
z/VM
7.3

Saved Segments Planning and
Administration

IBM

SC24-6322-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
93.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-07
© Copyright International Business Machines Corporation 1991, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About This Document..xi
Intended Audience..xi
Where to Find More Information...xi

Links to Other Documents and Websites.. xi

How to Send Your Comments to IBM..xiii

Summary of Changes for z/VM: Saved Segments Planning and Administration.......xv
SC24-6322-73, z/VM 7.3 (September 2022)..xv
SC24-6322-01, z/VM 7.2 (September 2020)..xv
SC24-6322-00, z/VM 7.1 (September 2018)..xv

Chapter 1. Planning and Defining CP Saved Segments.. 1
Saved Segment Overview.. 1

Why Use Saved Segments?.. 1
Using Saved Segments—An Overview..2
Types of Saved Segments.. 3

Planning Considerations.. 7
Planning for Saved Segments Based on Virtual Machine Size.. 8
CMS Considerations... 11
System Performance Considerations.. 11

Creating Saved Segments..12
Using the DEFSEG Command...12
Restrictions for Using the SAMERANGE Operand... 14
Using the SAVESEG Command...15
Using SAVESEG with Your Installation Procedures...15
SAVESEG Command Functional Description... 16
Keeping Backup Copies of Saved Segments... 18
Purging Saved Segments from the System..19
Displaying Information about Saved Segments.. 19
Displaying Which Users Have Loaded a Saved Segment.. 21
Installing Applications in Saved Segments... 22
System Data Files...31

Chapter 2. Planning and Defining CMS Logical Saved Segments............................ 39
Overview of Physical and Logical Saved Segments.. 39

Using Logical Saved Segments.. 40
Saved Segment Design Considerations... 40

Creating Physical and Logical Saved Segments..42
Types of Program Objects Allowed in a Logical Saved Segment.. 42
Defining the Contents of a Physical Saved Segment...43
Defining the Contents of a Logical Saved Segment...44
Using the SEGGEN Command to Build the Saved Segments..52
System Segment Identification File...52

Building Physical and Logical Saved Segments—An Example..53

 iii

Step 1. Create the Code or Data.. 53
Step 2. Define the Physical Saved Segment Contents.. 53
Step 3. Define the Logical Saved Segment Contents.. 53
Step 4. Enter the SEGGEN Command..54
Step 5. Copy the SYSTEM SEGID File to the System Disk and Resave CMS.......................................54

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments............. 57
Overview of VMSES/E Saved Segment Support..57

Product-Supplied Saved Segment Information.. 57
Saved Segment Product Parameter File..58
System Saved Segment Build List..58
Saved Segment Data File... 58
VMFSGMAP EXEC... 59
PUT2PROD EXEC.. 59

Resource Requirements for Building and Managing Saved Segments.. 59
Viewing the Segment Map... 60

Viewing a Segment Space.. 61
Viewing a Saved Segment Definition...61
Changing, Adding, and Deleting Saved Segment Definitions... 62

Changing the Range of a DCSS...63
Changing the Range of a Member Saved Segment..63
Renaming a DCSS or Member Saved Segment..64
Changing the Name of a Segment Space...65
Changing Multiple Members of a Segment Space...65
Adding a DCSS or Member Saved Segment...66
Merging Existing Saved Segments into the SEGDATA File.. 67
Copying a DCSS.. 67
Copying or Moving a Member Saved Segment into Another Segment Space.................................... 68
Copying a Segment Space..69
Converting a DCSS to a Member of a Segment Space...69
Converting a Member of a Segment Space to a DCSS...70
Deleting a DCSS..70
Deleting a Member Saved Segment...71
Deleting a Segment Space... 72
Retrieving a Deleted DCSS or Member Saved Segment..72
Changing and Adding Definitions for Physical and Logical Saved Segments..................................... 73
Adding Saved Segment Definitions for a VMSES/E-Format Product.. 74
Adding Saved Segment Definitions for a Product Not in VMSES/E Format.. 75

Building or Deleting (Purging) Saved Segments... 76
Displaying the Saved Segment Build Status..76
Using the PUT2PROD EXEC to Build or Delete Saved Segments..77
Checking the Saved Segment Build Messages.. 77

Restoring Saved Segments That Have Been Backed Up on Disk by the CP DCSSBKUP Utility............... 78

Appendix A. Defining CP Saved Segments—Examples...81
Defining a Saved Segment with Both Shared and Exclusive Page Ranges.. 81
Defining Overlaid DCSSs.. 82
Defining a Segment Space...82
Defining Overlaid Segment Spaces... 83
Adding a Member to an Existing Segment Space... 84
Replacing an Existing Member of a Segment Space...84

How System Data Files are Affected... 85
Setting Up Your Storage Layout...88

Notices..93
Programming Interface Information... 94
Trademarks.. 94

iv

Terms and Conditions for Product Documentation...94
IBM Online Privacy Statement.. 95

Bibliography..97
Where to Get z/VM Information.. 97
z/VM Base Library.. 97
z/VM Facilities and Features..98
Prerequisite Products.. 100
Related Products... 100

Index.. 103

 v

vi

Figures

1. Sharing Saved Segments...2

2. Saved Segments.. 4

3. Member Saved Segments..6

4. Storage Configuration for a CMS Virtual Machine Whose Size Is Greater than 21 MB............................. 10

5. Storage Configuration for a CMS Virtual Machine Whose Size Is Less than 21 MB...................................11

6. Using a Segment Space to Store Applications... 23

7. Using Segment Spaces to Overlay Applications...26

8. Installing SQL with Overlays... 27

9. DCSSs as Overlays...28

10. Segment Spaces as Overlays..28

11. Mutually Exclusive Segment Spaces as Overlays.. 30

12. Example of the VMFSGMAP EXEC Segment Map Panel...60

13. Example of the VMFSGMAP EXEC Segment Map Panel, Continued..61

14. Example of the VMFSGMAP EXEC Change Segment Definition Panel...62

15. Example of the VMFVIEW EXEC Display Showing Saved Segments to Be Built..................................... 77

16. Example of a $PPF Override File for Restoring Saved Segments Backed Up by the CP DCSSBKUP
Utility.. 79

17. Initial Setup of a Segment Space... 85

18. New Version of a Segment Space (DEFSEGs Complete)..86

19. Replacing One Member of an Overlay—Initial Setup... 86

20. Replacing One Member of an Overlay (DEFSEGs Complete)...87

21. Replacing a Shared Member—Initial Setup.. 87

22. Replacing a Shared Member (DEFSEGs Complete)... 88

 vii

23. A Typical Saved Segment Environment—Example 1..89

24. A Typical Saved Segment Environment—Example 2 (1 of 2)... 90

25. A Typical Saved Segment Environment—Example 2 (2 of 2)... 91

viii

Tables

1. Defining a DCSS... 31

2. Defining a Member.. 31

3. Defining a Segment Space.. 31

4. System Data File Attributes.. 35

5. Location for Loading Saved Segments..41

 ix

x

About This Document

This document provides information about planning and administering saved segments on an IBM® z/VM®

system. It describes tasks associated with planning for CP saved segments, CMS saved segments, and
building saved segments using VMSES/E.

Some of this information is based on the experiences of IBM customers. The recommendations are meant
to help installations run their z/VM systems more efficiently.

Intended Audience
This information is intended for anyone responsible for planning, installing, and updating a z/VM system.

You should have a general understanding of data processing and teleprocessing techniques, and you
should have thought about:

• What z/VM functions your site requires
• Which guest operating systems you will be running
• How many users you are going to have and the type of environment under which they will be running

their applications

Where to Find More Information
For more information about z/VM functions, see the documents listed in the “Bibliography” on page 97.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1991, 2022 xi

xii z/VM: 7.3 Saved Segments Planning and Administration

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1991, 2022 xiii

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xiv z/VM: 7.3 Saved Segments Planning and Administration

Summary of Changes for z/VM: Saved Segments Planning
and Administration

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6322-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6322-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

Updates reflect the removal of KANJI language files from base z/VM components. The only currently
supported languages are American English and uppercase English.

SC24-6322-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1991, 2022 xv

xvi z/VM: 7.3 Saved Segments Planning and Administration

Chapter 1. Planning and Defining CP Saved Segments

This chapter tells you what a saved segment is and how to:

• Plan for saved segments
• Create saved segments and where to save them
• Load licensed programs into saved segments
• Use a saved segment

Page ranges shown for program products are approximate. Use the actual number of pages required by
the release, modification, and service level you wish to run.

Note: The VMSES/E component provides functions for managing your saved segments. Saved segments
are defined using the VMFSGMAP EXEC and built using the PUT2PROD EXEC, which calls the VMFBLD
EXEC. See Chapter 3, “Using VMSES/E to Define, Build, and Manage Saved Segments,” on page 57.

• To use the VMSES/E functions, you must understand the principles of defining saved segments in CP,
which are discussed in the following sections.

• VMSES/E does not support saved segments that contain pages above 2047 MB.

Saved Segment Overview
A segment (also called an architected segment) is a 1 MB portion of real storage defined by the hardware
architecture.

A saved segment is a range of pages of virtual storage that you can define to hold data or reentrant code
(programs).

Why Use Saved Segments?
Defining frequently used data and code (such as licensed programs) as saved segments provides several
advantages:

• Because several users can access the same physical storage, real storage use is minimized.
• Using saved segments decreases the I/O rate and DASD paging space requirements, thereby improving

virtual machine performance.
• Saved segments attached to a virtual machine can reside above its defined virtual storage. This allows

the virtual machine to use its defined storage for other purposes.

Saved segments allow code or data in an area of virtual storage to be saved and assigned a name. A saved
segment can then be dynamically attached to, and detached from, a virtual machine.

Programs residing within the page ranges of a saved segment that are reenterable can be shared by
concurrently operating virtual machines. This allows you to place code that is required only some of the
time in a saved segment and load it into a virtual machine when needed.

Note that a saved segment differs from a named saved system (NSS) in that a DIAGNOSE code X'64' loads
it rather than an IPL.

Figure 1 on page 2 shows how different virtual machines can access the same saved segment in z/VM.

Planning and Defining CP Saved Segments

© Copyright IBM Corp. 1991, 2022 1

 +----------+
 |xxxxxxxxxx|
 |xxxxxxxxxx|
 +----------+.+----------+
 | appl─B |. | reserved |
 +----------+ . +----------+
 saved . |xxxxxxxxxx|
 segment . |xxxxxxxxxx|
 . |xxxxxxxxxx|
 . |xxxxxxxxxx|
 . |xxxxxxxxxx|
 16MB <-|-------------|-------------------------------------|xxxxxxxxxx|->
 +----------+ +----------+ . +----------+
 | reserved | | appl─A |.| reserved |
 +----------+ .+----------+. . +----------+
 |xxxxxxxxxx| . saved +----------+ |xxxxxxxxxx| | | | |
 |xxxxxxxxxx| . segment |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| . |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| +----------+ |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx|
 |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx| |xxxxxxxxxx|
 +----------+ +----------+ +----------+ +----------+
 | CMS | | CMS | | CMS | | CMS |
 | | | | | | | |
 +----------+--+----------+------------+----------+--+----------+
 | |
 | |
 | CP |
 | |
 +--+
 | |
 | Processor |
 | |
 | |
 | |
 +--+

Figure 1. Sharing Saved Segments

Application B operates from a saved segment residing above the 16 MB line so it executes in 31-bit
addressing mode. Also, note that the virtual machine with greater than 16 MB of storage has both
application A and B attached, causing two areas of its address space to be reserved.

Using Saved Segments—An Overview
The following summarizes what you need to do to access code or data from within a saved segment:

1. Create the code or data that you want to define as a saved segment.
2. Define the saved segment:

• If you are using VMSES/E to manage your saved segments, see “Changing, Adding, and Deleting
Saved Segment Definitions” on page 62.

• If you are not using VMSES/E:

a. Use the CP DEFSEG command. The DEFSEG command creates a skeleton (class S) system data
file (SDF) for the saved segment you specify. The saved segment cannot be accessed until you
enter a corresponding SAVESEG command.

b. Load the code or data to be saved into the location indicated by the ranges you specify on the
DEFSEG command.

c. Use the CP SAVESEG command to save the saved segment. The SAVESEG command writes the
contents of the saved segment to spool space on DASD and changes the skeleton file to an active
(class A or R) file, which can then be accessed by a virtual machine.

For more details on creating saved segments, see “Planning Considerations” on page 7.
3. Load the saved segment into a virtual machine using one of the following methods:

Planning and Defining CP Saved Segments

2 z/VM: 7.3 Saved Segments Planning and Administration

• Use DIAGNOSE code X'64'.

If you load a segment with DIAGNOSE code X'64', you must purge it with DIAGNOSE code X'64'.

DIAGNOSE X'64' provides 64-bit subcodes for manipulating DCSSs that contain page addresses
above 2047 MB.

For more information on using DIAGNOSE code X'64', see z/VM: CP Programming Services.
• Use the CMS SEGMENT LOAD command or macro.

If a saved segment is to reside within a virtual machine's address space, you should consider using
the SEGMENT RESERVE command to reserve space before you enter the SEGMENT LOAD command.

The SEGMENT command and macro provide CMS interfaces to DIAGNOSE code X'64'. For more
information on using the SEGMENT command, see z/VM: CMS Commands and Utilities Reference. For
more information on using the SEGMENT macro, see z/VM: CMS Macros and Functions Reference.

Note: CMS does not support saved segments that include pages above 2047 MB. To load a saved
segment that contains pages above 2047 MB, you must use DIAGNOSE code X'64'.

An application programmer generally:

• Creates the code or data that resides in a saved segment
• Provides code in the form of an installation exec that loads the data to be saved into the page ranges

indicated on the DEFSEG command
• Provides code in the form of an exec or a CMS module that invokes either SEGMENT LOAD or DIAGNOSE

code X'64'.

A system programmer generally defines saved segments from a class E virtual machine. DEFSEG and
SAVESEG are class E CP commands; therefore, to define and save a saved segment, you need class E
command privileges.

Types of Saved Segments
There are three types of saved segments: discontiguous saved segments, segment spaces, and member
saved segments.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 3

Figure 2. Saved Segments

Discontiguous saved segment (DCSS)
A DCSS occupies one or more architected segments. It is accessed by name and can be embedded
above the virtual machine's defined storage size. Although individual address ranges are specified on
page boundaries anywhere within an architected segment, a DCSS begins and ends on a MB boundary.
Figure 2 on page 4 shows four DCSSs defined in the 5 MB to 9 MB range of architected segments.
Each DCSS contains an application (represented by PPA, PPB, PPC, and PPD). By application, we
mean a licensed program or other shared code or data.

Planning and Defining CP Saved Segments

4 z/VM: 7.3 Saved Segments Planning and Administration

Segment space
A segment space is a special type of DCSS that is composed of up to 64 member saved segments
referred to by a single name. A segment space occupies one or more architected segments. Although
individual address ranges are specified on page boundaries anywhere within an architected segment,
a segment space begins and ends on a MB boundary. A user with access to a segment space has
access to all its members.

Member saved segment
A member saved segment is a special type of DCSS that belongs to up to 64 segment spaces. A
member saved segment begins and ends on a page boundary and is accessed either by its own name
or by a segment space name. When a virtual machine loads any member of a segment space, the
virtual machine has access to all members of the space. However, the virtual machine should load the
other members before trying to use them. Figure 3 on page 6 shows a segment space defined in
the 5 MB to 8 MB range of architected segments. This segment space contains several member saved
segments, which are used to hold applications.

Notes:

1. The terms discontiguous saved segment and DCSS generally refer to saved segments that are not
segment spaces or member saved segments.

2. A segment space or member saved segment can include pages up to 2047 MB. A DCSS (that is, a
saved segment that is not a segment space or a member saved segment) can include pages over 2047
MB.

3. A physical saved segment is a DCSS or member saved segment in which CMS logical saved segments
may be defined. For more information, see Chapter 2, “Planning and Defining CMS Logical Saved
Segments,” on page 39. (CMS logical saved segments cannot be defined in a DCSS that contains
pages above 2047 MB.)

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 5

Figure 3. Member Saved Segments

Defining Saved Segments
Use the CP DEFSEG command to define a saved segment and thereby set aside storage for applications.
By omitting the SPACE operand on the DEFSEG command, you define a DCSS. A DCSS is at least 1 MB
in size. The address range for an application within a DCSS begins and ends on a page boundary, but the
DCSS itself begins and ends on a MB boundary. Only one application can reside in each DCSS.

By including the SPACE operand on the DEFSEG command, you define a member of a segment space.
Like a DCSS, the address range for an application within a segment space (that is, in a member saved
segment) begins and ends on page boundaries, but the segment space itself begins and ends on a MB
boundary. A segment space is at least 1 MB in size.

A segment space differs from a DCSS in the following ways:

• Segment spaces allow different, nonoverlapping applications to occupy the same architected segment.
• A segment space is composed of member saved segments (also called members). A member is a

licensed program or application, or a component thereof, that you run in a segment space. A member
begins and ends on a page boundary, and is able to span a MB boundary. A member can belong to more
than one segment space.

• A segment space is created dynamically when you define member saved segments.

Planning and Defining CP Saved Segments

6 z/VM: 7.3 Saved Segments Planning and Administration

A segment space allows you to pack licensed programs into the same architected segment. Segment
packing reclaims the address ranges that are unused within DCSSs and makes more licensed programs
available to virtual machines. However, there is some CP overhead involved when segments are packed. If
the programs are to be used by ESA and XA virtual machines, which can address over 2047 MB of virtual
storage (XC virtual machines can address up to 2047 MB), you might prefer to avoid the overhead and
complexity of segment packing by installing the programs in DCSSs.

When packing DCSSs (members) into a segment space, you should check the CP Directory entry MAINT to
ensure that any NAMESAVE control statements for DCSS names are changed to the segment space name.
For more information on the NAMESAVE control statement, see z/VM: CP Planning and Administration.

Shared and Exclusive Segments
You can specify that a program or application be placed in a shared segment, an exclusive segment, or
a segment having both shared and exclusive areas. However, a saved segment having both shared and
exclusive areas cannot have both areas within the same 1 MB architected segment. Each 1 MB architected
segment must be defined entirely as shared or entirely as exclusive. For an example of defining a saved
segment that has both shared and exclusive areas, see “Defining a Saved Segment with Both Shared and
Exclusive Page Ranges” on page 81.

When you define a program in a shared saved segment, a virtual machine accessing it receives a shared
copy of the program. When you define a program in an exclusive saved segment, a virtual machine
accessing it receives its own copy of the program.

Planning Considerations
In planning for saved segments, it is important that you consider the following. These planning tips apply
to both saved segments and the applications you install in saved segments. By an application, we mean a
licensed program or other shared code or data.

1. Know your applications and their requirements. Take the following into account:

• Make sure you are aware of the prerequisites and corequisites of the applications you will be
installing. One program may require the use of others. You should make a list of all the applications
your installation uses and any dependencies they have on other products. This information can
be found in the application's installation manual or in the Memo to Users that is shipped on the
installation tape.

• Know which applications are not required to run together. You may be able to overlay these products
by having them run in separate saved segments defined in the same address range. For more
information, see “Overlaying Your Applications” on page 25.

• Know how many pages of storage each saved segment requires.
• Know what architecture the application exploits (or tolerates):

– z/Architecture® exploitation

The application uses 64-bit addressing and can run above the 2 GB line. See note “1.b” on page
8.

– ESA/390 exploitation

The application uses 31-bit addressing and can run above or below the 16 MB line. See note “1.a”
on page 8.

– ESA/390 toleration

The application can run in a virtual machine without taking advantage of 31-bit addressing. This
type of application runs under the 16 MB line, but it can call programs that reside above the 16 MB
line. See note “1.a” on page 8.

– System/370

The application was written to run in a 370-mode (System/370 architecture) virtual machine,
which implies that it runs under the 16 MB line. See note “1.c” on page 8.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 7

Notes:

a. ESA and XA virtual machines are functionally equivalent, and process according to ESA/390
(31-bit) architecture. The XA mode designation is supported for compatibility, because some CMS
applications may require CMS to be running in an XA virtual machine.

b. A guest operating system in an ESA virtual machine might have the capability to switch the virtual
machine from ESA/390 mode to z/Architecture mode. A z/Architecture mode virtual machine
supports 64-bit addressing and addressable storage beyond 2 GB.

c. 370-mode virtual machines are no longer supported. However, most CMS applications once
restricted to running in a 370 virtual machine can now run in an XA or XC mode virtual machine
if you issue the CP SET 370ACCOM ON command or the CMS SET CMS370AC ON command. In
addition, modules generated with the 370 option of the GENMOD command can be executed
in an XA or XC virtual machine by issuing the CMS SET GEN370 OFF command. See the z/VM:
CP Commands and Utilities Reference for information on the CP SET 370ACCOM command. See
the z/VM: CP Programming Services for more information on how to run your 370-only CMS
applications in an XA or XC virtual machine. See z/VM: CMS Commands and Utilities Reference for
information on the CMS SET GEN370 command.

• Consider the type of storage this program requires: exclusive-read or exclusive-write storage cannot
be placed in the same segment as shared-read or shared-write storage. When a program requires 3
pages of exclusive-write storage and 8 pages of shared-read storage, the program will require parts
of 2 segments.

• Determine whether the program has storage location dependencies.
2. Know your users and their product requirements:

• You may not be able to supply every application that your users require. If that is the case, determine
what programs are the most essential.

• Products that are used concurrently need to be available at the same time and should not overlay
each other.

• Know if any national languages are required for a product.
• Decide on an average virtual machine size for your users. This will help you when you install saved

segments. For example, suppose a typical user at your installation needs a 4 MB virtual machine.
Based on this, you should install saved segments from the 4 MB line on up. (Be aware, however,
of where CMS and other system-related saved segments are loaded. This is discussed under “CMS
Considerations” on page 11.)

• Specific users may have unique product requirements. For example, a user might have FORTRAN
programs that interface with GDDM®. In this case, all of these programs have to be available to this
user simultaneously, so they should not be defined in saved segments that overlay each other.

By gathering the previous information, you develop a set of rules and guidelines that your installation
needs to follow. After you establish these guidelines, planning for saved segments becomes a matter of
moving your applications around until they fit together without breaking any of the guidelines.

To avoid defining more than one saved segment in the same address range, consider the size of a virtual
machine that will access a saved segment.

Planning for Saved Segments Based on Virtual Machine Size
Assuming a saved segment is active, whether the virtual machine can load the information in the saved
segment depends on:

• Where the saved segment is located
• The size of the virtual machine

CMS uses the uppermost segments of the virtual machine's free storage. Because of this, if a saved
segment resides just below the 8 MB line, a 2 MB or 4 MB virtual machine can use it; an 8 MB virtual
machine cannot. A 9 MB or greater virtual machine can use it if the saved segment is loaded with the

Planning and Defining CP Saved Segments

8 z/VM: 7.3 Saved Segments Planning and Administration

SEGMENT command or macro. If the saved segment is just below the 5 MB line, an 8 MB virtual machine
can use it but a 5 MB virtual machine can not.

You should plan for saving segments on the basis of the most frequently used virtual machine size at your
installation (such as the default size in the user's directory entry). If most users in your system run with 4
MB of virtual machine storage, placing all saved segments above the 4 MB line prevents collisions.

Users whose virtual machine size conflicts with saved segments should not have a problem unless they
try to use DIAGNOSE code X'64' to access the saved segment. (The SEGMENT LOAD command, however,
should not present any problems.) Users that need to use DIAGNOSE code X'64' can make their virtual
storage size either larger or smaller and re-IPL. This may, however, cause a conflict with an entirely
different saved segment.

The following sections describe how you can prevent collisions between CMS and saved segments.

Saved Segments in a CMS Machine Whose Size Is Greater Than 21 MB
For virtual machines that are 21 MB or larger, CMS uses an area that extends downward from the end
of virtual machine storage. The size of this area depends on the size of the virtual machine. For virtual
machines larger than 21 MB, the MB below this area represents the first available location (moving from
the top down) for defining segment space.

The formula for determining the amount of storage used by CMS is:

CMS storage = Virtual Machine Size * 1 1/2 + 1

Note: Fractional values are rounded upward to the next whole number.
CMS storage

is measured in pages.
Virtual Machine Size

is measured in MB.

For example, for a 999 MB virtual machine, CMS requires 1500 pages. For a 64 MB virtual machine, CMS
uses 97 pages.

To determine the address where you can safely define saved segments, subtract the storage required by
CMS (rounded up to the nearest MB) from the size of the virtual machine. The MB below this value then
represents the first available location for defining saved segments below the end of the virtual machine.
The following table shows these calculations. It starts with a 22 MB virtual machine, because 16-20 MB
virtual machines do not have room for a 1 MB saved segment above the 21 MB line.

Virtual Machine Size CMS Storage Safe Address for Defining Saved
Segments (MB)

21-170 MB 33-256 pages Virtual Machine Size - 1 MB

171-340 MB 257-512 pages Virtual Machine Size - 2 MB

341-511 MB 513-768 pages Virtual Machine Size - 3 MB

512-682 MB 769-1024 pages Virtual Machine Size - 4 MB

683-852 MB 1025-1280 pages Virtual Machine Size - 5 MB

853-1023 MB 1281-1536 pages Virtual Machine Size - 6 MB

1024-1194 MB 1537-1792 pages Virtual Machine Size - 7 MB

1195-1364 MB 1793-2048 pages Virtual Machine Size - 8 MB

1365-1535 MB 2049-2304 pages Virtual Machine Size - 9 MB

1536-1706 MB 2305-2560 pages Virtual Machine Size - 10 MB

1707-1876 MB 2561-2816 pages Virtual Machine Size - 11 MB

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 9

Virtual Machine Size CMS Storage Safe Address for Defining Saved
Segments (MB)

1877-2047 MB 2817-3072 pages Virtual Machine Size - 12 MB

Figure 4 on page 10 illustrates the location of storage available for saved segments for a virtual machine
that is larger than 21 MB.

