
z/VM
7.3

TCP/IP Programmer's Reference

IBM

SC24-6332-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
359.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-09-18
© Copyright International Business Machines Corporation 1987, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xiii

Tables..xv

About This Document..xix
Intended Audience.. xix
Conventions and Terminology...xix

How the Term “internet” Is Used in This Document...xix
How Numbers Are Used in This Document... xix

Syntax, Message, and Response Conventions...xx
Where to Find More Information..xxii

Links to Other Documents and Websites.. xxiii

How to provide feedback to IBM... xxv

Summary of Changes for z/VM: TCP/IP Programmer's Reference....................... xxvii
SC24-6332-73, z/VM 7.3 (September 2023).. xxvii
SC24-6332-73, z/VM 7.3 (September 2022).. xxvii
SC24-6332-03, z/VM 7.2 (December 2021)... xxvii
SC24-6332-03, z/VM 7.2 (March 2021).. xxvii
SC24-6332-03, z/VM 7.2 (September 2020).. xxvii
SC24-6332-02, z/VM 7.1 (May 2020)...xxviii
SC24-6332-01, z/VM 7.1 (December 2018).. xxviii
SC24-6332-00, z/VM 7.1 (September 2018)...xxix

Chapter 1. z/VM C Socket Application Programming Interface............................... 1
TCP/IP Network Communication...2

Transport Protocols.. 2
What is a Socket?... 2

Address Families.. 3
Socket Types...4
Domain-specific Socket Addresses... 5

Client/Server Conversation..8
Server Perspective for AF_INET... 9
Client Perspective for AF_INET..11
Typical TCP Socket Session..11
Typical UDP Socket Session...12
Locating the Server's Port.. 13

Network Application Example... 14
z/VM C Socket Implementation...18

Header Files..18
Multithreading.. 19
POSIX Signals and Thread Cancellation.. 20
Sockets and Their Relationship to Other POSIX Functions.. 20
Secure Connection Considerations..21
Miscellaneous Implementation Notes...22
Incompatibilities with the VM TCP/IP C Sockets Library.. 23
Incompatibilities with z/OS and OS/390 C Sockets.. 25
Incompatibilities with the Berkeley Socket Implementation... 25

 iii

Compiling and Linking a Sockets Program.. 26
Compiling and Linking a z/VM C Sockets Program.. 26
Compiling and Linking a TCP/IP C Sockets Program... 28

Running a Sockets Program...29
Preparing to Run a Sockets Program... 29
Using Environment Variables... 30
Running a Program Residing in the BFS.. 31
Running a Program Residing on an Accessed Minidisk or SFS Directory... 32

C Sockets Quick Reference..32
TCP Client Program.. 35
TCP Server Program...36
UDP Client Program... 38
UDP Server Program.. 38

Chapter 2. TCP/UDP/IP API (Pascal Language)... 41
Software Requirements... 41
Data Structures.. 41

Connection State.. 42
Connection Information Record...43
Socket Record...44
Notification Record...45
File Specification Record..53

Using Procedure Calls..53
Notifications... 54
TCP/UDP Initialization Procedures.. 54
TCP/UDP Termination Procedure...55
Handling External Interrupts... 55
TCP Communication Procedures... 55
Ping Interface... 57
Monitor Procedures..57
UDP Communication Procedures...57
Raw IP Interface...58
Timer Routines... 58
Host Lookup Routines.. 58
Other Routines..59

Procedure Calls.. 60
AddUserNote.. 60
BeginTcpIp..60
ClearTimer.. 60
CreateTimer.. 61
DestroyTimer.. 61
EndTcpIp...61
GetHostNumber... 62
GetHostResol..62
GetHostString... 62
GetIdentity... 63
GetNextNote...63
GetSmsg... 64
Handle...64
IsLocalAddress...65
IsLocalHost...65
MonCommand.. 66
MonQuery... 67
NotifyIo...68
PingRequest..69
QueryTLS.. 70
RawIpClose.. 70

iv

RawIpOpen...71
RawIpReceive...72
RawIpSend... 72
ReadXlateTable...73
RTcpExtRupt... 74
RTcpVmcfRupt.. 74
SayCalRe...75
SaySslRe... 75
SayConSt...75
SayIntAd... 76
SayIntNum..76
SayNotEn.. 76
SayPorTy... 77
SayProTy... 77
SetTimer... 77
StartTcpNotice..78
Tcp6Open and Tcp6WaitOpen... 79
Tcp6Status..81
TcpAbort... 81
TcpClose... 82
TcpExtRupt... 83
TcpFReceive, TcpReceive, and TcpWaitReceive.. 83
TcpFSend, TcpSend, and TcpWaitSend... 86
TcpNameChange.. 88
TcpOpen and TcpWaitOpen..88
TcpOption... 90
TcpSCertData..91
TcpSClient...94
TcpSClose... 98
TcpSServer..98
TcpSStatus..99
TcpStatus..100
TcpVmcfRupt.. 101
Udp6Open.. 102
Udp6Send...102
UdpClose.. 103
UdpNReceive..104
UdpOpen...104
UdpReceive.. 105
UdpSend... 106
Unhandle.. 107
UnNotifyIo.. 107

Sample Pascal Program...108

Chapter 3. Virtual Machine Communication Facility Interface............................. 113
General Information.. 113

Data Structures.. 113
VMCF Functions..115
VMCF TCPIP Communication CALLCODE Requests..115
VMCF TCPIP Communication CALLCODE Notifications.. 117

TCP/UDP/IP Initialization and Termination Procedures... 119
BEGINtcpIPservice.. 119
ENDtcpIPservice.. 119
HANDLEnotice..119

TCP CALLCODE Requests.. 120
CLOSEtcp.. 120
FRECEIVEtcp.. 120

 v

OPENtcp... 121
OPTIONtcp... 122
RECEIVEtcp.. 123
SENDtcp and FSENDtcp... 123
STATUStcp.. 124
TLSSCERTDATAREQtcp ... 124
TLSSCLIENTtcp.. 124
TLSSCLOSEtcp..125
TLSSSERVERtcp... 125
TLSSSTATUStcp..126
V6OPENtcp...126
V6STATUStcp..127

UDP CALLCODE Requests..127
CLOSEudp...127
NRECEIVEudp.. 128
OPENudp.. 128
SENDudp.. 128
V6OPENudp..129
V6SENDudp.. 129

IP CALLCODE Requests... 130
CLOSErawip.. 130
OPENrawip... 130
RECEIVErawip.. 130
SENDrawip..131

CALLCODE System Queries... 131
IShostLOCAL.. 131
MONITORcommand... 132
MONITORquery.. 132
PINGreq..133
TLSQuery.. 133

CALLCODE Notifications.. 134
ACTIVEprobe..134
BUFFERspaceAVAILABLE.. 134
CERTdataCOMPLETE..134
CLEARtextRESUMED.. 135
CONNECTIONstateCHANGED..135
DATAdelivered.. 136
DUMMYprobe... 136
PINGresponse.. 136
QUERYtlsCOMPLETE.. 136
RAWIPpacketsDELIVERED.. 137
RAWIPspaceAVAILABLE.. 137
READYforHANDSHAKE...137
RESOURCESavailable...138
SECUREhandshakeCOMPLETE.. 138
UDPdatagramDELIVERED.. 138
UDPdatagramSPACEavailable..139
UDPresourcesAVAILABLE.. 139
URGENTpending...139

Chapter 4. Inter-User Communication Vehicle Sockets....................................... 141
Prerequisite Knowledge.. 141
Available Functions..141
Socket Programming with IUCV.. 141
Preparing to use the IUCV Socket API.. 142

Establishing an IUCV connection to TCP/IP.. 143
Initializing the IUCV Connection..143

vi

Severing the IUCV Connection.. 144
Sever by the Application.. 145
Sever by TCP/IP..145

Issuing Socket Calls...145
Overlapping Socket Requests..146
TCP/IP Response to an IUCV Request...147
Encrypting Data on an IUCV Socket...147
Cancelling a Socket Request..147

IUCV Socket Call Syntax..148
IUCV Socket Calls.. 159

ACCEPT...159
BIND... 160
CANCEL and CANCEL2... 161
CLOSE... 162
CONNECT..162
FCNTL... 163
GETCLIENTID... 164
GETHOSTID.. 165
GETHOSTNAME..165
GETPEERNAME.. 166
GETSOCKNAME..167
GETSOCKOPT... 168
GIVESOCKET.. 169
IOCTL..170
LISTEN..173
MAXDESC... 174
READ, READV..174
RECV, RECVFROM, RECVMSG..175
SELECT, SELECTEX...176
SEND...178
SENDMSG... 179
SENDTO.. 180
SETSOCKOPT..181
SHUTDOWN..182
SOCKET...183
TAKESOCKET..184
WRITE, WRITEV... 185
LASTERRNO..186

Chapter 5. Remote Procedure Calls.. 187
The RPC Interface..187
Portmapper.. 190

Contacting Portmapper..190
Target Assistance... 190

RPCGEN Command..190
enum clnt_stat Structure...191
Porting..192

Accessing System Return Messages... 192
Printing System Return Messages... 192
Enumerations... 192

Compiling, Linking, and Running an RPC Program... 192
RPC Global Variables... 193

rpc_createerr..193
svc_fds..193
svc_fdset.. 193

Remote Procedure Calls and External Data Representation..194
auth_destroy().. 194

 vii

authnone_create()..194
authunix_create()...194
authunix_create_default()..195
callrpc()...195
clnt_broadcast()...196
clnt_call()..197
clnt_control()..198
clnt_create()... 198
clnt_destroy()... 199
clnt_freeres()..199
clnt_geterr()... 200
clnt_pcreateerror()...200
clnt_perrno().. 201
clnt_perror()... 201
clnt_spcreateerror()... 201
clnt_sperrno()...202
clnt_sperror()... 202
clntraw_create()... 203
clnttcp_create().. 203
clntudp_create()... 204
get_myaddress().. 205
getrpcport().. 205
pmap_getmaps().. 205
pmap_getport().. 206
pmap_rmtcall()...206
pmap_set()... 207
pmap_unset()... 208
registerrpc()..208
svc_destroy().. 209
svc_freeargs()...210
svc_getargs().. 210
svc_getcaller()..210
svc_getreq()... 211
svc_getreqset().. 211
svc_register()..212
svc_run()...212
svc_sendreply().. 213
svc_unregister()..213
svcerr_auth().. 213
svcerr_decode()..214
svcerr_noproc().. 214
svcerr_noprog().. 215
svcerr_progvers()... 215
svcerr_systemerr()... 215
svcerr_weakauth()..216
svcraw_create().. 216
svctcp_create()...216
svcudp_create()..217
xdr_accepted_reply()... 217
xdr_array().. 218
xdr_authunix_parms()..218
xdr_bool()... 219
xdr_bytes()..219
xdr_callhdr()... 220
xdr_callmsg().. 220
xdr_double()... 220
xdr_enum()... 221
xdr_float()... 222

viii

xdr_inline()..222
xdr_int().. 223
xdr_long()... 223
xdr_opaque().. 224
xdr_opaque_auth()... 224
xdr_pmap()... 224
xdr_pmaplist().. 225
xdr_pointer()...225
xdr_reference()...226
xdr_rejected_reply()...226
xdr_replymsg()... 227
xdr_short().. 227
xdr_string()... 228
xdr_u_int().. 228
xdr_u_long()... 228
xdr_u_short().. 229
xdr_union()... 229
xdr_vector().. 230
xdr_void().. 231
xdr_wrapstring()... 231
xdrmem_create()..231
xdrrec_create()...232
xdrrec_endofrecord()... 232
xdrrec_eof().. 233
xdrrec_skiprecord()..233
xdrstdio_create().. 233
xprt_register().. 234
xprt_unregister().. 234

Sample RPC Programs...234
Running the Geneserv server and Genesend client... 235
Running the Rawex program... 235
RPC Genesend Client...236
RPC Geneserv Server...236
RPC Rawex Raw Data Stream..238

Chapter 6. SNMP Agent Distributed Programming Interface................................241
SNMP Agents and Subagents.. 241
Processing DPI Requests.. 241

Processing a GET Request... 242
Processing a SET Request..243
Processing a GET_NEXT Request.. 243
Processing a REGISTER Request...244
Processing a TRAP Request... 244

Compiling and Linking... 244
SNMP DPI Reference... 244
DPI Library Routines..245

DPIdebug()... 245
fDPIparse()... 245
mkDPIlist()... 246
mkDPIregister()..246
mkDPIresponse()... 247
mkDPIset()... 248
mkDPItrap()..249
mkDPItrape()..249
Example of an Extended Trap.. 250
pDPIpacket().. 251
query_DPI_port()... 252

 ix

Sample SNMP DPI Client Program.. 252
The DPISAMPLE Program (Sample DPI Subagent).. 253

DPISAMPLE TABLE...255
Client Sample Program..255

Compiling and Linking the DPISAMPLE.C Source Code.. 270

Chapter 7. SMTP Virtual Machine Interfaces...273
SMTP Transactions.. 273
SMTP Commands...273

HELO... 274
EHLO... 274
MAIL FROM...275
RCPT TO..276
DATA... 276
RSET... 277
QUIT... 277
NOOP.. 277
HELP... 277
QUEU.. 278
VRFY... 280
EXPN...280
VERB... 281
TICK.. 281

SMTP Command Example... 281
SMTP Command Responses..282
Path Address Modifications...283
Batch SMTP Command Files... 283
Batch SMTP Examples...283

Sending Mail to a TCP Network Recipient... 284
Querying SMTP Delivery Queues... 284

SMTP Exit Routines..285
Client Verification Exit... 285

Built-in Client Verification Function...285
Client Verification Exit Parameter Lists... 286

Using the Mail Forwarding Exit..291
Mail Forwarding Exit Parameter Lists.. 292

Using the SMTP Command Exit...297
SMTP Command Exit Parameter Lists... 298

Chapter 8. Telnet Exits...305
Telnet Session Connection Exit... 305

Telnet Exit Parameter List..305
Sample Exit...306

Telnet Printer Management Exit..306
Telnet Printer Management Exit Parameter List... 307
Sample Exit...307

Chapter 9. FTP Server Exit... 309
The FTP Server Exit..309

Sample Exit...309
Audit Processing.. 309

Audit Processing Parameter List..310
Audit Processing Parameter Descriptions...311
Return Codes from Audit Processing...312

General Command Processing.. 312
General Command Processing Parameter List..313
General Command Processing Parameter Descriptions...313

x

Return Codes from General Command Processing...315
Change Directory Processing.. 315

Change Directory Processing Parameter List.. 316

Chapter 10. Remote authorization and auditing through LDAP............................ 319
Using remote authorization and auditing..319
Setting up authorization for working with remote services..320
Remote authorization extended operation... 320

Remote authorization extended operation response codes...322
Remote authorization audit controls... 324

Remote auditing extended operation... 324
Remote auditing extended operation response codes... 328
Remote audit controls..330

Chapter 11. Building an LDAP Server Plug-in.. 333
Steps for writing an LDAP plug-in... 333

Note about LDAP support on z/VM.. 334

Appendix A. TCPLOAD EXEC...335
Using TCPLOAD..335

Appendix B. Pascal Return Codes...337
Explanatory Notes... 340

Appendix C. C API System Return Codes.. 341

Appendix D. Well-Known Port Assignments..345
TCP Well-Known Port Assignments.. 345
UDP Well-Known Port Assignments..346

Appendix E. Related Protocol Specifications...349

Appendix F. Abbreviations and Acronyms... 355

Notices..359
Programming Interface Information...360
Trademarks.. 360
Terms and Conditions for Product Documentation.. 361
IBM Online Privacy Statement.. 361

Bibliography.. 363
Where to Get z/VM Information.. 363
z/VM Base Library..363
z/VM Facilities and Features... 364
Prerequisite Products.. 366
Related Products... 366
Other TCP/IP Related Publications... 366

Index.. 369

 xi

xii

Figures

1. An Electrical Analogy Showing the Socket Concept...3

2. A Typical Stream Socket Session..12

3. A Typical Datagram Socket Session..13

4. An Application Using socket()... 14

5. An Application Using bind()...14

6. An Application Using listen()...14

7. An Application Using connect()...15

8. A connect() Function Using gethostbyname().. 15

9. An Application Using accept()...15

10. An Application Using send() and recv().. 16

11. An Application Using sendto() and recvfrom()... 16

12. An Application Using select()..17

13. An Application Using ioctl()...17

14. An Application Using close()...17

15. Pascal Declaration of Connection State Type.. 42

16. Pascal Declaration of Connection Information Record..43

17. IPv6 Pascal Declaration of Connection Information Record... 44

18. Pascal Declaration of Socket Type... 44

19. IPv6 Pascal Declaration of Socket Type...45

20. Notification Record (Part 1 of 2)... 46

21. Notification Record (Part 2 of 2)... 47

22. Pascal Declaration of File Specification Record...53

23. Monitor Query Record... 68

 xiii

24. Assembler Format of the VMCF Parameter List Fields.. 113

25. Equates for Notification Mask in the HANDLEnotice Call.. 120

26. Assembler Format of the Connection Information Record for VM.. 122

27. Miscellaneous Assembler Constants... 122

28. Assembler Format of the IPv6 Connection Information Record for VM... 126

29. Miscellaneous Assembler Constants... 126

30. Pascal Format of the IPv6 Datagram Information Record for VM...129

31. Assembler Format of the SpecOfFileType Record for VM..132

32. Equates for MonQueryRecordType used in the MONITORquery Call... 132

33. Assembler Format of the MonQueryRecordTypefor VM.. 132

34. Assembler format of the QueryRequest record for VM... 133

35. Remote Procedure Call (Client).. 188

36. Remote Procedure Call (Server)... 189

37. SNMP DPI overview.. 242

38. DPISAMPLE Table MIB descriptions.. 255

xiv

Tables

1. Examples of Syntax Diagram Conventions..xx

2. TCP/IP TXTLIB Files and Applications..26

3. TCP/IP TXTLIB Files and Applications..29

4. C Sockets Quick Reference... 33

5. TCP Connection States..42

6. Pascal Language Interface Summary—Notifications... 54

7. Pascal Language Interface Summary—TCP/UDP Initialization.. 54

8. Pascal Language Interface Summary—TCP/UDP Termination...55

9. Pascal Language Interface Summary—Handling External Interrupts... 55

10. Pascal Language Interface Summary—TCP Communication Procedures... 55

11. Pascal Language Interface Summary—Ping Interface...57

12. Pascal Language Interface Summary—Monitor Procedures..57

13. Pascal Language Interface Summary—UDP Communication Procedures.. 57

14. Pascal Language Interface Summary—Raw IP Interface.. 58

15. Pascal Language Interface Summary—Timer Routines... 58

16. Pascal Language Interface Summary—Host Lookup Routines.. 59

17. Pascal Language Interface Summary—Other Routines... 59

18. Available VMCF Functions.. 115

19. VMCF TCPIP CALLCODE Requests... 115

20. VMCF TCPIP CALLCODE Notifications..117

21. C Structures in Assembler Language Format...148

22. Values for cmd Argument in ioctl Call.. 171

23. Option name values for SETSOCKOPT... 181

 xv

24. SNMP DPI Reference.. 245

25. Client Verification REXX Exit Parameter List..287

26. Client Verification ASSEMBLER Exit Parameter List.. 287

27. Client Verification Exit Return Codes... 290

28. Mail Forwarding REXX Exit Parameter List...292

29. Mail Forwarding ASSEMBLER Exit Parameter List... 293

30. Mail Forwarding Exit Return Codes.. 296

31. SMTP Commands REXX Exit Parameter List.. 298

32. SMTP Commands ASSEMBLER Exit Parameter List...299

33. SMTP Command Exit Return Codes... 302

34. Telnet Session Connection Exit Parameter List... 305

35. Telnet Exit Parameter List...307

36. FTP Exit Audit Parameter List .. 310

37. FTP Exit Parameter List...313

38. FTP Exit Parameter List...316

39. Remote authorization responseCodes... 322

40. Remote authorization majorCodes...323

41. Remote authorization minorCodes...324

42. Remote auditing responseCodes... 328

43. Remote auditing majorCodes... 328

44. Remote auditing minorCodes... 330

45. Remote audit event codes.. 331

46. Remote audit event code qualifiers..331

47. Event-specific fields for remote audit events ... 331

48. Pascal Language Return Codes.. 337

xvi

49. System Return Codes... 341

50. TCP Well-Known Port Assignments..345

51. UDP Well-Known Port Assignments... 346

 xvii

xviii

About This Document

z/VM: TCP/IP Programmer's Reference describes the routines for application programming in IBM
Transmission Control Protocol/Internet Protocol for z/VM 7.3.0.

This document contains information about the following application programming interfaces (APIs):

• C sockets
• Pascal
• Virtual Machine Communication Facility (VMCF)
• Inter-User Communication Vehicle sockets
• Remote Procedure Calls (RPCs)
• Simple Network Management Protocol (SNMP) agent distributed program interface
• Conversational Monitor System (CMS) command interface to the name server
• Simple Mail Transfer Protocol (SMTP)

The descriptive information in the chapters is supplemented with appendixes that contain sample
programs and quick references.

For comments and suggestions about this document, use the Reader’s Comment Form located at the
back of this document. This form gives instructions on submitting your comments by mail, by FAX, or by
electronic mail.

Intended Audience
This document is intended for users and programmers who are familiar with z/VM and the Control
Program (CP) and the Conversational Monitor System (CMS) components. You should also be familiar with
the C or Pascal programming language and the specific application programming interface (API) that you
are using.

Before using this document, you should be familiar with z/VM, CP, and CMS. In addition, TCP/IP for z/VM
at function level 730 should already be installed and customized for your network.

Conventions and Terminology
This topic describes important style conventions and terminology used in this document.

How the Term “internet” Is Used in This Document
In this document, an internet is a logical collection of networks supported by routers, gateways, bridges,
hosts, and various layers of protocols, which permit the network to function as a large, virtual network.

Note: The term "internet" is used as a generic term for a TCP/IP network, and should not be confused
with the Internet, which consists of large national backbone networks (such as MILNET, NSFNet, and
CREN) and a myriad of regional and local campus networks worldwide.

How Numbers Are Used in This Document
In this document, numbers over four digits are represented in metric style. A space is used rather than
a comma to separate groups of three digits. For example, the number sixteen thousand, one hundred
forty-seven is written 16 147.

© Copyright IBM Corp. 1987, 2023 xix

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kiml0_v7r3.pdf#nameddest=kiml0_v7r3

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xx.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

xx About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

About This Document xxi

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
Appendix F, “Abbreviations and Acronyms,” on page 355, lists the abbreviations and acronyms that are
used throughout this document.

For more information about related publications, see the documents listed in the “Bibliography” on page
363.

xxii About This Document

Links to Other Online Documents
The online version of this document contains links to other online documents. These links are to editions
that were current when this document was published. However, due to the nature of some links, if a
new edition of a linked document has been published since the publication of this document, the linked
document might not be the latest edition. Also, a link from this document to another document works only
when both documents are in the same directory.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

About This Document xxiii

xxiv z/VM: 7.3 TCP/IP Programmer's Reference

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1987, 2023 xxv

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xxvi z/VM: 7.3 TCP/IP Programmer's Reference

Summary of Changes for z/VM: TCP/IP Programmer's
Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6332-73, z/VM 7.3 (September 2023)
This edition supports product changes that were provided or announced after the general availability of
z/VM 7.3.

[PH56199, VM66698] System SSL z/OS 2.5 Equivalence
With the PTFs for APARs PH56199 (TCP/IP) and VM66698 (LE), z/VM 7.3 provides an update to
the cryptographic services library, which includes certificate diagnostic enhancements and improved
algorithmic support and allows for enablement of TLS 1.3, for secure connectivity to the z/VM platform.

SC24-6332-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

Miscellaneous updates for z/VM 7.3
The following topic is updated:

• “IUCV Socket Call Syntax” on page 148

SC24-6332-03, z/VM 7.2 (December 2021)
This edition includes terminology, maintenance, and editorial changes.

The following topics are updated to clarify client certificate verification:

• “Starting a Secure Connection” on page 21
• “Stopping a Secure Connection” on page 21
• “IUCV Socket Call Syntax” on page 148

SC24-6332-03, z/VM 7.2 (March 2021)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.2.

Miscellaneous updates for March 2021
The following topic is updated:

• “IUCV Socket Call Syntax” on page 148

SC24-6332-03, z/VM 7.2 (September 2020)
This edition includes changes to support the general availability of z/VM 7.2.

© Copyright IBM Corp. 1987, 2023 xxvii

SC24-6332-02, z/VM 7.1 (May 2020)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.1.

[PH18435, VM66348, VM66349] TLS Certificate Verification
With the PTFs for APARs PH18435 (TCP/IP), VM66348 (CMS), and VM66349 (LE), the TCP/IP TLS/SSL
server has been enhanced to allow authentication of client certificates, host name validation, and
extraction of fields from a certificate.

The following changes have been made as a result of this support:

• “Starting a Secure Connection” on page 21 is updated.
• “Requesting Details from a Partner Certificate” on page 22 is added.
• “Determining if a TLS/SSL Server is Available” on page 22 is updated.
• CertDataComplete is added to “Notification Record” on page 45. AlertDescription is updated.
• TcpSCertData is added to “Other Routines” on page 59.
• “TcpSCertData” on page 91 is added.
• SecureDetailType is updated in “TcpSClient” on page 94.
• TLSSCERTDATAREQtcp is added to “VMCF TCPIP Communication CALLCODE Requests” on page 115.
• CERTdataCOMPLETE is added to “VMCF TCPIP Communication CALLCODE Notifications” on page 117.
• “TLSSCERTDATAREQtcp ” on page 124 is added.
• “CERTdataCOMPLETE” on page 134 is added.
• Return code 1025 is added to “TCP/IP Response to an IUCV Request” on page 147.
• CertDataCompleteDetailType, CertDataReqDetailType, and SecureHSCompleteDetailType are added to

“IUCV Socket Call Syntax” on page 148. SecureDetail is updated.
• SIOCGCERTDATA is added to “IOCTL” on page 170.
• Return code -110 is added to Appendix B, “Pascal Return Codes,” on page 337.
• Appendix C, “C API System Return Codes,” on page 341 is updated.

SC24-6332-01, z/VM 7.1 (December 2018)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.1.

[PI99184] TLS/SSL Server Elliptic Curve Support
With the PTF for APAR PI99184, z/VM 7.1 provides stronger security ciphers for the TLS/SSL server.
This support introduces elliptic curve cryptography, a faster and more secure mechanism for asymmetric
encryption than standard RSA or DSS algorithms.

The following changes have been made as a result of this support:

• The CipherDetails operand of the TcpSStatus procedure includes information about the new and
deprecated cipher suites.

For more information, see “TcpSStatus” on page 99.
• The cipher details listed under the SecStatus C structure include additional information related to the

new cipher suites.

For more information, see “IUCV Socket Call Syntax” on page 148.

xxviii z/VM: 7.3 TCP/IP Programmer's Reference

Miscellaneous Updates for December 2018
The following topics are updated:

• “QueryTLS” on page 70
• “TcpSClient” on page 94
• “IUCV Socket Call Syntax” on page 148
• “IOCTL” on page 170

SC24-6332-00, z/VM 7.1 (September 2018)
This edition includes changes to support the general availability of z/VM 7.1.

GDDMXD/VM Support Removed
The z/VM Graphical Data Display Manager (GDDM) interface to the X Window System (GDDMXD/VM) is no
longer supported. The interfaces and associated documentation have been removed.

IMAP Support Removed
The z/VM Internet Message Access Protocol (IMAP) server is no longer supported. The interfaces and
associated documentation have been removed.

Summary of Changes for z/VM: TCP/IP Programmer's Reference xxix

xxx z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 1. z/VM C Socket Application Programming
Interface

This chapter describes the z/VM C socket application programming interface (API). z/VM C sockets are
C Language functions that closely correspond to the sockets used by UNIX applications that use the
Berkeley Software Distribution (BSD) 4.4.

z/VM C sockets are intended as replacements for VM TCP/IP C sockets (formerly documented in this
chapter). Although TCP/IP C sockets are still supported for compatibility, the z/VM C socket API is
preferred.

This chapter describes how to write, compile, and run applications that use z/VM C sockets. Existing
applications that use the VM TCP/IP C sockets library may continue to do so without any modification. To
use the z/VM C socket functions, existing TCP/IP C socket applications may need to be recompiled, but no
source changes are required. Instructions are provided in this chapter.

Note:

1. To run programs that use z/VM C sockets, you must have Language Environment® (supplied with
z/VM) installed on your system. Language Environment provides header files and the object code and
run-time library for the z/VM C socket functions.

To compile programs that use the z/VM C socket API, you also need the IBM C for VM/ESA (C/VM)
Compiler 3.1 (5654-033).

For specific program requirements, see the z/VM: General Information.
2. This chapter provides a guide to using the z/VM C socket API. For complete reference information on

the z/VM C socket functions, see the XL C/C++ for z/VM: Runtime Library Reference.

This chapter contains the following sections:

• “TCP/IP Network Communication” on page 2 defines some of the basic networking terms.
• “What is a Socket?” on page 2 provides an overview of socket programming concepts.
• “Client/Server Conversation” on page 8 shows how a client and server use sockets to exchange

information.
• “Network Application Example” on page 14 shows how sockets are used in a network application

program.
• “z/VM C Socket Implementation” on page 18 explains how z/VM has implemented the support for

C sockets. This section also explains the incompatibilities between z/VM C sockets and VM TCP/IP C
sockets.

• “Compiling and Linking a Sockets Program” on page 26 describes how to compile and link programs to
use the z/VM C sockets library.

• “Running a Sockets Program” on page 29 describes how to run programs that use the z/VM C sockets
library.

• “C Sockets Quick Reference” on page 32 lists the z/VM C socket calls.
• “TCP Client Program” on page 35 shows an example of a TCP client program using z/VM C sockets.
• “TCP Server Program” on page 36 shows an example of a TCP server program using z/VM C sockets.
• “UDP Client Program” on page 38 shows an example of a UDP client program using z/VM C sockets.
• “UDP Server Program” on page 38 shows an example of a UDP server program using z/VM C sockets.

C Sockets API

© Copyright IBM Corp. 1987, 2023 1

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

TCP/IP Network Communication
Network communication, or "internetworking", defines a set of protocols that allow application programs
to talk with each other without regard to the hardware and operating systems where they are run.
Internetworking allows application programs to communicate independently of their physical network
connections.

TCP/IP is an internetworking technology and is named after its two main protocols: Transmission
Control Protocol (TCP), and Internet Protocol (IP). You should also be familiar with the following basic
internetworking terms:
client

A process that requests services on the network.
server

A process that responds to a request for service from a client.
datagram

A basic unit of information, consisting of one or more data packets, which are passed across an
internet at the transport level.

packet
The unit or block of a data transaction between a computer and its network. A packet usually contains
a network header, at least one high-level protocol header, and data blocks. Generally, the format of
data blocks does not affect how packets are handled. Packets are the exchange medium used at the
Internetwork layer to send data through the network.

Transport Protocols
There are two general types of transport protocols:

• A connectionless protocol treats each datagram as independent from all others. Each datagram must
contain all the information required for its delivery.

An example of such a protocol is User Datagram Protocol (UDP). UDP is a datagram-level protocol built
directly on the IP layer and used for application-to-application programs on a TCP/IP host. UDP does
not guarantee data delivery, and is therefore considered unreliable. Application programs that require
reliable delivery of streams of data should use TCP.

• A connection-oriented protocol requires that hosts establish a logical connection with each other
before communication can take place. This connection is sometimes called a "virtual circuit", although
the actual data flow uses a packet-switching network. A connection-oriented exchange includes three
phases:

1. Start the connection.
2. Transfer data.
3. End the connection.

An example of such a protocol is Transmission Control Protocol (TCP). TCP provides a reliable vehicle
for delivering packets between hosts on an internet. TCP breaks a stream of data into datagrams,
sends each one individually using IP, and reassembles the datagrams at the destination node. If any
datagrams are lost or damaged during transmission, TCP detects this and re-sends the missing or
damaged datagrams. The data stream that is received is therefore a reliable copy of the original.

These types of protocols are illustrated in Figure 2 on page 12, and in Figure 3 on page 13.

What is a Socket?
A socket can be thought of as an endpoint in a two-way communication channel. Socket routines create
the communication channel, and the channel carries data between application programs either locally or
over networks. Each socket open by a process — like any open file in a POSIX process — has a unique
(within the process) number associated with it called a "file descriptor", an integer that designates a
socket and allows the application program to refer to it when needed.

C Sockets API

2 z/VM: 7.3 TCP/IP Programmer's Reference

Using an electrical analogy, you can think of the communication channel as the electrical wire with its plug
and the port, or socket, as the electrical socket or outlet, as shown in Figure 1 on page 3.

Figure 1. An Electrical Analogy Showing the Socket Concept

Figure 1 on page 3 shows many application programs running on a client and many application programs
on a server. When the client starts a socket call, a socket connection is made between an application on
the client and an application on the server.

Another analogy used to describe socket communication is a telephone conversation. Dialing a phone
number from your telephone is similar to starting a socket connection. The telephone switching unit
knows where to logically make the correct switch to complete the call at the remote location. During your
telephone conversation, this connection is present and information is exchanged. After you hang up, the
connection is broken and you must start it again. The client uses the connect() function call to start the
logical switch mechanism to connect to the server.

User processes ask the sockets library to create a socket when one is needed. The sockets library returns
an integer, the file descriptor that the application uses every time it wants to refer to that socket.

Sockets perform in many respects like UNIX files or devices, so they can be used with such traditional
operations as read() or write(). For example, after two application programs create sockets and open a
connection between them, one program can use write() to send a stream of data, and the other can use
read() to receive it. Because each file or socket has a unique descriptor, the system knows exactly where
to send and to receive the data.

Address Families
The z/VM C socket API supports four address families (also called domains):

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 3

AF_INET and AF_INET6
AF_INET and AF_INET6 (internet domain) sockets provide a means of communicating between
application programs that are on different systems using the TCP and UDP transport protocols
provided by a TCP/IP product. These address families support both stream and datagram sockets.
TCP/IP for z/VM must be configured for you to be able to use these address families.

AF_IUCV
AF_IUCV (VM IUCV) sockets provide communication between processes on a single VM system, or on
a group of systems that share IUCV connectivity. VM IUCV sockets allow interprocess communication
within VM independent of TCP/IP. The AF_IUCV domain supports only stream sockets.

AF_UNIX
AF_UNIX sockets (also called local sockets) provide communication between processes on a single
VM system, or on a group of systems that share a single Byte File System (BFS) server. UNIX domain
sockets allow interprocess communication within VM independent of TCP/IP. On z/VM, the AF_UNIX
domain supports only stream sockets.

The primary difference between VM IUCV sockets and UNIX sockets is how partners are identified (for
example, how they are named).

Socket Types
The z/VM C socket API provides application programs with an interface that hides the details of the
physical network. The API supports stream sockets, datagram sockets, and raw sockets, each providing
different services for application programs. Stream and datagram sockets interface to the network layer
protocols, and raw sockets interface to the network interface layers. You choose the most appropriate
interface for an application.

Stream Sockets
The stream sockets interface provides a connection-oriented service. After the partner applications
connect, the data sent on stream sockets acts like a stream of information. There are no boundaries
between data, so communicating processes must agree on their own mechanism to distinguish
information. For example, the process sending information could first send the length of the data,
followed by the data itself. The process receiving information reads the length and then loops, reading
data until all of it has been transferred. Stream sockets guarantee delivery of the data in the order it was
sent and without duplication. The stream socket interface provides a reliable connection-oriented service.
Data is sent without errors or duplication and is received in the same order as it is sent. Flow control is
built in, to avoid data overruns. No boundaries are imposed on the data; the data is considered to be a
stream of bytes.

Stream sockets are the most-commonly used, because the burden of transferring the data reliably is
handled by the system rather than by the application.

Datagram Sockets
The datagram socket interface provides a connectionless service. Datagrams are sent as independent
packets. The service provides no guarantees; datagrams can be lost, duplicated, and can arrive out of
order. The size of a datagram is limited to the size that can be sent in a single transaction.

Raw Sockets
The raw socket interface provides direct access to lower layer protocols, such as the Internet Protocol
(IP) and Internet Control Message Protocol (ICMP or ICMPv6). You can use raw sockets to test new
protocol implementations. You can extend the socket interface; you can define new socket types to
provide additional services. Because they isolate you from the communication functions of the different
protocol layers, socket interfaces are largely independent of the underlying network. In the AF_INET
address family, stream sockets interface to TCP, datagram sockets interface to UDP, and raw sockets
interface to ICMP and IP. In the AF_INET6 address family, stream sockets interface to TCP, datagram
sockets interface to UDP, and raw sockets interface to ICMPv6 and IP.

C Sockets API

4 z/VM: 7.3 TCP/IP Programmer's Reference

Guidelines for Using Socket Types
The following criteria will help you choose the appropriate socket type for an application program.

If you are communicating with an existing application program, you must use the same protocol as the
existing application program. For example, if you want to communicate with an application that uses TCP,
you must use AF_INET or AF_INET6 stream sockets. For new application programs, you should consider
the following factors:

• Reliability: Stream sockets provide the most reliable connection. Datagram sockets are unreliable,
because datagrams can be discarded, corrupted, or duplicated during transmission. This may be
acceptable if the application program does not require reliability, or if the application program
implements the reliability on top of the sockets interface. The trade-off is the improved performance
available with datagram sockets.

• Performance: The overhead associated with reliability, flow control, packet reassembly, and connection
maintenance degrade the performance of stream sockets in comparison with datagram sockets.

• Data transfer: Datagram sockets impose a limit on the amount of data transferred in a single
transaction. If you send less than 2048 bytes at a time, use datagram sockets. As the amount of data in
a single transaction increases, use stream sockets.

If you are writing a new protocol on top of IP, or wish to use the ICMP protocol, then you must use raw
sockets.

Domain-specific Socket Addresses
The following sections describe the different ways to address processes who communicate with each
other using sockets.

Address Families
Each address family defines a different style of addressing. All hosts in the same address family use
the same scheme for addressing socket endpoints. The AF_INET and AF_INET6 address families identify
processes by IP address and port number. The AF_UNIX address family identifies processes by file name
in the Byte File System. The AF_IUCV address family identifies processes by VM user ID and application
name.

Socket Address
A socket address is defined by the sockaddr structure in the sys/socket.h header file. The structure has
three fields, as shown in the following example:

struct sockaddr {
 unsigned char sa_len;
 unsigned char sa_family;
 char sa_data[14]; /* variable length data */
};

The sa_len field contains the length of the entire sockaddr structure, in bytes. The sa_family field contains
a value identifying the address family. It is AF_INET or AF_INET6 for the internet domain, AF_UNIX for the
UNIX domain, and AF_IUCV for the IUCV domain. The sa_data field is different for each address family.
Each address family defines its own structure, which can be overlaid on the sockaddr structure. See
“Addressing within the AF_INET and AF_INET6 Domains” on page 5, “Addressing within the AF_UNIX
Domain” on page 7 , and “Addressing within the AF_IUCV Domain” on page 8.

Addressing within the AF_INET and AF_INET6 Domains
Before discussing the contents of the AF_INET and AF_INET6 sockaddr structures, the following terms
must be introduced:

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 5

Internet Addresses
Internet addresses represent a network interface. Every internet address within an administered domain
is unique. On the other hand, it is not necessary that every host have a single internet address; in fact, a
host has as many internet addresses as it has network interfaces.

Internet addresses can be in one of two formats: IPv4 (IP version 4) or IPv6 (IP version 6). Hosts can
support either addressing format or both. IPv4 internet addresses are 32-bit quantities. The AF_INET
address family communicates through IPv4 addresses. IPv6 internet addresses are 128-bit quanities.
The AF_INET6 address family communicates through IPv6 addresses.

Ports
A port distinguishes between different application programs using the same AF_INET network interface.
It is an additional qualifier used by the system software to get data to the correct application program.
Physically, a port is a 16-bit integer. Some ports are reserved for particular application programs or
protocols and are called well-known ports.

Network byte order and host byte order
Ports and addresses are always specified in calls to the socket functions using the network byte order
convention. This convention is a method of sorting bytes that is independent of specific machine
architectures. Host byte order, on the other hand, sorts bytes in the manner which is most natural to
the host software and hardware. There are two common host byte order methods:

• Little-endian byte ordering places the least significant byte first. This method is used in Intel
microprocessors, for example.

• Big-endian byte ordering places the most significant byte first. This method is used in IBM z/
Architecture® and S/390® mainframes and Motorola microprocessors, for example.

The network byte order is defined to always be big-endian, which may differ from the host byte order on
a particular machine. Using network byte ordering for data exchanged between hosts allows hosts using
different architectures to exchange address information without confusion because of byte ordering. The
following C functions allow the application program to switch numbers easily back and forth between the
host byte order and network byte order without having to first know what method is used for the host byte
order:

• htonl() translates an unsigned long integer into network byte order.
• htons() translates an unsigned short integer into network byte order.
• ntohl() translates an unsigned long integer into host byte order.
• ntohs() translates an unsigned short integer into host byte order.

See Figure 5 on page 14, Figure 7 on page 15, and Figure 8 on page 15 for examples of using the
htons() call to put port numbers into network byte order.

The C functions inet_ntop() and inet_pton() are used to manipulate IPv6 addresses. For more information
on these functions, see XL C/C++ for z/VM: Runtime Library Reference.

AF_INET addresses
A socket address in the AF_INET address family is defined by the sockaddr_in structure, which is defined
in the netinet/in.h header file:

typedef unsigned long in_addr_t;
struct in_addr {
 in_addr_t s_addr;
};
struct sockaddr_in {
 unsigned char sin_len; /* length of sockaddr struct */
 unsigned char sin_family; /* addressing family */
 unsigned short sin_port; /* port number */
 struct in_addr sin_addr; /* IP address */
 unsigned char sin_zero[8]; /* unassigned */
};

C Sockets API

6 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

The sin_len field is set to either 0 or sizeof(struct sockaddr_in) when providing a sockaddr_in
structure to the sockets library. Both values are treated the same. When the sockets library provides a
sockaddr_in structure to the application, the sin_len field is set to sizeof(struct sockaddr_in).

The sin_family field is set to AF_INET.

The sin_port field is set to the port to which the process is bound, in network byte order.

The sin_addr field is set to the internet address (IP address) of the interface to which the process is
bound, in network byte order.

The sin_zero field is not used and must be set to all zeros.

AF_INET6 addresses
If the socket descriptor socket was created in the AF_INET6 domain, the format of the name buffer is
expected to be sockaddr_in6, as defined in the netinet/in.h:

 struct sockaddr_in6 {
 uint8_t sin6_len; /* length of sockaddr structure */
 sa_family_t sin6_family; /* addressing family */
 in_port_t sin6_port; /* port number */
 uint32_t sin6_flowinfo; /* ignored */
 struct in6_addr sin6_addr; /* IP address */
 uint32_t sin6_scope_id; /* scope ID */
};

The sin6_len field must be set to either 0 or sizeof(struct sockaddr_in6). Both values are treated
the same.

The sin6_family must be set to AF_INET6.

The sin6_port field is set to the port to which the socket is bound. It must be specified in network byte
order.

The sin6_flowinfo field is currently unsupported so its contents are ignored.

The sin6_addr.s6_addr field is set to the internet address of the interface to which the socket is bound. It
must be specified in network byte order.

The sin6_scope_id field identifies a set of interfaces as appropriate for the scope of the address carried
in the sin6_addr field. For link local addresses, the sin6_scope_id can be used to specify the outgoing
interface index. The z/VM stack supports sin6_scope_id for link local addresses only

Addressing within the AF_UNIX Domain
A socket address in the AF_UNIX address family is defined by the sockaddr_un structure, which is defined
in the sys/un.h header file:

struct sockaddr_un {
 unsigned char sun_len; /* length of sockaddr struct */
 unsigned char sun_family; /* addressing family */
 char sun_path[108]; /* file name */
};

When the application provides a sockaddr_un structure to the sockets library, the sun_len field should
be set to either 0 or a value greater than or equal to SUN_LEN(&sa), where sa is the name of the
sockaddr_un variable, but less than or equal to sizeof(struct sockaddr_un). The SUN_LEN() macro,
which is defined in sys/un.h, evaluates to an expression which returns the total length of the used portion
of the sockaddr_un structure, when sun_path has been filled in with a null-terminated file name. The
length returned by SUN_LEN() does not include the terminating null character. If a 0 is specified for
sun_len, the sockaddr length provided on the specific socket function call determines how long the path
name is. If sun_len is nonzero, the lesser of sun_len and the provided length is used. In either case, if
a null character appears in the string before the given length, the path name is considered to end there.
When the sockets library provides a sockaddr_un structure to the application, the sun_len field is set to
SUN_LEN(&sa)+1, where sa is the name of the sockaddr_un variable. This length thus includes the null
byte which terminates the file name.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 7

The sun_family field is set to AF_UNIX.

The sun_path field contains the name of the file which represents the open socket. It need not be null
delimited, although it is recommended that it is, so that the SUN_LEN() macro can be used. A file by this
name will be created in the Byte File System by the bind() function call, and must exist there for the
connect() function call to succeed. Because the Byte File System contains the file, the form of the path
name should follow the POSIX conventions. Generally, an absolute path name (one that begins with a
slash) should be specified, so that the client and the server can both use the same path name to identify
the file. If an AF_UNIX socket is not yet bound when a client calls the connect() function, it will be bound
to the null path name string (for example, the string ""). In this case, no file is created in the Byte File
System.

For more information about the Byte File System, see the z/VM: OpenExtensions User's Guide.

Addressing within the AF_IUCV Domain
A socket address in the AF_IUCV address family is defined by the sockaddr_iucv structure, which is
defined in the saiucv.h header file:

struct sockaddr_iucv {
 unsigned char siucv_len; /* length of sockaddr struct */
 unsigned char siucv_family; /* addressing family */
 unsigned short siucv_port; /* port number */
 unsigned long siucv_addr; /* address */
 unsigned char siucv_nodeid[8]; /* nodeid to connect to */
 unsigned char siucv_userid[8]; /* userid to connect to */
 unsigned char siucv_name[8]; /* iucvname for connect */
};

The siucv_len field is set to either 0 or sizeof(struct sockaddr_iucv) when providing a
sockaddr_iucv structure to the sockets library. Both values are treated the same. When the sockets
library provides a sockaddr_iucv structure to the application, the siucv_len field is set to sizeof(struct
sockaddr_iucv).

The siucv_family field is set to AF_IUCV.

The siucv_port, siucv_addr, and siucv_nodeid fields are reserved for future use. The siucv_port and
siucv_addr fields must be zeroed. The siucv_nodeid field must be set to exactly eight blank characters.

The siucv_userid field is set to the VM user ID of the application which owns the address. This field must
be eight characters long, padded with blanks on the right. It cannot contain the null character.

The siucv_name field is set to the application name by which the socket is known. A server advertises
a particular application name, and this is the name used by the client to connect to the server. The
recommended form of the name contains eight characters, padded with blanks to the right.

For more information about IUCV, see z/VM: CMS Application Development Guide for Assembler.

Client/Server Conversation
The client and server exchange data using a number of socket functions. They can send data using send(),
sendto(), sendmsg(), write(), or writev(). They can receive data using recv(), recvfrom(), recvmsg(), read(),
or readv(). The following is an example of the send() and recv() calls:

send(s, addr_of_data, len_of_data, 0);
recv(s, addr_of_buffer, len_of_buffer, 0);

The send() and recv() functions specify the socket s on which to communicate, the address in memory
of the buffer that contains, or will contain, the data (addr_of_data, addr_of_buffer), the size of this buffer
(len_of_data, len_of_buffer), and a flag that tells how the data is to be sent. Using the flag 0 tells TCP/IP
to transfer the data normally. The server uses the socket that is returned from the accept() call. The client
uses the socket that is returned from the socket() call.

These functions return the amount of data that was either sent or received. Because stream sockets send
and receive information in streams of data, it can take more than one call to send() or recv() to transfer all

C Sockets API

8 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

the data. It is up to the client and server to agree on some mechanism of signaling that all the data has
been transferred.

When the conversation is over, both the client and server call the close() function to end the connection.
The close() function deallocates the socket, freeing its space in the table of connections. To end a
connection with a specific client, the server closes the socket returned by accept(). If the server closes its
original socket, the "listening" socket, it can no longer accept new connections, but it can still converse
with the clients it is connected to. The following is an example of the close() call:

close(s);

Server Perspective for AF_INET
Before the server can accept any connections with clients, it must register itself with TCP/IP and "listen"
for client requests on a specific port.

socket()
The server must first allocate a socket. This socket provides an endpoint that clients connect to.

Opened sockets are identified by file descriptors, like any open files in a POSIX environment. The
programmer calls the socket() function to allocate a new socket, as shown in the following example:

socket(AF_INET, SOCK_STREAM, 0);

The socket() function requires the address family (AF_INET), the type of socket (SOCK_STREAM), and the
particular networking protocol to use (when 0 is specified, the system automatically uses the appropriate
protocol for the specified socket type). A new socket is allocated and its file descriptor is returned.

bind()
At this point, an entry in the table of communications has been reserved for your application program.
However, the socket has no port or IP address associated with it until you use the bind() function, which
requires three parameters:

• The socket the server was just given
• The number of the port on which the server wishes to provide its service
• The IP address of the network connection on which the server is listening (to understand what is meant

by "listening", see “listen()” on page 9).

The server puts the port number and IP address into a sockaddr_in structure, passing it and the socket
file descriptor to the bind() function. For example:

struct sockaddr_in sa;
⋮
bind(s, (struct sockaddr *) &sa, sizeof sa);

listen()
After the bind, the server has specified a particular IP address and port. Now it must notify the system
that it intends to listen for connections on this socket. The listen() function puts the socket into passive
open mode and allocates a backlog queue of pending connections. In passive open mode, the socket is
open for clients to contact. For example:

listen(s, backlog_number);

The server gives the file descriptor of the socket on which it will be listening and the number of requests
that can be queued (the backlog_number). If a connection request arrives before the server can process
it, the request is queued until the server is ready.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 9

The SOMAXCONN statement in the TCP/IP configuration file (PROFILE TCPIP) determines the maximum
length that backlog_number can be. For more information on the SOMAXCONN statement, see z/VM:
TCP/IP Planning and Customization.

accept()
Up to this point, the server has allocated a socket, bound the socket to an IP address and port, and issued
a passive open. The next step is for the server to actually establish a connection with a client. The accept()
call blocks the server until a connection request arrives, or, if there are connection requests in the backlog
queue, until a connection is established with the first client in the queue. The following is an example of
the accept() call:

struct sockaddr_in sa;
int addrlen;
⋮
client_sock = accept(s, (struct sockaddr *) &sa, &addrlen);

The server passes the file descriptor of its socket to the accept() call. When the connection is established,
the accept() call creates a new socket representing the connection with the client, and returns its file
descriptor. When the server wishes to communicate with the client or end the connection, it uses the
file descriptor of this new socket, client_sock. The original socket s is now ready to accept connections
with other clients. The original socket is still allocated, bound, and opened passively. To accept another
connection, the server calls accept() again. By repeatedly calling accept(), the server can establish many
connections simultaneously.

select()
The server is now ready to start handling requests on this port from any client with the server's IP address
and port number. If the server handles just one client at a time, it can just start sending or receiving data.
A server is not limited to one active socket, though. Often a server processes requests from several clients
at the same time, and additionally listens for new clients wanting to establish connections. For maximum
performance, such a server should either create a new thread to handle each client request, or set all of
its sockets to "nonblocking" mode, so that a delay in handling one client request does not affect other
client requests. Using nonblocking mode allows a single-threaded server to operate only on those sockets
that are ready for communication. The select() call allows an application program to test for activity on a
group of sockets.

Note: The select() function can also be used with other descriptors, such as file descriptors, pipes, or
character special files such as the tty.

To allow you to test any number of sockets with just a single call to select(), place the file descriptors of
the sockets to test into a "bit set", passing the bit set to the select() call. A bit set is a string of bits where
each possible member of the set is on or off. If the member's bit is off, the member is not in the set. If the
member's bit is on, the member is in the set. If the socket with file descriptor 3 is a member of a bit set,
then the bit that represents it is on.

The following macros are provided to manipulate the bit sets:
Macro

Description
FD_ZERO

Clears the whole bit set
FD_SET

Sets the bit corresponding to a particular file descriptor
FD_CLR

Clears the bit corresponding to a particular file descriptor
FD_ISSET

Tests whether the bit corresponding to a particular file descriptor is set or cleared

C Sockets API

10 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

To be active, a socket must be ready for reading data or for writing data, or an exceptional condition must
have occurred. Therefore, the server specifies three bit sets of file descriptors in its call to the select()
function: one bit set for file descriptors on which to receive data, another for file descriptors on which to
write data, and one for sockets with exception conditions. The select() call tests each file descriptor in
each bit set for activity and returns only those file descriptors that are active.

A server that processes many clients simultaneously can be written so that it processes only those clients
that are ready for activity.

Client Perspective for AF_INET
The client first issues the socket() function call to allocate a socket on which to communicate:

socket(AF_INET, SOCK_STREAM, 0);

To connect to the server, the client places the port number and the IP address of the server into a
sockaddr_in structure, like the one used by the server of its bind() call. If the client does not know the
server's IP address, but does know the server's host name, the gethostbyname() function may be called
to translate the host name into its IP address. The client then calls connect():

struct sockaddr_in sa;
⋮
connect(s, (struct sockaddr_in *) &sa, sizeof sa);

When the connection is established, the client uses its socket to communicate with the server.

Typical TCP Socket Session
You can use TCP sockets for both passive (server) and active (client) processes. Whereas some functions
are necessary for both types, some are role-specific. After you make a connection, it exists until you close
the socket. During the connection, data is either delivered or an error code is returned by TCP/IP.

See Figure 2 on page 12 for the general sequence of calls to be followed for most socket routines using
TCP, or stream sockets.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 11

Figure 2. A Typical Stream Socket Session

Typical UDP Socket Session
UDP socket processes, unlike TCP socket processes, are not clearly distinguished by server and client
roles. The distinction is between connected and unconnected sockets. An unconnected socket can be
used to communicate with any host; but a connected socket, because it has a dedicated destination, can
send data to, and receive data from, only one host.

C Sockets API

12 z/VM: 7.3 TCP/IP Programmer's Reference

Both connected and unconnected sockets send their data over the network without verification.
Consequently, after a packet has been accepted by the UDP interface, the arrival and integrity of the
packet cannot be guaranteed.

See Figure 3 on page 13 for the general sequence of calls to be followed for most socket routines using
UDP, or datagram, sockets.

Figure 3. A Typical Datagram Socket Session

Locating the Server's Port
In the client/server model, the server provides a resource by listening for clients on a particular port. Such
application programs as FTP, SMTP, and Telnet listen on a well-known port, a port reserved for use by a
specific application program or protocol. However, for your own client/server application programs, you
need a method of assigning port numbers to represent the services you intend to provide. One general
method of defining services and their ports is to enter them into the ETC SERVICES file. The programmer
uses the getservbyname() function to determine the port for a particular service. If the port number for a
particular service changes, only the ETC SERVICES file must be modified.

Note: TCP/IP for z/VM is shipped with an ETC SERVICES file containing such well-known services as FTP,
SMTP, and Telnet.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 13

Network Application Example
The following steps illustrates using socket functions in an AF_INET network application program.

Note: Error checking has been omitted from the examples. Error checking is very important, and has been
omitted only to avoid complicating the examples.

1. First, an application program must open a socket using the socket() call, as shown in Figure 4 on page
14.

int s;
⋮
s = socket(AF_INET, SOCK_STREAM, 0);

Figure 4. An Application Using socket()

This example allocates a socket s in the AF_INET address family, with socket type SOCK_STREAM
and protocol 0. Passing 0 for the protocol chooses the default, which for the AF_INET domain and
SOCK_STREAM type is IPPROTO_TCP. The supported values for the socket domain, type, and protocol
are defined in the netinet/in.h header file.

If successful, the socket() call returns a positive integer called a file descriptor that is used in
subsequent function calls to identify the socket.

2. After an application program creates a socket, it can explicitly bind a unique address to the socket, as
shown in Figure 5 on page 14.

int rc;
int s;
struct sockaddr_in myname;

/* Clear the structure to be sure that the sin_len and */
/* sin_zero fields are clear */
memset(&myname, 0, sizeof myname);
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = INADDR_ANY; /* any interface */
myname.sin_port = htons(5001);
⋮
rc = bind(s, (struct sockaddr *) &myname, sizeof myname);

Figure 5. An Application Using bind()

This example binds the socket with file descriptor s to port 5001, allowing it to accept connections
from any interface available to the host in the internet domain. Servers must bind to an address and
port to become accessible to the network. Also shown in this example is a handy utility routine called
htons(), which takes a short integer (like a port number) in host byte order and returns it in network
byte order.

3. After binding to a socket, a server that uses stream sockets must indicate its readiness to accept
connections from clients. The server does this with the listen() call, as shown in Figure 6 on page 14.

int s;
int rc;
⋮
rc = listen(s, 5);

Figure 6. An Application Using listen()

This example tells TCP/IP that the server is ready to begin accepting connections, and that a
maximum of five connection requests can be queued for the server. Additional requests are ignored.

C Sockets API

14 z/VM: 7.3 TCP/IP Programmer's Reference

4. Clients using stream sockets begin a connection request by calling connect(), as shown in Figure 7 on
page 15.

int s;
struct sockaddr_in servername;
int rc;
⋮
memset(&servername, 0, sizeof servername);
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = inet_addr("129.5.24.1");
servername.sin_port = htons(5001);
⋮
rc = connect(s, (struct sockaddr *) &servername, sizeof servername);

Figure 7. An Application Using connect()

This example attempts to connect the socket with file descriptor s to the server with an address
specified in the servername variable. This could be the server that was used in Figure 5 on page
14. After a successful return, the socket with file descriptor s is associated with the connection to
the server. This example also uses another handy utility routine, inet_addr(), which takes an internet
address in dotted-decimal form and returns it as a long integer in network byte order.

Figure 8 on page 15 shows another example of the connect() call. It uses the utility routine
gethostbyname() to find the internet address of the host rather than using inet_addr() with a specific
address.

int rc;
int s;
char *hostname = "jphhost.ibm.com";
struct sockaddr_in servername;
struct hostent *hp;

hp = gethostbyname(hostname);
⋮

/* Clear the structure to be sure that the sin_len and */
/* sin_zero fields are clear. */
memset(&servername, 0, sizeof servername);
servername.sin_family = AF_INET;
servername.sin_addr.s_addr = *(in_addr_t *) hp->h_addr;
servername.sin_port = htons(5001);
⋮
rc = connect(s, (struct sockaddr *) &servername, sizeof servername);

Figure 8. A connect() Function Using gethostbyname()

5. Servers using stream sockets accept a connection request with the accept() call, as shown in Figure 9
on page 15.

int clientsocket;
int s;
struct sockaddr_in clientaddress;
int addrlen;
⋮
addrlen = sizeof clientaddress;
clientsocket = accept(s, (struct sockaddr *) &clientaddress, &addrlen);

Figure 9. An Application Using accept()

If connection requests are not pending on the socket with file descriptor s, the accept() call blocks
the server (unless s is in nonblocking mode). When a connection request is accepted, the socket,
the name of the client, and length of the client name are returned, along with a file descriptor
representing a new socket. The new socket is associated with the client that began the connection,
and s is again available to accept new connections.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 15

6. Clients and servers have many calls from which to choose for data transfer. The send() and recv(),
readv() and writev(), and read() and write() calls can be used only on sockets that are in the
connected state. The sendto() and recvfrom(), and sendmsg() and recvmsg() calls can be used at
any time on datagram sockets. Figure 10 on page 16 illustrates the use of send() and recv().

int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
int s;
⋮
bytes_sent = send(s, data_sent, sizeof data_sent, 0);
⋮
bytes_received = recv(s, data_received, sizeof data_received, 0);

Figure 10. An Application Using send() and recv()

This example shows an application program sending data on a connected socket and receiving data
in response. The flags field can be used to specify additional options to send() or recv(), such as
sending out-of-band data. (In this case no flags are being used, so 0 is passed.)

7. If the socket is not in a connected state, additional address information must be passed to sendto()
and can be optionally returned from recvfrom(). An example is shown in Figure 11 on page 16.

int bytes_sent;
int bytes_received;
char data_sent[256];
char data_received[256];
struct sockaddr_in to;
struct sockaddr_in from;
int addrlen;
int s;
⋮
memset(&to, 0, sizeof to);
to.sin_family = AF_INET;
to.sin_addr.s_addr = inet_addr("129.5.24.1");
to.sin_port = htons(5001);
bytes_sent = sendto(s, data_sent, sizeof data_sent, 0,
 (struct sockaddr *) &to, sizeof to);
⋮
addrlen = sizeof from; /* must be initialized */
bytes_received = recvfrom(s, data_received,
 sizeof data_received, 0, (struct sockaddr *) &from, &addrlen);

Figure 11. An Application Using sendto() and recvfrom()

The sendto(), recvfrom(), sendmsg(), and recvmsg() calls take additional parameters that allow the
caller to specify the recipient of the data or to be notified of the sender of the data. Usually, sendto(),
recvfrom(), sendmsg(), and recvmsg() are used for datagram sockets, and send() and recv() are used
for stream sockets.

8. The writev(), readv(), sendmsg(), and recvmsg() calls provide the additional features of "scatter"
and "gather" buffers, two related operations where data is received and stored in multiple buffers
(scatter data), and then taken from multiple buffers and transmitted (gather data). The writev() and
sendmsg() calls gather the data and send it. The readv() and recvmsg() calls receive data and scatter
it into multiple buffers.

9. Applications can handle multiple file descriptors. In such situations, use the select() call to determine
the file descriptors that have data to be read, those that are ready for data to be written, and those
that have pending exceptional conditions. Figure 12 on page 17 is an example of how the select()
call is used.

C Sockets API

16 z/VM: 7.3 TCP/IP Programmer's Reference

fd_set readsocks;
fd_set writesocks;
fd_set exceptsocks;
struct timeval timeout;
int number_found;
⋮
/* set bits in read, write, and except bit masks */
FD_ZERO(&readsocks);
FD_ZERO(&writesocks);
FD_ZERO(&exceptsocks);

FD_SET(s, &readsocks);
FD_SET(s, &writesocks);
FD_SET(s, &exceptsocks);

timeout.tv_sec=5; /* Wait up to 5 seconds for activity */
timeout.tv_usec=0; /* No additional microseconds */

/* First argument is number of bits in masks to check */
number_found = select(s+1,
 &readsocks, &writesocks, &exceptsocks, &timeout);

Figure 12. An Application Using select()

In this example, the application program uses bit sets to indicate that the sockets are being tested for
certain conditions and also indicates a timeout. If the timeout parameter is a null pointer, the select()
call blocks until a socket becomes ready. If the timeout parameter is nonnull, select() waits up to this
amount of time for at least one socket to become ready on the indicated conditions. This is useful for
application programs servicing multiple connections that cannot afford to block, waiting for data on
one connection.

10. In addition to select(), application programs can use the fcntl() or ioctl() calls to help perform
asynchronous (nonblocking) socket operations. An example of the use of the ioctl() call is shown in
Figure 13 on page 17.

int s;
int dontblock;
char buf[256];
int rc;
⋮
dontblock = 1;
⋮
rc = ioctl(s, FIONBIO, &dontblock);
⋮
if (recv(s, buf, sizeof buf, 0) == -1 && errno == EWOULDBLOCK)
 /* no data available */
else
 /* either got data or some other error occurred */

Figure 13. An Application Using ioctl()

In this example, the socket with file descriptor s is placed into nonblocking mode. When this file
descriptor is passed as a parameter to calls that would block, such as recv() when data is not present,
it causes the call to return with an error code, and the global errno value is set to EWOULDBLOCK or
EAGAIN. Setting the mode of the socket to be nonblocking allows an application program to continue
processing without becoming blocked.

11. A socket with file descriptor s is deallocated with the close() call, as shown in Figure 14 on page 17.

int rc;
int s;
rc = close(s);

Figure 14. An Application Using close()

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 17

z/VM C Socket Implementation
The following sections describe some important implementation details of the z/VM C socket API.

Header Files
Most of the socket header files used by the z/VM C sockets library are shipped with Language
Environment. The only header file that is unique to the z/VM library is saiucv.h, which contains the
sockaddr structure definition for AF_IUCV sockets.

_OE_SOCKETS Preprocessor Symbol
In general, the Language Environment header files are sensitive to whether the _OE_SOCKETS
preprocessor symbol has been defined. In order to use the Language Environment header files for sockets
programming, you must define the _OE_SOCKETS preprocessor symbol before you include any Language
Environment header files. You can do this in your program by placing a statement similar to the following
at the top of each source file:

#define _OE_SOCKETS

Alternatively, you can cause the _OE_SOCKETS preprocessor symbol to be defined by the compiler, by
using the -D option on the c89 command line. See “Compiling and Linking a Sockets Program” on page
26 for more information on compiling sockets programs.

For IPv6 sockets programming (AF_INET6 sockets), the symbol _OPEN_SYS_SOCK_IPV6 must also be
defined.

Function Prototypes
Although they contain function prototypes for all of the POSIX.1 functions, the Language Environment
header files do not contain prototypes for all of the socket functions. Specifically, when _OE_SOCKETS is
defined, the following socket functions are available, but have no prototypes provided:
Header File

Functions
sys/socket.h

accept(), bind(), connect(), getpeername(), getsockname(), getsockopt(), listen(), recv(), recvfrom(),
recvmsg(), send(), sendmsg(), sendto(), setsockopt(), shutdown(), socket()

netdb.h
endhostent(), endnetent(), endprotoent(), endservent(), sethostent(), setnetent(), setprotoent(),
setservent()

arpa/inet.h
inet_lnaof(), inet_netof()

sys/uio.h
readv(), writev()

Because the socket functions were designed to be useful for any networking interface, the types of
the parameters declared for the functions do not always exactly match the types of the arguments
provided. In one sense, therefore, it is convenient that prototypes are not always provided, as it reduces
the number of possible compiler warning messages because of type mismatches. On the other hand,
socket programs may contain subtle bugs because of misunderstandings about the type definitions of the
function parameters, so care should be taken when coding a function call. One way to ensure care is to
use prototypes and to explicitly cast function arguments when necessary (and only when necessary). For
example, the connect() function call accepts a pointer to a sockaddr structure, but the sockaddr structure
is a generic structure not associated with any particular address family. A program using AF_INET sockets
might provide a pointer to a sockaddr_in structure for this connect() parameter. Because these two
pointer types are not compatible, an explicit cast should be used on the function call to convert the
sockaddr_in pointer into a generic sockaddr pointer.

C Sockets API

18 z/VM: 7.3 TCP/IP Programmer's Reference

Suppressing Function Prototypes
If you are porting a large program that you know is coded correctly, you may at first receive a lot of
type-mismatch compiler errors if the program is not coded to explicitly cast function arguments to their
proper types. This is common when porting code from other systems, because not all systems provide
function prototypes for the socket functions. To avoid correcting the function calls to perform the explicit
cast operations, you can define the _NO_PROTO preprocessor symbol before including any header files.
If the _NO_PROTO preprocessor symbol is defined before including any Language Environment or z/VM
header file, function prototypes will be suppressed, or at least modified to omit type declarations for the
function arguments. Use of this preprocessor symbol will avoid the compiler warning messages and make
porting easier, but be aware that it may also obscure coding errors in the program.

If you wish to define the _NO_PROTO preprocessor symbol, you can do so by placing a statement similar
to the following at the top of each source file of your program:

#define _NO_PROTO

Alternatively, you can cause the _NO_PROTO preprocessor symbol to be defined by the compiler, by using
the -D option on the c89 command line. See “Compiling and Linking a Sockets Program” on page 26 for
more information on compiling sockets programs.

Multithreading
The z/VM C sockets library is a multithreading sockets library. This means that you can write programs to
exploit the z/VM multithreading capabilities provided for POSIX programs, and still use socket functions
without worrying about socket calls by one thread interfering with calls by another thread, or about the
entire process being blocked just because one thread is blocked.

The z/VM C sockets library protects its internal data structures with mutexes, and uses thread-local data
areas, where necessary, to ensure that socket calls by different threads can occur "concurrently". The
z/VM C sockets library is careful to never hold one of these internal mutexes when it might block for a
substantial period of time, so multiple threads can use socket functions with as much concurrency as
possible.

Some function calls in the z/VM C sockets library are not "primitive" socket function calls, however. For
example, the gethostbyname() function call is really a procedure which tries to resolve a host name by
reading data from local files and by communicating with Domain Name Servers in the network.

Multithreading versus Nonblocking Sockets
In a single-threaded program, a server that wants to handle concurrent requests from multiple clients
usually sets all of its sockets to nonblocking mode, so that if a socket call on behalf of one client can
not be processed immediately, other client requests are not delayed. In a multithreaded server, another
approach is available. Instead of setting the sockets to be nonblocking, the server can create a separate
thread to handle each client request. If a call to a socket function by one thread blocks, only that client
request is affected; other threads are free to continue processing requests from other clients. Using
multiple threads can therefore simplify the programming model, because each thread can concentrate
on a single client without worrying about any other client. Either approach is available with the z/VM C
sockets library.

Conflicts Between Socket Calls
When one thread of a multithreaded program is issuing a socket function call for a given socket,
other threads are restricted from issuing certain socket function calls against that same socket.
These restrictions are enforced by the TCP/IP service virtual machine. The following list describes the
restrictions for each type of socket call:

• Multiple read-type calls (read(), readv(), recv(), recvfrom(), or recvmsg()) and multiple write-type calls
(write(), writev(), send(), sendto(), or sendmsg()) for the same socket can be in progress simultaneously.
The read-type calls are satisfied in the order they are issued, independently of the write-type calls.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 19

Similarly, the write-type calls are satisfied in the order they are issued, independently of the read-type
calls.

• Multiple accept() calls for the same listening stream socket can be in progress simultaneously. They are
satisfied in the order they are issued.

• Multiple select() calls referring to any combination of sockets (or other file descriptors) may be in
progress simultaneously. When the state of a socket or other file descriptor changes, all active select()
calls are checked; any that are then satisfied will return.

• Calls other than the read-type, write-type, accept(), and select() calls may not be in progress
simultaneously for the same socket. For example, your program must wait for a write-type call to
complete (or interrupt it) before issuing a close() call for the same socket.

If your program violates one of these restrictions, the function call that violates it will fail with an
ECONFLICT error, except a close() call, which will fail with an EAGAIN error.

POSIX Signals and Thread Cancellation
The POSIX.1 standard greatly enhances the ANSI C Language definition by defining and guaranteeing
certain aspects of signal processing. For example, many POSIX.1 function calls are defined to unblock,
returning the EINTR error code, if a signal is delivered to a thread while it is blocked in a function call.
POSIX.1 also defines what function calls a program may safely make while in a signal handler. Similarly,
the (draft) POSIX.1c threading standard defines the conditions under which a thread may be "cancelled"
by a call to the pthread_cancel() function, and what function calls are considered to be "cancellation
points". The intent of this section is to define these attributes for the z/VM C sockets library.

Any socket function call which blocks may return EINTR if interrupted by a signal. That is, if a signal is
caught by a thread which is blocked in a call to a socket function, that socket function will unblock and
return the EINTR error code when the signal handler returns. The z/VM C sockets library blocks signal
delivery in places when it is holding any internal mutexes, so signal delivery will occur only when the z/VM
C sockets library can tolerate it. However, the following strict restriction does exist: It is not supported
for a signal handler to use longjmp() or siglongjmp() to exit from a signal handler. In order for the z/VM
C sockets library to properly recover from being interrupted, the signal handler must return, allowing the
interrupted function call to resume from the point of interruption. This restriction only exists for signal
handlers which might run because the thread was interrupted in the middle of a call to a socket function.

All z/VM C socket functions are async signal safe, and may thus be called without restriction from signal
handlers.

All z/VM C socket functions are defined to possibly be thread cancellation points, as defined in the (draft)
POSIX.1c threading standard, and no socket functions are defined to be async cancel safe. Any socket
function which blocks will be a cancellation point. Although it is not supported by POSIX, it is safe for
a cancellation cleanup handler to use longjmp() or siglongjmp() to exit, even if a function in the z/VM C
sockets library was interrupted by the thread cancellation request.

Note: The difference between using longjmp() from a cancellation cleanup handler and using longjmp()
from a signal handler is that in the case of cancellation, the z/VM C sockets library uses a cancellation
cleanup handler of its own (which gets invoked before the application's cleanup handler) to clean up
outstanding socket activity.

Sockets and Their Relationship to Other POSIX Functions
The z/VM C sockets library allocates file descriptors for sockets from the same pool of numbers that
CMS uses for other open files in the POSIX environment. Among other things, this means that non-socket-
specific POSIX functions can be called for file descriptors allocated to sockets. For example, the fstat()
function can be called to retrieve information about an open socket. In the case of a socket, the st_mode
field of the stat structure returned will indicate that the file descriptor is a socket. The S_ISSOCK() macro,
defined in sys/stat.h, can be used to test the st_mode field. The S_ISSOCK() macro is analogous to the
S_ISREG(), S_ISFIFO(), and other related macros provided in sys/stat.h to test for other file types.

Examples of other POSIX functions which can be called for socket file descriptors are fchmod(), fchown(),
dup(), and dup2(). Note that using fcntl(), dup(), or dup2(), it is possible to open several file descriptors for

C Sockets API

20 z/VM: 7.3 TCP/IP Programmer's Reference

the same socket. When this is done, all of the file descriptors are considered to be equivalent, in the sense
that none of them has any special status over the rest. A socket is closed when the last file descriptor
which refers to a socket is closed.

When using AF_UNIX sockets, files are created by the bind() function call in the Byte File System, CMS's
implementation of a POSIX-compliant file system. These files cannot be opened with the open() function,
and are used only by the connect() function in the z/VM C sockets library. If stat() or lstat() is used on
one of these files, the st_mode field in the return stat structure indicates that the file is a socket. The
S_ISSOCK() macro can be used to test for this file type.

Note: Certain other function calls in the BPX layer of interfaces may report these files to be "external
links".

Secure Connection Considerations
Applications can set up connections to be secure using the secure ioctl commands and data structures
defined in Table 21 on page 148 and Table 22 on page 171. Secure connections flow through a TLS/SSL
server. Once a connection is secure, any data that the application sends is encrypted by the TLS/SSL
server before it is sent over the TCP connection. Any data that the application receives is decrypted by the
TLS/SSL server before it is returned to the application.

Starting a Secure Connection
Use the SioCSecServer ioctl command to indicate to the TLS/SSL server that a connection is to be secure
and that the TLS/SSL server must wait for an incoming handshake. Use the SioCSecClient ioctl command
to indicate to the TLS/SSL server that a connection is to be secure and that the TLS/SSL server must
initiate an outbound handshake on behalf of the application. The SecureDetail structure must be provided
on these ioctl commands. Refer to Table 21 on page 148 for details.

If non-blocking sockets are used, the application can wait for the handshake to complete by waiting for
the socket to become writable or post an exception. In this case, the ioctl command completes with a
return code of -1 and an ErrNo of EINPROGRESS. If the handshake fails for any reason, an exception
is raised on the socket. The ErrNo presented on the subsequent read reflects the handshake error. If
blocking sockets are used, the ioctl command blocks until the handshake completes.

Security can be negotiated by specifying data in the buffer field of the SecureDetail structure that
gets passed on the SioCSecServer or SioCSecClient command. The buffer data can indicate to the
partner application that the partner application must make the appropriate command (SioCSecServer
or SioCSecClient) to secure the connection. The buffer data is sent in clear text to the partner:

1. The TLS/SSL server receives the ioctl command.
2. The TLS/SSL server immediately sends the buffer data in clear text to the partner application.
3. After sending the buffer data to the partner application, the TLS/SSL server waits for the handshake.

Stopping a Secure Connection
Use the SioCSecClose ioctl command and pass in the CloseReq structure to stop encrypted data from
flowing on a TCP connection. The server application or the client application can initiate the return to a
clear text connection. In the following steps, the server application initiates the process.

1. The server application issues an SioCSecClose ioctl command.

• The SioCSecClose ioctl command can contain data in the CloseBuff buffer of the CloseReq structure.
The buffer data is the last encrypted data that is sent before the SSL tunnel is closed. Any data that
has not been delivered when the SioCSecClose ioctl command is issued is discarded.

2. After the server application issues the SioCSecClose ioctl command and before the client application
issues the SioCSecClose ioctl command, the following events can occur:

• The client application receives ErrNo EIBMCLRTEXT on the next read or write of the socket.
• If the client application attempts to transmit data, the transmission fails with ErrNo of EIBMSCLSIP,

which indicates that a close is in progress.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 21

3. When the client application issues the SioCSecClose ioctl command, the server application's
SioCSecClose ioctl command completes and the connection returns to clear text.

• If non-blocking sockets are used, the ioctl command completes with a return code of -1 and an
ErrNo of EINPROGRESS. The return code and ErrNo indicate that the ioctl command was processed
and is waiting for SSL to close the secure tunnel. When the client issues the SioCSecClose ioctl
command, the secure tunnel is closed and the socket becomes writable.

• If blocking sockets are used, data transmission is blocked until the SioCSecClose ioctl command
completes.

Note: It is the server application's responsibility to process all data before the server application issues
the SioCSecClose ioctl command. Any unprocessed data is discarded by the TLS/SSL server.

Requesting Details for a Secure Connection
Use the SIOCSECSTATUS ioctl command to request details about a session such as whether or not it is
secure and the encryption suite being used. The SecStatus structure is returned. This structure provides
the security level and cipher details.

Requesting Details from a Partner Certificate
Use the SIOCGCERTDATA ioctl command to request specific fields from the local or partner certificate.
The CertDataCompleteDetailType structure is returned. Refer to Table 21 on page 148 for details.

If using blocking sockets, the ioctl will block until the certificate request completes.

If using non-blocking sockets, the application can wait for the certificate data to be returned by waiting
for a read or an exception to be posted. In this case, the ioctl will complete with a return code of -1 and
an ErrNo of EINPROGRESS. If the request completes with data returned, the socket will be woken up for
read. The CertDataCompleteDetailType structure that is returned on the subsequent read will need to be
parsed to determine the result of the request. If the certificate request fails and no data is returned, the
socket will be woken up for exception. The error will be returned in the ErrNo field on the subsequent
read. An ErrNo in the 40000 range indicates a System SSL error. Subtract 40000 from the ErrNo and
refer to Messages and codes in z/OS Cryptographic Services System Secure Sockets Layer Programming
(publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf) for details.

Determining if a TLS/SSL Server is Available
Use the SIOCTLSQUERY ioctl command, passing in the QueryTls structure, to determine if a TLS/SSL
server is available, and if a label is specified, if it is known to the TLS/SSL server.

If using blocking sockets, the ioctl will block until the Query completes.

If using non-blocking sockets, the application can wait for the Query to complete by waiting for the socket
to become writable or post an exception. In this case, the ioctl request will complete with a return code
of -1 and an ErrNo of EINPROGRESS. If the Query fails for any reason, an exception will be raised on the
socket. The ErrNo presented on the subsequent read will reflect the Query error.

Miscellaneous Implementation Notes
The following are some miscellaneous points to consider when writing socket programs for the z/VM C
sockets library:

1. Most of the socket functions are defined to return an EFAULT error if an address is passed which
cannot be used by the sockets library. In certain cases, your program may receive a signal such as
SIGSEGV instead. A multithreading library such as the z/VM C sockets library has difficulty prechecking
for all of the conditions that could cause an EFAULT error, so invalid addresses may sometimes be used
instead of causing EFAULT. In the worst case, if using AF_INET sockets, the library's IUCV connection
with the TCP/IP service virtual machine may be severed by TCP/IP when it receives an IUCV error
because of an invalid address or length.

C Sockets API

22 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/sssl2msg1000613.htm
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf

2. If you receive an error from a sockets function call, you may call the perror() or strerror() functions
to translate the errno into an error message. These routines can decode socket error codes as well
as error codes from non-socket functions. For compatibility with the VM TCP/IP C sockets library,
the z/VM C sockets library defines a tcperror() function which invokes perror(). A small difference
between tcperror() and perror() is that if the sockets library encountered an error during its most
recent IUCV communication on the invoking thread, the tcperror() function will report that error as well
as the one represented in the errno variable. It is not necessary to use tcperror() unless this additional
information concerning IUCV errors is needed.

3. If you wish to use the AF_UNIX or AF_IUCV addressing domains, the virtual machines that connect to
each other need authorization in their user directory entries to allow the connection to be established.
This is usually handled by placing a statement in the user directory entry of the server virtual machine
like the following:

IUCV ALLOW

This statement tells CP to allow any virtual machine to establish an IUCV connection to the server.

Another possibility is to place a statement like the following in the user directory entry for each client
virtual machine:

IUCV ANY

This statement tells CP to allow the client virtual machine to establish an IUCV connection with any
other virtual machine.

The requirement that virtual machines need authorization to connect through IUCV is true for the
AF_INET and AF_INET6 connections, but this is usually not a problem. AF_INET and AF_INET6
connections connect through the TCP/IP server virtual machine, and that virtual machine is expected
to have an IUCV ALLOW statement in its directory entry, which permits any client virtual machine to
establish a connection with it.

Incompatibilities with the VM TCP/IP C Sockets Library
The goal of the z/VM C sockets library is to allow easier porting of UNIX programs that use sockets,
and to provide a sockets API which can coexist with, and is more compatible with, the POSIX.1 API. To
achieve this goal, it was often necessary to introduce incompatibilities with the TCP/IP C sockets library,
because it has many incompatibilities with typical UNIX implementations. The following are some of the
incompatibilities between the VM TCP/IP C sockets library and the z/VM C sockets library:

1. The names of the socket header files differ a great deal between the two libraries. For example, the
z/VM C sockets library does not have a manifest.h header file, and you should not attempt to include
one in your program. Another example is that the old bsdtypes.h header file has been replaced with
a sys/types.h header file. The time.h header file has been replaced with two header files, time.h and
sys/time.h. It is necessary for you to include the correct one (or both, if necessary) in your program.
Be sure to use the header file names required by the functions as documented in this reference
guide.

Do not omit the path name prefixes which are documented. For example, do not include time.h when
you really should be including sys/time.h. The path name prefixes are significant.

2. Most of the header files to be used with the z/VM C sockets library are provided with Language
Environment. Because those header files support several levels of socket functionality (on z/OS®), it
is necessary for all z/VM C socket programs to declare the level of functionality they want by defining
the _OE_SOCKETS preprocessor symbol before including any Language Environment header files.
Failure to do so will usually cause several confusing compilation error messages. One way to define
this preprocessor symbol is to place a statement similar to the following at the top of each source file
of your program:

#define _OE_SOCKETS

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 23

Alternatively, you can cause the _OE_SOCKETS preprocessor symbol to be defined by the compiler,
by using the -D option on the c89 command line. See “Compiling and Linking a Sockets Program” on
page 26 for more information on compiling sockets programs.

3. The BSD 4.4 UNIX system introduced a new field into the sockaddr structures used by many socket
functions. For each socket address family, there is a sockaddr_xx structure which contains fields that
define the address. For example, in the AF_INET address family, the structure is called sockaddr_in
and primarily contains an IP address and port number. In the AF_UNIX address family, the structure
is called sockaddr_un and primarily contains a file name. There is also a generic structure called
sockaddr.

In the TCP/IP C sockets library definitions, such structures do not contain self-defining length fields.
Each socket function that accepts a sockaddr structure also accepts a length, so there is really no
need for them to contain lengths within the structure. In the 4.4 BSD UNIX implementation, however,
there is now a length field in the sockaddr structure, so the Language Environment header files have
them too. The z/VM C sockets library uses them, therefore, when processing those functions. When a
sockaddr structure is given to the z/VM C sockets library, the length fields are handled as follows:

• For AF_INET and AF_INET6 sockets, the library verifies that the length field is either 0 or
sizeof(struct sockaddr_in). If the library sees a zero length, it assumes that the application
does not know about length fields, and uses sizeof(struct sockaddr_in) instead. If it sees
any other length value, it rejects the socket request with EINVAL.

• For AF_UNIX sockets, if the length field is nonzero, the library uses it to limit how much of the file
name is examined; a zero length field is ignored.

• For AF_IUCV sockets, if the length field is nonzero, the library checks to make sure it is equal to
sizeof(struct sockaddr_iucv).

If you do not explicitly initialize the sockaddr length field, then, depending on how the storage is
allocated, you might have an unintended value there, and get unexpected EINVAL errors. This is
more of a problem for AF_UNIX sockets than for AF_INET and AF_INET6 sockets. The reason is
that an AF_INET or AF_INET6 sockaddr structure already contains a field which must be zeros,
so most robust applications use memset() to zero the entire sockaddr structure before filling
it in. Because the z/VM C sockets library treats a zero sockaddr_in length field the same as if
sizeof(struct sockaddr_in) were specified, robust AF_INET and AF_INET6 applications need
no changes to deal with sockaddr length fields. AF_UNIX sockaddr structures have no fields which
must be zero, however, so it is less likely that the structure will be cleared before filling it in,
especially since the full size is so much bigger. Having un-initialized data in that length field might
cause the socket library to use less of the file name than you intend.

A simple method to check code you are porting for proper length-field handling is to search for places
that initialize the "family" field, which is called sin_family for AF_INET, sin6_family for AF_INET6
sockets, and sun_family for AF_UNIX sockets. If there is a call to memset() just before this code to
clear the entire structure, you are probably safe. If not, you should fill in the length field. For AF_INET
sockets, either fill it in with 0 or sizeof(struct sockaddr_in). For AF_INET6 sockets, either fill
it in with 0 or sizeof(struct sockaddr_in6). For AF_UNIX sockets, either fill it in with 0 or a
value greater than or equal to SUN_LEN(&sa), where sa is the name of the sockaddr_un variable, but
less than or equal to sizeof(struct sockaddr_un). For more information and examples of how
to initialize the sockaddr length fields, see the bind() and connect() functions in XL C/C++ for z/VM:
Runtime Library Reference.

4. The z/VM C sockets library supports the selectex() function call. No WAITECBs are done, because the
CMS OS WAIT and POST are not multitasking-aware and are not interruptable. Instead, the ECB post
bits are checked directly during a polling loop that processes socket and file descriptors. If a set post
bit is found, then selectex() stops processing and returns to its caller.

Consider replacing the usage of ECBs with POSIX constructs such as condition variables. You can
then create a thread that waits on the condition variable, and when the condition being waited for
has really occurred, it could signal a thread blocked in a select() call, if necessary, to cause it to exit
the select(). In may cases, the signal is not even necessary; the thread that waited on the condition
variable could process the event itself without disturbing the other threads.

