
z/VM
7.3

RSCS Networking
Exit Customization

IBM

SC24-6317-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
371.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-05
© Copyright International Business Machines Corporation 1990, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables.. xiii

About This Document...xv
Intended Audience... xv
Syntax, Message, and Response Conventions...xv
Where to Find More Information... xviii

Links to Other Documents and Websites...xviii

How to Send Your Comments to IBM..xix

Summary of Changes for z/VM: RSCS Networking Exit Customization...................xxi
SC24-6317-73, z/VM 7.3 (September 2022)...xxi
SC24-6317-01, z/VM: 7.2 (September 2020)..xxi
SC24-6317-00, z/VM: 7.1 (September 2018)..xxi

Chapter 1. Introduction... 1
Types of RSCS Exits..1

RSCS Exit Facility.. 1
Transmission Algorithms..4
ASCII Printer and Plotter Exits...4
Gateway Programming Interface... 5
LPR Exits... 5
LPD Exits... 6
UFT Exits... 7
UFTD Exits...7
Loadable Link Drivers... 8

Sample Exit Routines... 8

Chapter 2. Customizing RSCS...9
Selecting Which Exits to Use... 9

RSCS Exit Facility.. 9
Transmission Algorithms..11
ASCII Printer and Plotter Exits...11
Gateway Programming Interface...12
LPD Exits...12
LPR Exits... 12
UFT Exits...12
UFTD Exits.. 12
Loadable Link Drivers... 12

Exit Routine Considerations.. 13
Language Requirements.. 13
Code Attributes.. 13
31-Bit Enablement... 13
Return Codes.. 14

Writing Exit Routines..14
Calling Conventions..14
Linkage Conventions.. 16

 iii

Restoring Registers.. 16
Using RSCS Facilities..17
Issuing Messages... 17
Calling Exit Routines...18
Example 1: Defining Printing Shifts... 18
Example 2: Using Two Exit Routines..19
Example 3: Creating a New Command.. 22

Storage Considerations..25
Using GCS Macros.. 25
Quick Storage Allocation Routines.. 25
Example 4: Mapping a Work Area.. 26

Packaging Considerations... 27
Identifying Entry Points..28

Sharing Information...30
User Fields..31

Link-Editing Considerations...33
Common Problems and Solutions... 33

Distribution Considerations... 34
Specifying the Order of the Exit Routines..35

Tracing Exit Routines... 35
Using Sample Exit Packages..36

Enabling Sample Exit Routines.. 36
Summary of Sample Packages...36

Chapter 3. IBM-Defined Exit Points.. 39
Usage Conventions.. 39

Standard Entry Conditions... 39
Standard Exit Conditions..39
Standard Return Codes.. 39
Data Areas.. 40
Accounting Records..40

Exit 0 – Initialization.. 41
Exit 1 – Termination...43
Exit 2 – Spool File Accept Accounting...45
Exit 3 – Spool File Send Accounting..47
Exit 4 – Spool File Purge Accounting...49
Exit 5 – Spool File Receive Accounting... 50
Exit 6 – TAG Priority Change..52
Exit 7 – Auto-Answer Sign-On Time Out...54
Exit 8 – Auto-Answer Unrecognizable Data.. 55
Exit 9 – Auto-Answer Sign-On Validation..57
Exit 10 – Auto-Answer Sign-On Reject... 59
Exit 11 – NJE Job Header Creation... 61
Exit 12 – NJE Data Set Header Creation... 64
Exit 13 – NJE Job Trailer Creation...67
Exit 14 – NJE Job Header Reception.. 69
Exit 15 – NJE Data Set Header Reception...72
Exit 16 – NJE Job Trailer Reception.. 74
Exit 17 – Separator Page Selection... 76
Exit 18 – Separator Page Generation.. 78
Exit 19 – Command Screening.. 81
Exit 21 – Spool File Accept/Reject.. 83
Exit 22 – NOTIFY Driver Note Selection..85
Exit 23 – NOTIFY Driver Note Editing..86
Exit 24 – Spooling CP Command Screening..88
Exit 25 – Post-CP Command Screening.. 91
Exit 26 – Link State Change Accounting..94

iv

Exit 27 – Message Request Screening.. 96
Exit 28 – Message Language Selection... 98
Exit 29 – Unknown Command... 99
Exit 30 – Reroute Interception..101
Exit 31 – Sort Priority Change... 103
Exit 32 – NMR Reception...105
Exit 33 – User Parm Processing.. 107
Exit 34 – Spool Manager Command..109
Exit 35 – Dump Processing..110
Exit 36 – NOTIFY Driver Purge.. 112
Exit 37 – NJE Job Header Transmission... 113
Exit 38 – NJE Data Set Header Transmission... 115
Exit 39 – NJE Job Trailer Transmission...117
Exit 40 – NJE Record Reception..119
Exit 41 – NJE Job Header Post-Processing.. 121
Exit 42 – NJE Data Set Header Post-Processing.. 123
Exit 43 – NJE Job Trailer Post-Processing..125
Exit 44 – Link Termination...127
Exit 45 – Output Page Accounting.. 128
Exit 46 – Verification of Page Accounting... 130
Exit 47 – Driver Initialization...132
Exit 48 – Verification of Output Page Error... 134

Chapter 4. Transmission Algorithm Processing... 137
Specifying a Transmission Algorithm.. 137
Transmission Algorithm Programming Considerations.. 137
External Transmission Algorithms.. 138

Open Request Processing.. 138
Accept Request Processing... 139
Select Request Processing...141

Internal Transmission Algorithms...142
Programming Considerations.. 142
Transmission Algorithm 0.. 143
Transmission Algorithm 1.. 143
Transmission Algorithms 2 - F... 144

Packaging Transmission Algorithms... 144
Installing External Transmission Algorithms.. 145
Installing Internal Transmission Algorithms...145

Chapter 5. ASCII Printer and Plotter Exit Processing.. 147
ASCII Exit Programming Considerations.. 147

Required Values... 147
Entry Conditions...148
Exit Conditions... 148

ASCII Exit Routines... 148
Initialization Routine..148
TAG Processing Routine... 150
Record Processing Routine.. 151
Device Reset Routine... 152
Message Processing Routine... 153
Attention Interrupt Processing Routine.. 154
Termination Routine...155

Sample ASCII Printer and Plotter Exit Modules... 156
Printer Exit Modules...157
ASCXPSE Routine... 158
ASCXPSE Configuration File...160
ASCXONE Routine.. 163

 v

ASCXONE Configuration file...165
IBM XY/749 Plotter Exit Module..165
Nicolet Zeta 8 Plotter Exit Module...166
Sending Files with Sample Exit Routines.. 166

Chapter 6. Gateway Programming Interface... 167
Gateway Program.. 167

Entry Conditions...167
Exit Conditions... 168
Return Codes..169

Programming Considerations..169
Work Area Considerations... 169
Link-Editing Considerations... 169
Program Structure..170
Types of Work...170
Scheduling Work.. 171
Supported NJE Sub Record Control Byte Values.. 172
Reason Code Responses..173

Gateway Service Macros... 174
NJEABORT... 175
NJECLOSE.. 176
NJECONCT... 177
NJEDSCON... 178
NJEGET.. 179
NJEOPEN... 180
NJEPUT.. 182
NJERJECT.. 183
NJE File Control Block Fields.. 184
NJEFILE..185
NJEFILED... 186

Chapter 7. TCP/IP LPR Exit Points.. 187
LPR Programming Considerations...187

Required Values... 187
Entry Conditions...188
Printer Flag Fields.. 188
Print Record Vector.. 189
Exit Conditions... 189

LPR Exit Routines...189
LPR Initialization Routine...189
LPR TAG Processing Routine..191
LPR Record Processing Routine...193
LPR End of File Routine..195
LPR Control File Routine.. 197
LPR Termination Routine... 199

Sample LPR Exit Routines... 200
LPRXONE Routine...201
LPRXONE Configuration file... 203
LPRXPSE Routine... 204
LPRXPSE Configuration file..206

Chapter 8. TCP/IP LPD Exit Points.. 211
LPD Programming Considerations.. 211

Required Values... 211
Entry Conditions...212
Order of the Control File and Data File.. 212
Response Messages...212

vi

Print Record Vector.. 212
Exit Conditions... 213

LPD Exit Routines...213
LPD Initialization Routine.. 213
LPD Print Command Processing Routine...214
LPD Print Job Command Processing Routine..216
LPD Data Processing Routine...218
LPD End of File Routine..220
LPD Control File Routine.. 222
LPD Termination Routine... 223

Sample LPD Exit Routine... 224
LPDXMANY Routine..224
LPDXMANY Configuration file.. 226
Using an LPD-Type Link as a Print Server..230

Chapter 9. TCP/IP UFT Exit Points.. 231
UFT Programming Considerations.. 231

Required Values... 231
Entry Conditions...232
UFT Commands..232
Data Record Vector.. 232
Exit Conditions... 233

UFT Exit Routines.. 233
UFT Initialization Routine.. 233
UFT TAG Processing Routine... 234
UFT Record Processing Routine...235
UFT End of File Routine..237
UFT Command Routine.. 238
UFT Termination Routine... 239

Sample UFT Exit Routine... 240
UFTXOUT Routine.. 241
UFTXOUT Configuration File.. 242

Chapter 10. TCP/IP UFTD Exit Points..245
UFTD Programming Considerations..245

Required Values... 245
Entry Conditions...246
Order of the UFT Commands and Data..246
Response Messages...246
Data Record Vector.. 246
Exit Conditions... 247

UFTD Exit Routines.. 247
UFTD Initialization Routine..247
UFTD Connect Processing Routine.. 248
UFTD Command Processing Routine...250
UFTD Data Processing Routine.. 252
UFTD End of File Routine... 254
UFTD Termination Routine...256

Sample UFTD Exit Routine.. 257
UFTXIN Routine..257
UFTXIN Configuration File... 259

Chapter 11. RSCS Macros...265
Specifying Parameters...265
Program Structure Macros.. 265
BRC – Branch on Return Code...266
EXITCALL – Providing an Exit Point...267

 vii

HASHBLOK – Defining a Hash Table... 270
INSTALIT – Adding a Record Format Table...272
ITFORMAT – Building a Format Table... 273
ITRACE – Tracing an Event.. 274
PARDSECT – Defining a Keyword Table.. 279
PAREND – Defining the End of a Keyword Table...281
PARKEY – Defining a Keyword...282
PAROPT – Defining Options for a Keyword... 284
QSABLOK – Defining a Storage Request... 286
RCALL – Passing Control to a Routine...288
RENTRY – Defining a Module Entry Point..290
REXIT – Defining a Module Return Point.. 295
RMOD – Defining a Module..297
RMSG – Issuing a Message... 299
RWORK – Defining the Start of a Module Work Area.. 302
RWORKEND – Defining the End of a Module Work Area.. 303
SOCKET – Using the TCP/IP Socket Interface.. 304
SOCKET Function Descriptions... 307

Invoking the SOCKET Macro.. 307
ACCEPT...307
BIND... 307
CANCEL...308
CLOSE... 308
CONNECT..308
DSECT... 308
FCNTL... 308
GETCLIENTID... 309
GETHOSTBYNAME... 309
GETHOSTID.. 309
GETHOSTNAME..309
GETPEERNAME.. 310
GETSOCKNAME..310
GETSOCKOPT... 310
GIVESOCKET.. 311
INITIALIZE... 311
IOCTL..311
LISTEN..312
READ...312
RECV... 312
RECVFROM... 313
SELECT... 313
SEND...314
SENDTO.. 314
SETSOCKOPT..315
SHUTDOWN..315
SOCKET...316
TAKESOCKET..316
TERMINATE.. 316
WRITE...316

Control Block Macros...318

Chapter 12. Supported Routines in the CRV.. 321
Executable Entry Points...321

DMTAXMRQ.. 321
DMTBPLLX.. 321
DMTCOMDG..322
DMTCOMDQ..322

viii

DMTCOMFI... 322
DMTCOMGG..323
DMTCOMGN..323
DMTCOMHG..324
DMTCOMLK...324
DMTCOMNQ..324
DMTCOMSM..325
DMTCOMTE...325
DMTCOMTS...326
DMTDDLEP... 326
DMTHASHA...327
DMTHASHB.. 327
DMTHASHC...327
DMTHASHD.. 328
DMTHASHF...328
DMTHASHG.. 328
DMTHASHS...329
DMTIOTHD... 329
DMTIOTST.. 329
DMTLOGCL..329
DMTLOGEP... 330
DMTMANDE.. 330
DMTMGFFM..330
DMTMGXEP.. 331
DMTMPTBP...331
DMTMPTCK...332
DMTMPTGD.. 332
DMTMPTGP...332
DMTPAREP... 333
DMTPRDDQ.. 334
DMTPRDNQ.. 334
DMTQSAAB...334
DMTQSAFA... 335
DMTQSAUB...335
DMTRDREP... 335
DMTRDROP...336
DMTRERSC... 337
DMTRESLO..337
DMTRESUN...337
DMTSEPBL..338
DMTSOKET... 338
DMTTASKA... 339
DMTTASKD... 340
DMTTASKF..340
DMTTASKG... 340
DMTUROEP...341
DMTUROFL... 341

Nonexecutable Entry Points.. 341

Chapter 13. Message Repositories..345
Conversion Repository...345

Naming Convention..345
Repository Structure.. 345
Control Statements.. 345
Message Definition Statement...347
Message Fields...348

Translation Repository...356

 ix

Naming Convention..356
Repository Structure.. 356

MCOMP and MCONV – Compiling Message Repositories...360

Chapter 14. Customizing the RSCS Data Interchange Manager............................ 363
Creating Exit Routines... 363

Using Accounting Exits...363
Using Command Exits.. 364
Using Format Recognition Exits...364
Using Security Exits..365

Appendix A. DSECTs Generated by Mapping Macros..367

Notices..371
Programming Interface Information...372
Trademarks.. 372
Terms and Conditions for Product Documentation.. 372
IBM Online Privacy Statement.. 373

Bibliography.. 375
Where to Get z/VM Information.. 375
z/VM Base Library..375
z/VM Facilities and Features... 376
Prerequisite Products.. 378
Related Products... 378
Additional Publications..379

Index.. 381

x

Figures

1. Invoking an Exit Point..3

2. Defining Shifts with an EVENTS CONFIG File... 18

3. Exit 31 Routine: Stopping Large Files from Printing...18

4. PLIMIT LKEDCTRL File.. 19

5. Exit 0 Routine: Reading the JOBNAME CONFIG File..20

6. Exit 11 Routine: Placing the Job Name in Job Header...21

7. JOBNAME LKEDCTRL File... 21

8. Exit 29 Routine: Implementing the TYPE Command (Part 1 of 3)...22

9. Exit 29 Routine: Implementing the TYPE Command (Part 2 of 3)...23

10. Exit 29 Routine: Implementing the TYPE Command (Part 3 of 3)...24

11. TYPE LKEDCTRL File... 24

12. Exit 14 Routine: Allocating and Deallocating a Work Area.. 26

13. Exit 1 Routine: Freeing Storage Acquired by the Exit 14 Routine..27

14. Packaging One Source Module (SECURE ASSEMBLE)... 28

15. SECURE LKEDCTRL File.. 28

16. Specifying Aliases in the Source Module (SECURE ASSEMBLE)..28

17. Sample Link-Edit Control File: Creating Two Load Modules.. 29

18. Link-edit Control File: Creating One Load Module... 29

19. Identifying Entry Points (ACCNTI ASSEMBLE)... 30

20. Identifying Entry Points in the PROFILE GCS...30

21. Example Macro to Map Exit Utility Routine Addresses.. 32

22. Exit 0 Routine: Installing a Utility Routine Package... 32

23. Finding and Calling a Utility Routine...32

 xi

24. Sample RSCS CONFIG File..34

25. SECURE CONFIG File for Security Exit Package...35

26. Sample Configuration File Statements...35

27. Sample External Transmission Algorithm.. 144

28. Sample LKEDCTRL File: External Transmission Algorithm..145

29. Specifying the WORK Parameter..169

30. Basic Structure of Gateway Program... 170

31. Defining Keywords.. 283

32. Sample of a SOCKET Macro Invocation..307

xii

Tables

1. Examples of Syntax Diagram Conventions...xvi

2. Required RENT and SAVAREA Settings.. 14

3. Sample Exit Routine Packages..37

4. Printer Flag Fields and Values.. 188

5. Macros That Map RSCS Data Areas.. 367

 xiii

xiv

About This Document

This document describes the exit facilities of IBM® Remote Spooling Communications Subsystem (RSCS)
Networking for z/VM. This information can help you:

• Plan for customizing RSCS
• Implement and test your exit routines
• Use RSCS macros in your exit routines

Intended Audience
This information is intended for programmers who are responsible for initializing and modifying RSCS. You
should be familiar with the concepts, terminology, and use of z/VM®, RSCS, and the Group Control System
(GCS). An understanding of networking protocols, Virtual Telecommunications Access Method (VTAM®),
and TCP/IP is also helpful.