Virtual Machine End +------------------+
 | CMS storage |
 +------------------+
 | Free storage |
 | above 16MB. |
 | |
 | Available for |
 | saved segments |
 | |
 | |
 +------------------+20MB
 | CMS |
 | |
 +. +16MB
 | Nucleus |
 | |
 +------------------+15MB
 | Free storage |
 | below 16MB. |
 | |
 | Available for |
 | saved segments |
 | |
 | |
 +------------------+
 | CMS storage |
 +------------------+
 | |
 |USER free storage |
 +------------------+
 | CMS storage |
 +------------------+

Figure 4. Storage Configuration for a CMS Virtual Machine Whose Size Is Greater than 21 MB

The figure shows CMS extending downward from the end of virtual machine storage, followed by an area
for saved segments extending down to the 20 MB line.

Saved Segments in CMS Virtual Machines Whose Size Is Less than 21 MB
If a virtual machine is less than 20 MB, CMS uses an area that extends downward from the end of the
virtual machine's storage or the starting address of the CMS nucleus whichever is smaller. For example,
suppose CMS is a saved system starting at the 15 MB line. If it is IPLed in an 8 MB virtual machine, CMS
uses pages extending down from the 8 MB line. If the same saved system is IPLed in a 2 MB virtual
machine, CMS uses pages extending down from the 2 MB line. In a 16 MB virtual machine, CMS uses
pages extending down from the 15 MB line, because the starting address of the CMS nucleus (15 MB) is
less than the virtual machine size (16 MB).

Figure 5 on page 11 illustrates the location of storage available for segment spaces for a virtual machine
that is less than or equal to 20 MB.

Planning and Defining CP Saved Segments

10 z/VM: 7.3 Saved Segments Planning and Administration

 Virtual Machine Size greater Virtual Machine Size less
 than Starting Address of the than Starting Address of
 CMS Nucleus the CMS Nucleus

Virtual
Machine +------------------+ +------------------+ 20MB
End | Free storage | | CMS nucleus |
 |if Virtual Machine| | |
 | Size is 21MB | | |
 +------------------+ 20MB +------------------+ 15MB
 | CMS | Virtual address
 |. | 16MB range available for
 | Nucleus | Virtual saved segments
 +------------------+ 15MB Machine +------------------+
 | | End | |
 | CMS storage | | CMS storage |
 | | | |
 +------------------+ +------------------+
 | Free storage | | Free storage |
 | below 16MB. | | below 16MB. |
 | | | |
 | Available for | | Available for |
 | saved segments | | saved segments |
 +------------------+ +------------------+
 | | | |
 | CMS storage | | CMS storage |
 | | | |
 +------------------+ +------------------+
 | | | |
 |USER free storage | |USER free storage |
 | | | |
 +------------------+ +------------------+
 | | | |
 | CMS storage | | CMS storage |
 | | | |
 +------------------+ +------------------+

Figure 5. Storage Configuration for a CMS Virtual Machine Whose Size Is Less than 21 MB

The left half of the figure shows the storage configuration when the virtual machine size is greater than
the starting address of the CMS nucleus; the right half shows the storage configuration when the virtual
machine size is less than the starting address of the CMS nucleus.

CMS Considerations
For programs that operate under CMS, 2047 segments are available, addresses X'0' through X'7FEFF000'.

CMS and the default saved segments (CMSBAM, CMSDOS, DOSINST, and INSTSEG) occupy the same
segments. Unless otherwise defined, CMS occupies segments 0 (EW), F, 10, 11, 12, and 13 (all SR). CMS
uses portions of other segments, whose location depends on the size of the user's virtual machine and
the location of the CMS nucleus. For a further explanation, see “Saved Segments in a CMS Machine Whose
Size Is Greater Than 21 MB” on page 9 and “Saved Segments in CMS Virtual Machines Whose Size Is Less
than 21 MB” on page 10.

Check the installation instructions for each product that you will install in your z/VM system; note any
restrictions about the location at which to load the program.

System Performance Considerations
Defining saved segments at high storage addresses that will be shared by many users might affect real
storage availability. For each virtual machine, CP creates dynamic address translation (DAT) tables to
reference the virtual machine storage. DAT tables include page tables, segment tables, and higher level
(region) tables.

CP keeps the page tables in page management blocks (PGMBKs). Each 8 KB PGMBK references 1 MB
of virtual machine storage. For shared page ranges within a saved segment that is loaded shared, the
associated segment table entries will point to the same page tables. However, for a saved segment
that is loaded nonshared, or for exclusive page ranges within a saved segment, unique page tables are

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 11

created for each user. PGMBKs might be pageable; as such, their impact on real storage depends on how
frequently the MBs of storage they reference are used.

Segment tables and region tables are allocated from host real storage and are not pageable:

• To reference the page tables for a primary address space or data space up to 2 GB, 1 - 4 contiguous
frames are allocated for the segment table, one frame for each 512 MB of storage.

• For a primary address space larger than 2 GB, multiple segment tables are created, plus one or more
region tables to reference the segment tables. Each region table occupies 1 - 4 contiguous frames. If
needed, multiple levels of region tables are created.

Because CP dynamically expands the size of a virtual machine to incorporate a saved segment loaded at
an address outside the virtual machine, the DAT tables for the virtual machine also expand. (However,
addresses between the top of the virtual machine and the bottom of the saved segment are not
addressable by the virtual machine.) To conserve real storage, you should try to define your saved
segments at addresses closer to the sizes of the virtual machines that will use them.

Creating Saved Segments
This section describes how to set up saved segments into which you can later install applications.

To create a saved segment, you must:

1. Enter the CP DEFSEG command (DEFSEG and SAVESEG are class E CP commands). The DEFSEG
command creates a skeleton (class S) system data file for the saved segment you specify. The saved
segment cannot be accessed until you enter a corresponding SAVESEG command.

2. Load the application into the area of storage you set aside with the DEFSEG command.

Note: CMS uses storage in the uppermost MB of the virtual machine (for a virtual machine size that
is less than or equal to 16 MB) or the MB just below the 16 MB line (for a virtual machine size that is
greater than 16 MB). As a result, you may not be able to load the application into this MB to create the
saved segment because the storage is already in use.

3. Enter the SAVESEG command. The SAVESEG command changes a skeleton file to an active (class A or
R) file.

For examples of defining and saving the different types of saved segments, see Appendix A, “Defining CP
Saved Segments—Examples,” on page 81.

Using the DEFSEG Command
For the syntax and a detailed description of the DEFSEG command, see z/VM: CP Commands and Utilities
Reference.

When the DEFSEG command is entered, system data files (SDFs) are created containing information
related to the DEFSEG command input. Understanding the information contained in these SDFs will help
you manage saved segments.

The scenarios in “Results of Entering the DEFSEG Command” on page 12 show which files are created
(or affected) after various DEFSEG commands are entered. The abbreviations used (such as PPW, PPX,
and GRP1) are the names of saved segments.

Results of Entering the DEFSEG Command
1. Assume that no saved segment files currently exist.
2. Enter the following command:

defseg ppw 700-7ff sr

A class S (skeleton) SDF with the name PPW is created and a unique spool ID number is assigned to
the file.

Planning and Defining CP Saved Segments

12 z/VM: 7.3 Saved Segments Planning and Administration

• Because the SPACE operand was not specified on the DEFSEG command, the SDF defines a DCSS
(that is, not a member saved segment or a segment space).

• The page range (700-7FF) and type (SR) information is saved. For multiple range specifications, the
ranges are sorted from lowest to highest.

A class S file now exists for PPW.
3. Enter the following command:

defseg ppx 800-820 sr space grp1

a. A class S SDF with the name PPX is created and a unique spool ID number is assigned to the file.

• Because the SPACE operand was specified on the DEFSEG command, the SDF defines a member
saved segment.

• The page range (800-820) and type (SR) information is saved.
• A count is maintained indicating how many segment spaces are associated with this member. In

this case the value is 1, because GRP1 is the only segment space associated with the member
PPX.

• CP notes that GRP1 is a segment space containing PPX.
b. A class S SDF with the name GRP1 is created and a unique spool ID number is assigned to the file.

• Because the SPACE operand was specified on the DEFSEG command, the SDF defines a segment
space.

• The lowest and highest page range values specified for any member defined for this segment
space are maintained. In this way, the overall range of a segment space is determined by its
member definitions. (In the above example, the lowest value is 800 and the highest is 820.)
These values are rounded down and up respectively to MB boundaries to determine the true
range of pages that a segment space affects when any of its members is attached to a virtual
machine. The rounded values are the ones returned by the FINDSPACE function of DIAGNOSE
code X'64'.

• A count is maintained indicating how many members are associated with this segment space. In
this case, the value is 1.

• CP notes that PPX is a member of this segment space.
• The page range (800 through 820) and type (SR) information is saved. The lowest (800) and

highest (820) page range values specified for the member are maintained.
• The status of this entry is not saved, meaning no corresponding SAVESEG has been issued.

Class S files now exist for PPX, GRP1, and PPW.
4. Enter the following command:

defseg ppy 821-830 sr space grp1

The same processing as outlined under the DEFSEG command for PPX occurs for PPY. Note, however,
the following changes to the SDF for the GRP1 segment space:

• Because a class S SDF already exists for GRP1, this file does not have to be created.
• The page ranges of PPY are checked to make sure that they do not overlap the ranges of any other

member in GRP1. In this case, the page ranges of PPY are checked with those of PPX.
• The count indicating how many members have been defined for this segment space is incremented

by 1. In this case, the value is now 2.
• The lowest and highest page range values specified for any member defined for this segment space

are maintained. In this case, the lowest value (800) is maintained, and the highest value is updated
from 820 to 830.

• CP notes that PPY is a member of this segment space. The same information as indicated under the
PPX member entry is captured for the PPY member entry.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 13

Class S files now exist for PPY, PPX, GRP1, and PPW.
5. Enter the following command:

defseg ppu 800-820 sr space grp2

The same processing as outlined under the DEFSEG command for PPX and GRP1 occurs for PPU and
GRP2.

Class S files now exist for PPU, GRP2, PPY, PPX, GRP1, and PPW.
6. Enter the following command:

defseg ppy same space grp2

a. Prior to updating the file for PPY, an existing class S file, a check is made to see if a class S SDF file
exists for GRP2 (it does). The PPY file is then updated.

• The count indicating how many segment spaces have been defined for this member is
incremented by 1. In this case, the value is now 2.

• CP notes that GRP2 is a segment space containing the member PPY. The class S file for PPY now
has entries for GRP1 and GRP2.

b. The existing class S SDF for GRP2 is updated as follows:

• The page ranges of PPY are checked to make sure they do not overlap the ranges of any other
member in GRP2. In this case, the page ranges of PPY are checked with those of PPU.

• The count indicating how many members have been defined for the segment space GRP2 is
incremented by 1. The value is now 2.

• The lowest and highest page range values specified for any member defined for this segment
space are maintained, and thus the overall range of GRP2 is defined. In this case, the lowest
value (800) is maintained, and the highest value is updated from 820 to 830.

• CP notes that PPY is a member of this segment space. The same information as indicated under
the PPX member entry is captured for the PPY member entry.

Class S files now exist for PPU, GRP2, PPY, PPX, GRP1, and PPW.

Restrictions for Using the SAMERANGE Operand
The following rules apply to the SAMERANGE operand (also called the SAME operand) of the DEFSEG
command:

• You can specify the SAME operand only if you also specify the SPACE operand.
• With type EW, EN, SW, and SN saved segments, you cannot use the SAME operand to cause a member

to belong to two different segment spaces. You can use SAME to update a segment space, replace a
segment space, or add a member to the same segment space. The SAME operand is useful when you
need to reinstall a read-only (SR) member of a space containing other members with writeable pages.

• You should enter a DEFSEG command with the SAME operand on the first definition of a segment space
only if the member exists as a skeleton file.

• A DEFSEG command with a SAME operand needs no corresponding SAVESEG command unless the
member is not yet saved. (If a definition of a member in a segment space does not include the SAME
operand, a SAVESEG is required.)

• A member of a segment space cannot overlay any of the ranges specified for an existing member within
the same segment space.

• There is no effect when you specify a DEFSEG command with the SAME operand for an existing member
that has the same segment space name. A change to the state descriptor of the member's SDF occurs in
the directory section only if you define the member in a new or additional segment space.

Planning and Defining CP Saved Segments

14 z/VM: 7.3 Saved Segments Planning and Administration

Using the SAVESEG Command
For the syntax and a detailed description of the SAVESEG command, see z/VM: CP Commands and Utilities
Reference.

Note: The SAVESEG command writes all page ranges, except those defined as EN or SN, to the associated
system data file. The amount of time it takes for the command to complete is directly proportional to the
amount of data to be written. A subsequent DEFSEG or SAVESEG command issued by another user will be
delayed behind any SAVESEG in progress.

Using SAVESEG with Your Installation Procedures
In general, customers use an installation procedure (normally an exec) to initialize the page ranges given
on previously specified DEFSEG commands. After this is done, the SAVESEG command can be entered to
capture the contents of the pages in the spool file that was created by the DEFSEG command and thereby
save the segment. Such installation procedures vary depending on the type of code that makes up the
application you plan to install.

For the virtual machine issuing the SAVESEG to get addressability to the saved segment, one of the
following must be true:

• The virtual machine size must include the page ranges of the saved segment. For example, for a saved
segment defined in the B00 through BFF address range, the virtual machine must be at least 12 MB.

• The virtual machine must define or use an existing saved segment containing the required pages. In
other words, one of the following must be done for the saved segment:

– It must be defined with writeable pages
– It must be loaded with the LOADNSHR option. To do this, a virtual machine must have a NAMESAVE

entry in its directory for the saved segment. The NAMESAVE statement is not required if the segment
was defined with the LOADNSHR operand

To avoid the problems associated with loading a saved segment in a virtual machine, install the
application in a recently IPLed virtual machine large enough to contain the pages of the saved
segment. Otherwise, perform the steps that follow. It is best that you perform these steps when you
first install the application that resides in the saved segment:

1. Define or redefine a new skeleton file for the saved segment as exclusive write (EW):

defseg name range ew

If the user ID doing the redefinition does not have NAMESAVE directory privileges (to load a
nonshared copy), create a dummy saved segment. This dummy segment will be purged when the
real segment is saved. This defines a saved segment as nonshared (EW). If you are defining a
segment space or a member saved segment, enter:

defseg name range ew space spacename

You must define all the members of a segment space. However, any existing members can be
defined with the SAME (SAMERANGE) parameter if you are not changing their page ranges:

defseg name same space spacename

2. Create an active segment by entering the SAVESEG command for the saved segment you are
installing:

saveseg name

3. Set up another skeleton file by entering another DEFSEG command for the saved segment. This
step is necessary, because any subsequent SAVESEG commands that happen after the installation
procedure is done require a skeleton file. The saved segment you define now is the one that will
be attached to your users, so you should define it with the appropriate page range type (SR in this
example):

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 15

defseg name range sr

For a segment space or a member saved segment, enter:

defseg name range sr space spacename

You must define all the members of a segment space. However, they can be defined with the
SAME (samerange) parameter:

defseg name same space spacename

4. Now you can run your installation procedure for saved segments. If your installation procedure is
not set up to load the saved segments, use the CMS SEGMENT command to perform the load. The
SEGMENT command loads the saved segment and gives the virtual machine addressability to its
pages.

SAVESEG Command Functional Description
The SAVESEG command saves a saved segment that was previously defined with the DEFSEG command.
The SAVESEG command copies the data from the virtual storage page ranges associated with the saved
segment to the spool file that was created by the DEFSEG command. The spool file associated with the
saved segment changes from a skeleton to an active file. If this is a member saved segment, the file
associated with the corresponding segment space changes from skeleton to active if all other members
are active.

The following SAVESEG commands correspond to the DEFSEG commands described under “Using the
DEFSEG Command” on page 12. The DEFSEG commands previously specified were:

defseg ppw 700-7ff sr
defseg ppx 800-820 sr space grp1
defseg ppy 821-830 sr space grp1
defseg ppu 800-820 sr space grp2
defseg ppy same space grp2

For the examples under “Results of Entering the SAVESEG Command” on page 16, assume the
respective page ranges have been properly initialized and the SAVESEG commands are entered from
an installation exec. The results of each command are described.

Results of Entering the SAVESEG Command
1. Assume that class S files for PPU, GRP2, PPY, PPX, GRP1, and PPW currently exist.
2. Enter the following command:

saveseg ppw

The SAVESEG command determines whether PPW is a member saved segment:

a. SAVESEG determines from the class S file for PPW that PPW is not a member saved segment but is
a DCSS.

b. The pages associated with PPW (as defined by the previous DEFSEG command) and their keys are
copied to a system data file.

c. The file for PPW is changed from class S to class A.
d. If a class A file already exists for PPW, the class of the existing file is changed from A to P (pending

purge). If no one is currently using the existing file, the file is purged. A class P file is purged when
the last virtual machine using the file purges it from the virtual machine's address space.

e. Because PPW is a DCSS, if PPW was defined with the RSTD (restricted) parameter on the DEFSEG
command, the class would change from S to R.

Because PPW is a DCSS, it can be attached to a virtual machine after its class becomes A or R.

Class S files now exist for PPU, GRP2, PPY, PPX, and GRP1, and a class A file exists for PPW.

Planning and Defining CP Saved Segments

16 z/VM: 7.3 Saved Segments Planning and Administration

3. Enter the following command:

saveseg ppx

The SAVESEG command determines whether PPX is a member saved segment:

a. SAVESEG determines from the class S file for PPX that PPX is a member saved segment.
b. The pages associated with PPX (as defined by the previous DEFSEG command) and their keys are

copied to a system data file.
c. The file for PPX is changed from class S to class A.
d. If a class A file already existed for PPX, the class of the existing file is changed from A to P (pending

purge). If no one is currently using the existing file, the file is purged. A class P file is purged when
the last virtual machine using the file purges it from the virtual machine address space.

e. Because PPX is a member saved segment, the associated segment space directory is updated. For
each segment space entry associated with PPX, the respective class S file is processed. PPX has
only the GRP1 segment space entry. The following processing occurs for GRP1:

i) The status of PPX is changed to saved.
ii) The status of other members of GRP1 (if any) is checked. The count indicating how many

members are associated with this segment space is used to determine how many entries to
check.

If all the members have a saved status, the class of the segment space is changed from S to A
or R. In our example, the PPY member still has a status of not saved. So, the class of the file
associated with GRP1 remains S.

Class S files now exist for PPU, GRP2, PPY, and GRP1, and class A files exist for PPX and PPW.
4. Enter the following command:

saveseg ppy

The SAVESEG command determines whether PPY is a member saved segment:

a. SAVESEG determines that PPY is a member saved segment.
b. The pages associated with PPY (as defined by the previous DEFSEG command) and their keys are

copied to a system data file.
c. The file for PPY is changed from class S to class A.
d. If a class A file already existed for PPY, the class of the existing file is changed from A to P (pending

purge). If no one is currently using the existing file, the file is purged. A class P file is purged when
the last virtual machine using the file purges it from the virtual machine address space.

e. Because PPY is a member saved segment:

i) For each segment space entry associated with PPY, the respective class S file is processed. PPY
has two segment space entries: GRP1 and GRP2. The following processing occurs for GRP1:

a) The status of PPY is changed to saved.
b) The status of other members of GRP1 (if any) is checked. The count indicating how many

members are associated with this segment space is used to determine how many entries to
check. If all the members have a saved status, the class of the segment space is changed
from S to A. In our example, all members have a saved status, and the class of the file
associated with GRP1 is changed to A.

Because PPY is a member, if PPY or any other member of GRP1 was defined with the RSTD
(restricted) parameter on the DEFSEG command, the class of GRP1 would change from S to
R.

c) If a class A file already existed for PPY, the class of the existing file is changed from A to P
(pending purge). If no one is currently using the existing file, the file is purged. A class P file is

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 17

purged when the last virtual machine using the file purges it from the virtual machine address
space.

Because PPY is a member saved segment, it can be attached to a virtual machine after one of its
associated segment spaces becomes class A or R.

ii) Next, the following processing occurs for GRP2:

a) The status of PPY is changed to saved.
b) The status of other members of GRP2 (if any) is checked. The count indicating how many

members are associated with this segment space is used to determine how many entries to
check.

If all the members have a saved status, then the class of the segment space is changed from
S to A. In our example, the member PPU has a status of not saved. So, the class of the file
associated with GRP2 remains as S.

Class S files now exist for PPU and GRP2, and class A files exist for GRP1, PPY, PPX, and PPW.
5. Enter the following command:

saveseg ppu

The SAVESEG command determines if PPU is a member saved segment:

a. SAVESEG determines that PPU is a member saved segment.
b. The pages associated with PPU (as defined by the previous DEFSEG command) and their keys are

copied to a system data file.
c. The file for PPU is changed from class S to class A.
d. If a class A file already existed for PPU, the class of the existing file is changed from A to P (pending

purge). If no one is currently using the existing file, the file is purged. A class P file is purged when
the last virtual machine using the file purges it from the virtual machine address space.

e. Because PPU is a member saved segment:

i) For each segment space entry associated with PPU, the respective class S file is processed. PPU
has only one segment space entry: GRP2. The following processing occurs for GRP2:

a) The status of PPU is changed to saved.
b) The status of other members of GRP2 (if any) is checked. The count indicating how many

members are associated with this segment space is used to determine how many entries to
check.

If all the members have a saved status, then the class of the segment space is changed from
S to A. In our example, all members have a saved status, and the class of the file associated
with GRP2 is changed to A. Because PPU is a member, if PPU or any other member of GRP2
was defined with the RSTD (restricted) parameter on the DEFSEG command, the class of
GRP2 would change from S to R.

c) If a class A file already existed for PPU, the class of the existing file is changed from A to P
(pending purge). If no one is currently using the existing file, the file is purged. A class P file is
purged when the last virtual machine using the file purges it from the virtual machine address
space.

PPU can be attached to a virtual machine after its class becomes A or R.

Class A files now exist for GRP2, PPU, GRP1, PPY, PPX, and PPW.

Keeping Backup Copies of Saved Segments
VM retains saved segments in the event of a system cold start. However, because VM uses system
spooling space to store saved segments, and because you may not always be able to recover spooling
space after a CP abend, you should always keep backup copies of saved segments on tape. The CP

Planning and Defining CP Saved Segments

18 z/VM: 7.3 Saved Segments Planning and Administration

SPXTAPE command enables you to do this. For more information on SPXTAPE, see z/VM: CP Commands
and Utilities Reference and z/VM: System Operation.

Purging Saved Segments from the System
Use the PURGE NSS command to purge unwanted files that contain saved segments. PURGE NSS is a
class E CP command.

Note: Do not use PURGE NSS if you want to purge the saved segment only from your virtual machine.
From CMS, use the SEGMENT PURGE command or macro. If you used DIAGNOSE code X'64' to load the
segment, use DIAGNOSE code X'64' to purge it. (See z/VM: CP Programming Services for information on
DIAGNOSE code X'64'.)

Example—Purging a Saved Segment

To purge the sample program XAPROG, enter:

purge nss name xaprog

After this command is entered, CP purges all copies of XAPROG unless XAPROG is currently in use by a
virtual machine. If XAPROG is currently in use, CP places the file in a pending purge state and purges it as
soon as XAPROG is no longer being used.

If you use PURGE NSS with the ASSOCIATES operand, you purge a saved segment and remove references
to it in associated saved segments. If this saved segment is the last referred to by an associated segment,
the associated segment is also purged.

Purging a segment space with the ASSOCIATES operand removes the space's name from all associated
members' lists of spaces. Purging a member with this operand removes it from all spaces to which it
belongs. Any member or space system data file becomes class P (pending purge) if it is currently in use.
This also holds for any associated file being purged because no other members (or spaces) are associated
with this file.

To determine whether a file is in pending-purge state, enter the QUERY NSS command. If the file is in
pending-purge state, CP's response shows that the file is class P. CP purges class P files if:

• All virtual machines using the saved segment log off or re-IPL
• All virtual machines using the saved segment release it (with a DIAGNOSE code X'64' PURGE or a

SEGMENT PURGE)

Note: A saved segment that was loaded with DIAGNOSE code X'64' must be purged with DIAGNOSE
code X'64'. A saved segment loaded with a SEGMENT LOAD command must be purged with a SEGMENT
PURGE command.

• The system is IPLed
• All virtual machines using the saved segment load a new saved segment that overlays the address range

of the first saved segment.

Displaying Information about Saved Segments
To display information about saved segments (and named saved systems), use the QUERY NSS ALL
command with the MAP option. The following is an example of the QUERY NSS ALL MAP command. For
usage notes associated with the QUERY NSS command, see z/VM: CP Commands and Utilities Reference.

query nss all map

In response to this command, CP displays information similar to the following:

FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
spid filename filetype N/A nnnnn nnnnn type c nnnnn N/A N/A

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 19

For DCSSs that contain pages above 2047 MB, the response format is:

FILE FILENAME FILETYPE BEGPAG ENDPAG TYPE CL #USERS
spid fn DCSSG nnnnnnnnnnnnn nnnnnnnnnnnnn type c nnnnn

Note: The format for saved segments and named saved systems below 2047 MB will be displayed first in
the response, followed by the format for DCSSs above 2047 MB.

The fields in the response contain the following information:

FILE
identifies the spool ID of the file.

FILENAME
identifies the name of the saved segment or named saved system (the file name of the system data
file).

FILETYPE
identifies the file type of the system data file:
Type

Meaning
NSS

Named saved system.
DCSS

DCSS below 2047 MB.
DCSSG

DCSS above 2047 MB.
DCSS-S

Segment space for which members are defined.
DCSS-M

Member of a segment space.
CPNSS

CP system service named saved system.
CPDCSS

CP system service saved segment.
MINSIZE

for NSS files only, specifies the minimum storage size of the virtual machine into which the NSS can be
loaded. This field does not apply to saved segments, for which N/A is displayed.

BEGPAG
specifies the beginning page number of a page range of the saved segment or named saved system.
For a segment space, this field shows the beginning page number of the entire segment space.

ENDPAG
specifies the ending page number of a page range of the saved segment or named saved system. For a
segment space, this field shows the ending page number of the entire segment space.

TYPE
indicates the type of virtual machine access (ER, EW, EN, SR, SW, SN, or SC) allowed to a page range
of the saved segment or named saved system. For more information about these codes, see the
DEFSEG command in z/VM: CP Commands and Utilities Reference. For a segment space, the access
type might not apply to the entire range, so a dash (–) is displayed.