C Sockets API

24 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

5. If your program calls tcperror() instead of perror(), you must define the constant _OPEN_SOURCE as
follows:

#define _OPEN_SYS_SOCK_EXT

This will cause tcperror() to be mapped to perror().
6. If you used the TCP/IP C sockets library, and did not call the maxdesc() function to increase the

number of sockets you could open, your program was guaranteed that no socket descriptor would
be greater than 49. This guarantee may have been exploited by programs, allowing them to set
the FD_SETSIZE preprocessor symbol to a very small value. The FD_SETSIZE preprocessor symbol
is used by the sys/time.h header file to control how much storage it takes to hold an fd_set, as
used by the select() function call. When using the z/VM C sockets library, there is no relationship
between file descriptor numbers as allocated by CMS and the value of the FD_SETSIZE preprocessor
symbol. Another change to keep in mind is that the default FD_SETSIZE in the Language Environment
sys/time.h header file is 2048, much larger than the default of 256 in the TCP/IP bsdtypes.h header
file.

7. Programs compiled with the TCP/IP C sockets library header files must be recompiled before they
can be link edited to the z/VM C sockets library. The two sets of header files do not produce
object-compatible code. For example, the external symbol names associated with socket functions
have changed, and the errno mapping is quite different.

8. If your program includes BSD header files (bsdtypes.h, bsdtime.h, bsdtocms.h), you must remove
those includes. The z/VM C sockets library covers BSD functions, but it does not provide those header
files.

9. In the TCP/IP C sockets library, getdtablesize() returns the maximum number of socket descriptors.
In the z/VM C sockets library, getdtablesize() functions as it really should, returning the maximum
number of file descriptors. The z/VM C sockets library provides getstablesize() for determining the
maximum number of socket descriptors. If an existing TCP/IP application that uses getdtablesize() is
being rebuilt with the z/VM C sockets library, to get the same results as before you must either use
the APPTYPE environment variable or change the getdtablesize() call to getstablesize().

10. The TCP/IP remote procedure calls library (RPCLIB) cannot be used with the z/VM C sockets library.
Use the VMRPC library instead. For more information about RPC, see Chapter 5, “Remote Procedure
Calls,” on page 187.

Incompatibilities with z/OS and OS/390 C Sockets
The z/VM C socket API is equivalent to the OS/390® Language Environment 2.5 sockets subset, except the
following functions have not been implemented in z/VM:

• accept_and_recv()
• aio_read()
• aio_write()
• poll()
• send_file()
• socketpair()
• srx_np()

Incompatibilities with the Berkeley Socket Implementation
The following list summarizes some of the differences between the z/VM C socket implementation and
the Berkeley socket implementation:

1. The z/VM ioctl() implementation may be different from the current Berkeley ioctl() implementation.
2. The z/VM getsockopt() and setsockopt() calls support only a subset of the options available, and only

for the AF_IUCV, AF_INET, and AF_INET6 address families.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 25

3. In the z/VM C socket API, the AF_UNIX address family does not support datagram sockets or
nonblocking mode.

4. In the z/VM socket API, select() is used to determine when an asynchronous secure ioctl call
completes.

Compiling and Linking a Sockets Program
This section describes how to compile and link-edit C Language programs that use the z/VM C sockets
library.

Note: An existing application that currently uses the VM TCP/IP C sockets library (COMMTXT) may
continue to do so in exactly the same way it did before, without any modification. Also, the application
may also continue to use the RPCLIB TXTLIB without modification. See “Running a Sockets Program” on
page 29. However, to use the z/VM C socket functions, the application may need to be recompiled. See
“Compiling and Linking a TCP/IP C Sockets Program” on page 28.

Compiling and Linking a z/VM C Sockets Program
To compile z/VM C socket programs, you must have the IBM C for VM/ESA Compiler 3.1 (5654-033) and
IBM Language Environment (supplied with z/VM) installed on your z/VM system. In order to use AF_INET
sockets, you must have TCP/IP installed and running.

To compile and link-edit a z/VM C sockets application program, use the c89 utility. You must make sure
that c89 has access to the files it needs to compile and link-edit. The VM-unique header files reside on
the CMS S-disk. The Language Environment object code and header files reside on the Y-disk.

Another aspect to ensuring that c89 has all required files available is to make sure that you have a Byte
File System mounted and available. The files and directories in this Byte File System must be arranged
in the manner done by the BFS installation procedures. Specifically, the /usr/include/sys/time.h file is
assumed to be an external link of type CMSDATA to the SYS_TIME H file.

The c89 program can be run from the CMS command line (or equivalent) or from within a POSIX
command shell, if you are running with a command shell. The syntax is the same in both cases. For
example, if you wish to compile the testprog.c file in your current Byte File System (BFS) directory and
bind the socket function stubs to it, use a command like the following:

c89 -o testprog -D_OE_SOCKETS testprog.c

Depending on the TCP/IP functions your application uses, additional libraries (listed in Table 2 on page
26) may be required. For example, if testprog.c uses RPC functions, the command would be:

c89 -o testprog -D_OE_SOCKETS testprog.c -l//VMRPC

Table 2. TCP/IP TXTLIB Files and Applications

TXTLIB File Application

VMRPC Remote procedure calls

SCEELKED C APIs

SCEEOBJ C writable static variables

The previous examples assume that testprog.c is the only source file in the program, and that the
_OE_SOCKETS preprocessor symbol is not defined in the source file itself. If it is, then do not specify the
-D option. To avoid having to type the -D option all the time, or including it in your make file, put the
following statement in the beginning of every source file of your program, before it includes its first header
file:

#define _OE_SOCKETS

C Sockets API

26 z/VM: 7.3 TCP/IP Programmer's Reference

If you want to use the Language Environment extended socket and bulkmode support, define the feature
test macro _OPEN_SYS_SOCK_EXT using a preprocessor directive, either on the c89 compile command
line:

c89 filename -D_OPEN_SYS_SOCK_EXT

or in the source code before including any header files:

#define _OPEN_SYS_SOCK_EXT

For more information about this macro, see XL C/C++ for z/VM: Runtime Library Reference.

Sometimes defining _OE_SOCKETS in the source program itself is inconvenient because, for example,
you are porting many source files from another system, and you would rather not change them all.
In this case, define _OE_SOCKETS on the c89 command line with the -D option, either by hand or in
your make file, if you are using the make utility. For more information about the make utility, see z/VM:
OpenExtensions Advanced Application Programming Tools.

The -o option in the example above tells c89 to store the final executable file with the name testprog.
This overrides the default name of a.out.

When you compile, be very careful not to have the disk containing the header files for TCP/IP accessed
ahead of the disk containing the Language Environment header files. Because both TCP/IP and Language
Environment ship socket header files with the same names, it is important to use the correct Language
Environment header files, and not the TCP/IP files. No TCP/IP header files are needed to compile z/VM
C socket programs. However, if you are using RPC functions, then header files on the TCP/IP disk are
required.

If you would rather have c89 produce a MODULE file on a CMS minidisk or accessed SFS directory, then
specify something like the following on your c89 command:

c89 -o //testprog -D_OE_SOCKETS testprog.c

This will cause c89 to create a CMS file called TESTPROG MODULE A instead of an executable file in the
BFS.

If the source file itself is on a CMS minidisk or accessed SFS directory, then use a c89 command like the
following:

c89 -D_OE_SOCKETS //testprog.c

This example adds // to the front of the name of the source file, and removes the -o option. It
adds the // because the source file resides on a CMS minidisk. The -o option is removed because
when the testprog.c source file is on a minidisk, the c89 default name for the executable file is //
testprog.module.a, so there is no need to specify it explicitly.

Note: It is not necessary to use uppercase letters in the name, type, or mode of a CMS file when the file ID
is preceded with //. The file ID is converted to uppercase automatically.

If your program is composed of several source files, for example progfile1.c and progfile2.c, you
can use either of the two following sequences to produce an executable file.

c89 -c -D_OE_SOCKETS progfile1.c
c89 -c -D_OE_SOCKETS progfile2.c
c89 -o testprog progfile1.o progfile2.o

or

c89 -o testprog -D_OE_SOCKETS progfile1.c progfile2.c

In the first sequence, the source files are first compiled (the -c option prevents c89 from trying to link
edit them) and then link-edited in a separate c89 command. In the second sequence, the source files are
compiled and link-edited in one command. The point being demonstrated in this example is that the -D
option is needed only for the compilation step.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 27

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3

Many other variations of the c89 command are possible. See z/VM: OpenExtensions Commands Reference
for a complete description of the c89 command.

After you have created an executable program, you can use the OPENVM GET and OPENVM PUT
commands to move it back and forth between a CMS minidisk or accessed SFS directory and the Byte File
System. See z/VM: OpenExtensions Commands Reference for information on those commands.

Compiling and Linking a TCP/IP C Sockets Program
If you want to recompile and relink an existing application that was built with VM TCP/IP C sockets, you
have three choices:

• Convert the program to use the z/VM C sockets library
• Recompile and relink using the z/VM C sockets library with minimal changes to the program source
• Recompile using the TCP/IP C sockets library

Converting Your Program to Use z/VM C Sockets
To convert a TCP/IP C sockets program to use z/VM C sockets:

1. Go to “Incompatibilities with the VM TCP/IP C Sockets Library” on page 23. Make the necessary
changes to your program to resolve the incompatibilities.

2. Go to “Compiling and Linking a z/VM C Sockets Program” on page 26 and follow the instructions.

Using the z/VM C Sockets Library with Minimal Changes to Program Source
You can recompile and relink your VM TCP/IP C sockets program to use the z/VM C sockets library
(SCEELKED) with little or no source code modification:

• If your program uses remote procedure calls, you must use the VMRPC library instead of RPCLIB.
• If your program includes BSD header files (bsdtypes.h, bsdtime.h, bsdtocms.h), you must remove

those includes. Language Environment covers BSD functions, but it does not provide those header files.
• Define the feature test macro _TCPVM_SOCKETS using a preprocessor directive, either on the c89

command line:

c89 filename -D_TCPVM_SOCKETS

or in the source code before including any header files:

#define _TCPVM_SOCKETS

Recompiling with the TCP/IP C Sockets Library
To recompile with the TCP/IP C sockets library:

1. Access the TCP/IP Client-code minidisk (usually TCPMAINT 592) ahead of the disk that contains the
Language Environment header files (usually the Y-disk) to avoid conflicts.

2. Establish the C development environment:

a. Access the C compiler.
b. Issue GLOBAL LOADLIB SCEERUN.

3. Compile your program. Make sure that the preprocessor symbol VM is defined; if it is not already
defined in your program, you can specify it on the compile command:

CC myprog (DEF(VM)

With OpenExtensions, you can also use the c89 command or the make utility.
4. Select the link libraries your application needs and put them on a GLOBAL TXTLIB command.

COMMTXT and SCEELKED are the minimum required:

C Sockets API

28 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3

GLOBAL TXTLIB COMMTXT SCEELKED

Additional libraries (listed in Table 3 on page 29) may be required, depending on the functions your
application uses. For example, programs that use RPC must issue:

GLOBAL TXTLIB COMMTXT RPCLIB SCEELKED

Note that the Language Environment text library, SCEELKED, should always be listed last.

Table 3. TCP/IP TXTLIB Files and Applications

TXTLIB File Application

COMMTXT TCP/IP C sockets and Pascal API

RPCLIB Remote procedure calls

X11LIB Xlib, Xmu, Xext, and Xau routines

OLDXLIB X Release 10 compatibility routines

XTLIB X Intrinsics

XAWLIB Athena widget set

XMLIB OSF/Motif-based widget set

DPILIB SNMP DPI

SCEELKED C APIs

SCEEOBJ C writable static variables

5. Link-edit your programs into an executable module. The sample applications in this book are built
using the TCPLOAD utility. Your own applications should be built using the CMOD command. For
example,

TCPLOAD sample@c c

or

CMOD myprog1 myprog2 (AUTO

Complete information on compiling and link-editing C programs can be found in the
z/OS: Language Environment Programming Guide (https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/
ceea200_v2r5.pdf). For information about TCPLOAD, see Appendix A, “TCPLOAD EXEC,” on page 335.

Running a Sockets Program
After building your executable sockets program, the next step is to run the program. Before you do,
however, some preparation may be necessary. In addition, you may want to consider using environment
variables to affect certain aspects of the execution. There are also differences between running a program
from the BFS and running it from an accessed minidisk or SFS directory.

Preparing to Run a Sockets Program
If your program uses AF_INET sockets, then you should access the TCP/IP "client" minidisk or SFS
directory that contains the TCP/IP configuration files. Usually you can LINK to TCPIP 592 to access the
disk. Your installation may have assigned a VMLINK nickname to this minidisk (for example, TCPIP). Issue
a VMLINK command (with no arguments) to see if one has been assigned. In the compilation step, it
was noted that this disk contains some header files with the same names as Language Environment and
VM-unique header files. If you might compile your program again after running it, be sure to access the
TCP/IP client disk at a mode after the disk that contains the Language Environment header files.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 29

https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ceea200_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ceea200_v2r5.pdf

To run your POSIX program, it should reside on an accessed minidisk or SFS directory, or in a mounted
BFS file system. As described below, if it resides on an accessed minidisk or SFS directory, you can run it
by either typing the name of the executable module on the CMS command line, or by using the OPENVM
RUN command. If it resides in the BFS, you can run it by either typing the name of the executable file on a
POSIX shell command line, or by using the OPENVM RUN command. Before running a module that resides
on an accessed minidisk or SFS directory, either by using the OPENVM RUN command or by simply typing
the name of the module on the CMS command line, you must establish the proper run-time Language
Environment load library with the following CMS command:

GLOBAL LOADLIB SCEERUN

Note: If you have a TCP/IP C sockets application that you have recompiled and relinked with the z/VM
C sockets library, with no source changes, but you want the maxdesc() and getdtablesize() functions to
operate the same way they did in the TCP/IP C socket API, you must set the APPTYPE environment
variable (to the value OLDAPP) before running your program. For example:

GLOBALV SELECT CENV SETLP APPTYPE OLDAPP

This will cause the maxdesc() default to be 50 and getdtablesize() to return a maximum of 50.

Using Environment Variables
Environment variables can be used to affect certain aspects of the execution of a z/VM C sockets program.
If the z/VM C sockets program is executed from the OpenExtensions shell, the shell controls the contents
of the program's environment. For example, the following shell command could be used to set the
APPTYPE environment variable:

export APPTYPE=OLDAPP

If the z/VM C sockets program is being run from the CMS command line (or equivalent), then the global
variables existing in the CENV group managed by the GLOBALV command are used as the environment
variables for the process. In this case, a CMS command like the following could be used to temporarily set
the APPTYPE environment variable:

GLOBALV SELECT CENV SET APPTYPE OLDAPP

Note: Be aware, however, that some of the environment variables described below accept values which
are case sensitive, and which will often be set to lowercase values. It can be difficult, using the GLOBALV
command, to set lowercase values, because commands typed in from the CMS command line are
automatically uppercased by CMS before processing. One way to set the variable to a mixed-case value is
to issue the GLOBALV command from a REXX exec with "Address Command" in effect.

Some of the environment variables described below are set to values which represent file names. For
these environment variables, the given file names are interpreted as POSIX-style file names, which means
that case is significant, and that the file name is interpreted as residing in the Byte File System unless
you precede the file name with two slashes. To specify the name of a file which resides on a minidisk or
accessed SFS directory instead of in the BFS, precede the name of the file with two slashes, and separate
the CMS file name and type (and mode, if specified) with a period.

The following environment variables can be used to affect the execution of the Language Environment
sockets library:
Variable

Description
APPTYPE

This environment variable forces the z/VM C socket functions maxdesc() and getdtablesize() to return
the same values that those functions returned in the TCP/IP C socket API.

HOSTALIASES
This environment variable tells the socket library resolver code to use the named file when searching
for aliases for AF_INET host names. For example, setting the variable to the string /etc/aliases

C Sockets API

30 z/VM: 7.3 TCP/IP Programmer's Reference

tells the resolver to use the /etc/aliases file when needed. By default, no aliases files is used by the
resolver. If you intend to transfer an aliases file into the BFS using the OPENVM PUTBFS command, be
sure to specify the BFSLINE NL option, or let it default.

X_ADDR
This environment variable tells the socket library resolver code to use the named file in place of the
HOSTS ADDRINFO file, which contains information about AF_INET networks known to this host. For
example, setting the variable to the string /etc/addrs tells the resolver to use the /etc/addrs file in
place of the default file, which is //HOSTS.ADDRINFO. If you intend to transfer the HOSTS ADDRINFO
file into the BFS using the OPENVM PUTBFS command, be sure to specify the BFSLINE NONE option.
This environment variable is used by the gethostbyaddr() function call, the getnetent() function call,
and several others.

Note: When using the TCP/IP C sockets library, the format of this environment variable is X-ADDR.

X_SITE
This environment variable tells the socket library resolver code to use the named file in place of
the HOSTS SITEINFO file, which contains information about AF_INET hosts known to this host. For
example, setting the variable to the string /etc/hosts tells the resolver to use the /etc/hosts file in
place of the default file, which is //HOSTS.SITEINFO. If you intend to transfer the HOSTS SITEINFO
file into the BFS using the OPENVM PUTBFS command, be sure to specify the BFSLINE NONE option.
This environment variable is used by the gethostbyname() function call, the gethostent() function call,
and several others.

Note: When using the TCP/IP C sockets library, the format of this environment variable is X-SITE.

X_XLATE
This environment variable tells the socket library resolver code to use the named file in place of the
STANDARD TCPXLBIN file, which contains ASCII to EBCDIC and EBCDIC to ASCII translation tables
for use by the resolver when sending or receiving information from an AF_INET network. For example,
setting the variable to the string /etc/xlate tells the resolver to use the /etc/xlate file in place of
the default file, which is //STANDARD.TCPXLBIN. If you intend to transfer the STANDARD TCPXLBIN
file into the BFS using the OPENVM PUTBFS command, be sure to specify the BFSLINE NONE option.
This environment variable is used by the gethostbyname() and gethostbyaddr() function calls.

Note: When using the TCP/IP C sockets library, the format of this environment variable is X-XLATE.

Running a Program Residing in the BFS
If you are using a POSIX command shell, and the executable file is in your path, then simply type the
name of the program to run it:

testprog

or

/dirname/dirname/…/testprog

In this scenario, the shell will spawn a process to run your program. Any program which is spawned
is automatically considered by CMS to be a POSIX program, and will have access to OpenExtensions
services.

If you are not using a POSIX command shell, then use the OPENVM RUN command to execute the
program. For example:

OPENVM RUN /dirname/dirname/…/testprog

In this scenario, the OPENVM RUN command will spawn a process to run your program. As before, your
program will automatically have access to OpenExtensions services. Be aware that path name arguments
to the OPENVM RUN command are case sensitive.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 31

Running a Program Residing on an Accessed Minidisk or SFS Directory
If the executable file is on an accessed minidisk or SFS directory, then there are several ways to execute
it.

The OPENVM RUN command, which was mentioned earlier to run a program residing in the BFS, can also
run a MODULE file. To do so, uppercase the file name on the command line, as follows:

OPENVM RUN TESTPROG

If the executable file is on an accessed minidisk or SFS directory, you can type the name of the module
on the CMS command line to run it, but you must also tell CMS that the program is a POSIX program and
should be given access to the OpenExtensions services.

The following are the two techniques for establishing your program as a POSIX program when you run it:

1. Specify the Language Environment POSIX(ON) run-time option on the CMS command line. In order to
be able to pass run-time options to a program, the EXECOPS compiler option must be in effect when
the program is compiled. Because it is the default setting, EXECOPS is in effect unless overridden with
the NOEXECOPS option. Specify the run-time options by separating them from the program arguments
with a slash (/) as you run your program:

testprog runopt1 runopt2 … / arg1 arg2 arg3 …

To specify the POSIX(ON) run-time option, use a command like the following:

testprog posix(on)/arg1 arg2 arg3 …

2. Specify the Language Environment POSIX(ON) run-time option by putting it in the source file
containing the main function. If you plan to run the program often by simply typing its name on
the CMS command line, the most convenient way to get the program recognized as a POSIX program is
to place a pragma like the following in the source file which contains the main function:

#pragma runopts(posix(on))

With this pragma, you never need to type the POSIX(ON) run-time option.

When you run a program by typing its name on the CMS command line, and the EXECOPS compiler option
was in effect when you compiled your program (it is by default), then everything before the first slash,
if there is a slash on the command line, will be interpretted as a run-time option. Because POSIX path
names often contain slashes, this can cause program arguments to be misinterpreted as run-time options
if your program accepts a POSIX path name as an argument. To avoid this, consider placing a pragma like
the following in the source file containing the main function:

#pragma runopts(noexecops,posix(on))

This will prevent POSIX path names from accidentally being interpreted as run-time options, and cause
the POSIX(ON) run-time option to always be in effect.

Using pragma statements such as the ones discussed above is necessary only when you intend to run
your program from the CMS command line by typing its name. If you use OPENVM RUN to run the
program, or run it from a POSIX command shell, all operands are interpreted as program arguments, and
the program is automatically treated as a POSIX program.

C Sockets Quick Reference
This section provides brief descriptions of the z/VM C socket calls. For additional information about these
socket functions, see the XL C/C++ for z/VM: Runtime Library Reference.

C Sockets API

32 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

Table 4. C Sockets Quick Reference

Socket() Call Description

accept() Accepts a connection request from a foreign host.

bind() Assigns a local address to a socket.

close() Closes a socket.

connect() Requests a connection to a foreign host.

endhostent() Closes the HOSTS SITEINFO file.

endnetent() Closes the HOSTS ADDRINFO file.

endprotoent() Closes the ETC PROTO file.

endservent() Closes the ETC SERVICES file.

fcntl() Controls socket operating characteristics.

freeaddrinfo() Frees one or more addrinfo structures returned by getaddrinfo()

gai_strerror() Returns information on errors returned by getaddrinfo() and getnameinfo()

getaddrinfo() Resolves IP addresses (IPv4 or IPv6)

getclientid() Returns the identifier by which the calling application is known to the
TCPIP virtual machine.

gethostbyaddr() Returns information about a host specified by an address.

gethostbyname() Returns information about a host specified by a name.

gethostent() Returns the next entry in the HOSTS SITEINFO file.

gethostid() Returns the unique identifier of the current host.

gethostname() Returns the standard name of the current host.

getnameinfo() Translates a socket address to a node name and service location

getnetbyaddr() Returns the network entry specified by address.

getnetbyname() Returns the network entry specified by name.

getnetent() Returns the next entry in the HOSTS ADDRINFO file.

getpeername() Returns the name of the peer connected to a socket.

getprotobyname() Returns a protocol entry specified by name.

getprotobynumber() Searches the ETC PROTO file for a specified protocol number.

getprotoent() Returns the next entry in the ETC PROTO file.

getservbyname() Returns a service entry specified by name.

getservbyport() Returns a service entry specified by port number.

getservent() Returns the next entry in the SERVICES file.

getsockname() Obtains the local socket name.

getsockopt() Gets options associated with sockets in the AF_IUCV, AF_INET, and
AF_INET6 domains.

givesocket() Tells TCPIP to make the specified socket available to a takesocket() call
issued by another application.

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 33

Table 4. C Sockets Quick Reference (continued)

Socket() Call Description

htonl() Translates host byte order to network byte order for a long integer.

htons() Translates host byte order to network byte order for a short integer.

if_freenameindex() Frees storage allocated by if_nameindex()

if_indextoname() Maps a network interface index to its corresponding name

if_nameindex() Returns all network interface names and indexes

if_nametoindex() Maps a network interface name to its corresponding index

inet_addr() Constructs an internet address from character strings set in standard
dotted-decimal notation.

inet_lnaof() Returns the local network portion of an internet address.

inet_makeaddr() Constructs an internet address from a network number and a local
address.

inet_netof() Returns the network portion of the internet address in network byte order.

inet_network() Constructs a network number from character strings set in standard
dotted-decimal notation.

inet_ntoa() Returns a pointer to a string in dotted-decimal notation.

inet_ntop() Converts a binary IP address (IPv4 or IPv6) into string format

inet_pton() Converts an IP address (IPv4 or IPv6) in string format to binary format

ioctl() Performs special operations on a socket.

listen() Indicates that a stream socket is ready for a connection request from a
foreign host.

maxdesc() Allows socket numbers to extend beyond default range of 0 - 49.

ntohl() Translates network byte order to host byte order for a long integer.

ntohs() Translates network byte order to host byte order for a short integer.

read() Reads a set number of bytes into a buffer.

readv() Obtains data from a socket and reads this data into specified buffers.

recv() Receives messages from a connected socket.

recvfrom() Receives messages from a datagram socket, regardless of its connection
status.

recvmsg() Receives messages on a socket into an array of buffers.

select() Monitors activity on a set of sockets.

selectex() Monitors activity on a set of different sockets.

send() Transmits messages to a connected socket.

sendmsg() Sends messages on a socket from an array of buffers.

sendto() Transmits messages to a datagram socket, regardless of its connection
status.

sethostent() Opens the HOSTS SITEINFO file at the beginning.

C Sockets API

34 z/VM: 7.3 TCP/IP Programmer's Reference

Table 4. C Sockets Quick Reference (continued)

Socket() Call Description

setnetent() Opens the HOSTS ADDRINFO file at the beginning.

setprotoent() Opens the ETC PROTO file at the beginning.

setservent() Opens the ETC SERVICES file at the beginning.

setsockopt() Sets options associated with a socket in the AF_IUCV, AF_INET, and
AF_INET6 domains.

shutdown() Shuts down all or part of a full-duplex connection.

socket() Requests that a socket be created.

takesocket() Acquires a socket from another application.

write() Writes a set number of bytes from a buffer to a socket.

writev() Writes data in the buffers specified by an array of iovec structures.

TCP Client Program
The following is an example of a C socket TCP client program.

/*
 * Include Files.
 */
#define VM
#define _XOPEN_SOURCE_EXTENDED 1
#include <arpa/inet.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

/*
 * Client Main.
 */
main(argc, argv)
int argc;
char **argv;
{
 unsigned short port; /* port client will connect to */
 char buf[12]; /*data buffer for sending and receiving */
 struct hostent *hostnm; /*server host name information */
 struct sockaddr_in server; /*server address */
 int s; /* client socket */

 /*
 * Check Arguments Passed. Should be hostname and port.
 */
 if (argc != 3)
 {
 fprintf(stderr, “Usage: %s hostname port\n”, argv[0]);
 exit(-1);
 }

 /*
 * The host name is the first argument. Get the server address.
 */
 hostnm = gethostbyname(argv[1]);
 if (hostnm == (struct hostent *) 0)
 {
 fprintf(stderr, “Gethostbyname failed\n”);
 exit(-1);
 }

 /*
 * The port is the second argument.
 */
 port = (unsigned short) atoi(argv[2]);

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 35

 /*
 * Put a message into the buffer.
 */
 strcpy(buf, “the message”);

 /*
 * Put the server information into the server structure.
 * The port must be put into network byte order.
 */
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);

 /*
 * Get a stream socket.
 */
 if ((s = socket(AF_INET,SOCK_STREAM, 0)) < 0)
 {
 perror(“Socket()”);
 exit(-1);
 }

 /*
 * Connect to the server.
 */
 if (connect(s, &server, sizeof(server)) < 0)
 {
 perror(“Connect()”);
 exit(-1);
 }

 if (send(s, buf, sizeof(buf), 0) < 0)
 {
 perror(“Send()”);
 exit(-1);
 }

 /*
 * The server sends back the same message. Receive it into the buffer.
 */
 if (recv(s, buf, sizeof(buf), 0) < 0)
 {
 perror(“Recv()”);
 exit(-1);
 }

 /*
 * Close the socket.
 */
 close(s);

 printf(“Client Ended Successfully\n”);
 exit(0);

}

TCP Server Program
The following is an example of a C socket TCP server program.

/*
 * Include Files.
 */
#define VM
#define _XOPEN_SOURCE_EXTENDED 1
#include <arpa/inet.h>
#include <in.h>
#include <socket.h>
#include <stdio.h>

/*
 * Server Main.
 */
main(argc, argv)
int argc;
char **argv;
{
 unsigned short port; /*port server binds to */

C Sockets API

36 z/VM: 7.3 TCP/IP Programmer's Reference

 char buf[12]; /*buffer for sending and receiving data */
 struct sockaddr_in client; /*client address information */
 struct sockaddr_in server; /*server address information */
 int s; /*socket for accepting connections */
 int ns; /*socket connected to client */
 int namelen; /*length of client name */

 /*
 * Check arguments. Should be only one: the port number to bind to.
 */

 if (argc != 2)
 {
 fprintf(stderr, “Usage:%s port\n”, argv[0]);
 exit(-1);
 }
 /*
 * First argument should be the port.
 */
 port = (unsigned short)atoi(argv[1]);

 /*
 * Get a socket for accepting connections.
 */
 if ((s = socket(AF_INET,SOCK_STREAM, 0)) < 0)
 {
 perror(“Socket()”);
 exit(-1);
 }

 /*
 * Bind the socket to the server address.
 */
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = INADDR_ANY;

 if (bind(s, &server, sizeof(server)) < 0)
 {
 perror(“Bind()”);
 exit(-1);
 }

 /*
 * Listen for connections. Specify the backlog as 1.
 */
 if (listen(s, 1) != 0)
 {
 perror(“Listen()”);
 exit(-1);
 }

 /*
 * Accept a connection.
 */
 namelen = sizeof(client);
 if ((ns = accept(s, &client,&namelen)) == -1)
 {
 perror(“Accept()”);
 exit(-1);
 }

 /*
 * Receive the message on the newly connected socket.
 */
 if (recv(ns, buf, sizeof(buf),0) == -1)
 {
 perror(“Recv()”);
 exit(-1);
 }

 /*
 * Send the message back to the client.
 */
 if (send(ns, buf, sizeof(buf),0) < 0)
 {
 perror(“Send()”);
 exit(-1);
 }

 close(ns);
 close(s);

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 37

 printf(“Server ended successfully\n”);
 exit(0);
}

UDP Client Program
The following is an example of a C socket UDP client program.

#define _XOPEN_SOURCE_EXTENDED 1
#include <arpa/inet.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

main(argc, argv)
int argc;
char **argv;
{

 int s;
 unsigned short port;
 struct sockaddr_in server;
 char buf[32];

 /* argv[1] is internet address of server argv[2] is port of server.
 * Convert the port from ascii to integer and then from host byte
 * order to network byte order.
 */
 if(argc != 3)
 {
 printf("Usage: %s <host address> <port> \n",argv[0]);
 exit(1);
 }
 port = htons(atoi(argv[2]));

 /* Create a datagram socket in the internet domain and use the
 * default protocol (UDP).
 */
 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 {
 perror("socket()");
 exit(1);
 }

 /* Set up the server name */
 server.sin_family = AF_INET; /* Internet Domain */
 server.sin_port = port; /* Server Port */
 server.sin_addr.s_addr = inet_addr(argv[1]); /* Server's Address */

 strcpy(buf, "Hello");

 /* Send the message in buf to the server */
 if (sendto(s, buf, (strlen(buf)+1), 0, &server, sizeof(server)) < 0)
 {
 perror("sendto()");
 exit(2);
 }

 /* Deallocate the socket */
 close(s);
}

UDP Server Program
The following is an example of a C socket UDP server program.

#define _XOPEN_SOURCE_EXTENDED 1
#include <arpa/inet.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>

C Sockets API

38 z/VM: 7.3 TCP/IP Programmer's Reference

main()
{
 int s, namelen, client_address_size;
 struct sockaddr_in client, server;
 char buf[32];

 /*
 * Create a datagram socket in the internet domain and use the
 * default protocol (UDP).
 */
 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 {
 perror("socket()");
 exit(1);
 }

 /*
 * Bind my name to this socket so that clients on the network can
 * send me messages. (This allows the operating system to demultiplex
 * messages and get them to the correct server)
 *
 * Set up the server name. The internet address is specified as the
 * wildcard INADDR_ANY so that the server can get messages from any
 * of the physical internet connections on this host. (Otherwise we
 * would limit the server to messages from only one network
 * interface.)
 */
 server.sin_family = AF_INET; /* Server is in Internet Domain */
 server.sin_port = 0; /* Use any available port */
 server.sin_addr.s_addr = INADDR_ANY;/* Server's Internet Address */

 if (bind(s, &server, sizeof(server)) < 0)
 {
 perror("bind()");
 exit(2);
 }

 /* Find out what port was really assigned and print it */
 namelen = sizeof(server);
 if (getsockname(s, (struct sockaddr *) &server, &namelen) < 0)
 {
 perror("getsockname()");
 exit(3);
 }

 printf("Port assigned is %d\n", ntohs(server.sin_port));

 /*
 * Receive a message on socket s in buf of maximum size 32
 * from a client. Because the last two paramters
 * are not null, the name of the client will be placed into the
 * client data structure and the size of the client address will
 * be placed into client_address_size.
 */
 client_address_size = sizeof(client);

 if(recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *) &client,
 &client_address_size) <0)
 {
 perror("recvfrom()");
 exit(4);
 }
 /*
 * Print the message and the name of the client.
 * The domain should be the internet domain (AF_INET).
 * The port is received in network byte order, so we translate it to
 * host byte order before printing it.
 * The internet address is received as 32 bits in network byte order
 * so we use a utility that converts it to a string printed in
 * dotted decimal format for readability.
 */
 printf("Received message %s from domain %s port %d internet"
 "address %s\n",
 buf,
 (client.sin_family == AF_INET?"AF_INET":"UNKNOWN"),
 ntohs(client.sin_port),
 inet_ntoa(client.sin_addr));

 /*
 * Deallocate the socket.
 */

C Sockets API

Chapter 1. z/VM C Socket Application Programming Interface 39

 close(s);
}

C Sockets API

40 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 2. TCP/UDP/IP API (Pascal Language)

This chapter describes the Pascal language application program interface (API) provided with TCP/IP for
z/VM. This interface allows programmers to write application programs that use the TCP, UDP, and IP
layers of the TCP/IP protocol suite.

You should have experience in Pascal language programming and be familiar with the principles of
internetwork communication to use the Pascal language API.

Your program uses procedure calls to initiate communication with the TCPIP virtual machine. Most of
these procedure calls return with a code that indicates success, or the type of failure incurred by the call.
The TCPIP virtual machine starts asynchronous communication by sending you notifications.

The general sequence of operations is:

1. Start TCP/UDP/IP service (BeginTcpIp, StartTcpNotice).
2. Specify the set of notifications that TCP/UDP/IP may send you (Handle).
3. Establish a connection (TcpOpen, UdpOpen, RawIpOpen, TcpWaitOpen).

If using TcpOpen, you must wait for the appropriate notification that a connection has been
established.

4. Transfer data buffer to or from the TCPIP virtual machine (TcpSend, TcpFSend, TcpWaitSend,
TcpReceive, TcpFReceive, TcpWaitReceive, UdpSend, UdpNReceive, RawIpSend, RawIpReceive).

Note: TcpWaitReceive and TcpWaitSend are synchronous calls.
5. Check the status returned from the TCPIP virtual machine in the form of notifications (GetNextNote).
6. Repeat the data transfer operations (steps “4” on page 41 and “5” on page 41) until the data is

exhausted.
7. Terminate the connection (TcpClose, UdpClose, RawIpClose).

If using TcpClose, you must wait for the connection to terminate.
8. Terminate the communication service (EndTcpIp).

Control is returned to you, in most instances, after the initiation of your request. When appropriate, some
procedures have alternative wait versions that return only after completion of the request. The bodies of
the Pascal procedures are in the TCPIP ATCPPSRC file.

A sample program is supplied with the TCP/IP program, see “Sample Pascal Program” on page 108.

Software Requirements
To develop programs in Pascal that interface directly to the TCP, UDP, and IP protocol boundaries, you
require the IBM VS Pascal Compiler & Library (5668-767).

Data Structures
Programs containing Pascal language API calls must include the appropriate data structures. The data
structures are declared in the CMCOMM COPY and CMCLIEN COPY. The CMCOMM and CMCLIEN are
included in the ALLMACRO MACLIB shipped with TCP/IP. To include these files in your program source,
enter:

 %include CMCOMM
 %include CMCLIEN

Additional include statements are required in programs that use certain calls. The following list shows the
members of the ALLMACRO MACLIB that need to be included for the various calls.

© Copyright IBM Corp. 1987, 2023 41

• CMRESGLB for GetHostResol
• CMINTER for GetHostNumber, GetHostString, IsLocalAddress, and IsLocalHost.

The load modules are in the TCPIP COMMTXT file. Include this file in your GLOBAL TXTLIB command
when you are creating a load module to link an application program.

Connection State
ConnectionState is the current state of the connection. For the Pascal declaration of the
ConnectionStateType data type, see Figure 15 on page 42. ConnectionStateType is used in
StatusInfoType and NotificationInfoType. It defines the client program’s view of the state of a TCP
connection, in a form more readily usable than the formal TCP connection state defined by RFC 793.
For the mapping between TCP states and ConnectionStateType, see Table 5 on page 42.

 ConnectionStateType =
 (
 CONNECTIONclosing,
 LISTENING,
 NONEXISTENT,
 OPEN,
 RECEIVINGonly,
 SENDINGonly,
 TRYINGtoOPEN
);

Figure 15. Pascal Declaration of Connection State Type

CONNECTIONclosing
Indicates that no more data can be transmitted on this connection, because it is going through the
TCP connection closing sequence.

LISTENING
Indicates that you are waiting for a foreign site to open a connection.

NONEXISTENT
Indicates that a connection no longer exists.

OPEN
Indicates that data can go either way on the connection.

RECEIVINGonly
Indicates that data can be received, but cannot be sent on this connection, because the client has
done a TcpClose.

SENDINGonly
Indicates that data can be sent out, but cannot be received on this connection, because the foreign
application has done a TcpClose or equivalent.

TRYINGtoOPEN
Indicates that you are trying to contact a foreign site to establish a connection.

Table 5. TCP Connection States

TCP State ConnectionStateType

CLOSED NONEXISTENT

LAST-ACK, CLOSING, TIME-WAIT If there is incoming data that the client program has not
received, then RECEIVINGonly, else CONNECTIONclosing.

CLOSE-WAIT If there is incoming data that the client program has not
received, then OPEN, else SENDINGonly.

ESTABLISHED OPEN

FIN-WAIT-1, FIN-WAIT-2 RECEIVINGonly

42 z/VM: 7.3 TCP/IP Programmer's Reference

Table 5. TCP Connection States (continued)

TCP State ConnectionStateType

LISTEN LISTENING

SYN-SENT, SYN-RECEIVED TRYINGtoOPEN

Connection Information Record
The connection information record is used as a parameter in several of the procedure calls. It enables you
and the TCP/IP program to exchange information about the connection. There are two types of records,
one used for IPv4 calls and one used for IPv6. The IPv4 Pascal declaration is shown in Figure 16 on
page 43. For more information about the use of each field, see “TcpOpen and TcpWaitOpen” on page
88 and “TcpStatus” on page 100. The IPv6 declaration is shown in Figure Figure 17 on page 44.
For more information about the use of each field, see “Tcp6Open and Tcp6WaitOpen” on page 79 and
“Tcp6Status” on page 81.

 StatusInfoType =
 record
 Connection: ConnectionType;
 OpenAttemptTimeout: integer;
 Security: SecurityType;
 Compartment: CompartmentType;
 Precedence: PrecedenceType;
 BytesToRead: integer;
 UnackedBytes: integer;
 ConnectionState: ConnectionStateType;
 LocalSocket: SocketType;
 ForeignSocket: SocketType;
 end;

Figure 16. Pascal Declaration of Connection Information Record

Connection
Specifies a number identifying the connection that is described. This connection number is different
from the connection number displayed by the NETSTAT command. For more information about the
NETSTAT command, see z/VM: TCP/IP User's Guide.

OpenAttemptTimeout
Specifies the number of seconds that TCP continues to attempt to open a connection. You specify this
number. If the limit is exceeded, TCP stops trying to open the connection and shuts down any partially
open connection.

Security, Compartment, Precedence
Specifies entries used only when working within a multilevel secure environment.

BytesToRead
Specifies the number of data bytes received from the foreign host by TCP, but not yet delivered to the
client. TCP maintains this value.

UnackedBytes
Specifies the number of bytes sent by your program, but not yet sent to the foreign TCP, or the number
of bytes sent to the foreign TCP, but not yet acknowledged.

LocalSocket
Specifies the local internet address and local port. Together, these form one end of a connection. The
foreign socket forms the other end. For the Pascal declaration of the SocketType record, see Figure 18
on page 44.

ForeignSocket
Specifies the foreign, or remote, internet address and its associated port. These form one end of a
connection. The local socket forms the other end.

Chapter 2. TCP/UDP/IP API (Pascal Language) 43

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

 Status6InfoType =
 record
 Connection: ConnectionType;
 OpenAttemptTimeout: integer;
 Security: SecurityType;
 Compartment: CompartmentType;
 Precedence: PrecedenceType;
 BytesToRead: integer;
 UnackedBytes: integer;
 ConnectionState: ConnectionStateType;
 LocalSocket: Socket6Type;
 ForeignSocket: Socket6Type;
 end;

Figure 17. IPv6 Pascal Declaration of Connection Information Record

Connection
Specifies a number identifying the connection that is described. This connection number is different
from the connection number displayed by the NETSTAT command. For more information about the
NETSTAT command, see z/VM: TCP/IP User's Guide.

OpenAttemptTimeout
Specifies the number of seconds that TCP continues to attempt to open a connection. You specify this
number. If the limit is exceeded, TCP stops trying to open the connection and shuts down any partially
open connection.

Security, Compartment, Precedence
Specifies entries used only when working within a multilevel secure environment. These fields only
have meaning when returned on a Tcp6Status call for an IPv4 connection. When specified for IPv6
connection requests, they will be ignored.

BytesToRead
Specifies the number of data bytes received from the foreign host by TCP, but not yet delivered to the
client. TCP maintains this value.

UnackedBytes
Specifies the number of bytes sent by your program, but not yet sent to the foreign TCP, or the number
of bytes sent to the foreign TCP, but not yet acknowledged.

LocalSocket
Specifies the local internet address, in IPv6 format, and local port. Together, these form one end of
a connection. The foreign socket forms the other end. For the Pascal declaration of the Socket6Type
record, see Figure 19 on page 45.

ForeignSocket
Specifies the foreign, or remote, internet address, in IPv6 format, and its associated port. These form
one end of a connection. The local socket forms the other end.

Socket Record

 InternetAddressType = UnsignedIntegerType;
 PortType = UnsignedHalfWordType;
 SocketType =
 record
 Address: InternetAddressType;
 Port: PortType;
 end;

Figure 18. Pascal Declaration of Socket Type

Field
Description

44 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

Address
Specifies the internet address.

Port
Specifies the port.

IPv6AddressType = packed array (.1..16.) of char;
Socket6Type =
 record
 Address6: IPv6AddressType;
 Port: PortType;
 Flow: UnsignedIntegerType;
 Scope: UnsignedIntegerType;
 end; { Socket6Type }

Figure 19. IPv6 Pascal Declaration of Socket Type

Field
Description

Address6
Specifies the internet address. This can be specified as an IPv6 address or an IPv6 mapped IPv4
address (refer to RFC 4291).

Port
Specifies the port.

Flow
This field is ignored.

Scope
The scope field identifies a set of interfaces as appropriate for the scope of the address carried in
the Socket6Type record address field. For link local address, the scope can be used to specify the
outgoing interface index. The z/VM stack supports scope for link local addresses only.

Notification Record
The notification record is used to provide event information. You receive this information by using the
GetNextNote call. For more information, see “GetNextNote” on page 63. It is a variant record; the
number of fields is dependent on the type of notification. For the Pascal declaration of this record. see
Figure 20 on page 46.

Chapter 2. TCP/UDP/IP API (Pascal Language) 45

 NotificationInfoType =
 record
 Connection: ConnectionType;
 Protocol: ProtocolType;
 case NotificationTag: NotificationEnumType of
 BUFFERspaceAVAILABLE:
 (
 AmountOfSpaceInBytes: integer
);
 CertDataComplete
 (
 CertDataPtr: CertDataCmplPtrType;
);
 CLEARtextRESUMED
 (
 Connection: ConnectionType;
);
 CONNECTIONstateCHANGED:
 (
 NewState: ConnectionStateType;
 Reason: CallReturnCodeType
);
 DATAdelivered:
 (
 BytesDelivered: integer;
 LastUrgentByte: integer;
 PushFlag: Boolean
);
 EXTERNALinterrupt:
 (
 RuptCode: integer
);
 FRECEIVEerror:
 (
 ReceiveTurnCode: CallReturnCodeType;
 ReceiveRequestErr: Boolean;
);
 FSENDresponse:
 (
 SendTurnCode: CallReturnCodeType;
 SendRequestErr: Boolean;
);
 IOinterrupt:
 (
 DeviceAddress: integer;
 UnitStatus: UnsignedByteType;
 ChannelStatus: UnsignedByteType
);
 IUCVinterrupt:
 (
 IUCVResponseBuf: IUCVBufferType
);
 PINGresponse:
 (
 PingTurnCode: CallReturnCodeType;
 ElapsedTime: TimeStampType
);

Figure 20. Notification Record (Part 1 of 2)

46 z/VM: 7.3 TCP/IP Programmer's Reference

 QueryTLSComplete:
 (
 QTLSTurnCode: CallReturnCodeType;
);
 RAWIPpacketsDELIVERED:
 (
 RawIpDataLength: integer;
 RawIpFullLength: integer;
);
 RAWIPspaceAVAILABLE:
 (
 RawIpSpaceInBytes: integer;
);
 READYforHANDSHAKE:
 (
 HSTurnCode: CallReturnCodeType;
);
 RESOURCESavailable: ();
 SecureHandshakeComplete:
 (
 SecHSCompleteDetail: SecureHSCompleteDetailType;
);
 SMSGreceived: ();
 TIMERexpired:
 (
 Datum: integer;
 AssociatedTimer: TimerPointerType
);
 UDPdatagramDELIVERED:
 (
 DataLength: integer;
 ForeignSocket: SocketType;
 FullLength: integer
);
 UDPdatagramSPACEavailable: ();
 UDPresourcesAVAILABLE: ();
 URGENTpending:
 (
 BytesToRead: integer;
 UrgentSpan: integer
);
 USERdefinedNOTIFICATION:
 (
 UserData: UserNotificationDataType
);
 end;

Figure 21. Notification Record (Part 2 of 2)

Connection
Indicates the client’s connection number to which the notification applies. In the case of
USERdefinedNOTIFICATION, this field is as supplied by the user in the AddUserNote call.

Protocol
In the case of USERdefinedNOTIFICATION, this field is as supplied by the user in the AddUserNote
call. For all other notifications, this field is reserved.

NotificationTag
Is the type of notification being sent, and a set of fields dependent on the value of the tag. Possible
tag values relevant to the TCP/UDP/IP interface and the corresponding fields are:
BUFFERspaceAVAILABLE

Notification given when space becomes available on a connection for which TcpSend previously
returned NObufferSPACE. For more information about these procedures, see “TcpFSend,
TcpSend, and TcpWaitSend” on page 86.
AmountOfSpaceInBytes

Indicates the minimum number of bytes that the TCP/IP service has available for buffer space
for this connection. The actual amount of buffer space might be more than this number.

CertDataComplete
The results of the certificate data request.

CertDataCmplPtrType = @ CertDataCompleteDetailType
CertDataCompleteDetailType =

Chapter 2. TCP/UDP/IP API (Pascal Language) 47

 packed record
 CDComp: CertDataCompleteHdrType;
 CDData: packed array (. 1..CDDataLen.) of char;
 end;
CertDataCompleteHdrType =
 packed record
 CDRetCode: integer;
 CDRetCnt: integer;
 CDDataLen: UnsignedHalfwordType;
 CDRes: UnsignedHalfwordType;
 end;

CDData
Is requested data from the certificate. The format is as follows:

+---+
| Len | Code | CertData | Len | Code | CertData..... |
+---+

where:
Len

Is a halfword field that contains the total length of the item (Len+Code+CertData). The
total of all of the Len fields in the buffer is returned in CDDataLen.

Code
Is a halfword that contains the certificate field code (600-677).

CertData
Is the certificate data that corresponds to the requested code. Note that a single field
could appear multiple times in the returned buffer if more than one "answer" is valid.

CDRetCode
Indicates the return code from the certificate request. Possible values are:

0 - No errors.
4021 - The partner value is not valid.
4023 - The partner certificate is not available.
4024 - The certificate does not contain any values.
4025 - The buffer length passed is too large.
4026 - The returned data will not fit in the provided buffer. Partial data is returned.
4027 - The passed buffer pointer is null.
4028 - The number of certificate fields requested (CDReqNum) is 0.
4029 - The number of certificate fields requested (CDReqNum) is greater than 64.
4030 - The requested certificate field is not found.
4031 - The requested certificate field is not valid.
4032 - Both of these errors exist in the return data: A requested certificate field
 is not found and a requested certificate field is not valid.

CDRetCnt
Is the number of certificate fields returned in CDData.

CDDataLen
Is the length of the returned certificate data.

CDRes
Is reserved - will be 0.

Usage Notes

• Certificate fields will be placed in the CDData buffer in the order in which they appear in the
CertReqCodes input structure.

• The CDData buffer will contain as many certificate fields as will fit completely. If a requested
certificate field does not fit in the buffer, it will not be returned and subsequent fields in the

48 z/VM: 7.3 TCP/IP Programmer's Reference

CertReqCodes input structure will also fail. CDRetCode will indicate that not all of the data will fit
in CDData. CDRetCnt will reflect the number of completed requests.

• If the requested field cannot be found in the certificate, CDData will contain a Len of 4 along
with the requested Code. No data will be returned. CDRetCode will be updated to indicate that
one or more fields are not present in the certificate.

CLEARtextRESUMED
Notification given when a Close_Notify command is received on the connection.
Connection

Indicates the connection number which received the Close_notify command.
CONNECTIONstateCHANGED

Indicates that a TCP connection has changed state.
NewState

Indicates the new state for this connection.
Reason

Indicates the reason for the state change. This field is meaningful only if the NewState field
has a value of NONEXISTENT.

Note:

1. The following is the sequence of state notifications for a connection.

• For active open:

– OPEN
– RECEIVINGonly or SENDINGonly
– CONNECTIONclosing
– NONEXISTENT.

• For passive open:

– TRYINGtoOPEN
– OPEN
– RECEIVINGonly or SENDINGonly
– CONNECTIONclosing
– NONEXISTENT.

Your program should be prepared for any intermediate step or steps to be skipped.
2. The normal TCP connection closing sequence can lead to a connection staying in

CONNECTIONclosing state for up to two minutes, corresponding to the TCP state TIME-WAIT.
3. Possible Reason codes giving the reason for a connection changing to NONEXISTENT are:

• OK (means normal closing)
• UNREACHABLEnetwork
• TIMEOUTopen
• OPENrejected
• REMOTEreset
• WRONGsecORprc
• UNEXPECTEDsyn
• FATALerror
• KILLEDbyCLIENT
• TIMEOUTconnection
• TCPipSHUTDOWN
• DROPPEDbyOPERATOR.

Chapter 2. TCP/UDP/IP API (Pascal Language) 49

DATAdelivered
Notification given when your buffer (named in an earlier TcpReceive or TcpFReceive request)
contains data.

Note: The data delivered should be treated as part of a byte-stream, not as a message. There is no
guarantee that the data sent in one TcpSend (or equivalent) call on the foreign host is delivered in
a single DATAdelivered notification, even if the PushFlag is set.
BytesDelivered

Indicates the number of bytes of data delivered to you.
LastUrgentByte

Indicates the number of bytes of urgent data remaining, including data just delivered.
PushFlag

TRUE if the last byte of data was received with the push bit set.

EXTERNALinterrupt
Notification given when a simulated external interrupt occurs in your virtual machine. The
Connection and Protocol fields are not applicable.
RuptCode

The interrupt type.
FRECEIVEerror

Notification given in place of DATAdelivered when a TcpFReceive that initially returned OK has
terminated without delivering data.
ReceiveTurnCode

Specifies the reason the TcpFReceive has failed or was canceled. If ReceiveRequestErr
is set to FALSE, ReceiveTurnCode contains the same reason as the Reason field in
the CONNECTIONstateCHANGED with NewState set to NONEXISTENT notification for this
connection (see “2” on page 49). ReceiveTurnCode could be OK, if the connection closed
normally.

ReceiveRequestErr
If TRUE, the TcpFReceive was rejected during initial processing. If FALSE, the TcpFReceive
was initially accepted, but was terminated because of connection closing.

Note: Normally, you do not need to take any action upon receipt of this notification with
ReceiveRequestErr set to FALSE, because your program receives a CONNECTIONstateCHANGED
notification informing it that the connection has been terminated.

FSENDresponse
Notification given when a TcpFSend request is completed, successfully or unsuccessfully.
SendTurnCode

Indicates the status of the send operation.
SendRequestErr

If TRUE, the TcpFSend was rejected during initial processing or during retry after buffer space
became available. If FALSE, the TcpFSend was canceled because of connection closing.

IOinterrupt
Notification given when a simulated I/O interrupt occurs in your virtual machine. The Connection
and Protocol fields are not applicable.
DeviceAddress

This address corresponds to the DEVICE statement.
UnitStatus

Specifies the status returned by the device.
ChannelStatus

Specifies the status returned by the channel.

50 z/VM: 7.3 TCP/IP Programmer's Reference

IUCVinterrupt
Notification given when a simulated IUCV interrupt occurs in your virtual machine. The Connection
and Protocol fields are not applicable.
IUCVResponseBuf

Contains the information returned from the application.
PINGresponse

Notification given when a PINGresponse is received.
PingTurnCode

Specifies the status of the ping operation.
ElapsedTime

Indicates the time elapsed between the sending of a request and the reception of a response.
This time does not include the time spent in the simulated Virtual Machine Communication
Facility (VMCF) communication between your program and the TCPIP virtual machine. This
field is valid only if PingTurnCode has a value of OK.

QUERYtlsCOMPLETE
Notification given when the SSL server has completed verification of the label passed on the
QueryTLS command.
ReturnCode

Indicates the status of the QUERYtlsCOMPLETE operation. READYforHANDSHAKE to read:
‘Any other return code indicates a handshake failure.'

RAWIPpacketsDELIVERED
Notification given when your buffer (indicated in an earlier RawIpReceive request) contains a
datagram. Only one datagram is delivered on each notification. Your buffer contains the entire IP
header, plus as much of the datagram as fits in your buffer.
RawIpDataLength

Specifies the actual data length delivered to your buffer. If this is less than RawIpFullLength,
the datagram was truncated.

RawIpFullLength
Specifies the length of the packet, from the TotalLength field of the IP header.

RAWIPspaceAVAILABLE
When space becomes available after a client does a RawIpSend and receives a NObufferSPACE
return code, the client receives this notification to indicate that space is now available.
RawIpSpaceInBytes

Specifies the amount of space available always equals the maximum size IP datagram.
READYforHANDSHAKE

Notification given when a TcpSServer command is issued with a null data buffer. It indicates that
the connection is now waiting for a handshake.
ReturnCode

Indicates status of the handshake. A return code of OK indicates that the connection is waiting
for a handshake. Any other return code indicates that there was a problem and the handshake
cannot be done.

RESOURCESavailable
Notice given when resources needed for a TcpOpen or TcpWaitOpen are available. This notification
is sent only if a previous TcpOpen or TcpWaitOpen returned ZEROresources.

SECUREhandshakeCOMPLETE
Notification given when SSL has completed the handshake (either inbound or outbound).

SecureHSCompleteDetailType =
 record
 ReturnCode: SecureTurnCodeType;
 AlertLevel: SecureAlertLevelType;

Chapter 2. TCP/UDP/IP API (Pascal Language) 51

 AlertDescription: SignedHalfwordType;
 end

ReturnCode
Indicates the status of the handshake.

SecureTurnCodeType = (NOALERT, ALERT, TIMEOUT)

NOALERT
The handshake completed successfully.

ALERT
Problems were encountered during the handshake.

TIMEOUT
The handshake did not complete within the time allotted.

AlertLevel
When the ReturnCode is ALERT, this classifies the level of the alert.

SecureAlertLevelType = (AlertOK, Warning, Fatal)

AlertDescription
When ReturnCode is ALERT, this field contains the details of the failure. An AlertDescription
value in the 4000 range indicates an SSL server error as follows:

4001 - The type is not valid.
4002 - The integer format of the IP address is not valid.
4003 - ValidationBuffer is too long.
4004 - Len is either too big or extends beyond the buffer.
4005 - The maximum number of validation fields has been exceeded.
4006 - The dotted decimal format of the IPv4 address is not valid.
4007 - The dotted decimal format of the IPv6 address is not valid.
4008 - Validation of a host name or fully-qualified domain name failed.
4009 - Validation of an IPv4 or IPv6 address failed.
4010 - Validation failed.

An AlertDescription value in the 40000 range indicates a System SSL error. Subtract 40000
from the AlertDescription value and refer to Messages and codes in z/OS Cryptographic
Services System Secure Sockets Layer Programming (publibz.boulder.ibm.com/epubs/pdf/
gsk2aa00.pdf) for details.

SMSGreceived
Notification given when one or more Special Messages (Smsgs) arrive. The GetSmsg call is used to
retrieve queued Smsgs. For information on the SMSG command, see z/VM: TCP/IP User's Guide.

TIMERexpired
Notification given when a timer set through SetTimer expires.
Datum

Indicates the data specified when SetTimer was called.
AssociatedTimer

Specifies the address of the timer that expired.
UDPdatagramDELIVERED

Notification given when your buffer, indicated in an earlier UdpNReceive or UdpReceive request,
contains a datagram. Your buffer contains the datagram excluding the UDP header.

Note: If UdpReceive was used, your buffer contains the entire datagram excluding the header,
with the length indicated by DataLength. If UdpNReceive was used, and DataLength is less than
FullLength, your buffer contains a truncated datagram. The reason is that the length of your buffer
was too small to contain the entire datagram.

52 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/sssl2msg1000613.htm
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

DataLength
Specifies the length of the data delivered to your buffer.

ForeignSocket
Specifies the source of the datagram.

FullLength
Specifies the length of the entire datagram, excluding the UDP header. This field is set only if
UdpNReceive was used.

UDPdatagramSPACEavailable
Notification given when buffer space becomes available for a datagram for which UdpSend
previously returned NObufferSPACE because of insufficient resources.

UDPresourcesAVAILABLE
Notice given when resources needed for a UdpOpen are available. This notification is sent only if a
previous UdpOpen returned UDPzeroRESOURCES.

URGENTpending
Notification given when there is urgent data pending on a TCP connection.
BytesToRead

Indicates the number of incoming bytes not yet delivered to the client.
UrgentSpan

Indicates the number of undelivered bytes to the last known urgent pointer. No urgent data is
pending if this is negative.

USERdefinedNOTIFICATION
Notice generated from data passed to AddUserNote by your program.
UserData

A 40-byte field supplied by your program through AddUserNote. The Connection and Protocol
fields are also set from the values supplied to AddUserNote.

File Specification Record
The file specification record is used to fully specify a file. The Pascal declaration is shown in Figure 22 on
page 53.

 SpecOfFileType =
 record
 Owner: DirectoryNameType;
 Case SpecOfSystemType of
 VM:
 (
 VirtualAddress:VirtualAddressType;
 NewVirtualAddress:VirtualAddressType;
 DiskPassword: DirectoryNameType;
 Filename: DirectoryNameType;
 Filetype: DirectoryNameType;
 Filemode: FilemodeType
);
 MVS:
 (
 (* The MVS declaration is listed here. *)
);
 end;

Figure 22. Pascal Declaration of File Specification Record

Using Procedure Calls
Your program uses procedure calls to initiate communication with the TCPIP virtual machine. Most of
these procedure calls return with a code, which indicates success or the type of failure incurred by the
call. For an explanation of the return codes, see Table 48 on page 337.

Chapter 2. TCP/UDP/IP API (Pascal Language) 53

Before invoking any of the other interface procedures, use BeginTcpIp or StartTcpNotice to start up the
TCP/UDP/IP service. Once the TCP/UDP/IP service has begun, use the Handle procedure to specify a set
of notifications that the TCP/UDP/IP service can send you. To terminate the TCP/UDP/IP service, use the
EndTcpIp procedure.

Notifications
The TCPIP virtual machine sends you notifications to inform you of asynchronous events. Also, some
notifications are generated in your virtual machine by the TCP interface. Notifications can be received only
after BeginTcp or StartTcpNotice.

The notifications are received by the TCP interface and kept in a queue. Use GetNextNote to get the next
notification. The notifications are in Pascal variant record form. For more information (see Figure 20 on
page 46.

The following table provides a short description of the Notification procedure calls and gives the page
number where each call’s detailed description is located.

Table 6. Pascal Language Interface Summary—Notifications

Procedure Call Description Location

GetNextNote Retrieves the next notification. “GetNextNote” on page
63

Handle Specifies the types of notifications that your program
can process.

“Handle” on page 64

NotifyIo Requests that an IOinterrupt notification be sent to
you when an I/O interrupt occurs on a given virtual
address.

“NotifyIo” on page 68

Unhandle Specifies notification types that your program can no
longer process.

“Unhandle” on page 107

UnNotifyIo Indicates that you no longer wish to be sent a
notification when an I/O interrupt occurs on a given
virtual address.

“UnNotifyIo” on page 107

TCP/UDP Initialization Procedures
The UDP initialization procedures affect all present and future connections. Use these procedures to
initialize the TCP/IP environment for your program.

The following table provides a short description of the TCP/UDP Initialization procedure calls and gives
the page number where each call’s detailed description is located.

Table 7. Pascal Language Interface Summary—TCP/UDP Initialization

Procedure Call Description Location

TcpNameChange Identifies the name of the virtual machine running the
TCP/IP program when the virtual machine has a name
other than TCPIP.

“TcpNameChange” on
page 88

BeginTcpIp Establishes communication with the TCP/IP services. “BeginTcpIp” on page 60

StartTcpIpNotice Establishes communication with the TCP/IP services. “StartTcpNotice” on page
78

54 z/VM: 7.3 TCP/IP Programmer's Reference

TCP/UDP Termination Procedure
The Pascal API has one termination procedure call. You should use the EndTcpIp call when you have
finished with the TCP/IP services.

The following table provides a short description of the TCP/UDP Termination procedure call and gives the
page number where the call’s detailed description is located.

Table 8. Pascal Language Interface Summary—TCP/UDP Termination

Procedure Call Description Location

EndTcpIp Terminates communication with the TCP/IP services. “EndTcpIp” on page 61

Handling External Interrupts
The handling external interrupts procedures allow you to pass simulated external interrupts to the TCP
interface. You must call the StartTcpNotice initialization routine before you can begin using the external
interrupt calls.

The following table provides a short description of the Handling External Interrupts and gives the page
number where each call’s detailed description is located.

Table 9. Pascal Language Interface Summary—Handling External Interrupts

Procedure Call Description Location

TcpExtRupt Notifies the TCP interface of the arrival of a simulated
external interrupt.

“TcpExtRupt” on page
83

RTcpExtRupt A version of TcpExtRupt. “RTcpExtRupt” on page
74

TcpVmcfRupt Notifies the TCP interface of the arrival of a simulated
external VMCF interrupt.

“TcpVmcfRupt” on page
101

RTcpVmcfRupt A version of TcpVmcfRupt. “RTcpVmcfRupt” on page
74

TCP Communication Procedures
The TCP communication procedures apply to a particular client connection. Use these procedures to
establish a connection and to communicate. You must call either the BeginTcpIp or the StartTcpNotice
initialization routine before you can begin using TCP communication procedures.

The following table provides a short description of the TCP communication procedures and gives the page
number where each call’s detailed description is located.

Table 10. Pascal Language Interface Summary—TCP Communication Procedures

Procedure Call Description Location

Tcp6Open Initiates a TCP IPv6 connection. “Tcp6Open and
Tcp6WaitOpen” on page
79

Tcp6Status Obtains the current status of a TCP IPv6 connection. “Tcp6Status” on page 81

Tcp6WaitOpen Initiates a TCP IPv6 connection and waits for the
establishment of the connection.

“Tcp6Open and
Tcp6WaitOpen” on page
79

Chapter 2. TCP/UDP/IP API (Pascal Language) 55

Table 10. Pascal Language Interface Summary—TCP Communication Procedures (continued)

Procedure Call Description Location

TcpNameChange Is used if the virtual machine running the TCP/IP
program is not using the default name, TCPIP, and
is not the same as specified in the TCPIPUSERID
statement of the TCPIP DATA file.

“TcpNameChange” on
page 88

TcpOpen Initiates a TCP IPv4 connection. “TcpOpen and
TcpWaitOpen” on page
88

TcpOption Sets an option for a TCP connection. “TcpOption” on page 90

TcpSClient Indicates to the SSL server that the connection is to
be secure and that the SSL server needs to initiate an
outbound handshake.

“TcpSClient” on page 94

TcpSClose Performs Close_Notify on a TLS connection but leave
the TCP session up.

“TcpSClose” on page 98

TcpSServer Indicates to the SSL server that the connection is to
be secure and that the SSL server needs to wait for an
incoming handshake.

“TcpSServer” on page 98

TcpSStatus Returns details about a session, such as whether or
not it is secure and the encryption suite.

“TcpSStatus” on page
99.

TcpWaitOpen Initiates a TCP IPv4 connection and waits for the
establishment of the connection.

“TcpOpen and
TcpWaitOpen” on page
88

TcpFSend Sends TCP data. “TcpFSend, TcpSend, and
TcpWaitSend” on page
86

TcpSend Sends TCP data. “TcpFSend, TcpSend, and
TcpWaitSend” on page
86

TcpWaitSend Sends TCP data and waits until TCPIP accepts it. “TcpFSend, TcpSend, and
TcpWaitSend” on page
86

TcpFReceive Establishes a buffer to receive TCP data. “TcpFReceive,
TcpReceive, and
TcpWaitReceive” on page
83

TcpReceive Establishes a buffer to receive TCP data. “TcpFReceive,
TcpReceive, and
TcpWaitReceive” on page
83

TcpWaitReceive Establishes a buffer to receive TCP data and waits for
the reception of the data.

“TcpFReceive,
TcpReceive, and
TcpWaitReceive” on page
83

TcpClose Begins the TCP one-way closing sequence. “TcpClose” on page 82

TcpAbort Shuts down a TCP connection immediately. “TcpAbort” on page 81

56 z/VM: 7.3 TCP/IP Programmer's Reference

Table 10. Pascal Language Interface Summary—TCP Communication Procedures (continued)

Procedure Call Description Location

TcpStatus Obtains the current status of a TCP IPv4 connection. “TcpStatus” on page 100

Ping Interface
The Ping interface lets a client send an ICMP echo request to a foreign host. You must call either the
BeginTcpIp or the StartTcpNotice initialization routine before you can begin using the Ping Interface.

The following table provides a short description of the Ping interface procedures and gives the page
number where each call’s detailed description is located.

Table 11. Pascal Language Interface Summary—Ping Interface

Procedure Call Description Location

PingRequest Sends an Internet Control Message Protocol (ICMP)
echo request.

“PingRequest” on page
69

Monitor Procedures
Two monitor procedures, MonCommand and MonQuery, provide a mechanism for querying and controlling
the TCPIP virtual machine.

The following table provides a short description of the Monitor procedures and gives the page number
where each call’s detailed description is located.

Table 12. Pascal Language Interface Summary—Monitor Procedures

Procedure Call Description Location

MonCommand Instructs TCP to read a specific file and execute the
commands that it contains.

“MonCommand” on page
66

MonQuery Performs control functions and retrieves internal
TCPIP control blocks.

“MonQuery” on page 67

UDP Communication Procedures
The UDP communication procedures describe the programming interface for the User Datagram Protocol
(UDP) provided in the TCP/IP product.

The following table provides a short description of the UDP communication procedures and gives the page
number where each call’s detailed description is located.

Table 13. Pascal Language Interface Summary—UDP Communication Procedures

Procedure Call Description Location

Udp6Open Requests communication with UDP on a specified
socket using IPv4 or IPv6 protocols.

“Udp6Open” on page 102

Udp6Send Sends a UDP datagram to a specified foreign socket. “Udp6Send” on page 102

UdpOpen Requests communication with UDP on a specified
socket using IPv4 protocols.

“UdpOpen” on page 104

UdpSend Sends a UDP datagram to a specified foreign socket. “UdpSend” on page 106

UdpNReceive Notifies the TCPIP virtual machine that you are willing
to receive UDP datagram data.

“UdpNReceive” on page
104

Chapter 2. TCP/UDP/IP API (Pascal Language) 57

Table 13. Pascal Language Interface Summary—UDP Communication Procedures (continued)

Procedure Call Description Location

UdpReceive Notifies the TCPIP virtual machine that you are willing
to receive UDP datagram data.

“UdpReceive” on page
105

UdpClose Terminates use of a UDP socket. “UdpClose” on page 103

Raw IP Interface
The Raw IP interface lets a client program send and receive arbitrary IP packets on any IP protocol except
TCP and UDP. Only one client can use any given protocol at one time. Only clients in the obey list can
use the Raw IP interface. For further information about the obey list, see z/VM: TCP/IP Planning and
Customization.

The following table provides a short description of the Raw IP interface procedures and gives the page
number where each call’s detailed description is located.

Table 14. Pascal Language Interface Summary—Raw IP Interface

Procedure Call Description Location

RawIpOpen Informs the TCPIP virtual machine that the client
wants to send and receive IP packets of a specified
protocol.

“RawIpOpen” on page
71

RawIpReceive Specifies a buffer to receive raw IP packets of a
specified protocol.

“RawIpReceive” on page
72

RawIpSend Sends raw IP packets of a specified protocol. “RawIpSend” on page
72

RawIpClose Informs the TCPIP virtual machine that the client no
longer handles the protocol.

“RawIpClose” on page
70

Timer Routines
The timer routines are used with the TCP/UDP/IP interface. You must call either the BeginTcpIp or the
StartTcpNotice initialization routine before you can begin using the timer routines.

The following table provides a short description of the Timer routines and gives the page number where
each call’s detailed description is located.

Table 15. Pascal Language Interface Summary—Timer Routines

Procedure Call Description Location

CreateTimer Allocates a timer. “CreateTimer” on page
61

ClearTimer Resets a timer. “ClearTimer” on page 60

SetTimer Sets a timer to expire after a specified interval. “SetTimer” on page 77

DestroyTimer Deallocates a timer. “DestroyTimer” on page
61

Host Lookup Routines
The host lookup routines (with the exception of GetHostResol) are declared in the CMINTER member of
the ALLMACRO MACLIB. The host lookup routine GetHostResol is declared in the CMRESGLB member of

58 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

the ALLMACRO MACLIB. Any program using these procedures must include CMINTER or CMRESGLB after
the include statements for CMCOMM and CMCLIEN.

The following table provides a short description of the host lookup routines and gives the page number
where each call’s detailed description is located.

Table 16. Pascal Language Interface Summary—Host Lookup Routines

Procedure Call Description Location

GetHostNumber Converts a host name to an internet address using
static tables.

“GetHostNumber” on
page 62

GetHostResol Converts a host name to an internet address using a
domain name resolver.

“GetHostNumber” on
page 62

GetHostString Converts an internet address to a host name using
static tables.

“GetHostString” on page
62

GetIdentity Returns environment information. “GetIdentity” on page 63

IsLocalAddress Determines if an internet address is local. “IsLocalAddress” on page
65

IsLocalHost Determines if a host name is local, remote, loopback,
or unknown.

“IsLocalHost” on page
65

Other Routines
The following table provides a short description of these procedure calls and gives the page number
where the detailed description is located.

Table 17. Pascal Language Interface Summary—Other Routines

Procedure Call Description Location

AddUserNote Adds a USERdefinedNOTIFICATION notification to the
note queue.

“AddUserNote” on page
60

GetSmsg Retrieves one queued special message (Smsg). “GetSmsg” on page 64

QueryTLS Determines if the security server is available, and if the
label is specified, is it known to the security server.

“QueryTLS” on page 70.

ReadXlateTable Reads a binary translation table file. “ReadXlateTable” on page
73

SayCalRe Converts a return code into a descriptive message. “SayCalRe” on page 75

SayConSt Converts a connection state into a descriptive
message.

“SayConSt” on page 75

SayIntAd Converts an internet address into a name or dotted-
decimal form.

“SayIntAd” on page 76

SayIntNum Converts an internet address into its dotted-decimal
form.

“SayIntNum” on page 76

SayNotEn Converts a notification enumeration type into a
descriptive message.

“SayNotEn” on page 76

SayPorTy Converts a port number into a descriptive message or
into EBCDIC.

“SayPorTy” on page 77

SayProTy Converts the protocol type into a descriptive message
or into EBCDIC.

“SayProTy” on page 77

Chapter 2. TCP/UDP/IP API (Pascal Language) 59

Table 17. Pascal Language Interface Summary—Other Routines (continued)

Procedure Call Description Location

SaySslRe Returns a printable string describing the
AlertDescription returned when a handshake
completes. The AlertDescription is passed in
CallReturn.

“SaySslRe” on page 75

TcpSCertData For a secure connection, use this function to request
specific fields from the local or partner certificate.

“TcpSCertData” on page
91

Procedure Calls
This section provides the syntax, operands, and other appropriate information for each Pascal procedure
call supported by TCP/IP for VM.

AddUserNote
The AddUserNote procedure can be called to add a USERdefinedNOTIFICATION notification to the
note queue and wake up GetNextNote if it is waiting for a notification. For more information, see
“RTcpExtRupt” on page 74 and “RTcpVmcfRupt” on page 74.

BeginTcpIp
The BeginTcpIp procedures inform the TCPIP virtual machine that you want to start using its services. If
your program handles simulated external interrupts itself, use StartTcpNotice rather than BeginTcpIp. For
information about simulated external interrupt support, see Chapter 3, “Virtual Machine Communication
Facility Interface,” on page 113.

 procedure BeginTcpIp
 (
 var ReturnCode: integer
);
 external;

Operand
Description

ReturnCode
Indicates success or failure of call. Possible return values are:

• OK
• ABNORMALcondition
• fatalerror
• NOtcpIPservice
• TCPipALREADYstarted
• TCPipshutdown
• VIRTUALmemoryTOOsmall

If ReturnCode is OK, you must call EndTcpIp when you have finished with the TCP/IP services.

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

ClearTimer
The ClearTimer procedure resets the timer to prevent it from timing out.

BeginTcpIp

60 z/VM: 7.3 TCP/IP Programmer's Reference

 procedure ClearTimer
 (
 T: TimerPointerType
);
 external;

Operand
Description

T
Specifies a timer pointer, as returned by a previous CreateTimer call.

CreateTimer
The CreateTimer procedure allocates a timer. The timer is not set in any way. For the procedure to activate
the timer, see “SetTimer” on page 77.

 procedure CreateTimer
 (
 var T: TimerPointerType
);
 external;

Operand
Description

T
Sets to a timer pointer that can be used in subsequent SetTimer, ClearTimer, and DestroyTimer calls.

DestroyTimer
The DestroyTimer procedure deallocates or frees a timer that you created.

 procedure DestroyTimer
 (
 var T: TimerPointerType
);
 external;

Operand
Description

T
Specifies a timer pointer, as returned by a previous CreateTimer call.

EndTcpIp
The EndTcpIp procedure releases ports and protocols in use that are not permanently reserved. It causes
TCP to clean up any data structures it has associated with you. Use EndTcpIp when you have finished with
the TCP/IP services.

It is safe to call EndTcpIp even if BeginTcpIp or StartTcpNotice did not previously succeed.

 procedure EndTcpIp;
 external;

The EndTcpIp procedure has no operands.

CreateTimer

Chapter 2. TCP/UDP/IP API (Pascal Language) 61

GetHostNumber
The GetHostNumber procedure resolves a host name into an internet address.

GetHostNumber uses a table lookup to convert the name of a host to an internet address, and returns
this address to the HostNumber field. When the name is a dotted-decimal number, GetHostNumber
returns the integer represented by that dotted-decimal. The dotted-decimal representation of a 32-bit
number has one decimal integer for each of the 4 bytes, separated by dots. For example, 14.0.0.7 for
X'0E000007'. For information about how to create host lookup tables, see z/VM: TCP/IP Planning and
Customization.

The HostNumber field is set to NOhost if the host is not found.

 procedure GetHostNumber
 (
 const Name: string;
 var HostNumber: InternetAddressType
);
 external;

Operand
Description

Name
Specifies the name or dotted-decimal number to be converted.

HostNumber
Set to the converted address, or NOhost if conversion fails.

GetHostResol
The GetHostResol procedure resolves a host name into an internet address by using a name server.

GetHostResol passes the query to the remote name server through the resolver. The name server
converts the name of a host to an internet address, and returns this address in the HostNumber field.
If the name server does not respond or does not find the name, the host name is converted to a host
number by table lookup. When the name is a dotted-decimal number, the integer represented by that
dotted-decimal is returned. The dotted-decimal representation of a 32-bit number has one decimal
integer for each of the 4 bytes, separated by dots. For example, 14.0.0.7 for X'0E000007'.

The HostNumber field is set to NOhost if the host is not found.

 procedure GetHostResol
 (
 const Name: string;
 var HostNumber: InternetAddressType
);
 external;

Operand
Description

Name
Specifies the name or dotted-decimal number to be converted.

HostNumber
Set to the converted address, or NOhost if conversion fails.

GetHostString
The GetHostString procedure uses a table lookup to convert an internet address to a host name, and
returns this string in the Name field. The first host name found in the lookup is returned. If no host name

GetHostNumber

62 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

is found, a gateway or network name is returned. If no gateway or network name is found, a null string is
returned.

 procedure GetHostString
 (
 Address: InternetAddressType;
 var Name: SiteNameType
);
 external;

Operand
Description

Address
Specifies the address to be converted.

Name
Set to the corresponding host, gateway, or network name, or to null string if no match found.

GetIdentity
The GetIdentity procedure returns the following information:

• The user ID of the VM user
• The host machine name
• The network domain name
• The user ID of the TCPIP virtual machine.

The host machine name and domain name are extracted from the HOSTNAME and DOMAINORIGIN
statements, respectively, in the user_id DATA file. If the user_id DATA file does not exist, the TCPIP DATA
file is used. If a HOSTNAME statement is not specified, then the default host machine name is the name
specified by the TCP/IP installer during installation. See z/VM: TCP/IP Planning and Customization. The
TCPIP virtual machine user ID is extracted from the TCPIPUSERID statement in the user_id DATA file; if
the statement is not specified, the default is TCPIP.

 procedure GetIdentity
 (
 var UserId: DirectoryNameType;
 var HostName, DomainName: String;
 var TcpIpServiceName: DirectoryNameType;
 var Result: integer
);
 external;

Operand
Description

UserId
Specifies the user ID of the VM user or the job name of a batch job that has invoked GetIdentity.

HostName
Specifies the host machine name.

DomainName
Specifies the network domain name.

TcpIpServiceName
Specifies the user ID of the TCPIP virtual machine.

GetNextNote
The GetNextNote procedure retrieves notifications from the queue. This procedure returns the next
notification queued for you.

GetIdentity

Chapter 2. TCP/UDP/IP API (Pascal Language) 63

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

 procedure GetNextNote
 (
 var Note: NotificationInfoType;
 ShouldWait: Boolean;
 var ReturnCode: integer
);
 external;

Operand
Description

Note
Indicates that the next notification is stored here when ReturnCode is OK.

ShouldWait
Sets ShouldWait to TRUE if you want GetNextNote to wait until a notification becomes available. Set
ShouldWait to FALSE if you want GetNextNote to return immediately. When ShouldWait is set to
FALSE, ReturnCode is set to NOoutstandingNOTIFICATIONS if no notification is currently queued.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOoutstandingNOTIFICATIONS
• NOTyetBEGUN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

GetSmsg
The GetSmsg procedure is called by your program after receiving an SMSGreceived notification. Each
call to GetSmsg retrieves one queued Smsg. Your program should exhaust all queued Smsgs, by calling
GetSmsg repeatedly until the Success field returns with a value of FALSE. After a value of FALSE is
returned, do not call GetSmsg again until you receive another SMSGreceived notification.

For information about the SMSG command, see z/VM: TCP/IP User's Guide

 procedure GetSMsg
 (
 var Smsg: SmsgType;
 var Success: Boolean;
);
 external;

Operand
Description

Smsg
Set to the returned Smsg if Success is set to TRUE.

Success
TRUE if Smsg returned, otherwise FALSE.

Handle
The Handle procedure specifies that you want to receive notifications in the given set. You must always
use it after calling the BeginTcpIp procedure and before accessing the TCP/IP services. This Pascal set
can contain any of the NotificationEnumType values shown in Figure 20 on page 46.

GetSmsg

64 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

 procedure Handle
 (
 Notifications: NotificationSetType;
 var ReturnCode: integer
);
 external;

Operand
Description

Notifications
Specifies the set of notification types to be handled.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOTyetBEGUN
• TCPipSHUTDOWN
• ABNORMALcondition
• FATALerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

IsLocalAddress
The IsLocalAddress procedure queries the TCPIP virtual machine to determine whether the HostAddress
is one of the addresses recognized for this host. If the address is local, it returns OK. If the address is not
local, it returns NONlocalADDRESS.

 procedure IsLocalAddress
 (
 HostAddress: InternetAddressType;
 var ReturnCode: integer
);
 external;

Operand
Description

HostAddress
Specifies the host address to be tested.

ReturnCode
Indicates whether the host address is local, or may indicate an error. Possible return values are:

• OK
• NONlocalADDRESS
• TCPipSHUTDOWN
• ABNORMALcondition
• FATALerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

IsLocalHost
The IsLocalHost procedure returns the correct host class for Name, which may be a host name or a
dotted-decimal address.

The host classes are:

IsLocalAddress

Chapter 2. TCP/UDP/IP API (Pascal Language) 65

Host Class
Description

HOSTlocal
Specifies an internet address for the local host.

HOSTloopback
Specifies one of the dummy internet addresses used to designate various levels of loopback testing.

HOSTremote
Specifies a known host name for some remote host.

HOSTunknown
Specifies an unknown host name (or other error).

 procedure IsLocalHost
 (
 const Name: string;
 var Class: HostClassType
);
 external;

Operand
Description

Name
Specifies the host name.

Class
Specifies the host class.

MonCommand
The MonCommand procedure instructs the TCPIP virtual machine to read a specific file and execute
the commands found there. This procedure updates TCPIP internal tables and parameters while the
TCPIP virtual machine is running. For example, the type and destination of run-time tracing can be
modified dynamically using MonCommand. This procedure is used by the OBEYFILE command. For more
information about the OBEYFILE command, see z/VM: TCP/IP Planning and Customization. You must be in
the TCPIP obey list to use the MonCommand procedure.

 procedure MonCommand
 (
 const FileSpec: SpecOfFileType;
 var ReturnCode: integer
);
 external;

Operand
Description

FileSpec
Specifies a file in a manner that allows access to that file. The TCPIP virtual machine must be
authorized to access the file.

The SpecOfFileType record is listed in Figure 22 on page 53.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• ERRORinPROFILE
• HASnoPASSWORD

MonCommand

66 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

• INCORRECTpassword
• INVALIDuserID
• INVALIDvirtualADDRESS
• MINIDISKinUSE
• MINIDISKnotAVAILABLE
• NOTyetBEGUN
• PROFILEnotFOUND
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser
• UNIMPLEMENTEDrequest

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

MonQuery
The MonQuery procedure obtains status information, or requests TCPIP to perform certain actions. This
procedure is used by the NETSTAT command. For more information about the NETSTAT command, see
z/VM: TCP/IP User's Guide.

 procedure MonQuery
 (
 QueryRecord: MonQueryRecordType;
 Buffer: integer;
 BufSize: integer;
 var ReturnCode: integer;
 var Length: integer
);
 external;

Operand
Description

Buffer
Specifies the address of the buffer to receive data.

BufSize
Specifies the size of the buffer.

ReturnCode
Indicates the success or failure of the call.

Length
Specifies the length of the data returned in the buffer.

QueryRecord
Sets up a QueryRecord to specify the type of status information to be retrieved. The
MonQueryRecordType is shown in Figure 23 on page 68.

MonQuery

Chapter 2. TCP/UDP/IP API (Pascal Language) 67

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

 MonQueryRecordType =
 record
 case QueryType: MonQueryType of
 QUERYhome, QUERYgateways, QUERYcontrolBLOCKS,
 QUERYstartTIME, QUERYtelnetSTATUS,
 QUERYdevicesANDlinks,
 QUERYhomeONLY: ();
 QUERYudpPORTowner:
 (
 QueryPort: PortType
);
 COMMANDcpCMD:
 (
 CpCmd: WordType
);
 COMMANDdropCONNECTION:
 (
 Connection: ConnectionType
);
 end; { MonQueryRecordType }

Figure 23. Monitor Query Record

The only QueryType values available for your use are:
QUERYhomeONLY

Used to obtain a list of the home internet addresses recognized by your TCPIP virtual machine. Your
program sets the Buffer to the address of a variable of type HomeOnlyListType, and the BufSize to its
length. When MonQuery returns, Length is set to the length of the Buffer that was used, if ReturnCode
is OK. Divide the Length by size of (InternetAddressType) to get the number of the home addresses
that are returned.

COMMANDdropCONNECTION
Used to instruct the TCPIP virtual machine to drop a TCP connection. The connection is reset, and the
client process owning the connection is sent a NONEXISTENT notification with the Reason field set to
DROPPEDbyOPERATOR. Your program sets the Connection field to the number of the connection to
be dropped. The connection number is the number displayed by the NETSTAT CONN or the NETSTAT
TELNET command, and is not the same number used to refer to the connection by the client program
that owns the connection. For information about the NETSTAT command, see z/VM: TCP/IP User's
Guide. The virtual machine running your program that uses COMMANDdropCONNECTION must be in
the TCPIP virtual machine.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOTyetBEGUN
• TCPipSHUTDOWN
• UNAUTHORIZEDuser
• UNIMPLEMENTEDrequest

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

NotifyIo
The NotifyIo procedure is used to request that an IOinterrupt notification be sent to you when an I/O
interrupt occurs on a given virtual address. You can specify that you wish notifications on up to 10
different virtual device addresses (by means of individual NotifyIo calls). This notification is intended for
unsolicited interrupts, not for interrupts showing the completion of a channel program.

NotifyIo

68 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

 procedure NotifyIo
 (
 DeviceAddress: integer;
 var ReturnCode: integer;
);
 external;

Operand
Description

DeviceAddress
Specifies the address of the device for which IOinterrupt notifications are to be generated.

ReturnCode
Indicates success or failure of the call. Possible return values are:

• OK
• TOOmanyOPENS
• SOFTWAREerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

PingRequest
The PingRequest procedure sends an ICMP echo request to a foreign host. When a response is received or
the time-out limit is reached, you receive a PingResponse notification.