Attention

Only experienced programmers should attempt to use the programming interfaces described in this
document. Writing an exit routine requires thorough knowledge of telecommunication protocols,
systems programming, and RSCS programming techniques.

If you attempt to customize RSCS by writing exit routines, transmission algorithms, or gateway programs
without having this knowledge, you run the risk of seriously degrading your system's performance and
causing system failure.

When you use the RENTRY macro for exit routines, you must use specific options. See “Calling
Conventions” on page 14 for a list of the required options and see “Example 4: Mapping a Work
Area” on page 26 for an explanation of work area usage. Failure to follow these guidelines may result in
abend conditions.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xvi.

© Copyright IBM Corp. 1990, 2022 xv

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

xvi About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

About This Document xvii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
For more information about RSCS and other z/VM topics, see “Bibliography” on page 375.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xviii z/VM: 7.3 RSCS Networking Exit Customization

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1990, 2022 xix

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xx z/VM: 7.3 RSCS Networking Exit Customization

Summary of Changes for z/VM: RSCS Networking Exit
Customization

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6317-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6317-01, z/VM: 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6317-00, z/VM: 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1990, 2022 xxi

xxii z/VM: 7.3 RSCS Networking Exit Customization

Chapter 1. Introduction

RSCS Networking for z/VM is a general purpose spooling subsystem. RSCS is designed to be flexible so
that you can customize it to meet the changing needs of your installation and network.

Using exit facilities and control files, such as the configuration file and EVENTS file, you can set up and
tailor the network where RSCS functions. For information about these files, see z/VM: RSCS Networking
Planning and Configuration and z/VM: RSCS Networking Operation and Use.

You can use the exit facility to modify RSCS processing to meet any special functional requirements for
your installation. This document describes how you can use the exit facility to customize RSCS.

Attention

The writing of exit routines and the installation of a new exit point require a thorough knowledge
of systems programming and RSCS programming conventions. If, without having this knowledge, you
attempt to write exit routines or install new exit points, you risk seriously degrading the performance of
your system or causing system problems. Therefore, only an experienced programmer should attempt to
use RSCS exits to customize or modify RSCS processing.

Types of RSCS Exits
An exit is a procedure outside the main RSCS program that, under certain conditions, receives control
from RSCS. An exit consists of an exit point and an exit routine.

An exit point is a location in RSCS source code from which processing passes to an exit routine. An exit
routine is the code that you supply to customize standard RSCS processing.

RSCS provides the following categories of exits, which you can use to customize specific processing areas:

• RSCS exit facility
• Transmission algorithms
• ASCII printer and plotter exits
• Gateway programming interface
• TCP/IP line printer remote (LPR) exits
• TCP/IP line printer daemon (LPD) exits
• TCP/IP unsolicited file transfer (UFT) exits
• TCP/IP unsolicited file transfer daemon (UFTD) exits

RSCS also provides facilities for creating additional types of link drivers and customizing RSCS messages.

Chapter 2, “Customizing RSCS,” on page 9 contains information about writing exit routines.

RSCS Exit Facility
The RSCS exit facility is an interface between RSCS and your routines. When you use this exit facility,
you can modify certain RSCS processes without directly altering RSCS source code. Your exit routines
remain independent of RSCS code. This can simplify maintenance and increase the portability of your exit
routines.

Using the RSCS exit facility, you can customize different areas of RSCS processing, including:

• Abnormal end (abend)
• Auto-answer sign-on
• Commands
• Messages

Introduction

© Copyright IBM Corp. 1990, 2022 1

• Network job entry (NJE) header
• Separator page output
• Spool file
• Start and end

You do not need to supply exit routines as part of standard RSCS processing. Use of the RSCS
exit facility is optional. If you do not implement an exit point, it is transparent during standard RSCS
processing.

How the RSCS Exit Facility Works
The RSCS exit facility can have 256 exit points, each identified by a number from 0 to 255. The nnn value
specified on the EXITCALL macro corresponds to the exit point number. EXITCALL macros define and
identify the numbered exit points in the RSCS source code. See “EXITCALL – Providing an Exit Point” on
page 267.

To implement an exit point, you must define it with an EXIT statement in the RSCS configuration file and
supply an exit routine. You can enable or disable the exit point by specifying the ON or OFF operands,
respectively, on the EXIT statement. You can also dynamically change the exit point's status with the EXIT
command. For more information, see z/VM: RSCS Networking Planning and Configuration and z/VM: RSCS
Networking Operation and Use.

When you enable an exit point, RSCS checks for associated exit routines. You can associate several exit
routines with one exit point by specifying each exit routine on the EXIT statement. RSCS passes control
to the first exit routine specified. The remaining exit routines receive control in the order they appear on
the EXIT statement. For example in the following EXIT statement, exit routine EXITSTE1 receives control
before exit routine EXITSTE2 and so on.

EXIT 102 ON EXITSTE1 EXITSTE2 EXITSTE3 …

This process continues until each specified exit routine is called. However, if an exit routine issues a
nonzero return code, RSCS will not call the subsequent exit routines in the list.

Figure 1 on page 3 shows the relationship between EXITCALL macros, EXIT statements, and an exit
routine. The EXIT statement defines the exit number nnn at label XYZ for the EXITCALL macro in RSCS
code. The statement also identifies EXITSTE1 as the entry point of the exit routine for exit point nnn.

Attention: When writing exit routines, you must ensure that data areas shared by multiple exits
are handled as described in “Writing Exit Routines” on page 14 and “Sharing Information” on
page 30. If the guidelines are not followed, data will not be shared properly, possibly leading to
an RSCS outage.

Introduction

2 z/VM: 7.3 RSCS Networking Exit Customization

Figure 1. Invoking an Exit Point

When an exit point is disabled or not defined by an EXIT statement, RSCS bypasses the exit point. It does
not pass control to an associated exit routine. RSCS then continues its standard processing. If an exit
point is enabled but RSCS cannot find any exit routines, RSCS also continues its processing.

IBM-Defined Exit Points
RSCS contains 48 IBM-defined exits that are identified by EXITCALL macros in the RSCS source code. In
this document, each IBM-defined exit point is identified by its number (for example, Exit 0, Exit 1, and so
on). Chapter 3, “IBM-Defined Exit Points,” on page 39 contains information about each IBM-defined exit
point.

Installation-Defined Exit Points
You can also establish your own exit points if the IBM-defined exits do not meet your needs. To use these
exits, called installation-defined exits, add EXITCALL macros from within RSCS source code to your exit
routine code.

Invoking the RSCS Exit Facility
The following table summarizes the steps you need to take to load the exit facility. Chapter 2,
“Customizing RSCS,” on page 9 contains more information about writing exit routines; it also contains
some examples of how to start the exit facility.

1. Define and enable an exit point with an EXIT statement or command.
2. Use VMFHLASM to assemble the module that contains the exit routine.
3. Use VMFLKED to link-edit the resultant text file into a load library.
4. Specify the load library name on the GCS GLOBAL command in the PROFILE GCS file.

The RSCSEXIT LOADLIB contains all of the IBM-supplied sample exit routines. To use one of these exit
routines, you must specify the name of this load library in the PROFILE GCS file.

5. Initialize RSCS.

As an alternative to building your own exit load library, you can add your exit module to the RSCSEXIT
LOADLIB and use VMSES/E to rebuild the library.

Introduction

Chapter 1. Introduction 3

Transmission Algorithms
RSCS supplies two transmission algorithms: DMTAXAG0 and DMTAXAG1. You do not need to provide
additional transmission algorithms. However, as the needs of your installation change, you can
modify these transmission algorithms or create your own, packaged in a separate load library. These
transmission algorithms are called external transmission algorithms. For compatibility, RSCS also provides
facilities for internal transmission algorithms. See Chapter 4, “Transmission Algorithm Processing,” on
page 137 for more information about external and internal transmission algorithms.

How Transmission Algorithms Work
RSCS uses a transmission algorithm when a networking link starts, a file is enqueued on a networking link,
and when the link tries to get a file for transmission.

A transmission algorithm determines the stream on which a multistreaming link sends a file.
Multistreaming allows RSCS to send more than one file at a time over a networking link (GATEWAY-type,
LISTPROC-type, NJE-type, SNANJE-type, and TCPNJE-type). RSCS can send several small files at the
same time it sends a large file; each file is sent concurrently on different transmission streams. This
reduces the time small files wait to be sent on a link.

Invoking Transmission Algorithms
Transmission algorithms are called by specifying operands on the PARM statement or the START and
DEFINE commands for a networking link. The TA operand identifies the transmission algorithm used
for the link. The STREAMS operand specifies the number of transmission streams. NJE-type, SNANJE-
type, TCPNJE-type, and LISTPROC-type links can use up to seven transmission streams to send files;
GATEWAY-type links can use up to 32 streams.

The TAPARM operand specifies an 80-character string for use as input to a transmission algorithm. If you
specify the same transmission algorithm for more than one link, you can supply a different set of control
values for each link. For more information, see z/VM: RSCS Networking Operation and Use.

See “Packaging Transmission Algorithms” on page 144 for information about installing external and
internal transmission algorithms.

ASCII Printer and Plotter Exits
ASCII-type and TCPASCII-type links use the ASCII printer and plotter exit routines to build specific data
streams to communicate with ASCII printers and plotters. On ASCII-type links, these devices can be
connected to RSCS by a controller, such as the IBM 7171 ASCII Device Attachment Control Unit or the
9370 ASCII Subsystem Controller. On TCPASCII-type links, the devices can be connected to a terminal
server in a TCP/IP network.

Note: Throughout this book, ASCII exits means exits for both ASCII-type and TCPASCII-type links.

ASCII printer and plotter exit routines are independent of RSCS code. RSCS provides sample ASCII printer
and plotter exit routines. Use these samples to choose the appropriate data translation needed for a
specific ASCII printer or plotter. You can also create other processing modules, using the sample modules
as guides.

You need to code ASCII printer and plotter exit routines only if your installation uses ASCII-type or
TCPASCII-type links. If your installation uses an ASCII-type or TCPASCII-type link, you must provide an
exit routine to customize the link driver for the ASCII device. See “Sample ASCII Printer and Plotter Exit
Modules” on page 156 for more information.

How ASCII Printer and Plotter Exits Work
The ASCII or TCPASCII link driver calls an ASCII printer and plotter exit to build specific data streams,
which are sent to a printer or plotter. These exit routines are called at seven points in the ASCII or
TCPASCII link driver's operational cycle:

• Attention interrupt processing

Introduction

4 z/VM: 7.3 RSCS Networking Exit Customization

• Initialization
• End-of-file processing
• Message handling
• Output record translation
• TAG record processing for spool files
• Termination

Your exit routine can contain six subroutines that provide additional processing instructions for each of
the six points. You need only four of these subroutines in your exit routines; two are optional. Generally,
ASCII printer and plotter exit routines respond to conditions set by the CP TAG, SPOOL, and CLOSE
commands, and to the characteristics of a particular printer or plotter.

For more information, see Chapter 5, “ASCII Printer and Plotter Exit Processing,” on page 147.

Invoking ASCII Printer and Plotter Exits
To start ASCII printer and plotter exit routines, take the following steps:

1. Create one or more exit routines and identify each exit routine by an entry point name.
2. Use VMFHLASM to assemble the module containing the exit routines.
3. Use VMFLKED to link-edit the resultant text file into a load library (or add your exit module to

RSCSEXIT LOADLIB and use VMSES/E to rebuild the library).
4. Specify the load library on the GCS GLOBAL command.
5. Specify the module name on the EXIT operand of the DEFINE or START command or the PARM

statement for the ASCII-type or TCPASCII-type link.
6. Initialize RSCS.

Gateway Programming Interface
The gateway programming interface (GPI) lets you create routines that enable RSCS to communicate
with systems using various network protocols. The GPI is made up of the GATEWAY-type links, gateway
programs, and gateway service macros. Gateway programs, like other exit routines, are external from the
rest of the RSCS source code. For more information, see Chapter 6, “Gateway Programming Interface,” on
page 167.

Invoking a Gateway Program
To start a gateway program and the gateway programming interface, perform these steps:

1. Create a gateway program, including gateway service macros, and identify its entry point name.
2. Use VMFHLASM to assemble the module containing the gateway program.
3. Use VMFLKED to link-edit the resultant text file into a load library (or add your exit module to

RSCSEXIT LOADLIB and use VMSES/E to rebuild the library).
4. Specify the load library on the GCS GLOBAL command.
5. Specify the module name of the gateway program on the EXIT operand of the DEFINE or START

command or on the PARM statement for the GATEWAY-type link.
6. Initialize RSCS.

LPR Exits
The LPR link drivers use exits to build data streams that are sent to a line printer daemon in a TCP/IP
network. These exits are also used to control which remote host and port in a TCP/IP network will receive
the transmission.

Introduction

Chapter 1. Introduction 5

You need to code LPR exit routines only if your installation uses LPR-type links. If your installation
uses an LPR-type link, you must provide an exit routine for the link driver. RSCS provides sample LPR exit
routines; see “Sample LPR Exit Routines” on page 200 for more information.

How LPR Exits Work
The LPR exits are called at six points in the operational cycle of the LPR link drivers:

• Control file processing
• End-of-file processing
• Initialization
• Record processing
• TAG record processing for spool files
• Termination

For more information, see Chapter 7, “TCP/IP LPR Exit Points,” on page 187.

Invoking LPR Exits
To start LPR exit routines, perform these steps:

1. Create one or more exit routines and identify each exit routine by an entry point name.
2. Use VMFHLASM to assemble the module containing the exit routines.
3. Use VMFLKED to link-edit the resultant text file into a load library (or add your exit module to

RSCSEXIT LOADLIB and use VMSES/E to rebuild the library).
4. Specify the load library on the GCS GLOBAL command.
5. Specify the module name on the EXIT operand of the DEFINE or START command or the PARM

statement for the LPR-type link.
6. Initialize RSCS.

LPD Exits
The LPD link drivers use exits to build data streams that are received from an LPR client in a TCP/IP
network. These exits are also used to control the destination node and user ID the file will be delivered to.

You need to code LPD exit routines only if your installation uses LPD-type links. If your installation
uses an LPD-type link, you must provide an exit routine for the link driver. For more information, see
“Sample LPD Exit Routine” on page 224.

How LPD Exits Work
The LPD exits are called at seven points in the operational cycle of the LPD link drivers:

• Control file processing
• Data processing
• End-of-file processing
• Initialization
• Print command processing
• Print job command processing
• Termination

For more information, see Chapter 8, “TCP/IP LPD Exit Points,” on page 211.

Invoking LPD Exits
To start LPD exit routines, perform these steps:

Introduction

6 z/VM: 7.3 RSCS Networking Exit Customization

1. Create one or more exit routines and identify each exit routine by an entry point name.
2. Use VMFHLASM to assemble the module containing the exit routines.
3. Use VMFLKED to link-edit the resultant text file into a load library (or add your exit module to

RSCSEXIT LOADLIB and use VMSES/E to rebuild the library).
4. Specify the load library on the GCS GLOBAL command.
5. Specify the module name on the EXIT operand of the DEFINE or START command or the PARM

statement for the LPD-type link.
6. Initialize RSCS.

UFT Exits
The UFT link drivers use exits to build data streams that are sent to a UFT daemon in a TCP/IP network.
These exits are also used to control which remote host, user, and port in a TCP/IP network will receive the
transmission.

You need to code UFT exit routines only if your installation uses UFT-type links. If your installation
uses a UFT-type link, you must provide an exit routine for the link driver. For more information, see
“Sample UFT Exit Routine” on page 240.