CL
indicates the current class (state) of the system data file:
A

Unrestricted available state. This means the system data file has been defined and saved. To
determine whether the saved segment or named saved system is in use, examine the #USERS
field in the response.

Planning and Defining CP Saved Segments

20 z/VM: 7.3 Saved Segments Planning and Administration

P
Pending purge state. This means the PURGE NSS command (or DIAGNOSE code X'64') has been
issued for the name of this saved segment or named saved system but virtual machines are still
accessing it. No new users can access this saved segment or named saved system. The file will
be purged when the last virtual machine releases the saved segment or named saved system, or
during the next system IPL or RESTART.

R
Restricted access available state. This means the system data file has been defined (with the
RSTD option) and saved. Access to a restricted saved segment or named saved system requires
a NAMESAVE directory statement. To determine whether the saved segment or named saved
system is in use, examine the #USERS field in the response.

S
Skeleton state. This means the file has been defined by a DEFSEG or DEFSYS command, and the
SAVESEG or SAVESYS command can now be run to complete this system data file.

#USERS
indicates the number of users attached to the saved segment or named saved system.

PARMREGS
for NSS files only, identifies the registers in which parameters are passed to the virtual machine at IPL.
This field does not apply to saved segments, for which N/A is displayed.

VMGROUP
for NSS files only, indicates whether the NSS is part of a virtual machine group. This field does not
apply to saved segments, for which N/A is displayed.

You can also use QUERY NSS NAME name MAP and QUERY NSS spoolid MAP to display information about
saved segments.

Displaying Which Users Have Loaded a Saved Segment
To display which user IDs have loaded a specified saved segment, use the QUERY NSS USERS command.
If the saved segment is a segment space, the response lists those users of the space and each of its
members. If the saved segment is a member, users with the member loaded and those with its associated
space(s) loaded are listed. For example:

query nss users tstspace

where TSTSPACE is the name of a segment space with two members, MEMBER01 and MEMBER02. In
response to this command, CP displays information similar to the following:

 FILE FILENAME FILETYPE CLASS
 0466 TSTSPACE DCSS-S A

 NONE

 FILE FILENAME FILETYPE CLASS
 0465 MEMBER01 DCSS-M A

 USERA USERB USERC USERD USERF USERG

 FILE FILENAME FILETYPE CLASS
 0467 MEMBER02 DCSS-M A

 USER1 USER2 USER3

In the example above, USER1, USER2, and USER3 have explicitly loaded MEMBER02. (MEMBER01 is in
the virtual storage of virtual machines because it is in the same space as MEMBER02. Nevertheless, these
virtual machines have not explicitly loaded MEMBER01.) USERA, USERB, USERC, USERD, USERF, and
USERG have explicitly loaded MEMBER01.

Note that if there is a pending purge version, its users are also shown.

For further examples of the QUERY NSS command, see “Examples of Segment Spaces” on page 24.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 21

Installing Applications in Saved Segments
This section tells you how to install an application in a saved segment. It discusses segment packing and
describes how to overlay segment spaces.

Tips for Installing Your Applications in Saved Segments
Below are some recommendations that may help you when you are preparing to install an application in a
saved segment.

• Storage management determines the default load address, which may vary.
• When you install CMS at the default locations, it uses segments F, 10, 11, 12, and part of 13. All of 13 is

set aside when CMS is set up as a named saved system (NSS). You cannot combine an NSS and a saved
segment within the same architected segment.

If you install CMS at the default locations, you should leave the segment below the CMS shared pages
free of saved segments. CMS may use some of the D segment when CMS is defined in the default
segments.

• Consider writing an exec that lists the DEFSEG commands used to build the saved segments for a
product. For example, you could write an exec that enters the new DEFSEG commands, installs the
products, and enters the SAVESEG commands.

Fitting Applications below the 16 MB Line
If your installation has a large number of applications that must all run below the 16 MB line, the following
suggestions may help you when you set up your saved segments. Note, however, that these tips may not
work in every environment.

To fit your applications below the 16 MB line, consider the following ideas:

• If you have an architected segment defined to hold exclusive code (for example, type EW) and the
segment has unused space, convert an application that normally runs in a shared segment so that
it now operates from an exclusive segment. Then, pack this application into the architected segment
where your other EW applications reside. To do this, you must have room in the architected segment
for this application. Converting this application to EW may affect performance somewhat, but it will help
you ease your storage constraints.

Using Segment Packing to Conserve Storage Space
An overlay is two or more saved segments defined in the same address range. If possible, you should
avoid overlaying saved segments. The more overlays you have, the more system overhead may increase.

To avoid overlays and provide more efficient use of storage, VM allows you to define segment spaces into
which you can pack multiple applications. A segment space is on a MB boundary, but each application
is stored on a page boundary. Thus, you can store many more programs in a given area without wasting
storage. After you take advantage of z/VM and can address licensed programs above the 16 MB line, you
do not need to store licensed programs so tightly; 1 MB segments will be sufficient.

You can mix shared and nonshared code within the same segment space as long as you do not mix them
within the same 1 MB segment. Thus, if you have a licensed program that requires both shared and
exclusive code, you can store both parts in the segment space (but you must store them in separate 1 MB
segments).

Figure 6 on page 23 shows programs A, B and C, all stored in one segment space that spans three 1
MB segments (from the beginning of MB 4 to the end of MB 6). In this case, programs A, B and C are
all considered member saved segments of this segment space. Note that the boundaries of the segment
space are rounded to MB boundaries. Program C requires both shared and exclusive code.

Planning and Defining CP Saved Segments

22 z/VM: 7.3 Saved Segments Planning and Administration

Figure 6. Using a Segment Space to Store Applications

Using a DCSS Compared with Using a Segment Space

When to Use a Segment Space
The following are some reasons for packing programs into segment spaces, instead of defining a DCSS for
each program:

• If more than one member segment will fit in a 1 MB segment space
• If your system is constrained for virtual storage below the 16 MB line
• If your system has a family of related programs (for example, SQL and QMF™) that are normally used

at the same time. You may benefit from defining them in the same segment space, because when a
member is loaded for the first time, all other members in the segment space are also brought into
storage. Thus, you may reduce I/O operations if you can keep related code or data in the same segment
space. If you have very few QMF users (QMF uses SQL) and many SQL users, you might not want to
include QMF in the same segment space as SQL. The layout of the segments depends on how they will
be used in your environment.

For some examples of segment space definitions, see “Defining a Segment Space” on page 82.

When to Use a DCSS
In the following situations, you may benefit from defining a DCSS instead of a member:

• If the program size is an exact multiple of 1 MB or slightly smaller than a multiple of 1 MB, you will
eliminate any overhead caused by using segment spaces.

• If you can fit all your segments below the 16 MB line without packing them into segment spaces, you
can eliminate the overhead.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 23

• If your segments reside above the 16 MB line, it is unlikely that your system is constrained because of
the large number of segments.

• If you need to include pages above 2047 MB, you can do this only with a DCSS.

For examples of DCSS definitions, see “Defining Overlaid DCSSs” on page 82.

Tips for Using Segment Spaces
Here are some practical tips to help you install applications in segment spaces:

• If you have a program that spans beyond a MB boundary, it may not be worth adding additional
programs to round out the unfilled last MB. When the smaller program is invoked by a user, the whole
segment space gets loaded. Although the larger program is not being used, it may cause an overlay with
another DCSS or segment space. For example, GDDM spans beyond 2 MB. If you install GDDM, you must
evaluate whether you should create a segment space with GDDM and some other product that does not
go beyond the third MB boundary, or define a DCSS for GDDM and put the other product somewhere
else. If the other product fits in the remainder of the third MB and that product and GDDM are frequently
used together, you should combine them in the same segment space. Because GDDM and ISPF are
often used together, you may want to pack them into a segment space.

• Both shared and exclusive (nonshared) pages cannot exist in the same architected segment. A given
segment must be either shared or exclusive. Nevertheless, a segment space, and even a member
segment, can have both shared and exclusive code if the shared pages are not in the same architected 1
MB segment as the exclusive pages.

• With the SAMERANGE operand on the DEFSEG command, you can make a member part of another (or
the same) segment space without redefining the page ranges and saving the member again. An example
of when the SAMERANGE operand is useful is if CMSDOS, CMSBAM, CMSVSAM, and CMSAMS are all in
the same segment space and CMSDOS requires service. You will need to save CMSDOS again, but you
can use SAMERANGE for the other saved segments rather than saving them all again.

Note, however, that the SAMERANGE operand cannot be used if the member contains SW, SN, EW, or
EN pages and you are defining it in a second segment space.

Problems with Large Segment Spaces
Some possible consequences of creating large segment spaces are:

• Because the whole segment space gets loaded when a member is loaded, part of the segment space
may overlay another saved segment that is loaded in a user's virtual machine.

• Large segment spaces limit the size of the virtual machines that use them. Although users can load a
saved segment in their virtual machine if they use the CMS SEGMENT command or macro, the saved
segment cannot span from below the virtual machine size to above it. CMS uses the uppermost segment
in a user's virtual machine. If a segment space spans from the page X'400' to X'AFF', users of any
member of that segment space would need a virtual machine that is 4 MB or less if they are not using
the SEGMENT command or macro. If they use the SEGMENT command or macro, the virtual machine
could be 4 MB or less, or greater than 12 MB, but it cannot be between 4 MB and 12 MB.

Examples of Segment Spaces
The products you choose to combine in a segment space and the location you load them at will vary
depending on your users' requirements. The page ranges shown may not be the actual page ranges of
these programs.

To see a sample storage mapping for a given set of applications, see “Setting Up Your Storage Layout” on
page 88. The following are examples of what CP might return in response to QUERY NSS commands for
varying configurations of applications:

1. GDDMXAL contains GDDM/GKS, GDDM/IMD, and GDDM/IVU:

Planning and Defining CP Saved Segments

24 z/VM: 7.3 Saved Segments Planning and Administration

query nss map name gddmxal
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
1112 GDDMXAL DCSS-S N/A 00600 006FA -- A 00000 N/A N/A
1113 ADMGK000 DCSS-M N/A 00600 00658 SR A 00000 N/A N/A
1114 ADMIM000 DCSS-M N/A 00660 006C4 SR A 00000 N/A N/A
1115 ADMIV110 DCSS-M N/A 006D0 006FA SR A 00000 N/A N/A
Ready; T=0.01/0.01 12:57:46

2. SQLDCS1 contains some of the SQL segments and QMF:

query nss map name sqldcs1
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
1069 SQLDCS1 DCSS-S N/A 00700 008C0 -- A 00000 N/A N/A
1070 QMF220E DCSS-M N/A 00700 0084F SR A 00000 N/A N/A
1071 SQLRMGR DCSS-M N/A 00850 00860 SR A 00000 N/A N/A
1072 SQLISQL DCSS-M N/A 00861 008C0 SR A 00000 N/A N/A
Ready; T=0.01/0.01 12:58:42

3. SQLDCS2 contains SQL segments that are not used by QMF:

query nss map name sqldcs2
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
1073 SQLDCS2 DCSS-S N/A 00900 00AA6 -- A 00000 N/A N/A
1074 SQLSQLDS DCSS-M N/A 00900 009D0 SR A 00000 N/A N/A
1075 SQLXDRS DCSS-M N/A 009D1 00AA6 SR A 00000 N/A N/A
Ready; T=0.01/0.01 12:58:53

You should consider defining both SQLDCS1 and SQLDCS2 as shown because QMF may use SQLRMGR
and SQLISQL, but will not use the SQL segments in SQLDCS2.

4. GAMDCSS contains GAM/SP (Graphics Access Method/SP) segments and GDDM/graPHIGS. In this
case, the segment space is still class S because the GDDM/graPHIGS segment, AFMASS00, has not
yet been saved. Although the GAM segments have been saved, they cannot be used until member
AFMASS00 has been saved.

query nss map name gamdcss
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
1146 GAMDCSS DCSS-S N/A 00800 008F3 -- S 00000 N/A N/A
1147 CMSGAM DCSS-M N/A 00800 0080F SR A 00000 N/A N/A
1148 GAMBUF DCSS-M N/A 00810 00811 SW A 00000 N/A N/A
1149 AFMASS00 DCSS-M N/A 00812 008F3 SR S 00000 N/A N/A
Ready; T=0.01/0.02 16:29:09

Overlaying Your Applications
If segment packing does not sufficiently reduce your installation's storage constraints, you may need to
define overlaid saved segments or overlaid segment spaces.

When you overlay two segment spaces, the second segment space that is loaded into storage replaces
the entire address range of the first segment space, even if it is not defined at exactly the same location
as the first segment space. Also, all of the first segment space is removed from the user's address space.
An example is the storage layout in Figure 7 on page 26. If you load SPACE3 while SPACE2 is loaded,
all of SPACE2 is removed from the guest's address space even though only part of SPACE2 is overlapped.
Similarly, if you load OVVM while SPACE2 is loaded, all of SPACE2 is removed from the user's address
space.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 25

Figure 7. Using Segment Spaces to Overlay Applications

DAS1V151 and DAS2V151 are saved segments associated with Application Systems (AS). SQLISQL and
SQLRMGR are saved segments associated with the SQL user machine.

When you overlay two saved segments, it is not necessary for both saved segments to have the same type
of code. That is, if you define program A to overlap program B, A and B do not both have to contain shared
code; also, A and B do not both have to contain exclusive code. One program can have shared code, and
the other can have exclusive code, provided both programs are not needed at the same time.

Remember that all parts of a particular product need not be packed into one segment space. Given the
needs of your installation, other arrangements may be better. Some products require more than one
segment, but the functions performed by the code allow you to overlap the segments. For example,
suppose you have one set of users that:

• Use SQL/DS with AS
• Use SQL/DS with QMF
• Do not use QMF with AS.

You can pack these products together as shown in Figure 8 on page 27, which shows three packed
segment spaces:

• SPACE1 has SQL/DS with AS (6 - 9 MB). Its components are DAS1V151, DAS2V151, SQLISQL, and
SQLRMGR.

• SPACE2 has SQL/DS with QMF (6 - 8 MB). Its components are QMF220E, SQLISQL, and SQLRMGR.
SQLISQL and SQLRMGR occupy the same addresses as those components in SPACE1.

• SPACE3 is the SQL/S database machine (6 - 8 MB). Its components are SQLXRDS and SQLSQLDS.

Planning and Defining CP Saved Segments

26 z/VM: 7.3 Saved Segments Planning and Administration

Figure 8. Installing SQL with Overlays

Although you need two segments for the SQL database machine (SQLSQLDS and SQLXDRS) and two
segments for the user (SQLISQL and SQLRMGR), the segments for the database machine can overlap the
segments for the user, as shown in Figure 8 on page 27.

If you are defining a member in multiple segment spaces, define the member first in the space having
more commonly used members or having the highest beginning address. For example, in Figure 8 on page
27, if you have more QMF users than AS users, define SQL in SPACE2 first (and use the SAME operand to
define SQL in SPACE1).

For an example of defining the overlays shown in Figure 8 on page 27, see “Defining Overlaid Segment
Spaces” on page 83. To see a sample storage mapping that includes overlays, refer to “Setting Up Your
Storage Layout” on page 88.

Additional Overlay Possibilities
This section discusses the different ways you can overlay programs. The following methods are
discussed:

• Defining overlaid DCSSs
• Defining overlaid segment spaces.

Defining Overlaid DCSSs
One way to overlay program components is to define each component in a separate DCSS and define each
DCSS in the same address range. Figure 9 on page 28 shows PPT3, PPT4, and PPT5—components of the
program PPT—defined in separate DCSSs. These three DCSSs are all defined in the 7 MB to 8 MB range
of architected segments. This type of overlay arrangement may reduce the amount of storage used. Note,
however, that the programs PPT3, PPT4, and PPT5 are mutually exclusive; that is, they are not used at the
same time.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 27

Figure 9. DCSSs as Overlays

Defining Overlaid Spaces with One Unique Member in Each Space
If virtual storage at your installation is extremely constrained, you may want to consider the following
overlay structure. You may want to define multiple segment spaces with one unique member in each
space. In Figure 10 on page 28, SPACE1, SPACE2, and SPACE3 are each segment spaces. Each segment
space contains a set of common members and one unique member.

Figure 10. Segment Spaces as Overlays

Note, however, that with this type of arrangement, system overhead increases when a user calls a
program not currently in the user's address space. (When a user calls a program not currently in the

Planning and Defining CP Saved Segments

28 z/VM: 7.3 Saved Segments Planning and Administration

user's address space, the entire segment space that contains the called program overlays whatever was
executing in the user's address space. Any currently loaded saved segments are overlaid by the new
segment space or removed from the user's address space.) Because of this, the set of common members
—PPT1, PPT2, PPT6, and PPT7 in this example—must be refreshable programs. In other words, none of
these common members can have writable storage. This is an example of why you cannot use the SAME
operand of the DEFSEG command to place a member with writeable pages in more than one segment
space.

With the above configuration, seven programs are defined in just three architected segments. The
procedure for defining SPACE1, SPACE2, and SPACE3 above is described in detail in “Defining Overlaid
Segment Spaces” on page 83.

Overlaid Segment Spaces across Several Applications
Segment spaces allow you to define different applications in the same address range. If you have two sets
of mutually exclusive applications, you should define a separate segment space for each set. Figure 11
on page 30 shows two overlaid segment spaces—SPACE2 and SPACE4—where SPACE2 and SPACE4 are
mutually exclusive. This configuration is similar to the overlay situation shown in Figure 10 on page 28
except that:

• In Figure 11 on page 30, the segment spaces represent multiple applications rather than just one.
• The situation in Figure 10 on page 28 requires that all common code be in each segment space,

whereas in Figure 11 on page 30 no code is duplicated.

The configuration in Figure 11 on page 30 allows one set of users to access SPACE1, SPACE2, and
SPACE3, for example, while another set of users accesses SPACE1, SPACE3, and SPACE4.

The procedure required to define SPACE2 is described in detail under “Defining a Segment Space” on
page 82.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 29

Figure 11. Mutually Exclusive Segment Spaces as Overlays

Redefining Saved Segments
At some point, you may need to redefine some of your saved segments because of service upgrades or a
product's ability to take advantage of ESA/390 architecture (the product's ability to be loaded above the
16 MB line) or z/Architecture (the product's ability to be loaded above the 2 GB line). When you redefine a
saved segment that was residing below the 16 MB line to now be above the 16 MB line, you may want to
change the saved segment from a member to a DCSS. Although some virtual storage within an architected
segment will be unused, using a DCSS will give you greater flexibility in terms of product combinations. To
include addresses above 2 GB in a saved segment, it must be defined as a DCSS.

For an example of redefining an existing saved segment, see “Replacing an Existing Member of a Segment
Space” on page 84.

Planning and Defining CP Saved Segments

30 z/VM: 7.3 Saved Segments Planning and Administration

Table 1 on page 31 through Table 3 on page 31 assist you in redefining saved segments. These tables
indicate whether a saved segment definition with the DEFSEG command will be successful (indicated by
yes) or unsuccessful (no) depending on whether a saved segment with the same name as the one being
defined exists. The information in each table refers to the characteristics (class and type) of any existing
saved segments.

Table 1 on page 31 shows, for example, that you cannot define a DCSS if a class A or R segment space
with the same name already exists.

Table 1. Defining a DCSS

Type of Existing Saved Segment

Class DCSS Member Space

A or R Yes Yes No

S No No No

P Yes Yes Yes

None Yes Yes Yes

Table 2 on page 31 shows, for example, that you can define a member if a class P DCSS with the same
name already exists.

Table 2. Defining a Member

Type of Existing Saved Segment

Class DCSS Member Space

A or R Yes Yes No

S No No No

P Yes Yes Yes

None Yes Yes Yes

Table 3 on page 31 shows, for example, that you cannot define a segment space if a class S member
with the same name already exists. Also, you can define a segment space if a skeleton with that name
exists because you are really just adding another member to that space. This does not create a new
system data file for the space; it adds another member to that space's directory.

Table 3. Defining a Segment Space

Type of Existing Saved Segment

Class DCSS Member Space

A or R No No Yes

S No No Yes

P Yes Yes Yes

None Yes Yes Yes

System Data Files
System data files are provided in order to eliminate the need to preallocate fixed amounts of direct access
storage space for certain system functions. System data files hold NSSs, saved segments, printer image
libraries, national language support files (such as message repositories), and system trace data. Storing
these collections of system data in system data files allows them to be changed and regenerated during
system operation.

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 31

On z/VM a new NSS is added by defining it in a system data file using the CP DEFSYS command. No
regeneration or re-IPL of CP is required.

System data files are managed in a manner similar to spool files. They occupy spooling space, can be
created and purged during system operation, are maintained by CP in a set of queues which can be
queried, and can be backed up to tape by way of the SPXTAPE command.

Unlike spool files, however, system data files are not associated with virtual devices and do not contain
CCWs that control real output devices. Also, because their information pertains to system functions,
system data files (with the exception of system trace files) are not associated with particular virtual
machines and cannot be sent from one user to another. System trace files are associated with a particular
virtual machine and can be transferred to another user.

System Data File Classes
Like spool files, system data files have classes. However, these classes do not associate the files with
particular real or virtual devices, but to indicate the state of the system data file.

A system data file's class may be one of the following:
A

Class A system data files are available for use. This class applies to all system data files except
UCR files. Class A NSSs or saved segments have been defined and saved, class A image libraries are
available for use by real printers, class A message repository files are available for use, and class A
system trace files can be processed.

D
Class D applies to UCR and dump files. UCR files are not supported and no longer processed by CP.

I
Class I applies only to UCR files. UCR files are not supported and no longer processed by CP.

R
Class R applies only to NSSs, saved segments, and segment spaces. It indicates that the file is
available but its use is restricted to one or more authorized virtual machines. In order to gain access
to a restricted system data file, a virtual machine's z/VM directory entry must contain a NAMESAVE
statement for the NSS or saved segment.

P
A class P system data file is in the pending purge state, which indicates that it will be purged either
when the last virtual machine releases it or during the next system IPL or restart. This class applies
only to NSSs, saved segments, and message repository files. CP purges image libraries, UCR files, and
system trace files immediately.

S
Class S also applies only to NSSs and saved segments and indicates that the file is in the skeleton
state. This means that the NSS or saved segment has been defined by way of a DEFSYS or DEFSEG
command, but it has not yet been saved by way of a SAVESYS or SAVESEG command.

W
Class W applies only to system trace files. It indicates that a trace is active and that CP is currently
writing trace data to the set of files associated with that trace.

A system data file class is assigned to a system data file when it is created and CP changes the system
data file's class to match its state, as needed. For example, when a class E user enters a DEFSYS
command to define an NSS, CP assigns class S to the newly-defined NSS file. After the user has IPLed
the system to be named and saved and has entered the SAVESYS command, CP assigns class A or R to
the completed NSS file. The NSS is now available to be used by one or, if shared, more users. If the class
E user enters a PURGE command to remove a shared NSS from the system, but it is still in use by other
users, CP marks the file as pending-purge and assigns class P to the file. When the last user releases the
NSS from use, the file is purged.

Planning and Defining CP Saved Segments

32 z/VM: 7.3 Saved Segments Planning and Administration

Creating and Deleting System Data Files
The class E user creates a skeleton NSS file by entering the DEFSYS command that specifies a number of
parameters including the page ranges to be included in the NSS and the type of access to be permitted for
each range of pages. After the skeleton NSS file has been created, the system that is to be saved in the
NSS must be IPLed in the class E user's virtual machine. At the point in processing at which the system is
to be saved, the user must enter the SAVESYS command and specify the name that was assigned to the
system by the DEFSYS command. The NSS is then available to be loaded into the virtual storage of other
virtual machines through the IPL command.

In a similar manner, the class E user creates a skeleton saved segment file by entering the DEFSEG
command, again specifying the page ranges to be included and their permitted access among other
parameters. After the skeleton saved segment file has been created, the data that is to be saved must be
loaded into the virtual storage addresses it is to occupy. To save the data in the saved segment, the class
E user enters the SAVESEG command. The saved segment is then available to be loaded into the virtual
storage of other virtual machines through DIAGNOSE code X'64', or in CMS virtual machines through the
CMS SEGMENT LOAD command or macro. If a saved segment is to reside in a virtual machine's address
space, you should consider using the SEGMENT RESERVE command to reserve space before you enter the
SEGMENT LOAD command.

The definition of NSSs and saved segments can be verified by the class E user by way of the QUERY NSS
MAP command. The queue named NSS contains both NSS and saved segment system data files. The class
E user can delete all or selected NSS and saved segment files that are not currently attached to virtual
machines by way of the PURGE NSS command. NSS and saved segment files can be deleted by spool ID
or file name. In addition, by means of the ASSOCIATES operand on the PURGE NSS command, the user
can delete all files associated with a segment space or member saved segment.

Image libraries for impact printers and 3800 printers are created using the IMAGELIB service program.
This program uses DIAGNOSE code X'74' to load and save a named saved image into a 3800 or impact
printer image library. The image library is then available to be used by a real printer. The spooling operator
can specify that a real printer is to use the image library by entering its name on the IMAGE operand of the
class D START command.

The QUERY IMG command can be used to display all of the existing image libraries. All or selected image
libraries that are not in use can be deleted by way of the PURGE IMG command. Image library files can be
deleted by spool ID or file name.

UCR files were previously created through the CP OVERRIDE command. However, support for the user
class restructure (UCR) function and the OVERRIDE utility have been removed. If any UCR files exist on
the system, the contents of those files will not be processed by CP. The QUERY UCR command can be
used to display the queue of UCR files. The PURGE UCR command can be used to delete all or selected
UCR files.

Message repository files are created through the CMS LANGGEN command. This command uses
DIAGNOSE code X'CC' to load and save in a message repository system data file the messages contained
in a compiled message repository. The QUERY NLS command can be used to display the queue of
message repository files. The PURGE NLS command can be used to delete all or selected message
repository files.

System trace files are created when CP or virtual machine trace data recording has been started by way of
the TRSAVE or TRSOURCE command and the destination of the information is DASD. The QUERY TRFILES
command can be used to display the queue of system trace files. The PURGE TRFILES command can be
used to delete all or selected system trace files.