The PingRequest procedure is used by the PING user command. For more information about the PING
command, see z/VM: TCP/IP Planning and Customization.

 procedure PingRequest
 (
 ForeignAddress: InternetAddressType;
 Length: integer;
 Timeout: integer;
 var ReturnCode: integer
);
 external;

Operand
Description

ForeignAddress
Specifies the address of the foreign host to be pinged.

Length
Specifies the length of the ping packet, excluding the IP header. The range of values for this field are 8
to 512 bytes.

Timeout
Specifies how long to wait for a response, in seconds.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• BADlengthARGUMENT
• CONNECTIONalreadyEXISTS
• NObufferSPACE
• NOTyetBEGUN

PingRequest

Chapter 2. TCP/UDP/IP API (Pascal Language) 69

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: CONNECTIONalreadyEXISTS, in this context, means a ping request is already outstanding.

QueryTLS
The QueryTLS with an optional label determines if the security server is available, and if the label is
specified, is it known to the security server.

 Procedure QueryTLS
 (
 TLSLabel: DirectoryNameType;
 TLSKeyring: KeyringType;
 var ReturnCode: CallReturnCodeType
);
 KeyringType = packed array(. 1..KEYRINGlength .) of char;
 KEYRINGlength = 50;

Operand
Description

TLSLabel
The certificate label passed along to the security server for verification.

TLSKeyring
Specifies the group that the label resides in. This capability is not yet available. The value must be
blank.

ReturnCode
Indicates success or failure of the call. Possible return code values are:

• OK
• BACKlevelSSL
• KEYRINGnotPERMITTED
• KEYRINGnotRECOGNIZED
• LABELnotPERMITTED
• LABELnotRECOGNIZED
• NOTyetBEGUN
• SOFTWAREError
• SSLnotAVAILABLE
• SSLnotRESPONDING
• TCPipSHUTDOWN
• TLSnotAVAILABLE
• UNAUTHORIZEDuser

RawIpClose
The RawIpClose procedure tells the TCPIP virtual machine that the client does not handle the protocol
any longer. Any queued incoming packets are discarded.

When the client is not handling the protocol, a return code of NOsuchCONNECTION is received.

QueryTLS

70 z/VM: 7.3 TCP/IP Programmer's Reference

 procedure RawIpClose
 (
 ProtocolNo: integer;
 var ReturnCode: integer
);
 external;

Operand
Description

ProtocolNo
Specifies the number of the IP protocol.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

RawIpOpen
The RawIpOpen procedure tells the TCPIP virtual machine that the client wants to send and receive
packets of the specified protocol.

You cannot use protocols 6 and 17. They specify the TCP (6) and UDP (17) protocols. When you
specify 6, 17, or a protocol that has been opened by another virtual machine, you receive the
LOCALportNOTavailable return code.

 procedure RawIpOpen
 (
 ProtocolNo: integer;
 var ReturnCode: integer
);
 external;

Operand
Description

ProtocolNo
Specifies the number of the IP protocol.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• LOCALportNOTavailable
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

RawIpOpen

Chapter 2. TCP/UDP/IP API (Pascal Language) 71

Note: You can open the ICMP protocol, but your program receives only those ICMP packets that are not
interpreted by the TCPIP virtual machine.

RawIpReceive
The RawIpReceive procedure specifies a buffer to receive Raw IP packets of the specified protocol. You
get the notification RAWIPpacketsDELIVERED when a packet is put in the buffer.

 procedure RawIpReceive
 (
 ProtocolNo: integer;
 Buffer: Address31Type;
 BufferLength: integer;
 var ReturnCode: integer
);
 external;

Operand
Description

ProtocolNo
Specifies the number of the IP protocol.

Buffer
Specifies the address of your buffer.

BufferLength
Specifies the length of your buffer. If you specify a length greater than 8492 bytes, only the first 8492
bytes are used.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

RawIpSend
The RawIpSend procedure sends IP packets of the given protocol number. The entire packet, including
the IP header, must be in the buffer. The TCPIP virtual machine uses the total length field of the IP
header to determine where each packet ends. Subsequent packets begin at the next doubleword (8-byte)
boundary within the buffer.

The packets in your buffer are transmitted as is with the following exceptions.

• They can be fragmented. The fragment offset and flag fields in the header are filled.
• The version field in the header is filled.
• The checksum field in the header is filled.
• The source address field in the header is filled.

You get the return code NOsuchCONNECTION if the client is not handling the protocol, or if a packet in the
buffer has another protocol. The return code BADlengthARGUMENT is received when:

• The DataLength is less than 40 bytes or more than 8K bytes.
• NumPackets is 0.

RawIpReceive

72 z/VM: 7.3 TCP/IP Programmer's Reference

• A packet is greater than 2048 bytes.
• All packets do not fit into DataLength.

A ReturnCode value of NObufferSPACE indicates that the data is rejected because TCPIP is out of buffers.
When buffer space is available, the notification RAWIPspaceAVAILABLE is sent to the client.

 procedure RawIpSend
 (
 ProtocolNo: integer;
 Buffer: Address31Type;
 DataLength: integer;
 NumPackets: integers;
 var ReturnCode: integer
);
 external;

Operand
Description

ProtocolNo
Specifies the number of the IP protocol.

Buffer
Specifies the address of your buffer containing packets to send.

DataLength
Specifies the total length of data in your buffer.

NumPackets
Specifies the number of packets in your buffer.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• BADlengthARGUMENT
• NObufferSPACE
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDuser

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: If your buffer contains multiple packets to send, some of the packets may have been sent even if
ReturnCode is not OK.

ReadXlateTable
The ReadXlateTable procedure reads the binary translation table file specified by TableName, and fills in
the AtoETable and EtoATable translation tables.

 procedure ReadXlateTable
 (
 var TableName: DirectoryNameType;
 var AtoETable: AtoEType;
 var EtoATable: EtoAType;
 var TranslateTableSpec: SpecOfFileType;
 var ReturnCode: integer
);
 external;

ReadXlateTable

Chapter 2. TCP/UDP/IP API (Pascal Language) 73

Operand
Description

TableName
Specifies the name of the translate table. ReadXlateTable tries to read TableName TCPXLBIN. If that
file exists but it has a bad format, ReadXlateTable returns with a ReturnCode FILEformatINVALID. If
user_id TCPXLBIN does not exist, ReadXlateTable tries to read TCPIP TCPXLBIN. ReturnCode reflects
the status of reading that file.

AtoETable
Contains an ASCII-to-EBCDIC table if the return code is OK.

EtoATable
Contains an EBCDIC-to-ASCII table if the return code is OK.

TranslateTableSpec
If ReturnCode is OK, TranslateTableSpec contains the complete specification of the file that
ReadXlateTable used. If the ReturnCode is not OK, TranslateTableSpec contains the complete
specification of the last file that ReadXlateTable tried to use.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ERRORopeningORreadingFILE
• FILEformatINVALID

RTcpExtRupt

The RTcpExtRupt procedure is a version of the TcpExtRupt Pascal procedure and can be called directly
from an assembler interrupt handler.

Note: The content of this section is Internal Product Information and must not be used as programming
interface information.

The following is a sample of the assembler calling sequence.

 LA R13,PASCSAVE
 LA R1,EXTPARM
 L R15,=V(RTCPEXTR)
 BALR R14,R15
 .
 .
RUPTCODE DS H Store interrupt code here before calling XTCPEXTR
PASCSAVE DS 18F Register save area
ENV DC F'0' Zero initially. It will be filled with
 an environment address. Pass it unchanged
 in subsequent calls to RTCPEXTR.
EXTPARM DC A(ENV)
 DC A(RUPTCODE)

The RTcpExtRupt procedure has no operands.

RTcpVmcfRupt

The RTcpVmcfRupt procedure is a version of the TcpVmcfRupt Pascal procedure and can be called directly
from an assembler interrupt handler.

Note: The content of this section is Internal Product Information and must not be used as programming
interface information.

The following is a sample assembler calling sequence.

RTcpExtRupt

74 z/VM: 7.3 TCP/IP Programmer's Reference

 LA R13,PASCSAVE
 LA R1,VMCFPARM
 L R15,=V(RTCPVMCF)
 BALR R14,R15
 .
 .
PASCSAVE DS 18F Register save area
ENV DC F'0' Zero initially. It will be filled with
 an environment address. Pass it unchanged
 in subsequent calls to RTCPVMCF.
VMCFPARM DC A(ENV)
 DC A(VMCFBUF) Address of your VMCF interrupt buffer.

The RTcpVmcfRupt procedure has no operands.

SayCalRe
The SayCalRe function returns a printable string describing the return code passed in CallReturn.

 function SayCalRe
)
 CallReturn: integer
):
 WordType;
 external;

Operand
Description

CallReturn
Specifies the return code to be described.

SaySslRe
The SaySslRe function returns a printable string describing the AlertDescription returned when a
handshake completes. The AlertDescription is passed in CallReturn.

 function SaySslRe
)
 CallReturn: SignedHalfwordType
):
 WordType;
 external;

Operand
Description

CallReturn
Specifies the return code to be described.

SayConSt
The SayConSt function returns a printable string describing the connection state passed in State. For
example, if SayConSt is invoked with the type identifier RECEIVINGonly, it returns the message Receiving
only.

SayCalRe

Chapter 2. TCP/UDP/IP API (Pascal Language) 75

 function SayConSt
 (
 State: ConnectionStateType
):
 Wordtype;
 external;

Operand
Description

State
Specifies the connection state to be described.

SayIntAd
The SayIntAd function converts the internet address specified by InternetAddress to a printable string.
The address is looked up in HOSTS ADDRINFO file, and the name is returned if found. If it is not found, the
dotted-decimal format of the address is returned.

 function SayIntAd
 (
 InternetAddress: InternetAddressType
):
 WordType;
 external;

Operand
Description

InternetAddress
Specifies the internet address to be converted.

SayIntNum
The SayIntNum function converts the internet address specified by InternetAddress to a printable string,
in dotted-decimal form.

 function SayIntNum
 (
 InternetAddress: InternetAddressType
):
 Wordtype;
 external;

Operand
Description

InternetAddress
Specifies the internet address to be converted.

SayNotEn
The SayNotEn function returns a printable string describing the notification enumeration type passed in
Notification. For example, if SayNotEn is invoked with the type identifier EXTERNALinterrupt, it returns the
message, Other external Interrupt received.

SayIntAd

76 z/VM: 7.3 TCP/IP Programmer's Reference

 function SayNotEn
 (
 Notification: NotificationEnumType
);
 Wordtype;
 external;

Operand
Description

Notification
Specifies the notification enumeration type to be described.

SayPorTy
The SayPorTy function returns a printable string describing the port number passed in Port, if it is a
well-known port number such as the Telnet port. Otherwise, the EBCDIC representation of the number is
returned.

 function SayPorTy
 (
 Port: PortType
):
 WordType;
 external;

Operand
Description

Port
Specifies the port number to be described.

SayProTy
The SayProTy function converts the protocol type specified by Protocol to a printable string, if it is a
well-known protocol number such as 6 (TCP). Otherwise, the EBCDIC representation of the number is
returned.

 function SayProTy
 (
 Protocol: ProtocolType
):
 WordType;
 external;

Operand
Description

Protocol
Specifies the number of the protocol to be described.

SetTimer
The SetTimer procedure sets a timer to expire after a specified time interval. Specify the amount of time
in seconds. When it times out, you receive the TIMERexpired notification, which contains the data and the
timer pointer.

Note: This procedure resets any previous time interval set on this timer.

SayPorTy

Chapter 2. TCP/UDP/IP API (Pascal Language) 77

 procedure SetTimer
 (
 T: TimerPointerType;
 AmountOfTime: integer;
 Data: integer
);
 external;

Operand
Description

T
Specifies a timer pointer, as returned by a previous CreateTimer call.

AmountOfTime
Specifies the time interval in seconds.

Data
Specifies an integer value to be returned with the TIMERexpired notification.

StartTcpNotice
The StartTcpNotice procedure establishes your own external interrupt handler. Use this procedure rather
than BeginTcpIp when you want to handle simulated external interrupts yourself.

If your program does not use simulated VMCF, set the ClientDoesVmcf parameter to FALSE. For more
information about the simulated Virtual Machine Communication Facility interface, see Chapter 3, “Virtual
Machine Communication Facility Interface,” on page 113. Later, when your program receives a simulated
external interrupt that it does not handle, including a VMCF interrupt, inform the TCP interface by calling
TcpExtRupt. The TCP interface then processes the interrupt.

If your program uses simulated VMCF itself, set the ClientDoesVmcf parameter to TRUE. Your program
must use the VMCF AUTHORIZE function to establish a VMCF interrupt buffer. Later, when your program
receives a VMCF interrupt that it does not handle, inform the TCP interface by calling TcpVmcfRupt with
the address of your VMCF interrupt buffer. When your program receives a non-VMCF simulated external
interrupt that it does not handle, call TcpExtRupt, as explained previously.

 procedure StartTcpNotice
 (
 ClientDoesVmcf: Boolean;
 var ReturnCode: integer
);
 external;

Operand
Description

ClientDoesVmcf
Set to FALSE if your program does not use simulated VMCF. Otherwise, set to TRUE.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• ALREADYclosing
• NOtcpIPservice
• TCPipALREADYstarted
• VIRTUALmemoryTOOsmall
• FATALerror

StartTcpNotice

78 z/VM: 7.3 TCP/IP Programmer's Reference

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

If ReturnCode is OK, you must call EndTcpIp when you have finished with the TCP/IP services.

Tcp6Open and Tcp6WaitOpen
The Tcp6Open or Tcp6WaitOpen procedures initiate a TCP connection. The Tcp6Open or
Tcp6WaitOpen should be used for IPv6 connecections or for a mix of IPv4 and IPv6 connections.
Tcp6Open returns immediately, and connection establishment proceeds asynchronously with your
program’s other operations. The connection is fully established when your program receives a
CONNECTIONstateCHANGED notification with NewState set to OPEN. Tcp6WaitOpen does not return until
the connection is established, or until an error occurs.

procedure Tcp6Open
 (
 var ConnectionInfo: Status6Info;
 var ReturnCode: integer;
);
 external;

procedure Tcp6WaitOpen
 (
 var ConnectionInfo: Status6Info;
 var ReturnCode: integer;
);
 external;

Operand
Description

ConnectionInfo
Specifies a connection information record.
Connection

Set this field to UNSPECIFIEDconnection. When the call returns, the field contains the number of
the new connection if ReturnCode is OK.

ConnectionState
For active open, set this field to TRYINGtoOPEN. For passive open, set this field to LISTENING.

OpenAttemptTimeout
Set this field to specify how long, in seconds, TCP is to continue attempting to open the
connection. If the connection is not fully established during that time, TCP reports the error to
you. If you used Tcp6Open, you receive a notification. The type of notification that you receive is
CONNECTIONstateCHANGED. It has a new state of NONEXISTENT and a reason of TIMEOUTopen.
If you used Tcp6WaitOpen, it returns with ReturnCode set to TIMEOUTopen.

Security
This field is reserved. Set it to DEFAULTsecurity.

Compartment
This field is reserved. Set it to DEFAULTcompartment.

Precedence
This field is reserved. Set it to DEFAULTprecedence.

LocalSocket
Active Open: You can use an address of UNSPECIFIEDipv6address (the TCPIP virtual machine
uses the home address corresponding to the network interface used to route to the foreign
address) and port of UNSPECIFIEDport (the TCPIP virtual machine assigns a port number, in the
range of 1024 to 65 534). You can specify the address, the port, or both if particular values are
required by your application. The address must be a valid home address for your node and must
be specified as an IPv6 address. IPv6 mapped IPv4 addresses are acceptable, refer to RFC 4291
for details. The port must not be reserved via a PORT statement in Profile TCPIP or in use by
another application.

Tcp6Open and Tcp6WaitOpen

Chapter 2. TCP/UDP/IP API (Pascal Language) 79

Passive Open: A predetermined port number is specified which allows other programs to connect
to your program using the port. Alternatively, you can use UNSPECIFIEDport to let the TCPIP
virtual machine assign a port number, obtain the port number through Tcp6Status for Tcp6Open
or using the NETSTAT CONN command for Tcp6WaitOpen, and transmit it to the other program
through an existing TCP connection or manually. (For more information about the NETSTAT CONN
command, see z/VM: TCP/IP User's Guide). Generally, an address of UNSPECIFIEDipv6address is
specified so that the active open to the port succeeds regardless of the home addresses to which
it was sent.

ForeignSocket
Active Open: The address and port must both be specified, because the TCPIP virtual machine
cannot actively initiate a connection without knowing the destination address and port. The
address must be specified as an IPv6 address. IPv6 mapped IPv4 addresses are acceptable,
refer to RFC 4291 for details.

Note: Attempting to specify an IPv6 link local address will produce unpredictable results.

Passive Open: If your program is offering a service to anyone who wants it, specify an address of
UNSPECIFIEDipv6address and a port of UNSPECIFIEDport. You can specify a particular address
and port if you want to accept an active open only from a certain foreign application.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• CONNECTIONalreadyEXISTS
• DROPPEDbyOPERATOR (TcpWaitOpen only)
• IPv6connection
• LOCALportNOTavailable
• MIXEDaddresses
• NOsuchCONNECTION
• NOTyetBEGUN
• OPENrejected (TcpWaitOpen only)
• PARAMlocalADDRESS
• PARAMstate
• PARAMtimeout
• PARAMunspecADDRESS
• PARAMunspecPORT
• REMOTEreset (TcpWaitOpen only)
• SOFTWAREerror
• TCPipSHUTDOWN
• TIMEOUTconnection (TcpWaitOpen only)
• TIMEOUTopen (TcpWaitOpen only)
• TOOmanyOPENS
• UNEXPECTEDsyn (TcpWaitOpen only)
• UNREACHABLEnetwork (TcpWaitOpen only)
• WRONGsecORprc (TcpWaitOpen only)
• ZEROresources

Tcp6Open and Tcp6WaitOpen

80 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

Tcp6Status
The Tcp6Status procedure obtains the current status of a TCP connection. Your program sets the
Connection field of the ConnectionInfo record to the number of the connection whose status you want.

procedure Tcp6Status
 (
 var ConnectionInfo: Status6Info;
 var ReturnCode: integer;
);
 external;

Operand
Description

ConnectionInfo
If ReturnCode is OK, the following fields are returned:
Field

Description
OpenAttemptTimeout

If the connection is in the process of being opened (including a passive open), this field is set
to the number of seconds remaining before the open is terminated if it has not completed.
Otherwise, it is set to WAITforever.

BytesToRead
Specifies the number of bytes of incoming data queued for your program (waiting for TcpReceive,
TcpFReceive, or TcpWaitReceive).

UnackedBytes
Specifies the number of bytes sent by your program but not yet sent to the foreign TCP, or the
number of bytes sent to the foreign TCP, but not yet acknowledged.

ConnectionState
Specifies the current connection state.

LocalSocket
Specifies the local socket, consisting of a local address and a local port. The local address will be
returned as an IPv6 address. If the address is an IPv4 address, it will be returned as a mapped
IPv6 address.

ForeignSocket
Specifies the foreign socket, consisting of a foreign address and a foreign port. The foreign address
will be returned as an IPv6 address. If the address is an IPv4 address, it will be returned as a
mapped IPv6 address.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN

TcpAbort
The TcpAbort procedure shuts down a specific connection immediately. Data sent by your application on
the aborted connection can be lost. TCP sends a reset packet to notify the foreign host that you have
aborted the connection, but there is no guarantee that the reset will be received by the foreign host.

TcpAbort

Chapter 2. TCP/UDP/IP API (Pascal Language) 81

 procedure TcpAbort
 (
 Connection: ConnectionType;
 var ReturnCode: integer
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp6Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• SSLcloseINprogress
• TCPipSHUTDOWN

The connection is fully terminated when you receive the notification CONNECTIONstateCHANGED
with the NewState field set to NONEXISTENT.

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

TcpClose
The TcpClose procedure begins the TCP one-way closing sequence. During this closing sequence, you, the
local client, cannot send any more data. Data can be delivered to you until the foreign application also
closes. TcpClose also causes all data sent on that connection by your application, and buffered by TCPIP,
to be sent to the foreign application immediately.

 procedure TcpClose
 (
 Connection: ConnectionType;
 var ReturnCode: integer
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp6Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• ALREADYclosing

TcpClose

82 z/VM: 7.3 TCP/IP Programmer's Reference

• NOsuchCONNECTION
• NOTyetBEGUN
• SSLcloseINprogress
• SSLhandshakeINprogress
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note:

1. If you receive the notification CONNECTIONstateCHANGED with a NewState of SENDINGonly, the
remote application has done TcpClose (or equivalent function) and is receiving only. Respond with
TcpClose when you have finished sending data on the connection.

2. The connection is fully closed when you receive the notification CONNECTIONstateCHANGED, with a
NewState field set to NONEXISTENT.

TcpExtRupt
Use the TcpExtRupt procedure when:

1. You initiated the TCP/IP service by calling StartTcpNotice with ClientDoesVmcf set to TRUE, and
your external interrupt handler receives a non-VMCF interrupt not handled by your program. For the
handling of VMCF interrupts, see “TcpVmcfRupt” on page 101.

2. You initiated the TCP/IP service by calling StartTcpNotice with ClientDoesVmcf set to FALSE, and your
external interrupt handler receives any interrupt not handled by your program.

RTcpExtRupt is a version of TcpExtRupt. For more information, see “RTcpExtRupt” on page 74 and
“RTcpVmcfRupt” on page 74.

 procedure TcpExtRupt
 (
 const RuptCode: integer
);
 external;

Operand
Description

RuptCode
Specifies the external interrupt code you received.

TcpFReceive, TcpReceive, and TcpWaitReceive
TcpFReceive and TcpReceive are the asynchronous ways of specifying a buffer to receive data for a
given connection. Both procedures return to your program immediately. A return code of OK means
that the request has been accepted. When received data has been placed in your buffer, your program
receives a DATAdelivered notification. If your program uses TcpFReceive, it can receive an FRECEIVEerror
notification rather than DATAdelivered, indicating that the receive request was rejected, or that it was
initially accepted but was later canceled because of connection closing.

TcpWaitReceive is the synchronous interface for receiving data from a TCP connection. TcpWaitReceive
does not return to your program until data has been received into your buffer, or until an error occurs.
Therefore, it is not necessary that TcpWaitReceive receive a notification when data is delivered. The
BytesRead parameter is set to the number of bytes received by the data delivery, but if the number is less
than zero, the parameter indicates an error.

TcpReceive uses a complete VMCF transaction (SEND by your virtual machine followed by REJECT by
the TCPIP virtual machine) to tell the TCPIP virtual machine that your program is ready to receive, and
another complete VMCF transaction (SEND by TCPIP virtual machine followed by RECEIVE by your virtual
machine) to deliver the received data. In contrast, the entire TcpFReceive cycle is completed in one VMCF

TcpExtRupt

Chapter 2. TCP/UDP/IP API (Pascal Language) 83

transaction. The TCP interface does a VMCF SEND/RECEIVE to inform TCPIP that your program is ready to
receive. This transaction remains uncompleted until data is ready to be placed in your buffer. At that time
the TCPIP virtual machine does a VMCF REPLY, completing the transaction.

TcpFReceive requires fewer VMCF transactions to receive data, thus increasing efficiency. The
disadvantage is that each outstanding TcpFReceive means an outstanding VMCF transaction. You
are limited to 50 outstanding VMCF transactions (for each virtual machine), thus 50 outstanding
TcpFReceives.

With TcpReceive, you are not subject to the limit of 50 outstanding receives (for each virtual machine).
The disadvantage is that there are twice as many VMCF transactions involved in receiving data, thus more
overhead.

The only programming difference between TcpFReceive and TcpReceive is the generation of
FRECEIVEerror notifications for TcpFReceive.

 procedure TcpFReceive
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BytesToRead: integer;
 var ReturnCode: integer
);
 external;

 procedure TcpReceive
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BytesToRead: integer;
 var ReturnCode: integer
);
 external;

 procedure TcpWaitReceive
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BytesToRead: integer;
 var BytesRead: integer
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp6Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

Buffer
Specifies the address of the buffer to contain the received data.

BytesToRead
Specifies the size of the buffer. TCPIP usually buffers the incoming data until this many bytes are
received. Data is delivered sooner if the sender specified the PushFlag, or if the sender does a
TcpClose or equivalent. The largest usable buffer is 8192 bytes. Specifying BytesToRead of more than
8192 bytes may not cause an error return, but only 8192 bytes of the buffer are used.

Note: The order of TcpFReceive or TcpReceive calls on multiple connections, and the order of
DATAdelivered notifications among the connections, are not necessarily related.

TcpFReceive, TcpReceive, and TcpWaitReceive

84 z/VM: 7.3 TCP/IP Programmer's Reference

BytesRead
Indicates a value when TcpWaitReceive returns. If it is greater than ZERO, it indicates the number of
bytes received into your buffer. If it is less than or equal to ZERO, it indicates an error.

Possible BytesRead values are:

• OK+

• ABNORMALcondition
• FATALerror
• TIMEOUTopen+

• UNREACHABLEnetwork+

• BADlengthARGUMENT
• NOsuchCONNECTION
• NOTyetBEGUN
• NOTyetOPEN
• OPENrejected+

• RECEIVEstillPENDING
• REMOTEreset+

• UNEXPECTEDsyn+

• WRONGsecORprc+

• DROPPEDbyOPERATOR+

• FATALerror+

• KILLEDbyCLIENT+

• TCPipSHUTDOWN+

• TIMEOUTconnection+

• REMOTEclose

ReturnCode:
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• BEGUNlengthARGUMENT
• fatalerror
• NOsuchCONNECTION
• NOTyetBEGUN
• NOTyetOPEN
• RECEIVEstillPENDING
• REMOTEclose
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note:

1. For BytesRead OK, the function was initiated, but the connection is no longer receiving for an
unspecified reason. Your program does not have to issue TcpClose, but the connection is not
completely terminated until a NONEXISTENT notification is received for the connection.

2. For BytesRead REMOTEclose, the foreign host has closed the connection. Your program should
respond with TcpClose.

TcpFReceive, TcpReceive, and TcpWaitReceive

Chapter 2. TCP/UDP/IP API (Pascal Language) 85

3. If you receive any of the codes marked with +, the function was initiated but the connection has now
been terminated (see “2” on page 49). Your program should not issue TcpClose, but the connection is
not completely terminated until NONEXISTENT notification is received for the connection.

4. TcpWaitReceive is intended to be used by programs that manage a single TCP connection. It is not
suitable for use by multiconnection servers.

5. A return code of TCPipSHUTDOWN can be returned either because the connection initiation has failed,
or because the connection has been terminated, because of shutdown. In either case, your program
should not issue any more TCP/IP calls.

TcpFSend, TcpSend, and TcpWaitSend
TcpFSend and TcpSend are the asynchronous ways of sending data on a TCP connection. Both procedures
return to your program immediately (do not wait under any circumstance).

TcpWaitSend is a simple synchronous method of sending data on a TCP connection. It does not return
immediately if the TCPIP virtual machine has insufficient space to accept the data being sent.

TcpFSend and TcpSend differ in the way that they handle VMCF when the TCPIP virtual machine has
insufficient buffer space to accept the data being sent. Both start by issuing a VMCF SEND function to
transfer your data. Normally, the TCPIP virtual machine issues a VMCF RECEIVE, thus completing the
VMCF transaction.

In the case of insufficient buffer space, TCPIP responds to TcpSend with a VMCF REJECT, completing the
VMCF transaction (unsuccessfully). When space becomes available, another complete VMCF transaction
is performed to send a BUFFERspaceAVAILABLE notification.

In the case of a TcpFSend with insufficient buffer space, TCPIP does not respond to the VMCF SEND until
buffer space becomes available, at which time the transaction is completed with a VMCF RECEIVE.

TcpSend returns to your program after the VMCF response from TCPIP is received. In contrast, because
the VMCF response from TcpFSend may be delayed, TcpFSend returns before the VMCF response
is received. An OK return code from TcpFSend indicates only the successful initiation of the VMCF
transaction.

The advantage of TcpFSend is that the VMCF transactions necessary to send data are reduced in the case
where a program can send data faster than the TCP connection can carry it. Its disadvantages are that it
is limited to 50 outstanding VMCF sends and therefore 50 TcpFSends, and is slightly more complicated
to use, because you have to wait for an FSENDresponse notification (generated internally by the TCP
interface) between successive TcpFSends.

The advantage of TcpSend is that it does not involve an outstanding VMCF transaction. Thus, there is no
imposed VMCF-related limit. Also, TcpSend is simpler to use because you can issue successive TcpSends
without waiting for a notification. The disadvantage of TcpSend is that it is less efficient than TcpFSend if
your program can send data faster than the TCP connection can carry it.

Your program can issue successive TcpWaitSend calls. Buffer shortage conditions are handled
transparently. Any errors that occur are likely to be nonrecoverable errors, or are caused by a connection
that has terminated.

If you receive any of the codes listed for Reason in the CONNECTIONstateCHANGED notification, except
for OK, the connection was terminated for the indicated reason. Your program should not issue a
TcpClose, but the connection is not completely terminated until your program receives a NONEXISTENT
notification for the connection.

TcpFSend, TcpSend, and TcpWaitSend

86 z/VM: 7.3 TCP/IP Programmer's Reference

 procedure TcpFSend
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BufferLength: integer;
 PushFlag: Boolean;
 UrgentFlag: Boolean;
 var ReturnCode: integer
);
 external;

 procedure TcpSend
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BufferLength: integer;
 PushFlag: Boolean;
 UrgentFlag: Boolean;
 var ReturnCode: integer
);
 external;

 procedure TcpWaitSend
 (
 Connection: ConnectionType;
 Buffer: Address31Type;
 BufferLength: integer;
 PushFlag: Boolean;
 UrgentFlag: Boolean;
 var ReturnCode: integer
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp6Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

Buffer
Specifies the address of the buffer containing the data to send.

BufferLength
Specifies the length of data in the buffer. Maximum is 8192.

PushFlag
Forces the data, and previously queued data, to be sent immediately to the foreign application.

UrgentFlag
Marks the data as urgent. The semantics of urgent data is dependent on your application.

Note: Use urgent data with caution. If the foreign application follows the Telnet-style use of urgent
data, it may flush all urgent data until a special character sequence is encountered.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• BADlengthARGUMENT
• CANNOTsendDATA

TcpFSend, TcpSend, and TcpWaitSend

Chapter 2. TCP/UDP/IP API (Pascal Language) 87

• FATALerror
• FSENDstillpending
• NObufferSPACE (TcpSend only)
• NOsuchCONNECTION
• NOTyetBEGUN
• NOTyetOPEN
• SSLcloseINprogress
• SSLhandshakeINprogress
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note:

1. A successful TcpFSend, TcpSend, and TcpWaitSend means that TCP has received the data to be sent
and stored it in its internal buffers. TCP then puts the data in packets and transmits it when the
conditions permit.

2. Data sent in a TcpFSend, TcpSend, or TcpWaitSend request may be split up into numerous packets by
TCP, or the data may wait in TCP’s buffer space and share a packet with other TcpFSend, TcpSend, or
TcpWaitSend, requests.

3. The PushFlag gives the user the ability to affect when TCP sends the data.

Setting the PushFlag to FALSE allows TCP to buffer the data and wait until it has enough data to
transmit so as to utilize the transmission line more efficiently. There can be some delay before the
foreign host receives the data.

Setting the PushFlag to TRUE instructs TCP to packetize and transmit any buffered data from previous
Send requests along with the data in the current TcpFSend, TcpSend, or TcpWaitSend request without
delay or consideration of transmission line efficiency. A successful send does not imply that the foreign
application has actually received the data, only that the data will be sent as soon as possible.

4. TcpWaitSend is intended for programs that manage a single TCP connection. It is not suitable for use
by multiconnection servers.

TcpNameChange
The TcpNameChange procedure is used if the virtual machine running the TCP/IP program is not using the
default name, TCPIP, and is not the same as specified in the TCPIPUSERID statement of the TCPIP DATA
file. For more information, see z/VM: TCP/IP Planning and Customization.

If required, this procedure must be called before the BeginTcpIp or the StartTcpNotice procedure.

 procedure TcpNameChange
 (
 NewNameOfTcp: DirectoryNameType
);
 external;

Operand
Description

NewNameOfTcp
Specifies the name of the virtual machine running TCP/IP.

TcpOpen and TcpWaitOpen
The TcpOpen or TcpWaitOpen procedures initiate a TCP IPv4 connection. TcpOpen returns immediately,
and connection establishment proceeds asynchronously with your program’s other operations. The
connection is fully established when your program receives a CONNECTIONstateCHANGED notification

TcpNameChange

88 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

with NewState set to OPEN. TcpWaitOpen does not return until the connection is established, or until an
error occurs.

There are two types of TcpOpen calls: passive open and active open. A passive open call sets the
connection state to LISTENING. An active open call sets the connection state to TRYINGtoOPEN.

If a TcpOpen or TcpWaitOpen call returns ZEROresources, and your application handles
RESOURCESavailable notifications, you receive a RESOURCESavailable notification when sufficient
resources are available to process an open call. The first open your program issues after a
RESOURCESavailable notification is guaranteed not to get the ZEROresources return code.

 procedure TcpOpen
 (
 var ConnectionInfo: StatusInfoType;
 var ReturnCode: integer
);
 external;

 procedure TcpWaitOpen
 (
 var ConnectionInfo: StatusInfoType;
 var ReturnCode: integer
);
 external;

Operand
Description

ConnectionInfo
Specifies a connection information record.
Connection

Set this field to UNSPECIFIEDconnection. When the call returns, the field contains the number of
the new connection if ReturnCode is OK.

ConnectionState
For active open, set this field to TRYINGtoOPEN. For passive open, set this field to LISTENING.

OpenAttemptTimeout
Set this field to specify how long, in seconds, TCP is to continue attempting to open the
connection. If the connection is not fully established during that time, TCP reports the error to
you. If you used TcpOpen, you receive a notification. The type of notification that you receive is
CONNECTIONstateCHANGED. It has a new state of NONEXISTENT and a reason of TIMEOUTopen.
If you used TcpWaitOpen, it returns with ReturnCode set to TIMEOUTopen.

Security
This field is reserved. Set it to DEFAULTsecurity.

Compartment
This field is reserved. Set it to DEFAULTcompartment.

Precedence
This field is reserved. Set it to DEFAULTprecedence.

LocalSocket
Active Open: You can use an address of UNSPECIFIEDaddress (the TCPIP virtual machine uses
the home address corresponding to the network interface used to route to the foreign address)
and a port of UNSPECIFIEDport (the TCPIP virtual machine assigns a port number, in the range of
1024 to 65 534). You can specify the address, the port, or both if particular values are required by
your application. The address must be a valid home address for your node, and the port must be
available (not reserved, and not in use by another application).

Passive Open: A predetermined port number is specified which allows other programs to connect
to your program using the port. Alternatively, you can use UNSPECIFIEDport to let the TCPIP

TcpOpen and TcpWaitOpen

Chapter 2. TCP/UDP/IP API (Pascal Language) 89

virtual machine assign a port number, obtain the port number through TcpStatus for TcpOpen
or using the NETSTAT CONN command for TcpWaitOpen, and transmit it to the other program
through an existing TCP connection or manually. (For more information about the NETSTAT CONN
command, see z/VM: TCP/IP User's Guide). Generally, an address of UNSPECIFIEDaddress is
specified so that the active open to the port succeeds regardless of the home addresses to which
it was sent.

ForeignSocket
Active Open: The address and port must both be specified, because the TCPIP virtual machine
cannot actively initiate a connection without knowing the destination address and port.

Passive Open: If your program is offering a service to anyone who wants it, specify an address of
UNSPECIFIEDaddress and a port of UNSPECIFIEDport. You can specify a particular address and
port if you want to accept an active open only from a certain foreign application.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• CONNECTIONalreadyEXISTS
• DROPPEDbyOPERATOR (TcpWaitOpen only)
• IPv6connection
• LOCALportNOTavailable
• NOsuchCONNECTION
• NOTyetBEGUN
• OPENrejected (TcpWaitOpen only)
• PARAMlocalADDRESS
• PARAMstate
• PARAMtimeout
• PARAMunspecADDRESS
• PARAMunspecPORT
• REMOTEreset (TcpWaitOpen only)
• SOFTWAREerror
• TCPipSHUTDOWN
• TIMEOUTconnection (TcpWaitOpen only)
• TIMEOUTopen (TcpWaitOpen only)
• TOOmanyOPENS
• UNEXPECTEDsyn (TcpWaitOpen only)
• UNREACHABLEnetwork (TcpWaitOpen only)
• WRONGsecORprc (TcpWaitOpen only)
• ZEROresources

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

TcpOption
The TcpOption procedure sets an option for a TCP connection.

TcpOption

90 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

 procedure TcpOption
 (
 Connection: ConnectionType
 OptionName: integer;
 OptionValue: integer;
 var ReturnCode: integer
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record for IPv4 connections or by Tcp6Open or Tcp6WaitOpen in the connection
field of the Status6InfoType record for IPv6 connections.

OptionName
Specifies the code for the option.
OPTIONtcpKEEPALIVE

If OptionValue is zero, the keep-alive mechanism is deactivated for the connection. If OptionValue
is nonzero, the keep-alive mechanism is activated for the connection. This mechanism sends a
packet on an otherwise idle connection. If the remote TCP does not respond to the packet, the
connection state will be changed to NONEXISTENT with TIMEOUTconnection as the reason.

OptionValue
Specifies the value for the option.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN
• INVALIDrequest

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

TcpSCertData
For a secure connection, use this function to request specific fields from the local or partner certificate.

procedure TcpSCertData
 (
 Connection: ConnectionType;
 Wait: boolean;
 CertReqDetail: CertReqDetailType;
 var ReturnCode: CallReturnCodeType;
);
external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

TcpSCertData

Chapter 2. TCP/UDP/IP API (Pascal Language) 91

Wait
Is set to true if your program will wait for the certificate data request to complete. This is set to false if
your program will process the CERTdataCOMPLETE notification.

CertReqDetail
Sets up the details of the certificate request.

CertReqDetailType = packed record
 CertReqNum: UnsignedByteType;
 CertReqSide: CertReqSideType;
 CertReqRes1: UnsignedHalfwordType;
 CertReqRes2: integer;
 CertReqLen: integer;
 CertReqPtr: integer;
 CertReqCodes: array (. 1..64 .) of UnsignedHalfwordType;
end;

CertReqNum - Number of certificate fields requested in CertReqCodes

CertReqSideType =
 (
 Local, { Field in local certificate }
 Partner { Field in partner certificate }
);

CertReqRes1 and CertReqRes2 are reserved fields and must be
set to 0.

CertReqLen - Length of the data buffer pointed to by CertReqPtr.

CertReqPtr - Pointer to a data buffer. This buffer must be large
enough to contain the CertDataCompleteDetailType structure that
is returned. Note that CDDataLen is limited to 16K.

CertReqCodes - List of certificate fields to be returned. See
below for valid field codes.

The fields that can be requested from a certificate along with the request code to specify in the
CertReqCodes field are as follows. More information about the structure and additional information
about the fields in an x.509 certificate can be found in RFC 5280.

600 - CERT_BODY_DER
601 - CERT_BODY_BASE64
602 - CERT_SERIAL_NUMBER
610 - CERT_COMMON_NAME
611 - CERT_LOCALITY
612 - CERT_STATE_OR_PROVINCE
613 - CERT_COUNTRY
614 - CERT_ORG
615 - CERT_ORG_UNIT
616 - CERT_DN_PRINTABLE
617 - CERT_DN_DER
618 - CERT_POSTAL_CODE
619 - CERT_EMAIL
620 - CERT_DOMAIN_COMPONENT
621 - CERT_SURNAME
622 - CERT_STREET
623 - CERT_TITLE
650 - CERT_ISSUER_COMMON_NAME
651 - CERT_ISSUER_LOCALITY
652 - CERT_ISSUER_STATE_OR_PROVINCE
653 - CERT_ISSUER_COUNTRY
654 - CERT_ISSUER_ORG
655 - CERT_ISSUER_ORG_UNIT
656 - CERT_ISSUER_DN_PRINTABLE
657 - CERT_ISSUER_DN_DER

TcpSCertData

92 z/VM: 7.3 TCP/IP Programmer's Reference

658 - CERT_ISSUER_POSTAL_CODE
659 - CERT_ISSUER_EMAIL
660 - CERT_ISSUER_DOMAIN_COMPONENT
661 - CERT_ISSUER_SURNAME
662 - CERT_ISSUER_STREET
663 - CERT_ISSUER_TITLE
664 - CERT_NAME
665 - CERT_GIVENNAME
666 - CERT_INITIALS
667 - CERT_GENERATIONQUALIFIER
668 - CERT_DNQUALIFIER
669 - CERT_MAIL
670 - CERT_SERIALNUMBER
671 - CERT_ISSUER_NAME
672 - CERT_ISSUER_GIVENNAME
673 - CERT_ISSUER_INITIALS
674 - CERT_ISSUER_GENERATIONQUALIFIER
675 - CERT_ISSUER_DNQUALIFIER
676 - CERT_ISSUER_MAIL
677 - CERT_ISSUER_SERIALNUMBER

Upon return, the ReturnCode field will be set indicating that there was an error on the call, or, if
Wait=TRUE, the data will be returned in the buffer that was provided.

ReturnCode
Is one of the following:

• CERTdataNOTavail
• CONNECTIONnotSECURE
• ENOBUFS
• INVALIDrequest
• SSLcloseINprogress
• SSLnotRESPONDING
• TCPipSHUTDOWN
• TLSnotAVAILABLE

Return Data
When the wait flag is set to true, the results of the certificate request will be provided in the buffer
pointed to by CertReqPtr. The format of the buffer is below. If the wait flag is set to false, the results of
the certificate request will be reflected in the CertDataComplete notification (see CertDataComplete).

CertDataCmplPtrType = @ CertDataCompleteDetailType
CertDataCompleteDetailType =
 packed record
 CDComp: CertDataCompleteHdrType;
 CDData: packed array (. 1..CDDataLen.) of char;
 end;
CertDataCompleteHdrType =
 packed record
 CDRetCode: integer;
 CDRetCnt: integer;
 CDDataLen: UnsignedHalfwordType;
 CDRes: UnsignedHalfwordType;
 end;

CDData
Is requested data from the certificate. The format is as follows:

+---+

TcpSCertData

Chapter 2. TCP/UDP/IP API (Pascal Language) 93

| Len | Code | CertData | Len | Code | CertData..... |
+---+

where:
Len

Is a halfword field that contains the total length of the item (Len+Code+CertData). The total
of all of the Len fields in the buffer is returned in CDDataLen.

Code
Is a halfword that contains the certificate field code (600-677).

CertData
Is the certificate data that corresponds to the requested code. Note that a single field could
appear multiple times in the returned buffer if more than one "answer" is valid.

CDRetCode
Indicates the return code from the certificate request. Possible values are:

0 - No errors.
4021 - The partner value is not valid.
4023 - The partner certificate is not available.
4024 - The certificate does not contain any values.
4025 - The buffer length passed is too large.
4026 - The returned data will not fit in the provided buffer. Partial data is returned.
4027 - The passed buffer pointer is null.
4028 - The number of certificate fields requested (CDReqNum) is 0.
4029 - The number of certificate fields requested (CDReqNum) is greater than 64.
4030 - The requested certificate field is not found.
4031 - The requested certificate field is not valid.
4032 - Both of these errors exist in the return data: A requested certificate field
 is not found and a requested certificate field is not valid.

CDRetCnt
Is the number of certificate fields returned in CDData.

CDDataLen
Is the length of the returned certificate data.

CDRes
Is reserved - will be 0.

Usage Notes
• Certificate fields will be placed in the CDData buffer in the order in which they appear in the

CertReqCodes input structure.
• The CDData buffer will contain as many certificate fields as will fit completely. If a requested certificate
field does not fit in the buffer, it will not be returned and subsequent fields in the CertReqCodes input
structure will also fail. CDRetCode will indicate that not all of the data will fit in CDData. CDRetCnt will
reflect the number of completed requests.

• If the requested field cannot be found in the certificate, CDData will contain a Len of 4 along with the
requested Code. No data will be returned. CDRetCode will be updated to indicate that one or more
fields are not present in the certificate.

TcpSClient
Indicates to the SSL server that the connection is to be secure and that the SSL server needs to initiate an
outbound handshake.

TcpSClient

94 z/VM: 7.3 TCP/IP Programmer's Reference

procedure TcpSClient
 (
 Connection: ConnectionType;
 Wait: boolean;
 SecureClientDetail: SecureDetailType;
 var HandshakeCompleteDetail:SecureHSCompleteDetailType;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

Wait
Set to true if your program should wait for the Close_Notify to complete. Set to false otherwise.

SecureClientDetail
Sets up the details of the request to be sent to the SSL server.

SecureDetailType =
 record
 TLSLabel: DirectoryNameType;
 TLSTimeout: integer;
 RequestClientCert: boolean;
 ValidatePeerCert: ValidateCertType;
 CipherRequest: CipherSuiteType;
 Version: UnsignedByteType;
 Keyring: KeyringType;
 Buffer: string[255];
 SecDetailExt: SecureDetailExtensionType;
 end;

ValidateCertType =
 (
 Full_Check,
 No_Check
);

CipherSuiteType =
 (
 Default,
 NoV2
);

KeyringType = packed array (. 1.. KEYRINGlength .) of char;
KEYRINGlength = 50;

SecureDetailExtensionType =
 packed record
 ValidationFlags: integer;
 ValidationLen: integer;
 ValidationBuffer array (.1..512.) of char;
 end;

Operand
Description

TLSLabel
The label associated with the certificate in the certificate database.

TLSTimeout
This capability is not yet available. The value must be 0.

RequestClientCert
See ValidatePeerCert.

TcpSClient

Chapter 2. TCP/UDP/IP API (Pascal Language) 95

ValidatePeerCert
The RequestClientCert and ValidatePeerCert flags are used in combination to determine the level
of client certificate checking that will be done during a secure server call. The level and the flag
settings are as follows:
None

A client certificate will not be requested.

RequestClientCert = 0
ValidatePeerCert = 1 (No_Check)

Preferred
A client certificate is requested. If a client certificate is not received, the connection will
proceed without it. If a client certificate is received, it will be authenticated. If the client
certificate is not valid, the failure will be logged in the SSL console log and the connection will
continue as a secure connection protected by the server certificate.

RequestClientCert = 1
ValidatePeerCert = 1 (No_Check)

Required
A client certificate will be authenticated. If a client certificate is not received, the connection
will be terminated with a fatal TLS error. If the certificate fails authentication, the handshake
will fail.

RequestClientCert = 1
ValidatePeerCert = 0 (Full_Check)

Note: For a secure client call, the server certificate is always validated. Set these flags to indicate
a level of None.

CipherRequest
This field is set to NoV2 for clients that do not want to use SSL V2. When set to Default, default
cipher suite values will be used.

Version
When set to 0, the SecDetailExt is not passed on the call. When set to 1, the SecDetailExt is filled
in and passed on the call to tell the SSL/TLS server to compare the passed-in host name, domain
name, or IP address against the server certificate. A value of 1 is valid only when securing the
client side of the connection.

Keyring
This capability is not yet available. The value must be blank.

Buffer
Contains the string that the SSL server will send out on the connection before waiting for the
handshake. After this command is sent, the initiation of the handshake is expected on the
connection. If an empty buffer is sent, a READYforHANDSHAKE notification will be sent to indicate
that this side of the connection is waiting for the handshake.

ValidationFlags
Possible values:

0 indicates not required. If the validation text does not match what is in the server certificate,
the mismatch will be logged and the handshake will continue.
1 indicates required. At least one of the specified validation items must match what is in the
server certificate. If there are no matching items, the handshake will fail.

ValidationLen
The total length of ValidationBuffer.

ValidationBuffer
Contains multiple items to validate against the certificate. Each item has the following format:

TcpSClient

96 z/VM: 7.3 TCP/IP Programmer's Reference

+--+
| Len | Type | Text |
+--+

The total length of all items (Len+Type+Text) must not exceed 512 bytes.
Len

A halfword field that contains the total length of the item (Len+Type+Text). The total of all of
the Len fields in the buffer should equal ValidationLen.

Type
A halfword field that contains the type of the Text data:

0 indicates an IPv4 address in integer format with 4-byte hexadecimal representation. For
example: 093C1C66.
1 indicates an IPv6 address in integer format with 16-byte hexadecimal representation. For
example: 50C6 C2C1 0000 0000 0009 0060 0028 0102.
2 indicates a fully-qualified domain name (FQDN) in EBCDIC format.
3 indicates a host name in EBCDIC format.
4 indicates an IPv4 address in dotted decimal format. For example: 9.60.28.102.
5 indicates an IPv6 address in dotted decimal format. For example:
50C6:C2C1::9.60.28.102.

Text
The string that is compared to the common name, domain name, or in a subject alternate
name extension marked as an IP address in the server certificate.

Note: When Version is 1, the caller must allocate and send the full length of the ValidationBuffer (512
bytes) even though it might be partially filled in.

HandshakeCompleteDetail
When the wait flag is set to true, the results of the handshake will be returned here. If the wait
flag is set to false, the results of the handshake will be reflected in the SecureHandshakeComplete
notification (see SECUREhandshakeCOMPLETE).

ReturnCode
Indicates the success or failure of the call. Possible return values include:

• OK
• BACKlevelSSL
• KEYRINGnotPERMITTED
• KEYRINGnotRECOGNIZED
• LABELnotPERMITTED
• LABELnotRECOGNIZED
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• SSLcloseINprogress
• TCPipSHUTDOWN
• TLSnotAVAILABLE
• UNAUTHORIZEDuser
• ALREADYsecured
• STATICALLYsecured
• INVALIDrequest
• ALREADYclosing

TcpSClient

Chapter 2. TCP/UDP/IP API (Pascal Language) 97

• ZeroResources

TcpSClose
Perform Close_Notify on a TLS connection but leave the TCP session up.

procedure TcpSClose
 (
 Connection: ConnectionType;
 Wait: boolean;
 Buffer: string[255];
 var ReturnCode: CallReturnCodeType
);

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

Wait
Set to true if your program should wait for the Close_Notify to complete. Set to false otherwise.

Buffer
Contains a string of data that the SSL server will send out on the connection prior to switching the
connection to clear text.

ReturnCode
Indicates the success or failure of the call. Possible return codes include:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• SSLcloseINprogress
• TCPipSHUTDOWN
• TLSnotAVAILABLE
• UNAUTHORIZEDuser

TcpSServer
The TcpSServer procedure indicates to the SSL server that the connection is to be secure and that the SSL
server needs to wait for an incoming handshake.

 procedure TcpSServer
 (
 Connection: ConnectionType;
 SecureServerDetail: SecureDetailType;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.

TcpSClose

98 z/VM: 7.3 TCP/IP Programmer's Reference

SecureServerDetail
Sets up the details of the request to be sent to the SSL server. See SecureDetailType.

ReturnCode
Indicates the success or failure of the call. Possible return values include:

• OK
• BACKlevelSSL
• KEYRINGnotPERMITTED
• KEYRINGnotRECOGNIZED
• LABELnotPERMITTED
• LABELnotRECOGNIZED
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• SSLcloseINprogress
• TCPipSHUTDOWN
• TLSnotAVAILABLE
• UNAUTHORIZEDuser
• ALREADYsecured
• STATICALLYsecured
• INVALIDrequest
• ALREADYclosing
• ZeroResources

TcpSStatus
The TcpSStatus procedure returns details about a session such as whether or not it is secure and the
encryption suite.

 procedure TcpSStatus
 (
 Connection: ConnectionType;
 var Secure: SecureType;
 var CipherDetails: CipherDetailsType;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

Connection
Specifies the connection number, as returned by TcpOpen or TcpWaitOpen in the connection field of
the StatusInfoType record.
Secure

Describes how the connection is secured.

SecureType = (SecNone, SecStatic, SecDynamic)

SecNone
The connection is not secure.

SecStatic
The connection is statically secured.

TcpSStatus

Chapter 2. TCP/UDP/IP API (Pascal Language) 99

SecDynamic
The connection is dynamically secured.

CipherDetails
When a connection is secure, this field describes the cipher details that are in effect.

CipherDetailsType =
 record
 CipherClass: CipherClassType;
 CipherHash: CipherHashType;
 CipherAlgorithm: CipherSymmetricAlgorithmType;
 CipherPkAlgorithm: CipherPkAlgorithmType;
 CipherKeyLength: integer;
 end;
CipherClassType = (NULLclass, SSLV2, SSLV3, TLS,
 TLS10, TLS11, TLS12);
CipherSymmetricAlgorithmType = (NULLalgorithm,
 RC2, {deprecated}
 RC4,
 DES, {deprecated}
 DES3,
 FIPSDES, {deprecated}
 FIPS3DES, {deprecated}
 AES,
 AESGCM,
 AES128,
 AES128GCM,
 AES256,
 AES256GCM);
CipherPkAlgorithmType = (NULLpkAlgorithm, RSA, DH_DSS,
 DH_RSA, DHE_DSS, DHE_RSA,
 ECDH_ECDSA, ECDHE_ECDSA,
 ECDH_RSA, ECDHE_RSA);
CipherHashType = (SHA1, MD5, NULLhash, SHA2, SHA256,
 SHA384);

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UNAUTHORIZEDDuser

TcpStatus
The TcpStatus procedure obtains the current status of a TCP connection. Your program sets the
Connection field of the ConnectionInfo record to the number of the connection whose status you want.

 procedure TcpStatus
 (
 var ConnectionInfo: StatusInfoType;
 var ReturnCode: integer
);
 external;

Operand
Description

ConnectionInfo
If ReturnCode is OK, the following fields are returned:

TcpStatus

100 z/VM: 7.3 TCP/IP Programmer's Reference

Field
Description

OpenAttemptTimeout
If the connection is in the process of being opened (including a passive open), this field is set
to the number of seconds remaining before the open is terminated if it has not completed.
Otherwise, it is set to WAITforever.

BytesToRead
Specifies the number of bytes of incoming data queued for your program (waiting for TcpReceive,
TcpFReceive, or TcpWaitReceive).

UnackedBytes
Specifies the number of bytes sent by your program but not yet sent to the foreign TCP, or the
number of bytes sent to the foreign TCP, but not yet acknowledged.

ConnectionState
Specifies the current connection state.

LocalSocket
Specifies the local , consisting of a local address and a local port.

ForeignSocket
Specifies the foreign , consisting of a foreign address and a foreign port.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• IPv6Connection
• NOsuchCONNECTION
• NOTyetBEGUN
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: Your program cannot monitor connection state changes exclusively through polling with TcpStatus.
It must receive CONNECTIONstateCHANGED notifications through GetNextNote, for the TCP interface to
work properly.

TcpVmcfRupt
The TcpVmcfRupt procedure is used when you initiate the TCP/IP service by calling StartTcpNotice with
ClientDoesVmcf set to TRUE, and your external interrupt handler receives a VMCF interrupt not handled by
your program.

RTcpVmcfRupt is a version of TcpVmcfRupt that can be called directly from an assembler interrupt
handler. For more information, see “RTcpExtRupt” on page 74 and “RTcpVmcfRupt” on page 74.

 procedure TcpVmcfRupt
 (
 VmcfHeaderAddress: integer
);
 external;

Operand
Description

VmcfHeaderAddress
Indicates the address of your VMCF interrupt buffer as specified in the VMCF AUTHORIZE function
that your program issued at initialization.

TcpVmcfRupt

Chapter 2. TCP/UDP/IP API (Pascal Language) 101

Udp6Open
The Udp6Open procedure requests acceptance of UDP datagrams on the specified socket and allows
datagrams to be sent from the specified socket. Udp6Open should be used for IPv6 connections, or for
a mix of IPv4 and IPv6 connections. When the socket port is unspecified, UDP selects a port and returns
it to the socket port field. When the socket address is unspecified, UDP uses the default local address. If
specified, the address must be a valid home address for your node.

Note: When the local address is specified, only the UDP datagrams addressed to it are delivered.

If the ReturnCode indicates the open was successful, use the returned ConnIndex value on any further
actions pertaining to this UDP socket.

 procedure Udp6Open
 (
 var LocalSocket: Socket6Type;
 var ConnIndex: ConnectionIndexType;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

LocalSocket
Specifies the local socket (address and port pair).

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• LOCALportNOTavailable
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UDPlocalADDRESS
• UDPzeroRESOURCES

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: If a Udp6Open call returns UDPzeroRESOURCES, and your application handles
UDPresourcesAVAILABLE notifications, you receive a UDPresourcesAVAILABLE notification when
sufficient resources are available to process a Udp6Open call. The first Udp6Open your program issues
after a UDPresourcesAVAILABLE notification is guaranteed not to get the UDPzeroRESOURCES return
code.

Udp6Send
The Udp6Send procedure sends a UDP datagram to the specified foreign socket. Udp6send should be
used for IPv6 connections, or for a mix of IPv4 and IPv6 connections. The source socket is the local
socket selected in the Udp6Open that returned the ConnIndex value that was used. The buffer does not
include the UDP header. This header is supplied by the TCPIP virtual machine.

When there is no buffer space to process the data, an error is returned. In this case, wait for a subsequent
UDPdatagramSPACEavailable notification.

Udp6Open

102 z/VM: 7.3 TCP/IP Programmer's Reference

 procedure Udp6Send
 (
 ConnIndex: ConnectionIndexType;
 ForeignSocket: Socket6Type;
 BufferAddress: integer;
 Length: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

ForeignSocket
Specifies the foreign socket (address and port) to whom the datagram is to be sent.

BufferAddress
Specifies the address of your buffer containing the UDP datagram to be sent, excluding UDP header.

Length
Specifies the length of the datagram to be sent, excluding UDP header. Maximum is 8192 bytes.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• BADlengthARGUMENT
• MIXEDaddress
• NObufferSPACE
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UDPunspecADDRESS
• UDPunspecPORT

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpClose
The UdpClose procedure closes the UDP specified in the ConnIndex field. All incoming datagrams on this
connection are discarded.

 procedure UdpClose
 (
 ConnIndex: ConnectionIndexType;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

UdpClose

Chapter 2. TCP/UDP/IP API (Pascal Language) 103

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpNReceive
The UdpNReceive procedure notifies the TCPIP virtual machine that you can receive UDP datagram data.
This call returns immediately. The data buffer is not valid until you receive a UDPdatagramDELIVERED
notification.

 procedure UdpNReceive
 (
 ConnIndex: ConnectionIndexType;
 BufferAddress: integer;
 BufferLength: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

BufferAddress
Specifies the address of your buffer that will be filled with a UDP datagram.

BufferLength
Specifies the length of your buffer. If you specify a length larger than 8192 bytes, only the first 8192
bytes are used.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• RECEIVEstillPENDING
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpOpen
The UdpOpen procedure requests acceptance of UDP datagrams on the specified socket and allows
datagrams to be sent from the specified socket. When the socket port is unspecified, UDP selects a port
and returns it to the socket port field. When the socket address is unspecified, UDP uses the default local
address. If specified, the address must be a valid home address for your node.

Note: When the local address is specified, only the UDP datagrams addressed to it are delivered.

UdpNReceive

104 z/VM: 7.3 TCP/IP Programmer's Reference

If the ReturnCode indicates the open was successful, use the returned ConnIndex value on any further
actions pertaining to this UDP socket.

 procedure UdpOpen
 (
 var LocalSocket: SocketType;
 var ConnIndex: ConnectionIndexType;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

LocalSocket
Specifies the local socket (address and port pair).

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• LOCALportNOTavailable
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UDPlocalADDRESS
• UDPzeroRESOURCES

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Note: If a UdpOpen call returns UDPzeroRESOURCES, and your application handles
UDPresourcesAVAILABLE notifications, you receive a UDPresourcesAVAILABLE notification when
sufficient resources are available to process a UdpOpen call. The first UdpOpen your program issues after
a UDPresourcesAVAILABLE notification is guaranteed not to get the UDPzeroRESOURCES return code.

UdpReceive
The UdpReceive procedure notifies the TCPIP virtual machine that you are willing to receive UDP
datagram data.

UdpReceive is for compatibility with old programs only. New programs should use the UdpNReceive
procedure, which allows you to specify the size of your buffer.

If you use UdpReceive, TCPIP can put a datagram of up to 2012 bytes in your buffer. If a larger datagram
is sent to your port when UdpReceive is pending, the datagram is discarded without notification.

Note: No data is transferred from the TCPIP virtual machine in this call. It only tells TCPIP that you
are waiting for a datagram. Data has been transferred when a UDPdatagramDELIVERED notification is
received.

UdpReceive

Chapter 2. TCP/UDP/IP API (Pascal Language) 105

 procedure UdpReceive
 (
 ConnIndex: ConnectionIndexType;
 DatagramAddress: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

DatagramAddress
Specifies the address of your buffer that will be filled with a UDP datagram.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UdpSend
The UdpSend procedure sends a UDP datagram to the specified foreign socket. The source socket is the
local socket selected in the UdpOpen that returned the ConnIndex value that was used. The buffer does
not include the UDP header. This header is supplied by the TCPIP virtual machine.

When there is no buffer space to process the data, an error is returned. In this case, wait for a subsequent
UDPdatagramSPACEavailable notification.

 procedure UdpSend
 (
 ConnIndex: ConnectionIndexType;
 ForeignSocket: SocketType;
 BufferAddress: integer;
 Length: integer;
 var ReturnCode: CallReturnCodeType
);
 external;

Operand
Description

ConnIndex
Specifies the ConnIndex value returned from UdpOpen.

ForeignSocket
Specifies the foreign socket (address and port) to whom the datagram is to be sent.

BufferAddress
Specifies the address of your buffer containing the UDP datagram to be sent, excluding UDP header.

Length
Specifies the length of the datagram to be sent, excluding UDP header. Maximum is 8192 bytes.

UdpSend

106 z/VM: 7.3 TCP/IP Programmer's Reference

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• BADlengthARGUMENT
• NObufferSPACE
• NOsuchCONNECTION
• NOTyetBEGUN
• SOFTWAREerror
• TCPipSHUTDOWN
• UDPunspecADDRESS
• UDPunspecPORT

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Unhandle
The Unhandle procedure specifies that you no longer want to receive notifications in the given set.

If you request to unhandle the DATAdelivered notification, the Unhandle procedure returns with a code of
INVALIDrequest.

 procedure Unhandle
 (
 Notifications: NotificationSetType;
 var ReturnCode: integer
);
 external;

Operand
Description

Notifications
Specifies the set of notifications that you no longer want to receive.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• ABNORMALcondition
• FATALerror
• INVALIDrequest
• NOTyetBEGUN
• TCPipSHUTDOWN

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

UnNotifyIo
The UnNotifyIo routine is used to indicate that you no longer wish to be sent a notification when an I/O
interrupt occurs on the specified virtual address.

Unhandle

Chapter 2. TCP/UDP/IP API (Pascal Language) 107

 procedure UnNotifyIo
 (
 DeviceAddress: integer;
 var ReturnCode: integer
);
 external;

Operand
Description

DeviceAddress
Specifies the address of the device for which IOinterrupt notifications are no longer to be generated.

ReturnCode
Indicates the success or failure of the call. Possible return values are:

• OK
• NOsuchCONNECTION
• SOFTWAREerror

For a description of Pascal ReturnCodes, see Appendix B, “Pascal Return Codes,” on page 337.

Sample Pascal Program
The following is an example of a sample Pascal program.

%UHEADER 5741-A05 (C) COPYRIGHT 1991, 2004 BY IBM, PSAMPLE.

{
 Licensed Materials - Property of IBM
 This product contains "Restricted Materials of IBM"
 5741-A05 (C) Copyright IBM Corp. - 1991, 2004
 All rights reserved.
 US Government Users Restricted Rights -
 Use, duplication or disclosure restricted by GSA ADP Schedule
 Contract with IBM Corp.
 See IBM Copyright Instructions.
}

{
 Change Activity
 VREBA - IPv6 Stage 1 line item
}

{**}
{* *}
{* Memory-to-memory Data Transfer Rate Measurement *}
{* *}
{* Pseudocode: Establish access to TCP/IP Services *}
{* Prompt user for operation parameters *}
{* Open a connection (Sender:passive, Receiver:active) *}
{* If Sender: *}
{* Send 5M of data using TcpFSend *}
{* Use GetNextNote to know when Send is complete *}
{* Print transfer rate after every 1M of data *}
{* else Receiver: *}
{* Receive 5M of data using TcpFReceive *}
{* Use GetNextNote to know when data is delivered *}
{* Print transfer rate after every 1M of data *}
{* Close connection *}
{* Use GetNextNote to wait until connection is closed *}
{* *}
{**}
program PSAMPLE;

%include CMALLCL
%include CMINTER
%include CMRESGLB

const
 BUFFERlength = 8192; { same as MAXdataBUFFERsize }
 PORTnumber = 9876; { constant on both sides }

Sample Pascal Program

108 z/VM: 7.3 TCP/IP Programmer's Reference

 CLOCKunitsPERthousandth = '3E8000'x;

static
 Buffer : packed array (.1..BUFFERlength.) of char;
 BufferAddress : Address31Type;
 ConnectionInfo : StatusInfoType;
 Count : integer;
 DataRate : real;
 Difference : TimeStampType;
 HostAddress : IPAddressType; {@VRFBAQP}
 AddrSpec : IPv6AddrSpecType; {@VRFBAQP}
 Lookup : LookupSetType; {@VRFBAQP}
 IbmSeconds : integer;
 Ignored : integer;
 Line : string(80);
 Note : NotificationInfoType;
 PushFlag : boolean; { for TcpFSend }
 RealRate : real;
 ReturnCode : integer;
 SendFlag : boolean; { are we sending or receiving }
 StartingTime : TimeStampType;
 Thousandths : integer;
 TotalBytes : integer;
 UrgentFlag : boolean; { for TcpFSend }

 var RoundRealRate : integer;

 {**}
 {* Print message, release resources and reset environment *}
 {**}
 procedure Restore (const Message: string;
 const ReturnCode: integer);
 begin
 Write(Message);
 if ReturnCode <> OK then
 {* Write(SayCalRe(ReturnCode));
 Writeln(''); *}
 Msg1(Output,1, addr(SayCalRe(ReturnCode)))
 else Msg0(Output,2);

 EndTcpIp;
 Close (Input);
 Close (Output);
 end;

begin
 TermOut (Output);
 TermIn (Input);

 { Establish access to TCP/IP services }
 BeginTcpIp (ReturnCode);
 if ReturnCode <> OK then begin
 {* Writeln('BeginTcpip: ',SayCalRe(ReturnCode)); *}
 Msg1(Output,4, addr(SayCalRe(ReturnCode)));
 return;
 end;

 { Inform TCPIP which notifications will be handled by the program }
 Handle ((.DATAdelivered, BUFFERspaceAVAILABLE,
 CONNECTIONstateCHANGED, FRECEIVEerror,
 FSendResponse.), ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('Handle: ', ReturnCode);
 return;
 end;

 { Prompt user for operation parameters }
{* Writeln('Transfer mode: (Send or Receive)'); *}
 Msg0(Output,5);
 ReadLn (Line);
 if (Substr(Ltrim(Line),1,1) = 's')
 or (Substr(Ltrim(Line),1,1) = 'S') then
 SendFlag := TRUE
 else
 SendFlag := FALSE;

{* Writeln('Host Name or Internet Address :'); *}
 Msg0(Output,6);
 ReadLn (Line);
 Lookup := [IPv4]; {@VRFBAQP}
 if not (GetIPAddr(Trim(Ltrim(Line)), HostAddress, {@VRFBAQP}

Sample Pascal Program

Chapter 2. TCP/UDP/IP API (Pascal Language) 109

 AddrSpec, Lookup)) then {@VRFBAQP}
 begin {@VRFBAQP}
 Restore ('GetIPAddr failed. ', OK); {@VRFBAQP}
 return; {@VRFBAQP}
 end; {@VRFBAQP}

 { Open a TCP connection: active for Send and passive for Receive }
 { - Connection value will be returned by TcpIp }
 { - initialize IBM reserved fields: Security, Compartment }
 { and Precedence }
 { for Active open - set Connection State to TRYINGtoOPEN }
 { - must initialize foreign socket }
 { for Passive open - set ConnectionState to LISTENING }
 { - may leave foreign socket uninitialized to }
 { accept any open attempt }
 with ConnectionInfo do begin
 Connection := UNSPECIFIEDconnection;
 OpenAttemptTimeout := WAITforever;
 Security := DEFAULTsecurity;
 Compartment := DEFAULTcompartment;
 Precedence := DEFAULTprecedence;
 if SendFlag then begin
 ConnectionState := TRYINGtoOPEN;
 LocalSocket.Address := UNSPECIFIEDaddress;
 LocalSocket.Port := UNSPECIFIEDport;
 ForeignSocket.Address := HostAddress.IPv4Addr; {@VRFBAQP}
 ForeignSocket.Port := PORTnumber;
 end
 else begin
 ConnectionState := LISTENING;
 LocalSocket.Address := HostAddress.IPv4Addr; {@VRFBAQP}
 LocalSocket.Port := PORTnumber;
 ForeignSocket.Address := UNSPECIFIEDaddress;
 ForeignSocket.Port := UNSPECIFIEDport;
 end;
 end;
 TcpWaitOpen (ConnectionInfo, ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('TcpWaitOpen: ', ReturnCode);
 return;
 end;

 { Initialization }
 BufferAddress := Addr(Buffer(.1.));
 StartingTime := ClockTime;
 TotalBytes := 0;
 Count := 0;
 PushFlag := false; { let TcpIp buffer data for efficiency }
 UrgentFlag := false; { none of out data is Urgent }

 { Issue first TcpFSend or TcpFReceive }
 if SendFlag then
 TcpFSend (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, PushFlag, UrgentFlag, ReturnCode)
 else
 TcpFReceive (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, ReturnCode);

 if ReturnCode <> OK then begin
 {* Writeln('TcpSend/Receive: ',SayCalRe(ReturnCode)); *}
 Msg1(Output,7, addr(SayCalRe(ReturnCode)));
 return;
 end;

 { Repeat until 5M bytes of data have been transferred }
 while (Count < 5) do begin
 { Wait until previous transfer operation is completed }
 GetNextNote(Note, True, ReturnCode);
 if ReturnCode <> OK then begin
 restore('GetNextNote :',ReturnCode);
 return;
 end;

 { Proceed with transfer according to the Notification received }
 { Notifications Expected : }
 { DATAdelivered - TcpFReceive function call is now complete }
 { - receive buffer contains data }
 { FSENDresponse - TcpFSend function call is now complete }
 { - send buffer is now available for use }
 { FRECEIVEerror - if there was an error on TcpFReceive function }
 case Note.NotificationTag of

Sample Pascal Program

110 z/VM: 7.3 TCP/IP Programmer's Reference

 DATAdelivered:
 begin
 TotalBytes := TotalBytes + Note.BytesDelivered;
 {issue next TcpFReceive }
 TcpFReceive (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, ReturnCode);
 if ReturnCode <> OK then begin
 Restore('TcpFReceive: ',Note.SendTurnCode);
 return;
 end;
 end;
 FSENDresponse:
 begin
 if Note.SendTurnCode <> OK then begin
 Restore('FSENDresponse: ',Note.SendTurnCode);
 return;
 end
 else begin
 {issue next TcpFSend }
 TotalBytes := TotalBytes + BUFFERlength;
 TcpFSend (ConnectionInfo.Connection, BufferAddress,
 BUFFERlength, PushFlag, UrgentFlag, ReturnCode);
 if ReturnCode <> OK then begin
 Restore('TcpFSend: ',Note.SendTurnCode);
 return;
 end;
 end;
 end;
 FRECEIVEerror:
 begin
 Restore('FRECEIVEerror: ', Note.ReceiveTurnCode);
 return;
 end;
 OTHERWISE
 begin
 Restore('UnExpected Notification ',OK);
 return;
 end;
 end; { Case on Note.NotificationTag }

 { is it time to print transfer rate? }
 if TotalBytes < 1048576 then
 continue;

 { Print transfer rate after every 1M bytes of data transferred }
 DoubleSubtract (ClockTime, StartingTime, Difference);
 DoubleDivide (Difference, CLOCKunitsPERthousandth, Thousandths,
 Ignored);
 RealRate := (TotalBytes/Thousandths) * 1000.0;
 {* Writeln('Transfer Rate ', RealRate:1:0,' Bytes/sec.'); *}
 RoundRealRate := Round(RealRate);
 Msg1(Output,8, addr(RoundRealRate));

 StartingTime := ClockTime;
 TotalBytes := 0;
 Count := Count + 1;
 end; {Loop while Count < 5 }

 { Close TCP connection and wait till partner also drops connection }
 TcpClose (ConnectionInfo.Connection, ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('TcpClose: ', ReturnCode);
 return;
 end;

 { when partner also drops connection, program will receive }
 { CONNECTIONstateCHANGED notification with NewState = NONEXISTENT }
 repeat
 GetNextNote (Note, True, ReturnCode);
 if ReturnCode <> OK then begin
 Restore ('GetNextNote: ', ReturnCode);
 return;
 end;
 until (Note.NotificationTag = CONNECTIONstateCHANGED) &
 ((Note.NewState = NONEXISTENT) |
 (Note.NewState = CONNECTIONclosing));

 Restore ('Program terminated successfully. ', OK);
end.

Sample Pascal Program

Chapter 2. TCP/UDP/IP API (Pascal Language) 111

Sample Pascal Program

112 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 3. Virtual Machine Communication Facility
Interface

The Virtual Machine Communication Facility (VMCF) is part of the Control Program (CP) of VM. VMCF
enables virtual machines to send data to and receive data from any other virtual machine.

You can communicate directly with the TCPIP virtual machine using VMCF calls, rather than Pascal API or
C socket calls. You can use VMCF calls when:

• You want to write your program in assembler.
• You add TCP/IP communication to an existing complex program, and it can be difficult or impossible for

your program to monitor TCP/IP events through the Pascal GetNextNote interface.

If your program drives the VMCF interface directly, do not link any of the TCP interface library modules
with your program. Consequently, you cannot use any of the auxiliary routines, such as the Say functions
and timer routines. (You must use VM timer support, or support provided by your existing program).
VMCF consists of data transfer functions, control functions, a special external interrupt for pending
messages, and an external interrupt message header to pass control information and data to another
virtual machine.

For more information about the VMCF interface, see VM/ESA: CP Programming Services.

General Information
The following section describes the data structure of the VMCF interrupt header used by TCP/IP for VM.
The section also lists the VMCF functions available with TCP/IP for VM. Tables summarizing the CALLCODE
for making VMCF requests and receiving notifications from TCPIP virtual machine are provided. The
remainder of the chapter describes these CALLCODE calls in details.

Data Structures
VMCF is implemented with functions invoked using DIAGNOSE X'68' and a special 40-byte parameter list.
A VMCF function is requested by a particular function subcode in the FUNC field in the parameter list.

Your program uses the standard 40-byte VMCF parameter list to submit VMCF requests to the TCPIP
virtual machine. The TCPIP virtual machine returns VMCF interrupts results in the similar 40-byte VMCF
parameter list. The parameter list is the interrupt header being stored in your virtual machine. In this
chapter, fields in the parameter list and interrupt header are referred to using the data structure header
names in Figure 24 on page 113.

V1 DS X
V2 DS X
FUNC DS H
MSGID DS F
JOBNAME DS CL8
VADA DS A
LENA DS F
VADB DS A
LENB DS F
* User-doubleword field is divided into the following fields:
ANINTEGR DS F
CONN DS H
CALLCODE DS X
RETCODE DS X

Figure 24. Assembler Format of the VMCF Parameter List Fields

VMCF Interface

© Copyright IBM Corp. 1987, 2023 113

VMCF Parameter List Fields
The following describes the VMCF parameter list fields.
V1

Used for security and data integrity. You can enable your virtual machine for VMCF communication
to the TCPIP virtual machine by executing the AUTHORIZE control function. The AUTHORIZE control
function is set by issuing a DIAGNOSE Code X'68' Subcode X'0000' assembler call. If you do not set
the AUTHORIZE function in V1, check the JOBNAME field when processing each interrupt to ensure
that interrupts from other virtual machines are not misinterpreted as coming from TCPIP. V1 must be
zero for all VMCF functions other than AUTHORIZE. To terminate VMCF activities for a virtual machine,
issue the UNAUTHORIZE control function. The UNAUTHORIZE control function is set by issuing a
DIAGNOSE Code X'68' Subcode X'0001' assembler call.

FUNC
The IUCV operation.

V2
Reserved for IBM use, and should be X'00' initially.

MSGID
Contains a unique message identifier associated with a transaction. You must use a unique, even
number for each outstanding transaction. A simple method is to use consecutive, even numbers for
each transaction.

JOBNAME
Specifies the user ID of the virtual machine making VMCF requests. You must set this field to the user
ID of the TCPIP virtual machine.

VADA
Contains the address of the source or destination address depending on the VMCF function requested.

LENA
Contains the length of the data sent by a user, the length of a RECEIVE buffer, or the length of an
external interrupt buffer, whichever is specified in the VADA field.

VADB
Contains the address of a source virtual machine’s REPLY buffer for VMCF request.

LENB
Specifies the length of the source virtual machine’s REPLY buffer.

The use of each field is described individually for each TCP/IP function.

VMCF Interrupt Header Fields
The following describes the VMCF parameter list fields for the interrupt header.
V1

Sets the VMCMRESP flag, which is the interrupt in response to a transaction initiated by your virtual
machine. If the TCPIP virtual machine responds using the REJECT function, the VMCMRJCT flag is also
set. This flag by itself does not usually indicate that the transaction was unsuccessful. Your program
should check the completion status code in the RETCODE field, as described for each function.

ANINTEGR
Checks the status of VMCF transactions. It is a field, of fullword length (four bytes), used to check the
status of VMCF transactions. The field is described for each function.

CONN
Establishes a TCP connection. If a connection between your virtual machine and TCPIP virtual
machine was established successfully and the RETCODE field indicates OK, the connection number of
the new connection is stored in this field.

CALLCODE
Calls instructions to be passed by your program when initiating a VMCF function to interface with
TCPIP virtual machine. If the interrupt is in response to a transaction initiated by your virtual machine

VMCF Interface

114 z/VM: 7.3 TCP/IP Programmer's Reference

(VMCMRESP flag set in V1), the CALLCODE value is the same as the value set by your program when it
initiated the transaction.

RETCODE
Contains the completion status codes of a transaction. Return codes reported in this field are taken
from the same set used by Pascal programs (see Appendix B, “Pascal Return Codes,” on page 337).
Further information is given in the description of each function.

VMCF Functions
Table 18 on page 115 lists the available VMCF functions, with descriptions, to communicate with the
TCPIP virtual machine.

Table 18. Available VMCF Functions

Function Code Description

AUTHORIZE Control Initializes VMCF for a given virtual machine. Once AUTHORIZE is
executed, the virtual machine can execute other VMCF functions and
receive messages or requests from other users.

UNAUTHORIZE Control Terminates VMCF activity.

SEND Data Directs a message or block of data to another virtual machine.

SEND/RECV Data Directs a message or block of data to another virtual machine, and
requests a reply.

RECEIVE Data Allows you to accept selective messages or data sent using the SEND
or SEND/RECV functions.

REPLY Data Allows you to direct data back to the originator of a SEND/RECV
function, simulating duplex communication.

REJECT Data Allows you to reject specific SEND or SEND/RECV requests pending
for your virtual machine.

Note:
Data

Indicates a data transfer
Control

Indicates a VMCF control function

VMCF TCPIP Communication CALLCODE Requests
Table 19 on page 115 lists the equate values and available calls for initiating a VMCF TCPIP request; it
also includes a description of each CALLCODE request.

Table 19. VMCF TCPIP CALLCODE Requests

Call Code Equates Description

CONNECTIONclosing 00 Data may no longer be transmitted on this connection since
the TCP/IP service is in the process of closing down the
process.

LISTENING 01 Waiting for a foreign site to open a connection.

NONEXISTENT 02 The connection no longer exists.

OPEN 03 Data can go either way on the connection.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 115

Table 19. VMCF TCPIP CALLCODE Requests (continued)

Call Code Equates Description

RECEIVINGonly 04 Data can be received but not sent on this connection,
because the client has done a one-way close.

SENDINGonly 05 Data can be sent out but not received on this connection.
This means that the foreign site has done a one way close.

TRYINGtoOPEN 06 Trying to contact a foreign site to establish a connection.

V6OPENtcp 33 Initiates a TCP connection (IPv4 or IPv6).

V6STATUStcp 34 Obtains the IPv6 Connection Information Record giving the
current status of a TCP connection (IPv4 or IPv6).

ABORTtcp 100 Terminates a TCP connection.

BEGINtcpIPservice 101 Initializes a TCP/IP connection between your program and
the TCPIP virtual machine.

CLOSEtcp 102 Initiates the closing of a TCP connection.

CLOSEudp 103 Initiates the closing of a UDP connection.

ENDtcpIPservice 104 Terminates the use of TCPIP services. All existing TCP
connections are reset, all open UDP ports are canceled, and
all IP protocols are released.

HANDLEnotice 105 Specifies the types of notifications to be received from
TCPIP.

IShostLOCAL 106 Determines whether a given internet address is one of your
host’s local addresses.

MONITORcommand 107 Instructs TCPIP to obey a file of commands.

MONITORquery 108 Obtains status information from the TCPIP virtual machine or
requests that it performs certain functions.

OPENtcp 110 Initiates a TCP connection for IPv4 only.

OPENudp 111 Initiates a UDP connection for IPv4 only.

OPTIONtcp 112 Sets an option for a TCP connection.

RECEIVEtcp 113 Tells TCPIP that you are ready to receive data on a specified
TCP connection.

NRECEIVEudp 115 Tells TCPIP that your program is ready to receive a UDP
datagram on a particular port.

SENDtcp 118 Sends data on a TCP connection. The SENDtcp transaction
is unsuccessful if the receiving TCPIP virtual machine has
insufficient buffer space to receive the data.

SENDudp 119 Sends a UDP datagram.

STATUStcp 120 Obtains a Connection Information Record giving the current
status of a TCP IPv4 connection.

FRECEIVEtcp 121 Tells TCPIP virtual machine that you are ready to receive
data on a specified TCP connection. TCPIP does not respond
or send a notification until the data has been placed in the
receiving buffer or the connection has been closed.

VMCF Interface

116 z/VM: 7.3 TCP/IP Programmer's Reference

Table 19. VMCF TCPIP CALLCODE Requests (continued)

Call Code Equates Description

FSENDtcp 122 Sends data to a TCP connection. FSENDtcp waits for
available receiving buffer space in the TCPIP virtual machine
before completing the VMCF transaction.

CLOSErawIP 123 Tells TCPIP that your program does not handle the protocol
any longer. Any queued incoming packets are discarded.

OPENrawIP 124 Initiates a connection and tells TCPIP virtual machine that
your program is ready to send and receive packets of a
specified IP protocol.

RECEIVErawIP 125 Tells TCPIP that your program is ready to receive raw
IP packets of a given protocol. Your program receives
a RAWIPpacketsDELIVERED notification when a packet
arrives.

SENDrawIP 126 Tells TCPIP virtual machine to send raw IP packets of a given
protocol number.

PINGreq 127 Sends an ICMP echo request to a specified host and wait a
specified time for a response.

TLSQuery 128 Sends a query to determine if the SSL server is available and,
if so, if the label specified is known.

TLSSCLOSEtcp 132 Indicates to the SSL Server that secure communication
on this connection should stop and communication should
continue in the clear.

TLSSSTATUStcp 129 Returns details about a session, such as whether or not it is
secure and the encryption suite.

TLSSSERVERtcp 130 Indicates to the SSL server that the connection is to be
secure and that the SSL server needs to wait for an incoming
handshake.

TLSSCLIENTtcp 131 Indicates to the SSL server that the connection is to be
secure and that the SSL server needs to initiate an outbound
connection.

V6OPENudp 135 Initiates a UDP connection (IPv4 or IPv6).

V6SENDudp 136 Sends a UDP datagram (IPv4 or IPv6).

TLSSCERTDATAREQtcp 137 Requests specific fields from the partner or local certificate.

VMCF TCPIP Communication CALLCODE Notifications
Table 20 on page 117 lists the equate values for the CALLCODE field when VMCF TCPIP sends a
notification to your program. The table includes a description of each CALLCODE response.

Table 20. VMCF TCPIP CALLCODE Notifications

Notification Code Equates Description

BUFFERspaceAVAILABLE 10 Notification that there is space available to send
data on this connection. The space is currently set
to 8192 bytes of buffer space.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 117

Table 20. VMCF TCPIP CALLCODE Notifications (continued)

Notification Code Equates Description

CONNECTIONstateCHANGED 11 Notification that the state of the connection
between the TCPIP virtual machine and your
program has changed.

DATAdelivered 12 Notification that the TCPIP virtual machine data
was delivered to your program, after issuing a
RECEIVEtcp or FRECEIVEtcp call.

URGENTpending 15 Notification that there is queued data on a TCP
connection not yet received by your program.

UDPdatagramDELIVERED 16 Notification that UDP datagram has been delivered
to your program after issuing a NRECEIVEudp call
to the TCPIP virtual machine.

UDPdatagramSPACEavailable 17 Notification that buffer space is available to
process the data, after an error occurred
performing a SENDudp call.

RAWIPpacketsDELIVERED 24 Notification that your buffer has received the raw
IP packets.

RAWIPspaceAVAILABLE 25 Notification that buffer space is available to
process the data. This notification is sent after
the SENDrawip call was rejected by TCPIP virtual
machine.

RESOURCESavailable 28 Notification that the resources needed to initiate a
TCP connection are now available. This notification
is sent only if a previous OPENtcp call received a
ZEROresources return code.

UDPresourcesAVAILABLE 29 Notification that the resources needed to initiate a
UDP connection are now available. This notification
is sent only if a previous OPENudp call received a
UDPzeroRESOURCES return code.

PINGresponse 30 Notification that your ping request from the
PINGreq call has been received or that the time-
out limit or your request has been reached.

DUMMYprobe 32 Notification that the TCPIP virtual machine is
monitoring your machine

ACTIVEprobe 33 Notification that the TCPIP virtual machine is
monitoring your machine for responsiveness

CLEARtextRESUMED 34 Notification that the SSL Server has stopped secure
communication on the connection

QUERYtlsCOMPLETE 35 Notification that the SSL server has completed
verification of the label

SECUREhandshakeCOMPLETE 36 Notification that the Inbound or Outbound
handshake has completed.

READYforHANDSHAKE 37 Notification that the server side is set up to receive
a secure handshake.

VMCF Interface

118 z/VM: 7.3 TCP/IP Programmer's Reference

Table 20. VMCF TCPIP CALLCODE Notifications (continued)

Notification Code Equates Description

CERTdataCOMPLETE 38 Notification that the requested certificate data is
available.