How UFT Exits Work
The UFT exits are called at six points in the operational cycle of the UFT link drivers:

• End-of-file processing
• Initialization
• Record processing
• TAG record processing for spool files
• Termination
• UFT command processing

For more information, see Chapter 9, “TCP/IP UFT Exit Points,” on page 231.

Invoking UFT Exits
To start UFT exit routines, perform these steps:

1. Create one or more exit routines and identify each exit routine by an entry point name.
2. Use VMFHLASM to assemble the module containing the exit routines.
3. Use VMFLKED to link-edit the resultant text file into a load library (or add your exit module to

RSCSEXIT LOADLIB and use VMSES/E to rebuild the library).
4. Specify the load library on the GCS GLOBAL command.
5. Specify the module name on the EXIT operand of the DEFINE or START command or the PARM

statement for the UFT-type link.
6. Initialize RSCS.

UFTD Exits
The UFTD link drivers use exits to build data streams that are received from a UFT client in a TCP/IP
network. These exits are also used to control the destination node and user ID the file will be delivered to.

You need to code UFTD exit routines only if your installation uses UFTD-type links. If your installation
uses a UFTD-type link, you must provide an exit routine for the link driver. For more information, see
“Sample UFTD Exit Routine” on page 257.

Introduction

Chapter 1. Introduction 7

How UFTD Exits Work
The UFTD exits are called at six points in the operational cycle of the UFTD link drivers:

• Command processing
• Connect processing
• Data processing
• End-of-file processing
• Initialization
• Termination

For more information, see Chapter 10, “TCP/IP UFTD Exit Points,” on page 245.

Invoking UFTD Exits
To start UFTD exit routines, perform these steps:

1. Create one or more exit routines and identify each exit routine by an entry point name.
2. Use VMFHLASM to assemble the module containing the exit routines.
3. Use VMFLKED to link-edit the resultant text file into a load library (or add your exit module to

RSCSEXIT LOADLIB and use VMSES/E to rebuild the library).
4. Specify the load library on the GCS GLOBAL command.
5. Specify the module name on the EXIT operand of the DEFINE or START command or the PARM

statement for the UFTD-type link.
6. Initialize RSCS.

Loadable Link Drivers
RSCS provides the LINKTYPE configuration statement for you to define additional types of link drivers.
You must supply the routine for the new type of driver; this routine is also separate from the RSCS code.
Like other exit routines, you can use RSCS facilities, such as macros and other routines, within the link
driver routine.

You identify the new link driver to RSCS by specifying a LINKTYPE statement in the RSCS configuration
file. You must also specify the entry point name of your link driver routine. For more information about this
statement, see z/VM: RSCS Networking Planning and Configuration.

Sample Exit Routines
RSCS supplies sample exit routines and exit packages for use with the IBM-defined exit points, the
gateway programming interface, and the ASCII, LPD, LPR, UFT, and UFTD exits. For more information, see
“Using Sample Exit Packages” on page 36 or see the section about supplied sample packages in the
RSCS program directory.

Introduction

8 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 2. Customizing RSCS

This section contains information to help you write exit routines. It contains a summary of all exit
categories, describes programming considerations, and provides suggestions for implementing exits.

Selecting Which Exits to Use
Each exit category can be used to customize different areas of RSCS. Before altering standard RSCS
functions or adding new functions to RSCS, you must determine the type of exit you will need to use. You
may find that you need to use more than one type of exit to accomplish the desired changes in RSCS
function. Each type of exit in RSCS has a specific purpose. If you use an exit for other than its intended
purpose, you can increase the risk of performance degradation and system failure.

RSCS Exit Facility
The RSCS exit facility allows you to modify and extend the processing of standard RSCS functions. The
following table lists the IBM-defined exit points in the RSCS exit facility. For more information, see
Chapter 3, “IBM-Defined Exit Points,” on page 39.

Exit Name Function

0 Initialization Perform additional initialization processing.

1 Termination Perform additional termination processing.

2 Spool File Accept Accounting Create an accounting record for each spool file RSCS receives
from a local user.

3 Spool File Send Accounting Create or modify an accounting record for each spool file RSCS
transmits on a link.

4 Spool File Purge Accounting Create an accounting record for each spool file deleted by the
PURGE command.

5 Spool File Receive Accounting Create or modify the accounting record for each file RSCS receives
on a link.

6 TAG Priority Change Ensure that the TAG priority option is not misused or change the
priority of a file before RSCS queues it on one or more links.

7 Auto-answer Sign-on Time Out Create an accounting record when the sign-on time out for an
auto-answer port expires.

8 Auto-answer Unrecognizable Data Create an accounting record when RSCS receives unrecognizable
data from an auto-answer port.

9 Auto-answer Sign-on Validation Perform additional processing when RSCS receives a valid sign-on
card from an auto-answer port.

10 Auto-answer Sign-on Reject Perform additional processing when RSCS receives a valid sign-on
card, which was rejected by the associated link, from an auto-
answer port.

11 NJE Job Header Creation Perform additional processing of the NJE headers created by
RSCS.

12 NJE Data Set Header Creation Perform additional processing of the data set headers created by
RSCS.

13 NJE Job Trailer Creation Perform additional processing of NJE trailers created by RSCS.

Customizing RSCS

© Copyright IBM Corp. 1990, 2022 9

Exit Name Function

14 NJE Job Header Reception Perform additional processing of the NJE header, as received by
RSCS, before RSCS updates the TAG element.

15 NJE Data Set Header Reception Perform additional processing of the data set header, as received
by RSCS, before RSCS updates the TAG element.

16 NJE Job Trailer Reception Perform additional processing of the NJE trailer, as received by
RSCS, before RSCS updates the TAG element.

17 Separator Page Selection Select the separator page style for printed files.

18 Separator Page Generation Create an alternative header or trailer page for printed files.

19 Command Screening Determine if RSCS should process a command or modify a
command before processing it.

20 (no longer available) Exit 27 and Exit 28 replace the functions of Exit 20, which was
defined in RSCS V2.3.

21 Spool File Accept/Reject Determine criteria for accepting or rejecting incoming spool files.

22 NOTIFY Driver Note Selection Determine if a NOTIFY-type link issues a note to the originator of a
misdirected file.

23 NOTIFY Driver Note Editing Modify the note that the NOTIFY-type link sends to the originator
of a misdirected file.

24 Spooling CP Command Screening Examine and, optionally, modify the CP commands run by the
RSCS spool manager task.

25 Post-CP Command Screening Examine the return codes from the CP commands run by the
spool manager task. Use this exit with Exit 24.

26 Link State Change Accounting Create accounting records when a link changes state.

27 Message Request Screening Modify, log, or suppress an RSCS message.

28 Message Language Selection Change the language which RSCS uses to issue a message.

29 Unknown Command Examine or process any command that RSCS does not recognize.

30 Reroute Reroute data traffic using criteria defined at your installation.

31 Sort Priority Change Change the sort priority of a file's tag shadow elements before
they are queued on links, or prevent files from being transmitted
on a link.

32 NMR Reception Determine if RSCS should process a command or message
element received on a networking link, or modify the element
before RSCS processes it.

33 User Parm Processing Process values specified on the UPARM operand of the DEFINE
command.

34 Spool Command Screen Determine if the spool manager task should process a request
from another task, or modify the command element before it is
processed by the spool manager task.

35 Dump Processing Determine if RSCS should request a dump when a task abends.

36 NOTIFY Driver Purge Determine if RSCS should purge a file queued on a NOTIFY-type
link after its requested retention period has expired.

37 NJE Job Header Transmission Examine job headers before RSCS sends a store-and-forward file
on a networking link.

Customizing RSCS

10 z/VM: 7.3 RSCS Networking Exit Customization

Exit Name Function

38 NJE Dataset Header Transmission Examine data set headers before RSCS sends a store-and-forward
file on a networking link.

39 NJE Job Trailer Transmission Examine job trailers before RSCS sends a store-and-forward file
on a networking link.

40 NJE Record Reception Examine records, other than NJE headers, as RSCS receives a file
on a networking link.

41 NJE Job Header Post-Processing Perform additional processing of the NJE header, as received by
RSCS, after RSCS updates the TAG element.

42 NJE Data Set Header Post-
Processing

Perform additional processing of the data set header, as received
by RSCS, after RSCS updates the TAG element.

43 NJE Job Trailer Post-Processing Perform additional processing of the NJE trailer, as received by
RSCS, after RSCS updates the TAG element.

44 Link Termination Perform special processing needed for a print output link.

45 Output Page Accounting Perform accounting processes for printed output.

46 Verification of Page Accounting Perform adjustments to accounting information for output printed
on 3270P-type link.

47 Driver Initialization Perform any required initialization for an SNA3270P link driver.

48 Verification of Output Page Error Perform any special processing if an error occurs while an
SNA3270P link driver is processing a file.

Transmission Algorithms
Transmission algorithms specify the way in which RSCS allocates multiple streams to send files over a
networking link. IBM supplies transmission algorithms 0 and 1, which perform the following functions:
TA 0

Selects any file and assigns it to any available stream.
TA 1

Selects files based on the number of records or spool file blocks in the file. The transmission
algorithms can use one to seven streams. The TAPARM value specifies the upper and lower limit
for each defined stream. The threshold value for transmission algorithm 1 is 99,999,999 file records.

You can modify transmission algorithm 0 or 1, or define your own transmission algorithms to meet your
installation's needs. You can also supply transmission algorithms in a separate load library. RSCS also
provides facilities which you can use to define new transmission algorithms 2 - F. For more information,
see Chapter 4, “Transmission Algorithm Processing,” on page 137.

ASCII Printer and Plotter Exits
ASCII printer and plotter exits specify the protocol used when an ASCII-type or TCPASCII-type link
communicates with a specific ASCII device. Sample exit routines are located in each of the ASCII printer
and plotter processing modules. You can also write other processing modules, using the sample modules
as guides. IBM supplies sample exit routine modules for the following ASCII devices:
ASCXDWRE

LA120 DECwriter Printer from DEC
ASCXSPWE

NEC 3515 Spinwriter Printer
ASCXDSOE

DS180 Matrix Printer from Datasouth

Customizing RSCS

Chapter 2. Customizing RSCS 11

ASCXPROP
IBM Proprinter

ASCX749E
IBM Instruments XY/749 Multipen Digital Plotter

ASCXZETE
Nicolet Zeta 8 Plotter

ASCXPSE
PostScript® printers

ASCXONE
Generic (non-PostScript) printers

For more information, see Chapter 5, “ASCII Printer and Plotter Exit Processing,” on page 147.

Gateway Programming Interface
The gateway programming interface (GPI) specifies how RSCS uses a customer-defined networking
protocol. Unlike the ASCII link driver, which provides many ASCII link driver functions and calls exit
routines to perform specific tasks, the gateway link driver calls one exit routine that does all link driver
tasks. The gateway programming interface provides high-level access to RSCS and NJE-related services
through various macros supplied by IBM. For more information, see Chapter 6, “Gateway Programming
Interface,” on page 167.

LPD Exits
LPD exit routines build data streams received from an LPR client in a TCP/IP network. These exit routines
enable you to modify how files are received. IBM supplies sample exit routines for use with the LPD exits.
For more information, see Chapter 8, “TCP/IP LPD Exit Points,” on page 211.

LPR Exits
LPR exit routines build device-specific data streams that are sent to a line printer daemon in a TCP/IP
network. These exit routines enable you to modify how files are printed. IBM supplies sample exit
routines for use with the LPR exits. For more information, see Chapter 7, “TCP/IP LPR Exit Points,” on
page 187.

UFT Exits
UFT exit routines build data streams that are sent to a UFT daemon in a TCP/IP network. These exit
routines enable you to modify how files are delivered. IBM supplies sample exit routines for use with the
UFT exits. For more information, see Chapter 9, “TCP/IP UFT Exit Points,” on page 231.

UFTD Exits
UFTD exit routines build data streams received from a UFT client in a TCP/IP network. These exit routines
enable you to modify how files are received. IBM supplies sample exit routines for use with the UFTD
exits. For more information, see Chapter 10, “TCP/IP UFTD Exit Points,” on page 245.

Loadable Link Drivers
The loadable link driver facility lets you define a new RSCS link driver without using the GPI. You can
use the LINKTYPE configuration statement to define a new link driver type, associate an entry point
name to it, and define its basic characteristics to RSCS. The link driver routine's characteristics should
be consistent with the RSCS interpretation of the link type's defined characteristics. For more information
about the LINKTYPE statement, see z/VM: RSCS Networking Planning and Configuration.

Customizing RSCS

12 z/VM: 7.3 RSCS Networking Exit Customization

Exit Routine Considerations
The following sections contain information you will need to write exit routines.

Language Requirements
All RSCS source code is written in basic assembler language (BAL). Your exit routines should also be
written in BAL.

Code Attributes
Exit routine code may be serially reusable or reentrant. A serially reusable exit routine can be used
repeatedly. However, the current processing of the routine must be completed before the code can be
used again. A reentrant exit routine can be called from more than one task at the same time. Each task
that calls the exit routine has its own set of registers and program status word. However, all tasks use the
same base register for the routine and the same data areas that are part of the routine.

When writing a routine for a reentrant exit point, you must ensure that the exit routine does not contain
self-modifying code. You must also ensure that any storage used as a work area is based on registers that
are specific to each task (not the base register). You can use locking mechanisms to control access to
common data areas within an exit routine.

In the RSCS exit facility, the calling environment determines if an exit routine must be reentrant or serially
reusable. For example, exit routines called from the RSCS spool manager task do not have to be reentrant,
while those called from link driver tasks must be reentrant. The reentrancy requirements for each exit
point are described in Chapter 3, “IBM-Defined Exit Points,” on page 39.

Your transmission algorithms can be written to be serially reusable.

Gateway programs and ASCII, LPR, LPD, UFT, and UFTD exit routines can be nonreusable, serially
reusable, or reentrant. Base your decision on the characteristics of your exit routine and the information in
“Link-Editing Considerations” on page 33.

31-Bit Enablement
RSCS is enabled to use 31-bit addressing and must run in an ESA-mode virtual machine. Your exit
routines should also be enabled to use 31-bit addressing. They should also tolerate ESA mode and be
able to run in an ESA-mode virtual machine.

If you are migrating from RSCS V3.1 or earlier, or creating new exit routines, you should take the following
actions to ensure that your exit routines are 31-bit compliant:

• Update assembler instructions for 31-bit compliance.

For example, you should update the following instructions within your exit routines. For more
information about other programming changes that are required for 31-bit compliance, see Enterprise
Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf).

Instruction Changes for 31-Bit Compliance

BAL Change to BAS.

BALR Change to BASR; use IPM to obtain a condition code in a register.

CCW Change to format 1.

CSW Change to SCSW.

DC and DS Ensure any addresses specified are 4 bytes long.

ICM and STCM Verify any instructions that process an address in a register and have a mask
that uses that address.

Customizing RSCS

Chapter 2. Customizing RSCS 13

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf

Instruction Changes for 31-Bit Compliance

LA No longer clears the high-order byte of a register; only the high-order bit is
cleared.

• Ensure the options specified on the GETMAIN and FREEMAIN macros are compatible with 31-bit
addressing. For more information, see z/VM: Group Control System.

• Reassemble your exit routines with the macro libraries that are supplied with RSCS.
• Specify the AMODE 31 RMODE ANY options on the %LEPARMS statement of an LKEDCTRL file or on

the :OPTIONS. statement of a VMSES/E build list.

Return Codes
When an exit routine returns control to RSCS, it must contain a return code in register 15. The return
code tells RSCS about the type of processing the exit routine performed. It also tells RSCS how it is to
continue its processing. The number of return codes and their meanings to RSCS varies for each type
of exit routine. “Standard Return Codes” on page 39 describes the guidelines each exit routine should
follow when issuing a return code. For specific information, see the return codes section of each exit point
description.

Writing Exit Routines
The following sections contain code and macro samples to show the concepts that are involved in writing
exit routines. Although these samples focus on the RSCS exit facility, the concepts can also be applied to
transmission algorithms, ASCII, LPD, LPR, UFT, and UFTD exit routines, and gateway link driver routines.

Attention: Before attempting to write any RSCS exit routines, you should completely review this
section and understand the implications described.