System Data File Attributes
When a system data file is created, it is assigned certain attributes, some of which can be specified by the
user. System data file attributes are the following:

• Owner ID. The owner ID indicates either the queue on which the system data file resides (*NSS, *IMG,
*UCR, or *NLS) or, for system trace files, the user ID of the virtual machine to which the system trace
file belongs. By default, the file owner of a system trace file is the user who enters the TRSAVE or

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 33

TRSOURCE command that creates the file. This default can be overridden by using the TO operand of
the TRSAVE command. All system data files other than system trace files are owned by the system.

• Spool ID. This is a number between 1 and 9999 that is automatically assigned to a system data file
by CP when a new system data file is created. Spool IDs are assigned consecutively until 9999 (the
maximum for each system data file queue) is reached. Assignment then begins again at 1. The spool ID
of each system data file is unique to each queue and is used as a part of the identifier of a spool file. In
order to identify a specific system data file in a command, the system data file queue and spool ID must
be given.

• System data file class. See “System Data File Classes” on page 32.
• System data file type. This field indicates the queue (NSS, IMG, UCR, NLS, or TRF) on which the system

data file resides.
• System data file size. This is the number of logical records in the system data file, which can be a value

up to 999 million.
• Creation date and time.
• File name and file type. The interpretation of the file name and file type of a system data file depends

on its type. For a system data file in the NSS queue, the file name must be specified by the user when it
is created. The file type is assigned by CP and indicates the type of system data file.

CP assigns a file type of NSS to all NSSs. However, when the MAP or USERS operand is used on the
QUERY NSS command, CP displays CPNSS as the file type for a CP system service NSS that contains CP
writable pages and displays NSS as the file type for all other NSSs.

CP assigns a file type of DCSS to all saved segments. However, when the MAP or USERS operand is
used on the QUERY NSS command, CP displays a file type that identifies the type of saved segment, as
follows:

– DCSS identifies a DCSS that contains only page addresses below 2047 MB.
– DCSSG identifies a DCSS that includes page addresses above 2047 MB.
– DCSS-S identifies a segment space.
– DCSS-M identifies a member saved segment.
– CPDCSS identifies a CP system service saved segment that contains CP writable pages, such as the

monitor saved segment.

The file name of an image library must be specified on the IMAGELIB command. CP assigns a file type of
IMG to all image libraries.

The file name of a message repository system data file is the language identifier of the message
repository specified on the CMS LANGGEN command. A message repository's file type is NLS.

The file name of a system trace file is the file name assigned by the user who enters the TRSAVE
command. If the file name is not specified, the default file name for a CP system trace file is CPTRACE.
The default file name for a file that contains trace data defined by way of the TRSOURCE command is
the trace identifier.

The file type of a system trace file is one of the following:
CP

For CP trace table recording
VM

For a virtual machine user trace
VMG

For a virtual machine group trace
IO

For an I/O trace
DATA

For a data trace.

Planning and Defining CP Saved Segments

34 z/VM: 7.3 Saved Segments Planning and Administration

Where they can be specified by the user, the file name and file type can each be from one to eight
alphanumeric characters. Duplicate names are not permitted for system data files of the same file type
and class.

• Originating user. This is the user ID of the virtual machine that created the system data file. For system
trace files, the originator depends on the type of data it contains. For CP trace table recording and I/O
traces, virtual machine group traces, and data traces, the file originator is SYSTEM. For virtual machine
user traces, the file originator is the user ID specified by the FOR operand on the TRSOURCE command
that defined the trace.

NSS and saved segment files have some additional attributes, as follows:

• Minimum storage size (NSS only). This field indicates for an NSS the minimum storage size of the
virtual machine in which an NSS can be loaded. This field does not apply to a saved segment.

• Beginning and ending pages. These fields indicate the beginning and ending page numbers of a range
of pages within an NSS or saved segment. A different type of virtual machine access can be assigned to
each page range defined in an NSS or saved segment.

• Access type. This field holds a code that describes the virtual machine access for pages in a given page
range. Access can be shared or exclusive, read-only or read/write, with or without data saved. A code
that allows write access by CP and shared read-only access by virtual machines with no data saved is
also provided for CP system service NSSs and saved segments. Because segment spaces are defined by
the members they contain rather than by page ranges specified directly by the user, this field does not
apply to segment spaces.

• Number of users. This field shows the number of users attached to the NSS or saved segment.
• Registers used for parameters (NSS only). This field shows the user-specified range of general

registers in which parameters will be passed to a virtual machine when an NSS is IPLed in the virtual
machine. This field does not apply to a saved segment.

• Virtual machine group (NSS only). This field shows whether the VMGROUP attribute was specified on
the DEFSYS command when the NSS was created. This field does not apply to a saved segment.

Table 4 on page 35 summarizes some of the system data file attributes.

The QUERY NSS, QUERY IMG, QUERY UCR, QUERY NLS, and QUERY TRFILES commands can be entered
to display on the virtual operator's console one line of attribute information about each system data file
that currently exists in the NSS, IMG, UCR, NLS, and TRF queues. Each line contains the following:

• The file's owner ID, spool ID, class, and type
• The number of logical records in the system data file
• The date and time of the file's creation
• The file's file name and file type
• The user ID of the user that created the file.

Table 4. System Data File Attributes

Type of
System Data File

System Data
File Queue

Owner ID

Valid
File types

Saved segment NSS queue *NSS CPDCSS
DCSS
DCSSG
DCSS-S
DCSS-M

Image library IMG queue *IMG IMG

NSS NSS queue *NSS CPNSS
NSS

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 35

Table 4. System Data File Attributes (continued)

Type of
System Data File

System Data
File Queue

Owner ID

Valid
File types

UCR file UCR queue *UCR User-specified

Message repository NLS queue *NLS NLS

System trace TRF queue User-specified CP
VM
VMG
IO
DATA

The MAP operand can be used with the QUERY NSS command to obtain information about the other
attributes of an NSS or saved segment file. Information about the virtual machines that are actively using
an NSS or saved segment can be obtained by way of the QUERY NSS USERS command.

When the QUERY NSS command is issued with the MAP operand for a saved segment specified by the
NAME operand, CP displays information about the attributes of the specified saved segment. When
the specified file is a segment space, CP displays information about the segment space and all of
its members. When the specified file is a member saved segment, CP displays information about the
member saved segment and all of the segment spaces of which it is a member.

The QUERY NSS USERS command can be entered for a particular NSS or saved segment to determine its
active users. When the file is an NSS, DCSS, or member saved segment, CP identifies the file and lists the
user IDs of the virtual machines that are currently using it. When the file is a segment space, CP identifies
both the segment space and its member saved segments and lists the current users of each.

System Data File Commands
Several CP commands are provided to control system data files, most of which require privilege classes
higher than class G. System commands can be grouped into those that are used to create, delete, query,
and back up system data files. General users can load NSS files into their virtual machines (by way of
the IPL command), can attach saved segments to their virtual machines (by way of DIAGNOSE code X'64'
or the CMS SEGMENT command or macro), and choose to receive messages in a language installed in
a message repository file (by way of the SET CPLANGUAGE command). General users can also process,
query, and delete the system trace files of which they are the owners but cannot create them or back
them up.

The privilege class required to manipulate a system data file depends on its type. Privilege class E is
required to create, delete, and query NSS, saved segment, and message repository files. Image library
files can be controlled by class A, B, C, D, or E users. Privilege class A, B, or C is required to enter
commands for UCR files. Classes A and C are required to create a system trace file. Class G users can
delete only system trace files they own and can query only system trace files they own or originated. Class
A, C, D, and E users can query and delete all system trace files.

The commands used to create and delete system data files are discussed in “Creating and Deleting
System Data Files” on page 33. The QUERY command can be entered to determine the number of system
data files that exist (QUERY SDF) and obtain the attributes and status of system data files (QUERY NSS,
QUERY IMG, QUERY UCR, QUERY NLS, and QUERY TRFILES).

System data files can be backed up by either a spooling operator or a system analyst (privilege class D or
E, respectively) using the same spool-to-tape facility used to back up spool files, the SPXTAPE command.
If current copies of all system data files are maintained on tape, the files can be quickly reloaded rather
than rebuilt if they are inadvertently deleted. All or selected system data files can be dumped to tape by
way of the SPXTAPE DUMP command and restored to the system by way of the SPXTAPE LOAD command.
System data files can be selected by user ID (system trace files only), queue (IMG, NLS, NSS, TRF, or
UCR), spool ID number or range, class, file name pattern, file type pattern, or combinations of these

Planning and Defining CP Saved Segments

36 z/VM: 7.3 Saved Segments Planning and Administration

attributes. A file name or file type pattern can be either a complete file name or file type or a string
containing wild cards (* and %).

A class G user can use the SPXTAPE command to process the user's own system trace files.

All of the SPXTAPE operands can be used when backing up system data files. However, SPXTAPE cannot
dump a class W system trace file. Note that the migration of system data files between z/VM and VM/SP
and VM/SP HPO is not supported.

System Data File Recovery
Like spool files, system data files are recovered by CP when CP is restarted after a real machine
termination. During system operation, information in real storage about existing system data files is
checkpointed (written to auxiliary storage) when appropriate. This information is then used during a warm
start, force start, cold start, or automatic software re-IPL to reconstruct information in real storage about
closed system data files (system data file queues). System data files are not recovered during a clean
start.

The CP system residence volume contains a user-allocated warm start save area. The warm start save
area holds copies of the spool file index pages, each of which contains the auxiliary storage addresses of
the spool file map blocks for up to 1022 spool files and system data files. The first spool file map block
for each system data file contains a copy of the spool file block (which describes the system data file)
and the auxiliary storage addresses of the pages that contain the system data file's data. Auxiliary storage
addresses for system data files are cleared during a clean start.

The maximum number of spool file index pages contained in the warm start save area (and hence the
maximum number of spool files system data files allowed in the system) depends on the device type
of the system residence volume (which affects the number of 4 KB pages per cylinder) and the number
of cylinders allocated for this purpose. Each 4 KB page allows for 1022 spool files or system data files;
a maximum of 9 cylinders may be allocated to the warm start save area. Accordingly, if the system
residence volume is a 3380 (with 150 4 KB pages per cylinder), a warm start area of 9 cylinders allows for
over 1.3 million spool files and system data files. The maximum number of spool file index pages possible
is proportionally reduced if the warm start save area has fewer than the maximum number of cylinders or
pages. The warm start save area is formatted with 4 KB pages so that the CP paging I/O facility can be
used for reading and writing spool file index pages.

During system operation, when a system data file is created or deleted, the auxiliary storage address of its
associated spool file map block is placed or cleared to zeros in a spool file index page, a copy of which is
written in the warm start save area. Specifically, the spool file index page associated with a system data
file is checkpointed when a system data file is opened or deleted.

When the warm start save area is full, no more spool IDs can be assigned to either system data files or
spool files. The operator is notified that the maximum system spool limit is exceeded. The operator can
start additional printers or card punches to handle the classes of the queued spool output files, delete
existing spool input files, if possible, or dump spool files and system data files to tape to make room
available.

When the status or characteristics of a system data file change during system operation, the changed
spool file block in storage is checkpointed by updating the copy of it kept in the spool file map block on
auxiliary storage. Specifically, the spool file block is checkpointed when one of the following occurs:

• A system data file is closed.
• The characteristics of a closed system data file are changed (for example, when the file is pending

purge, or when part of an image library is replaced by the IMAGEMOD command).

Planning and Defining CP Saved Segments

Chapter 1. Planning and Defining CP Saved Segments 37

Planning and Defining CP Saved Segments

38 z/VM: 7.3 Saved Segments Planning and Administration

Chapter 2. Planning and Defining CMS Logical Saved
Segments

This chapter:

• Discusses planning for your CMS saved segment layout.
• Describes how to create the files that define the contents of physical and logical saved segments.

Overview of Physical and Logical Saved Segments
A saved segment is an area of virtual storage that is assigned a name, loaded with data or programs, then
saved in a system data file in spool space. Using saved segments is a way of using storage that is not
yours.

Segment spaces, member saved segments, and discontinuous saved segments (DCSSs) reside on CP-
owned volumes and must be defined to CP before being used. A segment space, which begins and ends
on a megabyte boundary, contains one or more member saved segments, which begin and end on page
boundaries. A DCSS also begins and ends on a megabyte boundary, but does not contain members.

Defining frequently used data or programs as saved segments provides several advantages:

• Several users can access the same saved segment, which helps you use real storage more efficiently.
• Saved segments need not be in the address range of a virtual machine (this can also help you use

storage more efficiently).
• Space for saved segments can be reserved within a virtual machine's address space, which helps you

make sure that the segment is always available.

For information about defining CP saved segments, see Chapter 3, “Using VMSES/E to Define, Build, and
Manage Saved Segments,” on page 57. For information about the concepts of CP saved segments, or
for information about defining CP saved segments if you are not using VMSES/E to manage your saved
segments, see Chapter 1, “Planning and Defining CP Saved Segments,” on page 1.

Note: VMSES/E does not support saved segments that contain pages above 2047 MB.

A physical saved segment is a member saved segment or DCSS that may contain one or more logical
saved segments that CMS recognizes. Defining logical saved segments provides further advantages:

• Each logical saved segment can contain different types of program objects, such as modules, text
files, execs, callable services libraries, language information, and user-defined objects, or file directory
information for one minidisk.

You can use logical saved segments to package your entire application. For example, you may want to
create a logical segment definition file that defines the parts of your application. You could then send it
to the system administrator, who will create the logical saved segment and make it available for others
to use. For more information, see “Defining the Contents of a Logical Saved Segment” on page 44.

• You can use a member saved segment or DCSS more efficiently by defining it as a physical saved
segment containing many different logical saved segments.

• Users can access specific logical saved segments rather than all the contents of a physical saved
segment.

Note:

1. CMS recognizes only logical saved segments. Loading a physical saved segment will not cause the
logical saved segments it contains to be loaded and recognized by CMS. You must explicitly load each
logical saved segment you need.

Planning and Defining CMS Logical Saved Segments

© Copyright IBM Corp. 1991, 2022 39

2. You cannot define logical saved segments in a DCSS that contains pages above 2047 MB. CMS does
not support saved segments above 2047 MB.

Using Logical Saved Segments
The following list summarizes what you need to do to access code or data from within a logical saved
segment.

1. Create the code or data that you want to define as a saved segment.
2. Define the space in CP for the physical saved segment:

• If you are using VMSES/E to manage your saved segments, see “Changing, Adding, and Deleting
Saved Segment Definitions” on page 62.

• If you are not using VMSES/E, use the CP DEFSEG command to define the saved segment. The
DEFSEG command creates a skeleton system data file for the saved segment.

Note: To use the DEFSEG command to define a saved segment, you need CP class E command
privileges.

For information about the concepts of defining CP saved segments, see Chapter 1, “Planning and
Defining CP Saved Segments,” on page 1.

3. Build the physical and logical saved segments. See “Creating Physical and Logical Saved Segments” on
page 42.

4. Use the SEGMENT RESERVE command to reserve space within your virtual machine's address space
for the saved segment (optional).

5. Use the SEGMENT LOAD command or SEGMENT LOAD macro to load the logical saved segment into
storage.

For information on how to use the SEGMENT command, see the z/VM: CMS Application Development
Guide. For information on how to use the SEGMENT macro, see the z/VM: CMS Application
Development Guide for Assembler.

6. Use predefined interfaces to access the code or data contained in the saved segment.

Saved Segment Design Considerations
There are a number of questions you need to consider when you create the data or code that you want to
store in a saved segment:

• How will users access the data or code in the saved segment? Do you want to create a command
interface that provides access to the saved segment?

• Will the saved segment reside within the virtual machine's address space? If so, you should consider
reserving space within the virtual machine's address space for the saved segment.

• Will the saved segment work in an XA or XC virtual machine, or any combination? Segments that
perform I/O must make sure to provide code for the specific virtual machine mode (or use architecture-
independent interfaces).

Note: In order to execute code in a saved segment which is designed to work in a 370 virtual machine,
the CP 370 Accommodation Facility must be enabled.

• Will the saved segment be loaded above the 16 MB line? Saved segments that reside above the 16 MB
line must be 31-bit capable, so EXEC 2 execs, CMS message information (message repository, parser
table, and translation tables), and minidisk file directory information cannot be included in a saved
segment that resides above 16 MB. For example, Table 5 on page 41 lists the saved segments that are
supplied with the base z/VM product (unless noted otherwise) and whether or not they can be loaded
above the 16 MB line.

Planning and Defining CMS Logical Saved Segments

40 z/VM: 7.3 Saved Segments Planning and Administration

Table 5. Location for Loading Saved Segments

Segment Name Description Can be Loaded Above
16 MB

CMSBAM Contains the DOS Basic Access Method for reading
disk directories and accessing data on disk or
tape.

NO

CMSDOS Contains DOS Simulation code which is used
by DOS application programs to access DOS
or FBA formatted directories. This segment is
also necessary to install the VSAM product in
its segment. The DOS segment provides a point
of data interchange for both true DOS and OS
simulated applications which use VSAM datasets.

NO

CMSFILES Contains DMSDAC and DMSSAC. It is ONLY used
by SFS server machines. The segment can overlay
any segment not being used by the server.

YES

CMSPIPES Contains PIPES and RXSOCKETS. The SYSPROF
EXEC loads both pipes and RXSOCKETS. If the
segment is not loaded, CMS will NUCXLOAD the
PIPES module.

YES

CMSVMLIB CMSVMLIB contains VMLIB and REXX RTL
segments. VMLIB contains the CSL routines. If the
segment is not loaded, the CSL routines will be
loaded into virtual storage by CMS. This may cause
constraints on your virtual storage. The REXX RTL
segment is used for executing the compiled REXX
execs that CMS sends on the system disk.

YES

GUICSLIB Contains the CMS GUI (graphical user interface)
CSL routines.

YES

HELPSEG1 Contains a directory of all the help files (a saved
file directory).

NO

INSTSEG Contains commonly used EXECs and XEDITs for
example, PEEK, RDRLIST, and FILELIST.

YES

MONDCSS Contains the segment for monitor data. YES

NLSUCENG Contains the upper case English message
repository.

YES

PERFOUT Contains the Performance Toolkit Data Collector
segment.

YES

SCEE Contains the Language Environment® segment. NO

SCEEX Contains the Language Environment segment. YES

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 41

Table 5. Location for Loading Saved Segments (continued)

Segment Name Description Can be Loaded Above
16 MB

SVM (DMSSVM) Consists of the DMSSVM5 MODULE and the
DMSSVM5C MODULE. Both of these modules are
serviced through replacement parts. The SVM
segment is intended for internal use and is
not documented for customer use. The official
IBM recommendation is to use the segment for
performance reasons. Otherwise, the code will
be NUCXLOADED in the virtual machine when
needed. SVM is used by CMS and various program
products.

YES

1 This segment is not supplied with the base z/VM product.

Creating Physical and Logical Saved Segments
If the member saved segment or DCSS you are going to use as a physical saved segment is defined in
CP, you can create the logical saved segments in CMS. The process for creating logical saved segments
depends on whether you are using VMSES/E to manage your saved segments:

• If you are using VMSES/E:

1. Create the code or data that you want to reside in each logical saved segment. See “Types of
Program Objects Allowed in a Logical Saved Segment” on page 42.

2. Define the contents of each logical saved segment in a logical segment definition file. See “Defining
the Contents of a Logical Saved Segment” on page 44.

3. Use the VMFSGMAP EXEC to modify the definition for the physical saved segment and add entries to
identify the logical saved segments to be included.

4. Use the PUT2PROD EXEC to build the saved segments.

If required, PUT2PROD (as indicated by a message from VMFBLD), copies the SYSTEM SEGID file
from the build disk to the CMS system disk and resaves the CMS named saved system.

For information about using VMFSGMAP and VMFBLD, see Chapter 3, “Using VMSES/E to Define, Build,
and Manage Saved Segments,” on page 57.

• If you are not using VMSES/E:

1. Create the code or data that you want to reside in each logical saved segment. See “Types of
Program Objects Allowed in a Logical Saved Segment” on page 42.

2. Define the contents of the physical saved segment (that is, what logical saved segments it contains)
in a physical segment definition file. See “Defining the Contents of a Physical Saved Segment” on
page 43.

3. Define the contents of each logical saved segment in a logical segment definition file. See “Defining
the Contents of a Logical Saved Segment” on page 44.

4. Use the SEGGEN command to build the saved segments. See “Using the SEGGEN Command to Build
the Saved Segments” on page 52.

5. If required, copy the system segment identification file to the CMS system disk and resave the CMS
named saved system. See “System Segment Identification File” on page 52.

Types of Program Objects Allowed in a Logical Saved Segment
As previously mentioned, logical saved segments can contain different types of program objects. You can
include the following:

Planning and Defining CMS Logical Saved Segments

42 z/VM: 7.3 Saved Segments Planning and Administration

• Modules—CMS MODULE files that are treated as nucleus extensions or subcommand processors
• Text files—CMS TEXT files or TXTLIB members that are treated as nucleus extensions or subcommand

processors
• Execs—EXEC2, REXX, or alternate format exec files (may have a file type of EXEC or XEDIT)
• Callable services libraries—A set of routines that can be called from a program, such as those in VMLIB

or routines that you create
• Language information—System national language information
• User-defined objects
• Minidisk directory—File directory information for minidisks. (If a logical saved segment contains a

minidisk directory, it cannot contain any other objects.)

Defining the Contents of a Physical Saved Segment
Before loading and saving a physical saved segment, you need to define the contents of the physical
segment in a physical segment definition file. You must give this file the same name as the DCSS or
member saved segment you have already defined; the recommended file type is PSEG.

Note: Do not create this file if you are using VMSES/E to manage your saved segments. When you use the
VMFBLD EXEC to build the saved segments, VMFBLD creates the PSEG file.

The physical segment definition file has the following attributes:

• It is a fixed length file (it can be a variable length file).
• It contains a logical segment record for each logical saved segment to be included within the physical

segment.
• All records (except comment records) can be continued by placing any nonblank character in column

72; columns 73 and above are ignored.
• Blank lines and comment lines are included by starting the line with an asterisk (*) in column one.
• The SEGGEN command uses a default file type of PSEG for the file.

Logical Segment Record
Each logical segment record in the file specifies a file name that corresponds to the file name of the
logical segment definition file; you cannot specify duplicate file names within the file. The default file type
for a logical segment record is LSEG.

Each logical segment record has the following format:

lfn lft lfm
is the file name, file type, and file mode of a logical segment definition file. If the file type is not
specified, LSEG is assumed. If the file mode is not specified, then all accessed directories and disks
are searched.

 PI

PROFILE profile
indicates that an exec is to be executed before the files are loaded into the logical saved segment.
The profile is the file name of the exec. If the exec returns with a nonzero return code that equals 28
or less, the segment is not saved and processing continues for the remaining logical segments. If the
return code is greater than 28, SEGGEN processing is terminated.

For example, you could use the PROFILE option to call an exec that accesses disks or directories, and
then compiles programs and builds a module.

EPIFILE epifile
indicates that an exec is to be executed after the files have been loaded into a logical saved segment.
The epifile is the file name of the exec. If the exec returns with a nonzero return code, the segment is
not saved. If the return code is greater than 28, SEGGEN processing is terminated.

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 43

For example, you could use the EPIFILE option to call an exec that performs any cleanup work, such
as erasing files and releasing any unneeded disks or directories.

 PI end

comments
is any sequence of characters. They are treated as comments and are not processed.

Defining the Contents of a Logical Saved Segment
You must define the contents of the logical saved segment in a logical segment definition file. The
logical segment definition file contains records describing each object to be contained in the logical saved
segment. You may include eight different types of objects in this file:

• MODULE
• TEXT
• EXEC
• LIBRARY
• LANGUAGE
• DISK
• USER
• SKIP

Each type of object has its own record format.

The logical segment definition file has the following attributes:

• It is a fixed length file (it can be a variable length file).
• All records (except comment records) can be continued by placing any nonblank character in column

72; columns 73 and above are ignored.
• Blank lines and comment lines are included by starting the line with an asterisk (*) in column one.
• The file name and file type must match a logical segment record in the physical segment definition file;

the default file type is LSEG.

MODULE Record
The MODULE record defines a CMS MODULE file that is to be included in the logical saved segment as
a nucleus extension or subcommand processor. Nucleus extension command names and subcommand
environment names must be unique within a logical saved segment. Programs that execute in shared
physical saved segments must be reentrant.

Each MODULE record has the following format:

MODule fn
*

fm (
1

Options

)

comments

Options

Planning and Defining CMS Logical Saved Segments

44 z/VM: 7.3 Saved Segments Planning and Administration

SYstem

USER SErvice ENDCmd IMMCmd PERManent

SUBcom

NAME name

Notes:
1 You can enter Options in any order between the parentheses.

fn
specifies the file name (file type of MODULE) of the CMS MODULE file to be included in the logical
saved segment.

fm
is the accessed directory or disk of the MODULE file. If the file mode is not specified, all accessed
directories and disks are searched.

SYstem
indicates that the routine is to be entered disabled for interrupts and in key zero. It does not indicate
that the routine will survive ABEND processing; this is determined by the SYSTEM or USER option on
the SEGMENT LOAD command. SYSTEM is the default.

USER
indicates that the routine is to be entered enabled for interrupts and in user key.

SErvice
indicates that nucleus extension service calls are accepted.

ENDCmd
indicates that the nucleus extension receives control at normal end-of-command processing.

IMMCmd
indicates that this nucleus extension can be invoked as an immediate command.

PERManent
indicates that this nucleus extension must be named explicitly on a NUCXDROP command. It is not
dropped by a NUCXDROP * command.

SUBcom
specifies that this MODULE is to be a subcommand processor. It will be entered in key zero with
interrupts disabled. If SUBCOM is specified, all other options are ignored. If SUBCOM is not specified,
the MODULE is treated as a nucleus extension. Note that all subcommand processors are loaded with
the SYSTEM bit on in their SCBLOCKs, and thus survive processing.

NAME name
specifies the nucleus extension command name or subcommand environment name for this program.
If NAME is not specified, the file name of the MODULE is used for the name.

comments
is any sequence of characters. They are treated as comments and are not processed.

TEXT Record
The TEXT record defines a TEXT file that is to be included in the segment as a nucleus extension or
subcommand processor. Consider the following when including TEXT files:

• Each TEXT file will be processed independently for external symbol resolution. Only TEXT files that are
part of a BEGIN-END block will be treated as a unit during external symbol resolution.