TCP/UDP/IP Initialization and Termination Procedures
This section contains information about procedures for initializing and terminating TCP/UDP/IP
connections.

BEGINtcpIPservice
Your program performs the BEGINtcpIPservice call after doing a VMCF AUTHORIZE function, but before
performing any other TCP/IP functions. The BEGINtcpIPservice call informs TCPIP that your virtual
machine uses TCPIP services. An ENDtcpIPservice call is logically performed first, in the case where
your virtual machine already has TCPIP resources allocated.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0 or, if your application supports probe messages (see the
 descriptions of the DUMMYprobe and ACTIVEprobe CALLCODE
 notifications), X'80000000'
LENB: 0
CONN: 0 or, if your application does not provide the client level in
 ANINTEGR, any non-zero value
ANINTEGR: the client level, in the form X'vvrl0000', where 'vv' is the
 version number, 'r' is the release number, and 'l' is the
 level number
CALLCODE: BEGINtcpIPservice

The TCPIP virtual machine responds using the VMCF REJECT function. The VMCF interrupt header, stored
in your virtual machine by the response interrupt, contains a return code in the RETCODE field. The return
code can be any of those listed for the BeginTcpIp Pascal procedure (see “BeginTcpIp” on page 60).

The VMCF interrupt header also includes values in the CONN and ANINTEGR fields that reflect the level
information for the TCPIP virtual machine. If CONN is zero, then ANINTEGR contains the TCPIP virtual
machine's level; otherwise, no level information is returned.

ENDtcpIPservice
Your program performs the ENDtcpIPservice call when it has finished using TCPIP services. All existing
TCP connections are reset (aborted), all open UDP port opens are canceled, and all IP protocols are
released.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CALLCODE: ENDtcpIPservice

The TCPIP virtual machine responds using the VMCF REJECT function. The VMCF interrupt header
indicates a return code of OK in the RETCODE field.

HANDLEnotice
Your program performs the HANDLEnotice call to specify the types of notifications to be received from
TCPIP. The VADB field in the VMCF parameter list contains a notification mask, with 1 bit set for each

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 119

notification you want to handle. The bit to be set for each notification type is shown in Figure 25 on page
120.

Figure 25 on page 120 shows the equates used for notification mask in the HANDLEnotice call.

MaskBUFFERspaceAVAILABLE EQU X'00000001'
MaskCONNECTIONstateCHANGED EQU X'00000002'
MaskDATAdelivered EQU X'00000004'
MaskURGENTpending EQU X'00000020'
MaskUDPdatagramDELIVERED EQU X'00000040'
MaskUDPdatagramSPACEavailable EQU X'00000080'
MaskRAWIPpacketsDELIVERED EQU X'00004000'
MaskRAWIPspaceAVAILABLE EQU X'00008000'
MaskRESOURCESavailable EQU X'00040000'
MaskUDPresourcesAVAILABLE EQU X'00080000'
MaskPINGresponse EQU X'00100000'

Figure 25. Equates for Notification Mask in the HANDLEnotice Call

Each HANDLEnotice call must specify all the notification types to be handled. Notification types
specified in previous HANDLEnotice calls are not stored.

FUNC: SEND
VADA: 0
LENA: 1
VADB: Note mask
LENB: 0
CALLCODE: HANDLEnotice

The TCPIP virtual machine responds using the VMCF REJECT function. The VMCF interrupt header
contains a return code in the RETCODE field. The return code can be any of those listed for the Handle
Pascal procedure (see “Handle” on page 64).

TCP CALLCODE Requests
The following sections describe the VMCF interrupt headers that are stored in your virtual machine for
CALLCODE calls used to make TCP requests.

CLOSEtcp
The CLOSEtcp call initiates the closing of a TCP connection. For more information about the close
connection call, see the Pascal procedure, “TcpClose” on page 82.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Connection number from open
CALLCODE: CLOSEtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer contains
the return code. The return code is one of those listed for the TcpClose Pascal procedure, see “TcpClose”
on page 82.

FRECEIVEtcp
The FRECEIVEtcp call tells TCPIP that you are ready to receive data on a specified TCP connection.
TCPIP does not respond or send a notification notice until data is received or the connection is closed.
Consequently, each outstanding FRECEIVEtcp function results in an outstanding VMCF transaction.
There is a limit of 50 outstanding VMCF transactions for each virtual machine; you can therefore have

VMCF Interface

120 z/VM: 7.3 TCP/IP Programmer's Reference

FRECEIVEtcp functions outstanding on only 50 connections at one time. If your application needs more
outstanding receives, use the RECEIVEtcp function.

Your program does not need to wait for a response from FRECEIVEtcp. It can issue functions involving
other connections, before receiving a response from FRECEIVEtcp.

For general information about receiving TCP data, see the TcpFReceive Pascal procedure under
“TcpFReceive, TcpReceive, and TcpWaitReceive” on page 83.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of buffer to receive data
LENB: Length of buffer to receive data
CONN: Connection number from open
CALLCODE: FRECEIVEtcp

If TCPIP accepts the request, your program receives no response until TCPIP is ready to deliver data to
your buffer, or until the request is canceled, because the connection has closed without delivering data.

When TCPIP is ready to deliver data for this connection, it issues a VMCF REPLY function. Significant fields
in the VMCF interrupt header are:
LENB

Indicates the residual count. Subtract this from the size of your buffer (LENB value in parameter list)
to determine the number of bytes actually delivered.

ANINTEGR
Contains a value where the high-order byte is nonzero if data was pushed; otherwise, it is zero. The
low-order three bytes are interpreted as a 24-bit integer, indicating the offset of the byte following the
last byte of urgent data, measured from the first byte of data delivered to your buffer. If it is zero or a
negative number, then there is no urgent data pending.

CONN
Specifies the connection number.

RETCODE
OK

If TCPIP responds with the VMCF REJECT function (VMCFRJCT flag set in the VMCF interrupt header),
then one of the following occurred:

• TCPIP did not accept the request, in which case the ANintegerFLAGrequestERR bit in ANINTEGR is on.
• TCPIP accepted the request initially, but the connection closed before data was delivered.

ANintegerFLAGrequestERR bit in ANINTEGR is off. In this case, the RETCODE field indicates one of
the reason codes listed for CONNECTIONstateCHANGED with the NewState field set to NONEXISTENT.
For more information, see “2” on page 49.

Note: Your program does not have to take any special action in this case, because it receives one or
more CONNECTIONstateCHANGED notifications indicating that the connection is closing.

OPENtcp
The OPENtcp call initiates a TCP connection for IPv4 only. Your program sends a Connection Information
Record to TCPIP. Figure 26 on page 122 gives the assembler format of the record. Figure 27 on page 122
gives the equates for the assorted constants used to set up the record. For more information about the
usage of the fields of the Connection Information Record, see “TcpOpen and TcpWaitOpen” on page 88.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 121

Connection DS H
OpenAttemptTimeout DS F
Security DS H
Compartment DS H
Precedence DS X
BytesToRead DS F
UnackedBytes DS F
ConnectionState DS X
LocalSocket.Address DS F
LocalSocket.Port DS H
ForeignSocket.Address DS F
ForeignSocket.Port DS H

Figure 26. Assembler Format of the Connection Information Record for VM

UNSPECIFIEDconnection EQU -48
DEFAULTsecurity EQU 0
DEFAULTcompartment EQU 0
DEFAULTprecedence EQU 0
UNSPECIFIEDaddress EQU 0
UNSPECIFIEDport EQU X'FFFF'
ANintegerFLAGrequestERR EQU X'80000000'

Figure 27. Miscellaneous Assembler Constants

FUNC: SEND/RECV
VADA: Address of Connection Information Record initialized by
 your program
LENA: Length of Connection Information Record
VADB: Address of Connection Information Record to be filled in
 with TCPIP reply
LENB: Length of Connection Information Record
CONN: UNSPECIFIEDconnection
CALLCODE: OPENtcp

If the open attempt cannot be initiated, the TCPIP virtual machine responds using the VMCF REJECT
function. The VMCF interrupt header, contains a return code in the RETCODE field. The return code can be
any of those listed for the Tcp6Open Pascal procedure.

If the OPENtcp call was rejected because not enough TCPIP resources were available, a ZEROresources
code is returned. When the TCPIP resources are available, a notice of RESOURCESavailable is sent to your
program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the VMCF RECEIVE
function to receive the Connection Information Record describing the connection to be opened. If the
connection then cannot be initiated, TCPIP responds using the VMCF REJECT function. The RETCODE field
in the VMCF interrupt header is set as described in the previous paragraph.

If the open was successfully initiated, the TCPIP virtual machine responds using the VMCF REPLY function
to send back the updated Connection Information Record. The Connection field of the Connection
Information Record contains the connection number of the new connection. The RETCODE field in
the VMCF interrupt header indicates OK, and the CONN field also contains the connection number of
the new connection. The connection is not yet open; your program receives notification(s) during the
opening sequence. For more information about NotificationInfoType, see the section on the Pascal under
“Notification Record” on page 45 and see also “CALLCODE Notifications” on page 134.

OPTIONtcp
The OPTIONtcp call sets an option for a TCP connection for IPv4 only. For more information about the
connection options, see the Pascal procedure, “TcpOption” on page 90.

VMCF Interface

122 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND
VADA: 0
LENA: 1
VADB: Option name
LENB: Option value
CONN: Connection number from open
CALLCODE: OPTIONtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer contains
the return code. The return code is one of those listed for the Pascal TcpOption procedure.

RECEIVEtcp
The RECEIVEtcp call tells TCPIP that you are ready to receive data on a specified TCP connection. Unlike
FRECEIVEtcp, TCPIP responds immediately to RECEIVEtcp. You can have more than 50 receive requests
pending using RECEIVEtcp without exceeding the limit of 50 outstanding VMCF transactions.

For more information about receiving TCP data, see the TcpReceive Pascal procedure under
“TcpFReceive, TcpReceive, and TcpWaitReceive” on page 83.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: Length of buffer to receive data
CONN: Connection number from open
CALLCODE: RECEIVEtcp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
indicates whether the request was successful. If the request was successful, with a RETCODE of OK, the
data is delivered to your buffer and a notification of DATAdelivered is sent to your program. If the request
was not successful, then the return code is one of those listed for the TcpReceive Pascal procedure.

SENDtcp and FSENDtcp
The SENDtcp or FSENDtcp calls send data on a TCP connection. For the advantages and disadvantages
of using each function, and for information about sending TCP data, see “TcpFSend, TcpSend, and
TcpWaitSend” on page 86.

FUNC: SEND
VADA: Address of data
LENA: Length of data
VADB: 1 if push desired, else 0
LENB: 1 if urgent data, else 0
CONN: Connection number from open
CALLCODE: SENDtcp or FSENDtcp

If TCPIP can successfully queue the data for sending, it responds with the VMCF RECEIVE function. The
VMCF interrupt header indicates a RETCODE of OK.

If TCPIP cannot queue the data for sending, it responds with the VMCF REJECT function. The RETCODE
field indicates the type of error. The return code can be any of those listed for the TcpSend Pascal
procedure. For a list of the return codes, see “TcpFSend, TcpSend, and TcpWaitSend” on page 86.

If the SENDtcp transaction is unsuccessful, because of insufficient space in the buffer of the receiving
TCPIP virtual machine, a return code of NObufferSPACE is placed in the RETCODE field. A notification of
BUFFERspaceAVAILABLE is sent, on this connection, when the space is available to process data.

TcpFSend is the same as FSENDtcp. If TCPIP cannot accept the data, because of a buffer shortage, it
does not respond immediately. Instead, it waits until space is available, and then uses VMCF RECEIVE

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 123

to receive the data. While it is waiting, if the connection is reset, it responds with VMCF REJECT, with a
return code as described previously. In summary, TCPIP may not respond immediately to FSENDtcp, and
the response, after waiting, may indicate either success or failure. If TCPIP responds with REJECT, your
program can check the ANintegerFLAGrequestERR bit in the ANINTEGR field to determine if the request
was rejected during initial or retry processing (bit on) or because of connection closing (bit off).

Your program does not need to wait for a response from SENDtcp or FSENDtcp VMCF transaction. It
can issue functions involving other connections, before receiving a response from making a SENDtcp or
FSENDtcp VMCF transaction.

There is a limit of 50 outstanding VMCF transactions for each virtual machine; therefore, your program
can have FSENDtcp functions outstanding on only 50 connections at a time. If your application needs
more outstanding sends, use the SENDtcp function.

STATUStcp
The STATUStcp call obtains a Connection Information Record giving the current status of a TCP
connection for IPv4 only. For the assembler format of the Connection Information Record, see Figure
26 on page 122. For more information about the connection status call, see the Pascal procedure,
“TcpStatus” on page 100.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of Connection Information Record to fill in
LENB: Length of Connection Information Record to fill in
CONN: Connection number from open
CALLCODE: STATUStcp

TCPIP responds with the VMCF REPLY function, filling in the record whose address you supplied in LENB.
The record is valid only if the return code, in the RETCODE field of the VMCF interrupt header, returns OK.
Otherwise, the return code is one of those listed for the TcpStatus Pascal procedure.

TLSSCERTDATAREQtcp
The TLSCERTDATAREQtcp call indicates to the SSL server that certificate data is being requested
for the local or partner certificate. For more information about the certificate data request call, see
“TcpSCertData” on page 91.

FUNC: SEND/RECEIVE
VADA: Address of CertReqDetailType record
LENA: Size of CertReqDetailType record
VADB: ANYoldADDRESS
LENB: 0
CONN: Connection number from open
CALLCODE: TLSSCERTDATAREQtcp

TCP/IP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
contains the return code from the preprocessing of this command. The return code is one of those listed
for the TcpSCertData procedure. The results of the actual certificate data request will be returned with the
CERTdataCOMPLETE notification.

TLSSCLIENTtcp
The TLSSCLIENTtcp call indicates to the SSL server that the connection is to be secure and that the SSL
server needs to initiate an outbound connection. For more information about the secure client call, see
the Pascal Procedure , “TcpSClient” on page 94.

VMCF Interface

124 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND/RECV
VADA: Address of SecureDetailType record
LENA: Length of SecureDetailType record
VADB: 0
LENB: 1
CONN: Connection number from open
CALLCODE: TLSSCLIENTtcp

See “TcpSClient” on page 94 for details of the SecureDetailType structure.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
contains the return code from the preprocessing of this command. The return code is one of those
listed for the TcpSClient procedure. The results of the actual handshake will be returned with the
SECUREhandshakeCOMPLETE notification.

TLSSCLOSEtcp
The TLSSCLOSEtcp call indicates to the SSL Server that the connection should no longer be secure. The
SSL server issues a Close_Notify command on the connection and sends a notification to indicate that
data transmission can continue in the clear. For more information about the secure close call, see the
Pascal Procedure, “TcpSClose” on page 98.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 1
CONN: Conection number from open
CALLCODE: TLSSCLOSEtcpFUNC: SEND/RECV

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer contains
the return code from the pre-processing of this command. The return code is one of those listed for
the TcpSClose procedure. The results of the actual Close_Notify command will be returned with the
CLEARtextRESUMED notification.

TLSSSERVERtcp
The TLSSSERVERtcp call indicates to the SSL server that the connection is to be secure and that the SSL
server needs to wait for an incoming handshake. For more information about the secure server call, see
“TcpSClient” on page 94.

FUNC: SEND/RECV
VADA: Address of SecureDetailType record
LENA: Length of SecureDetailType record
VADB: 0
LENB: 1
CONN: Connection number from open
CALLCODE: TLSSSERVERtcp

See “TcpSServer” on page 98 for details of the SecureDetailType structure.

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt buffer
contains the return code from the preprocessing of this command. The return code is one of those
listed for the TcpSServer procedure. The results of the actual handshake will be returned with the
SECUREhandshakeCOMPLETE notification.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 125

TLSSSTATUStcp
The TLSSSTATUStcp call returns details about a session, such as whether or not it is secure and the
encryption suite. For more information about the connections security status, see the Pascal Procedure,
“TcpSStatus” on page 99.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of CipherDetails Record to be filled in
LENB: Length of CipherDetails Record to be filled in
CONN: Connection number from open
CALLCODE: TLSSSTATUStcp

See “TcpSStatus” on page 99 for details of the CipherDetails structure. TCPIP responds with the VMCF
REPLY function, filling in the record whose address you supplied in VADB. The record is only valid if the
return code, in the RETCODE field of the VMCF interrupt header, returns OK; otherwise, the return code is
one of those listed for the TcpSStatus Pascal Procedure.

V6OPENtcp
The V6OPENtcp call initiates a TCP connection. Your program sends an IPv6 Connection Information
Record to TCPIP. Figure 28 on page 126 gives the assembler format of the record. Figure 29 on page 126
gives the equates for the assorted constants used to set up the record. For more information about the
usage of the fields of the Connection Information Record, see “Tcp6Open and Tcp6WaitOpen” on page
79.

Connection DS H
OpenAttemptTimeout DS F
Security DS H
Compartment DS H
Precedence DS X
BytesToRead DS F
UnackedBytes DS F
ConnectionState DS X
LocalSocket.Address DS XL16
LocalSocket.Port DS H
ForeignSocket.Address DS XL16
ForeignSocket.Port DS H

Figure 28. Assembler Format of the IPv6 Connection Information Record for VM

UNSPECIFIEDconnection EQU -48
DEFAULTsecurity EQU 0
DEFAULTcompartment EQU 0
DEFAULTprecedence EQU 0
UNSPECIFIEDipv6address EQU 0
UNSPECIFIEDport EQU X'FFFF'
ANintegerFLAGrequestERR EQU X'80000000'

Figure 29. Miscellaneous Assembler Constants

VMCF Interface

126 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND/RECV
VADA: Address of the IPv6 Connection Information Record initialized
 by your program
LENA: Length of IPv6 Connection Information Record
VADB: Address of the IPv6 Connection Information Record to be filled
 in with TCPIP reply
LENB: Length of IPv6 Connection Information Record
CONN: UNSPECIFIEDconnection
CALLCODE: V6OPENtcp

If the open attempt cannot be initiated, the TCPIP virtual machine responds using the VMCF REJECT
function. The VMCF interrupt header, contains a return code in the RETCODE field. The return code can be
any of those listed for the TcpOpen Pascal procedure.

If the V6OPENtcp call was rejected because not enough TCPIP resources were available,
a ZEROresources code is returned. When the TCPIP resources are available, a notice of
RESOURCESavailable is sent to your program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the VMCF RECEIVE
function to receive the Connection Information Record describing the connection to be opened. If the
connection then cannot be initiated, TCPIP responds using the VMCF REJECT function. The RETCODE field
in the VMCF interrupt header is set as described in the previous paragraph.

If the open was successfully initiated, the TCPIP virtual machine responds using the VMCF REPLY
function to send back the updated IPv6 Connection Information Record. The Connection field of the
Connection Information Record contains the connection number of the new connection. The RETCODE
field in the VMCF interrupt header indicates OK, and the CONN field also contains the connection number
of the new connection. The connection is not yet open; your program receives notification(s) during the
opening sequence. For more information about NotificationInfoType, see the section on the Pascal under
“Notification Record” on page 45 and see also “CALLCODE Notifications” on page 134.

V6STATUStcp
The V6STATUStcp call obtains an IPv6 Connection Information Record giving the current status of a TCP
connection. For the assembler format of the IPv6 Connection Information Record, see Figure 28 on page
126. For more information about the connection status call, see the Pascal procedure, “Tcp6Status” on
page 81.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: Address of the IPv6 Connection Information Record to fill in
LENB: Length of IPv6 Connection Information Record to fill in
CONN: Connection number from open
CALLCODE: V6STATUStcp

TCPIP responds with the VMCF REPLY function, filling in the record whose address you supplied in LENB.
The record is valid only if the return code, in the RETCODE field of the VMCF interrupt header, returns OK.
Otherwise, the return code is one of those listed for the Tcp6Status Pascal procedure.

UDP CALLCODE Requests
The following sections describe the VMCF interrupt headers, which are stored in your virtual machine, for
CALLCODE calls used to make UDP requests.

CLOSEudp
The CLOSEudp call closes a UDP port. For more information about the CLOSEudp call, see the Pascal
procedure, “UdpClose” on page 103.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 127

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Connection number
CALLCODE: CLOSEudp

TCPIP responds with the VMCF REJECT function. The RETCODE field in the VMCF interrupt header can
be any of the return codes listed for the UdpClose Pascal procedure. If the return code is OK, and your
program specified UNSPECIFIEDport as the port number, the actual port number assigned is encoded in
the CONN field of the interrupt header. Add the value of 32 768 to the value in the CONN field, using
unsigned arithmetic, to compute the port number.

NRECEIVEudp
The NRECEIVEudp call tells TCPIP that your program is ready to receive a UDP datagram on a particular
port. TCPIP responds immediately to inform you whether it accepted the request. If TCPIP has accepted
your request, your program receives a UDPdatagramDELIVERED notification when a datagram arrives.
For more information about receiving UDP datagrams, see the Pascal procedure, “UdpNReceive” on page
104.

FUNC: SEND
VADA: 0
LENA: 1
VADB: 0
LENB: Size of your buffer to receive datagram
CONN: Connection number
CALLCODE: NRECEIVEudp

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt header
contains one of the return codes listed for the UdpNReceive Pascal procedure.

OPENudp
The OPENudp call opens a UDP port. For more information about the UDP open function, see the Pascal
procedure, “UdpOpen” on page 104.

FUNC: SEND
VADA: 0
LENA: 1
VADB: Local port number or UNSPECIFIEDport
LENB: Local address
CONN: Connection number: An arbitrary number, which your program
 uses in subsequent actions involving this port.
CALLCODE: OPENudp

TCPIP responds with the VMCF REJECT function. The RETCODE field in the VMCF interrupt header can
be any of the return codes listed for the UdpOpen Pascal procedure. If the OPENudp call was rejected,
because not enough TCPIP resources were available, a UDPzeroRESOURCES code is returned. When the
TCPIP resources are available, a notice of UDPresourcesAVAILABLE is sent to your program.

SENDudp
The SENDudp call sends a UDP datagram. For more information about the UDP send function, see the
Pascal procedure, “UdpSend” on page 106.

VMCF Interface

128 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND
VADA: Address of datagram data
LENA: Length of datagram data (up to 8492 bytes)
VADB: Destination port number
LENB: Destination address
CONN: Connection number
CALLCODE: SENDudp

If TCPIP can send the datagram, it responds with the VMCF RECEIVE function. The RETCODE field in the
VMCF interrupt header contains a return code of OK. If TCPIP cannot send the datagram, it responds with
the VMCF REJECT function. The RETCODE field contains one of the return codes listed for the UdpSend
Pascal procedure. When the buffer space is not available to process the data, an error is returned. The
notification message of UDPdatagramSPACEavailable is sent to your program when the buffer space is
available to process data.

V6OPENudp
The V6OPENudp call opens a UDP port. For more information about the UDP open function, see the Pascal
procedure, “Udp6Open” on page 102.

FUNC: SEND/RECV
VADA: Address of the local socket
LENA: Length of the local socket
VADB: 0
LENB: 0
CONN: Connection number: An arbitrary number, which your program
 uses in subsequent actions involving this port.
CALLCODE: V6OPENudp

If the open attempt cannot be initiated, the TCPIP virtual machine responds using the VMCF REJECT
function. The VMCF interrupt header, contains a return code in the RETCODE field. The return code can be
any of those listed for the Udp6Open Pascal procedure.

If the V6OPENudp call was rejected, because not enough TCPIP resources were available, a
UDPzeroRESOURCES code is returned. When the TCPIP resources are available, a notice of
UDPresourcesAVAILABLE is sent to your program.

If the open attempt is not immediately rejected, the TCPIP virtual machine uses the VMCF RECEIVE
function to receive the local socket information. If the connection then cannot be initiated, TCPIP
responds using the VMCF REJECT function. The RETCODE field in the VMCF interrupt header is set as
described in the previous paragraph.

V6SENDudp
The V6SENDudp call sends a UDP datagram. Your program sends an IPv6 Datagram Information Record
to TCPIP. Figure 30 on page 129 gives the pascal format of the record. It includes foreign socket,
datagram data, and length of datagram data. For more information about the UDP send function, see the
Pascal procedure, “Udp6Send” on page 102.

UdpSendPacket6InfoType = record
 Socket: Socket6Type;
 BufferLen: integer;
 Packet: packed array (.1..65535.) of char ;
 end;

Figure 30. Pascal Format of the IPv6 Datagram Information Record for VM

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 129

FUNC: SEND/RECEIVE
VADA: Address of IPv6 Datagram Information Record initialized
 by your program
LENA: Length of IPv6 Datagram Information Record
VADB: 0
LENB: 0
CONN: Connection number
CALLCODE: V6SENDudp

TCPIP virtual machine will first responds with the VMCF RECEIVE function to get the IPv6 Datagram
Information Record. Then if TCPIP can send the datagram, it responds with the VMCF REJECT function
and the RETCODE field in the VMCF interrupt header contains a return code of OK. If TCPIP cannot
send the datagram, it responds with the VMCF REJECT function. The RETCODE field contains one of the
return codes listed for the Udp6Send Pascal procedure. When the buffer space is not available to process
the data, an error is returned. The notification message of UDPdatagramSPACEavailable is sent to your
program when the buffer space is available to process data.

IP CALLCODE Requests
The following sections describe the VMCF interrupt headers, which are stored in your virtual machine, for
CALLCODE calls used to make IP requests.

CLOSErawip
The CLOSErawip call tells TCPIP that your program is ready to cease sending and receiving packets of a
specified IP protocol. For more information, see the Pascal procedure, “RawIpClose” on page 70.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Protocol number
CALLCODE: CLOSErawip

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE field of the VMCF
interrupt header contains one of the return codes listed for the RawIpClose Pascal procedure.

OPENrawip
The OPENrawip call tells TCPIP that your program is ready to send and receive packets of a specified IP
protocol. For more information, see the Pascal procedure, “RawIpOpen” on page 71.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: 0
LENB: 0
CONN: Protocol number
CALLCODE: OPENrawip

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE field of the VMCF
interrupt header contains one of the return codes listed for the RawIpOpen Pascal procedure.

RECEIVErawip
The RECEIVErawip call tells TCPIP that your program is ready to receive raw IP packets of a
given protocol. Your program receives a RAWIPpacketsDELIVERED notification when a packet arrives.
For information about the RAWIPpacketsDELIVERED notification record, see the Pascal procedure,

VMCF Interface

130 z/VM: 7.3 TCP/IP Programmer's Reference

“RawIpReceive” on page 72, and the section on the Pascal NotificationInfoType under “Notification
Record” on page 45.

FUNC: SEND/RECV
VADA: 0
LENA: 1
VADB: 0
LENB: Length of your buffer
CONN: Protocol number
CALLCODE: RECEIVErawip

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt header
contains one of the return codes listed for the RawIpReceive Pascal procedure.

SENDrawip
The SENDrawip call sends raw IP packets of a given protocol number. For more information, see the
Pascal procedure, “RawIpSend” on page 72.

FUNC: SEND/RECV
VADA: Address of buffer containing packets to send
LENA: Length of buffer
VADB: 0
LENB: 0
CONN: (Number of packets shifted left 8 bits) + protocol number
CALLCODE: SENDrawip

If TCPIP immediately determines that the request cannot be fulfilled, It responds with the VMCF
REJECT function. Otherwise, it uses the VMCF RECEIVE function to receive your data, followed by
VMCF REJECT. The RETCODE field of the VMCF interrupt header contains one of the return codes listed
for the RawIpSend Pascal procedure. If TCPIP virtual machine is out of buffers, the data is rejected
and a return code of NObufferSPACE is returned. When buffer space is available, the notification of
RAWIPspaceAVAILABLE is sent to your program.

CALLCODE System Queries
The following sections describe the VMCF interrupt headers, which are stored in your virtual machine, for
CALLCODE calls used to make system queries.

IShostLOCAL
The IShostLOCAL call determines whether a given internet address is one of your host’s local addresses.
For more information about this procedure, see the Pascal procedure “IsLocalAddress” on page 65.

FUNC: SEND
VADA: 0
LENA: 1
VADB: Internet address to be tested
LENB: 0
CONN: UNSPECIFIEDconnection
CALLCODE: IShostLOCAL

TCPIP responds with the VMCF REJECT function. The RETCODE field of the VMCF interrupt header
contains the return code, as described in the IsLocalAddress Pascal procedure section.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 131

MONITORcommand
The MONITORcommand call instructs TCPIP to obey a file of commands. For more information, see the
Pascal procedure, “MonCommand” on page 66, and for more information about the OBEYFILE command,
which uses the MonCommand procedure, see z/VM: TCP/IP Planning and Customization.

Owner DS CL8
DatasetPassword DS CL8
FullDatasetName DS CL44
MemberName DS CL8
DDName DS CL8

Figure 31. Assembler Format of the SpecOfFileType Record for VM

FUNC: SEND/RECV
VADA: Address of SpecOfFile record
LENA: Length of SpecOfFile record
VADB: 0
LENB: 0
CONN: UNSPECIFIEDconnection
CALLCODE: MONITORcommand

If TCPIP cannot process the request, it responds immediately with the VMCF REJECT function. Otherwise,
it uses the VMCF RECEIVE function to receive the SpecOfFile record provided by your program. It then
attempts to process the file, and uses the VMCF REJECT function to report the return code. In either case,
the return code is one of those specified for the MonCommand Pascal procedure.

MONITORquery
The MONITORquery call obtains status information from the TCPIP virtual machine or to request that
it performs certain functions. For more information, see the Pascal procedure, “MonQuery” on page 67.
Assembler formats of constants and records used with MONITORquery are:

COMMANDcpCMD EQU 6
COMMANDdropCONNECTION EQU 8
QUERYhomeONLY EQU 9

Figure 32. Equates for MonQueryRecordType used in the MONITORquery Call

QueryType DS X
* For QueryType = QUERYhomeONLY: No other fields
* For QueryType = COMMANDcpCMD:
CpCmd DS H Length of command
 DS 100C Command
* For QueryType = COMMANDdropCONNECTION:
 ORG CpCmd
Connection DS H

Figure 33. Assembler Format of the MonQueryRecordTypefor VM

The Pascal type HomeOnlyListType is an array of 64 InternetAddressType elements found in the
COMMMAC MACLIB file. The size of InternetAddressType is a fullword.

VMCF Interface

132 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

FUNC: SEND/RECV
VADA: Address of MonQueryRecord describing request
LENA: Length of MonQueryRecord
VADB: Address of return buffer
LENB: Length of return buffer
CONN: UNSPECIFIEDconnection
CALLCODE: MONITORquery

If TCPIP cannot process the request, it responds immediately with the VMCF REJECT function.
Otherwise, it uses the VMCF RECEIVE function to receive the MonQueryRecord describing your request,
followed by either a VMCF REPLY to send the response to your return buffer (not applicable to
COMMANDdropCONNECTION), or a VMCF REJECT to send a return code but no return data. For
information about the return codes and the data returned (if any), see the Pascal procedure, “MonQuery”
on page 67.

PINGreq
The PINGreq call sends an ICMP echo request (PING request) to a specified host and wait a specified
time for a response. For more information, see the Pascal procedure “PingRequest” on page 69.

FUNC: SEND
VADA: 0
LENA: 1
VADB: Internet address of foreign host
LENB: Length of ping packet
ANINTEGR: Timeout
CALLCODE: PINGreq

TCPIP uses the VMCF REJECT function to respond to the request. The RETCODE field of the VMCF
interrupt header contains one of the return codes listed for the PingRequest Pascal procedure. If the
return code is OK, your program receives a PINGresponse notification later.

TLSQuery
The TLSQuery call sends a query to determine if the SSL server is available, and if so, if the label specified
is known. For more information, see the Pascal Procedure, “QueryTLS” on page 70.

QueryLabel DS CL8
QueryKeyring DS CL50

Figure 34. Assembler format of the QueryRequest record for VM

FUNC: SEND/RECV
VADA: Address of QueryRequest record
LENA: Length of QueryRequest record
VADB: 0
LENB: 0
CIBB: UNSPECIFIED
CALLCODE: TLSQuery

TCPIP responds with the VMCF REPLY function. The RETCODE field of the VMCF interrupt buffer contains
the return code from the preprocessing of this command. The return code is one of those listed for
the QueryTLS procedure. The results of the actual query will be returned with the QUERYtlsCOMPLETE
notification.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 133

CALLCODE Notifications
The following sections describe the VMCF interrupt headers that are stored in your virtual machine for the
various types of notifications. The action that your program should take is also indicated.

For more information about the various notification types, see the Pascal NotificationInfoType record
under “Notification Record” on page 45.

The VMCF transaction for a notification must be completed before TCPIP sends your program another
notification. You must ensure that your program takes the VMCF actions in the following sections, or
TCPIP cannot communicate further with your program.

ACTIVEprobe
This interrupt header notifies you that the TCPIP virtual machine is monitoring your machine so it can
determine if it is still responsive.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: ACTIVEprobe
RETCODE: OK

Your program should issue the VMCF REJECT function, with the VMCF
parameter list copied from the interrupt header and with the
following fields changed:

V1: 0
V2: 0
FUNC: REJECT

The response to this message must be made within one minute after the
associated interrupt is received.

BUFFERspaceAVAILABLE
This interrupt header notifies you that there is space available to send data on this connection. The space
is currently set to 8192 bytes of buffer space. The notification is sent after making a SENDtcp call and
receiving an unsuccessful return code of NObufferSPACE in the RETCODE field.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: Space available to send on this connection, in bytes.
 Currently always 8192
CONN: Connection number
CALLCODE: BUFFERspaceAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

CERTdataCOMPLETE
This interrupt header notifies you that certificate data is available from a TcpSCertData call.

VMCF Interface

134 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENB: Length of the data being delivered
CONN: Connection Number
CALLCODE: CERTdataCOMPLETE
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with the VMCF parameter list copied from the
interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be at least as long as
indicated by LENB.

CLEARtextRESUMED
The interrupt header notifies you that the Close_Notify on the connection is complete and data
transmission is now in the clear.

FUNC: SEND
JOBNAME: Name of TCPIP virtual machine
VADB: 0
CONN: Conection number
CALLCODE: CLEARtextRESUMED
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm list copied from the interrupt
header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

CONNECTIONstateCHANGED
This interrupt header notifies you that the state of the connection between the TCPIP virtual machine and
your program has changed.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: New connection state
LENB: Reason for state change, if new state is NONEXISTENT
CONN: Connection number
CALLCODE: CONNECTIONstateCHANGED
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 135

DATAdelivered
This interrupt header notifies you that the TCPIP virtual machine data was delivered to your program,
after issuing a RECEIVEtcp or FRECEIVEtcp call.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENA: Length of data being delivered
VADB: Non-zero if data was pushed, else zero.
LENB: The offset of the byte following the last byte of urgent
 data, measured from the first byte of data delivered to your
 buffer. If zero or negative then there is no urgent data
 pending.
CONN: Connection number
CALLCODE: DATAdelivered
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be
 at least as long as indicated by LENA. LENA is no
 larger than the buffer length you specified using the
 RECEIVEtcp function.

DUMMYprobe
This interrupt header notifies you that the TCPIP virtual machine is monitoring your machine so it can
determine if it logs off or resets unexpectedly.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: DUMMYprobe
RETCODE: OK

Your program should leave this message pending.

PINGresponse
This interrupt header notifies you that your ping request from the PINGreq call has been received or that
the time-out limit or your request has been reached.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: High order word of elapsed time, in TOD clock format
 Valid only if ANINTEGR is zero
LENB: Low order word of elapsed time, in TOD clock format
 Valid only if ANINTEGR is zero
ANINTEGR: Return code from ping operation
CALLCODE: PINGresponse
RETCODE: OK
Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

QUERYtlsCOMPLETE
The interrupt header notifies you that the Query is complete and returns the status of the query.

VMCF Interface

136 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: 0
CONN: UNSPECIFIEDconnection.
CALLCODE: QUERYtlsCOMPLETE
RETCODE: return code. If 0,indicates that the label is ok.

Your program should issue the VMCF REJECT function, with the VMCF parm list copied from the
interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

RAWIPpacketsDELIVERED
This interrupt header notifies you that your buffer has received the raw IP packets.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
ANINTEGR: Total length of datagram being delivered (including IP header)
LENA: Length of data (including IP header) that TCPIP
 delivers to you.
CONN: Low-order byte is protocol number, 3 high order bytes
 is number of packets, currently always 1.
CALLCODE: RAWIPpacketsDELIVERED
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be
 at least as long as indicated by LENA.

RAWIPspaceAVAILABLE
This interrupt header notifies you that buffer space is available to process the data. This notification is
sent after the SENDrawip call was rejected by TCPIP virtual machine because of insufficient buffer space.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENB: Space available. Always equals maximum IP datagram size.
CONN: Protocol number
CALLCODE: RAWIPspaceAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

READYforHANDSHAKE
The interrupt header notifies you whether or not this connection is ready for the initiation of an SSL
handshake.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 137

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: 0
CONN: Connection Number
CALLCODE: REAQDYforHANDSHAKE
RETCODE: Return code. If 0,indicates that a handshake can be
initiated on this connection

Your program should issue the VMCF REJECT function, with the VMCF parm list copied from the
interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

RESOURCESavailable
This interrupt header notifies you that the resources needed to initiate a TCP connection are now
available. This notification is sent only if a previous OPENtcp call received a ZEROresources return code.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: RESOURCESavailable
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

SECUREhandshakeCOMPLETE
The interrupt header notifies you that the SSL handshake on this connection is complete and indicates the
status of that handshake.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: SecureHSCompleteDetail
CONN: Connection Number
CALLCODE: SECUREhandshakeCOMPLETE
RETCODE: OK

Refer to “Notification Record” on page 45 for details of SecureHSCompleteDetail.

Your program should issue the VMCF REJECT function, with VMCF parm list copied from the interrupt
header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

UDPdatagramDELIVERED
This interrupt header notifies you that the UDP datagram has been delivered to your program after issuing
a NRECEIVEudp call to the TCPIP virtual machine.

VMCF Interface

138 z/VM: 7.3 TCP/IP Programmer's Reference

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
LENA: Length of data being delivered.
VADB: Source port
LENB: Source address
ANINTEGR: Length of entire datagram excluding UDP header. If larger
 than LENA then the
 datagram was too large to fit into the buffer size specified
 in NRECEIVEudp call, and has been truncated.
CONN: Connection number
CALLCODE: UDPdatagramDELIVERED
RETCODE: OK

Your program should issue the VMCF RECEIVE function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: RECEIVE
VADA: Address of your buffer to receive data. Buffer should be
 at least as long as indicated by LENA.

UDPdatagramSPACEavailable
This interrupt header notifies you that buffer space is available to process the data, after an error
occurred performing a SENDudp call.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CONN: Connection number
CALLCODE: UDPdatagramSPACEavailable
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

UDPresourcesAVAILABLE
This interrupt header notifies you that the resources needed to initiate a UDP connection are now
available. This notification is sent only if a previous OPENudp call received a UDPzeroRESOURCES return
code.

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
CALLCODE: UDPresourcesAVAILABLE
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields
changed:

V1: 0
V2: 0
FUNC: REJECT

URGENTpending
This interrupt header notifies you that there is queued incoming data on a TCP connection not yet
received by your program.

VMCF Interface

Chapter 3. Virtual Machine Communication Facility Interface 139

FUNC: SEND
JOBNAME: Name of the TCPIP virtual machine
VADB: Number of bytes of queued incoming data not yet received
 by your program.
LENB: Subtract 1 from LENB to get the offset of the byte following
 the last byte of urgent data, measured from the first byte not
 yet received by your program. If this quantity is zero or
 negative then there is no urgent data pending.
CONN: Connection number
CALLCODE: URGENTpending
RETCODE: OK

Your program should issue the VMCF REJECT function, with VMCF parm
list copied from the interrupt header, with the following fields changed:

V1: 0
V2: 0
FUNC: REJECT

VMCF Interface

140 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 4. Inter-User Communication Vehicle
Sockets

The Inter-User Communication Vehicle (IUCV) socket API is an assembler language application
programming interface that can be used with TCP/IP. While not every C socket library function is provided,
all of the basic operations necessary to communicate with other socket programs are present.

Prerequisite Knowledge
This chapter assumes you have a working knowledge of IUCV, as documented in z/VM: CP Programming
Services.

You must also know how and when to use the CMS CMSIUCV macro or the GCS IUCVCOM macro,
depending on the execution environment, as documented in z/VM: CMS Application Development Guide for
Assembler or z/VM: Group Control System, respectively.

You should also have a working knowledge of TCP/IP sockets.

Available Functions
Only these functions are available when you use the IUCV socket interface:

ACCEPT READ

BIND READV

CLOSE RECV

CONNECT RECVFROM

FCNTL RECVMSG

GETCLIENTID SELECT

GETHOSTID SELECTEX

GETHOSTNAME SEND

GETPEERNAME SENDMSG

GETSOCKNAME SENDTO

GETSOCKOPT SETSOCKOPT

GIVESOCKET SHUTDOWN

IOCTL SOCKET (AF_INET sockets only)

LISTEN TAKESOCKET

MAXDESC WRITE

WRITEV

Socket Programming with IUCV
TCP/IP sockets are manipulated by using the following assembler macros:

Macro Library Description

IUCV HCPGPI Provides the mechanisms for setting values in the IUCV input
parameter list and for executing the IUCV instruction

© Copyright IBM Corp. 1987, 2023 141

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3

Macro Library Description

IPARML HCPGPI Mapping macro for the IUCV parameter list and the external
interrupt buffer.

HNDIUCV DMSGPI Informs CMS that your program wishes to handle IUCV or
APPC/VM interrupts. Only those interrupts occurring on IUCV
paths that your application created will be routed to your
program.

CMSIUCV DMSGPI Used to perform IUCV CONNECT and SEVER functions. It
enables multiple IUCV or APPC/VM applications to run at the
same without interference.

IUCVINI GCTGPI Similar to HNDIUCV, but for the GCS execution environment.

IUCVCOM GCTGPI Similar to CMSIUCV, but for the GCS execution environment.
In addition to providing multiple application support, it
provides a way for GCS programs running in problem state
to use IUCV services.

A typical socket application uses only four IUCV operations: CONNECT, SEND (with reply), PURGE, and
SEVER. CONNECT establishes the IUCV connection with the TCP/IP virtual machine, SEND performs
initialization and socket operations, PURGE cancels an outstanding socket operation, and SEVER deletes
the IUCV connection.

If an IUCV operation completes with condition code 0, the requested operation was successfully started.
An IUCV interrupt will be received when the operation completes. When your interrupt routine receives
control, it receives a pointer to the external interrupt buffer which contains information about the IUCV
function that completed. The IPTYPE field of the external interrupt buffer (mapped by IPARML) identifies
the interrupt:

IPTYPE Interrupt Name Description

X'02' Connection Complete Acknowledgement that TCP/IP has accepted your
request to establish an IUCV connection (IUCV
CONNECT)

X'03' Connection Severed Your IUCV connection has been deleted by TCP/IP

X'07' Message complete The requested socket function has completed

Note: IPTYPE is byte 3 of the external interrupt buffer.

While there are other types of IUCV interrupts, they are not normally seen on TCP/IP IUCV socket paths.
z/VM: CP Programming Services has a complete description of each interrupt type.

If an IUCV operation completes with condition code 1, the requested function could not be performed.
The exact cause of the error is stored in byte 3 of the IUCV parameter list (IPRCODE). See the description
of each IUCV function in z/VM: CP Programming Services for the possible return codes.

Note: CMSIUCV and IUCVCOM use return codes in general register 15 to indicate the success or failure
of the operation. Refer to z/VM: CMS Application Development Guide for Assembler or z/VM: Group Control
System for details on these system services.

If an IUCV PURGE operation completes with condition code 2, it means that TCP/IP has already finished
processing the socket request.

Preparing to use the IUCV Socket API
Before the socket functions can be used, an IUCV socket API environment must be established. This is
done in two steps:

142 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3

1. Establish an IUCV connection to the TCP/IP service virtual machine.
2. Send an initialization message to TCP/IP, identifying your application and defining how the IUCV

connection will be used.

Establishing an IUCV connection to TCP/IP
To create an IUCV connection to the TCP/IP service virtual machine, issue IUCV CONNECT with the
following parameters:
Keyword

Value
USERID

The user ID of the TCP/IP virtual machine.
PRTY

NO
PRMDATA

YES
QUIESCE

NO
MSGLIM

If this IUCV connection may have more than one outstanding socket function on it at the same time,
set MSGLIM to the maximum number of socket calls that may be outstanding simultaneously on this
path. Otherwise, set it to zero.

USERDTA
Binary zeros

CONTROL
NO

If IUCV CONNECT returns condition code 0, you subsequently receive either a Connection Complete
external interrupt or a Connection Severed external interrupt. If you receive a Connection Severed
interrupt now or later, see “Severing the IUCV Connection” on page 144 for more information.

To ensure that your program does not interfere with other IUCV or APPC/VM applications, your program
should use the HNDIUCV and CMSIUCV macros in CMS, or the IUCVINI and IUCVCOM macros in GCS.

Initializing the IUCV Connection
If you receive a Connection Complete interrupt in response to IUCV CONNECT, then TCP/IP has accepted
the connection request.

Your program responds by sending an initialization message using IUCV SEND to TCP/IP, identifying your
application and the way that it will use the IUCV socket interface.

When the IUCV SEND completes, then, if the IPAUDIT field shows no error, the reply buffer has been
filled. The maxsock field indicates that maximum number of sockets you can open on this IUCV path at
the same time.

Your program can now issue any supported socket call. See “Issuing Socket Calls” on page 145.

The initialization message is sent using an IUCV SEND with the following parameters:
Keyword

Value
TRGCLS

0
DATA

BUFFER

Chapter 4. Inter-User Communication Vehicle Sockets 143

BUFLEN
20

TYPE
2WAY

ANSLEN
8

PRTY
NO

BUFFER
Points to a buffer in the following format:

Offset Name Length Comments

0 8 Constant 'IUCVAPI '. The trailing blank is required.

8 2 Halfword integer. Maximum number of sockets that can
be established on this IUCV connection. minimum: 50,
Default: 50.

10 apitype 2 X'0002'. Provided for compatibility with prior
implementations of TCP/IP. Use X'0003' instead.

X'0003'. Any number of socket requests may be
outstanding on this IUCV connection at the same time.
For AF_INET sockets only.

X'0004'. Any number of socket requests may be
outstanding on this IUCV connection at the same time.
For AF_INET6 sockets only.

For more information, see “Overlapping Socket
Requests” on page 146.

12 subtaskname 8 Eight printable characters. The combination of your user
ID and subtaskname uniquely identifies the TCP/IP client
using this path. This value is displayed by the NETSTAT
CLIENT command.

Keyword
Value

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 4 Reserved

4 maxsock 4 The maximum socket number that your application can
use on this path. The minimum socket number is always
0. Your application chooses a socket number for the
accept, socket, and takesocket calls.

Note: A single virtual machine can establish more than one IUCV path to TCP/IP, but a different
subtaskname must be specified on each IUCV path. If the same subtaskname is specified for more than
one IUCV path, TCP/IP severs the existing path with that subtaskname.

Severing the IUCV Connection
An IUCV connection to TCP/IP can be severed (deleted) by your application or by TCP/IP at any time.

144 z/VM: 7.3 TCP/IP Programmer's Reference

Sever by the Application
Your application can sever a socket API IUCV path at any time by calling IUCV SEVER with USERDTA
specified as 16 bytes of binary zeros. TCP/IP cleans up all sockets associated with the IUCV path.

Clean-Up of Stream Sockets
The TCP connection corresponding to each stream socket associated with the IUCV path is reset. In the
case of a listening socket, all connections in the process of opening, or already open and in the accept
queue, are reset.

If your program closed a stream socket earlier, the corresponding TCP connection might still be in the
process of closing. Such connections, which are no longer associated with any socket, are not reset when
your program severs the IUCV path.

Sever by TCP/IP
TCP/IP severs a socket API IUCV path only in case of shutdown or an unexpected error. The 16-byte
IPUSER field in the SEVER external interrupt indicates the reason for the sever. The reason is coded in
EBCDIC. The following are possible reason codes and explanations:
Reason Code

Explanation
BAD API TYPE

The apitype field in your initialization message contained an incorrect value.
BAD INIT MSG LEN

Your program sent an initialization message that was not of the expected length.
BAD PATH ID

An attempt was made to exceed the maximum number of IUCV connections support by the target
TCPIP virtual machine.

IPV6 NOT ENABLED
Your program sent an initialization message with apitype 4, but TCP/IP is not enabled for IPv6
communications.

IUCVCHECKRC
IUCV error detected. This code is used only before or during processing of the initialization message.

NO CCB!!!!
A software error occurred in TCP/IP. Contact your system support personnel or the IBM Support
Center.

NO MORE CCBS
Your IUCV path cannot be accepted because there are no more client control blocks available in the
TCPIP virtual machine.

NULL SAVED NAME
A software error occurred in TCP/IP. This code is used only before or during processing of the
initialization message.

REQUIREDCONSTANT
The first 8 bytes of your initialization message were not "IUCVAPI ".

RESTRICTED
Your virtual machine is not permitted to use TCP/IP.

SHUTTINGDOWN
TCP/IP service is being shut down. This code is used only in response to the Pending Connection
interrupt.

Issuing Socket Calls
The following section describes how to issue an IUCV socket call.

Chapter 4. Inter-User Communication Vehicle Sockets 145

All socket calls are invoked by issuing an IUCV SEND with the following parameters:
Keyword

Value
TRGCLS

The high-order halfword specifies the socket call. For most calls, the low-order halfword specifies the
socket descriptor.

DATA
BUFFER or PRMMSG, depending on call

BUFLIST
If DATA=BUFFER, then either YES or NO as desired. If DATA=PRMMSG, not applicable.

BUFFER
If DATA=BUFFER, points to the buffer (or buffer list) in the format required by the call. If
DATA=PRMMSG, not applicable.

BUFLEN
If DATA=BUFFER, length of buffer. If DATA=PRMMSG, not applicable.

PRMMSG
If DATA=PRMMSG, data as required by the call. DATA=PRMMSG is not allowed when ANSLIST=YES. If
DATA=BUFFER, not applicable.

TYPE
2WAY

ANSLIST
Either YES or NO as desired. DATA=PRMMSG is not allowed when ANSLIST=YES.

ANSBUF
Points to a buffer to contain the reply from TCP/IP.

ANSLEN
Length of the reply buffer

PRTY
NO

SYNC
YES or NO as desired. Applications that need to serve multiple clients at the same time should
specify SYNC=NO. SYNC=YES will block the entire virtual machine from execution until the function is
complete.

Overlapping Socket Requests
Your program may have more than one socket call outstanding on the same IUCV path. There are some
restrictions on the types of calls that are queued simultaneously for the same socket descriptor.

The following list describes the restrictions for each type of socket call:

• Multiple read-type calls (READ, READV, RECV, RECVFROM, RECVMSG) and multiple write-type calls
(WRITE, WRITEV, SEND, SENDTO, SENDMSG), for the same socket, can be queued simultaneously. The
read-type calls are satisfied in order, independently of the write-type calls. Similarly, the write-type calls
are satisfied in order, independently of the read-type calls.

• Multiple ACCEPT calls, for the same listening stream socket, can be queued simultaneously. They are
satisfied in order.

• Multiple SELECT calls, referring to any combination of sockets, can be queued simultaneously on an
IUCV path. TCP/IP checks all queued SELECT calls when an event occurs and responds to any that are
satisfied.

• Calls other than the read-type, write-type, ACCEPT, and SELECT calls, cannot be queued simultaneously
for the same socket. For example, your program must wait for TCP/IP’s response to a write-type call
before issuing a CLOSE call for the same socket.

146 z/VM: 7.3 TCP/IP Programmer's Reference

TCP/IP Response to an IUCV Request
TCP/IP’s response to your socket call is signaled by the Message Complete external interrupt. When the
Message Complete external interrupt is received, if the IPAUDIT field shows no error, your program’s reply
buffer has been filled. The IPBFLN2F field indicates how many bytes of the reply buffer were not used.

If the IPADRJCT bit of the IPAUDIT field is set, then TCP/IP was unable to use IUCV REPLY to respond,
and instead used IUCV REJECT. Your program issues the special LASTERRNO function (see “LASTERRNO”
on page 186) to retrieve the return code and errno for the rejected call. TCP/IP’s use of IUCV REJECT does
not necessarily mean the socket call failed.

The following errno values (shown in decimal) are seen only by a program using the IUCV socket interface.
Errno Value

Description
1000

An unrecognized socket call constant was found in the high-order halfword of the Target Message
Class.

1001
A request or reply length field is incorrect

1002
The socket number assigned by your program for ACCEPT, SOCKET, or TAKESOCKET is out of range.

1003
The socket number assigned by your program for ACCEPT, SOCKET, or TAKESOCKET is already in use.

1008
This request conflicts with a request already queued on the same socket (see “Overlapping Socket
Requests” on page 146).

1009
The request was canceled by the CANCEL call (see “CANCEL and CANCEL2” on page 161).

1011
The user ID issuing this request does not match the user ID specified on the SSLServerID statement in
the configuration file.

1025
The local or partner certificate was not requested on the SSL handshake, therefore, no fields can be
obtained from that certificate.

Encrypting Data on an IUCV Socket
Once a connection has been established, ioctl() commands can be used to direct the data through the
TLS/SSL server so that it is encrypted when sent and decrypted when received. Refer to the section,
“Secure Connection Considerations” on page 21 for details.

Cancelling a Socket Request
Your socket program can use the CANCEL call to cancel a previously issued socket call. Read-type calls,
write-type calls, ACCEPT calls, and SELECT calls can be canceled using this function. See “CANCEL and
CANCEL2” on page 161 for more information about using the CANCEL call.

IUCV PURGE can also be used to cancel a call, but it does not stop TCP/IP processing the same way as the
CANCEL call.

Each IUCV SEND operation that completes with condition code zero is assigned a unique message
identification number. This number is placed in the IUCV parameter list. To use the CANCEL or IUCV
PURGE functions, your program must keep track of the message ID numbers assigned to each socket
request.

Chapter 4. Inter-User Communication Vehicle Sockets 147

IUCV Socket Call Syntax
Each of the IUCV Socket calls described includes the C language syntax for the call. IUCV SEND
parameters and buffer contents are described using variable names from the C syntax. Call types are
in capital letters. For example, the accept call is ACCEPT.

The parameter lists for some C language socket calls include a pointer to a data structure defined by a C
structure. When using the IUCV socket interface, the contents of the data structure are passed in the send
buffer, the reply buffer, or both. Table 21 on page 148 shows the C structures used, and the corresponding
assembler language syntax.

Table 21. C Structures in Assembler Language Format

C Structure Assembler Language Equivalent

structure CertDataCompleteDetailType {
 int CDRetCode;
 int CDRetCnt;
 short CDDataLen;
 short CDRes;
 char CDData[CDDataLen]
};

CDRetCode DS F
CDRetCnt DS F
CDDataLen DS H
CDRes DS H
CDData DS x

where:
CDRetCode

Indicates the return code from the certificate request. Possible values:

0 - No errors
4021 - The partner value is not valid.
4023 - The partner certificate is not available.
4024 - The certificate does not contain any values.
4025 - The buffer length passed is too large.
4026 - The returned data will not fit in the provided buffer. Partial data is returned.
4027 - The passed buffer pointer is null.
4028 - The number of certificate fields requested (CDReqNum) is 0.
4029 - The number of certificate fields requested (CDReqNum) is greater than 64.
4030 - The requested certificate field is not found.
4031 - The requested certificate field is not valid.
4032 - Both of these errors exist in the return data: A requested certificate field is not found and
a requested certificate field is not valid.

CDRetCnt
Is the number of certificate fields returned in CDData.

CDDataLen
Is the length of the returned certificate data.

CDRes
Is reserved (will be 0).

148 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

CDData
Is requested data from the certificate. The format is as follows:

+---+
| Len | Code | CertData | Len | Code | CertData..... |
+---+

where:
Len

Is a halfword field that contains the total length of the item (Len+Code+CertData). The total of
all of the Len fields in the buffer is returned in CDDataLen.

Code
Is a halfword that contains the certificate field code (600-677).

CertData
Is the certificate data that corresponds to the requested code. Note that a single field could
appear multiple times in the returned buffer if more than one "answer" is valid.

x
Is the value that is specified for CDDataLen.

Usage Notes:

• Certificate fields will be placed in the CDData buffer in the order in which they appear in the
CertReqCodes input structure.

• The CDData buffer will contain as many certificate fields as will fit completely. If a requested certificate
field does not fit in the buffer, it will not be returned and subsequent fields in the CertReqCodes input
structure will also fail. CDRetCode will indicate that not all of the data will fit in CDData. CDRetCnt will
reflect the number of completed requests.

• If the requested field cannot be found in the certificate, CDData will contain a Len of 4 along with the
requested Code. No data will be returned. CDRetCode will be updated to indicate that one or more
fields are not present in the certificate.

structure CertReqDetailType {
 char CertReqNum;
 char CertReqSide;
 short CertReqRes1;
 int CertReqRes2;
 int CertReqLen;
 int CertReqPtr;
 short CertReqCodes[64];
};

CertReqNum DS X
CertReqSide DS X
CertReqRes1 DS H
CertReqRes2 DS F
CertReqLen DS F
CertReqPtr DS F
CertReqCodes DS 64H

Chapter 4. Inter-User Communication Vehicle Sockets 149

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

where:
CertReqNum

Is the number of certificate fields requested.
CertReqSide

Is 0 for local or 1 for partner.
CertReqRes1

Is reserved for future use and must be 0.
CertReqRes2

Is reserved for future use and must be 0.
CertReqLen

Is the length of the buffer (not to exceed 16K + 12).
CertReqPtr

Is a pointer to the returned CertDataCompleteDetailType structure for C programs. In the Assembler
case, this field is ignored.

150 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

CertReqCodes
Is a list of requested certificate fields. The valid codes are:

600 - CERT_BODY_DER
601 - CERT_BODY_BASE64
602 - CERT_SERIAL_NUMBER
610 - CERT_COMMON_NAME
611 - CERT_LOCALITY
612 - CERT_STATE_OR_PROVINCE
613 - CERT_COUNTRY
614 - CERT_ORG
615 - CERT_ORG_UNIT
616 - CERT_DN_PRINTABLE
617 - CERT_DN_DER
618 - CERT_POSTAL_CODE
619 - CERT_EMAIL
620 - CERT_DOMAIN_COMPONENT
621 - CERT_SURNAME
622 - CERT_STREET
623 - CERT_TITLE
650 - CERT_ISSUER_COMMON_NAME
651 - CERT_ISSUER_LOCALITY
652 - CERT_ISSUER_STATE_OR_PROVINCE
653 - CERT_ISSUER_COUNTRY
654 - CERT_ISSUER_ORG
655 - CERT_ISSUER_ORG_UNIT
656 - CERT_ISSUER_DN_PRINTABLE
657 - CERT_ISSUER_DN_DER
658 - CERT_ISSUER_POSTAL_CODE
659 - CERT_ISSUER_EMAIL
660 - CERT_ISSUER_DOMAIN_COMPONENT
661 - CERT_ISSUER_SURNAME
662 - CERT_ISSUER_STREET
663 - CERT_ISSUER_TITLE
664 - CERT_NAME
665 - CERT_GIVENNAME
666 - CERT_INITIALS
667 - CERT_GENERATIONQUALIFIER
668 - CERT_DNQUALIFIER
669 - CERT_MAIL
670 - CERT_SERIALNUMBER
671 - CERT_ISSUER_NAME
672 - CERT_ISSUER_GIVENNAME
673 - CERT_ISSUER_INITIALS
674 - CERT_ISSUER_GENERATIONQUALIFIER
675 - CERT_ISSUER_DNQUALIFIER
676 - CERT_ISSUER_MAIL
677 - CERT_ISSUER_SERIALNUMBER

Chapter 4. Inter-User Communication Vehicle Sockets 151

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct clientid {
 int domain;
 char name[8];
 char subtaskname[8];
 char reserved[20];
};

DOMAIN DS F
NAME DS CL8
SUBTASK DS CL8
RESERVED DC XL20'00'

struct CloseReq [
 short CloseLen;
 char CloseBuff[255];
];

CloseLen DS H
CloseBuff DS CL255

where:
CloseLen

Is the length of the message in the CloseBuff buffer.
CloseBuff

Specifies a message to be sent to the partner over the encrypted connection before the SSL tunnel
is closed. The message indicates that the partner's very next step must be to issue the SioCSecClose
ioctl call to close the partner's side of the SSL tunnel and return to unencrypted communication.

struct ifconf {
 int ifc_len;
 union {
 caddr_t ifcu_buf;
 struct ifreq *ifcu_req;
 } ifc_ifcu;
};

IFCLEN DS F
IGNORED DS F

struct ifreq {
#define IFNAMSIZ 16
 char ifr_name[IFNAMSIZ];
 union {
 struct sockaddr ifru_addr;
 struct sockaddr ifru_dstaddr;
 struct sockaddr ifru_broadaddr;
 short ifru_flags;
 int ifru_metric;
 caddr_t ifru_data;
 } ifr_ifru;
};

NAME DS CL16
ADDR.FAMILY DS H
ADDR.PORT DS H
ADDR.ADDR DS F
ADDR.ZERO DC XL8'00'
 ORG ADDR.FAMILY
DST.FAMILY DS H
DST.PORT DS H
DST.ADDR DS F
DST.ZERO DC XL8'00'
 ORG ADDR.FAMILY
BRD.FAMILY DS H
BRD.PORT DS H
BRD.ADDR DS F
BRD.ZERO DC XL8'00'
 ORG ADDR.FAMILY
FLAGS DS H
 ORG ADDR.FAMILY
METRIC DS F

struct linger {
 int l_onoff;
 int l_linger;
};

ONOFF DS F
LINGER DS F

152 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct QueryTls {
 char TLSLabel[8];
 char TLSKeyring[50];
};

TLSLabel DS CL8
TLSKeyring DS CL50

The QueryTLS call can determine whether the security server is available and if the security server
recognizes the TLSLabel. The call can include the following parameters:
TLSLabel

If the optional TLSLabel is specified, the call determines whether the security server recognizes the
TLSLabel.

TLSKeyring
Is not yet available. The value must be blank.

struct SecStatus {
 int SecLevel;
 char CipherClass;
 char CipherHash;
 char CipherAlgorithm;
 char CipherPKAlgorithm;
 int CipherKeyLength;
};

SecLevel DS F
CipherClass DS X
CipherHash DS X
CipherAlgorithm DS X
CipherPKAlgorithm DS X
CipherKeyLength DS F

Chapter 4. Inter-User Communication Vehicle Sockets 153

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

where:
SecLevel

0 - Not Secure
1 - Statically Secured
2 - Dynamically Secured

CipherClass

0 - NULLclass
1 - SSLV2
2 - SSLV3
3 - TLS
4 - TLS10
5 - TLS11
6 - TLS12

CipherHash

0 - SHA1
1 - MD5
2 - NULL
3 - SHA2
4 - SHA256
5 - SHA384

CipherAlgorithm

0 - NULL
2 - RC4
4 - DES3
7 - AES
8 - AESGCM
9 - AES128
10 - AES128GCM
11 - AES256
12 - AES256GCM

CipherPKAlgorithm

0 - NULL
1 - RSA
2 - DH_DSS
3 - DH_RSA
4 - DHE_DSS
5 - DHE_RSA
6 - ECDH_ECDSA
7 - ECDHE_ECDSA
8 - ECDH_RSA
9 - ECDHE_RSA

154 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct SecureDetail {
 char TLSLabel[8];
 int TLStimeout;
 char requestClientCert;
 char validatePeerCert;
 char cipher_request;
 char version;
 char keyring[50];
 short buflen;
 char buffer[255];
 struct SecureDetailExtension;
};

struct SecureDetailExtension {
 int validationFlags
 int validationLen
 char validationBuffer[512];
};

TLSLabel DS CL8
TLStimeout DS F
requestClientCert DS X
validatePeerCert DS X
cipher_request DS X
version DS X
keyring DS CL50
buflen DS H
buffer DS CL255
 DS XL3
validationFlags DS F
validationLen DS F
validationBuffer DS CL512

Chapter 4. Inter-User Communication Vehicle Sockets 155

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

where:
TLSLabel

Is the label associated with the certificate in the certificate database.
TLStimeout

Is not yet available. The value must be 0.
requestClientCert

See validatePeerCert.
validatePeerCert

The requestClientCert and validatePeerCert flags are used in combination to determine the level of
client certificate checking that will be done during a secure server call. The level and the flag settings
are as follows:
None

A client certificate will not be requested.

requestClientCert = 0
validatePeerCert = 1

Preferred
A client certificate is requested. If a client certificate is not received, the connection will proceed
without it. If a client certificate is received, it will be authenticated. If the client certificate is
not valid, the failure will be logged in the SSL console log and the connection will continue as a
secure connection protected by the server certificate.

requestClientCert = 1
validatePeerCert = 1

Required
A client certificate will be authenticated. If a client certificate is not received, the connection will
be terminated with a fatal TLS error. If the certificate fails authentication, the handshake will fail.

requestClientCert = 1
validatePeerCert = 0

Note: For a secure client call, the server certificate is always validated. Set these flags to indicate a
level of None.

cipher_request
Indicates whether SSL V2 will be used. Possible values:

0 - The default cipher suite values will be used.
1 - The client does not want to use SSL V2.

version
When set to 0, the SecDetailExt is not passed on the call.

When set to 1, the SecDetailExt is filled in and passed on the call to tell the SSL/TLS server to
compare the passed-in host name, domain name, or IP address against the server certificate. A
value of 1 is valid only when securing the client side of the connection.

keyring
Is not yet available. The value must be blank.

156 z/VM: 7.3 TCP/IP Programmer's Reference

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

buffer
Contains the string that the SSL server will send out on the connection before waiting for the
handshake. After this command is sent, the initiation of the handshake is expected on the
connection. If an empty buffer is sent, a READYforHANDSHAKE notification will be sent to indicate
that this side of the connection is waiting for the handshake.

ValidationFlags
Possible values:

0 indicates not required. If the validation text does not match what is in the server certificate, the
mismatch will be logged and the handshake will continue.
1 indicates required. At least one of the specified validation items must match what is in the
server certificate. If there are no matching items, the handshake will fail.

ValidationLen
Is the total length of the validation buffer.

ValidationBuffer
Contains multiple items to validate against the certificate. Each item is in the following format:

+--+
| Len | Type | Text |
+--+

The total length of all items (Len+Type+Text) must not exceed 512 bytes.
Len

A halfword field that contains the total length of the item (Len+Type+Text). The total of all of the
Len fields in the buffer should equal ValidationLen.

Type
A halfword field that contains the type of the Text data. Possible values:

0 indicates an IPv4 address in integer format with 4-byte hexadecimal representation. For
example: 093C1C66.
1 indicates an IPv6 address in integer format with 16-byte hexadecimal representation. For
example: 50C6 C2C1 0000 0000 0009 0060 0028 0102.
2 indicates a fully-qualified domain name (FQDN) in EBCDIC format.
3 indicates a host name in EBCDIC format.
4 indicates an IPv4 address in dotted decimal format. For example: 9.60.28.102.
5 indicates an IPv6 address in dotted decimal format. For example:
50C6:C2C1::9.60.28.102.

Text
The string that is compared to the common name, domain name, or in a subject alternate name
extension marked as an IP address in the server certificate.

Note: When Version is 1, the caller must allocate and send the full length of the ValidationBuffer (512
bytes) even though it might be partially filled in.

Handshake Complete

The SecureHSCompleteDetailType structure contains the result of the handshake request. For a blocking
socket, the SecureHSCompleteDetailType structure is returned in the ErrNo field. An ErrNo of 0 indicates
a successful completion. A non-blocking socket is woken up for write or exception. If the socket is
woken up for write, it is assumed that the SecureHSCompleteDetailType structure contains all 0's and
is not returned. If the socket is woken up for exception, the SecureHSCompeteDetailType structure is
returned in the ErrNo field on the subsequent read and provides the details of the handshake failure.

Refer to the SecureHSCompleteDetailType structure for details.

Chapter 4. Inter-User Communication Vehicle Sockets 157

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct SecureHSCompleteDetailType {
 char ReturnCode;
 char AlertLevel;
 short AlertDescription;
};

ReturnCode DS X
AlertLevel DS X
AlertDescription DS XL2

where:
ReturnCode

Indicates the status of the handshake.

0 - NOALERT - The handshake completed successfully.
1 - ALERT - Problems were encountered during the handshake.
2 - TIMEOUT - The handshake did not complete within the time allotted.

AlertLevel
When the ReturnCode is ALERT, this classifies the level of the alert:

0 - AlertOK
1 - Warning
2 - Fatal

AlertDescription
When ReturnCode is ALERT, this field contains the details of the failure. An AlertDescription value in
the 4000 range indicates an SSL server error as follows:

4001 - The type is not valid.
4002 - The integer format of the IP address is not valid.
4003 - ValidationBuffer is too long.
4004 - Len is either too big or extends beyond the buffer.
4005 - The maximum number of validation fields has been exceeded.
4006 - The dotted decimal format of the IPv4 address is not valid.
4007 - The dotted decimal format of the IPv6 address is not valid.
4008 - Validation of a host name or fully-qualified domain name failed.
4009 - Validation of an IPv4 or IPv6 address failed.
4010 - Validation failed.

An AlertDescription value in the 40000 range indicates a System SSL error. Subtract 40000 from
the AlertDescription value and refer to Messages and codes in z/OS Cryptographic Services System
Secure Sockets Layer Programming (publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf) for details.

struct sockaddr_in {
 short sin_family;
 ushort sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

FAMILY DS H
PORT DS H
ADDR DS F
ZERO DC XL8'00'

struct sockaddr_in6 {
 short sin6_family;
 ushort sin6_port;
 uint sin6_flowinfo;
 struct in6_addr sin6_addr;
 uint sin6_scope_id;
 };

FAMILY DS H
PORT DS H
FLOWINFO DS F
ADDR6 DS 4F
SCOPEID DS F

158 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/sssl2msg1000613.htm
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gsk2aa00.pdf

Table 21. C Structures in Assembler Language Format (continued)

C Structure Assembler Language Equivalent

struct timeval {
 long tv_sec;
 long tv_usec;
};

TVSEC DS F
TVUSEC DS F

IUCV Socket Calls
This section provides the C language syntax, parameters, and other information about each IUCV socket
call supported by TCP/IP. For information about C socket calls, see Chapter 1, “ z/VM C Socket Application
Programming Interface,” on page 1.

Note: In the following socket descriptions, structures labelled For AF_INET: are for the AF_INET address
family and structures labelled For AF_INET6: are for the AF_INET6 address family.

ACCEPT
The ACCEPT call is issued when the server receives a connection request from a client. ACCEPT points
to a socket that was created with a socket call and marked by a LISTEN call. ACCEPT can also be used
as a blocking call. Concurrent server programs use the ACCEPT call to pass connection requests to child
servers.

When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections
2. Creates a new socket with the same properties as the socket used in the call and returns the address

of the client for use by subsequent server calls. The new socket cannot be used to accept new
connections, but can be used by the calling program for its own connection. The original socket
remains available to the calling program for more connection requests.

3. Returns the new socket descriptor to the calling program.

For AF_INET:

 ns = accept(s, addr, addrlen)
 int ns, s;
 struct sockaddr_in *addr;
 int *addrlen;

For AF_INET6:

 ns = accept(s, addr, addrlen)
 int ns, s;
 struct sockaddr_in6 *addr;
 int *addrlen;

Keyword
Value

TRGCLS
High-order halfword = 1

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword = 0

Low-order fullword = socket number for the new socket, chosen by your program, in the range 0
through maxsock. If you wish the stack to choose an available socket number for you, specify any

ACCEPT

Chapter 4. Inter-User Communication Vehicle Sockets 159

negative value (bit 0 is 1). See “Initializing the IUCV Connection” on page 143 for more information on
maxsock.

ANSLEN
For AF_INET: 24

For AF_INET6: 36

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 ns 4 The new socket number assigned to this connection.
A value of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When ns is -1, this field contains a reason code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *addr For AF_INET:
16

For
AF_INET6:

28

The remote address and port of the new socket. See
Table 21 on page 148 for format.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes the new socket creation
process.

The BIND call can either specify the port or let the system choose the port. A listener program should
always bind to the same well-known port so that clients know what socket address to use when issuing a
CONNECT call.

For AF_INET:

 rc = bind(s, name, namelen)
 int rc, s;
 struct sockaddr_in *name;
 int namelen;

For AF_INET6:

 rc = bind(s, name, namelen)
 int rc, s;
 struct sockaddr_in6 *name;
 int namelen;

Keyword
Value

TRGCLS
High-order halfword = 2

Low-order halfword = s

DATA
BUFFER

BUFLEN
For AF_INET: 16

For AF_INET6: 28

BIND

160 z/VM: 7.3 TCP/IP Programmer's Reference

BUFFER
Points to a buffer in the following format:

Offset Name Length Comments

0 *name For AF_INET:
16

For
AF_INET6:

28

The local address and port to which the socket is to be
bound. See Table 21 on page 148 for format.

ANSLEN
8

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the BIND call. A return code of 0
indicates that the call was successful. A return code of
-1 indicates that the function could not be completed
and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

CANCEL and CANCEL2
The CANCEL and CANCEL2 calls are used to cancel a previously issued socket call. For the CANCEL
call, TCP/IP responds to the canceled call with a return code of -1 and an errno value of 1009. For the
CANCEL2 call, TCP/IP does not send a response to the canceled call.
Keyword

Value
TRGCLS

High-order halfword = 42 (CANCEL)

High-order halfword = 43 (CANCEL2)

Low-order halfword = Low-order halfword of TRGCLS from call to be canceled.

DATA
PRMMSG

PRMMSG
High-order fullword = High-order halfword of TRGCLS from call to be canceled.

Low-order fullword = IUCV message ID of call to be canceled.

ANSLEN
8

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the CANCEL call. A return code
of 0 indicates that the call was successful. A return
code of -1 indicates that the function could not be
completed and that errno contains a reason code.

CANCEL

Chapter 4. Inter-User Communication Vehicle Sockets 161

Offset Name Length Comments

4 errno 4 When the return code is -1, this field contains a reason
code. Possible errno values are:
3

Specifies that the call cannot be found. TCP/IP
might have already responded to it.

22
Specifies that the call is not a type that may be
canceled.

CLOSE
The CLOSE call shuts down the socket and frees the resources that are allocated to the socket.

 rc = close(s)
 int rc, s;

Keyword
Value

TRGCLS
High-order halfword = 3

Low-order halfword = s

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
8

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the CLOSE call. A return code of 0
indicates that the call was successful. A return code of
-1 indicates that the function could not be completed
and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

CONNECT
The CONNECT call is used by a client to establish a connection between a local socket and a remote
socket.

For stream sockets, the CONNECT call:

• Completes the binding process for a stream socket if a BIND call has not been previously issued.
• Attempts a connection to a remote socket. This connection must be completed before data can be

transferred.

For datagram sockets, a CONNECT call is not essential, but you can use it to send messages without
including the destination.

CLOSE

162 z/VM: 7.3 TCP/IP Programmer's Reference

For AF_INET:

 rc = connect(s, name, namelen)
 int rc, s;
 struct sockaddr_in *name;
 int namelen;

For AF_INET6:

 rc = connect(s, name, namelen)
 int rc, s;
 struct sockaddr_in6 *name;
 int namelen;

Keyword
Value

TRGCLS
High-order halfword = 4

Low-order halfword = s

DATA
BUFFER

BUFLEN
For AF_INET: 16

For AF_INET6: 28

BUFFER
Points to a buffer in the following format:

Offset Name Length Comments

0 *name For AF_INET:
16

For
AF_INET6:

28

The remote address and port to which the socket is to
be connected. See Table 21 on page 148 for format.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the CONNECT call. A return code
of 0 indicates that the call was successful. A return
code of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

FCNTL
The blocking mode for a socket can be queried or set using the FNDELAY flag described in the FCNTL call.

See “IOCTL” on page 170 for another way to control blocking for a socket.

 retval = fcntl(s, cmd, arg)
 int retval;
 int s, cmd, arg;

FCNTL

Chapter 4. Inter-User Communication Vehicle Sockets 163

Keyword
Value

TRGCLS
High-order halfword = 5

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword:

F_GETFL (X '00000003')

F_SETFL (X '00000004')

The low-order fullword is used only for the F_SETFL command:

Zero (X '00000000') Socket will block

FNDELAY (X '00000004') Socket is non-blocking

ANSLEN
8

ANSBUF
Points to a buffer that is filled with a reply in the format described as follows:

Offset Name Length Comments

0 retval 4 For F_SETFL, the return code. A value of zero indicates
FNDELAY flag was set. For F_GETFL, the value of
the FNDELAY flag. Zero means the socket will block.
A value of FNDELAY (4) means the socket is non-
blocking. A return code of -1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

GETCLIENTID
The GETCLIENTID call returns the identifier by which the calling application is known to the TCPIP
address space. The client ID structure that is returned is used in the GIVESOCKET and TAKESOCKET calls.

 rc = getclientid(domain, clientid)
 int rc, domain;
 struct clientid *clientid;

Keyword
Value

TRGCLS
High-order halfword = 30

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

GETCLIENTID

164 z/VM: 7.3 TCP/IP Programmer's Reference

ANSLEN
48

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GETCLIENTID call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *clientid 40 See Table 21 on page 148 for format.

Note: domain is not passed to TCP/IP. It is implicitly AF_INET.

GETHOSTID
The GETHOSTID call gets the unique 32-bit identifier for the current host. This value is the default home
internet address.

 hostid = gethostid
 unsigned long hostid;

Keyword
Value

TRGCLS
High-order halfword = 7

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 hostid 4 The default home internet address.

4 4 Your program should ignore this field.

GETHOSTNAME
The GETHOSTNAME call returns the name of the host processor on which the program is running. Up to
namelen characters are copied into the name field.

 rc = gethostname(name, namelen)
 int rc;
 char *name;
 int namelen;

GETHOSTID

Chapter 4. Inter-User Communication Vehicle Sockets 165

Keyword
Value

TRGCLS
High-order halfword = 8

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
namelen + 8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GETHOSTNAME call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *name namelen The host name, not null-terminated.

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local socket is connected.

For AF_INET:

 rc = getpeername(s, name, namelen)
 int rc, s;
 struct sockaddr_in *name;
 int *namelen;

For AF_INET6:

 rc = getpeername(s, name, namelen)
 int rc, s;
 struct sockaddr_in6 *name;
 int *namelen;

Keyword
Value

TRGCLS
High-order halfword = 9

Low-order halfword = s

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
For AF_INET: 24

GETPEERNAME

166 z/VM: 7.3 TCP/IP Programmer's Reference

For AF_INET6: 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GETPEERNAME call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *name For AF_INET:
16

For
AF_INET6:

28

The remote address and port to which the socket is
connected. See Table 21 on page 148 for format.

GETSOCKNAME
The GETSOCKNAME call stores the name of the socket into the structure pointed to by the name
parameter and returns the address to the socket that has been bound. If the socket is not bound to
an address, the call returns with the family field completed and the rest of the structure set to zeros.

For AF_INET:

 rc = getsockname(s, name, namelen)
 int rc, s;
 struct sockaddr_in *name;
 int *namelen;

For AF_INET6:

 rc = getsockname(s, name, namelen)
 int rc, s;
 struct sockaddr_in6 *name;
 int *namelen;

Keyword
Value

TRGCLS
High-order halfword = 10

Low-order halfword = s

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
For AF_INET: 24

For AF_INET6: 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

GETSOCKNAME

Chapter 4. Inter-User Communication Vehicle Sockets 167

Offset Name Length Comments

0 rc 4 The return code from the GETSOCKNAME call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *name For AF_INET:
16

For
AF_INET6:

28

The local address and port to which the socket is
bound. See Table 21 on page 148 for format.

GETSOCKOPT
The GETSOCKOPT call returns the current setting of an option for a specific socket. Some of these options
are under program control and can be changed using the SETSOCKOPT call.

 rc = getsockopt(s, level, optname, optval, &optlen)
 int rc, s, level, optname, optlen;
 char *optval;

Keyword
Value

TRGCLS
High-order halfword = 11

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword = level. Possible values are:

Value C Symbol Comments

X'FFFF' SOL_SOCKET Socket option

X'0006' IPPROTO_TCP TCP protocol option

Low-order fullword = optname. Possible values are:

Value Option Name Returned Value

X'0001' SO_DEBUG Returns current setting.

X'0004' SO_REUSEADDR Returns current setting.

X'0008' SO_KEEPALIVE Returns current setting.

X'0010' SO_DONTROUTE Returns current setting.

X'0020' SO_BROADCAST Returns current setting.

X'0080' SO_LINGER Returns current setting in a C language struct linger.
See Table 21 on page 148 for the assembler language
equivalent.

GETSOCKOPT

168 z/VM: 7.3 TCP/IP Programmer's Reference

Value Option Name Returned Value

X'0100' SO_OOBINLINE Returns current setting.

X'1001' SO_SNDBUF Returns the size of the TCP/IP send buffer.

X'1007' SO_ERROR Returns any pending error code and clears any error
status conditions.

X'1008' SO_TYPE Socket type is returned:
Value

Type
1

Stream
2

Datagram
3

Raw

X'0001' TCP_NODELAY Returns current setting.

Note: This option applies only to level=IPPROTO_TCP

ANSLEN
16 for option SO_LINGER, 12 for all other options

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the GETSOCKOPT call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *optval 4 or 8 The value of the requested option. If the option
SO_LINGER was requested, 8 bytes are returned. For
all other options, 4 bytes are returned.

GIVESOCKET
The GIVESOCKET call makes the socket available for a TAKESOCKET call issued by another program. The
GIVESOCKET call can specify any connected stream socket. Typically, the GIVESOCKET call is issued by a
concurrent server program that creates sockets to be passed to a child server.

The GIVESOCKET sequence is:

• To pass a socket, the concurrent server first calls GIVESOCKET. If the optional parameters, name of the
child server's virtual machine and subtask ID are specified in the GIVESOCKET call, only a child with a
matching virtual machine and subtask ID can take the socket.

• The concurrent server then starts the child server and passes it the socket descriptor and concurrent
server’s ID that were obtained from earlier SOCKET and GETCLIENTID calls.

• The child server calls TAKESOCKET, with the concurrent server’s ID and socket descriptor.

GIVESOCKET

Chapter 4. Inter-User Communication Vehicle Sockets 169

• The concurrent server issues the select call to test the socket for the exception condition,
TAKESOCKET completion.

• When the TAKESOCKET has successfully completed, the concurrent server issues the CLOSE call to free
the socket.

 rc = givesocket(s, clientid)
 int rc, s;
 struct clientid *clientid;

Keyword
Value

TRGCLS
High-order halfword = 31

Low-order halfword = s

DATA
BUFFER

BUFLEN
40

BUFFER
Points to the message in the following format:

Offset Name Length Comments

0 *clientid 40 See Table 21 on page 148 for format.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the GIVESOCKET call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL call, you must load a value representing the characteristic that you want to
control into the cmd field.

 rc = ioctl(s, cmd, arg)
 int rc, s;
 unsigned long cmd;
 char *arg;

Keyword
Value

TRGCLS
High-order halfword = 12

Low-order halfword = s

IOCTL

170 z/VM: 7.3 TCP/IP Programmer's Reference

DATA
BUFFER

BUFLEN
Request arg length + 4

BUFFER
The pointer to the message in the format described in the following format:

Offset Name Length Comments

0 cmd 4 The type of request. See Table 22 on page 171 for
values.

4 *arg See Table 22
on page 171.

The request data, if any.

ANSLEN
Reply arg length + 8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 A return code of 0 indicates that the call was
successful. A return code of -1 indicates that the
function could not be completed and that errno
contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *arg See Table 22
on page 171.

The response data, if any.

Table 22. Values for cmd Argument in ioctl Call

C Symbol Value
Request

arg Length
Reply arg

Length Comments

FIONBIO X'8004A77E' 4 0 Request arg data is a fullword
integer.

FIONREAD X'4004A77F' 0 4 Reply arg data is a fullword
integer.

SIOCADDRT X'8030A70A' 48 0 For IBM use only.

SIOCATMARK X'4004A707' 0 4 Reply arg data is a fullword
integer.

SIOCDELRT X'8030A70B' 48 0 For IBM use only.

IOCTL

Chapter 4. Inter-User Communication Vehicle Sockets 171

Table 22. Values for cmd Argument in ioctl Call (continued)

C Symbol Value
Request

arg Length
Reply arg

Length Comments

SIOCGCERTDATA X'C090DA07' 144 * arg data is the C language
struct CertReqDetailType
for the request and
CertDataCompleteDetailType for
the reply. See Table 21 on page
148 for the assembler language
equivalent.

For more information, see
“Requesting Details from a
Partner Certificate” on page 22.

* Length of
CertDataCompleteDetailType

SIOCGIBMIFMTU X'C020D903' 32 32 For IBM use only.

SIOCGIBMOPT X'C048D900' 72 * For IBM use only.

SIOCGIFADDR X'C020A70D' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFBRDADDR X'C020A712' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFCONF X'C008A714' 8 * Request arg data is the C-
language struct ifconf. See Table
21 on page 148 for the
assembler language equivalent.
Your program sets ifc_len to the
reply length. The other field is
ignored. Response arg data is an
array of C language struct ifreq
structures, one for each defined
interface.

Note: * = the maximum number
of interfaces multiplied by 32.

SIOCGIFDSTADDR X'C020A70F' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFFLAGS X'C020A711' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCGIFMETRIC X'C020A717' 32 32 For IBM use only.

IOCTL

172 z/VM: 7.3 TCP/IP Programmer's Reference

Table 22. Values for cmd Argument in ioctl Call (continued)

C Symbol Value
Request

arg Length
Reply arg

Length Comments

SIOCGIFNETMASK X'C020A715' 32 32 arg data is the C language struct
ifreq. See Table 21 on page
148 for the assembler language
equivalent.

SIOCSECCLIENT X'8143DA01' 323 0 arg data is the C language struct
SecureDetail. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSECCLOSE X'8101DA04' 257 0 arg data is the C language
struct CloseReq. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSECERT X'8008DA06' 8 * For IBM use only.

SIOCSECSERVER X'8143DA02' 323 0 arg data is the C language struct
SecureDetail. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSECSTATUS X'400CDA05' 0 12 arg data is the C language struct
SecStatus. See Table 21 on
page 148 for assembler language
equivalent. 1

SIOCSIBMOPT X'8048D900' * 0 For IBM use only.

SIOCSIFDSTADDR X'8020A70E' 32 0 For IBM use only.