Calling Conventions
The RMOD macro must be the first statement in any module containing exit routine code; it identifies the
name of the module, which must contain 6 characters. Depending on the options specified, RMOD may
generate other statements (TITLE, CSECT) and eye-catchers to identify the module. For more information,
see “RMOD – Defining a Module” on page 297.

The RENTRY macro identifies entry points within the module. The entry point name specified on the
macro must contain the 6-character name specified on RMOD and 2 characters to identify the entry point.
If the same 6-character name is not specified, external routines will not be able to access the entry
point. Here, the resulting entry point will be accessible only by other routines in the module that contains
the RENTRY macro. RENTRY may also be used to generate additional statements and establish savearea
conventions. For more information, see “RENTRY – Defining a Module Entry Point” on page 290.

The combination of SAVAREA and RENT parameters on the RENTRY macro may be critical to the
performance of an exit routine. Table 2 on page 14 identifies the required values for each category
of exit routine. If you do not use the following values, your exit routine must get and free its own save
areas. If you do not manage your save areas properly, you may cause RSCS to abend.

Table 2. Required RENT and SAVAREA Settings

Exit Category Reentrant/Reusable RENT and SAVAREA Settings

Exit Facility Reentrant
Serially Reusable

RENT=YES,SAVAREA=PREALLOC
RENT=NO,SAVAREA=PREALLOC

Transmission Algorithm Serially Reusable RENT=NO,SAVAREA=PREALLOC

ASCII Reentrant
Serially Reusable

RENT=YES,SAVAREA=PREALLOC
RENT=NO,SAVAREA=PREALLOC

Customizing RSCS

14 z/VM: 7.3 RSCS Networking Exit Customization

Table 2. Required RENT and SAVAREA Settings (continued)

Exit Category Reentrant/Reusable RENT and SAVAREA Settings

Gateway Program Reentrant
Serially Reusable
Nonreentrant

RENT=YES,SAVAREA=YES
RENT=NO,SAVAREA=YES

Loadable Link Driver Reentrant
Serially Reusable

RENT=YES,SAVAREA=YES
RENT=NO,SAVAREA=YES

LPD Reentrant
Serially Reusable

RENT=YES,SAVAREA=PREALLOC
RENT=NO,SAVAREA=PREALLOC

LPR Reentrant
Serially Reusable

RENT=YES,SAVAREA=PREALLOC
RENT=NO,SAVAREA=PREALLOC

UFT Reentrant
Serially Reusable

RENT=YES,SAVAREA=PREALLOC
RENT=NO,SAVAREA=PREALLOC

UFTD Reentrant
Serially Reusable

RENT=YES,SAVAREA=PREALLOC
RENT=NO,SAVAREA=PREALLOC

The SAVAREA=PREALLOC option means that RSCS provides the exit routine with a previously allocated
save area chain. If you do not specify SAVAREA=PREALLOC, you must manage the save area chain
yourself. Also, if you need a work area for the exit routine, it is recommended that you use DMTQSA to get
the storage for the work area. For more information, see “Example 4: Mapping a Work Area” on page 26.

The listing that is produced when you assemble the exit routine can identify errors on RENTRY macro
specifications. For example, you may find that the macro generates incorrectly or that unnecessary
processing is taking place.

Save Area Format
When the calling routine passes control to another routine, register 13 contains the address of the save
area. This save area, which is mapped by the SAVEAREA macro, has the following format.

Word Displacement Contents

1 0 First 3 bytes are reserved; the fourth byte contains the number of
saveareas in the chain

2 4 Address of the previous save area (stored by the calling program)

3 8 Address of the next save area (stored by the current program)

4 12 Register 14 (return address)

5 16 Register 15 (entry point address)

6 20 Register 0

7 24 Register 1

8 28 Register 2

9 32 Register 3

10 36 Register 4

11 40 Register 5

Customizing RSCS

Chapter 2. Customizing RSCS 15

Word Displacement Contents

12 44 Register 6

13 48 Register 7

14 52 Register 8

15 56 Register 9

16 60 Register 10

17 64 Register 11

18 68 Register 12

19 72 Work area word 1

20 76 Work area word 2

21 80 Work area word 3

22 84 Work area word 4

23 88 Work area word 5

24 92 Work area word 6

25 96 Work area word 7

26 100 Work area word 8

The fourth byte in Word 1 of the save area tells the exit routine about the number of save areas that
remain in the chain. Each time an exit routine calls another routine, one of the save areas in the chain is
used; if that routine calls another routine, another save area is used.

If an exit routine calls an entry point that has SAVAREA=PREALLOC specified on its RENTRY macro and
the indicator is pointing at the last save area in a chain, a protection exception will occur. RSCS will then
create a dump, with R1 pointing at the last save area in the chain.

Linkage Conventions
RSCS uses the following standard Operating System (OS) linkage conventions when calling exit routines:
R0

May contain a function code
R1

Points to a parameter list
R13

Points to a save area
R14

Contains the return address
R15

Contains the address of the routine.

When an exit routine calls the RCALL macro to call another routine whose entry point is defined by
the RENTRY macro, including any RSCS routines that exit routines can access, standard RSCS calling
conventions are ensured.

Restoring Registers
As the default, the REXIT macro restores registers 2 - 12 before returning to the calling routine. Generally,
however, you should also restore registers 0 and 1. This is especially important if several exit routines are
associated with an exit point or if RSCS repeatedly calls an exit routine. If your exit routine issues return
code 0, which tells RSCS to call the next associated exit routine, you should specify REGS=(0,12) on

Customizing RSCS

16 z/VM: 7.3 RSCS Networking Exit Customization

the REXIT macro. This ensures that registers 0 and 1 are restored before the exit routine returns control
to RSCS. If not, RSCS may pass altered registers when it calls the next exit routine; this may produce
unpredictable results.

Using RSCS Facilities
Exit routines can use many of the facilities RSCS provides. These facilities include some RSCS data
structures, macros, and various utility routines. Exit routines can also coordinate their processing with
other RSCS facilities, such as the event scheduler (see Figure 2 on page 18). Often, these facilities can
simplify or enhance the function of an exit routine.

Data Areas
The communications vector table (CVT) and the common routines vector table (CRV) are particularly
important to exit routines. The CVT, which is passed to all exit routines and transmission algorithms,
contains pointers to other RSCS data areas, counters, certain command queues, and flags.

Using the TCRVTAB field in the CVT, an exit routine can find the CRV. The CRV contains the addresses of
some RSCS routines that can be accessed by an exit routine.

The TUSER field in the CVT can be used to share information among different exit points of an exit
package. “Sharing Information” on page 30 describes how to allow multiple exit packages to utilize this
field. If the guidelines are not followed, data will not be shared properly, possibly leading to an RSCS
outage.

Depending on their intended function, an exit routine may also be passed pointers to other data
structures. For more information, see the entry conditions section in the description of each exit routine.
For a list of RSCS data areas supported as programming interfaces, see Appendix A, “DSECTs Generated
by Mapping Macros,” on page 367.

Macros
RSCS provides macros that you can use within your exit routines. With these macros, you can define entry
points for your exit routines, determine how exit routines access information, and issue messages. For
more information about these macros, see Chapter 11, “RSCS Macros,” on page 265.

RSCS also provides gateway service macros that provide functions for gateway programs. Using these
macros, a gateway program can send, receive, and examine files and network job entry (NJE) records
from a GATEWAY-type link. “Gateway Service Macros” on page 174 contains more information about
these macros.

Routines
Using the CRV, exit routines can call RSCS routines to perform functions, such as queuing and dequeuing
request elements, searching tables, issuing messages, and managing storage. For more information about
the RSCS routines supported for use by exit routines, see Chapter 12, “Supported Routines in the CRV,” on
page 321.

DMTAXA contains transmission algorithm 0 and transmission algorithm 1. For compatibility with previous
releases of RSCS, DMTAXA also contains entry points for transmission algorithms 2 - F. For more
information, see “Internal Transmission Algorithms” on page 142.

Issuing Messages
Exit routines can use the RMSG macro to issue messages from the message repositories supplied by
RSCS. RMSG can also be called to issue messages from other repositories, which you can create at your
installation. Chapter 13, “Message Repositories,” on page 345 describes the structure of the message
repositories. Your exit routine can use RMSG to set various MSGBLOK fields to describe the selected
message. RSCS then uses this information to issue the message. For more information, see “RMSG –
Issuing a Message” on page 299.

Customizing RSCS

Chapter 2. Customizing RSCS 17

Calling Exit Routines
After you have created an exit routine, you should assemble the file, link-edit it, and create a load library.
To assemble the file, use the VMFHLASM exec and specify a control file, if needed. To link-edit assembled
files into a load library, you can use the VMFLKED exec and specify a link-edit control file, as needed. This
control file, with file type LKEDCTRL, contains statements that describe the characteristics of the load
library. Figure 4 on page 19, Figure 7 on page 21, and Figure 11 on page 24 are examples of link-edit
control files. For more information, see “Link-Editing Considerations” on page 33. Alternatively, you can
add your exit routine to the IBM-supplied RSCSEXIT LOADLIB and use VMSES/E to rebuild the library.

Example 1: Defining Printing Shifts
This example demonstrates the conventions described in the preceding sections. For this example,
assume that you want to prevent files larger than 5000 records from printing on any printers attached to
your local node during prime shift. This example uses the RSCS event scheduling facilities and Exit 31
(Sort Priority Change).

To define the daily prime shift as the period between 8 AM and 5 PM, you use the RSCS SCHEDULE
command. You then create the EVENTS CONFIG file in Figure 2 on page 18 For more information, see
z/VM: RSCS Networking Planning and Configuration.

--------------------- EVENTS CONFIG File -----------------------
* *
* Days-of- Range *
* Date Time the-week Low High Command *
---------- ----- -------- ----- ----- -----------------
 * INIT MTWRF--- 00:00 07:59 SHIFT 2
 * INIT MTWRF--- 08:00 16:59 SHIFT 1
 * INIT MTWRF--- 17:00 23:59 SHIFT 2
 * INIT -----SS* * * SHIFT 2
 * 08:00 MTWRF--- * * SHIFT 1
 * 17:00 MTWRF--- * * SHIFT 2

Figure 2. Defining Shifts with an EVENTS CONFIG File

To prevent files that exceed 5000 records from printing during prime shift, you create an exit routine for
Exit 31 (Figure 3 on page 18).

 1 PLIMIT RMOD
 *
 USING CVT,R6 Get CVT addressability
 USING TAG,R7 Get TAG addressability
 USING LINKTABL,R9 Get LINKTABL addressability
 2 PLIMITEP RENTRY RENT=NO,SAVAREA=PREALLOC,ARGS=(@CVT,@TAG,@SHAD,@LINK, X
 &REORDER)
 *
 L R6,@CVT Get CVT address
 L R7,@TAG Get TAG address
 L R8,@LINK Get LINKTABL address
 SR R15,R15 Set zero return code
 TM LACTTYP1,LNET Is this a networking driver?
 BO PLEXIT Yes ... only interested in printers
 CLC TSHIFT,=F'1' Is this prime shift
 BNE PLEXIT No ... only interested in shift 1
 CLC TAGRECNM,=F'5000' Does file exceed 5000 records?
 BNH PLEXIT No ... let it print
 LA R15,8 Set return code of 8
 PLEXIT EQU *
 REXIT RC=(R15),REGS=(0,12) Return to caller
 *
 CVT DSECT=YES Communications Vector Table
 LINKTABL DSECT=YES Link table entry
 TAG DSECT=YES Tag slot entry
 END

Figure 3. Exit 31 Routine: Stopping Large Files from Printing

Customizing RSCS

18 z/VM: 7.3 RSCS Networking Exit Customization

The RMOD macro (1) identifies the name of the module, PLIMIT. The RENTRY macro defines an entry
point in the module (2). The first 6 characters of the entry point name (PLIMITEP) must match the
module name (PLIMIT) specified on RMOD. This causes RSCS to create an ENTRY statement that makes
this exit routine an externally visible entry point.

The ARGS option on the RENTRY macro defines a temporary mapping DSECT for the parameter list that
RSCS provides to this exit routine. Because Exit 31 is not a reentrant exit point, the RENT=NO option is
specified on the RENTRY macro of the exit routine code. You should specify RENT=NO for serially reusable
exit points and RENT=YES for reentrant exit points.

RSCS also passes a pointer to the CVT to the exit routine. The LINKTABL and TAG DSECTs in the PLIMIT
module define mappings for data areas that describe the characteristics of a link and a file, respectively.

Invoking the Exit Routine
After assembling the source file containing the Exit 31 routine (PLIMIT ASSEMBLE), you also create a
link-edit control file. The link-edit control file in Figure 4 on page 19 is used for this example.

* PLIMIT Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY PLIMIT
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE PLIMIT
 ALIAS PLIMITEP
 NAME PLIMIT

Figure 4. PLIMIT LKEDCTRL File

You then take the following steps to install the exit routine and enable Exit 31:

1. Issue the following command to assemble the PLIMIT ASSEMBLE file:

vmfhlasm plimit rscsv3

2. Issue the following command to build the PLIMIT LOADLIB:

vmflked plimit

3. Copy the PLIMIT LOADLIB to a disk that RSCS can access.
4. Update the GCS GLOBAL command in the RSCS PROFILE GCS file to include the PLIMIT load library

(do not add a second GLOBAL command).
5. Add the following statement to the RSCS CONFIG file:

EXIT 31 ON PLIMITEP

6. Restart the RSCS virtual machine.

Example 2: Using Two Exit Routines
This example demonstrates communication between two IBM-defined exit points: Exit 0 and Exit 11,
which is a reentrant exit point. It also shows how exit routines can be link-edited into one load library.
This example reads a file called JOBNAME CONFIG from a disk. The only token on the first line of the file
is used as the job name for all jobs that originate on the local node and are sent to MVS.

Exit 0
The Exit 0 routine (Figure 5 on page 20) reads the JOBNAME CONFIG file and saves the job name, which
is later accessed by the Exit 11 routine. In this example, the exit routine does not check for errors in the
JOBNAME CONFIG file.

Customizing RSCS

Chapter 2. Customizing RSCS 19

 3a JOBN00 RMOD CRVBASE=TCRVTAB,CRVCALL=YES
 *
 3b USING CVT,R9 Get CVT addressability
 ENTRY JOBN00NM Externalize the JOBNAME field
 JOBN00EP RENTRY RENT=NO,SAVAREA=PREALLOC,ARGS=(@CVT)
 *
 L R9,@CVT Get CVT pointer from plist
 MVC FILRNAME,=CL8'JOBNAME'
 MVC FILRTYPE,=CL8'CONFIG '
 * Set the file name
 MVI FILROPTS,FILRSIMB Don't want IMBED support
 LA R1,FILREQ Point at file request block
 3c RCALL DMTCOMFI Get first record from the file
 LTR R15,R15 File there?
 BNZ JNEXIT No ... skip processing
 LA R2,8 Use maximum 8 bytes
 C R0,=F'8' Record exceed 8 bytes?
 BH LENGTHOK Yes ... use first 8 bytes
 LR R2,R0 Get the length
 LENGTHOK EQU *
 BCTR R2,0 Get length - 1
 EX R2,MOVENAME Move in the job name
 * MVC JOBNAME(0),0(R1) Executed by above line
 OI FILROPTS,FILRCLOS Ask to close file
 3c RCALL DMTCOMFI Close the file
 JNEXIT EQU *
 REXIT RC=0,REGS=(0,12) Return to caller
 *
 MOVENAME MVC JOBNAME(0),0(R1) Executed to move job name
 *
 JOBN00NM EQU *
 5a JOBNAME DC CL8' ' Place to store the job name
 *
 FILREQ DSECT=NO File request block for COMFI
 ORG FILRAMB Back to MSGBLOK pointer
 4 DC A(MSGBLOK) Supply an empty message block
 ORG ,
 *
 MSGBLOK DSECT=NO,VARS=2 Message block for use with COMFI
 *
 CRV DSECT=YES
 CVT DSECT=YES
 END

Figure 5. Exit 0 Routine: Reading the JOBNAME CONFIG File

Because the CRVBASE and CRVCALL parameters are specified on the RMOD macro (3a), the RCALL
macros (3c) use the CRV to locate the DMTCOMFI routine. The USING statement (3b) establishes CVT
addressability, using register 9.