• Nucleus extension command names and subcommand environment names must be unique within a
logical saved segment.

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 45

• Programs that execute in shared saved segments must be reentrant.

Each TEXT record has the following format:

TEXT fn

(AUTO

(
1

Options

)

comments

Options

BEGIN NAME name ENTRY  name

AUTO

NOAUTO

END

SYstem

USER SErvice ENDCmd IMMCmd PERManent

SUBcom

Notes:
1 You can enter Options in any order between the parentheses.

fn
specifies the file name of the CMS TEXT file to be included in the logical saved segment. All accessed
file modes are searched. If a GLOBAL TXTLIB command has been issued, fn may indicate the name of
a TXTLIB member.

BEGIN
indicates that this TEXT file is the first in a series of TEXT files to be considered as one nucleus
extension or subcommand processor. The next record in the logical segment definition file must be a
TEXT record. The sequence continues until a TEXT record with the END option is encountered. This
BEGIN-END block of TEXT files is taken as a single entity and treated as a single nucleus extension or
subcommand processor. External symbol resolution will be performed and a single load module will
be created.

END
indicates the last of a series of TEXT records which are to be treated as a single nucleus extension or
subcommand processor. No other options can be specified if END is specified.

NAME name
specifies the nucleus extension command name or subcommand environment name for this program.
If NAME is not specified, the file name of the TEXT file is used for the name. The NAME option on
the same record as the BEGIN option specifies the name of the single BEGIN/END nucleus extension
or subcommand processor. Within a BEGIN-END block of TEXT records, NAME is only valid with the
SUBCOM option; otherwise, it is ignored.

ENTRY name
specifies the entry point (EXTERNAL definition) to be treated as the nucleus extension or
subcommand processor entry point. If ENTRY is not specified, the first CSECT in the TEXT file is used
as the entry point. The ENTRY option on the same record as the BEGIN option specifies the name of
the entry point to be used for the single BEGIN/END nucleus extension or subcommand processor.
Within a BEGIN-END block of TEXT records, ENTRY is only valid with the SUBCOM option; otherwise, it
is ignored.

Planning and Defining CMS Logical Saved Segments

46 z/VM: 7.3 Saved Segments Planning and Administration

AUTO
indicates that any TEXT file referred to in an EXTERNAL symbol in this TEXT file will be automatically
loaded. This is the default.

NOAUTO
indicates that no other TEXT files will be loaded to resolve EXTERNAL references.

SYstem
indicates that the routine is to be entered disabled for interrupts and in key zero. It does not indicate
that the routine will survive ABEND processing; this is determined by the SYSTEM or USER option on
the SEGMENT LOAD command. SYSTEM is the default.

USER
indicates that the routine is to be entered enabled for interrupts and in user key.

SErvice
indicates that nucleus extension service calls are accepted.

ENDCmd
indicates that the nucleus extension receives control at normal end-of-command processing.

IMMCmd
indicates that this nucleus extension can be invoked as an immediate command.

PERManent
indicates that this nucleus extension must be named explicitly on a NUCXDROP command. It is not
dropped by a NUCXDROP * command.

SUBcom
specifies that this program is to be a subcommand processor. It will be entered in key zero with
interrupts disabled. If SUBCOM is not specified, the program is treated as a nucleus extension. Note
that all subcommand processors are loaded with the SYSTEM bit on in their SCBLOCKs, and thus
survive end-of-command processing.

SUBCOM is also valid on a TEXT record within a BEGIN-END block. Each record that includes
the SUBCOM option defines a subcommand processor entry point within the nucleus extension or
subcommand processor defined by the BEGIN-END block. The default subcommand environment
name is the file name and the default entry point is the first CSECT in the TEXT file.

comments
is any sequence of characters. They are treated as comments and are not processed.

EXEC Record
The EXEC record defines an EXEC 2, REXX, or alternate format exec that is to be included in the logical
saved segment. Execs within a logical saved segment must have unique names. Also, remember that
EXEC 2 execs cannot be included in a logical saved segment that resides above 16 MB.

Each EXEC record has the following format:

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 47

EXEC fn1

EXEC * fn1 EXEC

ft1

* fn1 ft1

fm1

fn1 ft1

fn2

ft1

ft2

(NOINSTSEG

(
NOINSTSEG

INSTSEG)

comments

fn1 ft1 fm1
specifies the file name, file type, and file mode of the EXEC 2, REXX, or alternate format exec to be
included in the logical saved segment. The default file type is EXEC. If the file mode is not specified,
all accessed file modes are searched.

fn2 ft2
specifies the file name and file type by which the exec will be known when it resides within the logical
saved segment. If this name is not specified, the present file name and file type of the exec file will
continue to be used.

INSTSEG
specifies that the exec is to be considered part of the CMS installation segment, and as such, is
affected by the SET INSTSEG command and the INSTSEG parameter of the IPL command.

NOINSTSEG
specifies that the exec is not to be considered part of the CMS installation segment, and as such, is
not affected by the SET INSTSEG command or the INSTSEG parameter of the IPL command. This is
the default.

comments
is any sequence of characters. They are treated as comments and are not processed.

LIBRARY Record
The LIBRARY record identifies a callable services library that is to be included in the logical saved
segment. Libraries within a logical saved segment must have unique names. You must first create the
callable services library using the CSLGEN command with the SEG operand. The resulting library file has a
file type of CSLSEG.

For more information on VMLIB Callable Services Library (CSL) and creating your own CSL, see z/VM: CMS
Application Development Guide and the z/VM: CMS Application Development Guide for Assembler.

Each LIBRARY record has the following format:

Planning and Defining CMS Logical Saved Segments

48 z/VM: 7.3 Saved Segments Planning and Administration

LIBrary fn
*

fm (

)

comments

fn
specifies the file name of the callable services library (CSL) file to be included in the logical saved
segment. The file must have the file type of CSLSEG.

fm
is the accessed directory or disk of the CSLSEG file. If the file mode is not specified, all accessed file
modes are searched.

comments
is any sequence of characters. They are treated as comments and are not processed.

LANGUAGE Record
The LANGUAGE record identifies system national language information that is to be included in the logical
saved segment. Only one DMS language segment may be included in a logical saved segment. Note that
the name of a logical saved segment that contains a DMS language segment must have the name NLxy.
The x is a single character representing the level identifier (levelid) of the language segment. The level
identifier is defined when the CMS nucleus is created. The default levelid is S. The y is the language
identifier (langid) for the language segment. Language segments within a logical saved segment must
have unique names.

Each LANGUAGE record has the following format:

LANGuage applid langid
S

levelid (

)

comments

applid
is the application identifier for a text file created by the LANGMERG command.

langid
is the language identifier for a text file created by the LANGMERG command.

levelid
is one character (A-Z, 0-9) that identifies the version of the logical saved segment being built. If the
levelid is not specified, it defaults to S.

comments
is any sequence of characters. They are treated as comments and are not processed.

The single text file created by LANGMERG has the file ID of applidNLS TXTlangid.

DISK Record
The DISK record identifies a minidisk for which file directory information is to be placed in a logical
saved segment. When this logical saved segment is loaded, the file directory information is then available
to CMS users who access the disk as read/only. When a DISK record is included in a logical segment
definition file, it must be the only record in the file (other than comment or SKIP records).

The DISK record has the following format:

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 49

DISK vdev label

(

INIT)

comments

vdev
is the virtual device number of the minidisk for which file directory information is to be included in the
logical saved segment. The disk must be linked read/write at the specified device address at the time
the SEGGEN command is entered. The vdev can consist of up to 4 digits.

label
is the label of the CMS minidisk. The label may consist of up to six characters and cannot contain any
embedded blanks.

INIT
indicates to SEGGEN to issue the SAVEFD command with the INIT option before saving the actual
disk directory. The INIT option of the SAVEFD command initializes the disk for a subsequent SAVEFD
command.

Usage Notes:

1. SKIP records may not come before a DISK record in a logical segment definition file.
2. No other records, other than SKIP records, can be in the same logical segment as a DISK record.
3. The file mode letter Z is used when saving the minidisk directory; therefore, any directory or disk

accessed as Z is released.

For more information on the SAVEFD command and sharing file directory information, see the z/VM: CMS
Commands and Utilities Reference.

USER Record
The USER record identifies user objects to be included in a logical saved segment. As part of the objects
you need to provide:

• A program that is called during SEGGEN processing to load the user object into the segment
• A program that is called when the logical saved segment is loaded or purged.

User program objects are the last to be loaded when the logical saved segment is loaded and the first to
be purged when the logical saved segment is purged.

Each USER record has the following format:

USER username loadprog runprog

(

PARMS parameters

username
specifies a 1- to 8-character name of the user object.

 PI

loadprog
specifies the MODULE name of the program to be called during SEGGEN processing to load the user
objects into the segment.

runprog
specifies the MODULE name of the program to be called when the logical saved segment is loaded or
purged.

Planning and Defining CMS Logical Saved Segments

50 z/VM: 7.3 Saved Segments Planning and Administration

PARMS parameters
is any sequence of characters following the keyword PARMS to be passed to both the load program
and runtime program as part of the SGMTEXIT control block. The parameter list is passed as a string
with a maximum of 64 KB. It includes any leading or trailing blanks and a right parenthesis if one is
included. If you do not specify PARMS, you can include comments after a right parenthesis.

Usage Notes:

1. The address of a control block (SGMTEXIT) is passed to both the load program and the runtime
program in register 1. The SGMTEXIT control block contains the logical segment name, the user
object starting and ending addresses, a code indicating the action taking place (SEGGEN, shared LOAD,
nonshared LOAD, or PURGE), and the address and length of the parameters specified on the USER
record. See the description of the SGMTEXIT macro in z/VM: CMS Macros and Functions Reference for
the format of the SGMTEXIT control block.

2. When the segment is built, the SEGGEN command calls loadprog to load the user object into
the segment. SEGGEN calls loadprog by issuing a CMSCALL macro with register 1 pointing to the
SGMTEXIT control block. (Remember, CMSCALL goes through normal CMS command resolution.) The
SGMTEXIT control block passed to this program by register 1 contains the starting address of the
location in storage where the object is to be loaded. The largest possible ending address will be in
the SGMEND field of the SGMTEXIT control block. The user object must not exceed this address. The
load program must change the SGMEND field to reflect the ending location of the user object. Also, the
SGMFUNC field will contain -1 to indicate that this is a SEGGEN call.

When the program completes, a return code of 0 indicates a successful completion. A return code
other than 0 indicates a user load error, and skips to the next user object.

3. Prior to calling the loadprog, SEGGEN does a SEGMENT RESERVE which results in the storage keys
for the segment being set to X'F'. If the loadprog tries to put anything into the segment using the
addresses passed in the SGMTEXIT it will fail with a protection exception. The loadprog can get around
this problem in several ways, however it is recommended that you GENMOD the loadprog with the
'SYSTEM' option so that it will run in key 0.

4. When the logical saved segment is loaded (made active), any user objects that it contains are activated
last. The user objects are activated in LIFO order in the order in which they are defined in the logical
segment definition file. The program specified on the USER record as runprog will be called to activate
the user object.

You or the system administrator should make sure that runprog is available to users when they load
and/or purge the segment by putting the routine on the S-disk, or by putting it in the same segment
as the USER information (using a MODULE or TEXT record in the logical segment definition file). If
the routine is not available when either a SEGMENT LOAD or SEGMENT PURGE command or macro is
issued, an error results, and in the case of SEGMENT LOAD, the segment is not loaded.

5. When runprog is called, register 1 contains the address of the SGMTEXIT control block, and the
SGMFUNC field of the SGMTEXIT control block indicates that this is the load function. A 0 indicates
the segment is being loaded in shared mode, and a 4 indicates nonshared mode. This program is also
called when the logical saved segment is being purged. An 8 in the SGMFUNC field of the SGMTEXIT
control block indicates that the segment is being purged.

When the program completes, a return code of zero indicates a successful completion. If a return
code other than 0 is issued and you are in LOAD, all the objects are removed and the logical segment
is purged. If a return code other than 0 is issued and you are in PURGE, the remaining objects are
removed.

 PI end

SKIP Record
The SKIP record specifies an amount of space in the segment to be left unused.

The SKIP record has the following format:

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 51

SKIP number

(

)

comments

number
specifies the number of pages to be skipped. A number value of zero means skip to the start of the
next page. A number value of one means skip to the start of the next page and then skip the next page.

For example, if you have a USER object that needs to start on a page boundary, specifying skip 0
tells CMS to skip to the start of the next page.

Using the SEGGEN Command to Build the Saved Segments
Use the SEGGEN command to build and save a physical saved segment that is composed of one or more
logical saved segments.

Note: If you are using VMSES/E to manage your saved segments, use the PUT2PROD EXEC (which calls
VMFBLD, which calls SEGGEN). See “Building or Deleting (Purging) Saved Segments” on page 76.

SEGGEN uses the segment definitions that are in the physical segment definition file and one or more
logical segment definition files, one for each logical saved segment to be included in the physical saved
segment.

The physical saved segment built by SEGGEN has a directory at the end (highest addresses) of the
segment. In addition, each logical saved segment in the physical saved segment also has a directory at
the end of the particular logical saved segment.

The SEGGEN command updates or creates a system segment identification file that associates each
logical saved segment with its physical saved segment. SEGGEN also generates two types of load map
files, one for the physical saved segment and one for each logical saved segment within the physical
saved segment.

Note that if errors occur during SEGGEN processing, temporary files may be left on your read/write disk.

See the z/VM: CMS Commands and Utilities Reference for information on the format of the SEGGEN
command and the load map files.

System Segment Identification File
The process of building logical saved segments using the SEGGEN command updates or creates a system
segment identification file. Each entry in this file associates a logical saved segment with its physical
saved segment. The default file name and file type are SYSTEM SEGID.

Attention: The system segment identification file should be changed only by the SEGGEN
command. Modification by any other means may cause unpredictable results.

The system segment identification file must be named SYSTEM SEGID and must reside on the CMS
system disk so it is available to CMS at initialization time. This allows CMS to recognize the logical saved
segment name specified on the SEGMENT macro or SEGMENT command. If two or more entries for the
same logical saved segment name are found in the SYSTEM SEGID file, the one closest to the end of
the file is the default logical saved segment used at initialization time. If a logical saved segment is
associated with more than one physical saved segment, you can change the default association by using
the SEGMENT ASSIGN command.

After SEGGEN completes, you may have to copy the system segment identification file to the CMS system
disk. You do not need to copy the file if you have modified the contents of an existing logical saved
segment (added, deleted, or changed data). You must copy the file if you have:

• Created a new logical or physical saved segment
• Deleted an existing logical or physical saved segment

Planning and Defining CMS Logical Saved Segments

52 z/VM: 7.3 Saved Segments Planning and Administration

• Changed the relationship between the logical and physical saved segments (for example, moved or
copied a logical saved segment from one physical saved segment to another).

Note: If you intend to use logical saved segments on a pre-Release 2.2 CMS, you must always copy the
SYSTEM SEGID file to that CMS system disk.

There are special instructions for copying the system segment identification file to the system disk. See
Step 5 in the following example.

Building Physical and Logical Saved Segments—An Example
This section shows how to build a physical saved segment containing several logical saved segments if
you are not using VMSES/E to manage your saved segments. If you are using VMSES/E, see Chapter 3,
“Using VMSES/E to Define, Build, and Manage Saved Segments,” on page 57.

The following example shows how to build a physical saved segment named PSEG3 that contains these
three logical saved segments:

• USERDISK—Contains a minidisk directory
• NLSABC—Contains system language information and objects for an application named ABC
• USERSEG—A user segment that loads user programs and data.

Step 1. Create the Code or Data
The USERDISK logical saved segment will contain the file directory information for a CMS minidisk with a
virtual device number of 100 and a disk label of MLU100.

The NLSABC logical saved segment will contain the following objects for an application named ABC:

• ABCNLS TXTABC—the text file from the LANGMERG command
• ABCLIB CSLSEG—the callable services library file from the CSLGEN command
• ABC MODULE
• RUNABC EXEC

The USERSEG logical saved segment contains user data and a runtime module for user data:

• USERSEG—user defined data
• USERRUN MODULE—program that is called when the logical saved segment is loaded or purged

Step 2. Define the Physical Saved Segment Contents
The physical segment definition file for PSEG3 is named PSEG3 PSEG and has the following records:

LSEGMENT USERDISK LSEG
LSEGMENT NLSABC LSEG
LSEGMENT USERSEG LSEG

Step 3. Define the Logical Saved Segment Contents
Define each logical saved segment in a logical segment definition file:

USERDISK LSEG A:

DISK 100 MLU100 (INIT)

NLSABC LSEG A:

LANGUAGE ABC ABC
LIBRARY ABCLIB
MODULE ABC
SKIP 2
EXEC RUNABC

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 53

The SKIP record is put in to leave room for objects that will be added later.

USERSEG LSEG A:

MODULE USERRUN
USER USERSEG USERLOAD USERRUN

Step 4. Enter the SEGGEN Command
To build the PSEG3 physical saved segment you would enter the SEGGEN command:

seggen pseg3 pseg (map gen

Note that PSEG, MAP, and GEN are the defaults and therefore do not need to be specified.

Upon successful completion, SEGGEN updates or creates the SYSTEM SEGID file. For PSEG3, the
following entries would be added to the SYSTEM SEGID file:

PSEGMENT PSEG3 00600000 00100000 12/04/91 10:33:40
LSEGMENT USERDISK 00600000 000001E0
LSEGMENT NLSABC 00600220 0000367C
LSEGMENT USERSEG 006038E0 000000F8

In addition, SEGGEN creates load maps for PSEG3 and each logical saved segment. They are written on
the first accessed read/write disk. Building PSEG3 creates the following load maps:

PSEG3 PSEGMAP A5:

00600000 USERDISK
00600220 NLSABC
006038E0 USERSEG
SPACE UNUSED: 000FC5D0 BYTES

USERDISK LSEGMAP A5:

DISK 00600000 100 MLU100

NLSABC LSEGMAP A5:

ABCAMENG 00600220 A 0191 MLU191
ABCLIB 006004F0 A 0191 MLU191
ABC 00600B20 A 0191 MLU191
 00600B20 ABC NUCEXT
RUNABC 00603000 A 0191 MLU191
 RUNABC EXEC

USERSEG LSEGMAP A5:

USERRUN 00603970 A 0191 MLU191
 00603970 USERRUN NUCEXT
USERSEG 00603A20

You can use the NOGEN option if you want to test the build process without actually creating the saved
segment. This way you can verify that all the files are correct and all the objects are available.

Step 5. Copy the SYSTEM SEGID File to the System Disk and Resave CMS
Because you have created new logical saved segments, you must copy the SYSTEM SEGID file to the CMS
system disk. You must also copy the file to the test CMS system disk. This prevents the file from being
backleveled during the application of service. The z/VM service procedure always updates files on the test
CMS system disk and then merges them to the production CMS system disk. Adding or updating a file to
the system disk invalidates the current shared S-STAT (the S-disk file directory). Therefore, after you copy
the file to the system disk, you must resave the CMS saved system to update the S-STAT.

Note: Only authorized user IDs with the necessary privilege class can do the following functions. Contact
your system support personnel.

Planning and Defining CMS Logical Saved Segments

54 z/VM: 7.3 Saved Segments Planning and Administration

1. Access the production CMS system disk (usually MAINT 190) as a read/write file mode, such as T.
Enter:

access 190 t

2. Access the test CMS system disk (usually MAINTvrm 490) as a read/write file mode, such as V. Enter:

access 490 v

3. Copy SYSTEM SEGID file to the two CMS system disks. The file that you place on the CMS system disks
must be named SYSTEM SEGID and the file mode number must be 2. Enter:

copyfile system segid fm = = t2 (replace olddate
copyfile system segid fm = = v2 (replace olddate

4. Erase or rename the SYSTEM SEGID file on the build disk, so the latest copy of SYSTEM SEGID is on
the system disk.

5. Use the SAMPNSS EXEC to create a system data file for the CMS saved system. Enter:

sampnss cms

6. Resave CMS. Enter:

ipl 190 clear parm savesys cms

Planning and Defining CMS Logical Saved Segments

Chapter 2. Planning and Defining CMS Logical Saved Segments 55

Planning and Defining CMS Logical Saved Segments

56 z/VM: 7.3 Saved Segments Planning and Administration

Chapter 3. Using VMSES/E to Define, Build, and
Manage Saved Segments

The VMSES/E component of z/VM provides functions to help you define, build, and manage your saved
segments. The following topics are discussed in this chapter:

• “Overview of VMSES/E Saved Segment Support” on page 57
• “Resource Requirements for Building and Managing Saved Segments” on page 59
• “Viewing the Segment Map” on page 60
• “Viewing a Saved Segment Definition” on page 61
• “Changing, Adding, and Deleting Saved Segment Definitions” on page 62
• “Building or Deleting (Purging) Saved Segments” on page 76
• “Restoring Saved Segments That Have Been Backed Up on Disk by the CP DCSSBKUP Utility” on page

78.

Note: VMSES/E does not support saved segments that contain pages above 2047 MB.

Overview of VMSES/E Saved Segment Support
Managing saved segments requires a system view rather than a product view. A typical z/VM system
consists of the z/VM product plus a number of application products. z/VM uses saved segments for
various functions, and many of the applications that run on z/VM also use saved segments. Some of the
saved segments that reside on a z/VM system might have requirements for the same storage space. In
addition, some saved segments might have dependencies on other saved segments.

VMSES/E saved segment support allows you to:

• View a segment map that shows all the segment spaces, member saved segments, discontinuous saved
segments (DCSSs), and saved systems known to VMSES/E (defined in a saved segment data file) or
defined on your system.

Notes:

1. Saved systems are displayed in the segment map only to help you plan the layout of your saved
segments. You cannot use VMSES/E segment map functions to define or build saved systems.

2. Logical saved segments are not displayed in the map. However, the displayable definition record
for a member saved segment or DCSS known to VMSES/E indicates whether it is a physical saved
segment that contains logical saved segments, and the physical saved segment is displayed in the
map.

• Customize saved segment definitions to meet the requirements of your installation. You can add,
change, and delete definitions. Then you can view the results of your changes in the segment map
before you actually build the saved segments.

• Use the VMSES/E build process to automate the building of saved segments. VMSES/E keeps track of
the saved segments that need to be built.

Product-Supplied Saved Segment Information
Saved segment contents and build parameters are defined by individual products. If a product is in
VMSES/E format (that is, if the product supplies a product parameter file to control installing, building,
and servicing the product), the contents of a saved segment are defined in a product build list. This build
list, called a product saved segment build list, is defined in the product parameter file and is used by the
VMFBLD EXEC to build the saved segment.

Using VMSES/E for Saved Segments

© Copyright IBM Corp. 1991, 2022 57

To use the VMSES/E saved segment support, the product also supplies a default definition of the saved
segment. This default definition is contained in a saved segment definitions section of the product parts
(prodid PRODPART) file. The definition includes information such as:

• The storage location and range
• Whether the saved segment:

– Is a member of a segment space
– Contains logical saved segments
– Can be loaded above the 16 MB line

• Whether there are any requisite saved segments
• The build parameters (a pointer to the product parameter file and the product saved segment build list).

A product that is not in VMSES/E format can use the VMSES/E saved segment mapping and build support.
The product can supply information that you use to define its saved segments to VMSES/E. (See “Adding
Saved Segment Definitions for a Product Not in VMSES/E Format” on page 75.) In a definition for a
non-VMSES/E product saved segment, the build parameters, instead of pointing to a product parameter
file and build list, are the actual parameters for building the saved segment.

Saved Segment Product Parameter File
To automate the process of building the saved segments in a z/VM system, which consists of the z/VM
product plus other products, including those saved segments defined by products not in VMSES/E format,
z/VM provides a special product parameter file for building and mapping saved segments.

The name of the supplied saved segment product parameter file is SEGBLD. The information in the
ESASEGS "component" of SEGBLD PPF specifies the service structure, including the build support, for all
the saved segments on the z/VM system.

System Saved Segment Build List
A z/VM system configuration generally includes saved segments from many products, some of which
might not be in VMSES/E format. Therefore, VMSES/E supports another kind of build list for saved
segments, called a system saved segment build list. The system saved segment build list contains the
name of each saved segment in the z/VM system. If the product that defines the saved segment is
in VMSES/E format, the system saved segment build list also contains the name of the product saved
segment build list. The name of the system saved segment build list is identified in the build section of
the saved segment product parameter file. The name identified in the supplied saved segment product
parameter file is SEGBLIST.

Note: Do not use more than one system saved segment build list to define the saved segments in a single
z/VM system. You can, however, use different system saved segment build lists to define alternate saved
segment layouts on the same z/VM system.

Saved Segment Data File
The saved segment data file contains build information for the saved segments identified in the system
saved segment build list. The saved segment data file has the same file name as the system saved
segment build list, and the file type is SEGDATA.

The SEGDATA file contains a series of saved segment definitions. Each definition identifies the name
of the saved segment, its storage range, the names of the segment spaces in which it is a member (if
any), whether it contains logical saved segments, whether it can be loaded above 16 MB, the names of
requisite saved segments (if any), the build parameters, and other information. VMSES/E supplies the
VMFSGMAP EXEC for viewing and customizing these definitions.

Using VMSES/E for Saved Segments

58 z/VM: 7.3 Saved Segments Planning and Administration

VMFSGMAP EXEC
The VMFSGMAP EXEC is the VMSES/E tool that allows you to display and customize your saved segment
layout. VMFSGMAP generates a segment map that shows all the saved segments defined in the SEGDATA
file. The segment map also shows all the saved segments and saved systems that are defined on your
system (in system data files created by the DEFSEG, DEFSYS, SAVESEG, and SAVESYS commands) that
are not included in the SEGDATA file.

Note: Saved systems are displayed in the segment map only for planning purposes. They are not defined
in the SEGDATA file, and you cannot use VMFSGMAP to customize them.

Viewing the segment map allows you to see what saved segments are defined, where they are defined,
and how they relate to each other. For example, you can see what saved segments are defined in the
same storage area, what member saved segments are defined in multiple segment spaces, and so on.
“Viewing the Segment Map” on page 60 describes the format and contents of the segment map.