SIOCSIFFLAGS X'8020A710' 32 0 For IBM use only.

SIOCSIFMETRIC X'8020A718' 32 0 For IBM use only.

SIOCTLSQUERY X'803ADA03' 58 0 arg data is the C language
struct QueryTLS. See Table 21 on
page 148 for assembler language
equivalent. 1

LISTEN
The LISTEN call:

• Completes the bind, if BIND has not already been called for the socket.
• Creates a connection-request queue of a specified length for incoming connection requests.

The LISTEN call is typically used by a concurrent server to receive connection requests from clients. When
a connection request is received, a new socket is created by a later ACCEPT call. The original socket
continues to listen for additional connection requests. The LISTEN call converts an active socket to a
passive socket and configures it to accept connection requests from client programs. If a socket is passive
it cannot initiate connection requests.

1 For additional information on using secure ioctls, refer to “Secure Connection Considerations” on page 21.

LISTEN

Chapter 4. Inter-User Communication Vehicle Sockets 173

 rc = listen(s, backlog)
 int rc, s, backlog;

Keyword
Value

TRGCLS
High-order halfword = 13

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword = 0

Low-order fullword = backlog

ANSLEN
8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the LISTEN call. A return code
of 0 indicates that the call was successful. A return
code of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

MAXDESC
Your program specifies the maximum number of Internet domain (AF_INET and AF_INET6) sockets in the
initialization message. For more information about the initialization message, see “Initializing the IUCV
Connection” on page 143.

READ, READV
From the point of view of TCP/IP, the READ and READV calls are identical. From the point of view of the
application, they differ only in that the buffer for READ is contiguous in storage, while the buffer for READV
might not be contiguous.

Your program, utilizing the direct IUCV socket interface, can use the ANSLIST=YES parameter on IUCV
SEND to specify a noncontiguous READ buffer. You can choose to use ANSLIST=YES even if your READ
buffer is contiguous, so that the reply area for cc and errno need not adjoin the READ buffer in storage.

This section does not distinguish between READ and READV. IUCV usage is described in terms of variable
names from the C language syntax of READ.

 cc = read(s, buf, len)
 int cc, s;
 char *buf;
 int len;

Keyword
Value

TRGCLS
High-order halfword = 14

Low-order halfword = s

MAXDESC

174 z/VM: 7.3 TCP/IP Programmer's Reference

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
For AF_INET: len + 24

For AF_INET6: len + 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes read. A value of zero means
the partner has closed the connection. A value of -1
indicates that the function could not be completed and
that errno contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 For AF_INET:
16

For
AF_INET6:

28

Your program should ignore this field.

24 *buf len The received data.

RECV, RECVFROM, RECVMSG
From the point of view of TCP/IP, the RECV, RECVFROM, and RECVMSG calls are identical.

From the point of view of the application, RECVFROM differs from RECV in that RECVFROM additionally
provides the source address of the message. Your program, using the direct IUCV socket interface, must
provide space to receive the source address of the message, even if the source address is not required.

From the point of view of the application, RECVMSG differs from RECVFROM in that RECVMSG additionally
allows the buffer to be in noncontiguous storage. Your program, utilizing the direct IUCV socket interface,
can use the ANSLIST=YES parameter on IUCV SEND to specify a noncontinuous read buffer. You can
choose to use ANSLIST=YES even if your read buffer is contiguous, so that the reply area for cc and errno,
and the space to receive the source address of the message, need not adjoin the read buffer in storage.

For AF_INET:

 cc = recvfrom(s, buf, len, flags, from, fromlen)
 int cc, s;
 char *buf;
 int len, flags;
 struct sockaddr_in *from;
 int *fromlen;

For AF_INET6:

 cc = recvfrom(s, buf, len, flags, from, fromlen)
 int cc, s;
 char *buf;
 int len, flags;
 struct sockaddr_in6 *from;
 int *fromlen;

RECV, RECVFROM, RECVMSG

Chapter 4. Inter-User Communication Vehicle Sockets 175

Keyword
Value

TRGCLS
High-order halfword = 16

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword = 0.

Low-order fullword = flags:

MSG_OOB (X'00000001')

MSG_PEEK (X'00000002')

ANSLEN
For AF_INET: len + 24

For AF_INET6: len + 36

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes read. A value of zero indicates
that communication is closed. A value of -1 indicates
that the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

Note: The rest of the reply buffer is filled only if the call
was successful.

8 *from For AF_INET:
16

For
AF_INET6:

28

The source address and port of the message. See Table
21 on page 148 for format.

24 *buf len The received data.

SELECT, SELECTEX
From the point of view of the TCP/IP, the SELECT and SELECTEX calls are identical. From the point of view
of the application, they differ in that return from SELECTEX can be triggered by the posting of an ECB as
well as the selection of a descriptor or a time-out.

Multiple SELECT calls, referring to any combination of sockets, can be queued simultaneously on an IUCV
path.

 nfound = select(nfds, readfds, writefds, exceptfds, timeout)
 int nfound, nfds;
 fd_set *readfds, *writefds, *exceptfds;
 struct timeval *timeout;

Descriptor Sets
A descriptor set is an array of fullwords. The following is the required array size in integer arithmetic:

SELECT, SELECTEX

176 z/VM: 7.3 TCP/IP Programmer's Reference

number_of_fullwords = (nfds + 31) / 32
number_of_bytes = number_of_fullwords * 4

DESCRIPTOR_SET, FD_CLR, FD_ISSET Calls
The following describes how to perform the function of these C language calls, which set, clear, and test
the bit in the specified descriptor set corresponding to the specified descriptor number.

You can compute the offset of the fullword containing the bit (integer arithmetic) as follows:

offset = (descriptor_number / 32) * 4

Compute a mask to locate the bit within the fullword by:

bitmask = X'00000001' << (descriptor_number modulo 32)

(“<<” is the left-shift operator).

Then use the mask, or a complemented copy of the mask, to set, clear, or test the bit, as appropriate.

The IUCV SEND parameters particular to select are:
Keyword

Value
TRGCLS

High-order halfword = 19

Low-order halfword = descriptor set size in bytes (fdsize). See “Descriptor Sets” on page 176.

DATA
BUFFER

BUFLEN
(3*fdsize)+28

BUFFER
The pointer to the message in the following format:

Offset Name Length Number of file descriptors

0 nfds 4 To improve processing efficiency, nfds should be no
greater than one plus the largest descriptor number
actually in use.

4 4 Set this field to zero if you want select to block.
Otherwise set this field to any nonzero value and fill in
*timeval.

8 4 If any descriptor bits are set in readfds, your program
sets this field to a nonzero value. If no descriptor bits
are set in readfds, your program can set this field to
zero, to improve processing efficiency

12 4 If any descriptor bits are set in writefds, your program
sets this field to a nonzero value. If no descriptor bits
are set in writefds, your program can set this field to
zero to improve processing efficiency.

16 4 If any descriptor bits are set in exceptfds, your
program sets this field to a nonzero value. If no
descriptor bits are set in exceptfds your program can
set this field to zero to improve processing efficiency.

20 *timeval 8 See Table 21 on page 148 for format. If field at offset
4 is zero, then set this field to binary zeros.

SELECT, SELECTEX

Chapter 4. Inter-User Communication Vehicle Sockets 177

Offset Name Length Number of file descriptors

28 *readfds fdsize If field at offset 8 is zero, then this field is not used.

28 +
fdsize

*writefds fdsize If field at offset 12 is zero, then this field is not used.

28 + (2 *
fdsize)

*exceptfds fdsize If field at offset 16 is zero, then this field is not used.

ANSLEN
(3*fdsize)+16

ANSBUF
The pointer to the buffer that is filled in with a reply in the following format:

Offset Name Length Comments

0 nfound 4 The total number of ready sockets (in all bit masks).
A value of zero indicates an expired time limit. A
value of -1 indicates that the function could not be
completed and that errno contains a reason code.

4 errno 4 When nfound is -1, this field contains a reason code.

8 8 Your program ignores this field.

Note: The rest of the reply buffer is filled only if the
call was successful.

16 *readfds fdsize If field at offset 8 in request data was zero, then
your program ignores this field.

16 + fdsize *writefds fdsize If field at offset 12 in request data was zero, then
your program ignores this field.

16 + (2 *
fdsize)

*exceptfds fdsize If field at offset 16 in request data was zero, then
your program ignores this field.

SEND
The SEND call sends datagrams on a specified connected socket.

The flags field allows you to:

• Send out-of-band data, for example, interrupts, aborts, and data marked urgent.
• Suppress use of local routing tables. This implies that the caller takes control of routing, writing network

software.

For datagram sockets, the entire datagram is sent if the datagram fits into the buffer. Excess data is
discarded.

For stream sockets, data is processed as streams of information with no boundaries separating data the
data. For example, if a program is required to send 1000 bytes, each call to this function can send any
number of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in errno Therefore,
programs using stream sockets should place this call in a loop, reissuing the call until all data has been
sent.

 cc = send(s, msg, len, flags)
 int cc, s;
 char *msg;
 int len, flags;

Keyword
Value

SEND

178 z/VM: 7.3 TCP/IP Programmer's Reference

TRGCLS
High-order halfword = 20

Low-order halfword = s

BUFLEN
For AF_INET: len + 20

For AF_INET6: len + 32

DATA
BUFFER

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments

0 flags 4 MSG_OOB (X'00000001')
MSG_DONTROUTE (X'00000004')

4 For AF_INET:
16

For
AF_INET6:

28

Your program should set this field to binary zeros.

20 *msg len The data to be sent.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled in with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of -1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

SENDMSG
From the point of view of TCP/IP, the SENDMSG call with a null msg->msg_name parameter is identical to
the SEND call. Similarly, the SENDMSG call with a non-null msg->msg_name parameter is identical to the
SENDTO call.

From the point of view of the application, SENDMSG differs from SEND and SENDTO in that SENDMSG
additionally allows the write buffer to be in noncontiguous storage.

Your program, using the direct IUCV socket interface can use the BUFLIST=YES parameter on IUCV SEND
to specify a noncontiguous write buffer. You can choose to use BUFLIST=YES even if your write buffer is
contiguous, so that the fields preceding the write data in the request format need not adjoin the write data
in storage.

See “SEND” on page 178 and “SENDTO” on page 180 for more information.

SENDMSG

Chapter 4. Inter-User Communication Vehicle Sockets 179

SENDTO
SENDTO is similar to SEND, except that it includes the destination address parameter. You can use the
destination address on the SENDTO call to send datagrams on a UDP socket that is connected or not
connected.

Use the flags parameter to :

• Send out-of-band data such as, interrupts, aborts, and data marked as urgent.
• Suppress the local routing tables. This implies that the caller takes control of routing, which requires

writing network software.

For datagram sockets, the SENDTO call sends the entire datagram if the datagram fits into the buffer.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each SENDTO call can send any number of
bytes, up to the entire 1000 bytes, with the number of bytes sent returned in errno. Therefore, programs
using stream sockets should place SENDTO in a loop that repeats the call until all data has been sent.

For AF_INET:

 cc = sendto(s, msg, len, flags, to, tolen)
 int cc, s;
 char *msg;
 int len, flags;
 struct sockaddr_in *to;
 int tolen;

For AF_INET6:

 cc = sendto(s, msg, len, flags, to, tolen)
 int cc, s;
 char *msg;
 int len, flags;
 struct sockaddr_in6 *to;
 int tolen;

Keyword
Value

TRGCLS
High-order halfword = 22

Low-order halfword = s

DATA
BUFFER

BUFLEN
For AF_INET: len + 20

For AF_INET6: len + 32

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments

0 flags 4 MSG_OOB (X'00000001')
MSG_DONTROUTE (X'00000004')

4 *to For AF_INET:
16

For
AF_INET6:

28

See Table 21 on page 148 for format.

SENDTO

180 z/VM: 7.3 TCP/IP Programmer's Reference

Offset Name Length Comments

20 *msg len The data to be sent.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of -1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket.

 rc = setsockopt(s, level, optname, optval, optlen)
 int rc, s, level, optname;
 char *optval;
 int optlen;

Keyword
Value

TRGCLS
High-order halfword = 23

Low-order halfword = s

DATA
BUFFER

BUFLEN
16 for option SO_LINGER, 12 for all other options

BUFFER
Points to a buffer in the following format:

Offset Name Length Comments

0 level 4 X'FFFF' - SOL_SOCKET - Socket option

X'0006' - IPPROTO_TCP - TCP protocol option

4 optname 4 Option to set. See Table 23 on page 181 for values.

8 *optval 4 or 8 The value of the specified option. If the option
SO_LINGER is specified, 8 bytes are needed. For all
other options, 4 bytes are needed.

Table 23. Option name values for SETSOCKOPT

Value Option Name Option Value

X'0001' SO_DEBUG On (1) or Off (0). Option may be set, but has no effect.

X'0004' SO_REUSEADDR Yes (1) or No (0).

X'0008' SO_KEEPALIVE Yes (1) or No (0).

X'0010' SO_DONTROUTE Yes (1) or No (0). Option may be set, but has no effect. Use
MSG_DONTROUTE on write-type calls instead.

SETSOCKOPT

Chapter 4. Inter-User Communication Vehicle Sockets 181

Table 23. Option name values for SETSOCKOPT (continued)

Value Option Name Option Value

X'0020' SO_BROADCAST Yes (1) or No (0).

X'0080' SO_LINGER Value is a C language struct linger. See Table 21 on page 148 for the
assembler language equivalent.

X'0100' SO_OOBINLINE Yes (1) or No (0).

Note: The following option applies only to level=IPPROTO_TCP

X'0001' TCP_NODELAY Yes (1) or No (0).

ANSLEN
8

ANSBUF
Points to a buffer to contain the reply from TCP/IP:

Offset Name Length Comments

0 rc 4 The return code from the SETSOCKOPT call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

SHUTDOWN
The normal way to terminate a network connection is to issue the CLOSE call which attempts to complete
all outstanding data transmission requests prior to breaking the connection. The SHUTDOWN call can be
used to close one-way traffic while completing data transfer in the other direction. The how parameter
determines the direction of the traffic to shutdown.

A client program can use the SHUTDOWN call to reuse a given socket with a different connection.

 rc = shutdown(s, how)
 int rc, s, how;

Keyword
Value

TRGCLS
High-order halfword = 24

Low-order halfword = s

DATA
PRMMSG

PRMMSG
High-order fullword = 0

Low-order fullword = how:

0 = receive
1 = send
2 = both

ANSLEN
8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

SHUTDOWN

182 z/VM: 7.3 TCP/IP Programmer's Reference

Offset Name Length Comments

0 rc 4 The return code from the SHUTDOWN call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket descriptor representing the
endpoint. Different types of sockets provide different communication services.

 s = socket(domain, type, protocol)
 int s, domain, type, protocol

Keyword
Value

TRGCLS
High-order halfword = 25

Low-order halfword = 0

DATA
BUFFER

BUFLEN
16

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments

0 domain 4 Values are:

AF_INET (X'00000002')

AF_INET6 (X'00000013')

4 type 4 Fullword integer:

SOCK_STREAM (X'00000001')

SOCK_DGRAM (X'00000002')

SOCK_RAW (X'00000003')

8 protocol 4 Fullword integer:

IPPROTO_ICMP (X'00000001')

IPPROTO_TCP (X'00000006')

IPPROTO_UDP (X'00000011')

IPPROTO_RAW (X'000000FF')

12 s 4 Socket number for the new socket, chosen by your
program, in the range 0 through maxsock. See
“Initializing the IUCV Connection” on page 143.

ANSLEN
8

SOCKET

Chapter 4. Inter-User Communication Vehicle Sockets 183

ANSBUF
Points to the buffer that is filled with a reply in the following format:

Offset Name Length Comments

0 s 4 The socket number assigned to this communications
end point. A value of -1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When s is -1, this field contains a reason code.

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new socket. Typically,
a child server issues this call using client ID and socket descriptor data which it obtained from the
concurrent server. When TAKESOCKET is issued, a new socket descriptor is returned in errno. You should
use this new socket descriptor in later calls such as GETSOCKOPT, which require the s (socket descriptor)
parameter.

Note: Both concurrent servers and iterative servers are used by this interface. An iterative server handles
one client at a time. A concurrent server receives connection requests from multiple clients and creates
child servers that process the client requests. When a child server is created, the concurrent server gets
a new socket, passes the new socket to the child server, and dissociates itself from the connection. The
TCP/IP Listener program is an example of a concurrent server.

 s = takesocket(clientid, hisdesc)
 int s;
 struct clientid *clientid;
 int hisdesc;

Keyword
Value

TRGCLS
High-order halfword = 32

Low-order halfword = 0

DATA
BUFFER

BUFLEN
48

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments

0 *clientid 40 See Table 21 on page 148 for format.

40 hisdesc 4

44 s 4 Socket number for the new socket, chosen by your
program, in the range 0 through maxsock. See
“Initializing the IUCV Connection” on page 143.

ANSLEN
8

ANSBUF
The pointer to the buffer that is filled with a reply in the following format:

TAKESOCKET

184 z/VM: 7.3 TCP/IP Programmer's Reference

Offset Name Length Comments

0 s 4 The socket number assigned to this communications
end point. A value of -1 indicates that the function
could not be completed and that errno contains a
reason code.

4 errno 4 When s is -1, this field contains a reason code.

WRITE, WRITEV
From the point of view of TCP/IP, the WRITE and WRITEV calls are identical. From the point of view of
the application, WRITEV differs from WRITE in that WRITEV additionally allows the write buffer to be in
noncontiguous storage.

Your program, using the direct IUCV socket interface, can use the BUFLIST=YES parameter on IUCV SEND
to specify a noncontiguous write buffer. You can choose to use BUFLIST=YES even if your write buffer is
contiguous, so that the 20-byte prefix need not adjoin the write buffer in storage.

This section does not distinguish between WRITE and WRITEV. IUCV usage is described in terms of
variable names from the C language syntax of WRITE.

 cc = write(s, buf, len)
 int cc, s;
 char *buf;
 int len;

Keyword
Value

TRGCLS
High-order halfword = 26

Low-order halfword = s

DATA
BUFFER

BUFLEN
For AF_INET: len + 20

For AF_INET6: len + 32

BUFFER
The pointer to the message in the following format:

Offset Name Length Comments

0 For AF_INET:
20

For
AF_INET6:

32

Your program sets this parameter to binary zeros.

20 *buf len The data to be sent.

ANSLEN
8

ANSBUF
Points to the buffer that is filled with a reply in the following format:

WRITE, WRITEV

Chapter 4. Inter-User Communication Vehicle Sockets 185

Offset Name Length Comments

0 cc 4 The number of bytes sent. A value of -1 indicates that
the function could not be completed and that errno
contains a reason code.

4 errno 4 When cc is -1, this field contains a reason code.

LASTERRNO
As explained in “TCP/IP Response to an IUCV Request” on page 147, if TCP/IP uses IUCV REJECT to
respond to a socket request, your program uses the LASTERRNO special request to retrieve the return
code and errno.
Keyword

Value
TRGCLS

High-order halfword = 29

Low-order halfword = 0

DATA
PRMMSG

PRMMSG
Binary zeros

ANSLEN
8

ANSBUF
Points to the buffer that is filled in with a reply in the following format:

Offset Name Length Comments

0 rc 4 The return code from the last rejected call. A return
code of 0 indicates that the call was successful. A
return code of -1 indicates that the function could not
be completed and that errno contains a reason code.

4 errno 4 When the return code is -1, this field contains a reason
code.

LASTERRNO

186 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 5. Remote Procedure Calls

This chapter describes the high-level remote procedure calls (RPCs) implemented in TCP/IP, including the
RPC programming interface to the C language, and communication between processes.

The RPC protocol permits remote execution of subroutines across a TCP/IP network. RPC, together
with the eXternal Data Representation (XDR) protocol, defines a standard for representing data that is
independent of internal protocols or formatting. RPCs can communicate between processes on the same
or different hosts.

The RPC Interface
To use the RPC interface, you must be familiar with programming in the C language, and you should have a
working knowledge of networking concepts.

The RPC interface enables programmers to write distributed applications using high-level RPCs rather
than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a procedure to send a call
message to the server. When the message arrives, the server calls a dispatch routine, and performs the
requested service. The server sends back a reply message, after which the original procedure call returns
to the client program with a value derived from the reply message.

For sample RPC client, server, and raw data stream programs, see “Sample RPC Programs” on page 234.
Figure 35 on page 188 and Figure 36 on page 189 provide an overview of the high-level RPC client and
server processes from initialization through cleanup.

© Copyright IBM Corp. 1987, 2023 187

Figure 35. Remote Procedure Call (Client)

188 z/VM: 7.3 TCP/IP Programmer's Reference

Figure 36. Remote Procedure Call (Server)

Chapter 5. Remote Procedure Calls 189

Portmapper
Portmapper is the software that supplies client programs with the port numbers of server programs.

You can communicate between different computer operating systems when messages are directed to
port numbers rather than to targeted remote programs. Clients contact server programs by sending
messages to the port numbers where receiving processes receive the message. Because you make
requests to the port number of a server rather than directly to a server program, client programs need a
way to find the port number of the server programs they wish to call. Portmapper standardizes the way
clients locate the port number of the server programs supported on a network.

Portmapper resides on all hosts on well-known port 111.

The port-to-program information maintained by Portmapper is called the portmap. Clients ask
Portmapper about entries for servers on the network. Servers contact Portmapper to add or update
entries to the portmap.

Contacting Portmapper
To find the port of a remote program, the client sends an RPC to well-known port 111 of the server’s host.
If Portmapper has a portmap entry for the remote program, Portmapper provides the port number in a
return RPC. The client then requests the remote program by sending an RPC to the port number provided
by Portmapper.

Clients can save port numbers of recently called remote programs to avoid having to contact Portmapper
for each request to a server.

To see all the servers currently registered with Portmapper, use the RPCINFO command in the following
manner:

RPCINFO -p host_name

For more information about Portmapper and RPCINFO, see z/VM: TCP/IP User's Guide and z/VM: TCP/IP
Planning and Customization.

Target Assistance
Portmapper offers a program to assist clients in contacting server programs. If the client sends
Portmapper an RPC with the target program number, version number, procedure number, and arguments,
Portmapper searches the portmap for an entry, and passes the client’s message to the server. When the
target server returns the information to Portmapper, the information is passed to the client, along with the
port number of the remote program. The client can then contact the server directly.

RPCGEN Command
RPCGEN is a tool that generates C code to implement an RPC protocol. The input to RPCGEN is a language
similar to C, known as RPC language. For RPCGEN to work correctly you must have access to the CC EXEC
that is a part of the C compiler and have accessed the TCPIP Client-code minidisk (usually the TCPMAINT
592).

RPCGEN infile is normally used when you want to generate all four of the following output files. For
example, if the infile is named proto.x, RPCGEN generates:

• A header file called PROTO.H
• XDR routines called PROTOX.C
• Server-side stubs called PROTOS.C
• Client-side stubs called PROTOC.C

Note: A temporary file called PROTO.EXPANDED or PROTO.EXPAND is created by the RPCGEN command.
During normal operation, this file is also subsequently erased by the RPCGEN command.

190 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

For additional information about the RPCGEN command, see the Sun Microsystems publication, Network
Programming.

RPCGEN
 -c

 -h

 -l

 -m

 -o outfile

 -s TCP

UDP

 -o outfile

infile

Operand
Description

-c
Compiles into XDR routines.

-h
Compiles into C data definitions (a header file).

-l
Compiles into client-side stubs.

-m
Compiles into server-side stubs without generating a main routine. This option is useful for call-back
routines and for writing a main routine for initialization.

-s TCP|UDP
Compiles into server-side stubs using the given transport. The TCP option supports the TCP transport
protocol. The UDP option supports the UDP transport protocol.

-o outfile
Specifies the name of the output file. If none is specified, standard output is used for -c, -h, -l, -m, and
-s modes.

infile
Specifies the name of the input file written in the RPC language. infile should be a variable record
format file (RECFM V).

enum clnt_stat Structure
The enumerated set clnt_stat structure is defined in the CLNT.H header file.

RPCs frequently return the enumerated set clnt_stat information. The following is the format and a
description of the enumerated set clnt_stat structure:

enum clnt_stat {
 RPC_SUCCESS=0, /* call succeeded */
 /*
 * local errors
 */
 RPC_CANTENCODEARGS=1, /* can't encode arguments */
 RPC_CANTDECODERES=2, /* can't decode results */
 RPC_CANTSEND=3, /* failure in sending call */
 RPC_CANTRECV=4, /* failure in receiving result */
 RPC_TIMEDOUT=5, /* call timed out */
 /*
 * remote errors
 */
 RPC_VERSMISMATCH=6, /* RPC versions not compatible */
 RPC_AUTHERROR=7, /* authentication error */
 RPC_PROGUNAVAIL=8, /* program not available */
 RPC_PROGVERSMISMATCH=9, /* program version mismatched */

Chapter 5. Remote Procedure Calls 191

 RPC_PROCUNAVAIL=10, /* procedure unavailable */
 RPC_CANTDECODEARGS=11, /* decode arguments error */
 RPC_SYSTEMERROR=12, /* generic “other problem” */
 /*
 * callrpc errors
 */
 RPC_UNKNOWNHOST=13, /* unknown host name */
 /*
 * create errors
 */
 RPC_PMAPFAILURE=14, /* the pmapper failed in its call */
 RPC_PROGNOTREGISTERED=15, /* remote program is not registered */
 /*
 * unspecified error
 */
 RPC_FAILED=16, /* call failed */
 RPC_UNKNOWNPROTO=17 /* unknown protocol */
 };

Porting
This section contains information about porting RPC applications.

Accessing System Return Messages
To access system return values, you need only use the ERRNO.H include statement supplied with the
compiler. To access network return values, you must add the following include statement:

#include <tcperrno.h>

Printing System Return Messages
To print only system errors, use perror(), a procedure available in the C compiler run-time library. To print
both system and network errors, use tcperror(), a procedure included with TCP/IP.

Enumerations
To account for varying length enumerations, use the xdr_enum() and xdr_union() macros. xdr_enum()
cannot be referenced by callrpc(), svc_freeargs(), svc_getargs(), or svc_sendreply(). An XDR routine for
the specific enumeration must be created. The xdr_union() is not eligible for reference by these calls in
any RPC environment. For more information, see “xdr_enum()” on page 221.

Compiling, Linking, and Running an RPC Program
Note: If your program uses z/VM C sockets, follow the instructions in this section. If your program uses
VM TCP/IP C sockets, see “Recompiling with the TCP/IP C Sockets Library” on page 28.

Before you compile and link an RPC program, read the information under “Compiling and Linking a z/VM C
Sockets Program” on page 26 and “Running a Sockets Program” on page 29.

To compile, link and run an RPC program:

1. Access the TCP/IP Client-code disk (usually TCPMAINT 592), which contains the header files for RPC
and the VMRPC TXTLIB, after the disk that contains the Language Environment header files (usually
the Y-disk).

2. Specify the _OE_SOCKETS and VM preprocessor symbols in your source code or on the c89 command.
3. Compile the program using c89. The following are examples of how to compile the sample RPC

programs shown at the end of this chapter (see “Sample RPC Programs” on page 234):

c89 //genesend.c -D_OE_SOCKETS -l//VMRPC
c89 //geneserv.c -D_OE_SOCKETS -l//VMRPC
c89 //rawex.c -D_OE_SOCKETS -l//VMRPC

192 z/VM: 7.3 TCP/IP Programmer's Reference

Note the use of the // syntax before the name of the c part. This convention informs c89 that the c
source part will be found in the CMS search order. The previous three c89 commands will produce the
GENESEND MODULE, GENESERV MODULE, and RAWEX MODULE, respectively. Additionally, note that
-DVM is not specified on these compiles because the define for VM is in the C source.

4. Make sure that the SCEERUN LOADLIB is GLOBALed by issuing the command: GLOBAL LOADLIB
SCEERUN

5. Run your program from either the CMS command line or from a POSIX shell command line. For
example, run the GENESERV MODULE from the CMS command line as follows:

openvm run GENESERV

or

GENESERV

RPC Global Variables
This section describes the RPC global variables, rpc_createerr, svc_fds, and svc_fdset.

rpc_createerr
Description: A global variable that is set when any RPC client creation routine fails. Use
clnt_pcreateerror() to print the message.

#include <rpc.h>

struct rpc_createerr rpc_createerr;

See Also: clntraw_create(), clnttcp_create(), clntudp_create().

svc_fds

#include <rpc.h>

int svc_fds;

Description: A global variable that specifies the read descriptor bit set on the service machine. This is
of interest only if the service programmer decides to write an asynchronous event processing routine;
otherwise svc_run() should be used. Writing asynchronous routines in the VM environment is not simple,
because there is no direct relationship between the descriptors used by the socket routines and the Event
Control Blocks commonly used by VM programs for coordinating concurrent activities.

Attention: Do not modify this variable.

See Also: svc_getreq().

svc_fdset

#include <rpc.h>

fd_set svc_fdset;

Description: A global variable that specifies the read descriptor bit set on the service machine. This is
of interest only if the service programmer decides to write an asynchronous event processing routine;
otherwise svc_run() should be used. Writing asynchronous routines in the VM environment is not simple,

svc_fds

Chapter 5. Remote Procedure Calls 193

because there is no direct relationship between the descriptors used by the socket routines and the Event
Control Blocks commonly used by VM programs for coordinating concurrent activities.

Attention: Do not modify this variable.

See Also: svc_getreqset().

Remote Procedure Calls and External Data Representation
This section provides the syntax, operands, and other appropriate information for each remote procedure
and external data representation call supported by TCP/IP.

auth_destroy()

#include <rpc.h>

void auth_destroy(auth)
AUTH *auth;

Operand
Description

auth
Points to authentication information.

Description: The auth_destroy() call deletes the authentication information for auth. Once this procedure
is called, auth is undefined.

See Also: authnone_create(), authunix_create(), authunix_create_default().

authnone_create()

#include <rpc.h>
AUTH *
authnone_create()

The authnone_create() call has no operands.

Description: The authnone_create() call creates and returns an RPC authentication handle. The handle
passes the NULL authentication on each call.

See Also: auth_destroy(), authunix_create(), authunix_create_default().

authunix_create()

#include <rpc.h>

AUTH *
authunix_create(host, uid, gid, len, aup_gids)
char *host;
int uid;
int gid;
int len;
int *aup_gids;

Operand
Description

auth_destroy()

194 z/VM: 7.3 TCP/IP Programmer's Reference

host
Specfies a pointer to the symbolic name of the host where the desired server is located.

uid
Identifies the user’s user ID.

gid
Identifies the user’s group ID.

len
Specifies the length of the information pointed to by aup_gids.

aup_gids
Specifies a pointer to an array of groups to which the user belongs.

Description: The authunix_create() call creates and returns an authentication handle that contains
UNIX-based authentication information.

See Also: auth_destroy(), authnone_create(), authunix_create_default().

authunix_create_default()

#include <rpc.h>

AUTH *
authunix_create_default()

The authunix_create_default() call has no operands.

Description: The authunix_create_default() call calls authunix_create() with default operands.

See Also: auth_destroy(), authnone_create(), authunix_create().

callrpc()

#include <rpc.h>

enum clnt_stat
callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;

Operand
Description

host
Specifies a pointer to the symbolic name of the host where the desired server is located.

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Specifies the XDR procedure used to encode the arguments of the remote procedure.

authunix_create_default()

Chapter 5. Remote Procedure Calls 195

in
Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote procedure.

out
Specifies a pointer to the results of the remote procedure.

Description: The callrpc() call calls the remote procedure described by prognum, versnum, and procnum
running on the host system. callrpc() encodes and decodes the operands for transfer.

Note:

1. clnt_perrno() can be used to translate the return code into messages.
2. callrpc() cannot call the procedure xdr_enum. See “xdr_enum()” on page 221 for more information.
3. This procedure uses UDP as its transport layer, see “clntudp_create()” on page 204 for more

information.

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the
remote procedure call are returned to out.

See Also: clnt_broadcast(), clnt_call(), clnt_perrno(), clntudp_create(), clnt_sperrno(), xdr_enum().

clnt_broadcast()

#include <rpc.h>

enum clnt_stat
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult)
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
resultproc_t eachresult;

Operand
Description

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Specifies the XDR procedure used to encode the arguments of the remote procedure.

in
Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote procedure.

out
Specifies a pointer to the results of the remote procedure.

eachresult
Specifies the procedure called after each response.

Note: resultproc_t is a type definition:

clnt_broadcast()

196 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>

typedef bool_t (*resultproc_t) ();

Description: The clnt_broadcast() call broadcasts the remote procedure described by prognum, versnum,
and procnum to all locally connected broadcast networks. Each time clnt_broadcast() receives a response
it calls eachresult(). The format of eachresult() is:

#include <rpc.h>

bool_t eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

Operand
Description

out
Has the same function as it does for clnt_broadcast(), except that the output of the remote procedure
is decoded.

addr
Points to the address of the machine that sent the results.

Return Values: If eachresult() returns 0, clnt_broadcast() waits for more replies; otherwise, eachresult()
returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the data link.

See Also: callrpc(), clnt_call().

clnt_call()

#include <rpc.h>

enum clnt_stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)
CLIENT *clnt;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;

Operand
Description

clnt
Points to a client handle that was previously obtained using clntraw_create(), clnttcp_create(), or
clntudp_create().

procnum
Identifies the remote procedure number.

inproc
Identifies the XDR procedure used to encode procnum’s arguments.

in
Points to the remote procedure’s arguments.

outproc
Specifies the XDR procedure used to decode the remote procedure’s results.

out
Points to the remote procedure’s results.

clnt_call()

Chapter 5. Remote Procedure Calls 197

tout
Specifies the time allowed for the server to respond.

Description: The clnt_call() call calls the remote procedure (procnum) associated with the client handle
(clnt).

Return Values: RPC_SUCCESS indicates success; otherwise, an error has occurred. The results of the
remote procedure call are returned to out.

See Also: callrpc(), clnt_broadcast(), clnt_geterr(), clnt_perror(), clnt_sperror(), clntraw_create(),
clnttcp_create(), clntudp_create().

clnt_control()

#include <rpc.h>

bool_t
clnt_control(clnt, request, info)
CLIENT *clnt;
int request;
void *info;

Operand
Description

clnt
Specifies the pointer to a client handle that was previously obtained using clntraw_create(),
clnttcp_create(), or clntudp_create().

request
Determines the operation (either CLSET_TIMEOUT, CLGET_TIMEOUT, CLGET_SERVER_ADDR,
CLSET_RETRY_TIMEOUT, or CLGET_RETRY_TIMEOUT).

info
Points to information used by the request.

Description: The clnt_control() call performs one of the following control operations.

• Control operations that apply to both UDP and TCP transports:
CLSET_TIMEOUT

Sets time-out (info points to the timeval structure).
CLGET_TIMEOUT

Gets time-out (info points to the timeval structure).
CLGET_SERVER_ADDR

Gets server’s address (info points to the sockaddr_in structure).
• UDP only control operations:

CLSET_RETRY_TIMEOUT
Sets retry time-out (information points to the timeval structure).

CLGET_RETRY_TIMEOUT
Gets retry time-out (info points to the timeval structure). If you set the timeout using clnt_control(),
the timeout operand to clnt_call() will be ignored in all future calls.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: clnt_create(), clnt_destroy(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_create()

clnt_control()

198 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>

CLIENT *
clnt_create(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
char *protocol;

Operand
Description

host
Points to the name of the host at which the remote program resides.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

protocol
Points to the protocol, which can be either tcp or udp.

Description: The clnt_create() call creates a generic RPC client transport handle for the remote program
specified by (prognum, versnum). The client uses the specified protocol as the transport layer. Default
timeouts are set, but can be modified using clnt_control().

Return Values: NULL indicates failure.

See Also: clnt_create(), clnt_destroy(), clnt_pcreateerror(), clnt_spcreateerror(), clnt_sperror(),
clnttcp_create(), clntudp_create().

clnt_destroy()

#include <rpc.h>

void
clnt_destroy(clnt)
CLIENT *clnt;

Operand
Description

clnt
Points to a client handle that was previously created using clnt_create(), clntudp_create(),
clnttcp_create(), or clntraw_create().

Description: The clnt_destroy() call deletes a client RPC transport handle. This procedure involves the
deallocation of private data resources, including clnt. Once this procedure is used, clnt is undefined. If the
RPC library opened the associated socket, it will close it also. Otherwise, the socket remains open.

See Also: clnt_control(), clnt_create(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_freeres()

#include <rpc.h>

bool_t
clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

clnt_destroy()

Chapter 5. Remote Procedure Calls 199

Operand
Description

clnt
Points to a client handle that was previously obtained using clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create().

outproc
Specifies the XDR procedure used to decode the remote procedure’s results.

out
Points to the results of the remote procedure.

Description: The clnt_freeres() call deallocates any resources that were assigned by the system to
decode the results of an RPC.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: clntraw_create(), clnttcp_create(), clntudp_create().

clnt_geterr()

#include <rpc.h>

void
clnt_geterr(clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;

Operand
Description

clnt
Points to a client handle that was previously obtained using clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create().

errp
Points to the address into which the error structure is copied.

Description: The clnt_geterr() call copies the error structure from the client handle to the structure at
address errp.

See Also: clnt_call(), clnt_pcreateerror(), clnt_perrno(), clnt_perror(), clnt_spcreateerror(),
clnt_sperrno(), clnt_sperror(), clnt_create(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_pcreateerror()

#include <rpc.h>

void
clnt_pcreateerror(s)
char *s;

Operand
Description

s
Specifies a NULL or NULL-terminated character string. If s is non-NULL, clnt_pcreateerror() prints the
string s followed by a colon, followed by a space, followed by the error message, and terminated with
a newline character. If s is NULL or points to a NULL string, just the error message and the newline
character are output.

clnt_geterr()

200 z/VM: 7.3 TCP/IP Programmer's Reference

Description: The clnt_pcreateerror() call writes a message to the standard error device, indicating
why a client handle cannot be created. This procedure is used after the clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create() calls fail.

See Also: clnt_create(), clnt_geterr(), clnt_perrno(), clnt_perror(), clnt_spcreateerror(), clnt_sperrno(),
clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_perrno()

#include <rpc.h>

void
clnt_perrno(stat)
enum clnt_stat stat;

Operand
Description

stat
Specifies the client status.

Description: The clnt_perrno() call writes a message to the standard error device corresponding to the
condition indicated by stat. This procedure should be used after callrpc() if there is an error.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperrno(),
clnt_sperror().

clnt_perror()

#include <rpc.h>

void
clnt_perror(clnt, s)
CLIENT *clnt;
char *s;

Operand
Description

clnt
Points to a client handle that was previously obtained using clnt_create(), clntudp_create(),
clnttcp_create(), or clntraw_create().

s
Specifies a NULL or NULL-terminated character string. If s is non-NULL, clnt_perror() prints the string
s followed by a colon, followed by a space, followed by the error message, and terminated with a
new-line character. If s is NULL or points to a NULL string, just the error message and the new-line
character are output.

Description: The clnt_perror() call writes a message to the standard error device, indicating why an RPC
failed. This procedure should be used after clnt_call() if there is an error.

See Also: clnt_call(), clnt_create(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(), clnt_spcreateerror(),
clnt_sperrno(), clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_spcreateerror()

clnt_perrno()

Chapter 5. Remote Procedure Calls 201

#include <rpc.h>

char *
clnt_spcreateerror(s)
char *s;

Operand
Description

s
Specifies a NULL or NULL-terminated character string. If s is non-NULL, clnt_spcreateerror() prints the
string s followed by a colon, followed by a space, followed by the error message, and terminated with
a new-line character. If s is NULL or points to a NULL string, just the error message and the new-line
character are output.

Description: The clnt_spcreateerror() call returns the address of a message indicating why a
client handle cannot be created. This procedure is used after the clnt_create(), clntraw_create(),
clnttcp_create(), or clntudp_create() calls fail.

Return Values: Returns a pointer to a character string in a static data area. This data area is overwritten
with each subsequent call. This function is not thread-safe.

See Also: clnt_create(), clnt_geterr(), clnt_perrno(), clnt_perror(), clnt_pcreateerror(), clnt_sperrno(),
clnt_sperror(), clntraw_create(), clnttcp_create(), clntudp_create().

clnt_sperrno()

#include <rpc.h>

char *
clnt_sperrno(stat)
enum clnt_stat stat;

Operand
Description

stat
Specifies the client status.

Description: The clnt_sperrno() call returns the address of a message corresponding to the condition
indicated by stat. This procedure should be used after callrpc() if there is an error.

Return Values: Returns a pointer to a character string ending with a newline. This data area is overwritten
with each subsequent call. This function is not thread-safe.

See Also: callrpc(), clnt_geterr(), clnt_pcreateerror(), clnt_spcreateerror(), clnt_sperror(), clnt_perrno(),
clnt_perror().

clnt_sperror()

#include <rpc.h>

char *
clnt_sperror(clnt, s)
CLIENT *clnt;
char *s;

Operand
Description

clnt_sperrno()

202 z/VM: 7.3 TCP/IP Programmer's Reference

clnt
Points to a client handle that was previously obtained using clnt_create(), clntudp_create(),
clnttcp_create(), or clntraw_create().

s
Specifies a NULL or a NULL-terminated character string. If s is non-NULL, clnt_sperror() prints the
string s followed by a colon, followed by a space, followed by the error message, and terminated with
a newline character. If s is NULL or points to a NULL string, just the error message and the newline
character are output.

Description: The clnt_sperror() call returns the address of a message indicating why an RPC failed. This
procedure should be used after clnt_call() if there is an error.

Return Values: Returns a pointer to a character string in a static data area. This data area is overwritten
with each subsequent call. This function is not thread-safe.

See Also: clnt_call(), clnt_create(), clnt_geterr(), clnt_pcreateerror(), clnt_perrno(), clnt_perror(),
clnt_spcreateerror(), clnt_sperrno(), clntraw_create(), clnttcp_create(), clntudp_create().

clntraw_create()

#include <rpc.h>

CLIENT *
clntraw_create(prognum, versnum)
u_long prognum;
u_long versnum;

Operand
Description

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

Description: The clntraw_create() call creates a dummy client for the remote double (prognum,
versnum). Because messages are passed using a buffer within the virtual machine of the local process,
the server should also use the same virtual machine, which simulates RPC programs within one virtual
machine. For more information, see “svcraw_create()” on page 216.

Return Values: NULL indicates failure.

See Also: clnt_call(), clnt_destroy(), clnt_freeres(), clnt_geterr(), clnt_pcreateerror(), clnt_perror(),
clnt_spcreateerror(), clnt_sperror(), clntudp_create(), clnttcp_create(), svcraw_create().

clnttcp_create()

#include <rpc.h>

CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int *sockp;
u_int sendsz;
u_int recvsz;

Operand
Description

clntraw_create()

Chapter 5. Remote Procedure Calls 203

addr
Points to the internet address of the remote program. If the addr port number is zero (addr ->
sin_port), addr is set to the port on which the remote program is receiving.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

sockp
Points to the socket. If *sockp is RPC_ANYSOCK, then this routine opens a new socket and sets
*sockp.

sendsz
Specifies the size of the send buffer. Specify 0 to choose the default.

recvsz
Specifies the size of the receive buffer. Specify 0 to choose the default.

Description: The clnttcp_create() call creates an RPC client transport handle for the remote program
specified by (prognum, versnum). The client uses TCP as the transport layer.

Return Values: NULL indicates failure.

See Also: clnt_call(), clnt_control(), clnt_create(), clnt_destroy(), clnt_freeres(), clnt_geterr(),
clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperror(), clntraw_create(), clntudp_create().

clntudp_create()

#include <rpc.h>

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
struct timeval wait;
int *sockp;

Operand
Description

addr
Points to the internet address of the remote program. If the addr port number is zero (addr->
sin_port), addr is set to the port on which the remote program is receiving. The remote portmap
service is used for this.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

wait
Indicates that UDP resends the call request at intervals of wait time, until either a response is
received or the call times out. The time-out length is set using the clnt_call() procedure.

sockp
Points to the socket. If *sockp is RPC_ANYSOCK, this routine opens a new socket and sets *sockp.

Description: The clntudp_create() call creates a client transport handle for the remote program
(prognum) with version (versnum). UDP is used as the transport layer.

Note: This procedure should not be used with procedures that use large arguments or return large results.
While UDP packet size is configurable to a maximum of 64–1 kilobytes, the default UDP packet size is only
eight kilobytes.

clntudp_create()

204 z/VM: 7.3 TCP/IP Programmer's Reference

Return Values: NULL indicates failure.

See Also: call_rpc(), clnt_call(), clnt_control(), clnt_create(), clnt_destroy(), clnt_freeres(), clnt_geterr(),
clnt_pcreateerror(), clnt_perror(), clnt_spcreateerror(), clnt_sperror(), clntraw_create(), clnttcp_create().

get_myaddress()

#include <rpc.h>

void
get_myaddress(addr)
struct sockaddr_in *addr;

Operand
Description

addr
Points to the location where the local internet address is placed.

Description: The get_myaddress() call puts the local host’s internet address into addr. The port number
(addr—>sin_port) is set to htons (PMAPPORT), which is 111.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

getrpcport()

#include <rpc.h>

u_short
getrpcport(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
int protocol;

Operand
Description

host
Points to the name of the foreign host.

prognum
Specifies the program number to be mapped.

versnum
Specifies the version number of the program to be mapped.

protocol
Specifies the transport protocol used by the program (IPPROTO_TCP or IPPROTO_UDP).

Description: The getrpcport() call returns the port number associated with the remote program
(prognum), the version (versnum), and the transport protocol (protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the remote portmap could
not be contacted. If Portmapper cannot be contacted, rpc_createerr contains the RPC status.

See Also: get_myaddress(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set(),
pmap_unset().

pmap_getmaps()

get_myaddress()

Chapter 5. Remote Procedure Calls 205

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

struct pmaplist *
pmap_getmaps(addr)
struct sockaddr_in *addr;

Operand
Description

addr
Points to the internet address of the foreign host.

Description: The pmap_getmaps() call returns a list of current program-to-port mappings on the foreign
host specified by addr.

Return Values: Returns a pointer to a pmaplist structure or NULL.

See Also: getrpcport(), pmap_getport(), pmap_rmtcall(), pmap_set(), pmap_unset().

pmap_getport()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

u_short
pmap_getport(addr, prognum, versnum, protocol)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int protocol;

Operand
Description

addr
Points to the internet address of the foreign host.

prognum
Identifies the program number to be mapped.

versnum
Identifies the version number of the program to be mapped.

protocol
Specifies the transport protocol used by the program (IPPROTO_TCP or IPPROTO_UDP).

Description: The pmap_getport() call returns the port number associated with the remote program
(prognum), the version (versnum), and the transport protocol (protocol).

Return Values: The value 0 indicates that the mapping does not exist or that the remote portmap could
not be contacted. If Portmapper cannot be contacted, rpc_createerr contains the RPC status.

See Also: getrpcport() pmap_getmaps(), pmap_rmtcall(), pmap_set(), pmap_unset().

pmap_rmtcall()

pmap_getport()

206 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

enum clnt_stat
pmap_rmtcall(addr, prognum, versnum, procnum, inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;
u_long *portp;

Operand
Description

addr
Points to the internet address of the foreign host.

prognum
Identifies the remote program number.

versnum
Identifies the version number of the remote program.

procnum
Identifies the procedure to be called.

inproc
Identifies the XDR procedure used to encode the arguments of the remote procedure.

in
Points to the arguments of the remote procedure.

outproc
Identifies the XDR procedure used to decode the results of the remote procedure.

out
Points to the results of the remote procedure.

tout
Identifies the time-out period for the remote request.

portp
If the call from the remote portmap service is successful, portp contains the port number of the triple
(prognum, versnum, procnum).

Description: The pmap_rmtcall() call instructs Portmapper on the host at addr to make an RPC call to a
procedure on that host, on your behalf. This procedure should be used only for ping type functions.

Return Values: Returns a clnt_stat enumerated type.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_set(), pmap_unset().

pmap_set()

pmap_set()

Chapter 5. Remote Procedure Calls 207

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
pmap_set(prognum, versnum, protocol, port)
u_long prognum;
u_long versnum;
int protocol;
u_short port;

Operand
Description

prognum
Identifies the local program number.

versnum
Identifies the version number of the local program.

protocol
Specifies the transport protocol used by the local program.

port
Identifies the port to which the local program is mapped.

Description: The pmap_set() call sets the mapping of the program (specified by prognum, versnum,
and protocol) to port on the local machine. This procedure is automatically called by the svc_register()
procedure.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_unset().

pmap_unset()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
pmap_unset(prognum, versnum)
u_long prognum;
u_long versnum;

Operand
Description

prognum
Identifies the local program number.

versnum
Identifies the version number of the local program.

Description: The pmap_unset() call removes the mappings associated with prognum and versnum on
the local machine. All ports for each transport protocol currently mapping the prognum and versnum are
removed from the portmap service.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: getrpcport(), pmap_getmaps(), pmap_getport(), pmap_rmtcall(), pmap_set().

registerrpc()

pmap_unset()

208 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>

int
registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum;
u_long versnum;
u_long procnum;
char *(*procname) ();
xdrproc_t inproc;
xdrproc_t outproc;

Operand
Description

prognum
The program number to register.

versnum
Identifies the version number to register.

procnum
Specifies the procedure number to register.

procname
Specifies the procedure that is called when the registered program is requested. procname must
accept a pointer to its arguments, and return a static pointer to its results.

inproc
Specifies the XDR routine used to decode the arguments.

outproc
Specifies the XDR routine that encodes the results.

Description: The registerrpc() call registers a procedure (prognum, versnum, procnum) with the local
Portmapper, and creates a control structure to remember the server procedure and its XDR routine.
The control structure is used by svc_run(). When a request arrives for the program (prognum, versnum,
procnum), the procedure procname is called. Procedures registered using registerrpc() are accessed using
the UDP transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See “xdr_enum()” on page 221 for more
information.

Return Values: The value 0 indicates success; the value -1 indicates an error.

See Also: svc_register(), svc_run().

svc_destroy()

#include <rpc.h>

void
svc_destroy(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The svc_destroy() call deletes the RPC service transport handle xprt, which becomes
undefined after this routine is called.

See Also: svcraw_create(), svctcp_create(), svcudp_create().

svc_destroy()

Chapter 5. Remote Procedure Calls 209

svc_freeargs()

#include <rpc.h>

bool_t
svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Operand
Description

xprt
Points to the service transport handle.

inproc
Specifies the XDR routine used to decode the arguments.

in
Points to the input arguments.

Description: The svc_freeargs() call frees storage allocated to decode the arguments to a service
procedure using svc_getargs().

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_getargs().

svc_getargs()

#include <rpc.h>

bool_t
svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Operand
Description

xprt
Points to the service transport handle.

inproc
Specifies the XDR routine used to decode the arguments.

in
Points to the decoded arguments.

Description: The svc_getargs() call uses the XDR routine inproc to decode the arguments of an RPC
request associated with the RPC service transport handle xprt. The results are placed at address in.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: svc_freeargs().

svc_getcaller()

svc_freeargs()

210 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>

struct sockaddr_in *
svc_getcaller(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: This macro obtains the network address of the client associated with the service transport
handle xprt.

Return Values: Returns a pointer to a sockaddr_in structure.

See Also: get_myaddress().

svc_getreq()

#include <rpc.h>

void
svc_getreq(rdfds)
int rdfds;

Operand
Description

rdfds
Specifies the read descriptor bit mask.

Description: The svc_getreq() call is used rather than svc_run() to implement asynchronous event
processing. The routine returns control to the program when all sockets have been serviced.

Note: svc_getreq() limits you to 32 socket descriptors, of which 3 are reserved. Use svc_getreqset() if you
have more than 29 socket descriptors.

See Also: svc_run().

svc_getreqset()

#include <rpc.h>
void
svc_getreqset(rdfds)
fd_set rdfds;

Operand
Description

rdfds
Specifies the read descriptor bit set.

Description: The svc_getreqset() call is used rather than svc_run() to implement asynchronous event
processing. The routine returns control to the program when all sockets have been serviced.

A server would use a select() call to determine if there are any outstanding RPC requests at any of the
sockets created when the programs were registered. The read bit descriptor set returned by select() is
then used on the call to svc_getreqset().

Note that you should not pass the global bit descriptor set svc_fdset on the call to select(), because
select() changes the values. Instead, you should make a copy of svc_fdset before you call select().

svc_getreq()

Chapter 5. Remote Procedure Calls 211

See Also: svc_run().

svc_register()

#include <rpc.h>

bool_t
svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum;
u_long versnum;
void (*dispatch) ();
int protocol;

Operand
Description

xprt
Points to the service transport handle.

prognum
Specifies the program number to be registered.

versnum
Specifies the version number of the program to be registered.

dispatch
Specifies the dispatch routine associated with prognum and versnum.

Specifies the structure of the dispatch routine is:

#include <rpc.h>

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

protocol
Specifies the protocol used. The value is generally one of the following:

• 0 (zero)
• IPPROTO_UDP
• IPPROTO_TCP

When a value of 0 is used, the service is not registered with Portmapper.

Note: When using a dummy RPC service transport created with svcraw_create(), a call to xprt_register()
must be made immediately after a call to svc_register().

Description: The svc_register() call associates the program described by (prognum, versnum) with the
service dispatch routine dispatch.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: registerrpc(), svc_unregister(), xprt_register().

svc_run()

#include <rpc.h>

void
svc_run()

The svc_run() call has no operands.

svc_register()

212 z/VM: 7.3 TCP/IP Programmer's Reference

Description: The svc_run() call does not return control. It accepts RPC requests and calls the appropriate
service using svc_getreqset().

See Also: svc_getreqset().

svc_sendreply()

#include <rpc.h>

bool_t
svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Operand
Description

xprt
Points to the caller’s transport handle.

outproc
Specifies the XDR procedure used to encode the results.

out
Points to the results.

Description: The svc_sendreply() call is called by the service dispatch routine to send the results of the
call to the caller.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_call().

svc_unregister()

#include <rpc.h>

void
svc_unregister(prognum, versnum)
u_long prognum;
u_long versnum;

Operand
Description

prognum
Specifies the program number that is removed.

versnum
Specifies the version number of the program that is removed.

Description: The svc_unregister() call removes all local mappings of (prognum, versnum) to dispatch
routines and (prognum, versnum, *) to port numbers.

See Also: svc_register().

svcerr_auth()

svc_sendreply()

Chapter 5. Remote Procedure Calls 213

#include <rpc.h>

void
svcerr_auth(xprt, why)
SVCXPRT *xprt;
enum auth_stat why;

Operand
Description

xprt
Points to the service transport handle.

why
Specifies the reason the call is refused.

Description: The svcerr_auth() call is called by a service dispatch routine that refuses to execute an RPC
request because of authentication errors.

See Also: svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

svcerr_decode()

#include <rpc.h>

void
svcerr_decode(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The svcerr_decode() call is called by a service dispatch routine that cannot decode its
operands.

See Also: svcerr_auth(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

svcerr_noproc()

#include <rpc.h>

void
svcerr_noproc(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The svcerr_noproc() call is called by a service dispatch routine that does not implement the
requested procedure.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noprog(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

svcerr_decode()

214 z/VM: 7.3 TCP/IP Programmer's Reference

svcerr_noprog()

#include <rpc.h>

void
svcerr_noprog(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: Description: The svcerr_noprog() call is used when the desired program is not registered.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth().

svcerr_progvers()

#include <rpc.h>

void
svcerr_progvers(xprt, low_vers, high_vers)
SVCXPRT *xprt;
u_long low_vers;
u_long high_vers;

Operand
Description

xprt
Points to the service transport handle.

low_vers
Specifies the low version number that does not match.

high_vers
Specifies the high version number that does not match.

Description: The svcerr_progvers() call is called when the version numbers of two RPC programs do
not match. The low version number corresponds to the lowest registered version, and the high version
corresponds to the highest version registered on the Portmapper.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth().

svcerr_systemerr()

#include <rpc.h>

void
svcerr_systemerr(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

svcerr_noprog()

Chapter 5. Remote Procedure Calls 215

Description: The svcerr_systemerr() call is called by a service dispatch routine when it detects a system
error that is not handled by the protocol.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_weakauth().

svcerr_weakauth()

#include <rpc.h>

void
svcerr_weakauth(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Note: This is the equivalent of: svcerr_auth(xprt, AUTH_TOOWEAK).

Description: The svcerr_weakauth() call is called by a service dispatch routine that cannot execute an
RPC because of correct but weak authentication operands.

See Also: svcerr_auth(), svcerr_decode(), svcerr_noproc(), svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr().

svcraw_create()

#include <rpc.h>

SVCXPRT *
svcraw_create()

The svcraw_create() call has no operands.

Description: The svcraw_create() call creates a local RPC service transport used for timings, to which it
returns a pointer. Messages are passed using a buffer within the virtual machine of the local process; so,
the client process must also use the same virtual machine. This allows the simulation of RPC programs
within one computer. See “clntraw_create()” on page 203 for more information.

Return Values: NULL indicates failure.

See Also: clntraw_create(), svc_destroy(), svctcp_create(), svcudp_create().

svctcp_create()

#include <rpc.h>

SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size;
u_int recv_buf_size;

Operand
Description

svcerr_weakauth()

216 z/VM: 7.3 TCP/IP Programmer's Reference

sock
Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new socket is created. If the socket is not
bound to a local TCP port, it is bound to an arbitrary port.

send_buf_size
Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size
Specifies the size of the receive buffer. Specify 0 to choose the default.

Description: The svctcp_create() call creates a TCP-based service transport to which it returns a pointer.
xprt—>xp_sock contains the transport’s socket descriptor. xprt—>xp_port contains the transport’s port
number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcraw_create(), svcudp_create().

svcudp_create()

#include <rpc.h>

SVCXPRT *
svcudp_create(sock, sendsz, recvsz)
int sock;
u_int sendsz;
u_int recvsz;

Operand
Description

sock
Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new socket is created. If the socket is not
bound to a local UDP port, it is bound to an arbitrary port.

sendsz
Specifies the size of the send buffer.

recvsz
Specifies the size of the receive buffer.

Description: The svcudp_create() call creates a UDP-based service transport to which it returns a pointer.
xprt—>xp_sock contains the transport’s socket descriptor. xprt—>xp_port contains the transport’s port
number.

Return Values: NULL indicates failure.

See Also: svc_destroy(), svcraw_create(), svctcp_create().

xdr_accepted_reply()

#include <rpc.h>

bool_t
xdr_accepted_reply(xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

Operand
Description

xdrs
Points to an XDR stream.

svcudp_create()

Chapter 5. Remote Procedure Calls 217

ar
Points to the reply to be represented.

Description: The xdr_accepted_reply() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_array()

#include <rpc.h>

bool_t
xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep;
u_int maxsize;
u_int elsize;
xdrproc_t elproc;

Operand
Description

xdrs
Points to an XDR stream.

arrp
Specifies the address of the pointer to the array.

sizep
Points to the element count of the array.

maxsize
Specifies the maximum number of elements accepted.

elsize
Specifies the size of each of the array’s elements, found using sizeof().

elproc
Specifies the XDR routine that translates an individual array element.

Description: The xdr_array() call translates between an array and its external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_authunix_parms()

#include <rpc.h>

bool_t
xdr_authunix_parms(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

Operand
Description

xdrs
Points to an XDR stream.

xdr_array()

218 z/VM: 7.3 TCP/IP Programmer's Reference

aupp
Points to the authentication information.

Description: The xdr_authunix_parms() call translates UNIX-based authentication information.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_bool()

#include <rpc.h>

bool_t
xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

Operand
Description

xdrs
Points to an XDR stream.

bp
Points to the Boolean.

Description: The xdr_bool() call translates between Booleans and their external representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_bytes()

#include <rpc.h>

bool_t
xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to a pointer to the byte string.

sizep
Points to the byte string size.

maxsize
Specifies the maximum size of the byte string.

Description: The xdr_bytes() call translates between byte strings and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

xdr_bool()

Chapter 5. Remote Procedure Calls 219

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_callhdr()

#include <rpc.h>

bool_t
xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

Operand
Description

xdrs
Points to an XDR stream.

chdr
Points to the call header.

Description: The xdr_callhdr() call translates an RPC message header into XDR format.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_callmsg()

#include <rpc.h>

bool_t
xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Operand
Description

xdrs
Points to an XDR stream.

cmsg
Points to the call message.

Description: The xdr_callmsg() call translates RPC messages (header and authentication, not argument
data) to and from the xdr format.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_double()

xdr_callhdr()

220 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>

bool_t
xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

Operand
Description

xdrs
Points to an XDR stream.

dp
Points to a double-precision number.

Description: The xdr_double() call translates between C double-precision numbers and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_enum()

#include <rpc.h>

bool_t
xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

Operand
Description

xdrs
Points to an XDR stream.

ep
Points to the enumerated number. enum_t can be any enumeration type such as enum colors, with
colors declared as enum colors (black, brown, red).

Description: The xdr_enum() call translates between C-enumerated groups and their external
representation. When calling the procedures callrpc() and registerrpc(), a stub procedure must be created
for both the server and the client before the procedure of the application program using xdr_enum(). The
following is the format of the stub procedure.

#include <rpc.h>

enum colors (black, brown, red)
void
static xdr_enum_t(xdrs, ep)
XDR *xdrs;
enum colors *ep;
{
 xdr_enum(xdrs, ep)
}

The xdr_enum_t procedure is used as the inproc and outproc in both the client and server RPCs.

For example, an RPC client would contain the following lines:

xdr_enum()

Chapter 5. Remote Procedure Calls 221

 ⋮

error = callrpc(argv[1],ENUMRCVPROG,VERSION,ENUMRCVPROC,
xdr_enum_t,&innumber,xdr_enum_t,
 &outnumber);
 ⋮

An RPC server would contain the following line:

 ⋮

registerrpc(ENUMRCVPROG,VERSION,ENUMRCVPROC,
xdr_enum_t,xdr_enum_t);

 ⋮

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_float()

#include <rpc.h>

bool_t
xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

Operand
Description

xdrs
Points to an XDR stream.

fp
Points to the floating-point number.

Description: The xdr_float() call translates between C floating-point numbers and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_inline()

#include <rpc.h>

long *
xdr_inline(xdrs, len)
XDR *xdrs;
u_int len;

Operand
Description

xdrs
Points to an XDR stream.

len
Specifies the byte length of the desired buffer.

xdr_float()

222 z/VM: 7.3 TCP/IP Programmer's Reference

Description: The xdr_inline() call returns a pointer to a continuous piece of the XDR stream’s buffer. The
value is long * rather than char *, because the external data representation of any object is always an
integer multiple of 32 bits.

Note: xdr_inline() can return NULL if there is not sufficient space in the stream buffer to satisfy the
request.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_int()

#include <rpc.h>

bool_t
xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

Operand
Description

xdrs
Points to an XDR stream.

ip
Points to the integer.

Description: The xdr_int() call translates between C integers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_long()

#include <rpc.h>

bool_t
xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

Operand
Description

xdrs
Points to an XDR stream.

lp
Points to the long integer.

Description: The xdr_long() call translates between C long integers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_int()

Chapter 5. Remote Procedure Calls 223

xdr_opaque()

#include <rpc.h>

bool_t
xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

Operand
Description

xdrs
Points to an XDR stream.

cp
Points to the opaque object.

cnt
Specifies the size of the opaque object.

Description: The xdr_opaque() call translates between fixed-size opaque data and its external
representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_opaque_auth()

#include <rpc.h>

bool_t
xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

Operand
Description

xdrs
Points to an XDR stream.

ap
Points to the opaque authentication information.

Description: The xdr_opaque_auth() call translates RPC message authentications.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pmap()

xdr_opaque()

224 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
xdr_pmap(xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Operand
Description

xdrs
Points to an XDR stream.

regs
Points to the portmap operands.

Description: The xdr_pmap() call translates an RPC procedure identification, such as is used in calls to
Portmapper.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pmaplist()

#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Operand
Description

xdrs
Points to an XDR stream.

rp
Points to a pointer to the portmap data array.

Description: The xdr_pmaplist() call translates a variable number of RPC procedure identifications, such
as Portmapper creates.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_pointer()

#include <rpc.h>

bool_t
xdr_pointer(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

xdr_pmaplist()

Chapter 5. Remote Procedure Calls 225

Operand
Description

xdrs
Points to an XDR stream.

pp
Points to a pointer.

size
Specifies the size of the target.

proc
Specifies the XDR procedure that translates an individual element of the type addressed by the
pointer.

Description: The xdr_pointer() call provides pointer-chasing within structures. This differs from the
xdr_reference() call in that it can serialize or deserialize trees correctly.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_reference()

#include <rpc.h>

bool_t
xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
u_int size;
xdrproc_t proc;

Operand
Description

xdrs
Points to an XDR stream.

pp
Points to a pointer.

size
Specifies the size of the target.

proc
Specifies the XDR procedure that translates an individual element of the type addressed by the
pointer.

Description: The xdr_reference() call provides pointer-chasing within structures.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_rejected_reply()

#include <rpc.h>

bool_t
xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

xdr_reference()

226 z/VM: 7.3 TCP/IP Programmer's Reference

Operand
Description

xdrs
Points to an XDR stream.

rr
Points to the rejected reply.

Description: The xdr_rejected_reply() call translates rejected RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_replymsg()

#include <rpc.h>

bool_t
xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Operand
Description

xdrs
Points to an XDR stream.

rmsg
Points to the reply message.

Description: The xdr_replymsg() call translates RPC reply messages.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_short()

#include <rpc.h>

bool_t
xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to the short integer.

Description: The xdr_short() call translates between C short integers and their external representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_replymsg()

Chapter 5. Remote Procedure Calls 227

xdr_string()

#include <rpc.h>

bool_t
xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to a pointer to the string.

maxsize
Specifies the maximum size of the string.

Description: The xdr_string() call translates between C strings and their external representations. The
xdr_string() call is the only xdr routine to convert ASCII to EBCDIC.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_int()

#include <rpc.h>

bool_t
xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

Operand
Description

xdrs
Points to an XDR stream.

up
Points to the unsigned integer.

Description: The xdr_u_int() call translates between C unsigned integers and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_long()

xdr_string()

228 z/VM: 7.3 TCP/IP Programmer's Reference

#include <rpc.h>

bool_t
xdr_u_long(xdrs, ulp)
XDR *xdrs;
u_long *ulp;

Operand
Description

xdrs
Points to an XDR stream.

ulp
Points to the unsigned long integer.

Description: The xdr_u_long() call translates between C unsigned long integers and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_u_short()

#include <rpc.h>

bool_t
xdr_u_short(xdrs, usp)
XDR *xdrs;
u_short *usp;

Operand
Description

xdrs
Points to an XDR stream.

usp
Points to the unsigned short integer.

Description: The xdr_u_short() call translates between C unsigned short integers and their external
representations.

Return Values: The value 1 indicates success; the value 0 indicates an error.

xdr_union()

#include <rpc.h>

bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

Operand
Description

xdrs
Points to an XDR stream.

xdr_u_short()

Chapter 5. Remote Procedure Calls 229

dscmp
Points to the union’s discriminant. enum_t can be any enumeration type.

unp
Points to the union.

choices
Points to an array detailing the XDR procedure to use on each arm of the union.

dfault
Specifies the default XDR procedure to use.

Description: The xdr_union() call translates between a discriminated C union and its external
representation.

Return Values: The value 1 indicates success; the value 0 indicates an error.

The following is an example of this call:

#include <rpc.h>

enum colors (black, brown, red);

bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum colors *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_vector()

#include <rpc.h>

bool_t
xdr_vector(xdrs, basep, nelem, elemsize, xdr_elem)
XDR *xdrs;
char *basep;
u_int nelem;
u_int elemsize;
xdrproc_t xdr_elem;

Operand
Description

xdrs
Points to an XDR stream.

basep
Specifies the base of the array.

nelem
Specifies the element count of the array.

elemsize
Specifies the size of each of the array’s elements, found using sizeof().

xdr_elem
Specifies the XDR routine that translates an individual array element.

Description: The xdr_vector() call translates between a fixed length array and its external representation.
Unlike variable-length arrays, the storage of fixed length arrays is static and unfreeable.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_vector()

230 z/VM: 7.3 TCP/IP Programmer's Reference

xdr_void()

#include <rpc.h>

bool_t
xdr_void()

The xdr_void() call has no operands.

Description: The xdr_void () call is used like a command that does not require any other xdr functions.
This call can be placed in the inproc or outproc operand of the clnt_call function when the user does not
need to move data.

Return Values: Always a value of 1.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdr_wrapstring()

#include <rpc.h>

bool_t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

Operand
Description

xdrs
Points to an XDR stream.

sp
Points to a pointer to the string.

Description: The xdr_wrapstring() call is the same as calling xdr_string() with a maximum size of
MAXUNSIGNED. It is useful because many RPC procedures implicitly invoke two-operand XDR routines,
and xdr_string() is a three-operand routine.

Return Values: The value 1 indicates success; the value 0 indicates an error.

See Also: callrpc(), clnt_broadcast(), clnt_call(), clnt_freeres(), pmap_rmtcall(), registerrpc(),
svc_freeargs(), svc_getargs(), svc_sendreply().

xdrmem_create()

#include <rpc.h>

void
xdrmem_create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

Operand
Description

xdrs
Points to an XDR stream.

xdr_void()

Chapter 5. Remote Procedure Calls 231

addr
Points to the memory location.

size
Specifies the maximum size of addr.

op
Determines the direction of the XDR stream (XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Description: The xdrmem_create() call initializes the XDR stream pointed to by xdrs. Data is written to, or
read from, addr.

xdrrec_create()

#include <rpc.h>

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize;
u_int recvsize;
char *handle;
int (*readit) ();
int (*writeit) ();

Operand
Description

xdrs
Points to an XDR stream.

sendsize
Indicates the size of the send buffer. Specify 0 to choose the default.

recvsize
Indicates the size of the receive buffer. Specify 0 to choose the default.

handle
Specifies the first operand passed to readit() and writeit().

readit()
Called when a stream’s input buffer is empty.

writeit()
Called when a stream’s output buffer is full.

Description: The xdrrec_create() call creates a record-oriented stream and initializes the XDR stream
pointed to by xdrs.

Note:

1. The x_op field must be set by the caller.
2. This XDR procedure implements an intermediate record string.
3. Additional bytes in the XDR stream provide record boundary information.

xdrrec_endofrecord()

#include <rpc.h>
bool_t
xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

Operand
Description

xdrrec_create()

232 z/VM: 7.3 TCP/IP Programmer's Reference

xdrs
Points to an XDR stream.

sendnow
Specifies nonzero to write out data in the output buffer.

Description: The xdrrec_endofrecord() call can be invoked only on streams created by xdrrec_create().
Data in the output buffer is marked as a complete record.

Return Values: The value 1 indicates success; the value 0 indicates an error.

xdrrec_eof()

#include <rpc.h>

bool_t
xdrrec_eof(xdrs)
XDR *xdrs;

Operand
Description

xdrs
Points to an XDR stream.

Description: The xdrrec_eof() call can be invoked only on streams created by xdrrec_create().

Return Values: The value 1 indicates the current record has been consumed; the value 0 indicates
continued input on the stream.

xdrrec_skiprecord()

#include <rpc.h>

bool_t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

Operand
Description

xdrs
Points to an XDR stream.

Description: The xdrrec_skiprecord() call can be invoked only on streams created by xdrrec_create(). The
XDR implementation is instructed to discard the remaining data in the input buffer.

Return Values: The value 1 indicates success; the value 0 indicates an error.

xdrstdio_create()

#include <rpc.h>
#include <stdio.h>

void
xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

xdrrec_eof()

Chapter 5. Remote Procedure Calls 233

Operand
Description

xdrs
Points to an XDR stream.

file
Specifies the file name for the I/O stream.

op
Determines the direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Description: The xdrstdio_create() call initializes the XDR stream pointed to by xdrs. Data is written to, or
read from, file.

Note: fflush() is the destroy routine associated with this procedure. fclose() is not called.

xprt_register()

#include <rpc.h>

void
xprt_register(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The xprt_register() call registers service transport handles with the RPC service package.
This routine also modifies the global variable svc_fds

See Also: svc_register(), svc_fds.

xprt_unregister()

#include <rpc.h>

void
xprt_unregister(xprt)
SVCXPRT *xprt;

Operand
Description

xprt
Points to the service transport handle.

Description: The xprt_unregister() call unregisters an RPC service transport handle. A transport handle
should be unregistered with the RPC service package before it is destroyed. This routine also modifies the
global variable svc_fds and svc_fdset.

See also: svc_fds, svc_fdset.

Sample RPC Programs
This appendix provides examples of the following programs:

• RPC Genesend client (see “RPC Genesend Client” on page 236)
• RPC Geneserv server (see “RPC Geneserv Server” on page 236)

xprt_register()

234 z/VM: 7.3 TCP/IP Programmer's Reference

• RPC Rawex raw data stream (see “RPC Rawex Raw Data Stream” on page 238)

Refer back to “Compiling, Linking, and Running an RPC Program” on page 192 for examples of how to
compile, link, and run RPC programs.

Running the Geneserv server and Genesend client
The Geneserv server and Genesend client are a pair of client-server programs. Typically, the Geneserv
server is run in one virtual machine and the Genesend client in another. If a POSIX shell command line is
available, both can be run in the same virtual machine by starting the Geneserv server in the background
and running the Genesend client in the foreground. The steps for running these programs are as follows:

1. Make sure the TCPIP Client-code disk is accessed (usually TCPMAINT 592).
2. Before the Geneserv server can be started, the Portmapper must be running. To determine if the

Portmapper is running, contact the Portmapper with the command RPCINFO -p
3. Start the Geneserv server. From the CMS command line issue:

openvm run GENESERV

To start in the foreground from a POSIX shell command line issue:

geneserv

To start in the background from a POSIX shell command line issue:

geneserv &

After starting the Geneserv server you should see output similar to the following:

openvm run GENESERV
Intrcv Registration with Port Mapper completed
Floatrcv Registration with Port Mapper completed
integer received: 10
integer being returned: 10

4. Start the Genesend client. From the CMS command line issue:

openvm run GENESEND hostname some_number

To start in the foreground from a POSIX shell command line issue:

genesend hostname some_number

To start in the background from a POSIX shell command line issue:

genesend hostname some_number &

The hostname argument is the host running the Geneserv server. The some_number argument is an
integer value that will be sent to the Geneserv server and then returned.

The following is a sample run of the Genesend client:

openvm run GENESEND myvmhost 10
value sent: 10 value received: 10
Ready;

Running the Rawex program
The rawex program uses the raw RPC interfaces and is a client and server program in the same program.
To start Rawex from a CMS command line issue:

openvm run RAWEX some_number

Sample RPC Programs

Chapter 5. Remote Procedure Calls 235

To start in the foreground from a POSIX shell command line issue:

rawex some_number

To start in the background from a POSIX shell command line issue:

rawex some_number &

The following is a sample run of Rawex:

openvm run RAWEX 5678
Argument: 5678
Received: 5678
Sent: 5678
Result: 5678
Ready;

RPC Genesend Client
The following is an example of an RPC client program.

/* GENESEND.C */
/* Send an integer to the remote host and receive the integer back */
/* PORTMAPPER AND REMOTE SERVER MUST BE RUNNING */

#define VM
#include <stdio.h>
#include <rpc.h>
#include <socket.h>

#define intrcvprog ((u_long)150000)
#define version ((u_long)1)
#define intrcvproc ((u_long)1)

main(argc, argv)
 int argc;
 char *argv[];
{
 int innumber;
 int outnumber;
 int error;

 if (argc != 3) {
 fprintf(stderr,“usage: %s hostname integer\n”, argv[0]);
 exit (-1);
 } /* endif */
 innumber = atoi(argv[2]);
 /*
 * Send the integer to the server. The server should
 * return the same integer.
 */
 error = callrpc(argv[1],intrcvprog,version,intrcvproc,xdr_int,
 (char *)&innumber,xdr_int,(char *)&outnumber);

 if (error != 0) {
 fprintf(stderr,“error: callrpc failed: %d \n”,error);
 fprintf(stderr,“intrcprog: %d version: %d intrcvproc: %d”,
 intrcvprog, version,intrcvproc);
 exit(1);
 } /* endif */

 printf(“value sent: %d value received: %d\n”, innumber, outnumber);
 exit(0);
}

RPC Geneserv Server
The following is an example of an RPC server program.

RPC Client

236 z/VM: 7.3 TCP/IP Programmer's Reference

/* GENERIC SERVER */
/* RECEIVE AN INTEGER OR FLOAT AND RETURN THEM RESPECTIVELY */
/* PORTMAPPER MUST BE RUNNING */

#define VM

#include <rpc.h>
#include <stdio.h>

#define intrcvprog ((u_long)150000)
#define fltrcvprog ((u_long)150102)
#define intvers ((u_long)1)
#define intrcvproc ((u_long)1)
#define fltrcvproc ((u_long)1)
#define fltvers ((u_long)1)

main()
{
 int *intrcv();
 float *floatrcv();

 /*REGISTER PROG, VERS AND PROC WITH THE PORTMAPPER*/

 /*FIRST PROGRAM*/
 registerrpc(intrcvprog,intvers,intrcvproc,intrcv,xdr_int,xdr_int);
 printf(“Intrcv Registration with Port Mapper completed\n”);

 /*OR MULTIPLE PROGRAMS*/
 registerrpc(fltrcvprog,fltvers,fltrcvproc,floatrcv,xdr_float,xdr_float);
 printf(“Floatrcv Registration with Port Mapper completed\n”);

 /*
 * svc_run will handle all requests for programs registered.
 */
 svc_run();
 printf(“Error:svc_run returned!\n”);
 exit(1);
}

/*
 * Procedure called by the server to receive and return an integer.
 */
int *
intrcv(in)
 int *in;
{
 int *out;

 printf(“integer received: %d\n”,*in);
 out = in;
 printf(“integer being returned: %d\n”,*out);
 return (out);
}

/*
 * Procedure called by the server to receive and return a float.
 */

float *
floatrcv(in)
 float *in;
{
 float *out;

 printf(“float received: %e\n”,*in);
 out=in;
 printf(“float being returned: %e\n”,*out);
 return(out);
}

RPC Server

Chapter 5. Remote Procedure Calls 237

RPC Rawex Raw Data Stream
The following is an example of an RPC raw data stream program.

/*RAWEX */
/* AN EXAMPLE OF THE RAW CLIENT/SERVER USAGE */
/* PORTMAPPER MUST BE RUNNING */
/*
 * This program does not access an external interface. It provides
 * a test of the raw RPC interface allowing a client and server
 * program to be in the same process.
 */
#define VM
#include <rpc.h>
#include <stdio.h>
#define rawprog ((u_long)150104)
#define rawvers ((u_long)1)
#define rawproc ((u_long)1)

extern enum clnt_stat clntraw_call();
extern void raw2();

main(argc,argv)
int argc;
char *argv[];
{
 SVCXPRT *transp;
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int bout,in;
 register CLIENT *clnt;
 enum clnt_stat cs;
 int addrlen;

 /*
 * The only argument passed to the program is an integer to
 * be transferred from the client to the server and back.
 */
 if(argc!=2) {
 printf(“usage: %s integer\n”, argv[0]);
 exit(-1);
 }
 in = atoi(argv[1]);

 /*
 * Create the raw transport handle for the server.
 */
 transp = svcraw_create();
 if (transp == NULL) {
 fprintf(stderr, “can’t create an RPC server transport\n”);
 exit(-1);
 }

 /* In case the program is already registered, deregister it */
 pmap_unset(rawprog, rawvers);

 /* Register the server program with PORTMAPPER */
 if (!svc_register(transp,rawprog,rawvers,raw2, 0)) {
 fprintf(stderr, “can’t register service\n”);
 exit(-1);
 }
 /*
 * The following registers the transport handle with internal
 * data structures.
 */
 xprt_register(transp);

RPC Raw Data Stream

238 z/VM: 7.3 TCP/IP Programmer's Reference

 /*
 * Create the client transport handle.
 */
 if ((clnt = clntraw_create(rawprog, rawvers)) == NULL) {
 clnt_pcreateerror(“clntudp_create”);
 exit(-1);
 }
 total_timeout.tv_sec = 60;
 total_timeout.tv_usec = 0;
 printf(“Argument: %d\n”,in);

 /*
 * Make the call from the client to the server.
 */
 cs=clnt_call(clnt,rawproc,xdr_int,
 (char *)&in,xdr_int,(char *)&bout,total_timeout);

 printf(“Result: %d”,bout);
 if(cs!=0) {
 clnt_perror(clnt,“Client call failed”);
 exit(1);
 }
 exit(0);
}

/*
 * Service procedure called by the server when it receives the client
 * request.
 */
void raw2(rqstp,transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
{
 int in,out;
 if (rqstp->rq_proc=rawproc) {
 /*
 * Unpack the integer passed by the client.
 */
 svc_getargs(transp,xdr_int,&in);
 printf(“Received: %d\n”,in);
 /*
 * Send the integer back to the client.
 */
 out=in;
 printf(“Sent: %d\n”,out);
 if (!svc_sendreply(transp, xdr_int,&out)) {
 printf(“Can’t reply to RPC call.\n”);
 exit(1);
 }
 }
}

RPC Raw Data Stream

Chapter 5. Remote Procedure Calls 239

RPC Raw Data Stream

240 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 6. SNMP Agent Distributed Programming
Interface

The Simple Network Management Protocol (SNMP) agent distributed programming interface (DPI)
permits end users to dynamically add, delete, or replace management variables in the local Management
Information Base (MIB) without requiring you to recompile the SNMP agent.

SNMP Agents and Subagents
SNMP defines an architecture that consists of network management stations (SNMP clients), network
elements (hosts and gateways), and network management agents and subagents. The network
management agents perform information management functions, such as gathering and maintaining
network performance information and formatting and passing this data to clients when requested. This
information is collectively called the Management Information Base (MIB). For more information about
clients, agents, and the MIB, see z/VM: TCP/IP User's Guide.

A subagent provides an extension to the functionality provided by the SNMP agent. The subagent allows
you to define your own MIB variables, which are useful in your environment, and register them with the
SNMP agent. When requests for these variables are received by the SNMP agent, the agent passes the
request to the subagent. The subagent then returns a response to the agent. The SNMP agent creates an
SNMP response packet and sends the response to the remote network management station that initiated
the request. The existence of the subagent is transparent to the network management station.

To allow the subagents to perform these functions, the SNMP agent binds to an arbitrarily chosen TCP
port and listens for connection requests. A well-known port is not used. Every invocation of the SNMP
agent potentially results in a different TCP port being used.

A subagent of the SNMP agent determines the port number by sending a GET request for the MIB
variable, which represents the value of the TCP port. The subagent is not required to create and parse
SNMP packets, because the DPI C language application program interface (API) has a library routine
query_DPI_port(). This routine handles the GET request and response called Protocol Data Units (PDUs)
necessary to obtain the port number of the TCP port used by the agent for DPI requests. After the
subagent obtains the value of the DPI TCP port, it should make a TCP connection to the appropriate port.
After a successful connect(), the subagent registers the set of variables it supports with the SNMP agent.
When all variable classes are registered, the subagent waits for requests from the SNMP agent.

Processing DPI Requests
The SNMP agent can initiate three DPI requests: GET, SET, and GET-NEXT. These requests correspond
to the three SNMP requests that a network management station can make. The subagent responds to a
request with a response packet. The response packet can be created using the mkDPIresponse() library
routine, which is part of the DPI API library.

The SNMP subagent can initiate only two requests: REGISTER and TRAP. For an overview of the SNMP
DPI, see Figure 37 on page 242.

© Copyright IBM Corp. 1987, 2023 241

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3

Figure 37. SNMP DPI overview

Note:

1. The SNMP agent communicates with the SNMP manager by the standard SNMP protocol.
2. The SNMP agent communicates with the TCP/IP layers and kernel (operating system) in an

implementation-dependent manner. It implements the standard MIB II view.
3. An SNMP Subagent, running as a separate process (potentially even on another machine), can register

objects with the SNMP agent.
4. The SNMP agent decodes SNMP Packets. If such a packet contains a Get, GetNext or Set request for

an object registered by a subagent, it sends the request to the subagent by a query packet.
5. The SNMP subagent sends responses back by a reply packet.
6. The SNMP agent then encodes the reply into an SNMP packet and sends it back to the requesting

SNMP manager.
7. If the subagent wants to report an important state change, it sends a trap packet to the SNMP agent,

which encodes it into an SNMP trap packet and sends it to the manager(s).

Processing a GET Request
The DPI packet is parsed, using the pDPIpacket() routine, to get the object ID of the requested variable.
If the specified object ID of the requested variable is not supported by the subagent, the subagent
returns an error indication of SNMP_NO_SUCH_NAME. Name, type, or value information is not returned.
For example:

242 z/VM: 7.3 TCP/IP Programmer's Reference

unsigned char *cp;

cp = mkDPIresponse(SNMP_NO_SUCH_NAME,0);

If the object ID of the variable is supported, an error is not returned and the name, type, and value of the
object ID are returned using the mkDPIset() and mkDPIresponse() routines. The following is an example
of an object ID, whose type is string, being returned.

char *obj_id;

unsigned char *cp;
struct dpi_set_packet *ret_value;
char *data;

/* obj_id = object ID of variable, like 1.3.6.1.2.1.1.1 */
/* should be identical to object ID sent in GET request */
data = a string to be returned;
ret_value = mkDPIset(obj_id,SNMP_TYPE_STRING,
 strlen(data)+1,data);
cp = mkDPIresponse(0,ret_value);

Processing a SET Request
Processing a SET request is similar to processing a GET request, but you must pass additional information
to the subagent. This additional information consists of the type, length, and value to be set.

If the object ID of the variable is not supported, the subagent returns an error indication of
SNMP_NO_SUCH_NAME. If the object ID of the variable is supported, but cannot be set, an error
indication of SNMP_READ_ONLY is returned. If the object ID of the variable is supported, and is
successfully set, the message SNMP_NO_ERROR is returned.

Processing a GET_NEXT Request
Parsing a GET_NEXT request yields two operands: the object ID of the requested variable and the reason
for this request. This allows the subagent to return the name, type, and value of the next supported
variable, whose name lexicographically follows that of the passed object ID.

Subagents can support several different groups of the MIB tree. However, the subagent cannot jump from
one group to another. You must first determine the reason for the request to then determine the path to
traverse in the MIB tree. The second operand contains this reason and is the group prefix of the MIB tree
that is supported by the subagent.

If the object ID of the next variable supported by the subagent does not match this group prefix, the
subagent must return SNMP_NO_SUCH_NAME. If required, the SNMP agent will call on the subagent
again and pass a different group prefix.

For example, if you have two subagents, the first subagent registers two group prefixes, A and C, and
supports variables A.1, A.2, and C.1. The second subagent registers the group prefix B, and supports
variable B.1.