DMTCOMFI is a general purpose RSCS routine that reads files from a disk. The exit routine passes a
pointer to a MSGBLOK in the FILREQ block (4). DMTCOMFI can use this MSGBLOK to issue diagnostic
messages to the RSCS console if problems occur when the file is read.

Because Exit 0 is serially reusable, the job name can be defined in the JOBNAME data area (5a) within
the exit routine. RENT=NO and SAVAREA=PREALLOC are specified on the RENTRY macro. This means that
the exit routine does not need to be reentrant and that RSCS has previously allocated a save area chain.
Also, REGS=(0,12) is specified on the REXIT macro to ensure that initial register settings are restored
before any other exit routines are called.

Exit 11
This example also requires an exit routine (Figure 6 on page 21) for Exit 11. Because Exit 11 is called
from a networking link driver module and many networking links can be active at the same time, this exit
routine must be reentrant.

Customizing RSCS

20 z/VM: 7.3 RSCS Networking Exit Customization

JOBN11 RMOD CRVBASE=TCRVTAB,CRVCALL=YES
*
 USING CVT,R9 Get CVT addressability
 USING NJH,R8 Get job header addressability
 USING TIB,R7 Get TIB addressability
JOBN11EP RENTRY RENT=YES,SAVAREA=PREALLOC,ARGS=(@CVT,@LINK,@TIB,@JHDR,X
 @TAG,@XAB)
*
 L R9,@CVT Get CVT pointer from plist
 LM R7,R8,@TIB Get TIB and job header address
 TM TIBFLAG1,TIBSYSIN Is this SYSIN (i.e a 'JOB')?
 BZ JNEXIT No ... don't bother setting job name
 5b L R1,=V(JOBN00NM) Point at job name
 CLI 0(R1),C' ' Did exit 0 set job name to use?
 BE JNEXIT No ... leave things as we find them
 MVC NJHGJNAM,0(R1) Move in the job name
JNEXIT EQU *
 REXIT RC=0,REGS=(0,12) Return to caller
*
 CRV DSECT=YES
 CVT DSECT=YES
 NHDTR
 TANK
 NJEEQU
 TIB
 END

Figure 6. Exit 11 Routine: Placing the Job Name in Job Header

Installing the Exit Routines
To build the load module for these exit routines, you use the link-edit control file in Figure 7 on page 21.
Although the exit routines are in separate modules, they can be link-edited into one load module. As part
of the same load module, the exit routines can share information. Entry points in the exit routine must be
externalized by ALIAS statements; RSCS can then load the entry points when it initializes. The link-editor
can then resolve the V-type reference (5b) in the Exit 11 routine to locate the JOBNAME data area in the
Exit 0 routine.

* JOBNAME Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY JOBNAME
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE JOBN00
 INCLUDE JOBN11
 ALIAS JOBN00EP
 ALIAS JOBN11EP
 NAME JOBNAME

Figure 7. JOBNAME LKEDCTRL File

You then take the following steps to build the load module and install the exit routine:

1. Issue the following command to assemble the JOBN00 ASSEMBLE file:

vmfhlasm jobn00 rscsv3

2. Issue the following command to assemble the JOBN11 ASSEMBLE file:

vmfhlasm jobn11 rscsv3

3. Issue the following command to build the JOBNAME LOADLIB:

vmflked jobname

4. Copy the JOBNAME LOADLIB to an RSCS accessible disk.
5. Update the GCS GLOBAL command in the RSCS PROFILE GCS to include the JOBNAME load library (do

not add a second GLOBAL command).

Customizing RSCS

Chapter 2. Customizing RSCS 21

6. Add the following statements to the RSCS CONFIG file:

EXIT 00 ON JOBN00EP
EXIT 11 ON JOBN11EP

7. Restart RSCS.

Example 3: Creating a New Command
To show how an exit routine can use some of the RSCS facilities, the following example creates a new
command called TYPE. This command allows authorized alternate operators to display the contents of
configuration files that reside on RSCS accessible disks.

The TYPE command responses must be compatible with any command response interface (CRI) options
that may be specified when the command is issued. For more information about CRI prefixes, see z/VM:
RSCS Networking Operation and Use.

Because TYPE is not a standard RSCS command, this example uses Exit 29 (Unknown Command). This
exit point can access the addresses of the CVT, the command element, command verb and text, an
authorization block (if any), and a preformatted message request block. Using this information, you can
write the exit routine shown in the following example.

 TYPCMD RMOD CRVBASE=TCRVTAB,CRVCALL=YES
 USING CVT,R9 Map the CVT
 USING CMNDAREA,R7 Map the CMNDAREA
 6 USING MSGBLOK,R6 Map the MSGBLOK
 TYPCMDEP RENTRY RENT=NO,SAVAREA=PREALLOC,ARGS=(@CVT,@CMD,@MSGB,@AUTH, X
 @VERB,@TEXT)
 SR R15,R15 Set zero return code
 L R9,@CVT Get pointer to the CVT
 L R2,@VERB Get pointer to command verb
 CLC CTYPE,0(R2) Is it our command?
 BNE EXIT0 Nope ... pass it along the line
 L R6,@MSGB Get preformatted MSGBLOK
 LTR R0,R0 Is command from local console?
 BZ TYPEOK Yes ... it has authority
 ICM R8,B'1111',@AUTH Do we have an AUTHBLOK?
 BZ TYPM209 Nope ... issue message 209
 CLI AUTHLINK-AUTHBLOK(R8),C' ' System authorized operator?
 BNE TYPM209 Nope ... issue message 209
 TYPEOK EQU *
 XC FILREQ(FILRLEN),FILREQ Zero out the request block
 ST R6,FILRAMB Anchor the MSGBLOK that was passed
 MVI FILROPTS,FILRSIMB Suppress IMBED processing

Figure 8. Exit 29 Routine: Implementing the TYPE Command (Part 1 of 3)

Customizing RSCS

22 z/VM: 7.3 RSCS Networking Exit Customization

 *
 * Set up GPLIST for MPTGP calls
 *
 L R7,@CMD Point at the L3ALERT
 MVC START,@TEXT Set start of text
 XC LENGTH,LENGTH Say no previous token
 SR R5,R5 Clear R5 for insert
 IC R5,CMNDLEN Get the element length - 1
 LA R5,1(R7,R5) Point past end of text
 ST R5,TEND Store end in plist
 *
 * Find the filename and filetype
 *
 LA R1,GPLIST Point at plist
 7 RCALL DMTMPTGP Frame the file name
 BRC (NSI,TYPM204,TYPM204) Ok, not there, too long
 CLC LENGTH,=F'8' Check length against max
 BH TYPM204 Ooops ... too bad for dad
 MVC FILRNAME,PARM Move in the file name
 7 RCALL DMTMPTGP Frame the file type
 BRC (NSI,TYPELOOP,TYPM204) Ok, not there, too long
 CLC LENGTH,=F'8' Check length against max
 BH TYPM204 Ooops ... too bad for dad
 MVC FILRTYPE,PARM Set the filetype
 7 RCALL DMTMPTGP Check for junk
 BRC (TYPM204,NSI,TYPM204) Ok, not there, too long *
 * Issue a message for every line in the file
 *
 TYPELOOP EQU *
 LA R1,FILREQ Point at the FILREQ block
 8 RCALL DMTCOMFI Get the next record
 BRC (NSI,EXIT8,EXIT8,EXIT8,EXIT8,EXIT8,EXIT8,EXIT8) X
 Got one, oops
 STM R0,R1,TYPMSGV0 Store the length and pointer
 9 RMSG 100,REPS=(=V(TYPMGCNX),=V(TYPMSGNX)),BUFFER=(R6) X
 B TYPELOOP Loop till end
 EXIT8 EQU *
 LA R15,8 Set return code 8
 EXIT0 EQU *
 REXIT RC=(R15),REGS=(0,12) Return to calling routine
 *
 * Error messages
 *
 TYPM204 EQU *
 LA R15,204 Get message number
 MVC TYPMSGV0(4),LENGTH Store length of parameter
 MVC TYPMSGV0+4(4),START And the pointer goes here
 B MSGISSUE Go issue the message
 TYPM209 EQU *
 LA R15,209 Get message number
 MVI TYPMSGV0,X'00' Say 'command'
 MVC TYPMSGV1,TYPECMD Set up TYPE command
 MSGISSUE EQU *
 10 RMSG (R15),BUFFER=(R6) Issue the message
 B EXIT8 And exit cleanly
 *
 * Data areas
 *
 FILREQ DSECT=NO Build a file request block

Figure 9. Exit 29 Routine: Implementing the TYPE Command (Part 2 of 3)

Customizing RSCS

Chapter 2. Customizing RSCS 23

 *
 * Plist for DMTMPTGP calls
 *
 GPLIST DC A(PARM) Pointer to 16 byte parm
 START DC A(0) Start of previous token
 LENGTH DC A(0) Length of previous token
 TEND DC A(0) End of text
 PARM DC CL16' ' Place for the parm
 CTYPE DC CL8'TYPE ' Command name
 TYPECMD DC F'4',A(CTYPE) Message version of TYPE command
 *
 * DSECTs
 *
 AUTHBLOK DSECT=YES Authorization element
 CMNDAREA DSECT=YES Command element
 CRV DSECT=YES Common Routines Vector
 CVT DSECT=YES Communications Vector Table
 MSGBLOK DSECT=YES Generate a MSGBLOK
 TYPMSGV0 DS CL8 First variable name
 TYPMSGV1 DS CL8 Second variable name
 END

Figure 10. Exit 29 Routine: Implementing the TYPE Command (Part 3 of 3)

This exit routine calls the parsing routine, DMTMPTGP (7), and the RSCS file interface routine,
DMTCOMFI (8). It also calls the RMSG macro to use the RSCS message facilities. When called, the
exit routine receives a formatted message request block (MSGBLOK, 6). DMTCOMFI can then use this
MSGBLOK to send any error messages about the specified file to the command originator. This MSGBLOK
also allows the TYPE command to work with the CRI facilities.

In Figure 9 on page 23, RMSG is called to issue messages 204 and 209 (10) from the RSCS message
repository. This example also shows RMSG specifying message 100, which is in an alternate repository
called TYPMSG. The REPS option of the RMSG macro (9) passes the addresses of each alternate
repository to RSCS.

For this example, the translation repository the exit routine uses to issue message 100 contains the
following statement:

100: Text -- $(1)

The corresponding conversion repository entry for this message contains the following statement:

100 O I: 1+4!0 AL: 1

Installing the Exit Routine
After assembling the Exit 29 routine (Figure 8 on page 22) into a source file called TYPCMD ASSEMBLE,
the link-edit control file shown in Figure 11 on page 24 will build the exit load module.

* TYPE Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY TYPE
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE TYPCMD
 INCLUDE TYPMSG
 INCLUDE TYPMGC
 ENTRY TYPCMDEP
 NAME TYPCMD

Figure 11. TYPE LKEDCTRL File

You then take the following steps to build the load module and install the exit routine:

1. Issue the following command to assemble the TYPCMD ASSEMBLE file:

vmfhlasm typcmd rscsv3

Customizing RSCS

24 z/VM: 7.3 RSCS Networking Exit Customization

2. Issue the following command to compile the TYPMSG MSGS file:

mcomp typmsg rscsv3

3. Issue the following command to compile the TYPMGC MCONV file:

mconv typmgc rscsv3

4. Issue the following command to build the TYPE LOADLIB:

vmflked type

5. Copy the TYPE LOADLIB to an RSCS accessible disk.
6. Update the GCS GLOBAL command in the RSCS PROFILE GCS to include the TYPE load library (do not

add a second GLOBAL command).
7. Add the following statement to the RSCS CONFIG file:

EXIT 29 ON TYPCMD

8. Restart RSCS.

Storage Considerations
To obtain storage, exit routines can use GCS storage management facilities or the quick storage allocation
facilities provided by RSCS.

Using GCS Macros
If an exit routine issues the GCS GETMAIN macro to obtain storage at Exit 0 or from another exit point,
the Exit 1 routine should issue a FREEMAIN macro to release the storage. When RSCS shuts down, GCS
frees all the storage that was acquired from nonpersistent subpools by GETMAIN macros. Storage that
was acquired from persistent subpools remains allocated. For more information, see z/VM: Group Control
System.

However, RSCS does not free any storage acquired within an exit routine. If the exit routines within an exit
package need one copy of a data area, you can define a copy of the data area in one of the modules that
make up the exit package (see “Packaging Considerations” on page 27).

Quick Storage Allocation Routines
If an exit package requires many copies of a data area or if it requires a work area for use with a reentrant
exit point, you can use the RSCS quick storage allocation (QSA) routines to manage the storage. Your exit
routines can use the CRV to access the QSA routines. The QSA routines provide an interface to the GCS
GETMAIN and FREEMAIN macros and provide the following advantages:

• Exit routines can reuse storage without additional calls to GETMAIN and FREEMAIN; this is useful for
work areas in reentrant exit routines.

• Storage can be automatically acquired in 4K pieces and subdivided to meet specific needs; this can also
reduce GETMAIN calls.

• Storage can be automatically initialized using a specific template defined by a QSABLOK.
• Storage may be allocated from locations above or below the 16 MB line.

RSCS has predefined the following QSABLOKs for use by exit routines; each QSABLOK is accessible
through the CRV.
DMTQSAEC

Issues a conditional GETMAIN macro to acquire 256-byte blocks of storage from a persistent subpool.

Customizing RSCS

Chapter 2. Customizing RSCS 25

DMTQSAEU
Issues an unconditional GETMAIN macro to acquire 256-byte blocks of storage from a persistent
subpool.

Note: When GETMAIN=RTYPE is used, a QSABLOK DSECT is needed. The DSECT will be generated when
LENGTH=0 is used, or when QSABLOK is specified without parameters.

Example 4: Mapping a Work Area
This example shows how the QSA routines can be used with exit routines for Exit 14 and Exit 1. To use
the QSA routines, you first create a macro to map the requested work area. The macro includes define
constant (DC) instructions to show how each field should be initialized. In Figure 12 on page 26, the
macro WORK14 (11a) defines the requested storage for the Exit 14 routine.

 EXIT14 RMOD CRVBASE=TCRVTAB,CRVCALL=YES
 *
 USING CVT,R9 Get CVT addressability
 11a USING WORK14,R8 Map the work area
 EXIT14EP RENTRY RENT=YES,SAVAREA=PREALLOC,ARGS=(@CVT,@LINK,@RIB,@JOBH,X
 @TAG,@XAB,@USEC),ARGBASE=R2
 L R9,@CVT Get CVT address
 12a L R0,=V(EXIT01QS) Point at QSABLOK describing the area
 RCALL DMTQSAAB Call QSA to allocate buffer
 BRC (NSI,NOSTOR) Got it, no storage
 LR R8,R1 Point at the work area
⋮
 12a L R0,=V(EXIT01QS) Point at QSABLOK describing the area
 LR R1,R8 Point R1 at the work area
 RCALL DMTQSAUB Call QSA to deallocate buffer
 NOSTOR EQU *
 REXIT RC=0,REGS=(0,12) Return to caller
 *
 CRV DSECT=YES
 CVT DSECT=YES
 WORK14 DSECT=YES
 END

Figure 12. Exit 14 Routine: Allocating and Deallocating a Work Area

When the exit routine calls DMTQSAUB to deallocate storage, DMTQSAUB does not issue a FREEMAIN
macro to release the storage. Rather, DMTQSAUB returns the storage to a pool of free WORK14 areas,
which can be reused by other exit routines.

Because the Exit 14 routine acquires storage indirectly, an Exit 1 routine must free the storage. (In
contrast, because the Exit 11 routine in Figure 6 on page 21 does not acquire storage, a corresponding
Exit 1 routine is not needed.) In this example, the Exit 1 routine also stores the QSABLOK (12b), which
describes the storage requirements, and the WORK14 macro (11b).