From the segment map, you can select a specific saved segment and display its definition (the information
used to build it). You can change the storage range, the segment space information, or other parts of the
definition. You can get default information from the PRODPART file. You can add or delete definitions.
You can then view the results of your changes in the segment map. You can make and view all kinds of
changes to your saved segment layout before you actually build or delete any of the saved segments.
“Viewing a Saved Segment Definition” on page 61 describes the format and contents of a saved segment
definition. “Changing, Adding, and Deleting Saved Segment Definitions” on page 62 describes how to
use VMFSGMAP to do various saved segment management tasks.

In an Single System Image (SSI) cluster, VMFSGMAP has to be run on only one of the members or systems
on which the product is installed.

PUT2PROD EXEC
The PUT2PROD EXEC is the VMSES/E tool that automates the building of saved segments. PUT2PROD
calls VMFBLD, which processes the system saved segment build list and uses the build information
supplied by the definitions in the SEGDATA file.

In an SSI cluster, PUT2PROD must be run on every member or system on which the product is installed.

Resource Requirements for Building and Managing Saved
Segments

Saved segment build and management tasks are normally done using the MAINTvrm virtual machine. If
you plan to use some other user ID, it must have:

• Access to the VMSES/E Software Inventory disks: MAINTvrm 51D and PMAINT 41D.
• Access to the VMSES/E code on MAINTvrm 5E5.
• The ability to link and access the minidisks and SFS directories specified in the saved segment product

parameter file, the product-level product parameter file, and the saved segment definitions in the
SEGDATA file. Minidisks must already be linked if you are not using the LINK build list option.

• The ability to get write access to the build target disk specified in the saved segment product parameter
file.

• CP authority to issue the DEFSEG, QUERY NSS, PURGE NSS, and SAVESEG commands.
• A virtual machine with enough storage to contain the saved segment with the highest storage range and

the additional storage used by CMS.
• A NAMESAVE directory control statement entry for each restricted saved segment.
• A read/write A-disk.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 59

Viewing the Segment Map
To begin the VMFSGMAP session, enter the VMFSGMAP command with the name of the saved segment
product parameter file (SEGBLD), the name of the z/VM saved segments "component" in the saved
segment product parameter file (ESASEGS), and the name of the system saved segment build list
(SEGBLIST), which is also the name of the associated SEGDATA file:

vmfsgmap segbld esasegs segblist

Note: If you enter only VMFSGMAP, this command will use the default PPF and build list names as shown
here.

Entering the VMFSGMAP command places you into an XEDIT session. The initial display is the Segment
Map panel. VMFSGMAP divides your system storage into 4 MB ranges: 0-3 MB, 4-7 MB, and so on. If a
saved segment or saved system is wholly or partially defined in one of these 4 MB ranges, VMFSGMAP
displays a heading for the storage range on the panel, followed by a segment map record for each saved
segment or saved system defined in the range. A segment map record identifies the status, name, and
type of the saved segment or saved system and pictorially shows the amount of storage used.

If a saved segment is defined in the SEGDATA file and on the system, the segment map record contains
the version from the SEGDATA file and indicates by a status code (column 1) how the definitions compare.

Figure 12 on page 60 shows an example of the Segment Map panel. This example shows that the first
4 MB range of storage that contains a saved segment or saved system is X'004-007' MB. Following the
heading for the X'004-007' MB range is a map record for the CMSPIPES saved segment. The map record
supplies the following information about CMSPIPES:

• Its status is 'P', for planned, which means it is defined in the SEGDATA file but not on the system.
• Its type is DCSS, and it occupies the 1 MB storage range from 7-8 MB.
• Only the first four 64 KB "segments" of the DCSS contain data, and the permitted access is read-only.

For information about the syntax of segment map records, see the description of the VMFSGMAP EXEC in
the z/VM: VMSES/E Introduction and Reference.

 VMFSGMAP - Segment Map
 Lines 1 to 19 of 28

Meg 004-MB 005-MB 006-MB 007-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
P CMSPIPES DCS 4...............5...............6...............RRRR------------

Meg 008-MB 009-MB 00A-MB 00B-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
P DOSBAM SPA 8...............9...............====------------================
P CMSAMS MEM 8...............9...............WWW.............B...RRRRRR......
P CMSBAM MEM 8...............9...............A...............BRRR............
P CMSDOS MEM 8...............9...............A...............R...............
P CMSVSAM MEM 8...............9...............A..W............B.........RRRRRR
P CMSFILES DCS 8...............-----RRRRRRRRRRRRRRRRRRRRRRRRRRRB...............
P CMSVMLIB DCS RRRRRRRR--------9...............A...............B...............
P DOSINST DCS 8...............R---------------A...............B...............

 00C-MB 00D-MB 00E-MB 00F-MB
 Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12= Class
====>

Figure 12. Example of the VMFSGMAP EXEC Segment Map Panel

Pressing the PF8/20 (Fwd) key scrolls down one page in the file, as shown in Figure 13 on page 61.

Using VMSES/E for Saved Segments

60 z/VM: 7.3 Saved Segments Planning and Administration

 VMFSGMAP - Segment Map
 Lines 20 to 28 of 28

================================= 16-MB Line ==================================

Meg 010-MB 011-MB 012-MB 013-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
P SVM DCS 0...............1...............2...............RRRRRRRRRRRRRRRR
============================== End Segment Map ==============================

 F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
 F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12= Class
====>

Figure 13. Example of the VMFSGMAP EXEC Segment Map Panel, Continued

Viewing a Segment Space
If you want to view only a particular segment space and its members, rather than the full segment map,
you can enter the VMFSGMAP command with the SPACE option and the name of the segment space:

vmfsgmap segbld esasegs segblist (space spacename

You cannot use the SPACE option to view other types of saved segments. Furthermore, if you plan to move
or add member saved segments, it is recommended that you enter the VMFSGMAP command without the
SPACE option, so you can see how your changes relate to other saved segments as displayed in the full
segment map.

Viewing a Saved Segment Definition
On the Segment Map panel, you can move the cursor to the map record for a particular saved segment
and press the PF4/16 (Chg Obj) key to display the definition record for the saved segment in the Change
Segment Definition panel. For example, on the Segment Map panel shown in Figure 12 on page 60, if
you move your cursor to the map record for CMSPIPES and press PF4/16, the Change Segment Definition
panel shown in Figure 14 on page 62 is displayed.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 61

 Change Segment Definition

 OBJNAME....: CMSPIPES
 DEFPARMS...: 700-73F SR
 SPACE......:
 TYPE.......: PSEG
 OBJDESC....: CMS PIPES SEGMENT
 OBJINFO....:
 GT_16MB....: YES
 DISKS......:
 SEGREQ.....:
 PRODID.....: 2VMVMA10 CMS
 BLDPARMS...: PPF(ESA CMS DMSSBPIP)

F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk Mem
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj Mem F12=Cancel
====>

Figure 14. Example of the VMFSGMAP EXEC Change Segment Definition Panel

The fields in the saved segment definition supply information about where and how the saved segment is
built. For example, the definition in Figure 14 on page 62 provides the following information:

• The OBJNAME field indicates that the name of the saved segment is CMSPIPES.
• The DEFPARMS field indicates that CMSPIPES is stored in pages X'700-73F', and the access allowed is

shared read-only.
• The SPACE field is blank, indicating that CMSPIPES is a DCSS.
• The TYPE field indicates that CMSPIPES is a physical saved segment containing at least one logical

saved segment.
• The GT_16MB field indicates that CMSPIPES may be loaded above the 16 MB line.
• The DISKS field indicates that no additional minidisks or SFS directories need to be accessed to build

CMSPIPES.
• The SEGREQ field indicates that no saved segments need to be built before CMSPIPES is built.
• The PRODID field indicates that the default information for CMSPIPES is contained in the CMS section of

the 2VMVMA10 PRODPART file.
• The BLDPARMS field indicates that the build information for CMSPIPES is defined in the DMSSBPIP

product saved segment build list and in the CMS component section of the ESA product parameter file.

Note: In the definition for a saved segment defined by a product not in VMSES/E format, this field
contains the actual build parameters used by VMFBLD.

For information about the syntax of the fields in a saved segment definition record, see the description of
the VMFSGMAP EXEC in the z/VM: VMSES/E Introduction and Reference.

Changing, Adding, and Deleting Saved Segment Definitions
This section outlines how to use the VMFSGMAP EXEC to make the following types of changes to the
saved segment definitions in the SEGDATA file:

• “Changing the Range of a DCSS” on page 63
• “Changing the Range of a Member Saved Segment” on page 63
• “Renaming a DCSS or Member Saved Segment” on page 64
• “Changing the Name of a Segment Space” on page 65

Using VMSES/E for Saved Segments

62 z/VM: 7.3 Saved Segments Planning and Administration

• “Changing Multiple Members of a Segment Space” on page 65
• “Adding a DCSS or Member Saved Segment” on page 66
• “Merging Existing Saved Segments into the SEGDATA File” on page 67
• “Copying a DCSS” on page 67
• “Copying or Moving a Member Saved Segment into Another Segment Space” on page 68
• “Copying a Segment Space” on page 69
• “Converting a DCSS to a Member of a Segment Space” on page 69
• “Converting a Member of a Segment Space to a DCSS” on page 70
• “Deleting a DCSS” on page 70
• “Deleting a Member Saved Segment” on page 71
• “Deleting a Segment Space” on page 72
• “Retrieving a Deleted DCSS or Member Saved Segment” on page 72
• “Changing and Adding Definitions for Physical and Logical Saved Segments” on page 73
• “Adding Saved Segment Definitions for a VMSES/E-Format Product” on page 74
• “Adding Saved Segment Definitions for a Product Not in VMSES/E Format” on page 75.

Changing the Range of a DCSS

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the DCSS to be changed.
3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Move the cursor to the DEFPARMS field in the definition record and change the range.
5. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show the changes, or

press PF12/24 (Cancel).
6. Review the updated map to make sure that the new range is appropriate in relation to the other saved

segments in the map.
7. If the new range is not acceptable, repeat the previous steps to readjust the range, or press PF3/15

(Exit) to discard the changes and exit the map.
8. If the new range is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
9. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Some segment names are contained in the CMSSEGS BLDDATA and DOSBAM BLDDATA files. CMSSEGS
BLDDATA is a list of CMS segments and DOSBAM BLDDATA is a list of segments in the DOSBAM segment
space. These lists must be modified to reflect any segment changes you make.

Changing the Range of a Member Saved Segment

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 63

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the member saved segment to be
changed.

3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Move the cursor to the DEFPARMS field in the definition record and change the range.
5. Press PF6/18 (Chk Mem) to check for overlaps with other members in all the segment spaces

identified in the SPACE field. Definition records for overlapping members are added to the panel.
6. If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected

members to remove the overlaps.

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap.

7. After you complete your changes on the Change Segment Definition panel, press PF5/17 (Map) to
return to the Segment Map panel, which is refreshed to show all the changes, or press PF12/24
(Cancel) to discard your changes and return to the Segment Map panel.

8. Review the updated map to make sure that the new member ranges are appropriate in relation to the
other saved segments in the map.

9. If the new saved segment layout is not acceptable, repeat the previous steps to adjust the member
ranges, or press PF3/15 (Exit) to discard the changes and exit the map.

10. If the new saved segment layout is satisfactory, press PF6/18 (Save) to record the changes and
remain in the map to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

11. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Renaming a DCSS or Member Saved Segment
To rename a DCSS or member saved segment, first make a copy of the saved segment and give it the new
name, then delete the version with the old name:

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the DCSS or member saved
segment to be renamed.

3. Press PF10/22 (Add Obj) to display the Add Segment Definition panel.
4. Move the cursor to the OBJNAME field in the definition record and change the question marks to the

new name you have selected, which must not already be in use for any other segment space, member
saved segment, or DCSS.

5. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to include the new saved
segment, or press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.

6. Move the cursor to the map record for the old version of the saved segment.
7. Press PF11/23 (Del Obj) to delete the saved segment from the map. The display is refreshed to show

the change.
8. If you want to stop the rename and reinstate the old name, press PF3/15 (Exit) to discard the

changes and exit the map.

Using VMSES/E for Saved Segments

64 z/VM: 7.3 Saved Segments Planning and Administration

9. If you want to continue the rename, press PF6/18 (Save) to record the changes and remain in the
map to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

10. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Changing the Name of a Segment Space
1. If you are not already in a VMFSGMAP session, enter the following command to display the full

Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the segment space.
3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel. The panel contains definition

records for all the members of the segment space.
4. Move the cursor to the SPACE field in each definition record and change the name of the segment

space.
5. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show the changes, or

press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.
6. If you want to stop the rename and reinstate the old name, press PF3/15 (Exit) to discard the changes

and exit the map.
7. If you want to continue the rename, press PF6/18 (Save) to record the changes and remain in the map

to do other tasks, or press PF5/17 (File) to record the changes and exit the map.
8. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Changing Multiple Members of a Segment Space
1. If you are not already in a VMFSGMAP session, enter the following command to display the full

Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the segment space.
3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel. The panel contains definition

records for all the members of the segment space.
4. Make your changes to the member definitions.
5. If you change the range of any member, press PF6/18 (Chk Mem) to check for overlaps with other

members in all the segment spaces to which the changed member belongs. Definition records for
overlapping members are added to the panel.

6. If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected
members to remove the overlaps.

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap. This is especially critical for members that exist in other
segment spaces.

7. After you complete your changes to the Change Segment Definition panel, press PF5/17 (Map) to
return to the Segment Map panel, which is refreshed to show all the changes, or press PF12/24
(Cancel) to discard your changes and return to the Segment Map panel.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 65

8. Review the updated map to make sure that the saved segment layout is acceptable.
9. If the new layout is not acceptable, repeat the previous steps to adjust member definitions until the

layout is acceptable, or press PF3/15 (Exit) to discard the changes and exit the map.
10. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
11. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Adding a DCSS or Member Saved Segment
1. If you are not already in a VMFSGMAP session, enter the following command to display the full

Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. If you want to use an existing saved segment definition as a model for the new saved segment, move
the cursor to the map record for the existing saved segment. Otherwise, move the cursor so it is not
located on any map record.

3. Press PF10/22 (Add Obj) to display the Add Segment Definition panel.
4. Complete the definition record for the saved segment you want to add. The following is the minimum

information required to define a saved segment:

• Name (OBJNAME field)
• Storage range (DEFPARMS field)
• Whether it is a member of any segment spaces (SPACE field)
• Whether it contains CMS logical saved segments (TYPE field)
• Whether it can be loaded above 16 MB (GT_16MB field).

Note: If not specified, the build parameters (BLDPARMS field) default to 'UNKNOWN', which means
that during build processing for this saved segment VMFBLD can only issue the DEFSEG command
to define the saved segment to CP. The user must issue the function that loads and saves the saved
segment.

If you want to get information for a saved segment that is already defined, enter the name of the
existing saved segment in the OBJNAME field and press PF2/14 (Get Obj). VMFSGMAP gets the
definition record, if it exists, from the SEGDATA file. If the saved segment is defined on the system
(defined in a system data file), VMFSGMAP updates the DEFPARMS and SPACE fields in the displayed
definition record with the system data. You must change the name in the OBJNAME field of the
definition record before you file the update, because each saved segment defined to CP must have a
unique name. Also, if the information you obtain is for a saved segment defined above 16 MB, and you
want the new saved segment to be defined above 16 MB, make sure that the GT_16MB field is set to
'YES'.

If you want to get the default information for a saved segment known to VMSES/E (defined in a
product PRODPART file), enter the name of the saved segment in the OBJNAME field and press
PF10/22 (Seginfo). If this saved segment already exists in the SEGDATA file or on the system, you
must change the name in the OBJNAME field of the definition record before you file the update. Each
saved segment defined to CP must have a unique name.

5. If you are adding a member saved segment, press PF6/18 (Chk Mem) to check for overlaps with other
members in all the segment spaces specified in the SPACE field. Definition records for overlapping
members are added to the panel.

If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected
members to remove the overlaps.

Using VMSES/E for Saved Segments

66 z/VM: 7.3 Saved Segments Planning and Administration

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap.

6. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show all the changes,
or press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.

7. Review the updated map to make sure that the new saved segment layout is acceptable.
8. If the new layout is not acceptable, make the appropriate changes to the saved segment definitions,

or press PF3/15 (Exit) to discard the changes and exit the map.
9. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
10. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Merging Existing Saved Segments into the SEGDATA File
A saved segment that is mapped from the system (defined in a system data file) but is not defined in the
SEGDATA file is indicated on the Segment Map panel by a status code of 'M' in the first column of the
saved segment map record. To merge all of these existing saved segments into the SEGDATA file:

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. Move the cursor to the command line and enter the SEGMERGE subcommand. Saved segment
definitions that already exist in the SEGDATA file are not changed. In addition, the system saved
segment build list is compared with the SEGDATA file, and entries are added to the build list where
necessary.

3. Review the updated map to make sure that the new saved segment layout is acceptable.
4. If the new layout is not acceptable, make the appropriate changes to the saved segment definitions, or

press PF3/15 (Exit) to discard the changes and exit the map.
5. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
6. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Copying a DCSS

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the DCSS to be copied.
3. Press PF10/22 (Add Obj) to display the Add Segment Definition panel.
4. Move the cursor to the OBJNAME field and change the question marks to a name that is not already

used for a saved segment. Change any other parts of the definition that need to be modified.
5. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to include the new DCSS,

or press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 67

6. Review the updated map to make sure that the new DCSS definition is appropriate in relation to the
other saved segments in the map.

7. If the range of the new DCSS is not acceptable:

a. Move the cursor to the map record for the new DCSS.
b. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
c. Move the cursor to the DEFPARMS field and change the range.
d. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show your changes,

or press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.

If the range is still not acceptable, repeat the previous sequence, or press PF3/15 (Exit) to discard the
changes and exit the map.

8. If the new DCSS definition is satisfactory, press PF6/18 (Save) to record the changes and remain in the
map to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

9. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Copying or Moving a Member Saved Segment into Another Segment Space

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the member saved segment to be
copied or moved.

3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Move the cursor to the SPACE field of the definition record:

• If the member is to be copied into another segment space, add the name of the new segment
space.

• If the member is to be moved to another segment space, change the old segment space name to
the new segment space name.

5. Press PF6/18 (Chk Mem) to check for overlaps with other members in all the segment spaces to
which the changed member belongs. Definition records for overlapping members are added to the
panel.

6. If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected
members to remove the overlaps.

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap.

7. After you complete all your changes, press PF5/17 (Map) to return to the Segment Map panel, which
is refreshed to show the changes, or press PF12/24 (Cancel) to discard your changes and return to
the Segment Map panel.

8. Review the updated map to make sure that the saved segment layout is acceptable.
9. If the layout is not acceptable, make the appropriate changes to the saved segment definitions, or

press PF3/15 (Exit) to discard the changes and exit the map.
10. If the layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to do

other tasks, or press PF5/17 (File) to record the changes and exit the map.

Using VMSES/E for Saved Segments

68 z/VM: 7.3 Saved Segments Planning and Administration

11. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Copying a Segment Space
1. If you are not already in a VMFSGMAP session, enter the following command to display the full

Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the segment space to be copied.
3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel. The panel displays definition

records for all the members of the segment space.
4. Move the cursor to the SPACE field in each definition record and add the new segment space name.
5. Press PF6/18 (Chk Mem) to check for overlaps with other members in all the segment spaces to

which the changed member belongs. Definition records for overlapping members are added to the
panel.

6. If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected
members to remove the overlaps.

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap. This is especially critical for members that exist in other
segment spaces.

7. After you complete your changes on the Change Segment Definition panel, press PF5/17 (Map) to
return to the Segment Map panel, which is refreshed to show all the changes, or press PF12/24
(Cancel) to discard your changes and return to the Segment Map panel.

8. Review the updated map to make sure that the new saved segment layout is acceptable.
9. If the layout is not acceptable, press PF3/15 (Exit) to discard the changes and exit the map.

10. If the layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to do
other tasks, or press PF5/17 (File) to record the changes and exit the map.

11. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Converting a DCSS to a Member of a Segment Space

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the DCSS you want to convert.
3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Move the cursor to the SPACE field and enter the name of the segment space to which you are adding

this saved segment as a member.
5. Update the range or other parts of the definition record, as necessary.
6. Press PF6/18 (Chk Mem) to check for overlaps with other members of the segment space. Definition

records for overlapping members are added to the panel.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 69

7. If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected
members to remove the overlaps.

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap.

8. After you complete your changes on the Change Segment Definition panel, press PF5/17 (Map) to
return to the Segment Map panel, which is refreshed to show the changes, or press PF12/24 (Cancel)
to discard your changes and return to the Segment Map panel.

9. Review the updated map to make sure that the new saved segment layout is acceptable.
10. If the new layout is not acceptable, make the appropriate changes to the saved segment definitions,

or press PF3/15 (Exit) to discard the changes and exit the map.
11. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
12. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Converting a Member of a Segment Space to a DCSS

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the member saved segment you
want to convert.

3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Move the cursor to the SPACE field and delete all the segment space names.
5. Update the range or other parts of the definition record, as necessary.
6. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show your changes, or

press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.
7. Review the updated map to make sure that the new saved segment layout is acceptable.
8. If the new layout is not acceptable, make the appropriate changes to the saved segment definitions,

or press PF3/15 (Exit) to discard the changes and exit the map.
9. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
10. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Deleting a DCSS

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the DCSS you want to delete.

Using VMSES/E for Saved Segments

70 z/VM: 7.3 Saved Segments Planning and Administration

3. Press PF11/23 (Del OBJ) to delete the record from the map, or:

a. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
b. Move the cursor to the DEFPARMS field and enter the word 'DELETED'.
c. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show your changes,

or press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.

Whichever method you use to delete the DCSS, a record for the deleted DCSS is added to the end of
the map. If the deleted DCSS is defined on the system, the record is:

D objname DCS DELETED

If the deleted DCSS is defined only in the SEGDATA file, the record is:

P objname DCS DELETED

4. If you want to stop the deletion and reinstate the saved segment, press PF3/15 (Exit) to discard the
changes and exit the map.

5. If you want to continue the deletion, press PF6/18 (Save) to record the changes and remain in the map
to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

6. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Deleting a Member Saved Segment

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the member saved segment you
want to delete.

3. You can do the deletion from the Segment Map panel or the Segment Definition panel:

• From the Segment Map panel:

a. Press PF11/23 (Del Obj) to delete the record from the map. The member is deleted only from
the segment space that immediately precedes it in the map. The cursor then moves to next
occurrence of the member in the map, if any. To completely delete the member, you must delete
every occurrence. If you delete the last member of a segment space, the segment space is also
deleted.

• From the Segment Definition panel:

a. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
b. If you want to just delete this member from certain segment spaces, move the cursor to the

SPACE field and remove the names of those spaces. If you remove the name of a space that
contains no other members, the space is also deleted. If only one space was specified, removing
that name converts the member saved segment to a DCSS.

If you really want to delete the member entirely, move the cursor to the DEFPARMS field and
enter the word 'DELETED'.

c. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show your
changes, or press PF12/24 (Cancel) to discard your changes and return to the Segment Map
panel.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 71

Whichever method you use, if you completely delete the member saved segment (that is, delete it
from every segment space), it becomes a deleted DCSS, and a record is added to the end of the map. If
the saved segment is defined on the system, the record is:

D objname DCS DELETED

If the saved segment is defined only in the SEGDATA file, the record is:

P objname DCS DELETED

4. If you want to stop the deletion and reinstate the saved segment, press PF3/15 (Exit) to discard the
changes and exit the map.

5. If you want to continue the deletion, press PF6/18 (Save) to record the changes and remain in the map
to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

6. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Deleting a Segment Space
1. If you are not already in a VMFSGMAP session, enter the following command to display the full

Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the segment space you want to
delete.

3. Press PF11/23 (Del Obj) to delete the segment space from the map. Members of this segment space
that do not belong to any other segment space are also deleted from the map. Members of this
segment space that belong to other segment spaces are not changed, except that the name of the
deleted segment space is removed from the SPACE field in the definition record for each member.

Note: If a member of this segment space does not belong to any other segment space, but you do not
want the saved segment deleted, you can convert the member to a DCSS. See “Converting a Member
of a Segment Space to a DCSS” on page 70.

4. If you want to stop the deletion and reinstate the segment space, press PF3/15 (Exit) to discard the
changes and exit the map.

5. If you want to continue the deletion, press PF6/18 (Save) to record the changes and remain in the map
to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

6. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Retrieving a Deleted DCSS or Member Saved Segment
When you use VMFSGMAP to delete a DCSS or member saved segment from the segment map, the
definition record is not deleted from the SEGDATA file, only marked 'DELETED' in the DEFPARMS field.
Therefore, you can use VMFSGMAP to retrieve the deleted saved segment and add it back into the map.

Note: Segment spaces are created dynamically by CP and are not defined by definition records in the
SEGDATA file. Therefore, you cannot use this method to retrieve a deleted segment space. Assuming that
the members of the deleted segment space still exist as members of other spaces or as DCSSs, you must
add the name of the space to the definition record for each saved segment that is to be a member of the
space. See “Copying or Moving a Member Saved Segment into Another Segment Space” on page 68 and
“Converting a DCSS to a Member of a Segment Space” on page 69.

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

Using VMSES/E for Saved Segments

72 z/VM: 7.3 Saved Segments Planning and Administration

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the record for the deleted saved segment, which is
located at the end of the map.

3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Make any necessary changes to complete the definition. In the DEFPARMS field, remove the word

'DELETED', leaving the range of the saved segment. In the SPACE field, enter the names of any
segment space of which this saved segment is to be a member. If you are defining the saved segment
above 16 MB, make sure that the GT_16MB field is set to 'YES'. However, remember that there could
be product restrictions on loading the saved segment above 16 MB.

5. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to include the retrieved
saved segment, or press PF12/24 (Cancel) to discard your changes and return to the Segment Map
panel.

6. If you want to stop the retrieval of the saved segment, press PF3/15 (Exit) to discard the changes and
exit the map.

7. If you want to continue with the retrieval, press PF6/18 (Save) to record the changes and remain in the
map to do other tasks, or press PF5/17 (File) to record the changes and exit the map.

8. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Changing and Adding Definitions for Physical and Logical Saved Segments
A physical saved segment is a DCSS or member saved segment that contains CMS logical saved
segments. A logical segment definition file (default file type LSEG) must exist for each logical saved
segment to be loaded into the DCSS or member saved segment. VMSES/E-format products that define
their saved segments as logical saved segments should supply the LSEG files. If you need to define any
new logical saved segment definition files, or if you need to change the definition of an existing logical
saved segment, see Chapter 2, “Planning and Defining CMS Logical Saved Segments,” on page 39.

Note: Do not create a physical segment definition file (default file type PSEG) to identify the LSEG files.
When PUT2PROD calls the VMFBLD EXEC to build the saved segments, VMFBLD creates the PSEG file
before calling the SEGGEN command to build the physical and logical saved segments.

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor to the map record for the DCSS or member saved
segment in which you want to define, update, or remove CMS logical saved segments.

Note: If the physical saved segment does not already exist, follow the directions in “Adding a DCSS or
Member Saved Segment” on page 66 to create a new DCSS or member saved segment definition to
work with.

3. Press PF4/16 (Chg Obj) to display the Change Segment Definition panel.
4. Change the definition of the saved segment as appropriate:

a. Make sure that the first range defined in the DEFPARMS field is large enough to contain all of the
CMS logical saved segments to be defined in the physical saved segment. You cannot define logical
saved segments in noncontiguous storage.

b. Make sure that the TYPE field contains the keyword PSEG, indicating that the saved segment is a
physical saved segment containing logical saved segments.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 73

c. Add or change the information in the BLDPARMS field to indicate the logical saved segments to be
included in the physical saved segment. Use PF4/16 (Add Line) to add lines to the field for new
entries. An entry with the PPF keyword points to a product parameter file where one or more logical
saved segments are defined. An entry with the PROD keyword contains the definition for one logical
saved segment. The BLDPARMS field may contain combinations of these entries.

For example, suppose you want to combine the CMSPIPES logical saved segment, the CMSFILES
logical saved segment, and your own logical saved segment called MYSEG into a single physical
saved segment called CMSSEG1. Currently CMSPIPES and CMSFILES are contained in separate
physical saved segments, each with its own definition. Create a new definition for CMSSEG1.
Make sure that the range you define in the DEFPARMS field is large enough. Enter the following
information into the BLDPARMS field:

BLDPARMS...: PPF(ESA CMS DMSSBPIP)
 PPF(ESA CMS DMSSBSFS)
 PROD(LSEG MYSEG)

Make sure that you also delete the existing definitions for CMSPIPES and CMSFILES.
5. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show your changes, or

press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.
6. Review the updated segment map to make sure that the new saved segment layout is correct.
7. If the new layout is not acceptable, repeat the previous steps to make adjustments, or press PF3/15

(Exit) to discard the changes and exit the map.
8. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to

do other tasks, or press PF5/17 (File) to record the changes and exit the map.
9. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the

saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Adding Saved Segment Definitions for a VMSES/E-Format Product

1. If you are not already in a VMFSGMAP session, enter the following command to display the full
Segment Map panel:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

2. On the Segment Map panel, move the cursor so it is not located on any map record.
3. Press PF10/22 (Add Obj) to display the Add Segment Definition panel containing a skeleton saved

segment definition record.
4. Move the cursor to the PRODID field and enter the prodid (and the compname, if one is identified) for

the product that defines the saved segment or saved segments you want to add.
5. If you want to add the definition record for only one particular saved segment defined by the product,

move the cursor to the OBJNAME field and enter the name of the saved segment. Otherwise, to
add all of the saved segments defined by the product, leave the OBJNAME field as question marks
(????????).

6. Press PF10/22 (Seginfo). The requested saved segment definitions are obtained from the product's
PRODPART file and added to the panel.

7. Make any necessary changes to the saved segment definitions.
8. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to include the new saved

segments, or press PF12/24 (Cancel) to discard your changes and return to the Segment Map panel.
9. Review the updated segment map to make sure that the new saved segment layout is acceptable.

10. If the new layout is not acceptable, make any necessary changes to the saved segment definitions, or
press PF3/15 (Exit) to discard the changes and exit the map.

Using VMSES/E for Saved Segments

74 z/VM: 7.3 Saved Segments Planning and Administration

11. If the new layout is satisfactory, press PF6/18 (Save) to record the changes and remain in the map to
do other tasks, or press PF5/17 (File) to record the changes and exit the map.

12. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Adding Saved Segment Definitions for a Product Not in VMSES/E Format
You can use the VMSES/E functions to manage saved segments associated with products that are not
packaged in VMSES/E format as long as you make these saved segments known to VMSES/E. Use the
following procedure to create the saved segment definition records:

1. Find the installation information for the product that contains details about the saved segments
associated with the product.

2. If you are migrating from a 370 VM environment, and the product runs in both your 370 VM system
and in z/VM, convert the DMKSNT or override file definitions for the saved segments associated with
the product to DEFSEG statements. For more information, see the VM/ESA® V2.4 Conversion Guide
and Notebook.

3. Enter the following command to display and edit the segment map:

vmfsgmap segbld esasegs segblist

For detailed information about VMFSGMAP panels, see the description of the VMFSGMAP EXEC in the
z/VM: VMSES/E Introduction and Reference.

4. If the saved segment you want to add is already defined on the system, move the cursor to the map
record for that saved segment. Otherwise, move the cursor so it is not located on any map record.

5. Press PF10/22 to display the Add Segment Definition panel. If the cursor was on a map record
when you pressed PF10/22, VMFSGMAP uses the system information to fill in as many fields of the
saved segment definition record as it can detect. If the cursor was not on a map record, VMFSGMAP
displays a skeleton saved segment definition record.

6. Complete the definition record for the saved segment you are adding:

• In the DISKS field, lists the minidisks and SFS directories that must be accessed to build the saved
segment.

• In the BLDPARMS field, identify the routine that the VMFBLD EXEC is to call to build the saved
segment, or specify 'UNKNOWN' if you want VMFBLD to only issue the DEFSEG command.

For a complete explanation of the content and syntax of the fields in the saved segment definition
record, see the description of the VMFSGMAP EXEC in the z/VM: VMSES/E Introduction and Reference.

7. If you defined this saved segment as a member in any segment spaces, press PF6/18 (Chk Mem) to
check for overlaps with the other members in all the segment spaces identified in the SPACE field.
Definition records for overlapping members are added to the panel.

8. If there are overlaps, press PF11/23 (Adj Mem) to automatically adjust the ranges of the affected
members to remove the overlaps.

Note: If you prefer, you can manually adjust the ranges of the affected members. However, if you
manually adjust the range of a member, you should press PF6/18 (Chk Mem) again to make sure that
your change has not caused a new overlap.

9. Press PF5/17 (Map) to return to the Segment Map panel, which is refreshed to show the new saved
segment and any changes that you made to member saved segments, or press PF12/24 (Cancel) to
discard your changes and return to the Segment Map panel.

10. Review the segment map to make sure that the new saved segment layout is acceptable.
11. If the new saved segment conflicts with existing saved segments, you might have to adjust the

existing saved segments. See “Changing the Range of a DCSS” on page 63 or “Changing the Range of
a Member Saved Segment” on page 63.

12. If you want to stop the addition of the new saved segment, press PF3/15 (Exit) to discard the
changes and exit the map.

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 75

13. If the new layout is satisfactory and you have more saved segments to define, press PF6/18 (Save)
to record the changes and remain in the map. Then go back to step “4” on page 75 and repeat the
process for the next saved segment. If you have no more saved segments to define, press PF5/17
(File) to record the changes and exit the map.

14. After completing the VMFSGMAP session, use the PUT2PROD EXEC to actually build or delete the
saved segments. See “Building or Deleting (Purging) Saved Segments” on page 76.

Building or Deleting (Purging) Saved Segments
After you finish using the VMFSGMAP EXEC to view and modify saved segment definitions, use the
PUT2PROD EXEC to update the system by building or deleting the saved segments.

Notes:

1. VMFBLD processing includes the purging of saved segments that are marked 'DELETED' in the
SEGDATA file. Therefore, in this discussion "build" and "built" also mean "delete" and "deleted", where
appropriate.

2. You cannot use VMFBLD to build a saved segment unless it is known to VMSES/E (identified in the
system saved segment build list and the SEGDATA file). See “Adding Saved Segment Definitions for
a VMSES/E-Format Product” on page 74 or “Adding Saved Segment Definitions for a Product Not in
VMSES/E Format” on page 75.

3. If a saved segment is known to VMSES/E, but is defined by a product not in VMSES/E format, VMFBLD
calls the function specified in the BLDPARMS field of the saved segment definition. This could be
a product-defined function or a user-defined function. If the BLDPARMS field contains the word
'UNKNOWN', VMFBLD only issues the DEFSEG command to define the storage requirements to CP. You
must issue the function that loads and saves the saved segment.

Displaying the Saved Segment Build Status
Before you build any saved segments, you can display what saved segments are identified to be built by
running the VMFBLD EXEC with the STATUS option. Enter the VMFBLD command with the name of the
saved segment product parameter file (SEGBLD), the name of the z/VM saved segments "component" in
the saved segment product parameter file (ESASEGS), and the name of the system saved segment build
list (SEGBLIST):

vmfbld ppf segbld esasegs segblist (status

Now you can use the VMFVIEW EXEC to view the build message log. Enter:

vmfview build

Saved segments to be built are identified as 'SERVICED'. Saved segments to be purged are identified as
'DELETE'. Figure 15 on page 77 shows an example of the display showing segments with a status of
SERVICED.

Using VMSES/E for Saved Segments

76 z/VM: 7.3 Saved Segments Planning and Administration

 ===> VMFVIEW - Message Log Browse of $VMFBLD $MSGLOG A1 <===
You are viewing ¬ST: messages from the LAST run.
Number of messages shown = 11 <===> Number of messages not shown = 57
**
**** PPFNAME: SEGBLD COMPNAME: ESASEGS BLDID: VM ****
**
**** Date: 10/24/09 Time: 13:20:50 ****
**
BD:VMFBLD2180I There are 9 build requirements remaining
BD:VMFBLD2180I Build Requirements:
BD: Bldlist Object Status
BD:VMFBLD2180I SEGBLIST CMSPIPES.SEGMENT SERVICED
BD:VMFBLD2180I INSTSEG.SEGMENT SERVICED
BD:VMFBLD2180I SVM.SEGMENT SERVICED

 1=Help 2=All 3=Quit 4=Exception 5=Status 6=Build
 7=Backward 8=Forward 9=OutCompRq 10=Non-Stat 11=Requisite 12=Severe
====>

Figure 15. Example of the VMFVIEW EXEC Display Showing Saved Segments to Be Built

Using the PUT2PROD EXEC to Build or Delete Saved Segments
After you have verified what saved segments are identified to be built, use the PUT2PROD EXEC to do the
builds.

The format of the PUT2PROD EXEC depends on whether you want to automatically build all your saved
segments, build only those saved segments that are identified to be built, or build an individual saved
segment.

In an SSI cluster, the PUT2PROD command must be run on each member.

Notes:

1. For segment deletion the segment status must be reset to DELETE on each additional member on
which the product is installed. To change the status of the segment to DELETE, before you specify the
PUT2PROD command enter the following VMFSIM command for each segment that was deleted:

vmfsim modify vm srvblds d tdata :bldlist segblist :object segname.segment :stat
delete

2. To build only those saved segments identified as "SERVICED," enter the PUT2PROD command with
those segments listed. For example:

put2prod segments csmpipes instseg svm

3. To build a specific saved segment, whether or not it is identified to be built, enter the PUT2PROD
command with the name of the saved segment. For example, to build only the CMSPIPES saved
segment listed in the SEGBLIST system saved segment build list, enter:

put2prod segments cmspipes

4. To build all the saved segments identified in system saved segment build list SEGBLIST, whether or not
they are identified to be built, enter the VMFBLD command with the ALL option:

put2prod segments all

Checking the Saved Segment Build Messages
After the PUT2PROD EXEC completes its processing, you should check the build message log for error,
warning, and informational messages. For example, the log might identify saved segments that VMFBLD

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 77

could not build, or indicate that the system segment identification file has been updated. To retrieve the
build messages, run the VMFVIEW EXEC:

vmfview put2prod

Saved Segments That VMFBLD Cannot Build
During build processing, if VMFBLD encounters a definition record in the SEGDATA file that contains the
word 'UNKNOWN' in the BLDPARMS field, VMFBLD cannot build the saved segment. VMFBLD can only
issue the DEFSEG command to define the saved segment's storage range to CP. VMFBLD then issues a
message to warn you about the situation and continues processing the next saved segment.

A situation like this might occur for a saved segment that requires some kind of interactive response
from you during the build. After VMFBLD completes its processing, you must manually issue the routine
or routines that load and save the saved segment. To find out what saved segments you have to
build manually, look at the VMFVIEW panel for occurrences of message VMF2005W. Then follow the
instructions in the product documentation to load and save each saved segment.

Copying the SYSTEM SEGID File to the CMS System Disk
The system segment identification file, SYSTEM SEGID, associates logical saved segments to the physical
saved segments in which they reside. This file must reside on the CMS system (S) disk. The VMFBLD
EXEC copies the SYSTEM SEGID file to the build disk before issuing the SEGGEN command, and SEGGEN
updates the file on the build disk. If the file does not already exist, SEGGEN creates it on the build disk.

PUT2PROD copies the SYSTEM SEGID file to the system disk if necessary.

The SYSTEM SEGID file is not copied if you:

• Modified the contents of an existing logical saved segment (added, deleted, or changed data)
• Moved an existing physical saved segment without changing its contents (in other words, you did not

add or delete a logical saved segment).

The SYSYTEM SEGID file is copied if you:

• Created a new logical or physical saved segment
• Deleted an existing logical or physical saved segment
• Changed the relationship between the logical and physical saved segments (for example, if you moved

or copied a logical saved segment from one physical saved segment to another).

Restoring Saved Segments That Have Been Backed Up on Disk by
the CP DCSSBKUP Utility

You can use the VMSES/E saved segment support to restore saved segments that were backed up on disk
by the CP DCSSBKUP utility. To define a restored saved segment layout, you need to perform the following
steps:

1. Create a $PPF override file that contains the :APPID value, :BLDID value, and system saved segment
build list name for the restored layout.

Figure 16 on page 79 shows an example of an override file called SEGRSAVE $PPF that identifies:

• A component name of ESARSAVE
• An :APPID value of VMRSAVE
• A :BLDID value of VMRSAVE
• A system saved segment build list (and SEGDATA file) name of SEGRSAVE.

Using VMSES/E for Saved Segments

78 z/VM: 7.3 Saved Segments Planning and Administration

*==
* Override file for saved segment layout ESARSAVE
* NOTE: All tags must be in upper case.
*==
*==
* Start of Product Header - List of Segment Build Components
*==
:OVERLST. ESARSAVE
*==
* End Product Header
*==
*
* Segment Build Overrides
*
:ESARSAVE. ESASEGS SEGBLD
*==
* Control Parameters
*==
:CNTRLOP.
* TAG VALUE(S)
*--------- ---------
:APPID. VMRSAVE * File name of service
 * apply status table
:BLDID. VMRSAVE * File name of service
 * build status table
:ECNTRLOP.
*==
* BUILD section
*==
:BLD. REPLACE
* BUILDLIST EXEC TARGET DESCRIPTION
* --------- -------- ------- ------------
SEGRSAVE VMFBDSEG BUILD * Segment build test layout
:EBLD.

:END.
*
*==

Figure 16. Example of a $PPF Override File for Restoring Saved Segments Backed Up by the CP
DCSSBKUP Utility

2. Create the system saved segment build list and SEGDATA file for the restored layout by copying the
original system saved segment build list and SEGDATA file to the new name:

copyfile segblist exc00000 d segrsave = =
copyfile segblist segdata d segrsave = =

3. Run the VMFPPF EXEC to create a new PPF file containing the overrides:

vmfppf segrsave esarsave

4. Use the VMFSGMAP EXEC to process the alternate system saved segment build list and SEGDATA file:

vmfsgmap segrsave esarsave segrsave

5. Change the BLDPARMS field in each saved segment definition to invoke the CP DCSSRSAV utility:

BLDPARMS...: PROD(DCSSRSAV &SEGNAME)

6. Access the disk that contains the saved segment files as file mode A. If the files are not all on the same
disk, copy them over.

7. Run the VMFBLD EXEC to restore the saved segments:

• To restore all of the saved segments, enter:

vmfbld ppf segrsave esarsave segrsave (all

• To restore a specific saved segment, enter:

vmfbld ppf segrsave esarsave segrsave segname (all

Using VMSES/E for Saved Segments

Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments 79

Using VMSES/E for Saved Segments

80 z/VM: 7.3 Saved Segments Planning and Administration

Appendix A. Defining CP Saved Segments—Examples

This appendix gives examples of using the DEFSEG and SAVESEG commands to define and save CP saved
segments. These examples are provided to help you understand the function of the DEFSEG command.

However, if you are using VMSES/E to manage saved segments on your system, you do not use the
DEFSEG and SAVESEG commands directly. Instead, you use the VMFSGMAP EXEC to modify or create
definitions for the saved segments and enter the DEFSEG information into the DEFPARMS and SPACE
fields of the definitions. You then use the PUT2PROD EXEC to build the saved segments, which calls
VMFBLD to issue the DEFSEG and SAVESEG commands for you. See “Changing, Adding, and Deleting
Saved Segment Definitions” on page 62.

The examples in this appendix show the DEFSEG syntax for:

• Defining a saved segment with both shared and exclusive page ranges
• Defining overlaid saved segments
• Defining segment spaces
• Defining overlaid segment spaces
• Adding a member to an existing segment space
• Replacing an existing member of a segment space
• Setting up a typical saved segment layout.

Page ranges shown for program products are approximate. Use the actual number of pages required by
the release, modification, and service level you wish to run.

The following command sequence shows how to define and save each saved segment illustrated in Figure
2 on page 4:

1. Define each saved segment:

defseg ppd 500-550 sr
defseg ppc 600-650 sr
defseg ppb 700-7cf sr
defseg ppa 800-830 sr

You should consider including these DEFSEG commands in an exec; if you have to make changes to
your storage layout, it will be relatively easy to change the exec accordingly.

2. Install the programs PPD, PPC, PPB, and PPA with the appropriate installation execs.
3. For each saved segment you have defined, enter the SAVESEG command to save the saved segment (if

the installation execs have not already done so):

saveseg ppd
saveseg ppc
saveseg ppb
saveseg ppa

Defining a Saved Segment with Both Shared and Exclusive Page
Ranges

Some licensed programs, such as OfficeVision®, have both shared and exclusive code and therefore
require a shared segment and an exclusive segment. You must define these types of licensed programs to
have both shared and exclusive page ranges.

For example, to define OfficeVision to have a range of addresses that is shared and a range that is
exclusive:

1. Enter:

CP Saved Segment Examples

© Copyright IBM Corp. 1991, 2022 81

defseg ovvm 600-7ff sr 800-845 ew

In the previous example, the address range 600–7FF is defined as shared read-only; the address range
800–845 is defined as exclusive read-write.

2. Install OfficeVision with the appropriate installation exec.
3. If it has not already been done by the installation exec, enter the SAVESEG command for OfficeVision:

saveseg ovvm

In the previous example, OfficeVision is defined in a DCSS. If OfficeVision and another licensed program
are always used together, you may want to define both in the same segment space, rather than each in a
separate DCSS. This reclaims some of the storage that goes unused when you define a DCSS.

Defining Overlaid DCSSs
The following sequence of commands shows how to define and save each overlaid DCSS illustrated in
Figure 9 on page 28.

1. Define each DCSS in the same 1 MB address range:

defseg ppt3 700-750 sr
defseg ppt4 700-750 sr
defseg ppt5 700-780 sr

2. Install the program PPT3 with the appropriate installation exec.
3. Enter the SAVESEG command to save the DCSS (if the installation execs have not already done so):

saveseg ppt3

4. Repeat steps 2 and 3 for program PPT4.
5. Repeat steps 2 and 3 for program PPT5.

Defining a Segment Space
Example 1

The following sequence of commands shows how to define and save the segment space shown residing in
SPACE2 in Figure 11 on page 30:

1. Define each member of the segment space SPACE2:

defseg ppk 700-750 sr space space2
defseg ppl 751-7a0 sr space space2
defseg ppm 7a1-820 sr space space2
defseg ppn 821-8a0 sr space space2
defseg ppo 8a1-920 sr space space2

You should consider including these DEFSEG commands in an exec. If you have to make changes to
your storage layout, it is relatively easy to change the exec accordingly.

2. Install the programs PPK, PPL, PPM, PPN, and PPO with the appropriate installation execs.
3. For each member you have defined, enter the SAVESEG command to save the segment (if the

installation execs have not already done so):

saveseg ppk
saveseg ppl
saveseg ppm
saveseg ppn
saveseg ppo

Example 2

CP Saved Segment Examples

82 z/VM: 7.3 Saved Segments Planning and Administration

The following example defines a segment space for two applications, PPK and PPL, each of which has
both exclusive code and shared code. Remember that exclusive code must be in a separate architected
segment from shared code.

1. Define each member of SPACE1:

defseg ppk 400-47f ew 500-575 sr space space1
defseg ppl 480-4ff ew 580-5ff sr space space1

The architected segment from 400 to 4FF contains exclusive write code, and the architected segment
from 500 to 5FF contains shared read code.

2. Install PPK and PPL with the appropriate installation execs.
3. Enter the corresponding SAVESEG commands:

saveseg ppk
saveseg ppl

Notes:

1. The ending address of SPACE2 is rounded up to a 1 MB boundary. Therefore, SPACE2 ranges from
X'700' to X'9FF'.

2. Any unused space in a segment space can be considered a growth area. Such an area can contain,
for example, a new release of a program (currently residing in a segment space) that takes up more
storage space than the previous release. For example, if the next release of PPO in Figure 11 on page
30 is larger than the previous release of PPO, you could define it:

defseg ppo 8a1-930 sr space space2

and use DEFSEG commands with the SAMERANGE operands for the other members. Thus, only PPO
needs to be a saved segment to make the new version of SPACE2 active. The other members are used
with their old definitions.

To avoid having to reinstall other members when one member has grown, you should distribute
the growth area (the unused virtual storage space) between all the members. In this example, all
members need to be redefined at higher page ranges and reinstalled if PPK grows in size.

3. The segment space SPACE2 is not active until you enter the last SAVESEG command (SAVESEG PPO
in this case). Therefore, you cannot use the programs in SPACE2 until you enter the last SAVESEG
command.

Defining Overlaid Segment Spaces
The following command sequence shows how to define and save the overlaid segment spaces SPACE1,
SPACE2, and SPACE3 illustrated in Figure 8 on page 27.

1. Define each member of SPACE1:

defseg sqlrmgr 600-60f sr space space1
defseg sqlisql 610-66f sr space space1
defseg das1v151 670-70f sr space space1
defseg das2v151 710-83f sr space space1

SQLRMGR and SQLISQL are saved segments associated with the SQL user machine; DAS1V151 and
DAS2V151 are saved segments associated with AS.

2. Install AS with the appropriate installation exec.
3. Enter the SAVESEG command for the AS segments (if this has not already been done by the installation

exec):

saveseg das1v151
saveseg das2v151

4. Define each member of SPACE2:

CP Saved Segment Examples

Appendix A. Defining CP Saved Segments—Examples 83

defseg qmf220e 670-7bf sr space space2
defseg sqlrmgr same space space2
defseg sqlisql same space space2

QMF220E is the saved segment associated with QMF.

Note: Do not use the SAME operand for members that have the SW, EW, EN, or SN attribute. Programs
in multiple segment spaces must be refreshable.

5. Install QMF with the appropriate installation exec.
6. Define each member of SPACE3:

defseg sqlsqlds 600 6cf space space3
defseg sqlxrds 7d0 7a5 space space3

SQLSQLDS and SQLXRDS are saved segments associated with the SQL service machine.
7. Install SQL with the appropriate installation exec.
8. Enter the SAVESEG command for the remaining members of SPACE2 and SPACE3 (if the installation

exec has not already done so):

saveseg qmf220e
saveseg sqlrmgr
saveseg sqlisql
saveseg sqlsqlds
saveseg sqlxrds

After you enter the final SAVESEG command, both segment spaces become active, and the SQL, QMF,
and AS applications become available to users.

Adding a Member to an Existing Segment Space
To add a member called PPZ to the segment space SPACE2 illustrated in Figure 11 on page 30 and
defined under “Defining a Segment Space” on page 82:

1. Define the member PPZ:

defseg ppz 921-9d0 sr space space2

2. Define the rest of the segment space using the SAMERANGE option on the DEFSEG command:

defseg ppk same space space2
defseg ppl same space space2
defseg ppm same space space2
defseg ppn same space space2
defseg ppo same space space2

3. Install PPZ with the appropriate installation exec.
4. Enter the SAVESEG command for PPZ (unless your installation exec has already done so):

saveseg ppz

After you enter this SAVESEG command, the program PPZ is available to virtual machines not currently
attached to any of the other programs in SPACE2.

Replacing an Existing Member of a Segment Space
When a new release of a licensed program becomes available, you may want to replace your old copy of
the program with the new version.

Example 1—Replacing a Member

Suppose you want to replace the version of the program PPL (as shown in Figure 11 on page 30) with a
new release of PPL. To do this:

CP Saved Segment Examples

84 z/VM: 7.3 Saved Segments Planning and Administration

1. Define the new version of PPL as a member of SPACE2:

defseg ppl 751-7a0 sr space space2

2. Define the rest of SPACE2 using the SAME option on the DEFSEG command:

defseg ppk same space space2
defseg ppm same space space2
defseg ppn same space space2
defseg ppo same space space2
defseg ppz same space space2

3. Install program PPL with the appropriate installation exec.
4. Enter the SAVESEG command for PPL (unless your installation exec has already done so):

saveseg ppl

Note that in this example the new version of PPL occupies the same page range as the old version.
Because of this, the other members of SPACE2 did not have to be saved again but were merely redefined
with the SAME operand on the DEFSEG command.

You may want to keep both releases of PPL available to your users. If so, you should consider defining
the two versions of PPL in different segment spaces. Make sure you do not use the same name for both
versions.