When a remote management station begins dumping the MIB, starting from A, the following sequence of
queries is performed.

Subagent 1 is called:

get_next(A,A) == A.1
get_next(A.1,A) == A.2
get_next(A.2,A) == error(no such name)

Subagent 2 is then called:

get_next(A.2,B) == B.1
get_next(B.1,B) == error(no such name)

Subagent 1 is then called:

Chapter 6. SNMP Agent Distributed Programming Interface 243

get_next(B.1,C) == C.1
get_next(C.1,C) == error(no such name)

Processing a REGISTER Request
A subagent must register the variables that it supports with the SNMP agent. Packets can be created
using the mkDPIregister() routine.

For example:

unsigned char *cp;

cp = mkDPIregister('1.3.6.1.2.1.1.2.');

Note: Object IDs are registered with a trailing dot ("."). Although DPI 1.0 level did accept an Object ID
without a trailing dot, the new level (DPI 1.1) does not.

Processing a TRAP Request
A subagent can request that the SNMP agent generate a TRAP for it. The subagent must provide the
desired values for the generic and specific operands of the TRAP. The subagent can optionally provide
a name, type, and value operand. The DPI API library routine mkDPItrap() can be used to generate the
TRAP packet.

Compiling and Linking
To compile your program, you must include the SNMP_DPI.H header file.

To compile and link your applications, use the following procedures:

1. To set up the C environment, enter the following commands:

SET LDRTBLS nn
GLOBAL LOADLIB SCEERUN
GLOBAL TXTLIB SCEELKED

2. To compile your program, enter one of the following commands:

• Place compile options on the CC command:

CC filename (def(VM)
• Place #define VM in the first line of all user’s C source files:

CC filename
3. To generate an executable module, enter the following command:

TCPLOAD load_list control_file c (TXTLIB DPILIB

Note:

1. Make sure you have access to the IBM C for VM/ESA Compiler and to the TCPMAINT 592 minidisk.
2. For the syntax of the TCPLOAD EXEC, see Appendix A, “TCPLOAD EXEC,” on page 335 and for the

syntax of the SET LDRTBLS command, see z/VM: CMS Commands and Utilities Reference.

SNMP DPI Reference
The following table provides a reference for SNMP DPI. Table 24 on page 245 describes each SNMP DPI
routine supported by TCP/IP, and identifies the page in the book where you can find more information.

SNMP DPI Reference

244 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Table 24. SNMP DPI Reference

SNMP DPI Routine Description Location

DPIdebug() Used to turn some DPI internal tracing on or off. “DPIdebug()” on page 245

fDPIparse() Frees a parse tree previously created by a call to
pDPIpacket().

“fDPIparse()” on page 245

mkDPIlist() Creates the portion of the parse tree that represents a
list of name and value pairs.

“mkDPIlist()” on page 246

mkDPIregister() Creates a register request packet and returns a pointer
to a static buffer.

“mkDPIregister()” on page 246

mkDPIresponse() Creates a response packet. “mkDPIresponse()” on page
247

mkDPIset() Creates a representation of a parse tree name and value
pair.

“mkDPIset()” on page 248

mkDPItrap() Creates a trap request packet. “mkDPItrap()” on page 249

mkDPItrape() Creates an extended trap. Basically the same as the
mkDPItrap() routine but allows you to pass a list of
variables and an enterprise object ID.

“mkDPItrape()” on page 249

pDPIpacket() Parses a DPI packet and returns a parse tree
representation.

“pDPIpacket()” on page 251

query_DPI_port() Determines what TCP port is associated with DPI. “query_DPI_port()” on page
252

DPI Library Routines
This section provides the syntax, operands, and other appropriate information for each DPI routine
supported by TCP/IP for z/VM.

DPIdebug()

#include <snmp_dpi.h>
#include <types.h>

void DPIdebug(onoff)
int *onoff;

Operand
Description

onoff
Specifies an integer. A value of 0 turns tracing off and a value of 1 (or nonzero) turns tracing on.

Description: The DPIdebug() routine can be used to turn DPI internal tracing on or off.

fDPIparse()

#include <snmp_dpi.h>
#include <types.h>

void fDPIparse(hdr)
struct snmp_dpi_hdr *hdr;

Operand
Description

DPIdebug()

Chapter 6. SNMP Agent Distributed Programming Interface 245

hdr
Specifies a parse tree.

Description: The fDPIparse() routine frees a parse tree that was previously created by a call to
pDPIpacket(). After calling fDPIparse(), no further references to the parse tree can be made.

mkDPIlist()

#include <snmp_dpi.h>
#include <types.h>

struct dpi_set_packet *mkDPIlist(packet, oid_name, type, len, value)
struct dpi_set_packet *packet;
char *oid_name;
int type;
int len;
char *value;

Operand
Description

packet
Specifies a pointer to a structure dpi_set_packet.

oid_name
Specifies the object identifier of the variable.

type
Specifies the type of the value.

len
Specifies the length of the value.

value
Specifies a pointer to the value.

Description: The mkDPIlist() routine can be used to create the portion of the parse tree that represents
a list of name and value pairs. Each entry in the list represents a name and value pair (as would normally
be returned in a response packet). If the pointer packet is NULL, then a new dpi_set_packet structure is
dynamically allocated and the pointer to that structure is returned. The structure contains the new name
and value pair. If the pointer packet is not NULL, then a new dpi_set_packet structure is dynamically
allocated and chained to the list. The new structure contains the new name and value pair. The pointer
packet is returned to the caller. If an error is detected, a NULL pointer is returned.

The value of type can be the same as for mkDPIset(). These values are defined in the snmp_dpi.h header
file.

As a result, the structure dpi_set_packet has changed and now has a next pointer (zero in case
of a mkDPIset() call and also zero upon the first mkDPIlist() call). The following is the format of
dpi_set_packet:

struct dpi_set_packet {
 char *object_id;
 unsigned char type;
 unsigned short value_len;
 char *value;
 struct dpi_set_packet *next;
};

A subagent writer would normally look only at the dpi_set_packet structure when receieving a
SNMP_DPI_SET request and after having issued a pDPIpacket() call.

mkDPIregister()

mkDPIlist()

246 z/VM: 7.3 TCP/IP Programmer's Reference

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPIregister(oid_name)
char *oid_name;

Operand
Description

oid_name
Specifies the object identifier of the variable to be registered. Object identifiers are registered with a
trailing dot (“.”).

Description: The mkDPIregister() routine creates a register request packet and returns a pointer to a
static buffer, which holds the packet contents. The length of the remaining packet is stored in the first two
bytes of the packet.

Return Values: If successful, returns a pointer to a static buffer containing the packet contents. A NULL
pointer is returned if an error is detected during the creation of the packet.

Example: The following is an example of the mkDPIregister() routine.

unsigned char *packet;
int len;

/* register sysDescr variable */
packet = mkDPIregister(“1.3.6.1.2.1.1.1.“);

len = *packet * 256 + *(packet + 1);
len += 2; /* include length bytes */

mkDPIresponse()

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPIresponse(ret_code, value_list)
int ret_code;
struct dpi_set_packet *value_list;

Operand
Description

ret_code
Determines the error code to be returned.

value_list
Points to a parse tree containing the name, type, and value information to be returned.

Description: The mkDPIresponse() routine creates a response packet. The first operand, ret_code, is the
error code to be returned. Zero indicates no error. Possible errors include the following:

• SNMP_NO_ERROR
• SNMP_TOO_BIG
• SNMP_NO_SUCH_NAME
• SNMP_BAD_VALUE
• SNMP_READ_ONLY
• SNMP_GEN_ERR

See the SNMP_DPI.H header file for a description of these messages.

mkDPIresponse()

Chapter 6. SNMP Agent Distributed Programming Interface 247

If ret_code does not indicate an error, then the second operand is a pointer to a parse tree created
by mkDPIset(), which represents the name, type, and value information being returned. If an error is
indicated, the second operand is passed as a NULL pointer.

The length of the remaining packet is stored in the first two bytes of the packet.

Note: mkDPIresponse() always frees the passed parse tree.

Return Values: If successful, mkDPIresponse() returns a pointer to a static buffer containing the packet
contents. This is the same buffer used by mkDPIregister(). A NULL pointer is returned if an error is
detected during the creation of the packet.

Example: The following is an example of the mkDPIresponse() routine.

unsigned char *packet;

int error_code;
struct dpi_set_packet *ret_value;

packet = mkDPIresponse(error_code, ret_value);

len = *packet * 256 + *(packet + 1);
len += 2; /* include length bytes */

mkDPIset()

#include <snmp_dpi.h>
#include <types.h>

struct dpi_set_packet *mkDPIset(oid_name, type, len, value)
char *oid_name;
int type;
int len;
char *value;

Operand
Description

oid_name
Specifies the object identifier of the variable.

type
Specifies the type of the object identifier.

len
Indicates the length of the value.

value
Points to the first byte of the value of the object identifier.

Description: The mkDPIset() routine can be used to create the portion of a parse tree that represents
a name and value pair (as would normally be returned in a response packet). It returns a pointer to a
dynamically allocated parse tree representing the name, type, and value information. If there is an error
detected while creating the parse tree, a NULL pointer is returned.

The value of type can be one of the following (which are defined in the SNMP_DPI.H header file):

• SNMP_TYPE_NUMBER
• SNMP_TYPE_STRING
• SNMP_TYPE_OBJECT
• SNMP_TYPE_INTERNET
• SNMP_TYPE_COUNTER
• SNMP_TYPE_GAUGE
• SNMP_TYPE_TICKS

mkDPIset()

248 z/VM: 7.3 TCP/IP Programmer's Reference

The value operand is always a pointer to the first byte of the object ID’s value.

Note: The parse tree is dynamically allocated, and copies are made of the passed operands. After a
successful call to mkDPIset(), the application can dispose of the passed operands without affecting the
contents of the parse tree.

Return Values: Returns a pointer to a parse tree containing the name, type, and value information.

mkDPItrap()

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPItrap(generic, specific, value_list)
int generic;
int specific;
struct dpi_set_packet *value_list;

Operand
Description

generic
Specifies the generic field in the SNMP TRAP packet.

specific
Identifies the specific field in the SNMP TRAP packet.

value_list
Passes the name and value pair to be placed into the SNMP packet.

Description: The mkDPItrap() routine creates a TRAP request packet. The information contained in
value_list is passed as the set_packet portion of the parse tree.

The length of the remaining packet is stored in the first two bytes of the packet.

Note: mkDPItrap() always frees the passed parse tree.

Return Values: If the packet can be created, a pointer to a static buffer containing the packet contents is
returned. This is the same buffer that is used by mkDPIregister(). If an error is encountered while creating
the packet, a NULL pointer is returned.

Example: The following is an example of the mkDPItrap() routine.

struct dpi_set_packet *if_index_value;
unsigned long data;
unsigned char *packet;
int len;

data = 3; /* interface number = 3 */
if_index_value = mkDPIset(“1.3.6.1.2.1.2.2.1.1“, SNMP_TYPE_NUMBER,
 sizeof(unsigned long), &data);
packet = mkDPItrap(2, 0, if_index_value);
len = *packet * 256 + *(packet + 1);
len += 2; /* include length bytes */
write(fd,packet,len);

mkDPItrape()

#include <snmp_dpi.h>
#include <types.h>

unsigned char *mkDPItrape(generic, specific, value_list, enterprise_oid)
long int generic; /* 4 octet integer */
long int specific;
struct dpi_set_packet *value_list;
char *enterprise_oid;

mkDPItrap()

Chapter 6. SNMP Agent Distributed Programming Interface 249

Operand
Description

generic
Specifies the generic field for the SNMP TRAP packet.

specific
Specifies the specific field for the SNMP TRAP packet.

value_list
Specifies a pointer to a structure dpi_set_packet, which contains one or more variables to be sent
with the SNMP TRAP packet. Or NULL if no variables are to be send.

enterprise_oid
Specifies a pointer to a character string representing the enterprise object ID (in ASN.1 notation, for
example, 1.3.6.1.4.1.2.2.1.4). Specifies NULL if you want the SNMP agent to use its own enterprise
object ID.

Description: The mkDPItrape() routine can be used to create an extended trap. An extended trap
resembles the mkDPItrap() routine, but it allows you to pass a list of variables and an enterprise-object
ID.

The structure for dpi_trap_packet has changed, but this structure is not exposed to subagent writers.

Example of an Extended Trap
The following is a piece of sample code to send an extended trap. No error checking is done.

struct dpi_set_packet *set;
int len;
long int num = 15; /* 4 octet integer */
unsigned long int ctr = 1234;
char str][= "a string";
unsigned char *packet;

set = 0;
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.1",SNMP_TYPE_NUMBER,sizeof(num),&num);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.2",SNMP_TYPE_STRING,strlen(str),str);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.6",SNMP_TYPE_COUNTER,sizeof(ctr),&ctr);

packet = mkDPItrape(6L, 37L, set, "1.3.6.1.4.1.2.2.1.4");

len = *packet * 256 + *(packet+1);
len += 2;

write(fd, packet, len) /* use send on OS/2 */

You can use a mkDPIset() call to create an initial dpi_set_packet for the first name and value pair. So the
following sample is equivalent to the one above.

struct dpi_set_packet *set;
int len;
long int num = 15; /* 4 octet integer */
unsigned long int ctr = 1234;
char str][= "a string";
unsigned char *packet;

set = mkDPIset("1.3.6.1.4.1.2.2.1.4.1",SNMP_TYPE_NUMBER,sizeof(num),&num);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.2",SNMP_TYPE_STRING,strlen(str),str);
set = mkDPIlist(set,"1.3.6.1.4.1.2.2.1.4.6",SNMP_TYPE_COUNTER,sizeof(ctr),&ctr);

packet = mkDPItrape(6L, 37L, set, "1.3.6.1.4.1.2.2.1.4");

len = *packet * 256 + *(packet+1);
len += 2;

write(fd, packet, len) /* use send on OS/2 */

If the high order bit must be on for the specific trap type, then a negative integer must be passed.

mkDPItrape()

250 z/VM: 7.3 TCP/IP Programmer's Reference

pDPIpacket()

#include <snmp_dpi.h>
#include <types.h>

struct snmp_dpi_hdr *pDPIpacket(packet)
unsigned char *packet;

Operand
Description

packet
Specifies the DPI packet to be parsed.

Description: The pDPIpacket() routine parses a DPI packet and returns a parse tree representing its
contents. The parse tree is dynamically allocated and contains copies of the information within the
DPI packet. After a successful call to pDPIpacket(), the packet can be disposed of in any manner the
application chooses, without affecting the contents of the parse tree.

Return Values: If pDPIpacket() is successful, a parse tree is returned. If an error is encountered during
the parse, a NULL pointer is returned.

Note: The parse tree structures are defined in the SNMP_DPI.H header file.

Example: The following is an example of the mkDPItrap() routine. The root of the parse tree is
represented by an snmp_dpi_hdr structure.

struct snmp_dpi_hdr {
 unsigned char proto_major;
 unsigned char proto_minor;
 unsigned char proto_release;

 unsigned char packet_type;
 union {
 struct dpi_get_packet *dpi_get;
 struct dpi_next_packet *dpi_next;
 struct dpi_set_packet *dpi_set;
 struct dpi_resp_packet *dpi_response;
 struct dpi_trap_packet *dpi_trap;
 } packet_body;
};

The packet_type field can have one of the following values, which are defined in the SNMP_DPI.H header
file:

• SNMP_DPI_GET
• SNMP_DPI_GET_NEXT
• SNMP_DPI_SET

The packet_type field indicates the request that is made of the DPI client. For each of these requests,
the remainder of the packet_body is different. If a GET request is indicated, the object ID of the desired
variable is passed in a dpi_get_packet structure.

struct dpi_get_packet {
 char *object_id;
};

A GET-NEXT request is similar, but the dpi_next_packet structure also contains the object ID prefix of the
group that is currently being traversed.

struct dpi_next_packet {
 char *object_id;
 char *group_id;
};

pDPIpacket()

Chapter 6. SNMP Agent Distributed Programming Interface 251

If the next object, whose object ID lexicographically follows the object ID indicated by object_id, does
not begin with the suffix indicated by the group_id, the DPI client must return an error indication of
SNMP_NO_SUCH_NAME.

A SET request has the most data associated with it, and this is contained in a dpi_set_packet structure.

struct dpi_set_packet {
 char *object_id;
 unsigned char type:
 unsigned short value_len;
 char *value;
};

The object ID of the variable to be modified is indicated by object_id. The type of the variable is provided
in type and can have one of the following values:

• SNMP_TYPE_NUMBER
• SNMP_TYPE_STRING
• SNMP_TYPE_OBJECT
• SNMP_TYPE_EMPTY
• SNMP_TYPE_INTERNET
• SNMP_TYPE_COUNTER
• SNMP_TYPE_GAUGE
• SNMP_TYPE_TICKS

The length of the value to be set is stored in value_len and value contains a pointer to the value.

Note: The storage pointed to by value is reclaimed when the parse tree is freed. The DPI client must make
provision for copying the value contents.

query_DPI_port()

#include <snmp_dpi.h>

int query_DPI_port (host_name, community_name)
char *host_name;
char *community_name;

Operand
Description

host_name
Points to the SNMP agent’s host name or internet address.

community_name
Points to the community name to be used when making a request.

Description: The query_DPI_port() routine is used by a DPI client to determine the TCP port number that
is associated with the DPI. This port number is needed to connect() to the SNMP agent. The port number
is obtained through an SNMP GET request. community_name and host_name are the arguments that are
passed to the query_DPI_port() routine.

Return Values: An integer representing the TCP port number is returned if successful; a -1 is returned if
the port cannot be determined.

Sample SNMP DPI Client Program
This section provides an example of an SNMP DPI agent program. You can run the dpisample program
against the SNMP agents that support the SNMP-DPI interface, as described in RFC 1228.

query_DPI_port()

252 z/VM: 7.3 TCP/IP Programmer's Reference

The sample can be used to test agent DPI implementations because it provides variables of all types and
also allows you to generate traps of all types.

The DPISAMPLE program implements a set of variables in the DPISAMPLE table which consists of a set
of objects in the IBM Research tree (1.4.1.2.2.1.4). See Figure 38 on page 255 for the object type and
objectID.

The DPISAMPLE Program (Sample DPI Subagent)
The DPISAMPLE program accepts the following arguments:

DPISAMPLE

?

 -d0

 -d n

 -trap gtype stype data

 -trape gtype stype enterprise data n

 -ent_traps

 -ent_trapse

 -std_traps

 -all_traps

 -iucv -uSNMPD

 -iucv -u agent_userid

 -inet
LOOPBACK

agent_hostname

PUBLIC

community

Operand
Description

?
Invokes output with an explanation about how the dpisample command is used. This option should be
used in a C-shell environment.

-d n
Sets the debug level. The level, n, has a range from 0 - 4, 0 is silent and 4 is most verbose. The default
level is 0.

-trap
Generates a trap with the following options:
gtype

Specifies the type as generic. The available ranges are 0 - 6.
stype

Specifies the type as specific.
data

Passes data as an additional value for the variable dpiSample.stype.0. Data is interpreted
depending on stype. The following list describes the available values for the stype operand and
their data descriptions:

The DPISAMPLE Program (Sample DPI Subagent)

Chapter 6. SNMP Agent Distributed Programming Interface 253

1
number

2
octet string

3
object id

4
empty (ignored)

5
internet address

6
counter

7
gauge

8
time ticks

9
display string

other
octet string

-trape
Generates an extended trap (available with DPI 1.1 level) with the following defined options:
gtype

Specifies the trap as generic. The available ranges are 0 - 6.
stype

Specifies the type as specific.
enterprise

Provides the object ID for the extended trap.
data

Passes data values for additional variables. Data is passed as octet strings. Instances of data can
be 1-n.

-ent_traps
Generates nine enterprise-specific traps with stype values of 1 - 9, using the internal dpiSample
variables as data.

-ent_trapse
Generates nine enterprise-specific traps with stype values of 11 - 19, using the internal dpiSample
variables as data.

-std_traps
Generates and simulates the standard five SNMP traps (generic types 1 - 5) including the link-down
trap.

-all_traps
Generates both the standard traps (-std_traps) and the enterprise-specific traps with stype of 1 - 9
(-ent_traps).

-iucv
Specifies that an AF_IUCV socket is to be used to connect to the SNMP agent. The -iucv operand is the
default.

-u agent_userid
Specifies the user ID where the SNMP agent (SNMPD) is running. The default is SNMPD.

-inet
Specifies that an AF_INET socket is to be used to connect to the SNMP agent.

The DPISAMPLE Program (Sample DPI Subagent)

254 z/VM: 7.3 TCP/IP Programmer's Reference

agent_hostname
Specifies the host name of the system where an SNMP-DPI capable agent is running. The default, if
-inet is specified, is LOOPBACK.

community_name
Specifies the community name to get the dpiPort. The default is PUBLIC.

DPISAMPLE TABLE
DPISAMPLE.C supports these variables as an SNMP DPI sample sub-agent
it also generates enterprise specific traps via DPI with these objects.
DPISample 1.3.6.1.4.1.2.2.1.4. table 0
DPISampleNumber 1.3.6.1.4.1.2.2.1.4.1. number 10
next one is to be able to send a badValue with a SET request
DPISampleNumberString 1.3.6.1.4.1.2.2.1.4.1.1. string 10
DPISampleOctetString 1.3.6.1.4.1.2.2.1.4.2. string 10
DPISampleObjectID 1.3.6.1.4.1.2.2.1.4.3. object 10
XGMON/SQESERV does not allow to specify empty (so use empty string)
DPISampleEmpty 1.3.6.1.4.1.2.2.1.4.4. string 10
DPISampleInetAddress 1.3.6.1.4.1.2.2.1.4.5. internet 10
DPISampleCounter 1.3.6.1.4.1.2.2.1.4.6. counter 10
DPISampleGauge 1.3.6.1.4.1.2.2.1.4.7. gauge 10
DPISampleTimeTicks 1.3.6.1.4.1.2.2.1.4.8. ticks 10
DPISampleDisplayString 1.3.6.1.4.1.2.2.1.4.9. display 10
DPISampleCommand 1.3.6.1.4.1.2.2.1.4.10. display 1

Figure 38. DPISAMPLE Table MIB descriptions

Client Sample Program
The following is an example of a SNMP-DPI subagent program.

/***/
/* */
/* SNMP-DPI - SNMP Distributed Programming Interface */
/* */
/* May 1991 - Version 1.0 - SNMP-DPI Version 1.0 (RFC1228) */
/* Created by IBM Research. */
/* Feb 1992 - Version 1.1 - Allow enterpriseID to be passed with */
/* a (enterprise specific) trap */
/* - allow multiple variables to be passed */
/* - Use 4 octets (INTEGER from RFC1157) */
/* for generic and specific type. */
/* Jun 1992 - Make it run on OS/2 as well */
/* Note: dpisample = dpisampl on OS/2 */
/* */
/* Copyright None */
/* */
/* dpisample.c - a sample SNMP-DPI subagent */
/* - can be used to test agent DPI implementations. */
/* */
/* For testing with XGMON and/or SQESERV (SNMP Query Engine) */
/* it is best to keep the following define for OID in sync */
/* with the dpiSample objectID in the MIB description file */
/* (mib_desc for XGMON, MIB_DESC DATA for SQESERV on VM and */
/* MIB@DESC.DATA for SQESERV on MVS, MIB2TBL on OS/2). */
/* */
/***/

#define OID "1.3.6.1.4.1.2.2.1.4."
#define ENTERPRISE_OID "1.3.6.1.4.1.2.2.1.4" /* dpiSample */
#define ifIndex "1.3.6.1.2.1.2.2.1.1.0"
#define egpNeighAddr "1.3.6.1.2.8.5.1.2.0"
#define PUBLIC_COMMUNITY_NAME "public"

#if defined(VM) || defined(MVS)

 #define SNMPAGENTUSERID "SNMPD"
 #define SNMPIUCVNAME "SNMP_DPI"
 #pragma csect(CODE, "$DPISAMP")
 #pragma csect(STATIC,"#DPISAMP")
 #include <manifest.h> /* VM specific things */
 #include "snmpnms.h" /* short external names for VM/MVS */
 #include "snmp_vm.h" /* more of those short names */
 #include <saiucv.h>
 #include <bsdtime.h>
 #include <bsdtypes.h>

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 255

 #include <socket.h>
 #include <in.h>
 #include <netdb.h>
 #include <inet.h>
 extern char ebcdicto][, asciitoe][;
 #pragma linkage(cmxlate,OS)
 #define DO_ETOA(a) cmxlate((a),ebcdictoascii,strlen((a)))
 #define DO_ATOE(a) cmxlate((a),asciitoebcdic,strlen((a)))
 #define DO_ERROR(a) tcperror((a))
 #define LOOPBACK "loopback"
 #define IUCV TRUE
 #define max(a,b) (((a) > (b)) ? (a) : (b))
 #define min(a,b) (((a) < (b)) ? (a) : (b))

#else /* we are not on VM or MVS */

 #ifdef OS2
 #define INCL_DOSPROCESS
 #include <stdlib.h>
 #include <types.h>
 #include <doscalls.h> /* GKS */
 #include <os2.h> /* GKS */
 #ifndef sleep
 #define sleep(a) DosSleep(1000L * (a)) /*GKS*/
 #endif
 #define close soclose
 /*char * malloc(); */
 /*unsigned long strtoul(); */
 #endif

 #include <sys/time.h> /* GKS */
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <netdb.h>
 #include <arpa/inet.h>
 #define DO_ETOA(a) ; /* no need for this */
 #define DO_ATOE(a) ; /* no need for this */
 #define DO_ERROR(a) perror((a))
 #define LOOPBACK "localhost"
 #define IUCV FALSE
 #ifdef AIX221
 #define isdigit(c) (((c) >= '0') && ((c) <= '9'))
 #else
 #include <sys/select.h>
 #endif /* AIX221 */

#endif /* defined(VM) || defined(MVS) */

#include <stdio.h>
#ifdef OS2
 #include <dpi/snmp_dpi.h>
#else
 #include "snmp_dpi.h"
#endif

#define WAIT_FOR_AGENT 3 /* time to wait before closing agent fd */

#ifndef TRUE
 #define TRUE 1
 #define FALSE 0
#endif

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments();
static void send_packet();
static void print_val();
static void usage();
static void init_connection();
static void init_variables();
static void await_and_read_packet();
static void handle_packet();
static void do_get();
static void do_set();
static void issue_traps();
static void issue_one_trap();
static void issue_one_trape();
static void issue_std_traps();
static void issue_ent_traps();
static void issue_ent_trapse();
static void do_register();
static void dump_bfr();

Client Sample Program

256 z/VM: 7.3 TCP/IP Programmer's Reference

static struct dpi_set_packet *addtoset();
/extern unsigned long lookup_host();

#else /* _NO_PROTO */ /* for ANSI-C compiler */

static void check_arguments(const int argc, char *argv][);
static void send_packet(const char * packet);
static void print_val(const int index);
static void usage(const char *progname, const int exit_rc);
static void init_connection(void);
static void init_variables(void);
static void await_and_read_packet(void);
static void handle_packet(void);
static void do_get(void);
static void do_set(void);
static void issue_traps(void);
static void issue_one_trap(void);
static void issue_one_trape(void);
static void issue_std_traps(void);
static void issue_ent_traps(void);
static void issue_ent_trapse(void);
static void do_register(void);
static void dump_bfr(const char *buf, const int len);
static struct dpi_set_packet *addtoset(struct dpi_set_packet *data,
 int stype);
static unsigned long lookup_host(const char *hostname);

#endif /* _NO_PROTO */

#define OSTRING "hex01-04:"
#define DSTRING "Initial Display String"
#define COMMAND "None"
#define BUFSIZE 4096
#define TIMEOUT 3
#define PACKET_LEN(packet) (((unsigned char)*(packet)) * 256 + \
 ((unsigned char)*((packet) + 1)) + 2)

/* We have the following instances for OID.x variables */
 /* 0 - table */
static long number = 0; /* 1 - a number */
static unsigned char *ostring = 0; /* 2 - octet string */
static int ostring_len = 0; /* and its length */
static unsigned char *objectID = 0; /* 3 - objectID */
static int objectID_len= 0; /* and its length */
 /* 4 - some empty variable */
static unsigned long ipaddr = 0; /* 5 - ipaddress */
static unsigned long counter = 1; /* 6 - a counter */
static unsigned long gauge = 1; /* 7 - a gauge */
static unsigned long ticks = 1; /* 8 - time ticks */
static unsigned char *dstring = 0; /* 9 - display string */
static unsigned char *command = 0; /* 10 - command */

static char *DPI_var][= {
 "dpiSample",
 "dpiSampleNumber",
 "dpiSampleOctetString",
 "dpiSampleObjectID",
 "dpiSampleEmpty",
 "dpiSampleInetAddress",
 "dpiSampleCounter",
 "dpiSampleGauge",
 "dpiSampleTimeTicks",
 "dpiSampleDisplayString",
 "dpiSampleCommand"
};

static short int valid_types][= { /* SNMP_TYPEs accepted on SET */
 -1, /* 0 do not check type */
 SNMP_TYPE_NUMBER, /* 1 number */
 SNMP_TYPE_STRING, /* 2 octet string */
 SNMP_TYPE_OBJECT, /* 3 object identifier */
 -1, /* SNMP_TYPE_EMPTY */ /* 4 do not check type */
 SNMP_TYPE_INTERNET, /* 5 internet address */
 SNMP_TYPE_COUNTER, /* 6 counter */
 SNMP_TYPE_GAUGE, /* 7 gauge */
 SNMP_TYPE_TICKS, /* 8 time ticks */
 SNMP_TYPE_STRING, /* 9 display string */
 SNMP_TYPE_STRING /* 10 command (display string) */
#define OID_COUNT_FOR_TRAPS 9
#define OID_COUNT 10
};

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 257

static char *packet = NULL; /* ptr to send packet. */
static char inbuf]BUFSIZE[; /* buffer for receive packets */
static int dpi_fd; /* fd for socket to DPI agent */
static short int dpi_port; /* DPI_port at agent */
static unsigned long dpi_ipaddress; /* IP address of DPI agent */
static char *dpi_hostname; /* hostname of DPI agent */
static char *dpi_userid; /* userid of DPI agent VM/MVS */
static char *var_gid; /* groupID received */
static char *var_oid; /* objectID received */
static int var_index; /* OID variable index */
static unsigned char var_type; /* SET value type */
static char *var_value; /* SET value */
static short int var_value_len; /* SET value length */
static int debug_lvl = 0; /* current debug level */
static int use_iucv = IUCV; /* optional use of AF_IUCV */
static int do_quit = FALSE;/* Quit in await loop */
static int trap_gtype = 0; /* trap generic type */
static int trap_stype = 0; /* trap specific type */
static char *trap_data = NULL;/* trap data */
static int do_trap = 0; /* switch for traps */
#define ONE_TRAP 1
#define ONE_TRAPE 2
#define STD_TRAPS 3
#define ENT_TRAPS 4
#define ENT_TRAPSE 5
#define ALL_TRAPS 6
#define MAX_TRAPE_DATA 10 /* data for extended trap */
static long trape_gtype = 6; /* trap generic type */
static long trape_stype = 11; /* trap specific type */
static char *trape_eprise = NULL; /* enterprise id */
static char *trape_data]MAX_TRAPE_DATA[; /* pointers to data values */
static int trape_datacnt; /* actual number of values */

#ifdef _NO_PROTO /* for classic K&R C */
main(argc, argv) /* main line */
int argc;
char *argv][;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
main(const int argc, char *argv][) /* main line */
#endif /* _NO_PROTO */
{
 check_arguments(argc, argv); /* check callers arguments */
 dpi_ipaddress = lookup_host(dpi_hostname); /* get ip address */
 init_connection(); /* connect to specified agent */
 init_variables(); /* initialize our variables */
 if (do_trap) { /* we just need to do traps */
 issue_traps(); /* issue the trap(s) */
 sleep(WAIT_FOR_AGENT); /* sleep a bit, so agent can */
 close(dpi_fd); /* read data before we close */
 exit(0); /* and that's it */
 } /* end if (do_trap) */
 do_register(); /* register our objectIDs */
 printf("%s ready and awaiting queries from agent\n",argv]0[);
 while (do_quit == FALSE) { /* forever until quit or error */
 await_and_read_packet(); /* wait for next packet */
 handle_packet(); /* handle it */
 if (do_trap) issue_traps(); /* request to issue traps */
 } /* while loop */
 sleep(WAIT_FOR_AGENT); /* allow agent to read response */
 printf("Quitting, %s set to: quit\n",DPI_var]10[);
 exit(2); /* sampleDisplayString == quit */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_traps(void)
#endif /* _NO_PROTO */
{
 switch (do_trap) { /* let's see which one(s) */
 case ONE_TRAP: /* only need to issue one trap */
 issue_one_trap(); /* go issue the one trap */
 break;
 case ONE_TRAPE: /* only need to issue one trape */
 issue_one_trape(); /* go issue the one trape */
 break;
 case STD_TRAPS: /* only need to issue std traps */
 issue_std_traps(); /* standard traps gtypes 0-5 */
 break;
 case ENT_TRAPS: /* only need to issue ent traps */
 issue_ent_traps(); /* enterprise specific traps */
 break;

Client Sample Program

258 z/VM: 7.3 TCP/IP Programmer's Reference

 case ENT_TRAPSE: /* only need to issue ent trapse */
 issue_ent_trapse(); /* enterprise specific trapse */
 break;
 case ALL_TRAPS: /* only need to issue std traps */
 issue_std_traps(); /* standard traps gtypes 0-5 */
 issue_ent_traps(); /* enterprise specific traps */
 issue_ent_trapse(); /* enterprise specific trapse */
 break;
 default:
 break;
 } /* end switch (do_trap) */
 do_trap = 0; /* reset do_trap switch */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void await_and_read_packet() /* await packet from DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void await_and_read_packet(void)/* await packet from DPI agent */
#endif /* _NO_PROTO */
{
 int len, rc, bytes_to_read, bytes_read = 0;
#ifdef OS2
 int socks]5[;
#else
 fd_set read_mask;
#endif
 struct timeval timeout;

#ifdef OS2
 socks]0[= dpi_fd;
 rc = select(socks, 1, 0, 0, -1L);
#else
 FD_ZERO(&read_mask);
 FD_SET(dpi_fd, &read_mask); /* wait for data */
 rc = select(dpi_fd+1, &read_mask, NULL, NULL, NULL);
#endif
 if (rc != 1) { /* exit on error */
 DO_ERROR("await_and_read_packet: select");
 close(dpi_fd);
 exit(1);
 }
#ifdef OS2
 len = recv(dpi_fd, inbuf, 2, 0); /* read 2 bytes first */
#else
 len = read(dpi_fd, inbuf, 2); /* read 2 bytes first */
#endif
 if (len <= 0) { /* exit on error or EOF */
 if (len < 0) DO_ERROR("await_and_read_packet: read");
 else printf("Quitting, EOF received from DPI-agent\n");
 close(dpi_fd);
 exit(1);
 }
 bytes_to_read = (inbuf]0[<< 8) + inbuf]1[; /* bytes to follow */
 if (BUFSIZE < (bytes_to_read + 2)) { /* exit if too much */
 printf("Quitting, packet larger than %d byte buffer\n",BUFSIZE);
 close(dpi_fd);
 exit(1);
 }
 while (bytes_to_read > 0) { /* while bytes to read */
#ifdef OS2
 socks]0[= dpi_fd;
 len = select(socks, 1, 0, 0, 3000L);
#else
 timeout.tv_sec = 3; /* wait max 3 seconds */
 timeout.tv_usec = 0;
 FD_SET(dpi_fd, &read_mask); /* check for data */
 len = select(dpi_fd+1, &read_mask, NULL, NULL, &timeout);
#endif
 if (len == 1) { /* select returned OK */
#ifdef OS2
 len = recv(dpi_fd, &inbuf]2[+ bytes_read, bytes_to_read, 0);
#else
 len = read(dpi_fd, &inbuf]2[+ bytes_read, bytes_to_read);
#endif
 } /* end if (len == 1) */
 if (len <= 0) { /* exit on error or EOF */
 if (len < 0) DO_ERROR("await_and_read_packet: read");
 printf("Can't read remainder of packet\n");
 close(dpi_fd);
 exit(1);
 } else { /* count bytes_read */
 bytes_read += len;

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 259

 bytes_to_read -= len;
 }
 } /* while (bytes_to_read > 0) */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void handle_packet() /* handle DPI packet from agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void handle_packet(void) /* handle DPI packet from agent */
#endif /* _NO_PROTO */
{
 struct snmp_dpi_hdr *hdr;

 if (debug_lvl > 2) {
 printf("Received following SNMP-DPI packet:\n");
 dump_bfr(inbuf, PACKET_LEN(inbuf));
 }
 hdr = pDPIpacket(inbuf); /* parse received packet */
 if (hdr == 0) { /* ignore if can't parse */
 printf("Ignore received packet, could not parse it!\n");
 return;
 }
 packet = NULL;
 var_type = 0;
 var_oid = "";
 var_gid = "";
 switch (hdr->packet_type) {
 /* extract pointers and/or data from specific packet types, */
 /* such that we can use them independent of packet type. */
 case SNMP_DPI_GET:
 if (debug_lvl > 0) printf("SNMP_DPI_GET for ");
 var_oid = hdr->packet_body.dpi_get->object_id;
 break;
 case SNMP_DPI_GET_NEXT:
 if (debug_lvl > 0) printf("SNMP_DPI_GET_NEXT for ");
 var_oid = hdr->packet_body.dpi_next->object_id;
 var_gid = hdr->packet_body.dpi_next->group_id;
 break;
 case SNMP_DPI_SET:
 if (debug_lvl > 0) printf("SNMP_DPI_SET for ");
 var_value_len = hdr->packet_body.dpi_set->value_len;
 var_value = hdr->packet_body.dpi_set->value;
 var_oid = hdr->packet_body.dpi_set->object_id;
 var_type = hdr->packet_body.dpi_set->type;
 break;
 default: /* Return a GEN_ERROR */
 if (debug_lvl > 0) printf("Unexpected packet_type %d, genErr\n",
 hdr->packet_type);
 packet = mkDPIresponse(SNMP_GEN_ERR, NULL);
 fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
 send_packet(packet);
 return;
 break;
 } /* end switch(hdr->packet_type) */
 if (debug_lvl > 0) printf("objectID: %s \n",var_oid);

 if (strlen(var_oid) <= strlen(OID)) { /* not in our tree */
 if (hdr->packet_type == SNMP_DPI_GET_NEXT) var_index = 0; /* OK */
 else { /* cannot handle */
 if (debug_lvl>0) printf("...Ignored %s, noSuchName\n",var_oid);
 packet = mkDPIresponse(SNMP_NO_SUCH_NAME, NULL);
 fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
 send_packet(packet);
 return;
 }
 } else { /* Extract our variable index (from OID.index.instance) */
 /* We handle any instance the same (we only have one instance) */
 var_index = atoi(&var_oid]strlen(OID)[);
 }
 if (debug_lvl > 1) {
 printf("...The groupID=%s\n",var_gid);
 printf("...Handle as if objectID=%s%d\n",OID,var_index);
 }
 switch (hdr->packet_type) {
 case SNMP_DPI_GET:
 do_get(); /* do a get to return response */
 break;
 case SNMP_DPI_GET_NEXT:
 { char toid]256[; /* space for temporary objectID */
 var_index++; /* do a get for the next variable */
 sprintf(toid,"%s%d",OID,var_index); /* construct objectID */
 var_oid = toid; /* point to it */

Client Sample Program

260 z/VM: 7.3 TCP/IP Programmer's Reference

 do_get(); /* do a get to return response */
 } break;
 case SNMP_DPI_SET:
 if (debug_lvl > 1) printf("...value_type=%d\n",var_type);
 do_set(); /* set new value first */
 if (packet) break; /* some error response was generated */
 do_get(); /* do a get to return response */
 break;
 }
 fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_get() /* handle SNMP_GET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_get(void) /* handle SNMP_GET request */
#endif /* _NO_PROTO */
{
 struct dpi_set_packet *data = NULL;

 switch (var_index) {
 case 0: /* table, cannot be queried by itself */
 printf("...Should not issue GET for table %s.0\n", OID);
 break;
 case 1: /* a number */
 data = mkDPIset(var_oid,SNMP_TYPE_NUMBER,sizeof(number),&number);
 break;
 case 2: /* an octet_string (can have binary data) */
 data = mkDPIset(var_oid,SNMP_TYPE_STRING,ostring_len,ostring);
 break;
 case 3: /* object id */
 data = mkDPIset(var_oid,SNMP_TYPE_OBJECT,objectID_len,objectID);
 break;
 case 4: /* some empty variable */
 data = mkDPIset(var_oid,SNMP_TYPE_EMPTY,0,NULL);
 break;
 case 5: /* internet address */
 data = mkDPIset(var_oid,SNMP_TYPE_INTERNET,sizeof(ipaddr),&ipaddr);
 break;
 case 6: /* counter (unsigned) */
 data =mkDPIset(var_oid,SNMP_TYPE_COUNTER,sizeof(counter),&counter);
 break;
 case 7: /* gauge (unsigned) */
 data = mkDPIset(var_oid,SNMP_TYPE_GAUGE,sizeof(gauge),&gauge);
 break;
 case 8: /* time ticks (unsigned) */
 data = mkDPIset(var_oid,SNMP_TYPE_TICKS,sizeof(ticks),&ticks);
 break;
 case 9: /* a display_string (printable ascii only) */
 DO_ETOA(dstring);
 data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(dstring),dstring);
 DO_ATOE(dstring);
 break;
 case 10: /* a command request (command is a display string) */
 DO_ETOA(command);
 data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(command),command);
 DO_ATOE(command);
 break;
 default: /* Return a NoSuchName */
 if (debug_lvl > 1)
 printf("...GET]NEXT[for %s, not found\n", var_oid);
 break;
 } /* end switch (var_index) */

 if (data) {
 if (debug_lvl > 0) {
 printf("...Sending response oid: %s type: %d\n",
 var_oid, data->type);
 printf("......Current value: ");
 print_val(var_index); /* prints \n at end */
 }
 packet = mkDPIresponse(SNMP_NO_ERROR,data);
 } else { /* Could have been an error in mkDPIset though */
 if (debug_lvl > 0) printf("...Sending response noSuchName\n");
 packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
 } /* end if (data) */
 if (packet) send_packet(packet);
}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_set() /* handle SNMP_SET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 261

static void do_set(void) /* handle SNMP_SET request */
#endif /* _NO_PROTO */
{
 unsigned long *ulp;
 long *lp;

 if (valid_types]var_index[!= var_type &&
 valid_types]var_index[!= -1) {
 printf("...Ignored set request with type %d, expect type %d,",
 var_type, valid_types]var_index[);
 printf(" Returning badValue\n");
 packet = mkDPIresponse(SNMP_BAD_VALUE, NULL);
 if (packet) send_packet(packet);
 return;
 }
 switch (var_index) {
 case 0: /* table, cannot set table. */
 if (debug_lvl > 0) printf("...Ignored set TABLE, noSuchName\n");
 packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
 break;
 case 1: /* a number */
 lp = (long *)var_value;
 number = *lp;
 break;
 case 2: /* an octet_string (can have binary data) */
 free(ostring);
 ostring = (char *)malloc(var_value_len + 1);
 bcopy(var_value, ostring, var_value_len);
 ostring_len = var_value_len;
 ostring]var_value_len[= '\0'; /* so we can use it as a string */
 break;
 case 3: /* object id */
 free(objectID);
 objectID = (char *)malloc(var_value_len + 1);
 bcopy(var_value, objectID, var_value_len);
 objectID_len = var_value_len;
 if (objectID]objectID_len -1[) {
 objectID]objectID_len++[= '\0'; /* a valid one needs a null */
 if (debug_lvl > 0)
 printf("...added a terminating null to objectID\n");
 }
 break;
 case 4: /* an empty variable, cannot set */
 if (debug_lvl > 0) printf("...Ignored set EMPTY, readOnly\n");
 packet = mkDPIresponse(SNMP_READ_ONLY,NULL);
 break;
 case 5: /* Internet address */
 ulp = (unsigned long *)var_value;
 ipaddr = *ulp;
 break;
 case 6: /* counter (unsigned) */
 ulp = (unsigned long *)var_value;
 counter = *ulp;
 break;
 case 7: /* gauge (unsigned) */
 ulp = (unsigned long *)var_value;
 gauge = *ulp;
 break;
 case 8: /* time ticks (unsigned) */
 ulp = (unsigned long *)var_value;
 ticks = *ulp;
 break;
 case 9: /* a display_string (printable ascii only) */
 free(dstring);
 dstring = (char *)malloc(var_value_len + 1);
 bcopy(var_value, dstring, var_value_len);
 dstring]var_value_len[= '\0'; /* so we can use it as a string */
 DO_ATOE(dstring);
 break;
 case 10: /* a request to execute a command */
 free(command);
 command = (char *)malloc(var_value_len + 1);
 bcopy(var_value, command, var_value_len);
 command]var_value_len[= '\0'; /* so we can use it as a string */
 DO_ATOE(command);
 if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
 else if (strcmp("std_traps",command) == 0) do_trap = STD_TRAPS;
 else if (strcmp("ent_traps",command) == 0) do_trap = ENT_TRAPS;
 else if (strcmp("ent_trapse",command) == 0) do_trap = ENT_TRAPSE;
 else if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
 else if (strcmp("quit",command) == 0) do_quit = TRUE;
 else break;

Client Sample Program

262 z/VM: 7.3 TCP/IP Programmer's Reference

 if (debug_lvl > 0)
 printf("...Action requested: %s set to: %s\n",
 DPI_var]10[, command);
 break;
 default: /* NoSuchName */
 if (debug_lvl > 0)
 printf("...Ignored set for %s, noSuchName\n", var_oid);
 packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
 break;
 } /* end switch (var_index) */
 if (packet) send_packet(packet);
}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_std_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_std_traps(void)
#endif /* _NO_PROTO */
{
 trap_stype = 0;
 trap_data = dpi_hostname;
 for (trap_gtype=0; trap_gtype<6; trap_gtype++) {
 issue_one_trap();
 if (trap_gtype == 0) sleep(10); /* some managers purge cache */
 }
}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_traps(void)
#endif /* _NO_PROTO */
{
 char temp_string]256[;

 trap_gtype = 6;
 for (trap_stype = 1; trap_stype < 10; trap_stype++) {
 trap_data = temp_string;
 switch (trap_stype) {
 case 1 :
 sprintf(temp_string,"%ld",number);
 break;
 case 2 :
 sprintf(temp_string,"%s",ostring);
 break;
 case 3 :
 trap_data = objectID;
 break;
 case 4 :
 trap_data = "";
 break;
 case 5 :
 trap_data = dpi_hostname;
 break;
 case 6 :
 sleep(1); /* give manager a break */
 sprintf(temp_string,"%lu",counter);
 break;
 case 7 :
 sprintf(temp_string,"%lu",gauge);
 break;
 case 8 :
 sprintf(temp_string,"%lu",ticks);
 break;
 case 9 :
 trap_data = dstring;
 break;
 } /* end switch (trap_stype) */
 issue_one_trap();
 }
}

/* issue a set of extended traps, pass enterprise ID and multiple
 * variable (assume octect string) as passed by caller
 */
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_trapse()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_trapse(void)
#endif /* _NO_PROTO */
{
 int i, n;

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 263

 struct dpi_set_packet *data = NULL;
 unsigned char *packet = NULL;
 unsigned long ipaddr, ulnum;
 char oid]256[;
 char *cp;

 trape_gtype = 6;
 trape_eprise = ENTERPRISE_OID;
 for (n=11; n < (11+OID_COUNT_FOR_TRAPS); n++) {
 data = 0;
 trape_stype = n;
 for (i=1; i<=(n-10); i++)
 data = addtoset(data, i);
 if (data == 0) {
 printf("Could not make dpi_set_packet\n");
 return;
 }
 packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
 if ((debug_lvl > 0) && (packet)) {
 printf("sending trape packet: %lu %lu enterprise=%s\n",
 trape_gtype, trape_stype, trape_eprise);
 }
 if (packet) send_packet(packet);
 else printf("Could not make trape packet\n");
 }
}

/* issue one extended trap, pass enterprise ID and multiple
 * variable (assume octect string) as passed by caller
 */
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trape()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trape(void)
#endif /* _NO_PROTO */
{
 struct dpi_set_packet *data = NULL;
 unsigned char *packet = NULL;
 char oid]256[;
 char *cp;
 int i;

 for (i=0; i<trape_datacnt; i++) {
 sprintf(oid,"%s2.%d",OID,i);
 /* assume an octet_string (could have hex data) */
 data = mkDPIlist(data, oid, SNMP_TYPE_STRING,
 strlen(trape_data]i[), trape_data]i[);
 if (data == 0) {
 printf("Could not make dpiset_packet\n");
 } else if (debug_lvl > 0) {
 printf("Preparing:]oid=%s[value: ", oid);
 printf("'");
 for (cp = trape_data]i[; *cp; cp++) /* loop through data */
 printf("%2.2x",*cp); /* hex print one byte */
 printf("'H\n");
 }
 }
 packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
 if ((debug_lvl > 0) && (packet)) {
 printf("sending trape packet: %lu %lu enterprise=%s\n",
 trape_gtype, trape_stype, trape_eprise);
 }
 if (packet) send_packet(packet);
 else printf("Could not make trape packet\n");
}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trap()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trap(void)
#endif /* _NO_PROTO */
{
 long int num; /* must be 4 bytes */
 struct dpi_set_packet *data = NULL;
 unsigned char *packet = NULL;
 unsigned long ipaddr, ulnum;
 char oid]256[;
 char *cp;

 switch (trap_gtype) {
 /* all traps are handled more or less the same sofar. */
 /* could put specific handling here if needed/wanted. */

Client Sample Program

264 z/VM: 7.3 TCP/IP Programmer's Reference

 case 0: /* simulate cold start */
 case 1: /* simulate warm start */
 case 4: /* simulate authentication failure */
 strcpy(oid,"none");
 break;
 case 2: /* simulate link down */
 case 3: /* simulate link up */
 strcpy(oid,ifIndex);
 num = 1;
 data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
 break;
 case 5: /* simulate EGP neighbor loss */
 strcpy(oid,egpNeighAddr);
 ipaddr = lookup_host(trap_data);
 data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
 break;
 case 6: /* simulate enterprise specific trap */
 sprintf(oid,"%s%d.0",OID, trap_stype);
 switch (trap_stype) {
 case 1: /* a number */
 num = strtol(trap_data,(char **)0,10);
 data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
 break;
 case 2: /* an octet_string (could have hex data) */
 data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
 break;
 case 3: /* object id */
 data = mkDPIset(oid,SNMP_TYPE_OBJECT,strlen(trap_data) + 1,
 trap_data);
 break;
 case 4: /* an empty variable value */
 data = mkDPIset(oid, SNMP_TYPE_EMPTY, 0, 0);
 break;
 case 5: /* internet address */
 ipaddr = lookup_host(trap_data);
 data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
 break;
 case 6: /* counter (unsigned) */
 ulnum = strtoul(trap_data,(char **)0,10);
 data = mkDPIset(oid, SNMP_TYPE_COUNTER, sizeof(ulnum), &ulnum);
 break;
 case 7: /* gauge (unsigned) */
 ulnum = strtoul(trap_data,(char **)0,10);
 data = mkDPIset(oid, SNMP_TYPE_GAUGE, sizeof(ulnum), &ulnum);
 break;
 case 8: /* time ticks (unsigned) */
 ulnum = strtoul(trap_data,(char **)0,10);
 data = mkDPIset(oid, SNMP_TYPE_TICKS, sizeof(num), &ulnum);
 break;
 case 9: /* a display_string (ascii only) */
 DO_ETOA(trap_data);
 data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
 DO_ATOE(trap_data);
 break;
 default: /* handle as string */
 printf("Unknown specific trap type: %s, assume octet_string\n",
 trap_stype);
 data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
 break;
 } /* end switch (trap_stype) */
 break;
 default: /* unknown trap */
 printf("Unknown general trap type: %s\n", trap_gtype);
 return;
 break;
 } /* end switch (trap_gtype) */

 packet = mkDPItrap(trap_gtype,trap_stype,data);
 if ((debug_lvl > 0) && (packet)) {
 printf("sending trap packet: %u %u]oid=%s[value: ",
 trap_gtype, trap_stype, oid);
 if (trap_stype == 2) {
 printf("'");
 for (cp = trap_data; *cp; cp++) /* loop through data */
 printf("%2.2x",*cp); /* hex print one byte */
 printf("'H\n");
 } else printf("%s\n", trap_data);
 }
 if (packet) send_packet(packet);
 else printf("Could not make trap packet\n");
}

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 265

#ifdef _NO_PROTO /* for classic K&R C */
static void send_packet(packet) /* DPI packet to agent */
char *packet;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void send_packet(const char *packet) /* DPI packet to agent */
#endif /* _NO_PROTO */
{
 int rc;

 if (debug_lvl > 2) {
 printf("...Sending DPI packet:\n");
 dump_bfr(packet, PACKET_LEN(packet));
 }
#ifdef OS2
 rc = send(dpi_fd,packet,PACKET_LEN(packet),0);
#else
 rc = write(dpi_fd,packet,PACKET_LEN(packet));
#endif
 if (rc != PACKET_LEN(packet)) DO_ERROR("send_packet: write");
 /* no need to free packet (static buffer in mkDPI.... routine) */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_register() /* register our objectIDs with agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_register(void) /* register our objectIDs with agent */
#endif /* _NO_PROTO */
{
 int i, rc;
 char toid]256[;

 if (debug_lvl > 0) printf("Registering variables:\n");
 for (i=1; i<=OID_COUNT; i++) {
 sprintf(toid,"%s%d.",OID,i);
 packet = mkDPIregister(toid);
#ifdef OS2
 rc = send(dpi_fd, packet, PACKET_LEN(packet),0);
#else
 rc = write(dpi_fd, packet, PACKET_LEN(packet));
#endif
 if (rc <= 0) {
 DO_ERROR("do_register: write");
 printf("Quitting, unsuccessful register for %s\n",toid);
 close(dpi_fd);
 exit(1);
 }
 if (debug_lvl > 0) {
 printf("...Registered: %-25s oid: %s\n",DPI_var]i[,toid);
 printf("......Initial value: ");
 print_val(i); /* prints \n at end */
 }
 }
}

/* add specified variable to list of variable in the dpi_set_packet
 */
#ifdef _NO_PROTO /* for classic K&R C */
struct dpi_set_packet *addtoset(data, stype)
struct dpi_set_packet *data;
int stype;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
struct dpi_set_packet *addtoset(struct dpi_set_packet *data, int stype)
#endif /* _NO_PROTO */
{
 char var_oid]256[;

 sprintf(var_oid,"%s%d.0",OID, stype);
 switch (stype) {
 case 1: /* a number */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_NUMBER,
 sizeof(number), &number);
 break;
 case 2: /* an octet_string (can have binary data) */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,
 ostring_len, ostring);
 break;
 case 3: /* object id */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_OBJECT,
 objectID_len, objectID);
 break;
 case 4: /* some empty variable */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_EMPTY, 0, NULL);

Client Sample Program

266 z/VM: 7.3 TCP/IP Programmer's Reference

 break;
 case 5: /* internet address */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_INTERNET,
 sizeof(ipaddr), &ipaddr);
 break;
 case 6: /* counter (unsigned) */
 data =mkDPIlist(data, var_oid, SNMP_TYPE_COUNTER,
 sizeof(counter), &counter);
 break;
 case 7: /* gauge (unsigned) */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_GAUGE,
 sizeof(gauge), &gauge);
 break;
 case 8: /* time ticks (unsigned) */
 data = mkDPIlist(data, var_oid, SNMP_TYPE_TICKS,
 sizeof(ticks), &ticks);
 break;
 case 9: /* a display_string (printable ascii only) */
 DO_ETOA(dstring);
 data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,
 strlen(dstring), dstring);
 DO_ATOE(dstring);
 break;
 } /* end switch (stype) */
 return(data);
}

#ifdef _NO_PROTO /* for classic K&R C */
static void print_val(index)
int index;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void print_val(const int index)
#endif /* _NO_PROTO */
{
 char *cp;
 struct in_addr display_ipaddr;

 switch (index) {
 case 1 :
 printf("%ld\n",number);
 break;
 case 2 :
 printf("'");
 for (cp = ostring; cp < ostring + ostring_len; cp++)
 printf("%2.2x",*cp);
 printf("'H\n");
 break;
 case 3 :
 printf("%*s\n", objectID_len, objectID);
 break;
 case 4 :
 printf("no value (EMPTY)\n");
 break;
 case 5 :
 display_ipaddr.s_addr = (u_long) ipaddr;
 printf("%s\n",inet_ntoa(display_ipaddr));
/* This worked on VM, MVS and AIX, but not on OS/2
 * printf("%d.%d.%d.%d\n", (ipaddr >> 24), ((ipaddr << 8) >> 24),
 * ((ipaddr << 16) >> 24), ((ipaddr << 24) >> 24));
 */
 break;
 case 6 :
 printf("%lu\n",counter);
 break;
 case 7 :
 printf("%lu\n",gauge);
 break;
 case 8 :
 printf("%lu\n",ticks);
 break;
 case 9 :
 printf("%s\n",dstring);
 break;
 case 10 :
 printf("%s\n",command);
 break;
 } /* end switch(index) */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments(argc, argv) /* check arguments */
int argc;

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 267

char *argv][;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void check_arguments(const int argc, char *argv][)
#endif /* _NO_PROTO */
{
 char *hname, *cname;
 int i, j;

 dpi_userid = hname = cname = NULL;
 for (i=1; argc > i; i++) {
 if (strcmp(argv]i[,"-d") == 0) {
 i++;
 if (argc > i) {
 debug_lvl = atoi(argv]i[);
 if (debug_lvl >= 5) {
 DPIdebug(1);
 }
 }
 } else if (strcmp(argv]i[,"-trap") == 0) {
 if (argc > i+3) {
 trap_gtype = atoi(argv]i+1[);
 trap_stype = atoi(argv]i+2[);
 trap_data = argv]i+3[;
 i = i + 3;
 do_trap = ONE_TRAP;
 } else usage(argv]0[, 1);
 } else if (strcmp(argv]i[,"-trape") == 0) {
 if (argc > i+4) {
 trape_gtype = strtoul(argv]i+1[,(char**)0,10);
 trape_stype = strtoul(argv]i+2[,(char**)0,10);
 trape_eprise = argv]i+3[;
 for (i = i + 4, j = 0;
 (argc > i) && (j < MAX_TRAPE_DATA);
 i++, j++) {
 trape_data]j[= argv]i[;
 }
 trape_datacnt = j;
 do_trap = ONE_TRAPE;
 break; /* -trape must be last option */
 } else usage(argv]0[, 1);
 } else if (strcmp(argv]i[,"-all_traps") == 0) {
 do_trap = ALL_TRAPS;
 } else if (strcmp(argv]i[,"-std_traps") == 0) {
 do_trap = STD_TRAPS;
 } else if (strcmp(argv]i[,"-ent_traps") == 0) {
 do_trap = ENT_TRAPS;
 } else if (strcmp(argv]i[,"-ent_trapse") == 0) {
 do_trap = ENT_TRAPSE;
#if defined(VM) || defined(MVS)
 } else if (strcmp(argv]i[,"-inet") == 0) {
 use_iucv = 0;
 } else if (strcmp(argv]i[,"-iucv") == 0) {
 use_iucv = TRUE;
 } else if (strcmp(argv]i[,"-u") == 0) {
 use_iucv = TRUE; /* -u implies -iucv */
 i++;
 if (argc > i) {
 dpi_userid = argv]i[;
 }
#endif
 } else if (strcmp(argv]i[,"?") == 0) {
 usage(argv]0[, 0);
 } else {
 if (hname == NULL) hname = argv]i[;
 else if (cname == NULL) cname = argv]i[;
 else usage(argv]0[, 1);
 }
 }
 if (hname == NULL) hname = LOOPBACK; /* use default */
 if (cname == NULL) cname = PUBLIC_COMMUNITY_NAME; /* use default */
#if defined(VM) || defined(MVS)
 if (dpi_userid == NULL) dpi_userid = SNMPAGENTUSERID;
 if (debug_lvl > 2)
 printf("hname=%s, cname=%s, userid=%s\n",hname,cname,dpi_userid);
#else
 if (debug_lvl > 2)
 printf("hname=%s, cname=%s\n",hname,cname);
#endif
 if (use_iucv != TRUE) {
 DO_ETOA(cname); /* for VM or MVS */
 dpi_port = query_DPI_port(hname,cname);
 DO_ATOE(cname); /* for VM or MVS */

Client Sample Program

268 z/VM: 7.3 TCP/IP Programmer's Reference

 if (dpi_port == -1) {
 printf("No response from agent at %s(%s)\n",hname,cname);
 exit(1);
 }
 } else dpi_port == -1;
 dpi_hostname = hname;
}

#ifdef _NO_PROTO /* for classic K&R C */
static void usage(pname, exit_rc)
char *pname;
int exit_rc;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void usage(const char *pname, const int exit_rc)
#endif /* _NO_PROTO */
{
 printf("Usage: %s]-d debug_lvl[]-trap g_type s_type data[", pname);
 printf("]-all_traps[\n");
 printf("%*s]-trape g_type s_type enterprise data1 data2 .. datan[\n",
 strlen(pname)+8,"");
 printf("%*s]-std_traps[]-ent_traps[]-ent_trapse[\n",
 strlen(pname)+8,"");
#if defined(VM) || defined(MVS)
 printf("%*s]-iucv[]-u agent_userid[\n",strlen(pname)+8, "");
 printf("%*s", strlen(pname)+8, "");
 printf("]-inet[]agent_hostname]community_name[[\n");
 printf("default: -d 0 -iucv -u %s\n", SNMPAGENTUSERID);
 printf(" -inet %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);
#else
 printf("%*s]agent_hostname]community_name[[\n",strlen(pname)+8,"");
 printf("default: -d 0 %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);
#endif
 exit(exit_rc);
}

#ifdef _NO_PROTO /* for classic K&R C */
static void init_variables() /* initialize our variables */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_variables(void) /* initialize our variables */
#endif /* _NO_PROTO */
{
 char ch, *cp;

 ostring = (char *)malloc(strlen(OSTRING) + 4 + 1);
 bcopy(OSTRING,ostring,strlen(OSTRING));
 ostring_len = strlen(OSTRING);
 for (ch=1;ch<5;ch++) /* add hex data 0x01020304 */
 ostring]ostring_len++[= ch;
 ostring]ostring_len[= '\0'; /* so we can use it as a string */
 objectID = (char *)malloc(strlen(OID));
 objectID_len = strlen(OID);
 bcopy(OID,objectID,strlen(OID));
 if (objectID]objectID_len - 1[== '.') /* if trailing dot, */
 objectID]objectID_len - 1[= '\0'; /* remove it */
 else objectID_len++; /* length includes null */
 dstring = (char *)malloc(strlen(DSTRING)+1);
 bcopy(DSTRING,dstring,strlen(DSTRING)+1);
 command = (char *)malloc(strlen(COMMAND)+1);
 bcopy(COMMAND,command,strlen(COMMAND)+1);
 ipaddr = dpi_ipaddress;

}

#ifdef _NO_PROTO /* for classic K&R C */
static void init_connection() /* connect to the DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_connection(void) /* connect to the DPI agent */
#endif /* _NO_PROTO */
{
 int rc;
 int sasize; /* size of socket structure */
 struct sockaddr_in sin; /* socket address AF_INET */
 struct sockaddr *sa; /* socket address general */
#if defined(VM) || defined (MVS)
 struct sockaddr_iucv siu; /* socket address AF_IUCV */

 if (use_iucv == TRUE) {
 printf("Connecting to %s DPI_port %d userid %s (TCP, AF_IUCV)\n",
 dpi_hostname,dpi_port,dpi_userid);
 bzero(&siu,sizeof(siu));
 siu.siucv_family = AF_IUCV;
 siu.siucv_addr = dpi_ipaddress;

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 269

 siu.siucv_port = dpi_port;
 memset(siu.siucv_nodeid, ' ', sizeof(siu.siucv_nodeid));
 memset(siu.siucv_userid, ' ', sizeof(siu.siucv_userid));
 memset(siu.siucv_name, ' ', sizeof(siu.siucv_name));
 bcopy(dpi_userid, siu.siucv_userid, min(8,strlen(dpi_userid)));
 bcopy(SNMPIUCVNAME, siu.siucv_name, min(8,strlen(SNMPIUCVNAME)));
 dpi_fd = socket(AF_IUCV, SOCK_STREAM, 0);
 sa = (struct sockaddr *) &siu;
 sasize = sizeof(struct sockaddr_iucv);
 } else {
#endif
 printf("Connecting to %s DPI_port %d (TCP, AF_INET)\n",
 dpi_hostname,dpi_port);
 bzero(&sin,sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_port = htons(dpi_port);
 sin.sin_addr.s_addr = dpi_ipaddress;
 dpi_fd = socket(AF_INET, SOCK_STREAM, 0);
 sa = (struct sockaddr *) &sin;
 sasize = sizeof(struct sockaddr_in);
#if defined(VM) || defined (MVS)
 }
#endif
 if (dpi_fd < 0) { /* exit on error */
 DO_ERROR("init_connection: socket");
 exit(1);
 }
 rc = connect(dpi_fd, sa, sasize); /* connect to agent */
 if (rc != 0) { /* exit on error */
 DO_ERROR("init_connection: connect");
 close(dpi_fd);
 exit(1);
 }
}

#ifdef _NO_PROTO /* for classic K&R C */
static void dump_bfr(buf, len) /* hex dump buffer */
char *buf;
int len;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void dump_bfr(const char *buf, const int len)
#endif /* _NO_PROTO */
{
 register int i;

 if (len == 0) printf(" empty buffer\n"); /* buffer is empty */
 for (i=0;i<len;i++) { /* loop through buffer */
 if ((i&15) == 0) printf(" "); /* indent new line */
 printf("%2.2x",(unsigned char)buf]i[);/* hex print one byte */
 if ((i&15) == 15) printf("\n"); /* nl every 16 bytes */
 else if ((i&3) == 3) printf(" "); /* space every 4 bytes */
 }
 if (i&15) printf("\n"); /* always end with nl */
}

unsigned long lookup_host(const char *hostname)
{
 register unsigned long ret_addr;

 if ((*hostname >= '0') && (*hostname <= '9'))
 ret_addr = inet_addr(hostname);
 else {
 struct hostent *host;
 struct in_addr *addr;

 host = gethostbyname(hostname);
 if (host == NULL) return(0);
 addr = (struct in_addr *) (host->h_addr_list]0[);
 ret_addr = addr->s_addr;
 }
 return(ret_addr);
}

Compiling and Linking the DPISAMPLE.C Source Code
When compiling the Sample DPI Subagent program you may specify the following compile time flags:

Client Sample Program

270 z/VM: 7.3 TCP/IP Programmer's Reference

NO_PROTO
The DPISAMPLE.C code assumes that it is compiled with an ANSI-C compliant compiler. It can be
compiled without ANSI-C by defining this flag.

VM
Indicates that compilation id for VM and uses VM-specific includes. Some VM/MVS specific code is
compiled.

Client Sample Program

Chapter 6. SNMP Agent Distributed Programming Interface 271

Client Sample Program

272 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 7. SMTP Virtual Machine Interfaces

Electronic mail (e-mail) is prepared using local mail preparation facilities (or, user agents) such as the
CMS NOTE and SENDFILE commands; these facilities are not discussed here. This chapter describes the
interfaces to the SMTP virtual machine itself, and may be of interest to users who implement electronic
mail programs that communicate with the IBM z/VM implementation of SMTP.

The interfaces to the SMTP virtual machine are:

• The TCP/IP network

SMTP commands and replies can be sent and received interactively over a TCP network connection.
Mail from TCP network sites destined for local VM users (or users on an RSCS network attached to the
local z/VM system) arrives over this interface. All commands and data received and transmitted through
this interface must be composed of ASCII characters.

• The local z/VM system (and systems attached to the local z/VM system by an RSCS network)

SMTP commands can be written to a batch file and then spooled to the virtual reader of the SMTP virtual
machine. SMTP processes each of the commands in this file, in order, as if they had been transmitted
over a TCP connection. This is how mail is sent from local z/VM users (or users on an RSCS network
attached to the local z/VM system) to recipients on the TCP network. Batch SMTP (or, BSMTP) files must
contain commands and data composed of EBCDIC characters.

SMTP Transactions
Electronic mail is sent by a series of request/response transactions between a client, the sender-SMTP,
and a server, the receiver-SMTP. These transactions pass (1) the message proper, which is composed of a
header and a body (which by definition, are separated by the first blank line present in this information),
and (2) SMTP commands, which are referred to as (and comprise) the mail envelope. These commands
contain additional information about the mail, such as the host sending the mail and its source and
destination addresses. Envelope addresses may be derived from information in the message header,
supplied by the user interface, or derived from local configuration information.

The SMTP envelope is constructed at the sender-SMTP site. If this is the originating site, the information
is typically provided by the user agent when the message is first queued for the sender-SMTP program.
Each intermediate site receives the piece of mail and resends it on to the next site using an envelope that
it creates. The content of the new envelope may be different from that of the one it received.

The envelope contains, at a minimum, the HELO or EHLO, MAIL FROM:, RCPT TO:, DATA, and QUIT
commands. These, and other commands that can optionally appear in the envelope, are described in the
next section. Some of these commands can appear more than once in an envelope. Also, more than one
piece of mail can be sent using a given envelope.

SMTP Commands
This section describes SMTP commands that are recognized by the z/VM SMTP implementation. These
commands are used to interface with user agent mail facilities (such as the CMS NOTE and SENDFILE
commands) as well as with other SMTP servers.

For more complete information about SMTP and the commands that can be used with this protocol, it is
suggested that you review the following RFCs:

• RFC 2821, Simple Mail Transfer Protocol
• RFC 822, Standard for the Format of ARPA Internet Text Messages
• RFC 1870, SMTP Service Extension for Message Size Declaration
• RFC 1652, SMTP Service Extension for 8bit-MIME transport

SMTP Virtual Machine Interfaces

© Copyright IBM Corp. 1987, 2023 273

These RFCs are the basis for modern naming specifications associated with the SMTP protocol.

Note: The SMTP commands SEND, SOML, SAML, and TURN are not supported by the z/VM SMTP
implementation, so are not described here.

HELO
The HELO command is used to identify the domain name of the sending host to SMTP. This command is
used to initiate a mail transaction, and must be sent (once) before a MAIL FROM: command is used.

HELO domain_name

Operand
Description

domain_name
Specifies the domain name of the sending host. The domain_name may be specified as either:

• a domain name
• an IP address in decimal integer form that is prefixed by the number or (US) pound sign ("#" or

X'7B')
• an IP address in dotted-decimal form, enclosed in brackets.
• the string "IPv6:" followed by an IPv6 address in full or compressed form (IPv6 mapped IPv4

addresses are acceptable).

When HELO commands are received over a TCP connection, SMTP replies with the message 250
SMTP_server_domain is my domain name. The SMTP server client verification exit or built-in
client verification function can be used to determine if the provided domain_name matches the client
IP address and to include the result of that determination in the mail headers. See z/VM: TCP/IP Planning
and Customization for detailed information about configuring SMTP to use this support.

When HELO commands are received over a batch SMTP connection, SMTP replies with the message
250 SMTP_server_domain is my domain name. Additional text is included with this message that
indicates whether the provided domain_name does or does not match the host name of the spool file
origination point. The 250 reply code indicates the HELO command is accepted and that SMTP commands
can continue to be sent and received.

EHLO
The EHLO command operates and can be used in the same way as the HELO command. However, it
additionally requests that the returned reply should identify specific SMTP service extensions that are
supported by the SMTP server.

EHLO domain_name

Operand
Description

domain_name
Specifies the domain name of the sending host. The domain_name may be specified as either:

• a domain name
• an IP address in decimal integer form that is prefixed by the number or (US) pound sign ("#" or

X'7B')
• an IP address in dotted-decimal form, enclosed in brackets.
• the string "IPv6:" followed by an IPv6 address in full or compressed form (IPv6 mapped IPv4

addresses are acceptable).

SMTP Virtual Machine Interfaces

274 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

If a server does not support SMTP service extensions, the client receives a negative reply to its EHLO
command. When this occurs, the client should either supply a HELO command, if the mail being
delivered can be processed without the use of SMTP service extensions, or it should end the current
mail transaction.

If a client receives a positive response to an EHLO command, the server is then known to support one
or more SMTP service extensions. This reply then can be further used by the client to determine whether
certain kinds of mail can be effectively processed by that server.

For example, if the positive response includes the SIZE keyword, the server supports the SMTP service
extension for Message Size Declaration. Whereas, if this response includes the 8BITMIME keyword, the
server supports the SMTP service extension for 8-bit MIME transport.

SMTP supports the following service extensions:

EXPN HELP SIZE 8BITMIME

Following is an example of a positive reply to a client (c) EHLO command from an SMTP server (s) that
supports these service extensions:

 s: (wait for connection on TCP port 25)
 c: (open connection to server)
 s: 220 HOSTA.IBM.COM running IBM VM SMTP Level 320 on Sat, 1 May 99 …
 c: EHLO HOSTB.IBM.COM
 s: 250-HOSTA.IBM.COM is my domain name.
 s: 250-EXPN
 s: 250-HELP
 s: 250-8BITMIME
 s: 250 SIZE 524288
 …

The hyphen (-), when present as the fourth character of a response, indicates the response is continued
on the next line.

MAIL FROM
The MAIL FROM: command is used (once), after a HELO or EHLO command, to identify the sender of a
piece of mail.

MAIL FROM: < sender_path_address >

SIZE= number_of_bytes

BODY=7BIT

BODY=8BITMIME

Operand
Description

sender_path_address
Specifies the full path address of the sender of the mail. Definitions for valid sender_path_address
specifications can be obtained from the RFCs that define the naming conventions used throughout the
Internet. For detailed information, consult the RFCs listed in the section “SMTP Commands” on page
273.

SIZE=number_of_bytes
Specifies the size of the mail, in bytes, including carriage return/line feed (CRLF, X'0D0A') pairs. The
SIZE parameter has a range from 0 to 2,147,483,647.

BODY=7BIT
Specifies that the message is encoded using seven significant bits per 8-bit octet (byte). In practice,
however, the body is typically encoded using all eight bits.

BODY=8BITMIME
Specifies that the message is encoded using all eight bits of each octet (byte) and may contain MIME
headers.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 275

Note: The SIZE, BODY=7BIT, and BODY=8BITMIME options of the MAIL FROM: command should be used
only if an EHLO command was used to initiate a mail transaction. If an EHLO command was not used for
this purpose, SMTP ignores these parameters if they are present.

If the SMTP server is known to support the SMTP service extension for Message Size Declaration, the
client sending the mail can specify the optional SIZE= parameter with its MAIL FROM: commands. The
client then can use the responses to these commands to determine whether the receiving SMTP server
has sufficient resources available to process its mail before any data is transmitted to that server.

When a MAIL FROM: command is received that includes the optional SIZE= parameter, the SMTP server
compares the supplied number_of_bytes value to its allowed maximum message size (defined by the
MAXMAILBYTES statement in the SMTP CONFIG file) to determine if the mail should be accepted. If
number_of_bytes exceeds the MAXMAILBYTES value, a reply code 552 is returned to the client.

The SIZE= parameter is evaluated only for MAIL FROM: commands received over a TCP connection; this
parameter and its value are ignored when they are received over a batch connection.

RCPT TO
The RCPT TO: command specifies the recipient(s) of a piece of mail. This command can be repeated any
number of times.

RCPT TO: < recipient_path_address >

Operand
Description

recipient_path_address
Specifies the full path address of a mail recipient. Definitions for valid recipient_path_address
specifications can be obtained from the RFCs that define the naming conventions used throughout
the Internet. For detailed information, consult the RFCs listed in the section “SMTP Commands” on
page 273.

A RCPT TO: command must be used after a MAIL FROM: command. If the host system is not aware of the
recipient’s host, a negative reply is returned in response to the RCPT TO: command.

DATA
The DATA command indicates that the next information provided by the client should be construed as the
text of the mail being delivered (that is, the header and body of the mail message).

DATA

The DATA command has no parameters.

The DATA command is used after a HELO or EHLO command, a MAIL FROM: command, and at least one
RCPT TO: command have been accepted. When the DATA command has been accepted, the following
response (reply code 354) is returned to indicate that the body of the mail can be transmitted:

 354 Enter mail body. End new line with just a '.'

The body of the mail is terminated by transmitting a single ASCII period (.) on a line by itself. When SMTP
detects this "end of data" indicator, it returns the following reply:

 250 Mail Delivered

When mail is received over a TCP connection, this ASCII period should be followed by the ASCII CR-LF
sequence (carriage return/line feed sequence, X'0D0A'). If any record in the body of the mail begins with
a period, the sending SMTP program must convert the period into a pair of periods (..). Then, when the
receiving SMTP encounters a record in the body of the mail that begins with two periods, it discards

SMTP Virtual Machine Interfaces

276 z/VM: 7.3 TCP/IP Programmer's Reference

the leading period. This convention permits the mail body to contain records that would otherwise be
incorrectly interpreted as the "end of data" indicator. These rules must be followed over both TCP and
batch SMTP connections. The CMS NOTE and SENDFILE execs perform this period doubling on all mail
spooled to SMTP. If the body of the mail in a batch SMTP command file is not explicitly terminated by a
record with a single period, SMTP supplies one.

After the "end of data" indicator has been received, the SMTP connection is reset to its initial state (that is,
the state before any sender or recipients have been specified). Additional MAIL FROM:, RCPT TO:, DATA,
and other commands can again be sent. If no further mail is to be delivered through this connection, the
connection should then be terminated with a QUIT command. If the QUIT command is omitted from the
end of a batch SMTP command file, the QUIT is implicit — SMTP will proceed as if it had been provided.

If SMTP runs out of local mail storage space, it returns a 451 reply code to the sender-SMTP client. Local
mail storage space is constrained by the size of the SMTP server A-disk (191 minidisk). For a large batch
SMTP file, disk storage equivalent to four times the size of that file may be required for it to be processed
by SMTP.

If the body of the mail being delivered is found to exceed the MAXMAILBYTES value established in
the SMTP CONFIG file, a reply code 552 is returned to the client. See z/VM: TCP/IP Planning and
Customization for more information about the MAXMAILBYTES configuration statement.

When mail arrives over a batch SMTP connection from an RSCS network host, and the
REWRITE822HEADER configuration option was specified in the SMTP configuration file, then header
fields are modified to ensure that all addresses are fully qualified domain names. See z/VM: TCP/IP
Planning and Customization for more information about the header rewriting.

RSET
The RSET command resets an SMTP connection to an initial state. That is, all information about the
current mail transaction is discarded, and the connection is ready to process a new mail transaction.

RSET

The RSET command has no parameters.

QUIT
The QUIT command terminates an SMTP connection.

QUIT

The QUIT command has no parameters.

NOOP
The NOOP command has no intrinsic function. However, it will cause the receiver-SMTP to return an "OK"
response (reply code 250).

NOOP

The NOOP command has no parameters.

HELP
The HELP command returns brief information about one or more SMTP commands.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 277

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

HELP

command_name

Operand
Description

command_name
Identifies a specific SMTP command.

The HELP command returns a multiple-line reply with brief help information about the SMTP commands
supported by a host. If an SMTP command is specified for command_name, information about that
specific command is returned.

QUEU
The QUEU command returns a multiple-line reply with information about the content of the mail
processing queues maintained within the SMTP server.

QUEU

DATE

Operand
Description

DATE
Causes information about the age of any queued mail to be included in the QUEU command response.
By default, age information is not included in such responses.

The z/VM SMTP server maintains various internal queues for handling mail, that can be generalized to
two categories — the mail (delivery) queues, and the mail resolution (or, resolver) queues. The QUEU
command returns a multiple-line reply with information about the content of these queues, which are
described in more detail here.

Mail Delivery Queues
Queue Name

Description
Spool

Contains mail that is destined for recipients on the local z/VM system, or for recipients on an RSCS
system attached to the local z/VM system. This queue is generally empty, because SMTP can deliver
this mail quickly by spooling it directly to the local recipient, or to the RSCS virtual machine for
delivery to an RSCS network recipient.

Active
Identifies mail that is currently being transmitted by SMTP to a TCP network destination. All mail
queued for that same destination is shown to be Active.

Queued
Identifies mail that has arrived over either a TCP or batch SMTP connection that is to be forwarded
to a TCP network destination (possibly because of source routing). When SMTP obtains sufficient
resources from the TCPIP virtual machine to process this mail, it is transferred to the Active queue.

Retry
Identifies mail for which SMTP has made one or more previous delivery attempts that were not
successful. Delivery attempts may fail for a variety of reasons; two common reasons are:

• The SMTP server could not open a connection to deliver the mail.
• Delivery of the mail was interrupted for some reason, such as a broken connection or a temporary

error condition at the target host.

SMTP Virtual Machine Interfaces

278 z/VM: 7.3 TCP/IP Programmer's Reference

After the RETRYINT interval (defined in the SMTP CONFIG file) has passed, mail in the Retry queue is
promoted to the Queued queue (or state) for another delivery attempt. For more information about the
RETRYINT configuration parameter, see z/VM: TCP/IP Planning and Customization.

Undeliverable
Identifies mail that SMTP cannot deliver to a local z/VM recipient, or to a recipient on the RSCS
network attached to the local VM system, due to insufficient spooling resources on the local z/VM
system. After spool space has been increased and SMTP has been reinitialized, delivery of this mail is
again attempted.

Mail Resolution Queues
The mail resolution (or, resolver) queues are used to maintain the status of host resolution queries
— performed through DNS services — for mail host domains, originators, and recipients, when such
resolution is necessary. If the SMTP server is configured to not use a name server, but only local host
tables, these queues are not used.

Several notes regarding the response information associated with mail resolution queues follow:

• If a queue is empty the word Empty appears in the response, to the right of the name of that queue.
• If a queue contains active queries, a line that identifies that queue will be present; information

about the mail in that queue, and its associated query (or queries) is provided immediately after this
identification line.

• Because of timing situations that can occur within the SMTP server, a queue identification line may at
times show that a queue is active (that is, Empty is not indicated), but no mail entries will be present.

Queue Name
Description

Process
This queue is generally empty, as it contains queries that have not yet been acted upon by the SMTP
server. Once a query has been initially processed, it is placed in the Resolver Send queue.

Send
Identifies queries that are awaiting SMTP resolver processing. SMTP staggers the number of queries it
submits to a name server, to prevent overloading the network and the name server.

Wait
Identifies queries for which the SMTP server is waiting a response from a name server. Queries remain
in this queue for a specific amount of time, within which a reply should be received from the name
server.

If a query is successful, that query is then placed in the Resolver Completed queue.

If a reply is not received for a query within the allotted time (that is, the resolver time-out has
expired), that query is removed from this queue and placed in the Resolver Retry queue.

Note: The duration of the resolver time-out period can be controlled using the TCPIP DATA file
RESOLVERTIMEOUT configuration statement. See z/VM: TCP/IP Planning and Customization for more
information about this statement.

Retry
Identifies queries that have previously failed, possibly because:

• a name server response was not received for a query (within the designated time-out period), or
• the name server returned a temporary error that has forced the SMTP server to retry a query. A

temporary error occurs if, for example, the name server truncates a packet, or if the name server
detects a processing error.

Note: Mail for which queries are present in this queue can be significantly affected by the values
defined for the RESOLVERRETRYINT and RETRYAGE configuration statements in the SMTP CONFIG
file. See z/VM: TCP/IP Planning and Customization for more information about these statements.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 279

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

Completed
Identifies queries that have been resolved and are waiting to be recorded by SMTP (and, possibly
incorporated within a piece of mail). After the resolved information has been recorded, SMTP attempts
to deliver the mail.

Error
Identifies queries for which a name server response was obtained, but for which no answer was
obtained. Mail that corresponds to such queries is returned to the originator as undeliverable, with an
unknown recipient error indicated.

VRFY
The VRFY ("verify") command determines if a given mailbox or user ID exists on the host where SMTP is
running.

VRFY  verify_string

Operand
Description

verify_string
Specifies the name of a mailbox or user ID whose existence is to be verified.

The z/VM implementation of SMTP responds to the VRFY command and the EXPN command (see the
EXPN command below) in the same manner. Thus, the VRFY command can be used with z/VM systems to
expand a mailing list defined on such system; when this is done, a multiple-line reply may be returned in
response to the VRFY command.

The VRFY command can also be used to verify the existence of the POSTMASTER mailbox or mailboxes
defined for a system.

On z/VM systems, mailing lists are defined by the site administrator and are stored in the SMTP NAMES
file; POSTMASTER mailboxes are defined by the POSTMASTER configuration statement in the SMTP
CONFIG file. See the z/VM: TCP/IP Planning and Customization for more information about defining
mailing lists and specifying POSTMASTER mailboxes.

Some example VRFY commands (issued against an SMTP server running on host TESTVM1 at
"somewhere.com") and their corresponding responses follow:

 vrfy tcpmaint 250 <tcpmaint@abcvm1.somewhere.com>

 vrfy tcpadmin-list 250-<tcpmaint@abcvm1.somewhere.com>
 250-<tcpadmin@abcvm1.somewhere.com>
 250-<tcpadmin@adminpc.somewhere.com>
 250 <maint@abcvm1.somewhere.com>

 vrfy postmaster 250-<TCPMAINT@TESTVM1.somewhere.com>
 250-<TCPADMIN@TESTVM1.SOMEWHERE.COM>
 250 <TCPADMIN@ADMINPC.SOMEWHERE.COM>

The hyphen (-), when present as the fourth character of a response, indicates the response is continued
on the next line.

EXPN
The EXPN ("expand") command expands a mailing list defined on the host where SMTP is running.

EXPN expand_string

Operand
Description

SMTP Virtual Machine Interfaces

280 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

expand_string
Specifies the name of the mailing list to be expanded.

The EXPN command operates and can be used in the same way as the VRFY command.

VERB
The VERB command is used to enable or disable "verbose" mode for batch SMTP connections.

VERB

OFF

ON

Operand
Description

ON
Specifies that verbose mode is to be enabled (turned on). When verbose mode is enabled for a
batch SMTP connection, SMTP commands and their associated replies are recorded in a batch SMTP
response file; this file is sent back to the origination point of the batch SMTP command file when the
batch transaction is complete.

OFF
Specifies that verbose mode is to be disabled (turned off); this is the default. When verbose mode is
disabled for a batch SMTP connection, only SMTP replies are recorded in the batch SMTP response
file; this file is not returned to the origination point of the batch SMTP command file.