Customizing RSCS

26 z/VM: 7.3 RSCS Networking Exit Customization

 EXIT01 RMOD CRVBASE=TCRVTAB,CRVCALL=YES
 *
 USING CVT,R9 Get CVT addressability
 ENTRY EXIT01QS Make point externally visible
 EXIT01EP RENTRY RENT=YES,SAVAREA=PREALLOC,ARGS=(@CVT)
 *
 L R9,@CVT Get CVT address
 LA R0,EXIT01QS Point at QSABLOK describing the area
 RCALL DMTQSAFA Free all WORK14 areas in pool
 REXIT RC=0,REGS=(0,12) Return to caller
 *
 12b EXIT01QS QSABLOK LENGTH=WORK14LN, Storage area length is WORK14LN X
 INIT=WORK14LN, Initialize this many bytes X
 OPT4K=YES, Get 4K pages and subdivide them X
 EYECAT=WORK14, Place 'WORK14 ' at top of page X
 GETMAIN=RCTYPE, Use conditional GETMAIN (no abend) X
 PERSIST=YES Get persistent storage
 *
 11b WORK14 DSECT=NO Template to initialize from
 *
 CRV DSECT=YES
 CVT DSECT=YES
 END

Figure 13. Exit 1 Routine: Freeing Storage Acquired by the Exit 14 Routine

When the Exit 14 routine calls DMTQSAAB (12a), it points R0 to a template (12b) that describes the
characteristics of the required storage. This information includes its length and the type of the GETMAIN
macros and subpools used to acquire the storage. If the INIT parameter is omitted or the value specified
on it is less than the number specified on the LENGTH parameter, any bytes that have not been initialized
are set to zeros (this is similar to GETMAIN).

The PERSIST=YES parameter indicates that the GETMAIN macro should acquire all storage from
persistent subpools (subpool 243). For more information, see z/VM: Group Control System. YES is
specified in Figure 13 on page 27 because DMTQSAAB is called by Exit 14, which is reentrant and is
called from a link driver task. If a link driver task obtains storage, GCS can free the storage when the link
terminates, even though another link driver task may be referencing it. Exit routines for Exit 0 or Exit 1,
which are called only from the RSCS communications task, can call DMTQSAAB to obtain storage from
nonpersistent subpools.

Note: Because DMTQSA updates the QSABLOK defined by, and residing in, the exit module, you cannot
specify the RENT option when link-editing the exit. If you do, an abend X'0C4' will result.

Packaging Considerations
The term exit package describes a collection of exit routines, which meet a common requirement, that are
part of one load module. The content of the exit routines and your RSCS environment determine how you
structure your exit packages and the link-editing options you specify. Using the GCS GLOBAL statement,
you can identify up to 63 load libraries to GCS; this number is sufficient for most RSCS exit packages.

To create a package of common exit routines, you can place all the entry points in one module. You
can then place any DSECTs that are specific to the set of exit routines at the bottom of the module. For
example, to create a security exit package that uses exit points 0, 1, 14, 15, 19, 21, and 32, you could use
the source file shown in Figure 14 on page 28.

Customizing RSCS

Chapter 2. Customizing RSCS 27

SECURE RMOD CRVBASE=TCRVTAB,CRVCALL=YES
⋮
SECURE00 RENTRY RENT=NO,SAVAREA=PREALLOC
⋮
SECURE01 RENTRY RENT=NO,SAVAREA=PREALLOC
⋮
SECURE14 RENTRY RENT=YES,SAVAREA=PREALLOC
⋮
SECURE15 RENTRY RENT=YES,SAVAREA=PREALLOC
⋮
SECURE19 RENTRY RENT=NO,SAVAREA=PREALLOC
⋮
SECURE21 RENTRY RENT=NO,SAVAREA=PREALLOC
⋮
SECURE32 RENTRY RENT=YES,SAVAREA=PREALLOC
⋮
* Security related DSECTs
⋮
 END

Figure 14. Packaging One Source Module (SECURE ASSEMBLE)

If an exit package issues messages other than those supplied by RSCS, it should also include a message
file and a conversion repository. For example, the exit package in Figure 14 on page 28 uses the message
file SECENG MSGS and conversion repository SECMGC MCONV to issue messages. The exit package,
containing the exit routines and message files, is created using the link-edit control file in Figure 15 on
page 28.

* SECURE Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY SECURE
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE SECURE
 INCLUDE SECENG
 INCLUDE SECMGC
 ALIAS SECURE00,SECURE01,SECURE14,SECURE15,SECURE19,SECURE21,SECURE32
 NAME SECURE

Figure 15. SECURE LKEDCTRL File

Identifying Entry Points
Every entry point name that is used as an RSCS exit routine must be identified to GCS. ALIAS statements
in the link-edit control file identify the entry points that are used as an alias for a load module. In Figure
15 on page 28, the entry point names SECURE00 - SECURE32 are aliases for the SECURE load module. As
Figure 16 on page 28 shows, aliases can also be specified at the top of the SECURE ASSEMBLE file.

 PUNCH ' ALIAS SECURE00,SECURE01,SECURE14,SECURE15,SECURE19'
 PUNCH ' ALIAS SECURE21,SECURE32'
SECURE RMOD CRVBASE=TCRVTAB,CRVCALL=YES

Figure 16. Specifying Aliases in the Source Module (SECURE ASSEMBLE)

You can use either method to specify the aliases; however, you can specify a maximum of 16 alias names
in a load module. To identify more than 16 entry points in an exit package, you can divide the exit package
into 2 or more load modules. You can also use the LOADCMD command and GCS IDENTIFY macro to
identify the entry points to GCS.

Separating Load Modules
If you divide your exit package, you may need to restructure it; exit routines may not be able to locate
an entry point in another load module that does not have an alias. To obtain the addresses of routines in
other load modules, exit routines can use the RSCS user fields (see “User Fields” on page 31). You can
then use a link-edit control file (see Figure 17 on page 29) to create a load library that contains 2 load

Customizing RSCS

28 z/VM: 7.3 RSCS Networking Exit Customization

modules. In this example, the ACCNTN and ACCNTR routines can use the TUSER field to access any utility
routines in ACCUTL.

* ACCNTR Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY ACCNTR
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE ACCNTR
 ALIAS ACCNTR00,ACCNTR01,ACCNTR02,ACCNTR03,ACCNTR04,ACCNTR05
 ALIAS ACCNTR06,ACCNTR07,ACCNTR08,ACCNTR09,ACCNTR10,ACCNTR11
 ALIAS ACCNTR12,ACCNTR13,ACCNTR14,ACCNTR15
 NAME ACCNTR
*
 INCLUDE ACCNTN
 INCLUDE ACCUTL
 ALIAS ACCNTN16,ACCNTR17,ACCNTR18,ACCNTR19,ACCNTR20,ACCNTR21
 ALIAS ACCNTR22,ACCNTR23,ACCNTR24,ACCNTR25,ACCNTR26,ACCNTR27
 ALIAS ACCNTR28,ACCNTR29,ACCNTR30,ACCNTR31
 NAME ACCNTN

Figure 17. Sample Link-Edit Control File: Creating Two Load Modules

Using GCS Facilities
If you use the LOADCMD command and IDENTIFY macro, most of your exit routines can remain in the
load module. To create a load module for the exit routines in Figure 17 on page 29, you could use the
link-edit control file in Figure 18 on page 29.

* ACCNTR Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY ACCNTR
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE ACCNTI
 INCLUDE ACCNTR
 INCLUDE ACCNTN
 INCLUDE ACCUTL
 ENTRY ACCNTIEP
 NAME ACCNTI

Figure 18. Link-edit Control File: Creating One Load Module

In Figure 18 on page 29, no alias names for the load module have been defined. However, GCS is
informed of the entry point names by the GCS IDENTIFY macro, which is issued from the exit routine
(13). One IDENTIFY macro must be run for each entry point that was previously specified on an ALIAS
statement. For this example, module ACCNTI contains the statements in Figure 19 on page 30.

Customizing RSCS

Chapter 2. Customizing RSCS 29

 ACCNTI RMOD
 ACCNTIEP RENTRY RENT=NO,SAVAREA=PREALLOC
 LA R2,ENTRYPTS Point at table
 LA R3,ENTRYNUM Get number of entries
 IDENLOOP EQU *
 L R1,8(0,R2) Get address of entry point
 13 IDENTIFY EPLOC=0(R2),ENTRY=(1) Identify entry point to GCS
 LTR R15,R15 Did it go OK?
 BNZ IDENTERR No ... scream and shout
 LA R2,12(0,R2) On to next entry
 BCT R3,IDENLOOP Loop through table
 SR R15,R15 Set zero return code
 B EXIT Call it a day
 *
 IDENTERR EQU *
 MVC EPNAME,0(R2) Set offending name
 WTO MF=(E,ERROR) Issue message to console
 LA R15,4 Set bad return code
 EXIT EQU *
 REXIT RC=(R15),REGS=(0,12) Return to GCS
 *
 ERROR WTO 'Bad rc found for entry point xxxxxxxx',MF=L
 EPNAME EQU ERROR+4+35,8 Place to plug in epname
 *
 DS 0F
 ENTRYPTS DC CL8'ACCNTR00',V(ACCNTR00),CL8'ACCNTR01',V(ACCNTR01)
 DC CL8'ACCNTR02',V(ACCNTR02),CL8'ACCNTR03',V(ACCNTR03)
 DC CL8'ACCNTR04',V(ACCNTR04),CL8'ACCNTR05',V(ACCNTR05)
 DC CL8'ACCNTR06',V(ACCNTR06),CL8'ACCNTR07',V(ACCNTR07)
 DC CL8'ACCNTR08',V(ACCNTR08),CL8'ACCNTR09',V(ACCNTR09)
 DC CL8'ACCNTR10',V(ACCNTR10),CL8'ACCNTR11',V(ACCNTR11)
 DC CL8'ACCNTR12',V(ACCNTR12),CL8'ACCNTR13',V(ACCNTR13)
 DC CL8'ACCNTR14',V(ACCNTR14),CL8'ACCNTR15',V(ACCNTR15)
 *
 DC CL8'ACCNTN16',V(ACCNTR16),CL8'ACCNTN17',V(ACCNTR17)
 DC CL8'ACCNTN18',V(ACCNTR18),CL8'ACCNTN19',V(ACCNTR19)
 DC CL8'ACCNTN20',V(ACCNTR20),CL8'ACCNTN21',V(ACCNTR21)
 DC CL8'ACCNTN22',V(ACCNTR22),CL8'ACCNTN23',V(ACCNTR23)
 DC CL8'ACCNTN24',V(ACCNTR24),CL8'ACCNTN25',V(ACCNTR25)
 DC CL8'ACCNTN26',V(ACCNTR26),CL8'ACCNTN27',V(ACCNTR27)
 DC CL8'ACCNTN28',V(ACCNTR28),CL8'ACCNTN29',V(ACCNTR29)
 DC CL8'ACCNTN30',V(ACCNTR30),CL8'ACCNTN31',V(ACCNTR31)
 ENTRYNUM EQU (*-ENTRYPTS)/12 Number of entries
 END

Figure 19. Identifying Entry Points (ACCNTI ASSEMBLE)

When using this approach, you must ensure that the code at entry point ACCNTIEP is processed before
RSCS tries to access any of the entry points previously given aliases. To do so, you would add the
commands shown in Figure 20 on page 30 to the PROFILE GCS file of the RSCS virtual machine.

'global loadlib rscs accntr' /* make load libraries known to GCS */
⋮
'loadcmd rscs dmtman' /* load RSCS load module */
'loadcmd accnti accnti' /* load ACCNTI load module */
⋮
'accnti' /* call ACCNTIEP routine */
if rc <> 0 then do /* problems IDENTIFYing entry points? */
 say 'Bad return code 'rc' from ACCNTIEP'
 exit 4
end
'rscs init' /* start RSCS with INIT command */

Figure 20. Identifying Entry Points in the PROFILE GCS

At times, you may want to include several unrelated exit packages, as separate load modules, in one load
library. To combine exit packages that do not need to exchange information, you could use a link-edit
control similar to Figure 17 on page 29. Here, you do not have to create a load library for each exit
package or specify each load library name on the GCS GLOBAL command in the PROFILE GCS file.

Sharing Information
Note: Many IBM-supplied exit packages use several of the facilities described in this section.

Customizing RSCS

30 z/VM: 7.3 RSCS Networking Exit Customization

Several exit routines may be needed to customize RSCS processing at your installation. Sometimes,
these exit routines must exchange information to achieve the desired results. This section describes how
several exit routines can communicate with each other.

You can create exit packages to provide standard routines that are often used by other exit routines. To
do so, you could create the required routines and link-edit them into one load module. You can then place
this load module in a load library and identify each routine within it by an ALIAS statement. Other exit
routines or exit packages can then issue GCS LOAD macros to find the necessary routines in the load
module.

To increase performance, however, you can use Exit 0 to locate the addresses of exit routines within the
exit package. For this case, the Exit 0 routine creates a vector of the exit routine addresses (similar to the
CRV). It also creates a mapping DSECT (in macro form) that refers to entries in the vector. The address of
this vector should then be made available to all other exit packages.

User Fields
Some commonly used RSCS control blocks contain special 8-byte fields called user fields. User fields let
exit routines that reside in separate load modules pass information to each other. Exit routines can use
these fields to establish additional exit-related fields or to point to additional work areas. RSCS provides
user fields in the following control blocks:

User Field Control Block

LUSER Link table (LINKTABL)

NOTEUSER NOTIFY link driver control block (NOTEBLOK)

MSGBUSER Message request parameter list (MSGBLOK)

RIBUSER Receiver information block (RIB)

SEPUSER Separator page control block (SEPBLOK)

TAGFLAGU TAG element

TAGUSER TAG element

TIBUSER Transmitter information block (TIB)

TUSER Communications vector table (CVT)

Because the use of user fields may cause conflict with other exit packages, these fields should be used
only when necessary. You should not use the user fields to pass information between exit routines that
are in the same load module. If you use an RSCS user field in your exit package, another exit routine may
also need to use the same field. Use the following criteria to reduce conflicts if exit packages share the
user fields:

• Use the second 4 bytes of any user field as a pointer to the data area your exit package wants to share
with other exit packages.

• Use the following format for the first 16 bytes of any shared data areas:

Displacement Length Contents

0 4 Pointer to next shared exit data area

4 8 Identifies the purpose of the data area

12 4 Version number (if applicable) for the data area

This format allows other exit packages that may depend on your exit package to search this chain of data
areas. The exit routines can use the identifier and version number to locate specific data areas.

For example, to do the sample exit packages previously discussed, you could create the UTILCRV macro
(see Figure 21 on page 32).

Customizing RSCS

Chapter 2. Customizing RSCS 31

 MACRO
&NAME UTILCRV &DSECT=YES
 LCLC &LABEL
&LABEL SETC 'UTILCRV' Default name if none specified
 AIF (T'&NAME EQ 'O').NONAME
&LABEL SETC '&NAME' Use the specified name
.NONAME ANOP
 AIF ('&DSECT' EQ 'YES').DSECT1
&LABEL DS 0D
 AGO .GENCODE
.DSECT1 ANOP
&LABEL DSECT
.GENCODE ANOP
UTLNEXT DC A(0) Pointer to next data area
UTLID DC CL8'EXUTILS ' Identifier for this data area
UTLLEVEL DC CL4'1.01' Level of routines
UTLRAUTH DC V(UTLAUTBL) Routine to build AUTH table
UTLRAUTH DC V(UTLAUTCK) Routine to check authority
⋮
UTLCRVLN EQU *-&LABEL Length of data area
 MEND

Figure 21. Example Macro to Map Exit Utility Routine Addresses

This macro can then be used in the Exit 0 routine in Figure 22 on page 32.

UTIL00 RMOD CRVBASE=TCRVTAB,CRVCALL=YES
*
 USING CVT,R9 Get CVT addressability
UTIL00EP RENTRY RENT=YES,SAVAREA=PREALLOC,ARGS=(@CVT)
*
 L R9,@CVT Get CVT pointer from plist
 MVC UTLNEXT,TUSER+4 Chain any existing ones on us
 LA R1,UTILCRV Point at our package CRV
 ST R1,TUSER+4 Anchor our data area in CVT
 REXIT RC=0,REGS=(0,12) Return to caller
*
 UTILCRV DSECT=NO Generate copy of UTILCRV
*
 CRV DSECT=YES
 CVT DSECT=YES
 END

Figure 22. Exit 0 Routine: Installing a Utility Routine Package

If an exit routine in another exit package needs to use a routine in the utility routines package, it can get
the address of the routine from the CVT. For example, the exit routine can use the code in Figure 23 on
page 32.