How System Data Files are Affected
Example 1 works in most cases. The following, more detailed examples, show how system data files are
affected when you replace an existing member.

Example 2—Replacing a Member

The segment space SPACE1 has been created, and the system data file environment looks like that
illustrated in Figure 17 on page 85. In this figure and others like it in this appendix, the uppermost block
shown under the name of the member or segment space is its spool ID. For members, the other blocks
indicate the segment space that contains this member. For segment spaces, the other blocks indicate the
members of the segment space. In Figure 17 on page 85, for example, SPACE1 has the spool ID 0001
and has M1 (spool ID 0002), M2 (spool ID 0003), and M3 (spool ID 0004) as its members.

 SPACE1 M1
 +------+ +-------+
 | 0001 | | 0002 |
 |------| |-------|
 | M1 |------>| SPACE1|
 |------| +-------+
 | M2 |--─+ M2
 |------| | +-------+
 +--─| M3 | +-->| 0003 |
 | +------+ |-------|
 | | SPACE1|
 ˅ M3 +-------+
+-------+
0004
SPACE1
+-------+

Figure 17. Initial Setup of a Segment Space

To replace M3, define the new version of M3 and SPACE1. You can do this by entering several DEFSEG
commands as follows:

defseg m3 rangeinfo... space space1
defseg m1 same space space1
defseg m2 same space space1

CP Saved Segment Examples

Appendix A. Defining CP Saved Segments—Examples 85

Figure 18 on page 86 shows the situation after these DEFSEG commands have been entered. Note that
M3 and SPACE1 have new spool IDs (005 and 006, respectively) which are class S files.

 SPACE1 M1
 +------+ +-------+
 | 0005 | +-->| 0002 |
 |------| | |-------|
 +--─| M3 | | | SPACE1|
 | |------| | +-------+
 | | M1 |--─+ M2
 | |------| +-------+
	M2	------>	0003
+------+	-------		
	SPACE1		
˅ M3 +-------+			
+-------+			
0006			

SPACE1			
+-------+

Figure 18. New Version of a Segment Space (DEFSEGs Complete)

Last, you need to enter the SAVESEG command for M3 based on the installation procedures for M3.
The SAVESEG M3 command converts spool files 0005 and 0006 to class A files, causing the old class A
versions (spool files 0001 and 0004) to be purged.

Example 3—Creating a New Member for an Overlay

This example explains how to create a new version of one member of an overlay.

After the initial segment spaces have been created, the environment looks like that illustrated in Figure 19
on page 86. L refers to segment spaces, and M refers to members:

• L1 (spool ID 0010) points to M4 (spool ID 0011) and M5 (spool ID 0012).
• L2 (spool ID 0013) points to M4 (spool ID 0011) and M6 (spool ID 0014).
• L3 (spool ID 0015) points to M4 (spool ID 0011) and M7 (spool ID 0016).

 M4
 +------+
 +-------->| 0011 |<----─+
 | |------| |
 | | L1 | |
 | |------| |
 | | L2 | |
 | |------| |
 | | L3 | |
 | +------+ |
 | |
 L1 | L2 | L3
 +------+ | +------+ | +------+
0010			0013			0015
------			------			------
M4	--+	M4	------+-----	M4		
------		------		------		
M5	--+	M6	--+	M7	--+	
 +------+ | +------+ | +------+ |
 | | |
 ˅ M5 ˅ M6 ˅ M7
 +------+ +------+ +------+
 | 0012 | | 0014 | | 0016 |
 |------| |------| |------|
 | L1 | | L2 | | L3 |
 +------+ +------+ +------+

Figure 19. Replacing One Member of an Overlay—Initial Setup

To replace M6, define the new version of M6 and L2 by entering several DEFSEG commands as follows:

defseg m6 rangeinfo... space l2
defseg m4 same space l2

CP Saved Segment Examples

86 z/VM: 7.3 Saved Segments Planning and Administration

Figure 20 on page 87 shows the situation after these define commands have been entered. L2 (now
spool ID 0017) points to M4 (spool ID 0011) and M6 (now spool ID 00148). Note that spool files 0017
and 0018 are class S files.

 M4
 +------+
 +-------->| 0011 |<-----+
 | |------| |
 | | L1 | |
 | |------| |
 | | L2 | |
 | |------| |
 | | L3 | |
 | +------+ |
 | |
 L1 | L2 | L3
 +------+ | +------+ | +------+
0010			0017			0015
------			------			------
M4	--+	M4	------+-----	M4		
------		------		------		
M5	--+	M6	--+	M7	--+	
 +------+ | +------+ | +------+ |
 | | |
 ˅ M5 ˅ M6 ˅ M7
 +------+ +------+ +------+
 | 0012 | | 0018 | | 0016 |
 |------| |------| |------|
 | L1 | | L2 | | L3 |
 +------+ +------+ +------+

Figure 20. Replacing One Member of an Overlay (DEFSEGs Complete)

Last, you must enter the SAVESEG for M6 as given in the installation procedures for M6. The SAVESEG M6
command converts spool files 0017 and 0018 to class A files, purging the old class A versions.

Example 4— Creating a New Version of a Member

This example shows how to create a new version of a member that several segment spaces share.

After the initial segment spaces have been created, the environment looks like that illustrated in Figure 21
on page 87.

• L10 (spool ID 0101) points to M9 (spool ID 0111) and M10 (spool ID 0112).
• L11 (spool ID 0102) points to M8 (spool ID 0100) and M11 (spool ID 0114).
• L12 (spool ID 0103) points to M8 (spool ID 0100) and M12 (spool ID 0116).

 M8
 +------+
 | 0100 |<-----+
 |------| |
 | L11 | |
 |------| |
 | L12 | |
 +------+ |
 |
 L10 L11 | L12
 +------+ +------+ | +------+
 | 0101 | | 0102 | | | 0103 |
 |------| |------| | |------|
 +--| M9 | | M8 |------+-----| M8 |
 | |------| |------| |------|
 | | M10 |--+ | M11 |--+ | M12 |--+
 | +------+ | +------+ | +------+ |
 | | | |
 ˅ M9 ˅ M10 ˅ M11 ˅ M12
+------+ +------+ +------+ +------+
0111		0112		0114		0116
------		------		------		------
L10		L10		L11		L12
+------+ +------+ +------+ +------+

Figure 21. Replacing a Shared Member—Initial Setup

CP Saved Segment Examples

Appendix A. Defining CP Saved Segments—Examples 87

To replace M8, define the new version of M8, L11, and L12 by entering several DEFSEG commands as
follows:

defseg m8 rangeinfo... space l11
defseg m11 same space l11
defseg m8 same space l12
defseg m12 same space l12

Figure 22 on page 88 shows the situation after these define commands have been entered. Note that
spool files 0117, 0118, and 0119 are class S files.

• L11 (now spool ID 0117) points to M8 (now spool ID 0118) and M11 (spool ID 0114).
• L12 (now spool ID 0119) points to M8 (now spool ID 0118) and M12 (spool ID 0116).

 M8
 +------+
 | 0118 |<-----+
 |------| |
 | L11 | |
 |------| |
 | L12 | |
 +------+ |
 |
 L10 L11 | L12
 +------+ +------+ | +------+
 | 0101 | | 0117 | | | 0119 |
 |------| |------| | |------|
 +--| M9 | | M8 |------+-----| M8 |
 | |------| |------| |------|
 | | M10 |--+ | M11 |--+ | M12 |--+
 | +------+ | +------+ | +------+ |
 | | | |
 ˅ M9 ˅ M10 ˅ M11 ˅ M12
+------+ +------+ +------+ +------+
0111		0112		0114		0116
------		------		------		------
L10		L10		L11		L12
+------+ +------+ +------+ +------+

Figure 22. Replacing a Shared Member (DEFSEGs Complete)

Last, you must enter the SAVESEG command for M8 based on the installation procedures for M8. The
SAVESEG M8 command converts spool files 0117, 0118, and 0119 to Class A files, purging the old class A
versions.

Setting Up Your Storage Layout
The following examples are storage layouts for a given group of applications. Please note that these
mappings are only examples and may not work successfully for every installation. They should, however,
provide you with some ideas on how to set up your own saved segment environment.

Example 1—A Sample Storage Layout

The applications shown in Figure 23 on page 89 are CMS, OfficeVision, GDDM, GDDM/PGF,
DisplayWrite®/370 (DW/370), SQL, Query Management Facility™ (QMF), FORTRAN, VMAS, Document
Composition Facility (DCF) and APL2®.

CP Saved Segment Examples

88 z/VM: 7.3 Saved Segments Planning and Administration

1000 +-------+
 | |
 | |
 F00 | CMS |
 | |
 | |
 | |
 E00 +-------+
 +-------+
 | OVVM |
 | (EW) |
 D00 +-------+
 | |
 | |
 | |
 C00 | OVVM |
 | (SR) |
 | |
 | |
 B00 +-------+
 +-------+
 | |
 |. . . .|
 | |
 A00 | |
 | |
 | GDDM |
 | Base |
 900 | |
 | |
 | |
 | |
 800 +-------+
 +-------+ +-------+
 | | | GDDM─ |
 | | | PGF |
 700 | DW/370| +-------+
 | | +-------+ +------+
 | | | SQL | | |
 | | | User | | F |
 600 +-------+ +-------+ | O |
 +-------+ +-------+ +--------+ +------+ | R |
 | | | | | | | | | T |
 | | | | | DCF | | | | R |
 500 | QMF | | VMAS | +--------+ | SQL | | A |
 | | | | +--------+ | Mach | | N | | |
 | | | | | | | | | |
 | | | | | APL2 | | | | |
 400 +-------+ +-------+ +--------+ +------+ +------+

Figure 23. A Typical Saved Segment Environment—Example 1

In Figure 23 on page 89, the two segments that make up the SQL user machine are SQLISQL and
SQLRMGR. The two segments that make up the SQL service machine are SQLSQLDS and SQLXRDS.

Example 2—A Sample Storage Layout

The applications shown in Figure 24 on page 90 are CMS, OfficeVision, The Information Facility Program
Offering (TIF), Group Control System (GCS), GDDM, SQL, DW/370, QMF, DCF, and VTAM®.

CP Saved Segment Examples

Appendix A. Defining CP Saved Segments—Examples 89

1000 +--------------+
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 F00 | CMS (SR) |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 E00 +--------------+
 +--------------+
 | CMSVSAM (SR) |
 |. |
 | CMSAMS (SR) | +---------------+
 |. | | |
 | CMSDOS (SR) | | TIF (SR) |
 |. | | |
 | CMSBAM (SR) | | |
 D00 |--------------| +---------------+
 | CMSVSAM (EW) |
 | |
 |. |
 | CMSAMS (EW) |
 | |
 | |
 |. |
 | OVVM (EW) |
 C00 |--------------|
 | |
 | |
 | |
 | |
 B00 | OVVM (SR) |
 | |
 | |
 | |
 A00 +--------------+

Figure 24. A Typical Saved Segment Environment—Example 2 (1 of 2)

CP Saved Segment Examples

90 z/VM: 7.3 Saved Segments Planning and Administration

 +--------------+
 | |
 | |
 900 | |
 | |
 | | +--------------+
 | | +--------------+ | | | |
 | | | | | |
 | | | | | |
 | | | SQLXRDS (SR) | | |
 | GDDM (SR) | | | | |
 | | | | | |
 800 | | | | | GCS (SR) | +--------------+
 | | |. | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | SQLSQLDS (SR)| | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 700 +--------------+ +--------------+ +--------------+ | |
 +--------------+ +--------------+ | |
 | | | | | |
 | | | | | |
 | | | | | |
 | | | | | |
 | | | | | |
 | | | DW/370 (SR) | | |
 600 | | | | | CMSLOW (SR) |
 | QMF (SR) | | | | | | |
 | | | | | |
 | | | | | |
 | | |. | +--------------+ | |
 | | | | | | | |
 | | | | | | | |
 | | | DCF (SR) | | VTAM (SR) | | |
 | | | | | | | |
 500 +--------------+ +--------------+ +--------------+ +--------------+
 +--------------+
 | |
 | |
 | SQLISQL (SR) |
 |. |
 | SQLRMGR (SR) |
 400 +--------------+

Figure 25. A Typical Saved Segment Environment—Example 2 (2 of 2)

In Figure 24 on page 90:

• To make segment D (the default location of CMS) available for other applications, CMS is defined at a
secondary location as a named saved system called CMSLOW.

• The two segments that make up the SQL user machine are SQLISQL and SQLRMGR. The two segments
that make up the SQL service machine are SQLSQLDS and SQLXRDS.

CP Saved Segment Examples

Appendix A. Defining CP Saved Segments—Examples 91

CP Saved Segment Examples

92 z/VM: 7.3 Saved Segments Planning and Administration

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2022 93

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication primarily documents information that is NOT intended to be used as Programming
Interfaces of z/VM.

This publication also documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of z/VM. This information is identified where it occurs, either by an
introductory statement to a chapter or section or by the following marking:

 PI

<...Programming Interface information...>

 PI end

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

94 z/VM: 7.3 Saved Segments Planning and Administration

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 95

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

96 z/VM: 7.3 Saved Segments Planning and Administration

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2022 97

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

98 z/VM: 7.3 Saved Segments Planning and Administration

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 99

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

100 z/VM: 7.3 Saved Segments Planning and Administration

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 101

102 z/VM: 7.3 Saved Segments Planning and Administration

Index

Numerics
16 MB line 6, 9, 10, 22
370 accommodation support 7

A
access

data in a saved segment 40
active file 2, 15, 16
application

installing in a saved segment 22
architected segment, description 1
avoiding overlaying saved segments 22

B
build process, VMSES/E 57

C
CMS (Conversational Monitor System)

command
SEGMENT LOAD 3

saved segments storage locations 11
virtual machine 9

command
DEFSEG 2, 3, 6, 12, 14
PURGE NSS 18
QUERY NSS 19
QUERY NSS USERS 21
SAVESEG 2, 12, 15, 16
SEGMENT LOAD 3

conserving storage space 22
Conversational Monitor System (CMS)

creating a saved segment
using DEFSEG command 42
using SAVESEG command 42

CP (Control Program)
command

DEFSEG 2, 3, 6, 12, 14
PURGE NSS 18
QUERY NSS 19
QUERY NSS USERS 21
SAVESEG 2, 12, 15, 16

create
saved segments 42

customizing saved segments 57

D
D segment

used by CMS 22
using for your applications 22

data
accessing in a saved segment 40

default definition, saved segment 58
define

DCSS with shared and exclusive pages 81
execs in a logical saved segment 47
MODULE file in a logical saved segment 44
TEXT file in a logical saved segment 45

DEFSEG command
creating a saved segment 42
defining saved segments 2, 3, 12
internal operations 12
restrictions for using 14

DIAGNOSE code
X'64' 3, 9, 19

directory
Shared File System 43, 44

discontinuous
saved segment

defining 81, 82
description 4
overlaying 82
packing into storage 27

DISK record in a logical saved segment
description 49
format 49

E
ESA/390 architecture exploitation 7
ESA/390 architecture toleration 7
example

defining saved segments 81
purging saved segment 19
QUERY NSS ALL MAP command 19
QUERY NSS USERS command 21
results of DEFSEG command 12
results of SAVESEG command 16
saved segments 81, 91
segment spaces 24

exclusive
pages 81
segment 7

EXEC
SAMPNSS 55
VMFBLD 57
VMFVIEW 76

EXEC record in a logical saved segment
description 47
format 47

F
file

system segment identification 52

Index 103

I
identify

amount of space left in a logical saved segment 51
CSL in a logical saved segment 48
minidisk for file directory information in a logical saved
segment 49
system national language information in a logical saved
segment 49
user objects in a logical saved segment 50

install
an application in a saved segment 22

L
LANGUAGE record in a logical saved segment

description 49
format 49

LIBRARY record in a logical saved segment
description 48
format 48

load
physical saved segment 53

location for loading saved segments 40
logical saved segment

contents of 42
creating 42
defining a CMS MODULE file 44
defining a TEXT file 45
defining an exec 47
defining the contents 44
description 39
DISK record 49
EXEC record 47
identifying a CSL 48
identifying a minidisk for file directory information 49
identifying system national language information 49
identifying user objects 50
LANGUAGE record 49
LIBRARY record 48
MODULE record 44
SKIP record 51
specifying amount of space left 51
TEXT record 45
USER record 50

logical segment record
description 43
format 43

M
MAINT virtual machine 59
member

saved segment
description 5

MODULE record in a logical saved segment
description 44
format 44

O
OfficeVision

installing in a typical environment 88

OfficeVision (continued)
shared and exclusive code 25
using with a segment space 25

overlaying saved segment
overlay possibilities 27
segment spaces as overlays 28, 29

overlaying saved segments 22

P
physical saved segment

building 52
creating 42
defining the contents 43
description 39
loading 53
logical segment record 43
saving 52

physical segment definition file
attributes 43

planning
applications installed in saved segments 7
CMS considerations 11
saved segments based on virtual machine size 8

programming interface information 94
PURGE NSS command 18

Q
QUERY NSS command 19
QUERY NSS USERS command 21

R
redefine

saved segments 30
restriction

SAMERANGE operand of DEFSEG command 14

S
saved segment

16 MB line 9, 10
above 16 MB 8
advantages in using 39
avoiding overlaying segment spaces 8
building 52
classes 30
CMS considerations 11
CMS virtual machine greater than 21 MB 9
contents of logical 42
creating 2, 7, 12, 42
customization of 57
default definition 58
defining 6
defining the logical saved segment contents 44
defining the physical saved segment contents 43
defining, examples 81
description 1, 3, 39
design considerations 40
displaying information about 19
examples 24
exclusive 7

104 z/VM: 7.3 Saved Segments Planning and Administration

saved segment (continued)
greater than 21 MB 9
installing

applications 24
licensed programs 22

keeping a backup copy 18
less than 21 MB 10
loading a physical saved segment 53
loading in a virtual machine 10
location for loading 40
logical saved segment contents 44
managing 1, 7
overlaying 22
packing into storage 22, 27–29
physical saved segment contents 43
planning

based on virtual machine size 8
considerations 1, 7

purging 19
querying 24
reasons for using 23
redefining 30
saving 52
shared 7
space

adding a member to 84
defining as an overlay 83
description 1, 3
overlaying 28, 29
planning considerations 1, 3
replacing a member of 84

space, defining 82
system segment identification file 52
types 3, 23, 30
using 40
virtual machine size considerations 8

SAVESEG command
creating a saved segment 42
detailed description 16
saving saved segments 12
syntax 15
using with installation execs 15

SEGGEN command
building a saved segment 52

segment
architected 1
packing across applications 29
packing into storage 27, 28
packing licensed programs 6
packing to conserve storage space 22
packing versus overlaying 25
space

adding a member to 84
defining 82
defining as an overlay 83
defining saved segments 6
description 5
reasons for using 23
replacing a member of 84
tips for using 24

using the D segment 22
SEGMENT command 3
SEGMENT macro 3
service, system

service, system (continued)
named saved system 20
saved segment 20

SET 370ACCOM command 7
shared

pages 81
segment 7

skeleton file 2, 12, 15, 16
SKIP record in a logical saved segment

description 51
format 51

SQL
installing in a typical environment 88
overlaying database and user segments 26

storage
CMS virtual machine greater than 21 MB 9
CMS virtual machine less than 21 MB 10
saved segments 39

system data file
contain DEFSEG command related information 12

system data files
classes 31
creating 33
deleting 33
overview 31

system segment identification file 52
system service

named saved system 20
saved segment 20

System/370 architecture 7

T
TEXT record in a logical saved segment

description 45
format 46

tip
for installing applications in saved segments 22
for using segment spaces 24
planning, saved segments 7

U
USER record in a logical saved segment

description 50
format 50

V
virtual machine

CMS 9
greater than 21 MB 9
less than 21 MB 10
size, planning for segments based on 8
storage for saved segments 39

VMFSGMAP
customizing you saved segment layout 59
displaying your saved segment layout 59

VMSES/E
format product 74
format, definition of 57
MAINT virtual machine 59
products not in VMSES/E format 75

Index 105

VMSES/E (continued)
saved segment

automated building of (VMFBLD EXEC) 59
build list 57
build list (SEGBLIST) 58
build status 76
building of 57
Change Segment Definition panel 62
conversion of a DCSS 69
conversion of a member of a segment space 70
copying a DCSS 67
copying a member saved segment 68
customized layout (VMFSGMAP EXEC) 59
data file (SEGDATA) 58
DCSS, changing the range of a 63
DCSSBKUP utility of CP 78
default definition of 58
definition 61
deletions 70, 71
member saved segment, changing the range of a 63
merging of 67
messages, build 77
minimum definition of 66
physical and logical 73
product parameter file (SEGBLD) 58
resource requirements 59
restoration of 78
retrieving a DCSS or member saved segment 72
viewing a segment space 61
viewing the segment map 60
VMFSGMAP panel 60
VMFVIEW 77

VMFSGMAP, how to use 62

Z
z/Architecture exploitation 7

106 z/VM: 7.3 Saved Segments Planning and Administration

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6322-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: Saved Segments Planning and Administration
	SC24-6322-73, z/VM 7.3 (September 2022)
	SC24-6322-01, z/VM 7.2 (September 2020)
	SC24-6322-00, z/VM 7.1 (September 2018)

	Chapter 1. Planning and Defining CP Saved Segments
	Saved Segment Overview
	Why Use Saved Segments?
	Using Saved Segments—An Overview
	Types of Saved Segments
	Defining Saved Segments
	Shared and Exclusive Segments

	Planning Considerations
	Planning for Saved Segments Based on Virtual Machine Size
	Saved Segments in a CMS Machine Whose Size Is Greater Than 21 MB
	Saved Segments in CMS Virtual Machines Whose Size Is Less than 21 MB

	CMS Considerations
	System Performance Considerations

	Creating Saved Segments
	Using the DEFSEG Command
	Results of Entering the DEFSEG Command

	Restrictions for Using the SAMERANGE Operand
	Using the SAVESEG Command
	Using SAVESEG with Your Installation Procedures
	SAVESEG Command Functional Description
	Results of Entering the SAVESEG Command

	Keeping Backup Copies of Saved Segments
	Purging Saved Segments from the System
	Displaying Information about Saved Segments
	Displaying Which Users Have Loaded a Saved Segment
	Installing Applications in Saved Segments
	Tips for Installing Your Applications in Saved Segments
	Fitting Applications below the 16 MB Line
	Using Segment Packing to Conserve Storage Space
	Using a DCSS Compared with Using a Segment Space
	When to Use a Segment Space
	When to Use a DCSS

	Tips for Using Segment Spaces
	Problems with Large Segment Spaces
	Examples of Segment Spaces

	Overlaying Your Applications
	Additional Overlay Possibilities
	Defining Overlaid DCSSs
	Defining Overlaid Spaces with One Unique Member in Each Space
	Overlaid Segment Spaces across Several Applications

	Redefining Saved Segments

	System Data Files
	System Data File Classes
	Creating and Deleting System Data Files
	System Data File Attributes
	System Data File Commands
	System Data File Recovery

	Chapter 2. Planning and Defining CMS Logical Saved Segments
	Overview of Physical and Logical Saved Segments
	Using Logical Saved Segments
	Saved Segment Design Considerations

	Creating Physical and Logical Saved Segments
	Types of Program Objects Allowed in a Logical Saved Segment
	Defining the Contents of a Physical Saved Segment
	Logical Segment Record

	Defining the Contents of a Logical Saved Segment
	MODULE Record
	TEXT Record
	EXEC Record
	LIBRARY Record
	LANGUAGE Record
	DISK Record
	USER Record
	SKIP Record

	Using the SEGGEN Command to Build the Saved Segments
	System Segment Identification File

	Building Physical and Logical Saved Segments—An Example
	Step 1. Create the Code or Data
	Step 2. Define the Physical Saved Segment Contents
	Step 3. Define the Logical Saved Segment Contents
	Step 4. Enter the SEGGEN Command
	Step 5. Copy the SYSTEM SEGID File to the System Disk and Resave CMS

	Chapter 3. Using VMSES/E to Define, Build, and Manage Saved Segments
	Overview of VMSES/E Saved Segment Support
	Product-Supplied Saved Segment Information
	Saved Segment Product Parameter File
	System Saved Segment Build List
	Saved Segment Data File
	VMFSGMAP EXEC
	PUT2PROD EXEC

	Resource Requirements for Building and Managing Saved Segments
	Viewing the Segment Map
	Viewing a Segment Space

	Viewing a Saved Segment Definition
	Changing, Adding, and Deleting Saved Segment Definitions
	Changing the Range of a DCSS
	Changing the Range of a Member Saved Segment
	Renaming a DCSS or Member Saved Segment
	Changing the Name of a Segment Space
	Changing Multiple Members of a Segment Space
	Adding a DCSS or Member Saved Segment
	Merging Existing Saved Segments into the SEGDATA File
	Copying a DCSS
	Copying or Moving a Member Saved Segment into Another Segment Space
	Copying a Segment Space
	Converting a DCSS to a Member of a Segment Space
	Converting a Member of a Segment Space to a DCSS
	Deleting a DCSS
	Deleting a Member Saved Segment
	Deleting a Segment Space
	Retrieving a Deleted DCSS or Member Saved Segment
	Changing and Adding Definitions for Physical and Logical Saved Segments
	Adding Saved Segment Definitions for a VMSES/E-Format Product
	Adding Saved Segment Definitions for a Product Not in VMSES/E Format

	Building or Deleting (Purging) Saved Segments
	Displaying the Saved Segment Build Status
	Using the PUT2PROD EXEC to Build or Delete Saved Segments
	Checking the Saved Segment Build Messages
	Saved Segments That VMFBLD Cannot Build
	Copying the SYSTEM SEGID File to the CMS System Disk

	Restoring Saved Segments That Have Been Backed Up on Disk by the CP DCSSBKUP Utility

	Appendix A. Defining CP Saved Segments—Examples
	Defining a Saved Segment with Both Shared and Exclusive Page Ranges
	Defining Overlaid DCSSs
	Defining a Segment Space
	Defining Overlaid Segment Spaces
	Adding a Member to an Existing Segment Space
	Replacing an Existing Member of a Segment Space
	How System Data Files are Affected

	Setting Up Your Storage Layout

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	Z