See “SMTP Command Responses” on page 282 for more information about the batch SMTP response file,
how this file is handled, and how origination points are determined.

Note: The VERB command has no effect when issued over a TCP connection.

TICK
The TICK command can be used (in conjunction with the VERB ON command) to cause an identifier string
to be inserted into a batch SMTP response file.

TICK identifier

Operand
Description

identifier
Specifies an identification string to be included in a batch SMTP response file.

This command can be useful for some mail systems that keep track of batch SMTP response files and
their content.

Note: The TICK command has no effect when it is issued over a TCP connection.

SMTP Command Example
The following is an example of an SMTP envelope and its contained piece of mail. The SMTP commands
that comprise the envelope are in upper case boldface text. The information after the DATA command, and
before the single ASCII period (the "end of data" indicator) is the message header and body. The body is
distinguished from the header by the blank line that follows the "Subject: Update" line of text.

 HELO yourhost.yourdomain.edu
 MAIL FROM: <carol@yourhost.yourdomain.edu>
 RCPT TO: <msgs@host1.somewhere.com>
 RCPT TO: <alice@host2.somewhere.com>
 DATA
 Date: Sun, 30 Nov 98 nn:nn:nn EST

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 281

 From: Carol <carol@yourhost.yourdomain.edu>
 To: <msgs@host1.somewhere.com>
 Cc: <alice@host2.somewhere.com>
 Subject: Update

 Mike: Cindy stubbed her toe. Bobby went to
 baseball camp. Marsha made the cheerleading team.
 Jan got glasses. Peter has an identity crisis.
 Greg made dates with 3 girls and couldn't
 remember their names.
 .
 QUIT

SMTP Command Responses
The z/VM SMTP server can accept SMTP commands that arrive over a TCP connection or over a batch
SMTP (BSMTP) connection. With either type of connection, a response (or, reply) is generated for each
command received by SMTP. Each reply is prefixed with a three-digit number, or code. The nature of each
response can be determined by inspecting the first digit of this reply code; possible values for this
digit are:
 Digit

Description
 0

Echo reply; used only in batch SMTP response files. Received commands are "echoed" in these files
to provide contextual information for other reply codes.

 1
Positive Preliminary reply. SMTP does not use a 1 as the first digit of a reply code, because there are
no SMTP commands for which such a reply is applicable.

 2
Positive Completion reply; command accepted.

 3
Positive Intermediate reply; data associated with the command should now be provided.

 4
Temporary Negative Completion reply; try the command again, but at a later time.

 5
Permanent Negative Completion reply; the command has been rejected.

For SMTP commands that arrive over a TCP connection, all responses (positive or negative) are returned
over that TCP connection.

Similarly, for SMTP commands that arrive over a batch SMTP connection, all responses are written to
a batch SMTP response file. If verbose mode is enabled for a batch SMTP connection (through use of
the VERB ON command), SMTP returns this response file to the origination point of the spool file. The
origination point is determined either from the ORIGINID field of the spool file (if the spool file was
generated on the same z/VM system as the SMTP virtual machine) or from the spool file TAG field (if the
spool file arrived from a remote system through the RSCS network). If the batch SMTP connection is not in
verbose mode, the batch SMTP response file is not returned to the point of origin.

If an error occurs during the processing of commands over a batch SMTP connection, such as reception of
a negative response (with a first digit of 4 or 5), an error report is mailed back to the sender of the mail.
The sender is determined from the last valid MAIL FROM: command that was received by SMTP. If the
sender cannot be determined from a MAIL FROM: command, the sender is assumed to be the origination
point of the batch SMTP command file. The error report mailed to the sender includes the batch SMTP
response file and the text of the undeliverable mail.

Note: All SMTP commands and data that arrive over TCP or batch SMTP connections are subject to the
restrictions imposed by both SMTP conventions and constants defined in either the SMTPGLOB COPY
file, or within other SMTP source files. Any changes made to these files to overcome a restriction will
require the affected source files to be recompiled, and the SMTP module to be rebuilt. Several significant
restrictions, the relevant constants, and their default values are:

SMTP Virtual Machine Interfaces

282 z/VM: 7.3 TCP/IP Programmer's Reference

• Command lines must not exceed MaxCommandLine (552 characters).
• Data lines longer than MaxDataLine (32767 characters) are wrapped.
• Path addresses must not exceed MaxPathLength (256 characters).
• Domain names must not exceed MaxDomainName (256 characters).
• User names, the local part of a mailbox specification, must not exceed MaxUserName (256 characters).

Path Address Modifications
When SMTP processes MAIL FROM: and RCPT TO: commands, the path addresses specified with these
commands may be modified by SMTP due to use of the SOURCEROUTES configuration statement, or
based on the content of the path addresses themselves. See z/VM: TCP/IP Planning and Customization
for more information about the SOURCEROUTES statement and its affect on path addresses. For content-
based changes, certain path addresses will be rewritten by SMTP as follows:

1. If the local part of a mailbox name includes a percent sign (%) and the domain of the mailbox is that
of the host system where SMTP is running, the given domain name is eliminated, and the portion of
the "local part" to the right of the percent sign (%) is used as the destination domain. For example, the
path address:

 john%yourvm@ourvm.our.edu

is rewritten by SMTP running at "ourvm.our.edu" as:

 john@yourvm

2. Path addresses with source routes are accepted and rewritten to remove the domain name of the host
system where SMTP is running. For example, the path address:

 @ourvm.our.edu,@next.host.edu:john@yourvm

is rewritten by SMTP running at "ourvm.our.edu" as:

 @next.host.edu:john@yourvm

Definitions for "valid path format" specifications can be obtained from the RFCs that define the naming
conventions used throughout the Internet. For detailed information, consult the RFCs listed in the section
“SMTP Commands” on page 273.

Batch SMTP Command Files
Batch SMTP command files are files that contain an SMTP envelope (as described in “SMTP Transactions”
on page 273) which are sent to the virtual reader of the SMTP virtual machine using the CMS PUNCH,
DISK DUMP, SENDFILE, or NETDATA SEND commands. For a description of these commands, see the
z/VM: CMS Command Reference. These files are encoded using EBCDIC.

Batch SMTP command files can be sent by users on the same z/VM system, or any system connected
through an RSCS network. For information about RSCS networks, see the RSCS General Information.

Batch SMTP files may be modified when they are processed by the SMTP server, as follows:

• All trailing blanks are removed from each record of a file sent in PUNCH format. Trailing blanks are
preserved for files sent in NETDATA or DISK DUMP format.

• A record that is entirely blank will be treated as a record with a single blank.

Batch SMTP Examples
The following sections contain examples that demonstrate batch SMTP capabilities.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 283

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

Sending Mail to a TCP Network Recipient
The example that follows shows the content of a batch SMTP file used to send mail from a CMS user
(CAROL at YOURHOST) to two TCP network recipients. The VERB ON command will cause a batch SMTP
response file to be returned to the CMS user CAROL. The text included with the TICK command will
appear in this file as well, so that the nature of the response file will be evident when it is returned.

 VERB ON
 TICK Carol's Batch Test File
 HELO yourhost.yourdomain.edu
 MAIL FROM: <carol@yourhost.yourdomain.edu>
 RCPT TO: <msgs@host1.somewhere.com>
 RCPT TO: <alice@host2.somewhere.com>
 DATA
 Date: Sun, 30 Nov 98 nn:nn:nn EST
 From: Carol <carol@yourhost.yourdomain.edu>
 To: <msgs@host1.somewhere.com>
 Cc: <alice@host2.somewhere.com>
 Subject: Update

 Mike: Cindy stubbed her toe. Bobby went to
 baseball camp. Marsha made the cheerleading team.
 Jan got glasses. Peter has an identity crisis.
 Greg made dates with 3 girls and couldn't
 remember their names.
 .
 QUIT

With the exception of the VERB and TICK commands, this sample batch SMTP file contains commands
that are identical to those shown in “SMTP Command Example” on page 281.

Following is the batch SMTP response file (BSMTP REPLY) produced for the previous command file:

 220-YOURHOST.YOURDOMAIN.EDU running IBM VM SMTP Level 320 on Sun, 30 Nov 1998 nn
 220 :nn:n EST
 050 VERB ON
 250 Verbose Mode On
 050 TICK Carol's Batch Test File
 250 OK
 050 HELO yourhost.yourdomain.edu
 250 YOURHOST.YOURDOMAIN.EDU is my domain name. Yours too, I see!
 050 MAIL FROM: <carol@yourhost.yourdomain.edu>
 250 OK
 050 RCPT TO: <msgs@host1.somewhere.com>
 250 OK
 050 RCPT TO: <alice@host2.somewhere.com>
 250 OK
 050 DATA
 354 Enter mail body. End by new line with just a '.'
 250 Mail Delivered
 050 QUIT
 221
 YOURHOST.YOURDOMAIN.EDU running IBM VM SMTP Level 320 closing connection

Querying SMTP Delivery Queues
The SMTP delivery queues can be queried by sending a file that contains VERB ON and QUEU commands
to the SMTP virtual machine. A batch SMTP response file that contains the QUEU command results is then
returned to the originating user ID.

The SMTPQUEU EXEC (supplied with TCP/IP for z/VM on the TCPMAINT 592 "Client-code" minidisk)
generates such a file and sends it to the SMTP virtual machine.

Sample content for a BSMTP REPLY file returned in response to an SMTPQUEU command follows:

 220-YOURHOST.YOURDOMAIN.EDU running IBM VM SMTP Level 320 on Sun, 30 Nov 1998 nn
 220 :nn:n EST
 050-VERB ON
 050
 250 Verbose Mode On
 050-QUEU
 050
 250-Queues on YOURHOST.YOURDOMAIN.EDU at nn:nn:nn EST on 11/30/98

SMTP Virtual Machine Interfaces

284 z/VM: 7.3 TCP/IP Programmer's Reference

 250-Spool Queue: Empty
 250-Queue for Site: 123.45.67.89 RETRY QUEUE Last Tried: nn:nn:nn
 250-Note 00000005 to <MSGS@HOST1.SOMEWHERE.COM>
 250-Queue for Site: 98.76.54.32 RETRY QUEUE Last Tried: nn:nn:nn
 250-Placeholder...no files queued for this site
 250-Undeliverable Queue: Empty
 250-Resolution Queues:
 250-Resolver Process Queue: Empty
 250-Resolver Send Queue: Empty
 250-Resolver Wait Queue:
 250-00000013 <userx@somehost.nowhereville.com>
 250-Resolver Retry Queue: Empty
 250-Resolver Completed Queue: Empty
 250-Resolver Error Pending Queue: Empty
 250 OK

SMTP Exit Routines
The SMTP user exits described in the next sections allow you greater control over each piece of mail that
is processed by the SMTP server. To effectively use these exits and their parameters, it is necessary to
understand SMTP transactions. Refer to the previous sections in this chapter for information about the
commands, messages, and replies that are used to facilitate e-mail transactions between the sender and
receiver of a piece of mail.

Prior to customizing the server exits described in this section, ensure that you have reviewed the exit
limitations and customization recommendations presented in the "Customizing Server-specific Exits"
section of the z/VM: TCP/IP Planning and Customization.

Client Verification Exit
When a client connects to SMTP, the originating mail domain must be provided. The client verification exit
can be used to verify that the domain name provided by a client matches that client's IP address. Thus,
this exit allows flexibility on actions you can take to deal with spoofing problems. In spoofing, the client
provides a falsified domain in order to cause mail to appear to have come from someone (or somewhere)
else. When client verification is performed, you might choose to include the verification results in mail
headers, or possibly reject future communications on a connection.

With the client verification exit, you can perform any or all of the following:

• Reject mail from a particular host.
• Mark certain trusted sites as verified, but perform verification on all others.
• Control which users can use a particular SMTP server.

The exit can be further customized to perform additional actions that are unique or required for your
environment.

Note: The client verification exit is called for each HELO or EHLO command processed for each mail item
received from the network. Client verification is not performed for mail items received from the SMTP
virtual reader.

Built-in Client Verification Function
In addition to the exit, SMTP can be configured to perform client verification through internal processing.
When this support is enabled, this "built-in" client verification function will be called for each HELO or
EHLO processed for each mail item. See z/VM: TCP/IP Planning and Customization for detailed information
about configuring SMTP to use this support.

The built-in client verification function of the SMTP server can be used to determine if a client host name
and client IP address match, and to include the result of that determination in the mail headers. This
function will perform a DNS lookup against the HELO or EHLO command data provided by a client, and will
then insert a message into the mail header that reflects the result of this lookup.

Client verification performed using the built-in function has three possible outcomes:

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 285

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

Success
The data the client provided in the HELO or EHLO command corresponds to the client address. The
following line is inserted into the mail header:

 X-Comment: localhost: Mail was sent by host

Failure
The data the client provided in the HELO or EHLO command is not associated with the client IP address.
In this case, a reverse name lookup is done against the client IP address to determine the actual host
name. The following line is inserted into the mail header:

 X-Comment: localhost: Host host claimed to be helodata

Unknown
The validation could not be performed. This situation could occur if the name server is not responding,
or the verification could not be performed in the allotted time (as controlled by the VERIFYCLIENTDELAY
statement). The following line is inserted into the mail header:

 X-Warning: localhost: Could not confirm that host [ipaddr] is helodata

The terms used in the previously listed mail header messages are described in more detail here:
 localhost

the local VM host name
 helodata

the data the client provided with the HELO or EHLO command
 host

the host name determined by the reverse DNS lookup; if a host name is not found, "unknown host"
will be used

 ipaddr
the client IP address.

Client Verification Exit Parameter Lists
The parameter lists passed to the REXX and the assembler exit routines follow. When you customize
either of these exits, keep in mind the following:

• Because an identical exit parameter list definition is used for all of the SMTP user exits, not all
parameters may be meaningful for this exit. Parameters that are not used by this exit are indicated
in the exit parameter lists; their values should be ignored.

• For the REXX exit, the value of an unused parameter will be such that any parsing will not be affected.

Parameter descriptions that pertain to both the REXX and assembler exits are provided in the “Parameter
Descriptions” on page 288.

SMTP Virtual Machine Interfaces

286 z/VM: 7.3 TCP/IP Programmer's Reference

REXX Parameter List

Inputs
Table 25. Client Verification REXX Exit Parameter List

Argument Description

ARG(1) Parameter list defined as follows:

• Exit type
• Version number
• Mail record ID
• Port number of SMTP server
• IPv4 address of SMTP server
• Port number of client
• IPv4 address of client
• Filename of note on disk
• Verify client status
• Maximum length of Return String
• IPv6 address of SMTP server
• IPv6 address of client
• Exit flags

ARG(2) SMTP command string

ARG(3) HELO/EHLO name

ARG(4-6) Not used

Outputs
The following are returned to the caller in the RESULT variable via a REXX RETURN statement:

Argument
Description

RC
The exit return code; this must be a 4-byte binary value.

Return String
An exit-specified string; the returned value must have a length less than or equal to the maximum
length passed to the exit.

Assembler Parameter List
Following is the parameter list that is passed to the assembler exit routine. General Register 1 points to
the parameter list.

Table 26. Client Verification ASSEMBLER Exit Parameter List

Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 287

Table 26. Client Verification ASSEMBLER Exit Parameter List (continued)

Offset in
Decimal

Len In/Out Type Description

+4 4 Input Int Version number

+8 4 Input Int Mail record ID

+12 4 Input Int Port number of SMTP server

+16 4 Input Int IPv4 address of SMTP server

+20 4 Input Int Port number of client

+24 4 Input Int IPv4 address of client

+28 4 Input Ptr Address of SMTP command string

+32 4 Input Int Length of SMTP command string

+36 4 Input Ptr Address of HELO/EHLO name

+40 4 Input Int Length of HELO/EHLO name

+44 24 Not used

+68 4 Input Int Verify Client status

+72 4 Output Ptr Address of Return String

+76 4 Output Int Length of Return String

+80 4 Input Int Maximum length of Return String

+84 16 Input Char IPv6 address of SMTP server

+100 16 Input Char IPv6 address of client

+116 1 Input Char Exit flags

+117 3 Not used

+120 8 Not used

+128 4 Input/ Output Char User Word 1

+132 4 Input/ Output Char User Word 2

+136 4 Output Int Return code from exit

Parameter Descriptions
Exit type

A four-character field that indicates the type of exit called. For the client verification exit, this is VERX.
Version number

The parameter list version number; if the parameter list format is changed, the version number will
change. Your exit should verify it has received the expected version number. The current version
number is 2.

Mail record ID
A number that uniquely identifies a piece of mail so that multiple exit calls can be correlated to the
same piece of mail. A value of 0 indicates a mail record ID is not available.

Port number of SMTP server
The port number used by the SMTP server for this connection.

SMTP Virtual Machine Interfaces

288 z/VM: 7.3 TCP/IP Programmer's Reference

IP address of SMTP server
For the REXX exit, a dotted-decimal format IPv4 address is provided; for the assembler exit, this is an
IPv4 address in decimal integer form. For multi-homed hosts, this address can be compared with the
client IPv4 address to determine in which part of the network the client host resides.

Port number of client
If the connection no longer exists, -1 is supplied. Otherwise, this is the port number used by the
foreign host for this connection.

IP address of client
For the REXX exit, a dotted-decimal format IPv4 address is provided; for the assembler exit, this is an
IPv4 address in decimal integer form.

SMTP command string
Contains the HELO/EHLO command and the domain specified for this command. The string has been
converted to uppercase (for example, "HELO DOMAIN1").

HELO/EHLO name
A string that contains the name specified on the HELO or EHLO command; this string may be either:

• a domain name
• an IP address in decimal integer form that is prefixed by the number or (US) pound sign ("#" or

X'7B')
• an IP address in dotted-decimal form, enclosed in brackets.

For example, if the command HELO #123456 is provided by an SMTP client, this parameter would
contain #123456.

The name has already been verified to have the correct syntax.

Verify Client status
A number that indicates client verification results. For this exit, client verification results are unknown
when the exit receives control; thus, this field will contain a 3. Possible values and their meanings are:
 0

Client verification passed.
 1

Client verification failed.
 2

Client verification was not performed.
 3

Client verification results are unknown.
Return String

When the exit returns a return code of 3, this value is appended to the X-Comment that is inserted in
the mail header. When the exit returns a return code of 5, the Return String value is appended to the
550 reply code.

Maximum length of Return String
The current maximum is 512 bytes; ensure the Return String length is less than this value. If the
returned string is longer than the indicated maximum, the return string is truncated and the following
message is displayed on the SMTP server console:

 Return data from exit exitname exittype too long, data truncated

Normal processing continues.
IPv6 address of SMTP server

For the REXX exit, an IPv6 address in full or compressed form is provided; for the assembler exit, this
is an IPv6 address in decimal integer form. For multi-homed hosts, this address can be compared with
the client IPv6 address to determine in which part of the network the client host resides.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 289

IPv6 address of client
For the REXX exit, an IPv6 address in full or compressed form is provided; for the assembler exit, this
is an IPv6 address in decimal integer form.

Exit flags
Flags passed to the exit.
X'00'

IPv4 addresses passed
X'01'

IPv6 addresses passed
User Word 1

Provided for use by the assembler exit only. The user word specified upon return from this exit will be
passed back in this field for any future calls; 0 is the initial value. The SMTP server does not use this
value in any way.

User Word 2
Provided for use by the assembler exit only. The user word specified upon return from this exit will be
passed back in this field for any future calls; 0 is the initial value. The SMTP server does not use this
value in any way.

Return Codes from the Client Verification Exit Routine
Following are the return codes recognized by SMTP for this exit.

Table 27. Client Verification Exit Return Codes

Return Code Explanation

0 Do not verify client. A comment will not be inserted in the mail header.

1 Perform verification using the built-in client verification function.

2 Mark as verified. The following comment will be inserted in the mail header:

 X-Comment: localhost: Mail was sent by host

3 The following comment will be inserted in the mail header:

 X-Comment: Return String

where the value for Return String can be specified by the exit.

4 Disable the exit. The following message will be displayed on the SMTP console:

 VERIFYCLIENT EXIT function disabled

The exit will no longer be called. The client will not be verified and no comment will be
inserted in the mail header.

5 Reject this command with: 550 Return String

If a return string is not provided by the exit, then the default message will be displayed:

 550 Access denied

All future communications on this connection will be rejected with this 550 message.

Other Any return code other than the above causes SMTP to issue this message:

Unexpected return from user exit exitname exittype,
RC = rc

SMTP treats this return code as if it were a return code of 0.

SMTP Virtual Machine Interfaces

290 z/VM: 7.3 TCP/IP Programmer's Reference

Client Verification Sample Exits
Sample Client Verification exit routines are supplied with TCP/IP on the TCPMAINT 591 disk. The supplied
samples are:
 SMTPVERX SAMPEXEC

REXX exit routine that contains a sample framework for performing client verification actions. Your
customized exit should be stored on the TCPMAINT 198 disk as SMTPVERX EXEC.

 SMTPVERX SAMPASM
Assembler exit routine that contains a sample framework for performing client verification actions.
Your customized exit should be stored on the TCPMAINT 198 disk as file SMTPVERX ASSEMBLE.
The customized ASSEMBLE file must be assembled (by using the VMFHLASM SMTPVERX DMSVM
command), and the resulting text deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet the needs of your
installation before placing them in a production environment. The assembler exit will have better
performance characteristics than the REXX exit. For best REXX performance, the SMTP server will
EXECLOAD any REXX exit.

Using the Mail Forwarding Exit
When SMTP clients use the VM SMTP server to send mail to hosts that their workstations cannot reach
directly, this is an instance of mail forwarding. The mail forwarding exit provides a mechanism to control
this activity. When SMTP determines the addressee specified on a RCPT TO: command is not "defined on"
the local system, it has detected mail forwarding, and it will call this exit routine.

The phrase "defined on" in the previous paragraph is meant to convey that SMTP considers a user to be
a local user, in addition to any other criteria, if that user is defined in the SMTP NAMES file — regardless
of whether mail delivery to that user is performed via spooling (RSCS services) or through a network TCP
connection. Also, keep in mind that the determination of whether mail forwarding is occurring is made on
a recipient-by-recipient basis, not on other aspects of a given piece of mail. A piece of mail with multiple
recipients can contain occurrences of both mail forwarding and local delivery.

With the mail forwarding exit, you can perform any or all of the following:

• Allow mail forwarding and mail delivery to proceed without interruption.
• Disallow mail forwarding from a known sender of "junk" mail, and possibly reject future

communications on a connection used for this purpose.
• Intercept mail from specific clients and forward that mail to a local VM user ID for further analysis.
• Restrict the ability to forward mail to a particular set of hosts.

The exit can be further customized to perform additional actions that are required for your environment.

Note: The mail forwarding exit is only called for mail items received from the network; it is not called for
mail items generated on the VM system or received via RSCS.

This exit can also be used to control spamming. Spamming is the act of sending mail to a large number
of e-mail addressees and is often compared to the term "junk mail", used to describe similar activities
performed via postal services. Spam is a piece of mail that is perceived by the recipients to be unsolicited
and unwanted. There are two aspects to consider when trying to control spamming problems:

• Is your system being used to relay spam messages to recipients throughout the internet?
• Are incoming spam messages to your local users seriously taxing or overloading your system?

The relaying of spam messages may be treated like any other type of mail forwarding. The exit can
prevent delivery of all forwarded mail, prevent delivery of mail from particular sites known for spamming,
or only allow delivery of mail from particular trusted sites. Handling spam messages directed to your
local users will require the use of the SMTP command exit. When you address spamming problems, it's
important to realize that one person may consider a piece of mail to be a spam, while the same piece of
mail may be valuable to someone else. There are no explicit rules that determine what is and is not spam.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 291

In addition to the exit, SMTP can be configured to enable or disable mail forwarding for all mail. If
mail forwarding is disabled in this manner and SMTP determines the recipient specified on a RCPT TO:
record is not defined on the local system, it has detected mail forwarding, and it will reject the delivery
of the mail to that recipient. See z/VM: TCP/IP Planning and Customization for more information about
configuring SMTP to accept or reject all forwarded mail.

Mail Forwarding Exit Parameter Lists
The parameter lists passed to the REXX and the assembler exit routines follow. When you customize
either of these exits, keep in mind the following:

• Because an identical exit parameter list definition is used for all of the SMTP user exits, not all
parameters may be meaningful for this exit. Parameters that are not used by this exit are indicated
in the exit parameter lists; their values should be ignored.

• For the REXX exit, the value of an unused parameter will be such that any parsing will not be affected.

Parameter descriptions that pertain to both the REXX and assembler exits are provided in the “Parameter
Descriptions” on page 294.

REXX Parameter List

Inputs
Table 28. Mail Forwarding REXX Exit Parameter List

Argument Description

ARG(1) Parameter list defined as follows:

• Exit type
• Version number
• Mail record ID
• Port number of SMTP server
• IPv4 address of SMTP server
• Port number of client
• IPv4 address of client
• Filename of note on disk
• Verify client status
• Maximum length of Return String
• IPv6 address of SMTP server
• IPv6 address of client
• Exit flags

ARG(2) SMTP command string

ARG(3) HELO/EHLO name

ARG(4) MAIL FROM: string

ARG(5) Client domain name

ARG(6) Not used

Outputs
The following are returned to the caller in the RESULT variable via a REXX RETURN statement:

SMTP Virtual Machine Interfaces

292 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

Argument
Description

RC
The exit return code; this must be a 4-byte binary value.

Return String
An exit-specified string; the returned value must have a length less than or equal to the maximum
length passed to the exit.

Assembler Parameter List
Following is the parameter list that is passed to the assembler exit routine. General Register 1 points to
the parameter list.

Table 29. Mail Forwarding ASSEMBLER Exit Parameter List

Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type

+4 4 Input Int Version number

+8 4 Input Int Mail record ID

+12 4 Input Int Port number of SMTP server

+16 4 Input Int IPv4 address of SMTP server

+20 4 Input Int Port number of client

+24 4 Input Int IPv4 address of client

+28 4 Input Ptr Address of SMTP command string

+32 4 Input Int Length of SMTP command string

+36 4 Input Ptr Address of HELO/EHLO name

+40 4 Input Int Length of HELO/EHLO name

+44 4 Input Ptr Address of client domain name

+48 4 Input Int Length of client domain name

+52 4 Input Ptr Address of MAIL FROM: string

+56 4 Input Int Length of MAIL FROM: string

+60 8 Input Char File name of note on disk

+68 4 Input Int Verify Client status

+72 4 Output Ptr Address of Return String

+76 4 Output Int Length of Return String

+80 4 Input Int Maximum length of Return String

+84 16 Input Char IPv6 address of SMTP server

+100 16 Input Char IPv6 address of client

+116 1 Input Exit flags

+117 3 Not used

+120 8 Not used

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 293

Table 29. Mail Forwarding ASSEMBLER Exit Parameter List (continued)

Offset in
Decimal

Len In/Out Type Description

+128 4 Input/ Output Char User Word 1

+132 4 Input/ Output Char User Word 2

+136 4 Output Int Return code from exit

Parameter Descriptions
Exit type

A four-character field that indicates the type of exit called. For the mail forwarding exit, this is FWDX.
Version number

The parameter list version number; if the parameter list format is changed, the version number will
change. Your exit should verify it has received the expected version number. The current version
number is 2.

Mail record ID
A number that uniquely identifies a piece of mail so that multiple exit calls can be correlated to the
same piece of mail. A value of 0 indicates a mail record ID is not available.

Port number of SMTP server
The port number used by the SMTP server for this connection.

IP address of SMTP server
For the REXX exit, a dotted-decimal format IPv4 address is provided; for the assembler exit, this is an
IPv4 address in decimal integer form. For multi-homed hosts, this address can be compared with the
client IPv4 address to determine in which part of the network the client host resides.

Port number of client
If the connection no longer exists, -1 is supplied. Otherwise, this is the port number used by the
foreign host for this connection.

IP address of client
For the REXX exit, a dotted-decimal format IPv4 address is provided; for the assembler exit, this is an
IPv4 address in decimal integer form.

SMTP command string
Contains the name specified on the RCPT TO: command. The recipient path, enclosed in angle
brackets (< and >), is included. The recipient path may be in any valid path format; it has already
been verified to have the correct syntax. Because the recipient address has been resolved, this string
may not exactly match the data provided with the RCPT TO: command.

For example, if the following has been specified by the SMTP client:

 RCPT TO: <usera@host1>

the SMTP command string might contain: <usera@host1.com>

HELO/EHLO name
A string that contains the name specified on the HELO or EHLO command; this string may be either:

• a domain name
• an IP address in decimal integer form that is prefixed by the number or (US) pound sign ("#" or

X'7B')
• an IP address in dotted-decimal form, enclosed in brackets.

For example, if the command HELO #123456 is provided by an SMTP client, this parameter would
contain: #123456.

The name has already been verified to have the correct syntax.

SMTP Virtual Machine Interfaces

294 z/VM: 7.3 TCP/IP Programmer's Reference

Client domain name
The domain name that corresponds to the client IP address. The length of this field will be zero if:

• client verification was not performed
• the results of client verification are unknown
• a reverse lookup failed

In all other cases, this will be a domain name.
MAIL FROM: string

Contains the name specified on the MAIL FROM: command. The sender path, enclosed in angle
brackets (< and >), is included. The sender path may be in any valid path format; it has already been
verified to have the correct syntax. Because the sender address has been resolved, this string may not
exactly match the data provided with the MAIL FROM: command.

For example, if the following has been specified by the SMTP client:

 MAIL FROM: <userb@host2>

the SMTP command string might contain: <userb@host2.com>

File name of note on disk
Name of the file created after the "end of data" (EOD) condition, a period (.), is received. Prior to either
of these conditions, the file name is not defined; in this case, an asterisk (*) will be supplied.

Verify Client status
A number that indicates client verification results. Possible values and their meanings are:
 0

Client verification passed.
 1

Client verification failed.
 2

Client verification was not performed.
 3

Client verification results are unknown.
Return String

When the exit returns a return code of 1 or 5, this value is appended to the 551 or 550 reply code.
When the exit returns a return code of 2, the Return String value should contain a VM user ID to which
mail should be transferred.

Maximum length of Return String
The current maximum is 512 bytes; ensure the Return String length is less than this value. If the
returned string is longer than the indicated maximum, the return string is truncated and the following
message is displayed on the SMTP server console:

 Return data from exit exitname exittype too long, data truncated

Normal processing continues.
IPv6 address of SMTP server

For the REXX exit, an IPv6 address in full or compressed form is provided; for the assembler exit, this
is an IPv6 address in decimal integer form. For multi-homed hosts, this address can be compared with
the client IPv6 address to determine in which part of the network the client host resides.

IPv6 address of client
For the REXX exit, an IPv6 address in full or compressed form is provided; for the assembler exit, this
is an IPv6 address in decimal integer form.

Exit flags
Flags passed to the exit.
X'00'

IPv4 addresses passed

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 295

X'01'
IPv6 addresses passed

User Word 1
Provided for use by the assembler exit only. The user word specified upon return from this exit will be
passed back in this field for any future calls; 0 is the initial value. The SMTP server does not use this
value in any way.

User Word 2
Provided for use by the assembler exit only. The user word specified upon return from this exit will be
passed back in this field for any future calls; 0 is the initial value. The SMTP server does not use this
value in any way.

Return Codes from the Mail Forwarding Exit Routine
Following are the return codes recognized by SMTP for this exit.

Table 30. Mail Forwarding Exit Return Codes

Return Code Explanation

0 Accept and attempt mail delivery.

1 Reject mail with: 551 Return String

If a return string is not provided by the exit, the following default message will be used:

 551 User not local; please try user@otherhost

If the server has already responded to the command, this return code will result in error
mail being sent back to the sender.

2 Accept and forward to the local VM user ID specified by Return String. If the VM user ID
is null or is not valid, the mail will be delivered to the local postmaster; the mail will not
be delivered to the addressee.

4 Disable the exit. The following message will be displayed on the SMTP console:

 FORWARD MAIL EXIT function disabled

The exit will no longer be called. SMTP will attempt to deliver this mail.

5 Reject this command with: 550 Return String

If a return string is not provided by the exit, then the default message will be displayed:

 550 Access denied

All future communications on this connection will be rejected with this 550 message.

Other Any return code other than the above causes SMTP to issue this message:

 Unexpected return from user exit exitname exittype,
 RC = rc

SMTP treats this return code as if it were a return code of 0.

Mail Forwarding Sample Exits
Sample Mail Forwarding exit routines are supplied with TCP/IP on the TCPMAINT 591 disk. The supplied
samples are:
 SMTPFWDX SAMPEXEC

REXX exit routine that contains a sample framework for handling forwarded mail items. Your
customized exit should be stored on the TCPMAINT 198 disk as file SMTPFWD XEXEC.

SMTP Virtual Machine Interfaces

296 z/VM: 7.3 TCP/IP Programmer's Reference

 SMTPFWDX SAMPASM
Assembler exit routine that contains a sample framework for handling forwarded mail items. Your
customized exit should be stored on the TCPMAINT 198 disk as file SMTPFWDX ASSEMBLE.
The customized ASSEMBLE file must be assembled (by using the VMFHLASM SMTPFWDX DMSVM
command), and the resulting text deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet the needs of your
installation before placing them in a production environment. The assembler exit will have better
performance characteristics than the REXX exit. For best REXX performance, the SMTP server will
EXECLOAD any REXX exit.

Using the SMTP Command Exit
The SMTP server can be configured to call an exit routine whenever certain SMTP commands are received,
through use of the SMTP command exit. This exit can be defined such that is invoked for any or all the
commands that follow:
 HELO

The SMTP 'HELO' command.
 EHLO

The SMTP 'EHLO' command.
 MAIL

The SMTP 'MAIL FROM:' command.
 RCPT

The SMTP 'RCPT TO:' command.
 DATA

The SMTP 'DATA' command.
 EOD

The "end of data" condition. This occurs when a period (.) is received by the server, usually after all
data has been transmitted.

 VRFY
The SMTP 'VRFY' command.

 EXPN
The SMTP 'EXPN' command.

 RSET
The SMTP 'RSET' command.

 PUNCH
The point in time when the server is about to deliver mail to a local destination on the same node or
RSCS network; this command is unique to the VM TCP/IP SMTP server.

Note:

1. The person responsible for creating or maintaining programs that exploit this capability should be
knowledgeable of the protocol(s) related to the SMTP commands that are processed using this exit.

2. Only one SMTP command exit can be active at a time.

The SMTP command exit could be used for a wide variety of purposes; several possible uses are included
here:

• Reject particular SMTP commands. For example, you may not want your server to support the VRFY and
EXPN commands.

Note: The SMTP server answers to the EXPN and/or VRFY commands. The EXPN command can be
used to find the delivery address of mail aliases, or even the full name of the recipients, and the VRFY
command may be used to check the validity of an account. Your mailer should not allow remote users to
use any of these commands, because it gives them to much information.

• Handle the delivery of local mail in a specific manner.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 297

• Screen and reject mail that contains offensive language, or fails to meet other criteria defined by your
installation.

Note: Scanning the content of a message will severely degrade server performance.

SMTP Command Exit Parameter Lists
The parameter lists passed to the REXX and the assembler exit routines follow. When you customize
either of these exits, keep in mind the in mind the following:

• Because an identical exit parameter list definition is used for all of the SMTP user exits, not all
parameters may be meaningful for this exit. Parameters that are not used by this exit are indicated
in the exit parameter lists; their values should be ignored.

• For the REXX exit, the value of an unused parameter will be such that any parsing will not be affected.

Parameter descriptions that pertain to both the REXX and assembler exits are provided in the“Parameter
Descriptions” on page 300.

REXX Parameter List

Inputs
Table 31. SMTP Commands REXX Exit Parameter List

Argument Description

ARG(1) Parameter list defined as follows:

• Exit type
• Version number
• Mail record ID
• Port number of SMTP server
• IPv4 address of SMTP server
• Port number of client
• IPv4 address of client
• Filename of note on disk
• Verify client status
• Maximum length of Return String
• IPv6 address of SMTP server
• IPv6 address of client
• Exit flags

ARG(2) SMTP command string

ARG(3) HELO/EHLO name

ARG(4) MAIL FROM: string

ARG(5) Client domain name

ARG(6) Batch VM user ID

Outputs
The following are returned to the caller in the RESULT variable via a REXX RETURN statement:

SMTP Virtual Machine Interfaces

298 z/VM: 7.3 TCP/IP Programmer's Reference

Argument
Description

RC
The exit return code; this must be a 4-byte numeric value.

Return String
An exit-specified string; the returned value must have a length less than or equal to the maximum
length passed to the exit.

Assembler Parameter List
Following is the parameter list that is passed to the assembler exit routine. General Register 1 points to
the parameter list.

Table 32. SMTP Commands ASSEMBLER Exit Parameter List

Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type

+4 4 Input Int Version number

+8 4 Input Int Mail record ID

+12 4 Input Int Port number of SMTP server

+16 4 Input Int IPv4 address of SMTP server

+20 4 Input Int Port number of client

+24 4 Input Int IPv4 address of client

+28 4 Input Ptr Address of SMTP command string

+32 4 Input Int Length of SMTP command string

+36 4 Input Ptr Address of HELO/EHLO name

+40 4 Input Int Length of HELO/EHLO name

+44 4 Input Ptr Address of client domain name

+48 4 Input Int Length of client domain name

+52 4 Input Ptr Address of MAIL FROM: string

+56 4 Input Int Length of MAIL FROM: string

+60 8 Input Char File name of note on disk

+68 4 Input Int Verify client status

+72 4 Output Ptr Address of Return String

+76 4 Output Int Length of Return String

+80 4 Input Int Maximum length of Return String

+84 16 Input Char IPv6 address of SMTP server

+100 16 Input Char IPv6 address of SMTP server

+116 1 Input Char Exit flags

+117 3 Not used

+120 8 Input Char Batch VM User ID

+128 4 Input/ Output Char User Word 1

+132 4 Input/ Output Char User Word 2

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 299

Table 32. SMTP Commands ASSEMBLER Exit Parameter List (continued)

Offset in
Decimal

Len In/Out Type Description

+136 4 Output Int Return code from exit

Parameter Descriptions
Exit type

A four-character field that indicates the type of exit called. For the SMTP command exit, this is CMDX.
Version number

The parameter list version number; if the parameter list format is changed, the version number will
change. Your exit should verify it has received the expected version number. The current version
number is 2.

Mail record ID
A number that uniquely identifies a piece of mail so that multiple exit calls can be correlated to the
same piece of mail. A value of 0 indicates a mail record ID is not available.

Port number of SMTP server
The port number used by the SMTP server for this connection.

IP address of SMTP server
For the REXX exit, a dotted-decimal format IPv4 address is provided; for the assembler exit, this is an
IPv4 address in decimal integer form. For multi-homed hosts, this address can be compared with the
client IPv4 address to determine in which part of the network the client host resides.

Port number of client
If the connection no longer exists, or if the command was received over a batch (BSMTP) connection,
-1 is supplied. Otherwise, this is the port number used by the foreign host for this connection.

IP address of client
For the REXX exit, a dotted-decimal format IPv4 address is provided; for the assembler exit, this is an
IPv4 address in decimal integer form. If the relevant SMTP command was received over a batch SMTP
(BSMTP) connection, this field is 0.

File name of note on disk
Name of the file created after the "end of data" (EOD) condition, a period (.), is received. Prior to either
of these conditions, the file name is not defined; in this case, an asterisk (*) will be supplied.

Verify Client status
A number that indicates client verification results. Possible values and their meanings are:
 0

Client verification passed.
 1

Client verification failed.
 2

Client verification was not performed.
 3

Client verification results are unknown.
SMTP command string

Contains the current command and parameters; the string has been converted to uppercase. For
example, if this exit was called for the MAIL FROM: command, this string might contain: MAIL FROM:
<USERA@MYDOMAIN>.

HELO/EHLO name
A string that contains the name specified on the HELO or EHLO command; this string may be either:

• a domain name

SMTP Virtual Machine Interfaces

300 z/VM: 7.3 TCP/IP Programmer's Reference

• an IP address in decimal integer form that is prefixed by the number or (US) pound sign ("#" or
X'7B')

• an IP address in dotted-decimal form, enclosed in brackets.

For example, if the command HELO #123456 is provided by an SMTP client, this parameter would
contain: #123456.

The name has already been verified to have the correct syntax.

MAIL FROM: string
Contains the name specified on the MAIL FROM: command. The sender path, enclosed in angle
brackets (< and >), is included. The sender path may be in any valid path format; it has already been
verified to have the correct syntax. Because the sender address has been resolved, this string may not
exactly match the data provided with the MAIL FROM: command.

For example, if the following has been specified by the SMTP client:

 MAIL FROM: <userb@host2>

the SMTP command string might contain: <userb@host2.com>

Client domain name
The domain name that corresponds to the client IP address. This field will be a null string if:

• client verification was not performed
• the results of client verification are unknown
• a reverse lookup failed

In all other cases, this will be a domain name.
Batch VM user ID

This field is only used when SMTP commands arrive over a batch SMTP (BSMTP) connection. If this
exit is called for batch SMTP connections, this field will contain the VM User ID that originated the
mail. Otherwise, this field is not defined and will contain nulls.

User Word 1
Provided for use by the assembler exit only. The user word specified upon return from this exit will be
passed back in this field for any future calls; 0 is the initial value. The SMTP server does not use this
value in any way.

User Word 2
Provided for use by the assembler exit only. The user word specified upon return from this exit will be
passed back in this field for any future calls; 0 is the initial value. The SMTP server does not use this
value in any way.

Return String
When the exit returns a return code of 1 or 5, this value is appended to the 550 reply code.

Maximum length of Return String
The current maximum is 512 bytes; ensure the Return String length is less than this value. If the
returned string is longer than the indicated maximum, the return string is truncated and the following
message is displayed on the SMTP server console:

 Return data from exit exitname exittype too long, data truncated

Normal processing continues.
IPv6 address of SMTP server

For the REXX exit, an IPv6 address in full or compressed form is provided; for the assembler exit, this
is an IPv6 address in decimal integer form. For multi-homed hosts, this address can be compared with
the client IPv6 address to determine in which part of the network the client host resides.

IPv6 address of client
For the REXX exit, an IPv6 address in full or compressed form is provided; for the assembler exit, this
is an IPv6 address in decimal integer form.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 301

Exit flags
Flags passed to the exit.
X'00'

IPv4 addresses passed
X''

IPv6 addresses passed

Return Codes from the SMTP Command Exit Routine
Following are the return codes recognized by SMTP for this exit.

Table 33. SMTP Command Exit Return Codes

Return Code Explanation

0 Accept command, and continue normal processing.

1 Reject mail with: 550 Return String

If a return string is not provided by the exit, the following default message will be used:

 550 Command Rejected

This return code is not valid for the PUNCH command; if 1 is retuned for a PUNCH
command exit call, it will be handled as an invalid exit return code.

2 The PUNCH command has been handled by the exit routine; therefore, bypass file
delivery. This return code is valid for only the PUNCH command.

3 PUNCH the mail to an alternate user ID that is specified in the return string that is
passed back by the exit routine. If a return string is not provided by the exit, or the
return string is too long for a VM user ID, then this return code is treated in the same
manner as a return code of 0 and normal file delivery will occur. If the return string does
contain a valid user ID, then the SMTP server will deliver this mail to that user ID with
the distribution code set to the user ID of the original recipient. This return code is only
valid for the PUNCH command.

4 Disable the exit. The following message will be displayed on the SMTP console:

 SMTPCMDS EXIT function disabled

The exit will no longer be called. The command will be attempted, and processing will
continue.

5 Reject this command with: 550 Return String

If a return string is not provided by the exit, then the default message will be displayed:

 550 Access denied

All future communications on this connection will be rejected with this 550 message.

6 Treat this RCPT TO command as a NOOP. The SMTP server will just reply to the RCPT
TO with "250 OK", but will take no action on it. This return code can be used to ignore
a null RCPT TO command or to ignore a RCPT TO command based on the recipient
information it contains. This return code is only valid for the RCPT TO command.

Other Any return code other than the above causes SMTP to issue this message:

 Unexpected return from user exit exitname exittype,
 RC = rc

SMTP treats this return code as if it were a return code of 0.

SMTP Virtual Machine Interfaces

302 z/VM: 7.3 TCP/IP Programmer's Reference

SMTP Command Sample Exits
Sample SMTP Command exit routines are supplied with TCP/IP on the TCPMAINT 591 disk. The supplied
samples are:
 SMTPCMDX SAMPEXEC

REXX exit routine that contains a sample framework for SMTP command processing. Your customized
exit should be stored on the TCPMAINT 198 disk as file SMTPCMDX EXEC.

 SMTPCMDX SAMPASM
Assembler exit routine that contains a sample framework for SMTP command processing. Your
customized exit should be stored on the TCPMAINT 198 disk as file SMTPCMDX ASSEMBLE.
The customized ASSEMBLE file must be assembled (by using the VMFHLASM SMTPCMDX DMSVM
command), and the resulting text deck placed on the TCPMAINT 198 disk.

These samples are for illustrative purposes only. They should be modified to meet the needs of your
installation before placing them in a production environment. The assembler exit will have better
performance characteristics than the REXX exit. For best REXX performance, the SMTP server will
EXECLOAD any REXX exit.

SMTP Virtual Machine Interfaces

Chapter 7. SMTP Virtual Machine Interfaces 303

SMTP Virtual Machine Interfaces

304 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 8. Telnet Exits

The Telnet server exits described in the sections that follow provide CP command simulation, TN3270E
printer management, and system access control when Telnet connections are established with your host.

Prior to customizing the server exits described in this section, ensure that you have reviewed the exit
limitations and customization recommendations presented in the "Customizing Server-specific Exits"
section of the z/VM: TCP/IP Planning and Customization.

While the SCEXIT or PMEXIT is running, the TCP/IP service machine cannot service any other requests.
Therefore, it is advised that processing performed within these exits should be minimized.

Also, in environments with a high rate of TN3270 and/or TN3270E session creation and termination,
the use of a REXX exec could adversely affect performance. While calling such an exec may be useful
for designing and testing a prototype, a production-level exit should be written in assembler. For such
environments, the supplied sample Telnet session connection exit (SCEXIT SAMPASM) and printer
management exit (PMEXIT SAMPASM) should be used as a basis for assemble files which directly perform
any actions appropriate for your environment. It is recommended that execs be used only for designing
and testing an exit prototype; for best performance, such execs should be EXECLOADed.

Telnet Session Connection Exit
When a Telnet client establishes a session with TCP/IP for VM and InternalClientParms
ConnectExit has been specified, the exit routine receives control using standard OS linkage
conventions. Register 1 points to a parameter list to be used by the exit.

Telnet Exit Parameter List
Table 34. Telnet Session Connection Exit Parameter List

Offset Len Name In/Out Description

+0 1 SCREASON Input Reason Exit was called
X'01' - Client connect

+1 1 SCFLAGS1 Input Flags
.... 1... - Connection is IPv6
.... .xxx - Reserved

Output Flags
1... - Hide VM logo from client
.1.. - Hide command simulation
..xx xxxx - Reserved

+2 2 Reserved

+4 4 SCIPADDR Input IPv4 address of client

+8 2 SCPORT Input Telnet server port number

+10 2 SCCMDL Input
Output

Length of command buffer
Length of command placed in buffer

+12 4 SCCPCMD Input Address of command buffer

Telnet Session Connection Exit

© Copyright IBM Corp. 1987, 2023 305

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

Table 34. Telnet Session Connection Exit Parameter List (continued)

Offset Len Name In/Out Description

+16 4 SCRC Output Return code
0 = Give client VM logo
4 = Reject client, no message
8 = Perform command in SCCPCMD;
 SCCMDL must be non-zero
12 = Same as 0, and disable exit
16 = Same as 4, and disable exit
20 = Same as 8, and disable exit

All others will reject the client, and a message is
displayed on the TCPIP virtual machine console.

+20 2 SCFPORT Input Client foreign port number

+22 2 Reserved

+24 16 SCLUNAME Input Client-provided LU name

+40 4 SCLIPADD Input Local IPv4 address to which client connected

+44 32 SCCIPHER Input Encryption suite used by the connection. The
string will be UNSECURED if it is not a secure
connection.

+76 16 SCIP6ADD Input IPv6 address of client

+92 16 SCLIP6AD Input Local IPv6 address to which client connected

Sample Exit
Sample Telnet connection exit routines are supplied with TCP/IP on the TCPMAINT 591 minidisk. The
supplied samples are:
SCEXIT SAMPEXEC

REXX exit routine that contains the logic for allowing or denying access by Telnet clients. Your
customized exit should be stored on the TCPMAINT 198 disk as file SCEXIT EXEC.

SCEXIT SAMPASM
The assembler exit routine called by the Telnet server; the exit is used to call SCEXIT EXEC and
to pass results back to the Telnet server. Your customized exit should be stored on the TCPMAINT
198 disk as file SCEXIT ASSEMBLE. The customized ASSEMBLE file must be assembled (by using the
VMFHLASM SCEXIT DMSVM command), and the resulting text deck placed on the TCPMAINT 198
disk.

SCEXIT TEXTSAMP
TEXT file produced by assembly of the aforementioned SCEXIT SAMPASM assemble file. If the
supplied SCEXIT assembler routine meets the needs of your installation in its supplied form, the
SCEXIT TEXTSAMP file can be stored on the TCPMAINT 198 disk as file SCEXIT TEXT, and used as is,
without the need to separately assemble the exit assembler source file.

The sample exit is enabled by including the following in PROFILE TCPIP:

InternalClientParms
 ConnectExit SCEXIT
EndInternalClientParms

Telnet Printer Management Exit
When a client establishes a TN3270E printer session with TCP/IP for VM and InternalClientParms
TN3270EExit has been specified, the exit routine receives control when a printer session is established

Telnet Printer Management Exit

306 z/VM: 7.3 TCP/IP Programmer's Reference

or terminated. The exit is called using standard CMS linkage conventions. General Register 1 points to a
parameter list that the exit may use.

Telnet Printer Management Exit Parameter List
Table 35. Telnet Exit Parameter List

Offset Len Name In/Out Description

+0 1 PMXVERSN Input Parameter list version number
X'02'

+1 1 PMXREASN Input Reason exit called
X'00' - Printer connected
X'01' - Printer disconnected

+2 1 PMXFLAG Input Flags
1... - Connection is IPv6
.xxx xxxx - Reserved

+3 1 Reserved

+4 4 PMXIPADD Input IPv4 address of client

+8 2 PMXFPORT Input Client port number

+A 2 PMXLPORT Input Telnet server port number

+C 4 PMXLDEV Input Logical device number

+10 8 PMXLUNAM Input Logical unit name specified by client

+18 8 PMXUSER Input Associated user identifier. If no matching
TN3270E configuration statement exists,
contains "?"

+20 4 PMXVDEV Input Associated virtual device address. If no
matching TN3270E configuration statement
exists, contains "?"

+24 4 PMXRC Output Return code
0 = Accept client
4 = Reject client
8 = Same as 0, and disable exit
12 = Same as 4, and disable exit

All others will reject client, and a message is
displayed on the TCPIP virtual machine console.

+28 16 PMXIP6AD Input IPv6 address of client

Sample Exit
Sample printer management exit routines are supplied with TCP/IP on the TCPMAINT 591 minidisk. The
supplied samples are:
PMEXIT SAMPEXEC

REXX exit routine that contains the logic for allowing or denying access by TN3270 clients. Your
customized exit should be stored on the TCPMAINT 198 disk as file PMEXIT EXEC.

PMEXIT SAMPASM
The assembler exit routine called by the Telnet server; the exit is used to call PMEXIT EXEC and to
pass results back to the Telnet server. Your customized exit should be stored on the TCPMAINT 198

Telnet Printer Management Exit

Chapter 8. Telnet Exits 307

disk as file PMEXIT ASSEMBLE. The customized ASSEMBLE file must be assembled (by using the
VMFHLASM PMEXIT DMSVM command, and the resulting text deck placed on the TCPMAINT 198 disk.

PMEXIT TEXTSAMP
TEXT file produced by assembly of the aforementioned PMEXIT SAMPASM assemble file. If the
supplied PMEXIT assembler routine meets the needs of your installation in its supplied form, the
PMEXIT TEXTSAMP file can be stored on the TCPMAINT 198 disk as file PMEXIT TEXT, and used as is,
without the need to separately assemble the exit assembler source file.

Enable the sample exit by including the following in PROFILE TCPIP:

InternalClientParms
 TN3270EExit PMEXIT
EndInternalClientParms

Telnet Printer Management Exit

308 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 9. FTP Server Exit

The FTP server user exits described in the next sections allow you greater control over commands
received by the FTP server and allows for auditing of FTP logins,logouts and file transfers.

Prior to customizing the server exit described in this section, ensure that you have reviewed the exit
limitations and customization recommendations presented in the "Customizing Server-specific Exits"
section of the z/VM: TCP/IP Planning and Customization.

The exit is enabled using the FTAUDIT, FTCHKCMD, and FTCHKDIR startup parameters on the SRVRFTP
command or by using the FTP SMSG commands. The startup parameters and SMSG commands are
documented in z/VM: TCP/IP Planning and Customization.

Since the use of the FTP exits adversely affects performance, it is advised that processing performed
within the exit should be minimized. While calling a REXX exec is useful for designing an exit prototype,
a production-level exit should be written entirely in assembler. For best performance, any REXX execs
should be EXECLOADed.

The FTP Server Exit
The following are descriptions of sample FTP server exit routines.

Sample Exit
Sample FTP server exit routines are supplied with TCP/IP on the TCPMAINT 591 minidisk. The supplied
samples are:
FTPEXIT SAMPEXEC

REXX exit routine that contains sample logic for login and directory control, and FTP command
processing. Your customized exit should be stored on the TCPMAINT 198 disk as file FTPEXIT EXEC.

FTPEXIT SAMPASM
The assembler exit routine called by the FTP server; the exit is used to call FTPEXIT EXEC and to pass
results back to the FTP server. Your customized exit should be stored on the TCPMAINT 198 disk as
file FTPEXIT ASSEMBLE. The customized ASSEMBLE file must be assembled (by using the VMFHLASM
FTPEXIT DMSVM command), and the resulting text deck placed on the TCPMAINT 198 disk.

FTPEXIT TEXTSAMP
TEXT file produced by assembly of the aforementioned FTPEXIT SAMPASM assemble file. If the
supplied FTPEXIT assembler routine meets the needs of your installation in its supplied form, the
FTPEXIT TEXTSAMP file can be stored on the TCPMAINT 198 disk as file FTPEXIT TEXT, and used as
is, without the need to separately assemble the exit assembler source file.

These samples are for illustrative purposes only. They should be modified to meet the needs of your
installation before placing them in a production environment.

Audit Processing
With the FTP server exit enabled for audit processing, the FTP Exit will be called for each of the following
events:

• LOGIN

Auditing occurs following FTP user login validation
• LOGOUT

Logout occurs when a:

– user enters a QUIT command
– user enters a new USER command while already logged in

FTP Server Exit

© Copyright IBM Corp. 1987, 2023 309

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

– connection is dropped by an SMSG DROP command
– client aborts the connection
– connection is closed because the server is shutting down
– connection times out

• DATA TRANSFER

Data transfers include the following commands:

– APPE (client append command)
– STOR, STOU (client put command)
– RETR (client get command)
– LIST, NLST (client dir, ls commands)

Note: Audit exit processing is enabled with the FTAUDIT startup parameter or with the SMSG command
to enable exits.

Audit Processing Parameter List
Table 36. FTP Exit Audit Parameter List

Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type (AUDX)

+4 4 Input Int Version number

+8 8 Input Char FTP server command

+16 4 Input Ptr Address of command argument string; the first
halfword contains the length.

+20 8 Input Char Login user ID

+28 8 Input Char LOGONBY user ID

+36 4 Input Int IPv4 address of client

+40 4 Input Ptr Address of current working directory name; the first
halfword contains the length.

+44 4 Input Ptr Address of target directory or file; the first halfword
contains the length.

+48 8 Input Unsigned
double

Number of bytes transferred.

+56 4 Input Int Control connection secure setting

+60 4 Input Int Data connection secure setting

+64 2 Input Int Port number of FTP server

+66 2 Input Int Port number of FTP client

+68 8 Input Char Event time (yyyy:mm:dd)

+76 8 Input Char Event time (hh:mm:ss)

+84 8 - - Not used

+92 4 Output Int Return code from exit

+96 16 Input Char IPv6 address of client

+112 16 Input Char Local IPv6 address

FTP Server Exit

310 z/VM: 7.3 TCP/IP Programmer's Reference

Table 36. FTP Exit Audit Parameter List (continued)

Offset in
Decimal

Len In/Out Type Description

Audit Processing Parameter Descriptions
Exit Type

A 4 character field that indicates the type of exit processing to be performed. For audit processing,
this is AUDX.

Version number
If the parameter list format is changed, then the version number will change. Your exit should verify it
has received the expected version number. The current version number is 4.

FTP server command
This field contains one of the following commands: LOGIN, LOGOUT, XFER.

FTP command argument string

• For data transfer (XFER) commands, this string indicates the transfer direction. SENDING indicates
data is being transferred to a client; RECEIVING indicates data is being received from a client.

• For login commands, this string indicates the command that initiated login validation processing
(USER for anonymous logins or PASS)

• For logout commands, this string indicates the command or function which initiated the logout
(QUIT, USER, DROPPED, TIMEOUT, SHUTDOWN, ABORTED).

Login user ID
The VM user identifier associated with this FTP session. All FTP client authorization checks are made
using the login user ID.

LOGONBY user ID
The alternate logon name whose password is used for login authorization checking. A user ID will be
present in this field only when the client has issued a USER subcommand that includes the userid/BY/
byuserid operands; otherwise, a hyphen (-) will be present.

IPv4 address of client
The IPv4 address in binary integer form.

Current working directory name
This field is not used for login or logout processing and will contain a hyphen (-). For data transfers,
this field contains the type of directory in use, followed by the working directory name. For example:

Directory Type Working Directory passed to FTPEXIT

Minidisk DSK TERI.191

Shared File System SFS SERVK1:TERI.

Byte File System BFS /../VMBFS:BFS:TERI/

Virtual Reader RDR TERI.RDR

Target file
Target file for data transfer. Minidisk, SFS, or RDR files are identified in upper case using the
filename.filetype format. BFS files are identified using a mixed case filename, that can be up to 255
characters long. This field is not used for login and logout processing and will contain a hyphen (-).

Number of bytes transferred

• For data transfer (XFER) commands, this field contains the number of bytes transferred on the data
connection.

• For login commands, this field contains a zero.

FTP Server Exit

Chapter 9. FTP Server Exit 311

• For logout commands, this field contains a zero.

Control connection secure setting
The secure setting of the control connection. 0 indicates not applicable. 1 indicates clear (non-
secure). 2 indicates secure using TLS.

Data connection secure setting
The secure setting of the data connection. 0 indicates not applicable. 1 indicates clear (non-secure). 2
indicates secure using TLS.

Port number of FTP server
The port number used by the FTP server for this control connection.

Port number of client
The port number used by the foreign host for this control connection.

Event date
The date format for this parameter is yyyymmdd.

Event time
The time format for this parameter is hh:mm:ss.

Return code from exit
An integer return code. For a list of return codes recognized by the FTP server see “Return Codes from
Audit Processing” on page 312.

IPv6 address of client
The remote IPv6 address of this client, in octet binary format.

Local IPv6 address
The local IPv6 address to which this client connected, in octet binary format.

Return Codes from Audit Processing
Return Code Use / Description

0 Continue processing.

8 Continue processing, but disable audit exit. The following message is displayed on the FTP
server console: "FTP AUDX exit has been disabled".

Other Any return code other than the above causes FTP to issue the message: "Unexpected return
from user exit FTPEXIT AUDX, RC = rc". The server will treat this return code as if it were a
return code of 0.

General Command Processing
With the FTP server exit enabled for general command exit processing, the FTP exit will be called to
perform command validation for every received FTP command.

Commands that may be passed to this exit follow:

ABOR ACCT ALLO APPE CDUP CWD

DELE EPRT EPSV HELP LIST MKD

MODE NLST NOOP PASS PASV PORT

PWD QUIT REIN REST RETR RMD

RNFR RNTO SITE SYST STAT STOR

STOU STRU TYPE USER UNKNOWN XCWD

XMKD XPWD

Note: See RFC 959 for details about the above commands.

Note: See RFC 2428 for more details on EPSV and EPRT.

FTP Server Exit

312 z/VM: 7.3 TCP/IP Programmer's Reference

Also, the AUTH, PBSZ, and PROT commands described in RFC 4217 may be passed to this exit. See RFC
4217 for more details.

The general command exit can be used to perform additional security checking and then take an
appropriate action, such as the following:

• Reject commands from a particular IP address, user ID or LOGONBY user ID
• Reject a subset of commands for anonymous users
• Reject transfer requests for specific files
• Reject all users from issuing store (APPE, STOR, STOU) commands

Note: General command exit processing is enabled with the FTCHKCMD startup parameter or with the
SMSG command to enable exits.

General Command Processing Parameter List
Table 37. FTP Exit Parameter List

Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type (CMDX)

+4 4 Input Int Version number

+8 8 Input Char FTP server command

+16 4 Input Ptr Address of command argument string; the first halfword
contains the length.

+20 8 Input Char Login user ID

+28 8 Input Char LOGONBY user ID

+36 4 Input Int IPv4 address of client

+40 4 Input Ptr Address of current working directory name; The first
halfword contains the length.

+44 12 - - Not used

+56 4 Input Int Control connection secure setting

+60 4 Input Int Data connection secure setting

+64 2 Input Int Port number of FTP server

+66 2 Input Int Port number of FTP client

+68 16 - - Not used

+84 4 Input Int Maximum length of return string

+88 4 Output Int Address of return string (message text)

+92 4 Output Int Return code from exit

+96 16 Input Char IPv6 address of client

+112 16 Input Char Local IPv6 address

General Command Processing Parameter Descriptions
Exit Type

A 4 character field that indicates the type of exit processing to be performed. For command exit
processing, this is CMDX.

FTP Server Exit

Chapter 9. FTP Server Exit 313

Version number
If the parameter list format is changed, then the version number will change. Your exit should verify it
has received the expected version number. The current version number is 4.

FTP server command
Commands received by the server such as USER, STOR, and DELE.

FTP command argument string
The argument string provided by the client. For ACCT and PASS commands, the argument string will
contain all asterisks (********).

Login user ID
The VM user identifier associated with this FTP session. All FTP client authorization checks are made
using the login user ID.

LOGONBY user ID
The alternate logon name (userid) whose password is used for login authorization checking. A user ID
will be present in this field only when the client has issued a USER subcommand that includes the
userid/BY/byuserid operands; otherwise, a hyphen (-) will be present.

IPv4 address of client
The IPv4 address in decimal integer form.

Current working directory name
This field contains the type of directory, followed by the working directory name. For example:

Directory Type Working Directory passed to FTPEXIT

Minidisk DSK TERI.191

Shared File System SFS SERVK1:TERI.

Byte File System BFS /../VMBFS:BFS:TERI/

Virtual reader RDR TERI.RDR

No directory defined -

Control connection secure setting
The secure setting of the control connection. 0 indicates not applicable. 1 indicates clear (non-
secure). 2 indicates secure using TLS.

Data connection secure setting
The secure setting of data connections. 0 indicates not applicable. 1 indicates clear (non-secure). 2
indicates secure using TLS.

Port number of FTP server
The port number used by the FTP server for this control connection.

Port number of client
The port number used by the foreign host for this control connection.

Maximum length of return string
The current maximum is 1000 bytes. If the returned string is longer than the maximum, the return
string is truncated.

Return string
A return string is to be included as part of the server reply to an FTP client. This string is used only
when a return code of 4 or 12 is returned by the exit.

Return code from exit
An integer return code. For a list of return codes recognized by the FTP server see “Return Codes from
General Command Processing” on page 315.

IPv6 address of client
The remote IPv6 address of this client, in octet binary format.

Local IPv6 address
The local IPv6 address to which this client connected, in octet binary format.

FTP Server Exit

314 z/VM: 7.3 TCP/IP Programmer's Reference

Example
If the FTP client provides the command "PUT PROFILE.EXEC", the parameter values provided to the
FTPEXIT might be:

FTPEXIT Parameter Values

Exit Type AUDX

FTP command XFER

Client IP Address 9.111.32.29

UserID TERI

ByUserID -

Bytes transferred 2141

Control connection secure setting 1

Data connection secure setting 1

Server Port 1021

Client Port 21400

Event Date 19990309

Event Time 14:44:34

Working Directory SFS SERVK1:TERI.

Command args RECEIVING

Target File PROFILE.EXEC

Remote IPv6 Address 0000:0000:0000:0000:0000:0000:0000:0000

Local IPv6 Address 0000:0000:0000:0000:0000:0000:0000:0000

Return Codes from General Command Processing
Return Code Use / Description

0 Accept command and continue processing

4 Reject client command with "502 return_string". If return string is not provided, return the
default message "502 command rejected".

8 Accept command, continue normal processing, but disable command exit processing. The
following message is displayed on the FTP server console: "FTP CMDX exit has been disabled".

12 Same as 4 and disable command exit processing. The following message is displayed on the FTP
server console: "FTP CMDX exit has been disabled".

Other Any return code other than the above causes FTP to issue the message: "Unexpected return
from user exit FTPEXIT CMDX, RC = rc". The server will treat this return code as if it were a
return code of 0.

Change Directory Processing
With the FTP server the exit will be called to validate FTP directory changes and provide greater control
over access to system resources by selectively honoring or refusing a client change directory request. The
exit is called when an FTP client provides one of the following commands:

• CWD or CD to change the working directory
• CDUP to change the working directory to the parent directory

FTP Server Exit

Chapter 9. FTP Server Exit 315

• PASS with a default directory defined in CHKIPADR EXEC
• USER for an anonymous login with a default directory defined in CHKIPADR EXEC
• APPE, DELE, LIST, NLST, RETR, SIZE, STOR, and STOU commands that involve an explicit change in

directory.

Note: See RFC 959 for details about the above commands.

Also, the AUTH, PBSZ, and PROT commands described in RFC 4217 may be passed to this exit. See RFC
4217 for more details.

Change Directory Processing Parameter List
Table 38. FTP Exit Parameter List

Offset in
Decimal

Len In/Out Type Description

+0 4 Input Char Exit type (DIRX)

+4 4 Input Int Version number

+8 8 Input Char FTP server command

+16 4 Input Ptr Address of command argument string; the first halfword
contains the length.

+20 8 Input Char Login user ID

+28 8 Input Char LOGONBY user ID

+36 4 Input Int IPv4 address of client

+40 4 Input Ptr Address of current working directory name; the first
halfword contains the length.

+44 4 Input Ptr Address of target directory or file; the first halfword
contains the length.

+48 16 - - Not used

+64 2 Input Int Port number of FTP server

+66 2 Input Int Port number of FTP client

+68 16 - - Not used

+84 4 input Int Maximum length of return string

+88 4 Output Int Address of return string (message text)

+92 4 Output Int Return code from exit

+96 16 Input Char IPv6 address of client

+112 16 Input Char Local IPv6 address

Change Directory Processing Parameter Descriptions
Exit Type

A 4 character field that indicates the type of exit processing to be performed. For CD command exit
processing, this is DIRX.

Version number
If the parameter list format is changed, then the version number will change. Your exit should verify it
has received the expected version number. The current version number is 4.

FTP Server Exit

316 z/VM: 7.3 TCP/IP Programmer's Reference

FTP server command
This field will contain APPE, CWD, CDUP, DELE, LIST, NLST, PASS, RETR, SIZE, STOR, STOU, or
USER.

FTP command argument string
The argument string entered by the client. For PASS commands, the argument string will contain
asterisks (********).

Login user ID
The VM user identifier associated with this FTP session. All FTP client authorization checks are made
using the login user ID.

LOGONBY user ID
The alternate logon name (userid) whose password is used for login authorization checking. A user ID
will be present in this field only when the client has issued a USER subcommand that includes the
userid/BY/byuserid operands; otherwise, a hyphen (-) will be present.

IPv4 address of client
The IPv4 address in decimal integer form.

Current working directory name
This field contains the type of directory, followed by the working directory name. For example:

Directory Type Working Directory Passed to FTPEXIT

Minidisk DSK TERI.191

Shared File System SFS SERVK1:TERI.

Byte File System BFS /../VMBFS:BFS:TERI/

Virtual reader RDR TERI.RDR

No directory defined -

Target directory
This field contains the fully-qualified target directory for the command. Format of the target directory
is similar to the current working directory name format. The following examples show representative
values that would be passed to the exit for certain actions or requests made by a client user.

For user login:

FTP command : PASS
Working Directory : -
Command args : ********
Target Directory : DSK TERI.191

For a CD to a BFS directory request:

FTP command : CWD
Working Directory : DSK TERI.191
Command args : /../VMBFS:BFS:SCOTT/
Target Directory : BFS /../VMBFS:BFS:SCOTT/

For a CD to a BFS subdirectory request:

FTP command : CWD
Working Directory : BFS /../VMBFS:BFS:SCOTT/
Command args : SUBDIR
Target Directory : BFS /../VMBFS:BFS:SCOTT/SUBDIR/

Port number of FTP server
The port number used by the FTP server for this control connection.

Port number of client
The port number used by the foreign host for this control connection.

FTP Server Exit

Chapter 9. FTP Server Exit 317

Maximum length of return string
The current maximum is 1000 bytes. If the returned string is longer than the maximum, the return
string is truncated.

Return string
A return string is to be included as part of the server reply to an FTP client. This string is used only
when a return code of 4 or 12 is returned by the exit.

Return code from exit
An integer return code. For a list of return codes recognized by the FTP server see “Return Codes from
the FTPEXIT Routine for CD Command Processing” on page 318.

IPv6 address of client
The remote IPv6 address of this client, in octet binary format.

Local IPv6 address
The local IPv6 address to which this client connected, in octet binary format.

Return Codes from the FTPEXIT Routine for CD Command Processing
Return Code Use / Description

0 Accept command and continue normal processing

4 Reject client command with "502 return_string". If return string is not provided, display the
default message "502 command rejected".

8 Accept command, continue normal processing, but disable CD command exit processing. The
following message is displayed on the FTP server console: "FTP DIRX exit has been disabled".

12 Same as 4 and disable CD command exit processing. The following message is displayed on the
FTP server console: "FTP DIRX exit has been disabled".

Other Any return code other than the above causes FTP to issue the message: "Unexpected return
from user exit FTPEXIT DIRX, RC = rc". The server will treat this return code as if it were a return
code of 0.

FTP Server Exit

318 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 10. Remote authorization and auditing
through LDAP

Remote authorization allows resource managers that do not reside on z/VM or resource managers that
reside on z/VM as a guest to centralize authorization decisions using RACF® through the z/VM LDAP
server. Two services are provided by the z/VM LDAP server that enable audit and authorization requests
to be resolved using RACF Security Server for z/VM. These services are provided through LDAP extended
operations. This same capability exists on both z/OS and z/VM. For remote authorization calls to z/VM, the
request comes in the form of a DER-encoding of the ASN.1 syntax. The following sections provide details
on these types of remote authorization and auditing requests.

Note that this information describes remote authorization and audit specifically. For full details on
auditing controls in z/VM, see z/VM: RACF Security Server Auditor's Guide.

Using remote authorization and auditing
An application or resource manager that uses the Remote authorization or Remote auditing extended
operations must be able to generate requests, send it through the network to the appropriate z/VM LDAP
server and interpret the response from the server. The following steps represent the typical sequence of
events that are specific to the Remote authorization or Remote auditing extended operations:

1. The authenticated user must resolve to a SAF or RACF identity that is allowed to perform the
authorization check or remote auditing request. The following binds in the z/VM LDAP server can
resolve to a SAF or RACF identity:

• Simple bind to the ICTX plug-in with using an authorized racfid=userid,cn=ictx bind
distinguished name. If the RACF user ID begins with a number sign (#), it must be preceded by
a backslash (\) escape character. Number sign characters in other positions of the user ID do not
need to be escaped. For example:

racfid=\#user#id,cn=ictx

• Simple bind to the SDBM backend. See SDBM authorization in z/VM: TCP/IP Planning and
Customization for more information.

• LDBM native authentication bind. Native authentication allows the use of an LDBM entry but the
password or password phrase is stored in SAF. See Native authentication in z/VM: TCP/IP Planning
and Customization for more information.

• SASL EXTERNAL certificate bind where the certificate is mapped to a SAF or RACF user. See Setting
up for SSL/TLS in z/VM: TCP/IP Planning and Customization for more information about mapping
certificates to users.

2. The application must build a DER-encoded extended operation request having the defined ASN.1
syntax that is specific to the Remote authorization or Remote auditing extended operation request.
That request can then be included with the LDAP handle and the specific request OID on the LDAP
client application call, such as ldap_extended_operation_s(), to build the LDAP message and send it
to the server.

3. The z/VM LDAP server receives the request and routes it to the ICTX plug-in, where it is decoded
and processed. The ICTX plug-in verifies the correct syntax and the authority of the requester before
invoking the SAF authorization check or audit service to satisfy the request. The result of the SAF
service is a DER-encoded response that the LDAP server returns.

4. The application must decode the response to interpret the results. A nonzero LdapResult code
indicates that the request was not processed by the ICTX plug-in. A nonzero LdapResult is
accompanied by a reason code message in the response that might provide additional diagnostic
information.

Remote authorization and auditing

© Copyright IBM Corp. 1987, 2023 319

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha8_v7r3.pdf#nameddest=icha8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=natauth
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=tivstls
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=tivstls
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

Note: A zero LdapResult code does not necessarily imply the request was processed successfully (or
for authorization, that a user has the specified access). It does, however, indicate that an extended
operation responseValue was returned. The application should verify that the ICTX responseCode
within the responseValue indicates success (0). A nonzero responseCode indicates one or more
request items resulted in errors (or unauthorized users). The application should check the MajorCode
within each response item to determine which returned failures. The application should be aware that
ICTX may not return a response item corresponding to each request item in the event of a severe error,
such as an error encountered in the extended operation encoding.

The application can send as many requests as needed throughout a single bound session, and should
unbind from the z/VM LDAP server when it has finished processing ICTX plug-in requests.

Setting up authorization for working with remote services
After the user successfully authenticated and issued the appropriate extended operation, the bound user
must then have the appropriate authority to use the underlying SAF callable services.

For the Remote authorization extended operation, the bound user must have at least READ access to
the FACILITY class profile IRR.LDAP.REMOTE.AUTH to check the user's own access to a resource. To
check access of another user, the user must have at least UPDATE access to FACILITY class profile
IRR.LDAP.REMOTE.AUTH.

For example:

RDEFINE FACILITY IRR.LDAP.REMOTE.AUTH UACC(NONE)
PERMIT IRR.LDAP.REMOTE.AUTH CLASS(FACILITY) ID(BINDUSER) ACCESS(UPDATE))
SETROPTS RACLIST(FACILITY) REFRESH

For the Remote audit extended operation, the bound user must have at least READ access to the
FACILITY class profile IRR.LDAP.REMOTE.AUDIT.

For example:

RDEFINE FACILITY IRR.LDAP.REMOTE.AUDIT UACC(NONE)
PERMIT IRR.LDAP.REMOTE.AUDIT CLASS(FACILITY) ID(BINDUSER) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Remote authorization extended operation
The Remote authorization extended operation request results in calls to the RACROUTE REQUEST=AUTH
SAF service. The results of the RACROUTE REQUEST=AUTH service are returned to the caller. For more
information about RACROUTE REQUEST=AUTH, see z/VM: Security Server RACROUTE Macro Reference.

The Remote authorization extended operation request must contain the DER-encoding of the ASN.1
syntax. The request OID is 1.3.18.0.2.12.66. The following is the Remote authorization extended
operation request syntax:

requestValue ::= SEQUENCE {
 requestVersion INTEGER,
 itemList SEQUENCE of
 item SEQUENCE {
 itemVersion INTEGER,
 itemTag INTEGER,
 userOrGroup OCTET STRING,
 resource OCTET STRING,
 class OCTET STRING,
 access INTEGER,
 logString OCTET STRING
 }
}

Where:
requestValue

The name for the entire sequence of authorization request data.

Remote authorization and auditing

320 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

requestVersion
The format of the request value. Version 1 indicates a user authorization request; each individual
item in the itemList is an authorization request for a RACF user ID. Version 2 indicates a
user authorization or a group authorization request; each individual item in the itemList is an
authorization request for either a RACF user ID or a RACF group ID.

itemList
A sequence of one or more items, which allows for multiple authorization checks within a single ICTX
request. The size of the entire encoded requestValue is limited to 16 million bytes unless your
encoding routine or LDAP client imposes a stricter limit. If requestVersion is 2, the itemList can
be a mixture of user authorization and group authorization items.

item
A sequence of data that represents a single authorization check.
itemVersion

The format of the individual item. Version 1 indicates an authorization request for a RACF user ID.
Version 2 indicates an authorization request for a RACF group ID.

itemTag
An integer that is set by the client for each request item and echoed in each response item. Its
purpose is to assist the client in correlating multiple request responses, and has no influence on
the authorization logic or logging.

userOrGroup
If itemVersion is 1, a RACF user ID whose authority is being checked. Its length cannot exceed
8 characters. If the length is zero, the user value defaults to the user ID associated with the bind
user.

If itemVersion is 2, a RACF group ID whose authority is being checked. Its length must be from
1 and 8 characters. Optimizations that are used when performing a user ID authorization check
are not available when performing a group ID authorization check. For this reason, it is likely that
group authorization check executes more slowly than user ID authorization checks.

This field must be specified in uppercase, because RACF user and group names are uppercase,
and the remote authorization service does not convert lowercase characters to uppercase.

resource
A name to be matched against a RACF profile for authorization checking. The string may not
include blank characters. Its length may be from 1 to the maximum RACF profile length defined
for the specified class.

class
A defined RACF general resource class. It cannot be DATASET, USER, or GROUP. Its length must
be from 1 to 8 characters.

If you are checking authorization to resources protected by profiles in a grouping/member class,
specify the member class name in the remote authorization request. To obtain accurate results in
this case, ensure that the administrator issued SETROPTS RACLIST for the member class.

access
The level of authority requested. It must be one of the following integer values:

X'01' READ
X'02' UPDATE
X'03' CONTROL
X'04' ALTER

logString
Any character data from 0 to 200 characters in length. It is appended to an ICTX-defined string in
the SMF log record.

Remote authorization and auditing

Chapter 10. Remote authorization and auditing through LDAP 321

The following is the ASN.1 syntax for the Remote authorization extended operation. The response OID is
1.3.18.0.2.12.67.

responseValue ::= SEQUENCE {
 responseVersion INTEGER,
 responseCode INTEGER,
 itemList SEQUENCE of
 item SEQUENCE {
 itemVersion INTEGER,
 itemTag INTEGER,
 majorCode INTEGER,
 minorCode1 INTEGER,
 minorCode2 INTEGER,
 minorCode3 INTEGER
 }
}

Where:
responseValue

The name for the entire sequence of authorization response data.
responseVersion

The format of the response value. Version 1 is the only supported format.
responseCode

The greatest error encountered while processing the request. See Table 39 on page 322 for more
details on supported responseCodes.

itemList
A sequence of one or more items, which allows for multiple authorization results within a single ICTX
response.

item
A sequence of data that represents the results from a single authorization check.
itemVersion

The format of the individual item. Version 1 is the only supported format.
itemTag

An integer echoed from the corresponding request itemTag. The purpose of the itemTag is
to assist the client in correlating multiple request responses. itemTag has no influence on the
authorization logic or logging.

majorCode
An integer value representing the result of the authorization check. See Table 40 on page 323 for
more details on error major codes.

minorCode1
Additional details about the error. See Table 41 on page 324 for more details on error minor
codes.

minorCode2
Additional details about the error.

minorCode3
Additional details about the error.

Remote authorization extended operation response codes
Use the following table to understand the response codes that are generated from the remote
authorization processing. The responseCode represents the greatest error encountered. You might
experience situations where a request item generates an error that is not reflected in the responseCode
because that value is overridden by a higher-severity error.

Table 39. Remote authorization responseCodes

ResponseCode (decimal) Meaning

0 All request items were processed successfully

Remote authorization and auditing

322 z/VM: 7.3 TCP/IP Programmer's Reference

Table 39. Remote authorization responseCodes (continued)

ResponseCode (decimal) Meaning

28 Empty item list. No items are found within the itemList sequence of the
extended operation request, so no response items are returned.

61-70 The specified requestVersion is not supported. Subtract 60 from
the value to determine the highest requestVersion that the server
supports. responseCode 61 indicates the server supports version 1
requests only. responseCode 62 indicates that the highest supported
request level is 2.

other Errors or warnings encountered while processing one or more request
items. The value represents the highest majorCode in the set of all
response items. Verify the major and minor codes returned for each item.

Table 40. Remote authorization majorCodes

MajorCode (decimal) Meaning Comment

0 Authorized The user has the requested access to the
resource.

2 Warning mode The user has the requested access because
warning mode is enabled for the resource.
Warning mode is a feature of RACF that
allows installations to try out security policies.
Installations can define a profile with the
WARNING attribute. When RACF performs an
authorization check by using the profile, it logs
the event (if there are audit settings) and allows
the authorization check to pass successfully. The
log records can be monitored to ensure that
the new policy is operating as expected before
putting the policy into production by turning off
the WARNING attribute.

4 Undetermined No decision is made. The specified resource is
not protected by RACF, or RACF is not installed.

8 Unauthorized The user does not have the requested access to
the resource.

12 RACROUTE error The RACROUTE REQUEST=AUTH service
returned an unexpected error. Compare the
returned minor codes with the SAF and RACF
codes documented in z/VM: Security Server
RACROUTE Macro Reference.

16 Request value error A value specified in the extended operation
request is incorrect or unsupported. Check the
returned minor codes to narrow the reason.

20 Request encoding error A decoding error was encountered indicating
the extended operation request contains non-
compliant DER encoding, or does not match the
documented ASN.1 syntax.

Remote authorization and auditing

Chapter 10. Remote authorization and auditing through LDAP 323

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

Table 40. Remote authorization majorCodes (continued)

MajorCode (decimal) Meaning Comment

24 Insufficient authority The requestor does not have sufficient authority
for the requested function. The user ID
associated with the LDAP bound user must have
the appropriate access to the FACILITY class
profile IRR.LDAP.REMOTE.AUTH.

100 Internal error An internal error was encountered within the
ICTX plug-in.

Table 41. Remote authorization minorCodes

MinorCode (decimal) MinorCode Meaning

0-14 minorCode1- the SAF return code

minorCode2 - the RACF return code

minorCode3 - the RACF reason code

16-20 minorCode1 is the extended operation request parameter number within
the item.

0 - item sequence
1 - itemVersion
2 - itemTag
3 - user
4 - resource
5 - class
6 - access
7 - logString

minorCode2 value indicates one of the following:

32 - incorrect length
36 - incorrect value
40 - encoding error

minorCode3 has no defined meaning.

24-100 minorCodes1, minorCode2, and minorCode3 do not have a defined
meaning.

Remote authorization audit controls
The auditor can specify whether to log access attempts that are based on user, class, resource, or any
criteria as described in z/VM: RACF Security Server Auditor's Guide. The SMF TYPE 80 records that are
generated can be unloaded by using the IRRADU00 utility.

Remote auditing extended operation
The Remote auditing extended operation request must contain the DER-encoding of the ASN.1 syntax.
The request OID is 1.3.18.0.2.12.68. The following is the Remote auditing extended operation
request syntax:

requestValue ::= SEQUENCE {
 requestVersion INTEGER,

Remote authorization and auditing

324 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha8_v7r3.pdf#nameddest=icha8_v7r3

 itemList SEQUENCE of
 item SEQUENCE {
 itemVersion INTEGER,
 itemTag INTEGER,
 linkValue OCTET STRING SIZE(8),
 violation BOOLEAN,
 event INTEGER,
 qualifier INTEGER,
 class OCTET STRING,
 resource OCTET STRING,
 logString OCTET STRING,
 dataFieldList SEQUENCE of
 dataField SEQUENCE {
 type INTEGER,
 value OCTET STRING
 }
 }
}

Where:
requestValue

The name for the entire sequence of audit request data.
requestVersion

The format of the request value. Version 1 is the only currently supported format.
itemList

A sequence of one or more items, allowing multiple audit records to be written with a single ICTX
request. You should limit the size of the entire encoded RequestValue to 16 million bytes; however,
your encoding routine or LDAP client might impose a stricter limit.

item
A sequence of data that represents a single audit record.
itemVersion

The format of the individual item. Version 1 is the only currently supported format.
itemTag

An integer that is set by the client for each request item and echoed in each response item. Its
purpose is to assist the client in correlating multiple request responses. The itemTag value does
not influence the audit processing, and does not appear in the audit record.

linkValue
8 bytes of data that is used to mark related audit records. Specify 8 bytes of zero (X'00') if no such
marking is needed.

violation
A boolean value that indicates whether the event represents a violation (nonzero ~ TRUE) or not
(zero ~ FALSE). The value is used in the audit logging decision.

event
An integer 1 - 7 that identifies the security event type. The possible values are:
1

Authentication
2

Authorization
3

Authorization Mapping
4

Key Management
5

Policy Management
6

Administrator Configuration

Remote authorization and auditing

Chapter 10. Remote authorization and auditing through LDAP 325

7
Administrator Action

qualifier
An integer 0 - 3 that describe the event result. The possible values are:
0

Success
1

Information
2

Warning
3

Failure
class

A defined RACF general resource class that might be used for audit logging determination. It
cannot be DATASET, USER, or GROUP. Its length must be from 0 to 8 characters.

resource
A name that might be matched against a RACF profile in the specified class for audit logging
determination. Its length may be from 0 to 246 characters.

logString
Any character data from 0 to 200 characters in length. It is appended to an ICTX-defined string in
the SMF log record.

dataFieldList
A sequence of type and value pairs that will be logged as SMF relocates. Any number of relocates
might be included, but the audit service limits the total amount of this relocate data to 20
kilobytes per record.
dataField

A sequence of data that represents a single relocate section in an audit record.
type

An integer 100 to 114 corresponding to a defined relocate number. The possible values are:
100

SAF identifier for bind user
101

Requester's bind user identifier
102

Originating security domain
103

Originating registry / realm
104

Originating user name
105

Mapped security domain
106

Mapped registry / realm
107

Mapped user name
108

Operation performed
109

Mechanism / object name

Remote authorization and auditing

326 z/VM: 7.3 TCP/IP Programmer's Reference

110
Method / function used

111
Key / certificate name

112
Caller subject initiating security event

113
Date and time security event occurred

114
Application specific data

115
Identifier for the client submitting the remote audit request

116
Version of the client submitting the remote audit request

value
Character data of the associated type that is included in the audit record.

