network Manager
SNMP Protocol
Get
GetNext GetResponse
Trap Set
SNMP Protocol DPI Interface
Reply
SNMP Agent < Client
0\ > MIB quer;
Get/Set or
Trap info SNMP
v trap SNMP
TCP/IP layers, DPI |€ Sub-Agent
Kernel I(
Register
Figure 37. SNMP DPI overview

Note:

1. The SNMP agent communicates with the SNMP manager by the standard SNMP protocol.

2. The SNMP agent communicates with the TCP/IP layers and kernel (operating system) in an
implementation-dependent manner. It implements the standard MIB II view.

3. An SNMP Subagent, running as a separate process (potentially even on another machine), can register
objects with the SNMP agent.

4. The SNMP agent decodes SNMP Packets. If such a packet contains a Get, GetNext or Set request for
an object registered by a subagent, it sends the request to the subagent by a query packet.

5. The SNMP subagent sends responses back by a reply packet.

6. The SNMP agent then encodes the reply into an SNMP packet and sends it back to the requesting
SNMP manager.

7. If the subagent wants to report an important state change, it sends a trap packet to the SNMP agent,
which encodes it into an SNMP trap packet and sends it to the manager(s).

Processing a GET Request

The DPI packet is parsed, using the pDPIpacket() routine, to get the object ID of the requested variable.
If the specified object ID of the requested variable is not supported by the subagent, the subagent
returns an error indication of SNMP_NO_SUCH_NAME. Name, type, or value information is not returned.
For example:

242 z/VM: 7.3 TCP/IP Programmer's Reference

unsigned char xcp;

cp = mkDPIresponse (SNMP_NO_SUCH_NAME,Q);

If the object ID of the variable is supported, an error is not returned and the name, type, and value of the
object ID are returned using the mkDPIset() and mkDPIresponse() routines. The following is an example
of an object ID, whose type is string, being returned.

char xobj_id;

unsigned char xcp;
struct dpi_set_packet xret_value;
char *data;

/* obj_id = object ID of variable, like 1.3.6.1.2.1.1.1 %/

/* should be identical to object ID sent in GET request */

data = a string to be returned;

ret_value = mkDPIset(obj_id,SNMP_TYPE_STRING,
strlen(data)+1,data);

cp = mkDPIresponse(0,ret_value);

Processing a SET Request

Processing a SET request is similar to processing a GET request, but you must pass additional information
to the subagent. This additional information consists of the type, length, and value to be set.

If the object ID of the variable is not supported, the subagent returns an error indication of
SNMP_NO_SUCH_NAME. If the object ID of the variable is supported, but cannot be set, an error
indication of SNMP_READ_ONLY is returned. If the object ID of the variable is supported, and is
successfully set, the message SNMP_NO_ERROR is returned.

Processing a GET_NEXT Request

Parsing a GET_NEXT request yields two operands: the object ID of the requested variable and the reason
for this request. This allows the subagent to return the name, type, and value of the next supported
variable, whose name lexicographically follows that of the passed object ID.

Subagents can support several different groups of the MIB tree. However, the subagent cannot jump from
one group to another. You must first determine the reason for the request to then determine the path to
traverse in the MIB tree. The second operand contains this reason and is the group prefix of the MIB tree
that is supported by the subagent.

If the object ID of the next variable supported by the subagent does not match this group prefix, the
subagent must return SNMP_NO_SUCH_NAME. If required, the SNMP agent will call on the subagent
again and pass a different group prefix.

For example, if you have two subagents, the first subagent registers two group prefixes, A and C, and
supports variables A.1, A.2, and C.1. The second subagent registers the group prefix B, and supports
variable B.1.

When a remote management station begins dumping the MIB, starting from A, the following sequence of
queries is performed.

Subagent 1 is called:

get_next(A,A) == A.1
get_next(A.1,A) == A.2
get_next(A.2,A) == error(no such name)

Subagent 2 is then called:

get_next(A.2,B) == B.1
get_next(B.1,B) == error(no such name)

Subagent 1 is then called:

Chapter 6. SNMP Agent Distributed Programming Interface 243

SNMP DPI Reference

get_next(B.1,C)
C)

c.1
get_next(C.1, e

rror(no such name)

Processing a REGISTER Request

A subagent must register the variables that it supports with the SNMP agent. Packets can be created
using the mkDPIregister() routine.

For example:

unsigned char xcp;

cp = mkDPIregister('1.3.6.1.2.1.1.2.");

Note: Object IDs are registered with a trailing dot ("."). Although DPI 1.0 level did accept an Object ID
without a trailing dot, the new level (DPI 1.1) does not.

Processing a TRAP Request

A subagent can request that the SNMP agent generate a TRAP for it. The subagent must provide the
desired values for the generic and specific operands of the TRAP. The subagent can optionally provide
a name, type, and value operand. The DPI API library routine mkDPItrap() can be used to generate the
TRAP packet.

Compiling and Linking

To compile your program, you must include the SNMP_DPI.H header file.
To compile and link your applications, use the following procedures:

1. To set up the C environment, enter the following commands:

SET LDRTBLS nn
GLOBAL LOADLIB SCEERUN
GLOBAL TXTLIB SCEELKED

2. To compile your program, enter one of the following commands:
« Place compile options on the CC command:
CC filename (def(VM)
 Place ##fdefine VMin the first line of all u