⋮
 LA R2,TUSER+4 Point at anchor for data areas
LOOKLOOP EQU *
 ICM R2,B'1111',0(R2) Get next data area
 BZ PACKMISS Not found ... pre-req package missing
 CLC 4(8,R2),=CL8'EXUTILS '
* Is this the data area we want?
 BNE LOOKLOOP No ... go on to next one
 CLC 12(4,R2),=CL4'1.01' Is it a late enough level?
 BL BADLEVEL No ... can't use this level
 USING UTILCRV,R2 Map the UTILCRV
 LA R1,BLPLIST Point at build plist
 L R15,UTLAUTBL Get address of build routine
 RCALL (R15) Call routine
⋮
 UTILCRV DSECT=YES Generate copy of UTILCRV

Figure 23. Finding and Calling a Utility Routine

Customizing RSCS

32 z/VM: 7.3 RSCS Networking Exit Customization

Link-Editing Considerations
After packaging exit routines, you must choose the characteristics of each load module. These
characteristics are defined by the option specified on the %LEPARMS statement in the LKEDCTRL control
file. There are three categories of load modules:

Category Option Description

Reentrant RENT Read-only load module; multiple LOAD and ATTACH macros issued for
these entry points cause only one copy to be loaded into storage.

Reusable REUS Read-write load module; each LOAD macro processed for an entry point
in the module results in the use of the entry point in the single copy of the
load module that is loaded into storage.

The first ATTACH macro issued for an entry point will be successful; later
ATTACH macros must wait until the first attached task terminates (only
one active task can be attached at a time).

Nonreusable Neither Read-write load module; each LOAD and ATTACH macro processed
against an entry point in the load module loads a new copy of the load
module into storage.

To combine several load modules in one load library, you can use several %LEPARMS statements to
specify the link-editing option for each load module. The load modules in a load library do not necessarily
need to be in the same load module category.

Load modules that contain exit routines for use with exit points in the RSCS exit facility should be
placed in a reusable load module. Even if the exit has been written to be reentrant, it should still be
placed in a reusable module. Loadable link drivers, defined by the LINKTYPE statement, should be
placed in reentrant load modules, if the link driver routine is written in a read-only manner. If the
link driver has been written to be nonreentrant, it should be placed in a nonreusable load module.
Similarly, ASCII, LPR, LPD, UFT, and UFTD exit routines and gateway programs should also be placed in
reentrant or nonreusable load modules, depending on how the exit routine or gateway program is written.
Transmission algorithms should be placed in a serially reusable load module.

Note: The characteristics of each load module are not related to the parameters you specify on the
RENTRY macro. For example, if you specify RENT=YES on the RENTRY macro, it does not effect the
link-edit process. For more information, see “RENTRY – Defining a Module Entry Point” on page 290.

Common Problems and Solutions
If you specify the wrong option for a load module, problems may occur. The following list describes some
common problems and corrections:

• A protection exception occurs when your exit routine attempts to store data in a field inside the load
module.

The load module has been loaded in a read-only manner; this implies that the RENT option was
specified. If your exit routine is reusable or nonreusable, correct the option and rebuild your load library.

• Exit loading takes an unusually long amount of time.

You may have created a nonreusable module instead of a reusable module. Note the addresses at
which RSCS loads the exit routines and compare the difference in the addresses to the size of your load
module. If the location of the entry points in the load module are not in the same relation as they are
in the source module, the entry points are in separate copies of the load module. GCS may be loading
a new copy of the load module for each entry point; this can cause performance problems when RSCS
initializes.

• Information set in the load module by an exit routine, such as Exit 0, is not initialized when referenced
from another exit routine.

Customizing RSCS

Chapter 2. Customizing RSCS 33

You may have created a nonreusable module instead of a reusable module. The exit routine may have
set information in its copy of the load module. However, this information is unavailable to the other exit
routines because they are running in separate copies of the load module.

Note the addresses at which RSCS loads the various exit routines and compare the difference to the size
of your load module. The address of the entry points should relate to the location of the entry points in
the source module. If not, the entry points are in separate copies of the load module.

• When you start a second instance of a link defined by the LINKTYPE statement, the link does not start
until the first link driver has stopped or drained.

You may have defined the load module as reusable; it should have been defined as reentrant or
nonreusable.

• Message DMT430E (exit routine is not loadable) is issued when you try to load an exit module.

The exit module may not be enabled for 31-bit addressing. You may also receive this message if the exit
module does not exist in any member specified on the GLOBAL LOADLIB command.

Ensure the AMODE 31 RMODE ANY options have been added to the %LEPARMS statement in the
LKEDCTRL file or on the :OPTIONS. statement of a VMSES/E build list. Also, ensure that the exit module
name is specified correctly on the GLOBAL command.

• Incorrect usage of the TUSER field of the CVT could cause unpredictable results, including abends,
when multiple exit packages utilize it.

Distribution Considerations
When distributing exit packages that use IBM-defined exit points or define new types of link drivers, you
should also include the necessary EXIT or LINKTYPE configuration statements in a separate file. The
installation that receives the exit package can then use the RSCS IMBED facility to install the package,
without adding each statement in its configuration file.

For example, the installation PITTSBGH uses exit packages from several sources. It could then use the
RSCS configuration file in Figure 24 on page 34 to install the exit routines.

 LOCAL PITTSBGH
/* */
/* Install Virtual Printer (Loadable Link Driver) */
/* */
 IMBED VPRLINK CONFIG
/* */
/* Get links, routes, authorizations, miscellaneous items */
/* */
 IMBED LINKS CONFIG
 IMBED ROUTES CONFIG
 IMBED AUTHS CONFIG
 IMBED MISC CONFIG
/* */
/* Install Security Package */
/* */
 IMBED SECURE CONFIG
/* */
/* Install Accounting Package */
/* */
 IMBED ACCNTR CONFIG

Figure 24. Sample RSCS CONFIG File

The VPRLINK, SECURE, and ACCNTR CONFIG files should then contain the statements necessary to
install the exit packages. The SECURE CONFIG file, for example, contains the statements in Figure 25 on
page 35.

Customizing RSCS

34 z/VM: 7.3 RSCS Networking Exit Customization

/* */
/* Statements required to install SECURE package */
/* */
 EXIT 00 ON SECURE00
 EXIT 01 ON SECURE01
 EXIT 14 ON FIRST SECURE14
 EXIT 15 ON FIRST SECURE15
 EXIT 19 ON FIRST SECURE19
 EXIT 21 ON FIRST SECURE21
 EXIT 32 ON FIRST SECURE32

Figure 25. SECURE CONFIG File for Security Exit Package

Specifying the Order of the Exit Routines
Each exit point defined by an EXIT statement is associated with a chain of exit routines. The FIRST
parameter of the EXIT statement identifies the exit routine that is placed at the head of this chain. RSCS
places the last exit routine that was defined with the FIRST parameter at the head of this chain. For
example in Figure 25 on page 35, the exit routine SECURE32 is placed at the head of the exit routine
chain.

For most exit packages, you should specify the FIRST parameter on the EXIT statement that defines Exit
1. This ensures that Exit 1 routines can perform or complete any processing before RSCS terminates. Most
other exit routines do not have to appear in a certain order. Generally, the configuration file statements for
an exit package should have the format shown in Figure 26 on page 35.

EXIT 0 ON SAMP00EP
EXIT 1 ON FIRST SAMP01EP
EXIT 2 ON SAMP02EP
⋮
EXIT 40 ON SAMP40EP

Figure 26. Sample Configuration File Statements

However, the order that you specify exit routines may be especially important for exit packages for
security and accounting functions. When installing two or more exit packages, you must ensure that their
function does not rely on being the first exit routine in the chain. You must determine the order that
the entry points in the exit routines are installed. You must also determine if the exit packages have
conflicting functions or requirements; RSCS does not perform these checks.

For example, assume the security and accounting exit packages in Figure 24 on page 34 each have the
requirement to be the first exit routine called for Exit 32. The order that the packages are installed can
affect the information recorded by the accounting exit routines on the PITTSBGH node. For example, if the
security exit routines are installed first, any files they reject cannot be processed by the accounting exit
routines.

Tracing Exit Routines
The ITRACE macro records calls to, and the return from, exit routines and transmission algorithms 0 and
1.

You can also use the RSCS ITRACE facility within exit routines to record information that can be used
for debugging. IBM has reserved predefined event-type categories for customer use only. You can use
these categories to record various data areas in the RSCS internal trace table. By specifying the GTRACE
option on the ITRACE command and statement, trace information can also be recorded in the RSCS virtual
machine's GCS trace table.

For more information about the ITRACE macro, see “ITRACE – Tracing an Event” on page 274. For more
information about the ITRACE statement, see z/VM: RSCS Networking Planning and Configuration. For
more information about the ITRACE command, see z/VM: RSCS Networking Operation and Use.

Customizing RSCS

Chapter 2. Customizing RSCS 35

Using Sample Exit Packages
RSCS provides sample exit packages that demonstrate how you can use the RSCS exit facilities and
control files at your installation. The sample packages contain the files required to install and use
the sample routines. These files include: overview information, assembler and macro files, message
repositories, and sample configuration file statements. The sample exit routine packages are built into the
RSCSEXIT LOADLIB file.

These samples are provided for illustrative purposes and are supplied on an as is basis. You may be
able to use these sample exit routines with little or no modifications, depending on the needs and
configuration of your installation.

Enabling Sample Exit Routines
The RSCS sample exit routines are installed and serviced using the VMSES/E component of z/VM. These
samples are also 31-bit enabled and are designed to run in ESA mode. The RSCSEXIT LOADLIB and
DMTMACEX MACLIB files, which are supplied with the RSCS installation tapes, contain the exit routines
and macros, respectively, for the sample packages. The control file supplied with the sample exit routines
is DMTVMEX CNTRL.

To enable these sample exit routines as they are supplied, perform the following steps:

Step Action

1 Ensure the ON parameter is specified on the EXIT statement included in the configuration
file supplied with the sample package. (To disable the exit routine, you can specify the OFF
parameter.)

2 Include the sample configuration file in the RSCS CONFIG file; to do so, use one of the following
methods:

• Specify the sample configuration file on an IMBED statement in the RSCS CONFIG file.
• Specify the sample configuration file on a FILEDEF statement in the PROFILE GCS file for the

RSCS virtual machine.
• Add the information from the sample configuration file directly into the RSCS CONFIG file.

3 Add the RSCSEXIT LOADLIB to the GLOBAL statement in the PROFILE GCS file for the RSCS
virtual machine.

For more information about using or modifying the sample exit packages, see the RSCS program directory.

Summary of Sample Packages
Table 3 on page 37 describes the sample packages and the type of exit facility that is demonstrated.
For more information about these samples, including file names and installation locations, see the RSCS
program directory.

For information about other sample exit routines supplied with RSCS, see:

• “Sample ASCII Printer and Plotter Exit Modules” on page 156
• “Sample LPR Exit Routines” on page 200
• “Sample LPD Exit Routine” on page 224
• “Sample UFT Exit Routine” on page 240
• “Sample UFTD Exit Routine” on page 257

Customizing RSCS

36 z/VM: 7.3 RSCS Networking Exit Customization

Table 3. Sample Exit Routine Packages

Package Name Function Exit Facility

Spool manager command
echoing (SAC)

Views the CP commands issued by the RSCS spool
manager task.

Exit 24, Exit 25, Exit 29

Back-to-back RSCS
configuration (SBK)

Create multiple RSCS virtual machines on one node. Exit 0, Exit 21, Exit 24

Secondary RSCS list
processor (SBURST)

Creates two RSCS virtual machines to handle
processing on LISTPROC-type links.

Exit 0, Exit 1, Exit 19, Exit
21, Exit 24

Selective file filter (SFF) Purge undesired files from the network or route them
to a security machine.

Exit 0, Exit 1, Exit 15, Exit
21, Exit 29

Shift-based file limiting
(SFL)

Prevents large files from being transmitted during
a specific time. This package, which is shown in
“Example 1: Defining Printing Shifts” on page 18, also
uses the RSCS event scheduler.

Exit 0, Exit 1, Exit 31, Exit
33

Note selection and
modification (SNM)

Modify the note produced by the NOTIFY link driver. Exit 22, Exit 23

NOTIFY link driver purge
(SNS)

Prevent class H files from being purged from a
NOTIFY-type link.

Exit 36

Path Alias map processing
and PAPATH command
(SPA)

View the RSCS routing network as defined on your
local node and the routing defined on each other RSCS
node in the network.

Exit 0, Exit 29

File queue aging (SQA) Determine the order by which files are sent on a link;
the selection criteria can be determined by the size
of the file or the time it has been waiting on the link
queue.

Exit 0, Exit 1, Exit 3, Exit
26, Exit 31, Exit 33, Exit
34

REMOVE command
(SRMVEX)

Creates a new command that enables the RSCS
operator to transfer files away from the RSCS virtual
machine.

Exit 21, Exit 29

SHOW and PATH
command (SSH)

Creates new commands to display information about
the RSCS network. SHOW displays files queued for a
specific node; PATH displays the path to a node.

Exit 29

Sample TYPE command
(STY)

Creates a CMS-like TYPE command for RSCS
authorized operators; this routine is shown in
“Example 3: Creating a New Command” on page 22.

Exit 29

Separator pages (SSP) Modify the printer separator pages produced by RSCS;
functions let you create an 80-column output per line
or highlight variable fields.

Exit 17, Exit 18

Sample GPI link driver
(GPSAMP)

Enable two RSCS virtual machines on the same
processor to communicate through IUCV. This sample
also enables RSCS virtual machines on different
processors to communicate using an IUCV path
through a VM/Pass-Through Facility network.

Gateway programming
interface

Gateway security
modifications (GSM)

Enables installations to control the data traffic through
the RSCS virtual machine.

Gateway programming
interface, Exit 0, Exit 1,
Exit 14, Exit 15, Exit 19,
Exit 21, Exit 29, Exit 32

Customizing RSCS

Chapter 2. Customizing RSCS 37

Table 3. Sample Exit Routine Packages (continued)

Package Name Function Exit Facility

Set Greenwich Mean Time
offset (SSI)

Correct the Greenwich Mean Time (GMT) offset value
for the RSCS virtual machine; this package is required
on many systems to ensure that the RSCS event
scheduler works properly.

Exit 0

Simple security package
(SSS)

Limit file traffic on a specific link to a specific user IDs
or limit the use of RSCS on the local node to specific
users.

Exit 0, Exit 1, Exit 14, Exit
15, Exit 19, Exit 21, Exit
32

MESSAGER link driver
(SMS)

Writes messages, accounting information, and
statistics into a file and sends the file to a specified
user ID or output device.

Loadable link driver, Exit
0, Exit 27

Console logging and
screening (SMG)

Suppress or send RSCS console messages to a
MESSAGER-type link.

Loadable link driver, Exit
0, Exit 27

Simple accounting
package (SAS)

Create accounting records and send them on a
MESSAGER-type link to be printed.

Loadable link driver, Exit
2, Exit 3, Exit 4, Exit 5

Statistics-gathering (SST) Creates a 120-byte record for each file sent by a
link and send the record to a MESSAGER-type link.
Each record contains file statistics, such as: origin,
destination, size, and transmission times.

Loadable link driver, Exit
0, Exit 3, Exit 21

Host transfer agent link
driver (STR)

Transfer files to a specific server machine, while
retaining the RSCS store-and-forward tag.

Loadable link driver

Virtual printer link driver
(SVP)

Send files to a specific server machine to perform
special processing.

Loadable link driver

Customizing RSCS

38 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 3. IBM-Defined Exit Points

This section describes each of the IBM-defined exit points in the RSCS exit facility. For general
information about writing exit routines, see Chapter 2, “Customizing RSCS,” on page 9.

Usage Conventions
This section describes the standard conventions used to pass control to and from the IBM-defined exit
points. Your exit routines should follow these conventions.

Standard Entry Conditions
When RSCS passes control to the first exit routine associated with an exit point, registers 2 - 15 contain
the following information. The parameters passed in R0 and R1 can vary for each exit point. Their
contents are described for each individual exit point.

Register Contents

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

If more than one exit routine is associated with an exit point, the register contents passed to those
routines are determined by the register contents passed back by the preceding exit routine.

Standard Exit Conditions
When most exit routines return control to RSCS, the registers contain the following information.

Register Contents

R0 - R1 Not applicable; however, if an exit routine issues return code 0, it should specify
REGS=(0,12) on the REXIT macro to restore the contents of these registers.