The following is the ASN.1 syntax for the Remote auditing extended operation response. The response
OID is 1.3.18.0.2.12.69.

responseValue ::= SEQUENCE {
 responseVersion INTEGER,
 responseCode INTEGER,
 itemList SEQUENCE of
 item SEQUENCE{
 itemVersion INTEGER,
 itemTag INTEGER,
 majorCode INTEGER,
 minorCode1 INTEGER,
 minorCode2 INTEGER,
 minorCode3 INTEGER
 }
}

Where:
responseValue

The name for the entire sequence of audit response data.
responseVersion

The format of the response value. Version 1 is the only supported format.
responseCode

The greatest error encountered while processing the request. See Table 42 on page 328 for more
details about supported responseCodes.

itemList
A sequence of one or more items, which allows for multiple audit results within a single ICTX
response.

item
A sequence of data that represents the results from a single audit request.
itemVersion

The format of the individual item. Version 1 is the only supported format.
itemTag

An integer that is echoed from the corresponding request itemTag. The purpose of the itemTag
is to assist the client in correlating multiple request responses. The itemTag does not influence
the audit processing, and does not appear in the audit record.

majorCode
An integer value representing the result of the audit request. See Table 43 on page 328 for more
details about error major codes.

Remote authorization and auditing

Chapter 10. Remote authorization and auditing through LDAP 327

minorCode1
Additional details about the error. See Table 44 on page 330 for more details about error minor
codes.

minorCode2
Additional details about the error.

minorCode3
Additional details about the error.

Remote auditing extended operation response codes
Use the following table to understand the response codes that are generated from the remote auditing
response. The responseCode represents the greatest error encountered. You might experience
situations in which a request item generates an error that is not reflected in the responseCode, because
that value is overridden by a higher-severity error.

Table 42. Remote auditing responseCodes

ResponseCode (decimal) Meaning

0 All request items were processed successfully.

28 Empty item list. No items are found within the itemList sequence of the
extended operation request, so no response items are returned.

61-70 The specified requestVersion is not supported. Subtract 60 from
the value to determine the highest requestVersion that the server
supports. responseCode 61 indicates that the server supports version
1 requests only.

other Errors or warnings that are encountered while processing one or more
request items. The value represents the highest majorCode in the set of
all response items. Verify the major and minor codes returned for each
item.

Table 43. Remote auditing majorCodes

MajorCode (decimal) Meaning Comment

0 Success The event is logged successfully.

Remote authorization and auditing

328 z/VM: 7.3 TCP/IP Programmer's Reference

Table 43. Remote auditing majorCodes (continued)

MajorCode (decimal) Meaning Comment

2 Warning mode The event is logged, and warning mode is set
for the specified resource. Warning mode is a
feature of RACF that allows installations to try
out security policies. Installations can define
a profile with the WARNING attribute. When
RACF performs an authorization check by using
the profile, it logs the event (if there are audit
settings) and allows the authorization check
to pass successfully. The log records can be
monitored to ensure that the new policy is
operating as expected before putting the policy
into production by turning off the WARNING
attribute.

A remote client resource manager using the
remote audit service might simulate RACF
warning mode logic after submitting an audit
request for a failing authorization event. If the
majorCode in the response item indicates the
matching resource profile has the warning mode
set, the remote client resource manager might
allow the check to pass successfully.

3 Logging not required The event is not logged because no audit
controls are set to require it.

4 Undetermined The event is not logged. The conditions
suggested by the following minorCode
combinations might be intentional administrator
settings:

4,0,0 - RACF is not installed or not active
8,8,8 - UAUDIT is not set, and class is not
active or not RACLISTed
8,8,12 - UAUDIT is not set, class is active and
RACLISTed, and a covering resource profile is
not found

8 Unauthorized The user does not have authority for the audit
service. The userid associated with the LDAP
server must have at least READ access to the
FACILITY class profile IRR.RAUDITX.

12 Audit error The audit service returned an unexpected error.
Record the returned minor codes and contact
your service representative.

16 Request value error A value specified in the extended operation
request is incorrect or unsupported. Check the
returned minor codes to narrow the reason.

20 Request encoding error A decoding error was encountered indicating
the extended operation request contains non-
compliant DER encoding, or does not match the
documented ASN.1 syntax.

Remote authorization and auditing

Chapter 10. Remote authorization and auditing through LDAP 329

Table 43. Remote auditing majorCodes (continued)

MajorCode (decimal) Meaning Comment

24 Insufficient authority The requestor does not have sufficient authority
for the requested function. The user ID
associated with the LDAP bound user must have
at least READ access to the FACILITY class
profile IRR.LDAP.REMOTE.AUDIT.

100 Internal error An internal error was encountered within the
ICTX plug-in.

Table 44. Remote auditing minorCodes

MinorCode (decimal) MinorCode Meaning

0-12 minorCode1- the SAF return code

minorCode2 - the RACF return code

minorCode3 - the RACF reason code

16-20 minorCode1 is the extended operation request parameter number within
the item.

0 - item sequence
1 - itemVersion
2 - itemTag
3 - linkValue
4 - violation
5 - event
6 - qualifier
7 - class
8 - resource
9 - logstring
10 - dataFieldList sequence
11 - dataField sequence
12 - type
13 - value

minorCode2 value indicates one of the following:

32 - incorrect length
36 - incorrect value
40 - encoding error

minorCode3 has no defined meaning.

24-100 minorCodes1, minorCodes2, and minorCodes3 do not have defined
meaning.

Remote audit controls
The auditor can enable logging for all remote audit events by setting UAUDIT for the RACF user ID
associated with the z/VM LDAP server. To narrow the set of events logged, the auditor may set SETROPTS
LOGOPTIONS for the matching class or set AUDIT/GLOBALAUDIT for the matching resource profile. To
do this, the auditor must know the class and resource specified by the application submitting the remote

Remote authorization and auditing

330 z/VM: 7.3 TCP/IP Programmer's Reference

audit requests. The SMF Unload utility can then be used to unload the generated SMF type 83 subtype 4
records.

SMF Record Type 83 subtype 4 records
The remote audit service logs events as SMF Type 83 subtype 4 records that can be unloaded by using the
IRRADU00 utility. Each logged event has a unique event code with a corresponding event code qualifier,
or value that indicates whether the event succeeded, resulted in warning or failure, or was logging event
information. The event codes are described in the following table:

Table 45. Remote audit event codes

Event Command / Service

1 Authentication

2 Authorization

3 Authorization mapping

4 Key management

5 Policy management

6 Administrator configuration

7 Administrator action

The following table describes the event code qualifiers:

Table 46. Remote audit event code qualifiers

(Common) Event Code Qualifier
Dec (Hex)

Description (Common) Relocate type
sections

0 Successful request or
authorization.

Common relocates, 100-114

1 Event information. Common relocates, 100-114

2 Not a failure, but might warrant
investigation. For authorization
event, grace period might be in
effect.

Common relocates, 100-114

3 Unsuccessful request;
unauthorized.

Common relocates, 100-114

The following are the remote audit specific extended relocates:

Table 47. Event-specific fields for remote audit events

Relocat
e

XML Tag SQL field name Type Length Position Comments

Start End

100 localUser SAF_LOCAL_USER Char 8 3000 3007 SAF identifier for
bind user

101 bindUser SAF_BIND_USER Char 256 3010 3265 Requesters bind
user identifier

102 domain SAF_DOMAIN Char 512 3268 3779 Originating
security domain

Remote authorization and auditing

Chapter 10. Remote authorization and auditing through LDAP 331

Table 47. Event-specific fields for remote audit events (continued)

Relocat
e

XML Tag SQL field name Type Length Position Comments

Start End

103 regName SAF_REG_NAME Char 256 3782 4037 Originating
registry / real m

104 regUser SAF_REG_USER Char 256 4040 4295 Originating user
name

105 mapDomain SAF_MAP_DOMAIN Char 512 4298 4809 Mapped security
domain

106 mapRegName SAF_MAP_REG_NAME Char 256 4812 5067 Mapped
registry / realm

107 mapRegUser SAF_MAP_REG_USER Char 256 5070 5325 Mapped user
name

108 action SAF_ACTION Char 64 5328 5391 Operation
performed

109 object SAF_OBJECT Char 64 5394 5457 Mechanism /
object name

110 method SAF_METHOD Char 64 5460 5523 Method /
function used

111 key SAF_KEY Char 256 5526 5781 Key / certificate
name

112 subjectName SAF_SUBJECT_NAME Char 256 5784 6039 Caller subject
initiating
security event

113 dateTime SAF_DATE_TIME Char 32 6042 6073 Date and time
security event
occurred

114 otherData SAF_OTHER_DATA Char 2048 6076 8123 Application
specific data

115 clientID SAF_CLIENT_ID Char 16 8126 8141 Identifier for
client submitting
remote audit
request.

116 clientVer SAF_CLIENT_VER Char 8 8144 8151 Version of client
submitting
remote audit
request.

Remote authorization and auditing

332 z/VM: 7.3 TCP/IP Programmer's Reference

Chapter 11. Building an LDAP Server Plug-in

This topic explains how to build an LDAP server plug-in on z/VM and explains differences between the
z/VM implementation and the IBM Tivoli® Directory Server for z/OS implementation. For details on the
plug-in application service routines, see z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS
(https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf).

An LDAP server plug-in is a software module that extends the capabilities of your directory server.

Plug-ins are dynamically loaded into the LDAP server’s virtual machine when the server is started. Once
the plug-ins are loaded, the server calls the functions in a shared library by using function pointers.

A server frontend listens to the wire, receives and parses requests from clients, and then processes the
requests by calling an appropriate database backend function. A server backend reads and writes data to
the database containing the directory entries.

If the frontend fails to process a request, it returns an error message to the client; otherwise, the
backends are searched for the appropriate backend to process the request. If a backend is found to
process the request, it is passed to the backend. If a backend is not found to process the request, the
plug-ins are searched for an appropriate plug-in to process the request. If a backend is called, it must
return a message to the client. If a plug-in is called, it must return a message to the client. The frontend,
backend, or the plug-in can return a message to the client, but only one can return the message.

The following types of plug-ins are supported by LDAP:
pre-operation

A plug-in that is executed before a client request is processed; for example, a plug-in that checks for a
new entry before the new entry is added to a directory.

post-operation
A plug-in that is executed after a client request is processed; for example, a plug-in that audits clients
after they bind to the server.

client-operation
A plug-in that is called to process a client request.

Each plug-in is a separate dynamic link library (DLL) that is loaded by the LDAP server. The SLAPI_PL H
include file defines the various structures and service routine prototypes that are available to the plug-in,
and the service functions are provided in a DLL load module. The GLDSLP31 TEXT side file defines the
plug-in import definitions for this DLL. The SLAPI_PL H and GLDSLP31 TEXT files are on the TCPMAINT
591 disk.

The LDAP server plugin configuration option is used to define a plug-in to the LDAP server. See plugin
in z/VM: TCP/IP Planning and Customization. The option has three required parameters and one optional
parameter:

1. The plug-in type: preOperation, clientOperation, or postOperation
2. The plug-in DLL name.
3. The name of the plug-in initialization routine, which is called during LDAP server initialization
4. Optional parameters that the plug-in can retrieve.

For example:

plugin postOperation PLUGSAMP plugin_init "auditFile"

Steps for writing an LDAP plug-in
To build an LDAP plug-in:

1. Design and write the plug-in initialization routine and SLAPI service functions.

© Copyright IBM Corp. 1987, 2023 333

https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=plugem
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3

The plug-in initialization routine must register the following that are supported by the plug-in:

Service functions
Message types
Distinguished name suffixes
Extended operation object identifiers.

Return code 0 must be returned when successful and non-zero when not successful. The plug-in
initialization routine receives as input, the plug-in parameter block (Slapi_PBlock) and returns an
integer as the return value. An example of an initialization routine prototype:

int plugin_init (Slapi_PBlock * pb);

Note: For this example, the name plugin_init would be the initialization routine name used with
the plugin configuration option.

2. When writing the SLAPI service functions that implement the plug-in design, see z/OS: IBM Tivoli
Directory Server Plug-in Reference for z/OS (https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/
glpa300_v2r5.pdf) for application service routines to use and for defined prototypes. You can also
see SLAPI_PL H for defined prototypes.

3. Decide on any input parameters for the plug-in.

Plug-in input parameters can be retrieved using the SLAPI_PLUGIN_ARGC or SLAPI_PLUGIN_ARGV
parameters with the slapi_pblock_get() service routine.

4. Include SLAPI_PL H, which contains defined SLAPI data structures and prototypes.
5. Export the plug-in initialization routine.
6. Compile the plug-in code into object files.
7. Bind the plug-in object files with the LDAP server GLDSLP31 TEXT side file.
8. Ensure the plug-in DLL module is on a CMS minidisk or directory accessible by the LDAP server.
9. Edit and add the plugin configuration option to the LDAP server configuration file. See plugin in z/VM:

TCP/IP Planning and Customization.
10. Restart the LDAP server.

You may want to program trace statements to follow processing flow in the plug-in. The trace macro,
SLAPI_TRACE(), is provided in SLAPI_PL H to assist in tracing. This macro uses the slapi_trace() service
routine, described in z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/
docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf). For example:

SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));

A sample plug-in showing several examples of using SLAPI service routines is in file PLUGSAMP CSAMPLE
on the TCPMAINT 591 disk.

Note about LDAP support on z/VM
When referring to z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/
docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf), be aware of the following:

• z/VM does not support the DB2® back-end.
• z/VM does not support the 64-bit DLL.
• The z/OS term "address space" is equivalent to "virtual machine" on z/VM.

334 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=plugem
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/glpa300_v2r5.pdf

Appendix A. TCPLOAD EXEC

The TCPLOAD EXEC is provided to generate an executable module from your compiled program. When
running TCPLOAD, all disks containing object files must be accessed as extensions of the A-disk. The
TCPLOAD EXEC generates a module when given a list of text file names and a control file.

TCPLOAD load_list control_file type

(

XA

TXTLIB filename

filename

Parameter
Description

load_list
Specifies the file name of a file with the file type LOADLIST that contains file names to be included
in the load module. The first line in the load_list specifies the name of the main object module.
Subsequent lines specify additional object modules to be included in the load module.

control_file
Specifies the control_file, which determines the file types of text files according to the standard
update identifier procedure.

type
Specifies the type parameter as one of the following:
C

Includes SCEELKED, CMSLIB, RPCLIB, TCPASCAL, TCPLANG, COMMTXT, and CLIB txtlibs.
C-ONLY

Includes SCEELKED, RPCLIB, COMMTXT, CMSLIB, and CLIB txtlib.
PASCAL

Includes TCPASCAL, TCPLANG, and COMMTXT txtlibs. PASCAL is the default for the type
parameter.

XA
Specify this option if the application requires storage above the 16Mb line. The application will
be generated RMODE ANY and AMODE 31. Pascal applications will require the GLOBAL LOADLIB
TCPRTLIB command be issued before being run.

TXTLIB
Specifies the TXTLIB option, which allows you to specify up to 50 filenames that will be added to the
GLOBAL TXTLIB command.

See Table 3 on page 29 for a list of the files necessary for each application.

If TCPLOAD is not used, you must global the appropriate TXTLIB files.

Using TCPLOAD
The following example describes how to use TCPLOAD to generate an executable module from object
files.

1. Create a file with file type LOADLIST, which contains all the object (TEXT) files to be linked. For
example, llistfn loadlist.

TCPLOAD EXEC

© Copyright IBM Corp. 1987, 2023 335

2. Create a control file with file type CNTRL, which contains the list of TEXT file types. For example,
ctrlfn cntrl.

3. Invoke the TCPLOAD command, as shown in the following example.

TCPLOAD llistfn ctrlfn C (TXTLIB mylib1 mylib2

Where:

• llistfn is the LOADLIST file name
• ctrlfn is the control file name
• C is the language of the main program
• TXTLIB is the keyword that specifies the libraries to link
• mylib1 and mylib2 are the libraries to link.

The following is an example of how to create an executable module from a list of object files. In the
example, OBJ1, OBJ2, OBJ3, OBJ4, and OBJ5 are TEXT files created by compiling C programs, and
MYLIB1 and MYLIB2 are libraries.

1. Create the file SAMPLE LOADLIST that lists the object files:

OBJ1
OBJ2
OBJ3
OBJ4
OBJ5

2. Create the file TEST CNTRL with the following:

TEXT

3. Invoke TCPLOAD with the following command:

TCPLOAD SAMPLE TEST C (TXTLIB MYLIB1 MYLIB2

This creates the executable file SAMPLE MODULE.

TCPLOAD EXEC

336 z/VM: 7.3 TCP/IP Programmer's Reference

Appendix B. Pascal Return Codes

When using Pascal procedure calls, check to determine whether the call has been completed
successfully. Use the SayCalRe function (see “SayCalRe” on page 75) to convert the ReturnCode
parameter to a printable form.

The SayCalRe function converts a return code value into a descriptive message. For example, if SayCalRe
is invoked with the integer constant BADlengthARGUMENT, it returns the message buffer length
specified. For a description of Pascal return codes and their equivalent message text from SayCalRe,
see Table 48 on page 337.

Most return codes are self-explanatory in the context where they occur. The return codes you see as
a result of issuing a TCP/UDP/IP request are in the range -128 to 0. For more information, see the
Explanatory Notes at the end of Table 48 on page 337.

Table 48. Pascal Language Return Codes

Return Code Numeric
Value

Message Text

OK 0 OK.

ABNORMALcondition¹ -1 Abnormal condition during inter-address
communication. (VMCF. RC=nn User=xxxxxxxx)

ALREADYclosing -2 Connection already closing.

BADlengthARGUMENT -3 Invalid length specified.

CANNOTsendDATA² -4 Cannot send data.

CLIENTrestart -5 Client reinitialized TCP/IP service.

CONNECTIONalreadyEXISTS -6 Connection already exists.

DESTINATIONunreachable -7 Destination address is unreachable.

ERRORinPROFILE -8 Error in profile file; details are in
StackID.TCPERROR.

FATALerror³ -9 Fatal inter-address communications error.
(VMCF. RC=nn User=xxxxxxxx)

HASnoPASSWORD -10 No password in RACF directory.

INCORRECTpassword -11 TCPIP not authorized to access file.

INVALIDrequest -12 Invalid request.

INVALIDuserID -13 Invalid user ID.

INVALIDvirtualADDRESS -14 Invalid virtual address.

KILLEDbyCLIENT -15 You aborted the connection.

LOCALportNOTavailable -16 The requested local port is not available.

MINIDISKinUSE -17 File is in use by someone else and cannot be
accessed.

MINIDISKnotAVAILABLE -18 File not available.

NObufferSPACE⁴ -19 No more space for data currently available.

NOmoreINCOMINGdata -20 The foreign host has closed this connection.

NONlocalADDRESS -21 The internet address is not local to this host.

NOoutstandingNOTIFICATIONS -22 No outstanding notifications.

© Copyright IBM Corp. 1987, 2023 337

Table 48. Pascal Language Return Codes (continued)

Return Code Numeric
Value

Message Text

NOsuchCONNECTION -23 No such connection.

NOtcpIPservice -24 No TCP/IP service available.

NOTyetBEGUN -25 Not yet begun TCP/IP service.

NOTyetOPEN -26 The connection is not yet open.

OPENrejected -27 Foreign host rejected the open attempt.

PARAMlocalADDRESS -28 TcpOpen error: invalid local address.

PARAMstate -29 TcpOpen error: invalid initial state.

PARAMtimeout -30 Invalid time-out parameter.

PARAMunspecADDRESS -31 TcpOpen error: unspecified foreign address in
active open.

PARAMunspecPORT -32 TcpOpen error: unspecified foreign port in active
open.

PROFILEnotFOUND -33 TCPIP cannot read profile file.

RECEIVEstillPENDING -34 Receive still pending on this connection.

REMOTEclose -35 Foreign host unexpectedly closed the
connection.

REMOTEreset -36 Foreign host aborted the connection.

SOFTWAREerror -37 Software error in TCP/IP!

TCPipSHUTDOWN -38 TCP/IP service is being shut down.

TIMEOUTconnection -39 Foreign host is no longer responding.

TIMEOUTopen -40 Foreign host did not respond within OPEN time-
out

TOOmanyOPENS -41 Too many open connections already exist.

UNAUTHORIZEDuser -43 You are not authorized to issue this command.

UNEXPECTEDsyn -44 Foreign host violated the connection protocol.

UNIMPLEMENTEDrequest -45 Unimplemented TCP/IP request.

UNKNOWNhost -46 Destination host is not known.

UNREACHABLEnetwork -47 Destination network is unreachable.

UNSPECIFIEDconnection -48 Unspecified connection.

VIRTUALmemoryTOOsmall -49 Client virtual machine has too little storage.

WRONGsecORprc -50 Foreign host disagreed on security or
precedence.

YOURend -55 Client has ended TCP/IP service.

0resources -56 TCP cannot handle any more connections now.

UDPlocalADDRESS -57 Invalid local address for UDP.

UDPunspecADDRESS -59 Address unspecified when specification
necessary.

UDPunspecPORT -60 Port unspecified when specification necessary.

338 z/VM: 7.3 TCP/IP Programmer's Reference

Table 48. Pascal Language Return Codes (continued)

Return Code Numeric
Value

Message Text

UDPzeroRESOURCES -61 UDP cannot handle any more traffic.

FSENDstillPENDING -62 FSend still pending on this connection.

DROPPEDbyOPERATOR -79 Connection dropped by operator.

ERRORopeningORreadingFILE -80 Error opening or reading file.

FILEformatINVALID -81 File format invalid.

CANNOTreadFILE -85 A file used by the operation cannot be read. The
file may not exist, or it may be a file mode 0 file.

CANNOTwriteFILE -86 A file used by the operation cannot be written to.
The file may not exist, or it may be a file mode 0
file.

TLSnotAVAILABLE -87 The SSL server is currently not available.

LABELnotRECOGNIZED -88 The security server is available but the label is
not recognized.

LABELnotPERMITTED -89 The security server is available but the user is
not authorized to use the label specified.

KEYRINGnotRECOGNIZED -90 The security server is available but the keyring is
not recognized.

KEYRINGnotPERMITTED -91 The security server is available but the user is
not authorized to use the keyring specified.

ALREADYsecured -92 The request to secure the connection failed. The
connection is already secure.

STATICALLYsecured -93 The request to dynamically secure the
connection failed. The connection is already
statically secured.

CONNECTIONnotSECURE -94 The request to close a secure connection failed.
The connection is not secure.

SSLhandshakeINprogress -95 The request cannot be made at this time. There
is an SSL handshake currently in progress on this
connection.

MIXEDaddresses -96 A mixture of IPv4 and IPv6 addresses have been
specified in the Status6InfoType record, this is
not allowed.

IPv6connection -97 An IPv4 function has been issued against an
IPv6 connection, the data returned is not valid.

SSLnotRESPONDING -98 A QueryTLS request was made to the SSL server
but the server is not responding.

BACKlevelSSL -99 The current SSL server is backlevel and does not
support TLS negotiated security.

TCPipALREADYstarted -101 TCP/IP services have already been started.

PERSTISTclose -102 The request cannot be made at this time. The
PerstistConnectionLimit has been reached.

SSLserverNOTfound -103 The specified SSL server does not exist.

SSLserverISactive -104 The specified SSL server is already active.

Appendix B. Pascal Return Codes 339

Table 48. Pascal Language Return Codes (continued)

Return Code Numeric
Value

Message Text

SSLcloseINprogress -105 The request cannot be made at this time. There
is an SSL close currently in progress on this
connection.

UNKNOWNinterface -106 The interface specified on the QUERY OSA
command is not a valid interface.

TIMEOUTosaREQUEST -107 The request was sent to the OSA but no
response was received.

TRYagainLater -108 An OSA request is already in progress. Try the
request again at a later time.

QUERYoatNOTsupported -109 The query request is not supported by the OSA
hardware.

CERTdataNOTavail -110 The requested certificate data is not
available. Check the CDRetCode field in the
CertDataCompleteDetailType structure that is
returned on the call.

Explanatory Notes
1. ABNORMALcondition

The actual VMCF return code is available in the external integer variable LastVmcfCode, and is
included in the output of SayCalRe if called immediately after the error is detected.

2. CANNOTsendDATA
Cannot send data on this connection because the connection state is invalid for sending data.

3. FATALerror
The actual VMCF return code is available in the external integer variable LastVmcfCode, and is
included in the output of SayCalRe if called immediately after the error is detected.

4. NObufferSPACE
Applies to this connection only. Space may still be available for other connections.

Explanatory Notes

340 z/VM: 7.3 TCP/IP Programmer's Reference

Appendix C. C API System Return Codes

This appendix provides the system return codes for IUCV socket calls. These return codes are also
contained in the compiler file TCPERRNO H. C socket return codes can be found in compiler file ERRNO H.

Table 49. System Return Codes

Message Code Description

EPERM 1 Permission denied.

ENOENT 2 No such file or directory.

ESRCH 3 No such process.

EINTR 4 Interrupted system call.

EIO 5 I/O error.

ENXIO 6 No such device or address.

E2BIG 7 Argument list too long.

ENOEXEC 8 Exec format error.

EBADF 9 Bad file number.

ECHILD 10 No children.

EAGAIN 11 No more processes.

ENOMEM 12 Not enough memory.

EACCES 13 Permission denied.

EFAULT 14 Bad address.

ENOTBLK 15 Block device required.

EBUSY 16 Device busy.

EEXIST 17 File exists.

EXDEV 18 Cross device link.

ENODEV 19 No such device.

ENOTDIR 20 Not a directory.

EISDIR 21 Is a directory.

EINVAL 22 Invalid argument.

ENFILE 23 File table overflow.

EMFILE 24 Too many open files.

ENOTTY 25 Inappropriate device call.

ETXTBSY 26 Text file busy.

EFBIG 27 File too large.

ENOSPC 28 No space left on device.

ESPIPE 29 Illegal seek.

EROFS 30 Read only file system.

EMLINK 31 Too many links.

EPIPE 32 Broken pipe.

C API System Return Codes

© Copyright IBM Corp. 1987, 2023 341

Table 49. System Return Codes (continued)

Message Code Description

EDOM 33 Argument too large.

ERANGE 34 Result too large.

EWOULDBLOCK 35 Operation would block.

EINPROGRESS 36 Operation now in progress.

EALREADY 37 Operation already in progress.

ENOTSOCK 38 Socket operation on non-socket.

EDESTADDRREQ 39 Destination address required.

EMSGSIZE 40 Message too long.

EPROTOTYPE 41 Protocol wrong type for socket.

ENOPROTOOPT 42 Protocol not available.

EPROTONOSUPPORT 43 Protocol not supported.

ESOCKTNOSUPPORT 44 Socket type not supported.

EOPNOTSUPP 45 Operation not supported on socket.

EPFNOSUPPORT 46 Protocol family not supported.

EAFNOSUPPORT 47 Address family not supported by protocol
family.

EADDRINUSE 48 Address already in use.

EADDRNOTAVAIL 49 Cannot assign requested address.

ENETDOWN 50 Network is down.

ENETUNREACH 51 Network is unreachable.

ENETRESET 52 Network dropped connection on reset.

ECONNABORTED 53 Software caused connection abort.

ECONNRESET 54 Connection reset by peer.

ENOBUFS 55 No buffer space available.

EISCONN 56 Socket is already connected.

ENOTCONN 57 Socket is not connected.

ESHUTDOWN 58 Cannot send after socket shutdown.

ETOOMANYREFS 59 Too many references: cannot splice.

ETIMEDOUT 60 Connection timed out.

ECONNREFUSED 61 Connection refused.

ELOOP 62 Too many levels of symbolic loops.

ENAMETOOLONG 63 File name too long.

EHOSTDOWN 64 Host is down.

EHOSTUNREACH 65 No route to host.

ENOTEMPTY 66 Directory not empty.

EPROCLIM 67 Too many processes.

EUSERS 68 Too many users.

C API System Return Codes

342 z/VM: 7.3 TCP/IP Programmer's Reference

Table 49. System Return Codes (continued)

Message Code Description

EDQUOT 69 Disc quota exceeded.

ESTALE 70 Stale NFS file handle.

EREMOTE 71 Too many levels of remote in path.

ENOSTR 72 Device is not a stream.

ETIME 73 Timer expired.

ENOSR 74 Out of streams resources.

ENOMSG 75 No message of desired type.

EBADMSG 76 Trying to read unreadable message.

EIDRM 77 Identifier removed.

EDEADLK 78 Deadlock condition.

ENOLCK 79 No record locks available.

ENONET 80 Machine is not on the network.

ERREMOTE 81 Object is remote.

ENOLINK 82 Link has been severed.

EADV 83 Advertise error.

ESRMNT 84 Srmount error.

ECOMM 85 Communication error on send.

EPROTO 86 Protocol error.

EMULTIHOP 87 Multihop attempted.

EDOTDOT 88 Cross mount point.

EREMCHG 89 Remote address changed.

C API System Return Codes

Appendix C. C API System Return Codes 343

C API System Return Codes

344 z/VM: 7.3 TCP/IP Programmer's Reference

Appendix D. Well-Known Port Assignments

This appendix lists the well-known port assignments for transport protocols TCP and UDP, and includes
port number, keyword, and a description of the reserved port assignment. You can also find a list of these
well-known port numbers in the ETC SERVICES file.

For further port assignment information, see the Internet Assigned Numbers Authority (IANA) website.

TCP Well-Known Port Assignments
Table 50 on page 345 lists the well-known port assignments for TCP.

Table 50. TCP Well-Known Port Assignments

Port Number Keyword Reserved for Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 systat active users active users

13 daytime daytime daytime

15 netstat Netstat who is up or Netstat

19 chargen ttytst source character generator

21 ftp FTP File Transfer Protocol

23 telnet Telnet Telnet

25 smtp mail Simple Mail Transfer Protocol

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain name server domain name server

57 mtp private terminal access private terminal access

77 rje netrjs any private RJE service

79 finger finger finger

87 link ttylink any private terminal link

95 supdup supdup SUPDUP Protocol

101 hostname hostname nic hostname server, usually from SRI-NIC

109 pop postoffice Post Office Protocol

111 sunrpc sunrpc Sun remote procedure call

113 auth authentication authentication service

115 sftp sftp Simple File Transfer Protocol

117 uucp-path UUCP path service UUCP path service

Well-Known Port Assignments

© Copyright IBM Corp. 1987, 2023 345

https://www.iana.org/

Table 50. TCP Well-Known Port Assignments (continued)

Port Number Keyword Reserved for Services Description

119 untp readnews untp USENET News Transfer Protocol

123 ntp NTP Network Time Protocol

160–223 reserved

512 REXEC REXEC Remote Execution Protocol

514 RSH RSHELL Remote Shell Service

992 telnet Telnet Telnet over TLS/SSL

UDP Well-Known Port Assignments
Table 51 on page 346 lists the well-known port assignments for UDP.

Table 51. UDP Well-Known Port Assignments

Port Number Keyword Reserved for Services Description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 users active users active users

13 daytime daytime daytime

15 netstat Netstat Netstat

19 chargen ttytst source character generator

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain nameserver domain name server

67 bootpd BOOTP BOOTP Daemon

75 any private dial out service

77 rje netrjs any private RJE service

79 finger finger finger

111 sunrpc sunrpc Sun remote procedure call

123 ntp NTP Network Time Protocol

160–223 reserved

520 RouteD and MPROUTE using Rip

531 rvd-control rvd control port

2001 rauth2 Andrew File System service, for the
Venus process

Well-Known Port Assignments

346 z/VM: 7.3 TCP/IP Programmer's Reference

Table 51. UDP Well-Known Port Assignments (continued)

Port Number Keyword Reserved for Services Description

2002 rfilebulk Andrew File System service, for the
Venus process

2003 rfilesrv Andrew File System service, for the
Venus process

2018 console Andrew File System service

2115 ropcons Andrew File System service, for the
Venus process

2131 rupdsrv assigned in pairs; bulk must be srv
+1

2132 rupdbulk; assigned in pairs; bulk must be srv
+1

2133 rupdsrv1 assigned in pairs; bulk must be srv
+1

2134 rupdbulk1; assigned in pairs; bulk must be srv
+1

Well-Known Port Assignments

Appendix D. Well-Known Port Assignments 347

Well-Known Port Assignments

348 z/VM: 7.3 TCP/IP Programmer's Reference

Appendix E. Related Protocol Specifications

Many features of TCP/IP for z/VM are based on the following RFCs:

RFC Title Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware

D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

877 Standard for the Transmission of IP Datagrams over Public Data
Networks

J.T. Korb

885 Telnet End of Record Option J.B. Postel

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann,
J.C. Mogul, M. Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K.
Stahl, E.J. Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell, J.S.
Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

RFCs

© Copyright IBM Corp. 1987, 2023 349

RFC Title Author

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks J.B. Postel, J.K. Reynolds

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L. Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun Microsystems
Incorporated

1058 Routing Information Protocol C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts-Communication Layers R.T. Braden

1123 Requirements for Internet Hosts-Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-
Based Internets

M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-
based Internets

K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP), J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1179 Line Printer Daemon Protocol The Wollongong Group,
L. McLaughlin III

1180 TCP/IP Tutorial, T. J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions (Updates RFC 1034, RFC 1035) C.F. Everhart, L.A.
Mamakos, R. Ullmann,
P.V. Mockapetris,

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie,
J.R. Davin

1207 FYI on Questions and Answers: Answers to Commonly Asked Experienced
Internet User Questions

G.S. Malkin, A.N. Marine,
J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C.
Lynch

1213 Management Information Base for Network Management of TCP/IP-
Based Internets: MIB-II,

K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface

G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

RFCs

350 z/VM: 7.3 TCP/IP Programmer's Reference

RFC Title Author

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version
3)

S. Willis, J. Burruss

1293 Inverse Address Resolution Protocol T. Bradley, C. Brown

1270 SNMP Communications Services F. Kastenholz, ed.

1323 TCP Extensions for High Performance V. Jacobson, R. Braden,
D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked New
Internet User Questions

G.S. Malkin, A.N. Marine

1351 SNMP Administrative Model J. Davin, J. Galvin, K.
McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie,
J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin,
J. Galvin

1354 IP Forwarding Table MIB F. Baker

1387 RIP Version 2 Protocol Analysis G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol

D. Haskin

1398 Definitions of Managed Objects for the Ethernet-like Interface Types F. Kastenholz

1440 SIFT/UFT:Sender-Initiated/Unsolicited File Transfer R. Troth

1493 Definition of Managed Objects for Bridges E. Decker, P. Langille,
A. Rijsinghani, K.
McCloghrie

1540 IAB Official Protocol Standards J.B. Postel

1583 OSPF Version 2 J.Moy

1647 TN3270 Enhancements B. Kelly

1700 Assigned Numbers J.K. Reynolds, J.B. Postel

1723 RIP Version 2 — Carrying Additional Information G. Malkin

1738 Uniform Resource Locators (URL) T. Berners-Lee, L.
Masinter, M. McCahill

1813 NFS Version 3 Protocol Specification B. Callaghan, B.
Pawlowski, P. Stauback,
Sun Microsystems
Incorporated

1823 The LDAP Application Program Interface T. Howes, M. Smith

2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

2052 A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen, P. Vixie

RFCs

Appendix E. Related Protocol Specifications 351

RFC Title Author

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare,
R. Canetti

2222 Simple Authentication and Security Layer (SASL) J. Myers

2247 Using Domains in LDAP/X.500 Distinguished Names S. Kille, M. Wahl, A.
Grimstad, R. Huber, S.
Sataluri

2251 Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S.
Kille

2252 Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions M. Wahl, A. Coulbeck, T.
Howes, S. Kille

2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation
of Distinguished Names

M. Wahl, S. Kille, T.
Howes

2254 The String Representation of LDAP Search Filters T. Howes

2255 The LDAP URL Format T. Howes, M. Smith

2256 A Summary of the X.500 (96) User Schema for use with LDAPv3 M. Wahl

2279 UTF-8, a transformation format of ISO 10646 F. Yergeau

2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark,
W. Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification

A. Conta, S. Deering

2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

2713 Schema for Representing Java Objects in an LDAP Directory V. Ryan, S. Seligman, R.
Lee

2714 Schema for Representing CORBA Object References in an LDAP Directory V. Ryan, R. Lee, S.
Seligman

2732 Format for Literal IPv6 Addresses in URLs R. Hinden, B. Carpenter,
L. Masinter

2743 Generic Security Service Application Program Interface Version 2,
Update 1

J. Linn

2744 Generic Security Service API Version 2 : C-bindings J. Wray

2820 Access Control Requirements for LDAP E. Stokes, D. Byrne, B.
Blakley, P. Behera

2829 Authentication Methods for LDAP M. Wahl, H. Alvestrand,
J. Hodges, R. Morgan

2830 Lightweight Directory Access Protocol (v3): Extension for Transport Layer
Security

J. Hodges, R. Morgan, M.
Wahl

2831 Using Digest Authentication as a SASL Mechanism P. Leach, C. Newman

2849 The LDAP Data Interchange Format (LDIF) G. Good

RFCs

352 z/VM: 7.3 TCP/IP Programmer's Reference

RFC Title Author

2873 TCP Processing of the IPv4 Precedence Field X. Xiao, A. Hannan, V.
Paxson, E. Crabble

3377 Lightweight Directory Access Protocol (v3): Technical Specification J. Hodges, R. Morgan

3484 Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S. Deering

4191 Default Router Preferences and More-Specific Routes R. Draves, D. Thaler

4517 LDAP Syntaxes and Matching Rules S. Legg

4523 LDAP Schema Definitions for X.509 Certificates K. Zeilenga

5095 Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G.
Neville-Nei

5175 IPv6 Router Advertisement Flags Option B. Haberman, R. Hinden

5722 Handling of Overlapping IPv6 Fragments S. Krishnan

6946 Processing of IPv6 "Atomic" Fragments F. Gont

6980 Security Implications of IPv6 Fragmentation with IPv6 F. Gont

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the NIC, either individually or
on a subscription basis. Online copies are available using FTP from the NIC at nic.ddn.mil. Use FTP to
download the files, using the following format:

RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:
nnnn

Is the RFC number.
TXT

Is the text format.
PS

Is the PostScript format.

You can also request RFCs through electronic mail, from the automated NIC mail server, by sending a
message to service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject line of
RFC nnnn.PS for PostScript versions. To request a copy of the RFC index, send a message with a subject
line of RFC INDEX.

For more information, contact nic@nic.ddn.mil. Information is also available at Internet Engineering
Task Force (www.ietf.org).

RFCs

Appendix E. Related Protocol Specifications 353

http://www.ietf.org
http://www.ietf.org

RFCs

354 z/VM: 7.3 TCP/IP Programmer's Reference

Appendix F. Abbreviations and Acronyms

The following abbreviations and acronyms are used throughout this book.

AIX® Advanced Interactive Executive

ANSI American National Standards Institute

API Application Program Interface

APPC Advanced Program-to-Program Communications

APPN Advanced Peer-to-Peer Networking

ARP Address Resolution Protocol

ASCII American National Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

AUI Attachment Unit Interface

BFS Byte File System

BIOS Basic Input/Output System

BNC Bayonet Neill-Concelman

CCITT Comite Consultatif International Telegraphique et Telephonique. The
International Telegraph and Telephone Consultative Committee

CLIST Command List

CMS Conversational Monitor System

CP Control Program

CPI Common Programming Interface

CREN Corporation for Research and Education Networking

CSD Corrective Service Diskette

CTC Channel-to-Channel

CU Control Unit

CUA Common User Access

DASD Direct Access Storage Device

DBCS Double Byte Character Set

DLL Dynamic Link Library

DNS Domain Name System

DOS Disk Operating System

DPI Distributed Program Interface

EBCDIC Extended Binary-Coded Decimal Interchange Code

EISA Enhanced Industry Standard Adapter

ESCON Enterprise Systems Connection Architecture

FAT File Allocation Table

FTAM File Transfer Access Management

Abbreviations and Acronyms

© Copyright IBM Corp. 1987, 2023 355

FTP File Transfer Protocol

FTP API File Transfer Protocol Applications Programming Interface

GCS Group Control System

GDF Graphics Data File

HPFS High Performance File System

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IP Internet Protocol

IPL Initial Program Load

ISA Industry Standard Adapter

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

IUCV Inter-User Communication Vehicle

JES Job Entry Subsystem

JIS Japanese Institute of Standards

JCL Job Control Language

LAN Local Area Network

LAPS LAN Adapter Protocol Support

LCS IBM LAN Channel Station

LDAP Lightweight Directory Access Protocol

LPQ Line Printer Query

LPR Line Printer Client

LPRM Line Printer Remove

LPRMON Line Printer Monitor

LU Logical Unit

MAC Media Access Control

Mbps Megabits per second

MBps Megabytes per second

MCA Micro Channel Adapter

MIB Management Information Base

MIH Missing Interrupt Handler

MILNET Military Network

MHS Message Handling System

MTU Maximum Transmission Unit

MVS™ Multiple Virtual Storage

MX Mail Exchange

Abbreviations and Acronyms

356 z/VM: 7.3 TCP/IP Programmer's Reference

NCP Network Control Program

NDIS Network Driver Interface Specification

NFS Network File System

NIC Network Information Center

NLS National Language Support

NSFNET National Science Foundation Network

OS/2 Operating System/2®

OSA Open Systems Adapter

OSF Open Software Foundation, Inc.

OSI Open Systems Interconnection

OSIMF/6000 Open Systems Interconnection Messaging and Filing/6000

OV/MVS OfficeVision/MVS

OV/VM OfficeVision/VM

PAD Packet Assembly/Disassembly

PC Personal Computer

PCA Parallel Channel Adapter

PDN Public Data Network

PDU Protocol Data Units

PING Packet Internet Groper

PIOAM Parallel I/O Access Method

POP Post Office Protocol

PROFS Professional Office Systems

PSCA Personal System Channel Attach

PSDN Packet Switching Data Network

PU Physical Unit

PVM Passthrough Virtual Machine

RACF Resource Access Control Facility

RARP Reverse Address Resolution Protocol

REXEC Remote Execution

REXX Restructured Extended Executor Language

RFC Request For Comments

RIP Routing Information Protocol

RISC Reduced Instruction Set Computer

RPC Remote Procedure Call

RSCS Remote Spooling Communications Subsystem

SAA Systems Application Architecture®

SBCS Single Byte Character Set

SFS Shared File System

Abbreviations and Acronyms

Appendix F. Abbreviations and Acronyms 357

SLIP Serial Line Internet Protocol

SMIL Structure for Management Information

SMTP Simple Mail Transfer Protocol

SNA Systems Network Architecture

SNMP Simple Network Management Protocol

SOA Start of Authority

SPOOL Simultaneous Peripheral Operations Online

SQL IBM Structured Query Language

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TSO Time Sharing Option

TTL Time-to-Live

UDP User Datagram Protocol

VGA Video Graphic Array

VM Virtual Machine

VMCF Virtual Machine Communication Facility

VM/ESA Virtual Machine/Enterprise System Architecture

VMSES/E Virtual Machine Serviceability Enhancements Staged/Extended

VTAM® Virtual Telecommunications Access Method

WAN Wide Area Network

XDR eXternal Data Representation

Abbreviations and Acronyms

358 z/VM: 7.3 TCP/IP Programmer's Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1987, 2023 359

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to write programs to
obtain the services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

360 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 361

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

362 z/VM: 7.3 TCP/IP Programmer's Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1987, 2023 363

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/i1343772.pdf#nameddest=i1343772
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa2_v7r3.pdf#nameddest=hcpa2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpf2_v7r3.pdf#nameddest=hcpf2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa4_v7r3.pdf#nameddest=hcpa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa3_v7r3.pdf#nameddest=hcpa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl0_v7r3.pdf#nameddest=hcpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa7_v7r3.pdf#nameddest=hcpa7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpg4_v7r3.pdf#nameddest=hcpg4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcps0_v7r3.pdf#nameddest=hcps0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb2_v7r3.pdf#nameddest=dmsb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

364 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb1_v7r3.pdf#nameddest=hcpb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb2_v7r3.pdf#nameddest=hcpb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb6_v7r3.pdf#nameddest=dmsb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb5_v7r3.pdf#nameddest=dmsb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb5_v7r3.pdf#nameddest=hcpb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ceeb7_v7r3.pdf#nameddest=ceeb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp1_v7r3.pdf#nameddest=dmsp1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp0_v7r3.pdf#nameddest=dmsp0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsl0_v7r3.pdf#nameddest=dmsl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsk7_v7r3.pdf#nameddest=dmsk7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb0_v7r3.pdf#nameddest=dmsb0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw0_v7r3.pdf#nameddest=hcpw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc1_v7r3.pdf#nameddest=hcpc1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc3_v7r3.pdf#nameddest=hcpc3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe5_v7r3.pdf#nameddest=hcpe5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt1_v7r3.pdf#nameddest=hcpt1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt5_v7r3.pdf#nameddest=hcpt5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt2_v7r3.pdf#nameddest=hcpt2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt0_v7r3.pdf#nameddest=hcpt0_v7r3

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580
• Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?

topic=osa-icc-3215-support), SA23-2247
• Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/ioa2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

• z/VM: Performance, SC24-6301. See z/VM Performance Data Pump.
• z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 365

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt3_v7r3.pdf#nameddest=hcpt3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt4_v7r3.pdf#nameddest=hcpt4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk4_v7r3.pdf#nameddest=hcpk4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk2_v7r3.pdf#nameddest=hcpk2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk3_v7r3.pdf#nameddest=hcpk3_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl8_v7r3.pdf#nameddest=hcpl8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl7_v7r3.pdf#nameddest=hcpl7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha8_v7r3.pdf#nameddest=icha8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha4_v7r3.pdf#nameddest=icha4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichb2_v7r3.pdf#nameddest=ichb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha1_v7r3.pdf#nameddest=icha1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha3_v7r3.pdf#nameddest=icha3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha6_v7r3.pdf#nameddest=icha6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha7_v7r3.pdf#nameddest=icha7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha2_v7r3.pdf#nameddest=icha2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta7_v7r3.pdf#nameddest=dmta7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta4_v7r3.pdf#nameddest=dmta4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta3_v7r3.pdf#nameddest=dmta3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta2_v7r3.pdf#nameddest=dmta2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta1_v7r3.pdf#nameddest=dmta1_v7r3

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf), GC35-0152
• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/

docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf), GC35-0151

Related Products

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

z/OS
IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

Other TCP/IP Related Publications
This section lists other publications, outside the z/VM 7.3 library, that you may find helpful.

• TCP/IP Tutorial and Technical Overview, GG24-3376
• TCP/IP Illustrated, Volume 1: The Protocols, SR28-5586
• Internetworking with TCP/IP Volume I: Principles, Protocols, and Architecture, SC31-6144
• Internetworking With TCP/IP Volume II: Implementation and Internals, SC31-6145
• Internetworking With TCP/IP Volume III: Client-Server Programming and Applications, SC31-6146
• DNS and BIND in a Nutshell, SR28-4970
• "MIB II Extends SNMP Interoperability," C. Vanderberg, Data Communications, October 1990.
• "Network Management and the Design of SNMP," J.D. Case, J.R. Davin, M.S. Fedor, M.L. Schoffstall.
• "Network Management of TCP/IP Networks: Present and Future," A. Ben-Artzi, A. Chandna, V. Warrier.
• "Special Issue: Network Management and Network Security,"ConneXions-The Interoperability Report,

Volume 4, No. 8, August 1990.
• The Art of Distributed Application: Programming Techniques for Remote Procedure Calls, John R. Corbin,

Springer-Verlog, 1991.

366 z/VM: 7.3 TCP/IP Programmer's Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kdpl0_v7r3.pdf#nameddest=kdpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kldl0_v7r3.pdf#nameddest=kldl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kinl0_v7r3.pdf#nameddest=kinl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kiml0_v7r3.pdf#nameddest=kiml0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/vmcug_v7r3.pdf#nameddest=vmcug_v7r3
https://www.ibm.com/docs/en/zos

• The Simple Book: An Introduction to Management of TCP/IP-based Internets, Marshall T Rose, Prentice
Hall, Englewood Cliffs, New Jersey, 1991.

Bibliography 367

368 z/VM: 7.3 TCP/IP Programmer's Reference

Index

A
abbreviations and acronyms 355
ACCEPT (IUCV) 159
address families, socket 3
address information file, specifying 31
address, socket 5
AddUserNote 60
AF_INET socket domain

definition 4
AF_INET6 socket domain

definition 4
AF_IUCV socket domain

definition 4
AF_UNIX socket domain

definition 4
aliases information file, specifying 30
APITYPE=3 (multiple request) 146
applications program interface (API)

IUCV sockets API 142
APPTYPE environment variable 30
ASCII to EBCDIC translation tables, specifying 31
asynchronous communication, sequence (Pascal API) 41
auth_destroy() 194
authnone_create() 194
authunix_create_default() 195
authunix_create() 194

B
BeginTcpIp (Pascal) 60
Berkeley socket implementation 25
big-endian byte ordering convention 6
BIND (IUCV) 160
BUFFERspaceAVAILABLE (VMCF) 134
byte order conventions 6

C
C socket application programming interface 1
C socket programs, examples

TCP client 35
TCP server 36
UDP client 38
UDP server 38

C sockets quick reference 32
callrpc() 195
calls

IUCV socket 159
CLEARtextRESUMED (VMCF) 135
ClearTimer 60
client

remote procedure calls 187
SNMP DPI programs 252

client verification exit, SMTP 285
clnt_broadcast() 196
clnt_call() 197

clnt_destroy() 199
clnt_freeres() 199
clnt_geterr() 200
clnt_pcreateerror() 200
clnt_perrno() 201
clnt_perror() 201
clnt_spcreateerror() 201
clnt_sperrno() 202
clnt_sperror() 202
clntcp_create() 198
clntraw_create() 203
clnttcp_create() 203
clntudp_create() 204
command exit, SMTP 297
compiling and linking

SNMP DPI 244
CONNECT (IUCV) 162
connection information record (Pascal) 43
connection states (Pascal) 42
CONNECTIONclosing (Pascal) 42
CONNECTIONstateCHANGED (VMCF) 135
CreateTimer 61

D
DATA 276
data structures

Pascal 41
VMCF 113

DATAdelivered (VMCF) 136
datagram sockets 4
DestroyTimer 61
DPI client program 252, 255

E
EBCDIC to ASCII translation tables, specifying 31
EHLO 274
encrypting data on an IUCV socket 147
EndTcpIp (Pascal) 61
envelope, SMTP

description 273
example 281

environment variables
APPTYPE 30
HOSTALIASES 30
X_ADDR 31
X_SITE 31
X_XLATE 31

ETC SERVICES file 345
exit routines, SMTP 285, 303
Exits, Server

Telnet 305
EXPN 280
eXternal Data Representation protocol, general information
187

Index 369

F
FCNTL (IUCV) 163
fDPIparse() 245
file specification record (Pascal) 53
files

ETC SERVICES 345
ForeignSocket 43, 44

G
get_myaddress() 205
GET-NEXT, SNMP DPI request 243
GET, SNMP DPI request 242
GETCLIENTID (IUCV) 164
GETHOSTID (IUCV) 165
Gethostname (REXX) 165
GetHostNumber 62
GetHostResol 62
GetHostString 62
GetIdentity 63
GetNextNote 63
GETPEERNAME (IUCV) 166
GetSmsg 64
GETSOCKNAME (IUCV) 167
GETSOCKOPT (IUCV) 168
GIVESOCKET (IUCV) 169

H
Handle (Pascal) 64
handling external interrupts 55
HELO 274
HELP 277
host byte order 6
host information file, specifying 31
Host lokkup routines 58
HOSTALIASES environment variable 30
HOSTS ADDRINFO file, replacing 31
HOSTS SITEINFO file, replacing 31

I
ICTX plug-in

SMF Record Type 83 subtype 4 records 331
initialization procedures, TCP/UDP (Pascal) 54
inter-communication vehicle sockets 141
IOCTL (IUCV) 170
IPUSER variable, returned by socket call 145
IsLocalAddress 65
IsLocalHost 65
IUCV socket API 142
IUCV socket call, buffer formats

ACCEPT 160
BIND 161
CANCEL 161
CLOSE 162
CONNECT 163
FCNTL 164
GETCLIENTID 165
GETHOSTID 165
GETHOSTNAME 166
GETPEERNAME 167

IUCV socket call, buffer formats (continued)
GETSOCKNAME 168
GETSOCKOPT 169
GIVESOCKET 170
IOCTL 171
LASTERRNO 186
LISTEN 174
READ 175
READV 175
RECV 176
RECVMSG 176
RRCVFROM 176
SELECT 177
SELECT and SELECTEX

descriptor sets 176
DESCRIPTOR_SET macro 177
FD_CLR macro 177
FD_ISSET macro 177

SELECTEX 177
SEND 179
SENDTO 180
SHUTDOWN 183
SOCKET 183
TAKESOCKET 184
WRITE 185
WRITEV 185

IUCV socket calls
ACCEPT 159
BIND 160
CLOSE 162
CONNECT 162
FCNTL 163
GETCLENTID 164
GETHOSTID 165
GETHOSTNAME 165
GETPEERNAME 166
GETSOCKNAME 167
GETSOCKOPT 168
GIVESOCKET 169
IOCTL 170
LISTEN 173
MAXDESC 174
READ 174
READV 174
RECV 175
RECVFROM 175
RECVMSG 175
SELECT 176
SELECTEX 176
SEND 178
SENDMSG 179
SENDTO 180
SETSOCKOPT 181
SHUTDOWN 182
SOCKET 183
TAKESOCKET 184
WRITE 185
WRITEV 185

IUCV sockets, general
connect parameters 143
general information 141
issuing socket calls 145
lasterrno special request 186
multiple-req socket program (apitype=3) 143, 146

370 z/VM: 7.3 TCP/IP Programmer's Reference

IUCV sockets, general (continued)
path severance 144
response from initial message 143
response from TCPIP 147
restrictions 141
send parameters, initial message 143
sever, application initiated 145
sever, clean_up of stream sockets 145
sever, TCPIP initiated 145
socket API 142
socket call syntax 148
waiting for response from TCPIP 147

IUCV Sockets, prerequisite knowledge 141
IUCV, subsystem communication macros

IUCV CONNECT 143
IUCV PURGE 147
IUCV REJECT 147, 186
IUCV REPLY 147
IUCV SEND 143
IUCVMCOM SEVER 146

L
libraries

remote procedure calls 26, 29
SNMP DPI 245
sockets 1

LISTEN (IUCV) 173
LISTENING (Pascal) 42
little-endian byte ordering convention 6

M
mail forwarding exit, SMTP 291
MAILFROM 275
Management Information Base (MIB) 241, 243
MAXDESC (IUCV) 174
message examples, notation used in xxii
messages

Pascal 51
mkDPIregister() 246
mkDPIresponse() 247
mkDPIset() 248
mkDPItrap() 249
MonCommand 66
Monitor procedures 57
monitor query 67
MonQuery 67

N
network byte order 6
NONEXISTENT (Pascal) 42
NOOP 277
notation used in message and response examples xxii
notification record (Pascal) 45
notifications

notifications (Pascal) 54
notifications (VMCF) 134
notifications, specifying those to receive (VMCF) 119

NotifyIo 68

O
OPEN (Pascal) 42
OpenAttemptTimeout 43

P
parse 246
partner certificate

requesting details from 22
Pascal

API, description 41
assembler calls

RTcpExtRupt 74
RTcpVmcfRupt 74

asynchronous communication, general sequence 41
Compiler, IBM VS Pascal & Library 41
connection state type

CONNECTIONclosing 42
LISTENING 42
NONEXISTENT 42
OPEN 42
RECEIVINGonly 42
SENDINGonly 42
TRYINGtoOPEN 42

data structures 41
description

connection information record 43
connection states 42
file specification record 53
notification record 45

return codes 337, 340
sample program 108
software requirements 41

path addresses, SMTP 283
pDPIpacket() 251
PING interface 57
PingRequest 69
PINGresponse (VMCF) 136
pmap_getmaps() 205
pmap_getport() 206
pmap_rmtcall() 206
pmap_set() 207
pmap_unset() 208
port

port assignments 190
unspecified ports 89

port assignments 345
porting

remote procedure calls 192
socket applications 23, 25

portmap 190
Portmapper 190
procedure calls, Pascal

descriptions 53
handling external interrupts

RTcpExtRupt 74
RTcpVmcfRupt 74
TcpExtRupt 83
TcpVmcfRupt 101

Host lookup routines
GetHostNumber 62
GetHostResol 62
GetHostString 62

Index 371

procedure calls, Pascal (continued)
Host lookup routines (continued)

GetIdentity 63
IsLocalAddress 65
IsLocalHost 65

Monitor procedures
MonCommand 66
MonQuery 67

notifications
description 54
GetNextNote 63
Handle 64
Unhandle 107

Other routines
AddUserNote 60
GetSmsg 64
ReadXlateTable 73
SayCalRe 75
SayConSt 75
SayIntAd 76
SayIntNum 76
SayNotEn 76
SayPorTy 77
SayProTy 77

Raw IP interface
RawIpClose 70
RawIpOpen 71
RawIpReceive 72
RawIpSend 72

TCP communication procedures
TcpAbort 81
TcpClose 82
TcpFReceive, TcpReceive, and TcpWaitReceive 83
TcpFSend, TcpSend, and TcpWaitSend 86
TcpOpen and TcpWaitOpen 88
TcpOption 90
TcpStatus 100

TCP/UDP initialization procedures
BeginTcpIp 60
StartTcpNotice 78
TcpNameChange 88

TCP/UDP termination procedure, EndTcpIp 55
Timer routines

ClearTimer 60
CreateTimer 61
DestroyTimer 61
SetTimer 77

UDP communication procedures
Udp6Open 102
Udp6Send 102
UdpClose 103
UdpNReceive 104
UdpOpen 104
UdpReceive 105
UdpSend 106

Q
query_DPI_port() 252
QUEU 278
quick reference tables

SNMP DPI routines 244
socket calls 32

QUIT 277

R
Raw IP interface 58
raw sockets 4
RawIpClose (Pascal) 70
RawIpOpen (Pascal) 71
RAWIPpacketsDELIVERED (VMCF) 137
RawIpReceive (Pascal) 72
RawIpSend (Pascal) 72
RAWIPspaceAVAILABLE (VMCF) 137
RCPT TO 276
ReadXlateTable 73
RECEIVINGonly (Pascal) 42
REGISTER, SNMP DPI request 244
registerrpc() 208
related protocols 349
remote auditing extended operation 324
remote auditing extended operation response codes 328
remote authorization extended operation 320
remote authorization extended operation response codes
322
remote procedure calls (RPCs)

accessing system return messages 192
auth_destroy() 194
authnone_create() 194
authunix_create_default() 195
authunix_create() 194
callrpc() 195
clnt_broadcast() 196
clnt_call() 197
clnt_control() 198
clnt_create() 198
clnt_destroy() 199
clnt_freeres() 199
clnt_geterr() 200
clnt_pcreateerror() 200
clnt_perrno() 201
clnt_perror() 201
clnt_spcreateerror() 201
clnt_sperrno() 202
clnt_sperror() 202
clntraw_create() 203
clnttcp_create() 203
clntudp_create() 204
enum clnt_stat structure 191
enumerations 192
general information 187
get_myaddress() 205
getrpcport() 205
interface 187
library 26, 29
pmap_getmaps() 205
pmap_getport() 206
pmap_rmtcall() 206
pmap_set() 207
pmap_unset() 208
porting 192
Portmapper

contacting 190
target assistance 190

printing system return messages 192
registerrpc() 208
rpc_createerr 193
RPCGEN command 190

372 z/VM: 7.3 TCP/IP Programmer's Reference

remote procedure calls (RPCs) (continued)
svc_destroy() 209
svc_fds() 193
svc_freeargs() 210
svc_getargs() 210
svc_getcaller() 210
svc_getreq() 211
svc_register() 212
svc_run() 212
svc_sendreply() 213
svc_unregister() 213
svcerr_auth() 213
svcerr_decode() 214
svcerr_noproc() 214
svcerr_noprog() 215
svcerr_progvers() 215
svcerr_systemerr() 215
svcerr_weakauth() 216
svcraw_create() 216
svctcp_create() 216
svcudp_create() 217
xdr_accepted_reply() 217
xdr_array() 218
xdr_authunix_parms() 218
xdr_bool() 219
xdr_bytes() 219
xdr_callhdr() 220
xdr_callmsg() 220
xdr_double() 220
xdr_enum() 221
xdr_float() 222
xdr_inline() 222
xdr_int() 223
xdr_long() 223
xdr_opaque_auth() 224
xdr_opaque() 224
xdr_pmap() 224
xdr_pmaplist() 225
xdr_pointer() 225
xdr_reference() 226
xdr_rejected_reply() 226
xdr_replymsg() 227
xdr_short() 227
xdr_string() 228
xdr_u_int() 228
xdr_u_long() 228
xdr_u_short() 229
xdr_union() 229
xdr_vector() 230
xdr_void() 231
xdr_wrapstring() 231
xdrmem_create() 231
xdrrec_create() 232
xdrrec_endofrecord() 232
xdrrec_eof() 233
xdrrec_skiprecord() 233
xdrstdio_create() 233
xprt_register() 234
xprt_unregister() 234

requesting details for a secure connection 22
RESOURCESavailable (VMCF) 138
response examples, notation used in xxii
return codes

Pascal 337, 340

RPC sample programs
client 236
raw data stream 238
server 236

rpc_createerr 193
RPCGEN command 190
RSET 277

S
SayCalRe 75
SayConSt 75
SayIntAd 43, 44, 76
SayIntNum 76
SayNotEn 76
SayPorTy 77
SayProTy 77
secure connection

starting 21
secure connection considerations 21
SELECT (IUCV) 176
SELECTEX (IUCV) 176
SEND (IUCV) 178
SENDINGonly 42
SENDMSG (IUCV) 179
SENDTO (IUCV) 180
server

remote procedure calls 189, 190, 236, 239
sockets 36

SET, SNMP DPI request 243
SETSOCKOPT (IUCV) 181
SetTimer 77
setting up authorization for working with remote services
320
SHUTDOWN (IUCV) 182
SMSG command (VMCF) 64
SMTP exit routines 285, 303
SMTP interface

batch command files, format 283
batch examples

converting to batch format 283
querying delivery queues 284
sending mail 284

envelope, description of 281
path addresses 283
responses 282
SMTP commands

DATA 276
EHLO 274
EXPN 280
HELO 274
HELP 277
MAILFROM 275
NOOP 277
QUEU 278
QUIT 277
RCPT TO 276
RSET 277
TICK 281
VERB 281
VRFY 280

SMTP transactions 273
SMTPSEND EXEC 284
SNMP agent distributed program interface (DPI) 241, 252

Index 373

SNMP DPI
agents 241
compiling and linking 244
requests

GET 242
GET-NEXT 243
REGISTER 244
SET 243
TRAP 244

routines
DPIdebug() 245
fDPIparse() 245
mkDPIlist() 246
mkDPIregister() 246
mkDPIresponse() 247
mkDPIset() 248
mkDPItrap() 249
mkDPItrape() 249
pDPIpacket() 251
query_DPI_port() 252
Quick Reference 244

software requirements 244
subagents 241

SOCKET (IUCV) 183
socket calls

IUCV 159
socket record 44
sockets, C

address 5
address families 3
addressing

AF_INET domain 4, 5
AF_IUCV domain 8
AF_UNIX domain 7

AF_INET domain
addressing 5
client perspective 11
definition 4
server perspective 9
TCP client program example 35
TCP server program example 36
UDP client program example 38
UDP server program example 38

AF_INET6 domain
addressing 5

AF_IUCV domain
addressing 8
definition 4

AF_UNIX domain
addressing 7
definition 4

API 1
compiling and linking a sockets program

VM TCP/IP C sockets program 28
z/VM C sockets program 26

conversation, client/server
client perspective for AF_INET 11
server perspective for AF_INET 9
TCP socket session, typical 11
UDP socket session, typical 12

definition 2
environment variables 30
example programs

TCP client 35

sockets, C (continued)
example programs (continued)

TCP server 36
UDP client 38
UDP server 38

header files 18
incompatibilities

with Berkeley socket implementation 25
with OS/390 C sockets implementation 25
with VM TCP/IP C sockets implementation 23

internetworking overview 2
multithreading 19
network application example 14
POSIX signals 20
quick reference 32
running a sockets program

BFS, residing in 31
environment variables, using 30
minidisk or SFS directory, residing on 32
preparing for 29

transport protocols 2
types

datagram 4
guidelines for using 5
raw 4
stream 4

z/VM implementation, details of
header files 18
incompatibilities with Berkeley sockets 25
incompatibilities with OS/390 C sockets 25
incompatibilities with VM TCP/IP C sockets 23
miscellaneous implementation notes 22
multithreading 19
POSIX signals 20

software requirements
Pascal 41
sockets 1

STANDARD TCPXLBIN file, replacing 31
StartTcpNotice (Pascal) 78
stopping a secure connection 21
stream sockets 4
stubs 191
svc_destroy() 209
svc_fds() 193
svc_freeargs() 210
svc_getargs() 210
svc_getcaller() 210
svc_getreq() 211
svc_register() 212
svc_run() 212
svc_sendreply() 213
svc_unregister() 213
svcerr_auth() 213
svcerr_decode() 214
svcerr_noproc() 214
svcerr_noprog() 215
svcerr_progvers() 215
svcerr_systemerr() 215
svcerr_weakauth() 216
svcraw_create() 216
svctcp_create() 216
svcudp_create() 217
syntax diagrams, how to read xx
sys/socket.h header file 5

374 z/VM: 7.3 TCP/IP Programmer's Reference

system return codes 341

T
TAKESOCKET (IUCV) 184
TCP communication procedures (Pascal) 55
TCP port assignments 345
TCP socket session, typical 11
TCP/IP initialization and termination procedures (VMCF)

begin TCP/IP service 119
close a TCP connection 120
close a UDP port 127
determine whether an address is local 131
end TCP/IP service 119
instruct TCPIP to obey a file of commands 132
obtain current status of TCP connection 124
obtain status information from TCPIP 132
open a UDP port 128, 129
open TCP connection 121
receive raw IP packets of a given protocol 130
receive TCP data with FRECEIVEtcp function 120
receive TCP data with RECEIVEtcp function 123
receive UDP data 128
send an ICMP echo request 133
send raw IP packets 131
send TCP data 123
send UDP data 128, 129
specifiying the notifications to receive 119
tell TCPIP that your program will no longer use a
particular IP protocol 130
tell TCPIP that your program will use a particular IP
protocol 130

TCP/UDP initialization procedures (Pascal) 54
TCP/UDP termination procedure (Pascal) 55
TCP/UDP/IP API (Pascal)

connection information record 43
connection state 42
data structures 41
file specification record 53
handling external interrupts 55
notification record 45
notifications 54
socket record 44
software requirements 41
using procedure calls 53

TcpAbort (Pascal) 81
TcpClose (Pascal) 82
TcpExtRupt 83
TcpFReceive (Pascal) 83
TcpFSend (Pascal) 86
TCPIP ATCPPSRC file (Pascal) 41
TCPLOAD

EXEC 335
using 335

TcpNameChange 88
TcpOpen (Pascal) 52, 88
TcpOption (Pascal) 90
TcpReceive (Pascal) 83
TcpSend (Pascal) 86
TcpStatus (Pascal) 100
TcpVmcfRupt 101
TcpWaitOpen (Pascal) 52, 88
TcpWaitReceive 83
TcpWaitSend 86

Textlib (TXTLIB) Files
CLIB 335
CMSLIB 335
COMMTXT 335
GLOBAL 335
IBMLIB 335
PASCAL 335
RPCLIB 335
SCEELKED 335
TCPASCAL 335
TCPLANG 335

TICK 281
Timer routines 58
TLS/SSL server

determining availability 22
trademarks 360
transactions, SMTP 273
translation information file, specifying 31
TRAP, SNMP DPI request 244
TRYINGtoOPEN (Pascal) 42

U
UDP communication procedure 57, 102, 104
UDP port assignments 345
UDP socket session, typical 12
UdpClose (Pascal) 103
UDPdatagramDELIVERED (VMCF) 52, 53, 138
UDPdatagramSPACEavailable (VMCF) 139
UdpNReceive 104
UdpReceive (Pascal) 53, 105
UDPresourcesAVAILABLE (VMCF) 139
UdpSend (Pascal) 102, 106
Unhandle (Pascal) 107
UnNotifyIo 107
UnpackedBytes 43, 44
URGENTpending (VMCF) 139
user exit routines, SMTP 285, 303
using remote authorization and auditing 319

V
variables, environment 30
VERB 281
Virtual Machine Communication Facility (VMCF) Interface

CALLCODE notifications
ACTIVEprobe 134
BUFFERspaceAVAILABLE 134
CONNECTIONstate- CHANGED 135
DATAdelivered 136
DUMMYprobe 136
PINGresponse 136
RAWIPpacketsDELIVERED 137
RAWIPspaceAVAILABLE 137
RESOURCESavailable 138
UDPdatagramDELIVERED 138
UDPdatagramSPACEavailable 139
UDPresourcesAVAILABLE 139
URGENTpending 139

CALLCODE system queries
IShostLOCAL 131
MONITORcommand 132
MONITORquery 132

Index 375

Virtual Machine Communication Facility (VMCF) Interface (continued)
CALLCODE system queries (continued)

PINGreq 133
functions 115
general information

data structures 113, 122
use of VMCF interrupt header fields 114
use of VMCF parameter list fields 114

IP CALLCODE requests
CLOSErawip 130
OPENrawip 130
RECEIVErawip 130
SENDrawip 131

TCP CALLCODE requests
CLOSEtcp 120
FRECEIVEtcp 120
FSENDtcp 123
OPENtcp 121
OPTIONtcp 122
RECEIVEtcp 123
SENDtcp 123
STATUStcp 124

TCP/IP initialization and termination procedures
begin TCP/IP service 119
close a TCP connection 120
close a UDP port 127
determine whether an address is local 131
end TCP/IP service 119
instruct TCPIP to obey a file of commands 132
obtain current status of TCP connection 124
obtain status information from TCPIP 132
open a UDP port 128, 129
open TCP connection 121
receive raw IP packets of a given protocol 130
receive TCP data with FRECEIVEtcp function 120
receive TCP data with RECEIVEtcp function 123
receive UDP data 128
send an ICMP echo request 133
send raw IP packets 131
send TCP data 123
send UDP data 128, 129
specifiying the notifications to receive 119
tell TCPIP that your program will no longer use a
particular IP protocol 130
tell TCPIP that your program will use a particular IP
protocol 130

TCP/UDP/IP initialization and termination procedures
BEGINtcpIPservice 119
ENDtcpIPservice 119
HANDLEnotice 119

TCPIP communication CALLCODE notifications 117
TCPIP communication CALLCODE requests 115
UDP CALLCODE requests

CLOSEudp 127
NRECEIVEudp 128
OPENudp 128
SENDudp 128
V6OPENudp 129
V6SENDudp 129

when to use 113
VRFY 280

W
well-known port assignments

TCP 345
UDP 346

WRITE (IUCV) 185
WRITEV (IUCV) 185

X
X_ADDR environment variable 31
X_SITE environment variable 31
X_XLATE environment variable 31
xdr_accepted_reply() 217
xdr_array() 218
xdr_authunix_parms() 218
xdr_bool() 219
xdr_bytes() 219
xdr_callhdr() 220
xdr_callmsg() 220
xdr_double() 220
xdr_enum() 221
xdr_float() 222
xdr_inline() 222
xdr_int() 223
xdr_long() 223
xdr_opaque_auth() 224
xdr_opaque() 224
xdr_pmap() 224
xdr_pmaplist() 225
xdr_pointer() 225
xdr_reference() 226
xdr_rejected_reply() 226
xdr_replymsg() 227
xdr_short() 227
xdr_string() 228
xdr_u_int() 228
xdr_u_long() 228
xdr_u_short() 229
xdr_union() 229
xdr_vector() 230
xdr_void() 231
xdr_wrapstring() 231
xdrmem_create() 231
xdrrec_create() 232
xdrrec_endofrecord() 232
xdrrec_eof() 233
xdrrec_skiprecord() 233
xdrstdio_create() 233
xprt_register() 234
xprt_unregister() 234

376 z/VM: 7.3 TCP/IP Programmer's Reference

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6332-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Conventions and Terminology
	How the Term “internet” Is Used in This Document
	How Numbers Are Used in This Document

	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: TCP/IP Programmer's Reference
	SC24-6332-73, z/VM 7.3 (September 2023)
	SC24-6332-73, z/VM 7.3 (September 2022)
	SC24-6332-03, z/VM 7.2 (December 2021)
	SC24-6332-03, z/VM 7.2 (March 2021)
	SC24-6332-03, z/VM 7.2 (September 2020)
	SC24-6332-02, z/VM 7.1 (May 2020)
	SC24-6332-01, z/VM 7.1 (December 2018)
	SC24-6332-00, z/VM 7.1 (September 2018)

	Chapter 1. z/VM C Socket Application Programming Interface
	TCP/IP Network Communication
	Transport Protocols

	What is a Socket?
	Address Families
	Socket Types
	Stream Sockets
	Datagram Sockets
	Raw Sockets
	Guidelines for Using Socket Types

	Domain-specific Socket Addresses
	Address Families
	Socket Address
	Addressing within the AF_INET and AF_INET6 Domains
	Internet Addresses
	Ports
	Network byte order and host byte order
	AF_INET addresses
	AF_INET6 addresses

	Addressing within the AF_UNIX Domain
	Addressing within the AF_IUCV Domain

	Client/Server Conversation
	Server Perspective for AF_INET
	socket()
	bind()
	listen()
	accept()
	select()

	Client Perspective for AF_INET
	Typical TCP Socket Session
	Typical UDP Socket Session
	Locating the Server's Port

	Network Application Example
	z/VM C Socket Implementation
	Header Files
	_OE_SOCKETS Preprocessor Symbol
	Function Prototypes
	Suppressing Function Prototypes

	Multithreading
	Multithreading versus Nonblocking Sockets
	Conflicts Between Socket Calls

	POSIX Signals and Thread Cancellation
	Sockets and Their Relationship to Other POSIX Functions
	Secure Connection Considerations
	Starting a Secure Connection
	Stopping a Secure Connection
	Requesting Details for a Secure Connection
	Requesting Details from a Partner Certificate
	Determining if a TLS/SSL Server is Available

	Miscellaneous Implementation Notes
	Incompatibilities with the VM TCP/IP C Sockets Library
	Incompatibilities with z/OS and OS/390 C Sockets
	Incompatibilities with the Berkeley Socket Implementation

	Compiling and Linking a Sockets Program
	Compiling and Linking a z/VM C Sockets Program
	Compiling and Linking a TCP/IP C Sockets Program
	Converting Your Program to Use z/VM C Sockets
	Using the z/VM C Sockets Library with Minimal Changes to Program Source
	Recompiling with the TCP/IP C Sockets Library

	Running a Sockets Program
	Preparing to Run a Sockets Program
	Using Environment Variables
	Running a Program Residing in the BFS
	Running a Program Residing on an Accessed Minidisk or SFS Directory

	C Sockets Quick Reference
	TCP Client Program
	TCP Server Program
	UDP Client Program
	UDP Server Program

	Chapter 2. TCP/UDP/IP API (Pascal Language)
	Software Requirements
	Data Structures
	Connection State
	Connection Information Record
	Socket Record
	Notification Record
	File Specification Record

	Using Procedure Calls
	Notifications
	TCP/UDP Initialization Procedures
	TCP/UDP Termination Procedure
	Handling External Interrupts
	TCP Communication Procedures
	Ping Interface
	Monitor Procedures
	UDP Communication Procedures
	Raw IP Interface
	Timer Routines
	Host Lookup Routines
	Other Routines

	Procedure Calls
	AddUserNote
	BeginTcpIp
	ClearTimer
	CreateTimer
	DestroyTimer
	EndTcpIp
	GetHostNumber
	GetHostResol
	GetHostString
	GetIdentity
	GetNextNote
	GetSmsg
	Handle
	IsLocalAddress
	IsLocalHost
	MonCommand
	MonQuery
	NotifyIo
	PingRequest
	QueryTLS
	RawIpClose
	RawIpOpen
	RawIpReceive
	RawIpSend
	ReadXlateTable
	RTcpExtRupt
	RTcpVmcfRupt
	SayCalRe
	SaySslRe
	SayConSt
	SayIntAd
	SayIntNum
	SayNotEn
	SayPorTy
	SayProTy
	SetTimer
	StartTcpNotice
	Tcp6Open and Tcp6WaitOpen
	Tcp6Status
	TcpAbort
	TcpClose
	TcpExtRupt
	TcpFReceive, TcpReceive, and TcpWaitReceive
	TcpFSend, TcpSend, and TcpWaitSend
	TcpNameChange
	TcpOpen and TcpWaitOpen
	TcpOption
	TcpSCertData
	TcpSClient
	TcpSClose
	TcpSServer
	TcpSStatus
	TcpStatus
	TcpVmcfRupt
	Udp6Open
	Udp6Send
	UdpClose
	UdpNReceive
	UdpOpen
	UdpReceive
	UdpSend
	Unhandle
	UnNotifyIo

	Sample Pascal Program

	Chapter 3. Virtual Machine Communication Facility Interface
	General Information
	Data Structures
	VMCF Parameter List Fields
	VMCF Interrupt Header Fields

	VMCF Functions
	VMCF TCPIP Communication CALLCODE Requests
	VMCF TCPIP Communication CALLCODE Notifications

	TCP/UDP/IP Initialization and Termination Procedures
	BEGINtcpIPservice
	ENDtcpIPservice
	HANDLEnotice

	TCP CALLCODE Requests
	CLOSEtcp
	FRECEIVEtcp
	OPENtcp
	OPTIONtcp
	RECEIVEtcp
	SENDtcp and FSENDtcp
	STATUStcp
	TLSSCERTDATAREQtcp
	TLSSCLIENTtcp
	TLSSCLOSEtcp
	TLSSSERVERtcp
	TLSSSTATUStcp
	V6OPENtcp
	V6STATUStcp

	UDP CALLCODE Requests
	CLOSEudp
	NRECEIVEudp
	OPENudp
	SENDudp
	V6OPENudp
	V6SENDudp

	IP CALLCODE Requests
	CLOSErawip
	OPENrawip
	RECEIVErawip
	SENDrawip

	CALLCODE System Queries
	IShostLOCAL
	MONITORcommand
	MONITORquery
	PINGreq
	TLSQuery

	CALLCODE Notifications
	ACTIVEprobe
	BUFFERspaceAVAILABLE
	CERTdataCOMPLETE
	CLEARtextRESUMED
	CONNECTIONstateCHANGED
	DATAdelivered
	DUMMYprobe
	PINGresponse
	QUERYtlsCOMPLETE
	RAWIPpacketsDELIVERED
	RAWIPspaceAVAILABLE
	READYforHANDSHAKE
	RESOURCESavailable
	SECUREhandshakeCOMPLETE
	UDPdatagramDELIVERED
	UDPdatagramSPACEavailable
	UDPresourcesAVAILABLE
	URGENTpending

	Chapter 4. Inter-User Communication Vehicle Sockets
	Prerequisite Knowledge
	Available Functions
	Socket Programming with IUCV
	Preparing to use the IUCV Socket API
	Establishing an IUCV connection to TCP/IP
	Initializing the IUCV Connection

	Severing the IUCV Connection
	Sever by the Application
	Clean-Up of Stream Sockets

	Sever by TCP/IP

	Issuing Socket Calls
	Overlapping Socket Requests
	TCP/IP Response to an IUCV Request
	Encrypting Data on an IUCV Socket
	Cancelling a Socket Request

	IUCV Socket Call Syntax
	IUCV Socket Calls
	ACCEPT
	BIND
	CANCEL and CANCEL2
	CLOSE
	CONNECT
	FCNTL
	GETCLIENTID
	GETHOSTID
	GETHOSTNAME
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	IOCTL
	LISTEN
	MAXDESC
	READ, READV
	RECV, RECVFROM, RECVMSG
	SELECT, SELECTEX
	Descriptor Sets
	DESCRIPTOR_SET, FD_CLR, FD_ISSET Calls

	SEND
	SENDMSG
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	WRITE, WRITEV
	LASTERRNO

	Chapter 5. Remote Procedure Calls
	The RPC Interface
	Portmapper
	Contacting Portmapper
	Target Assistance

	RPCGEN Command
	enum clnt_stat Structure
	Porting
	Accessing System Return Messages
	Printing System Return Messages
	Enumerations

	Compiling, Linking, and Running an RPC Program
	RPC Global Variables
	rpc_createerr
	svc_fds
	svc_fdset

	Remote Procedure Calls and External Data Representation
	auth_destroy()
	authnone_create()
	authunix_create()
	authunix_create_default()
	callrpc()
	clnt_broadcast()
	clnt_call()
	clnt_control()
	clnt_create()
	clnt_destroy()
	clnt_freeres()
	clnt_geterr()
	clnt_pcreateerror()
	clnt_perrno()
	clnt_perror()
	clnt_spcreateerror()
	clnt_sperrno()
	clnt_sperror()
	clntraw_create()
	clnttcp_create()
	clntudp_create()
	get_myaddress()
	getrpcport()
	pmap_getmaps()
	pmap_getport()
	pmap_rmtcall()
	pmap_set()
	pmap_unset()
	registerrpc()
	svc_destroy()
	svc_freeargs()
	svc_getargs()
	svc_getcaller()
	svc_getreq()
	svc_getreqset()
	svc_register()
	svc_run()
	svc_sendreply()
	svc_unregister()
	svcerr_auth()
	svcerr_decode()
	svcerr_noproc()
	svcerr_noprog()
	svcerr_progvers()
	svcerr_systemerr()
	svcerr_weakauth()
	svcraw_create()
	svctcp_create()
	svcudp_create()
	xdr_accepted_reply()
	xdr_array()
	xdr_authunix_parms()
	xdr_bool()
	xdr_bytes()
	xdr_callhdr()
	xdr_callmsg()
	xdr_double()
	xdr_enum()
	xdr_float()
	xdr_inline()
	xdr_int()
	xdr_long()
	xdr_opaque()
	xdr_opaque_auth()
	xdr_pmap()
	xdr_pmaplist()
	xdr_pointer()
	xdr_reference()
	xdr_rejected_reply()
	xdr_replymsg()
	xdr_short()
	xdr_string()
	xdr_u_int()
	xdr_u_long()
	xdr_u_short()
	xdr_union()
	xdr_vector()
	xdr_void()
	xdr_wrapstring()
	xdrmem_create()
	xdrrec_create()
	xdrrec_endofrecord()
	xdrrec_eof()
	xdrrec_skiprecord()
	xdrstdio_create()
	xprt_register()
	xprt_unregister()

	Sample RPC Programs
	Running the Geneserv server and Genesend client
	Running the Rawex program
	RPC Genesend Client
	RPC Geneserv Server
	RPC Rawex Raw Data Stream

	Chapter 6. SNMP Agent Distributed Programming Interface
	SNMP Agents and Subagents
	Processing DPI Requests
	Processing a GET Request
	Processing a SET Request
	Processing a GET_NEXT Request
	Processing a REGISTER Request
	Processing a TRAP Request

	Compiling and Linking
	SNMP DPI Reference
	DPI Library Routines
	DPIdebug()
	fDPIparse()
	mkDPIlist()
	mkDPIregister()
	mkDPIresponse()
	mkDPIset()
	mkDPItrap()
	mkDPItrape()
	Example of an Extended Trap
	pDPIpacket()
	query_DPI_port()

	Sample SNMP DPI Client Program
	The DPISAMPLE Program (Sample DPI Subagent)
	DPISAMPLE TABLE

	Client Sample Program
	Compiling and Linking the DPISAMPLE.C Source Code

	Chapter 7. SMTP Virtual Machine Interfaces
	SMTP Transactions
	SMTP Commands
	HELO
	EHLO
	MAIL FROM
	RCPT TO
	DATA
	RSET
	QUIT
	NOOP
	HELP
	QUEU
	Mail Delivery Queues
	Mail Resolution Queues

	VRFY
	EXPN
	VERB
	TICK

	SMTP Command Example
	SMTP Command Responses
	Path Address Modifications
	Batch SMTP Command Files
	Batch SMTP Examples
	Sending Mail to a TCP Network Recipient
	Querying SMTP Delivery Queues

	SMTP Exit Routines
	Client Verification Exit
	Built-in Client Verification Function
	Success
	Failure
	Unknown

	Client Verification Exit Parameter Lists
	REXX Parameter List
	Inputs
	Outputs

	Assembler Parameter List
	Parameter Descriptions
	Return Codes from the Client Verification Exit Routine
	Client Verification Sample Exits

	Using the Mail Forwarding Exit
	Mail Forwarding Exit Parameter Lists
	REXX Parameter List
	Inputs
	Outputs

	Assembler Parameter List
	Parameter Descriptions

	Return Codes from the Mail Forwarding Exit Routine
	Mail Forwarding Sample Exits

	Using the SMTP Command Exit
	SMTP Command Exit Parameter Lists
	REXX Parameter List
	Inputs
	Outputs

	Assembler Parameter List
	Parameter Descriptions

	Return Codes from the SMTP Command Exit Routine
	SMTP Command Sample Exits

	Chapter 8. Telnet Exits
	Telnet Session Connection Exit
	Telnet Exit Parameter List
	Sample Exit

	Telnet Printer Management Exit
	Telnet Printer Management Exit Parameter List
	Sample Exit

	Chapter 9. FTP Server Exit
	The FTP Server Exit
	Sample Exit

	Audit Processing
	Audit Processing Parameter List
	Audit Processing Parameter Descriptions
	Return Codes from Audit Processing

	General Command Processing
	General Command Processing Parameter List
	General Command Processing Parameter Descriptions
	Example

	Return Codes from General Command Processing

	Change Directory Processing
	Change Directory Processing Parameter List
	Change Directory Processing Parameter Descriptions
	Return Codes from the FTPEXIT Routine for CD Command Processing

	Chapter 10. Remote authorization and auditing through LDAP
	Using remote authorization and auditing
	Setting up authorization for working with remote services
	Remote authorization extended operation
	Remote authorization extended operation response codes
	Remote authorization audit controls

	Remote auditing extended operation
	Remote auditing extended operation response codes
	Remote audit controls
	SMF Record Type 83 subtype 4 records

	Chapter 11. Building an LDAP Server Plug-in
	Steps for writing an LDAP plug-in
	Note about LDAP support on z/VM

	Appendix A. TCPLOAD EXEC
	Using TCPLOAD

	Appendix B. Pascal Return Codes
	Explanatory Notes

	Appendix C. C API System Return Codes
	Appendix D. Well-Known Port Assignments
	TCP Well-Known Port Assignments
	UDP Well-Known Port Assignments

	Appendix E. Related Protocol Specifications
	Appendix F. Abbreviations and Acronyms
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Other TCP/IP Related Publications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