R2 - R13 Restored to same values as on entry

R14 Not applicable

R15 Always contains a return code

Standard Return Codes
Each exit routine issues a return code (a multiple of 4) in R15 when it returns control to RSCS. This return
code tells RSCS how it should continue to process the task from which the exit routine was called. All exit
routines issue return codes 0 and 4, which tell RSCS to continue its processing as if the exit point was not
enabled.

Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the task.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual task processing.

© Copyright IBM Corp. 1990, 2022 39

Exit routines may also issue other return codes (8 or greater) that tell RSCS to modify its processing of the
task. These return codes, if applicable, are described for each exit point.

Data Areas
All exit routines are passed the address of the CVT in Word 1 of the R1 parameter list. The CVT contains
pointers to some RSCS data areas, counters, and flags that are available for exit routine use. The CVT also
contains a pointer to the CRV, which contains the addresses of some RSCS routines that are available for
exit routine use.

RSCS also passes the addresses of other data areas to each exit point. These data areas can contain
information about the file, command, or message being processed when the exit routine is called.

For a list of RSCS data areas supported as programming interfaces, see Appendix A, “DSECTs Generated
by Mapping Macros,” on page 367. RSCS does not pass the address of all of these data areas to each exit
point. The "Entry Conditions" section of each exit point description identifies the applicable data areas.
Also, see the programming considerations section of the description of each exit point for information
about any restrictions.

Accounting Records
If the z/VM user directory entry for the RSCS virtual machine includes an OPTION ACCT statement (see
z/VM: RSCS Networking Planning and Configuration), RSCS can issue DIAGNOSE code X'4C' to create
accounting records for each file received or transmitted and pass them to CP to include in the accounting
log. For more information about the OPTION ACCT statement, see z/VM: CP Planning and Administration.
For more information about DIAGNOSE code X'4C', see z/VM: CP Programming Services.

You can use the following exits to accumulate accounting information or to generate or process RSCS
accounting records:

• Exit 2 – Spool File Accept Accounting
• Exit 3 – Spool File Send Accounting
• Exit 4 – Spool File Purge Accounting
• Exit 5 – Spool File Receive Accounting
• Exit 7 – Auto-Answer Sign-On Time Out
• Exit 8 – Auto-Answer Unrecognizable Data
• Exit 9 – Auto-Answer Sign-On Validation
• Exit 10 – Auto-Answer Sign-On Reject
• Exit 21 – Spool File Accept/Reject
• Exit 26 – Link State Change Accounting
• Exit 44 – Link Termination
• Exit 45 – Output Page Accounting
• Exit 46 – Verification of Page Accounting
• Exit 47 – Driver Initialization
• Exit 48 – Verification of Output Page Error

The ACNTBUFF macro maps the ACNTBUFF data area, which contains the format of the standard RSCS
accounting record.

40 z/VM: 7.3 RSCS Networking Exit Customization

Exit 0 – Initialization

Use Exit 0 to perform additional processing during RSCS initialization. For example, you can use Exit 0 to
prepare calls to other exit packages, obtain working storage, read information from another file, or open
virtual devices.

If an exit package fails to start and its function is vital to your installation, your Exit 0 routine should
issue return code 8. This prevents the RSCS virtual machine from initializing; you can then correct any
problems.

Point of Processing
Process Exit Attribute

RSCS initialization Serially reusable

Exit 0 is called after RSCS processes the configuration file. It is the first exit point called as RSCS
initializes; no other exit routines have been installed.

If RSCS finds an error as it processes the configuration file, Exit 0 is not called. If the configuration file is
successfully opened and read, your Exit 0 routine can use the CVT to access information about the initial
RSCS configuration. At this point, however, no system tasks (for example, spool manager or exec tasks)
have been started and no files are queued on any links.

On return from Exit 0, if your exit routine has not specified return code 8, RSCS attaches all system tasks
to complete its initialization; it then returns control to GCS. When START commands are issued, RSCS
attaches the appropriate link driver tasks.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT

Exit Conditions
On return, Exit 0 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
initialization processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
initialization processing.

8 An Exit 0 routine or exit package did not start correctly. Any other exit routines
associated with Exit 0 will be called; however, on return, RSCS will not start.

Exit 0

Chapter 3. IBM-Defined Exit Points 41

Programming Considerations
• Any storage obtained at Exit 0 is kept until RSCS terminates or until the storage is explicitly released by

a FREEMAIN macro.
• Use Exit 1 to ensure that all processing done by exit routines associated with this exit has been

completed.
• If necessary, your exit routine can use RSCS user fields to anchor any working storage that must be

accessible to other exit packages. Your exit routine can use the TUSER field in the CVT. For more
information, see “Sharing Information” on page 30.

• During initialization, RSCS calls the exit routines associated with Exit 0 and checks their return codes.
If none of the Exit 0 routines issues return code 8, RSCS will install the exit routines for all other
defined exit points. If an Exit 0 routine issues return code 8, RSCS will call any remaining exit routines
associated with Exit 0. It will then call Exit 1 to perform termination processing. However, RSCS will not
install or call any other exit routines. The RSCS virtual machine will not start.

For example, assume that three exit routines are associated with Exit 0. The first routine, EXIT0A, issues
return code 0. RSCS then calls the EXIT0B and EXIT0C routines. If these Exit 0 routines do not issue
return code 8, RSCS will then install the exit routines for all defined exit points. If, however, EXIT0B
issues return code 8, RSCS calls EXIT0C and any Exit 1 routines. RSCS does not install any other exit
routines and does not continue to start.

• Because RSCS has not yet installed other exit routines when it calls Exit 0, your Exit 0 routines should
not rely on the functions of other exit points.

For example, if the EXIT0A routine issues a message, it cannot be logged by any Exit 27 routines. After
RSCS installs all other exit routines, however, Exit 27 can process other messages.

• To define additional event types for the internal trace table, your Exit 0 routine can specify the
ITFORMAT and INSTALIT macros. Other exit routines can then issue ITRACE macros to trace the
specified event. For more information, see “INSTALIT – Adding a Record Format Table” on page 272
and “ITRACE – Tracing an Event” on page 274.

Exit 0

42 z/VM: 7.3 RSCS Networking Exit Customization

Exit 1 – Termination

Use Exit 1 to complete any processing started at Exit 0 and process information before RSCS terminates.
For example, you can use an Exit 1 routine to write data, which was obtained and stored by other exit
routines, into a CMS file.

Point of Processing
Process Exit Attribute

RSCS termination Serially reusable

Exit 1 is called when RSCS processes a SHUTDOWN command. It is the last exit point called before
ending completes. All exit routines associated with other exit points are no longer installed; all RSCS tasks
have ended. On return from Exit 1, RSCS ends and returns control to GCS.

If an error occurs as the configuration file is read and Exit 0 is not called, Exit 1 is not called when RSCS
terminates. However, Exit 1 is called if an Exit 0 routine issues return code 8.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with
this exit point. For more information about the other register contents, see “Standard Entry Conditions”
on page 39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT

Exit Conditions
On return, Exit 1 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues to end
processing.

4 RSCS ignores any other exit routines associated with this exit point and continues to
end processing.

Programming Considerations

• Exit 1 routines do not need to release any storage acquired from nonpersistent subpools. However, Exit
1 routines must release any storage acquired from a persistent subpool, including storage associated
with a user-defined QSABLOK that has specified PERSIST=YES.

• When Exit 1 is called, all exit routines for any other defined exit points are no longer available. The exit
routines associated with Exit 1 are the last to be called before RSCS terminates. Your Exit 1 routines

Exit 1

Chapter 3. IBM-Defined Exit Points 43

should not rely on any functions of other exit points. For example, if your Exit 1 routine issues messages,
they will not appear in any message logs created at Exit 27.

Exit 1

44 z/VM: 7.3 RSCS Networking Exit Customization

Exit 2 – Spool File Accept Accounting

Use Exit 2 to determine if RSCS should accept, reject, or create an accounting record for an input spool
file. Your exit routine can define the criteria for accepting the file (for example, maximum record count or
authorization of users).

Exit 2 is called each time RSCS finds a new file in its virtual reader, unless a REORDER command is being
processed. Here, Exit 2 may not process some incoming files. To perform security functions, especially to
force the acceptance of a file, you should use Exit 21 (see “Exit 21 – Spool File Accept/Reject” on page
83).

Point of Processing
Process Exit Attribute

Spool file reception Serially reusable

Exit 2 is called each time RSCS processes a new input file. The file may be store-and-forward or may
have originated at the local node. At this point, RSCS knows the file's origin and destination from the
information in the file's CP TAG. RSCS has also determined if second-level addressing and rerouting are
needed.

On return from Exit 2, if your exit routine issues return codes 0 or 4, RSCS accepts files that originated at
the local node. RSCS also accepts store-and-forward files if they originated from the RSCS virtual machine
and have not been transferred.

RSCS then sends the files to their destination. Files for local users are transferred to the specified user ID.
Files for remote users are queued on all available links to the specified destination node.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the file's TAG element
Word 3 (+8)

Address of a 70-byte accounting record work area
Word 4 (+12)

Address of a halfword field containing the length of the file's CP TAG text
Word 5 (+16)

Address of the CP TAG text
Word 6 (+20)

Address of the file's CP SFBLOK

Exit 2

Chapter 3. IBM-Defined Exit Points 45

Register Contents

Note: If the file originated at the local node, word 5 of R1 contains the address of the CP TAG text, as
entered by the file originator. If the file originated at a remote node, word 5 contains the address of the
store-and-forward TAG text.

Exit Conditions
On return, Exit 2 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and accepts or rejects
the file.

4 RSCS does not call any other exit routines associated with this exit point and accepts
or rejects the file.

8 RSCS rejects the file. If the file originated at the local node, it is transferred to the
originating user ID. If the file originated at a remote node, RSCS purges it and sends
message DMT112E to the file originator.

12 RSCS accepts the file as if it has passed all standard RSCS authorization checks.

16 RSCS rejects the file. If the file originated at the local node, RSCS transfers it to the
originating user ID. If it originated at a remote node, RSCS purges the file but does not
issue a message to the originator.

Programming Considerations
• Your exit routine should not change any fields in the TAG element for files that have NJE headers.

Because RSCS has already determined the file's destination, changes to the TAG may not be reflected in
the headers before the file is transmitted.

Store-and-forward files originating from workstation links may not have NJE headers; they will contain
a blank TAGCNTRL field. Your exit routine can modify the TAG data for these files. Any changes are
reflected in the NJE headers created to send the file to the next node.

• Use return code 12 to accept store-and-forward files created by user IDs other than RSCS and store-
and-forward files whose transfer bit has been set.

• To create an accounting record at this exit point, your exit routine can issue return code 0 and use the
ACNTBUFF for the basic format of the accounting record and then use CP DIAGNOSE code X'4C' or
another facility to create the record.

Note: Because Exit 2 is not called when a REORDER command is processed, some files may not be
included in the accounting record.

• For information about the CP SFBLOK and DIAGNOSE code X'4C', see z/VM: CP Programming Services.
• If a file's destination is unknown, your exit routine can queue the file onto a NOTIFY-type link. To do so,

the exit routine should place the name of the NOTIFY-type link in the TAGORLOC field of the file's TAG
element.

Exit 2

46 z/VM: 7.3 RSCS Networking Exit Customization

Exit 3 – Spool File Send Accounting

Use Exit 3 to modify or suppress an accounting record for each file RSCS sends. On networking links, Exit
3 is called once for each file on the link. For printer and workstation links, Exit 3 is called once for each
copy of a multiple copy file.

The ACNTBUFF macro contains the format of the standard accounting record. If modifying the standard
accounting record, your exit routine must replace the entire standard accounting record. It must then
produce any record fields that are to be retained from the standard record format and any new or
modified fields.

Point of Processing
Process Exit Attribute

Spool file accounting Serially reusable

Exit 3 is called as RSCS starts to close an input spool file. On return, if the exit routine has not issued
return code 8, RSCS issues CP DIAGNOSE code X'4C' to generate an accounting record. (The ACCT
parameter must be specified on the OPTION statement in the RSCS virtual machine's z/VM directory
entry to enable RSCS to create accounting records. For more information, see z/VM: CP Planning and
Administration.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the TAG element
Word 3 (+8)

Address of a 70-byte accounting record work area

Exit Conditions
On return, Exit 3 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and creates a standard
SEND accounting record.

4 RSCS does not call any other exit routines associated with this exit and creates a
standard SEND accounting record.

Exit 3

Chapter 3. IBM-Defined Exit Points 47

Return Code Results

8 RSCS does not create the standard accounting record nor call any other exit routine
associated with this exit point.

12 RSCS does not create the standard accounting record and calls the next exit routine
associated with Exit 3.

Programming Considerations
• Your exit routine should not change any fields in the file's TAG element.
• To generate an accounting record, you can use the ACNTBUFF macro for the basic format and use

DIAGNOSE code X'4C' to create a record. For more information about this facility, see z/VM: CP
Programming Services. You can also write the accounting information to another file.

Exit 3

48 z/VM: 7.3 RSCS Networking Exit Customization

Exit 4 – Spool File Purge Accounting

Use Exit 4 to create an accounting record each time RSCS purges a spool file. As supplied, RSCS does not
create an accounting record when files are purged from the network.

Point of Processing
Process Exit Attribute

Spool file processing Serially reusable

Exit 4 is called each time a PURGE command is issued to delete a file. On return from the exit routine,
RSCS purges the file.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the TAG
Word 3 (+8)

Address of a 70-byte accounting record work area

Exit Conditions
On return, Exit 4 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and purges the file.

4 RSCS does not call any other exit routines associated with this exit point and purges
the file.

Programming Considerations
• Your exit routine should not alter any fields in the file's TAG element.
• Your exit routine can use the ACNTBUFF macro as the basis of the accounting record. Use CP

DIAGNOSE code X'4C' to create the record. For more information, see z/VM: CP Programming Services.
Your exit routine can also write the accounting information to a CMS file.

Exit 4

Chapter 3. IBM-Defined Exit Points 49

Exit 5 – Spool File Receive Accounting

Use Exit 5 to modify or suppress an accounting record for each spool file that RSCS receives on a link.

Exit 5 cannot directly modify the standard accounting record, which is described by the ACNTBUFF macro.
When creating a new accounting record format, your exit routine must supply any new or changed fields;
it also must retain any needed fields from the standard accounting record.

Point of Processing
Process Exit Attribute

Spool file processing Serially reusable

Exit 5 is called each time RSCS receives a file on a networking or workstation link. At this point, RSCS
knows the file's attributes, including its origin, destination, and size.

On return, RSCS issues CP DIAGNOSE code X'4C' to create an accounting record, which is mapped by the
ACNTBUFF macro. RSCS then determines the validity of the file's final destination, including second-level
addressing, and closes the file.

If the file's destination is valid, RSCS sends the file to its destination on the local node or queues it on
another link to continue store-and-forward processing. If the destination is not valid, RSCS spools the file
to the system printer or punch.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the TAG
Word 3 (+8)

Address of a 70-byte accounting record work area

Exit Conditions
On return, Exit 5 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and creates a standard
RECEIVE accounting record.

4 RSCS does not call the next exit routine associated with this exit point and creates a
standard RECEIVE accounting record.

Exit 5

50 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

8 RSCS does not create the standard accounting record nor call the next exit routine
associated with Exit 5.

12 RSCS calls the next exit routine associated with Exit 5 but does not create the standard
accounting record.

Programming Considerations
• If your exit routine modifies any fields in the file's TAG element (for example, class or distribution code),

RSCS uses those new characteristics to receive the file.

Do not alter any fields in the TAG element if a store-and-forward file is being processed.
• To generate an accounting record, use DIAGNOSE code X'4C' For more information, see z/VM: CP

Programming Services.

Exit 5

Chapter 3. IBM-Defined Exit Points 51

Exit 6 – TAG Priority Change

Use Exit 6 to change the priority of a file before RSCS queues it for transmission on a link (the CHANGE
command can also modify the priority). Your exit routine can also ensure that the TAG priority option is
not misused (for example, priority 1 for a very large file). The exit routine can also define the criteria for
selecting file priority (for example, record count, origin user ID, or location ID).

Point of Processing
Process Exit Attribute

Spool file processing Serially reusable

Exit 6 is called each time a file is about to be queued on one or more links. The file can be queued on
a link when it is processed during a real or internal reorder. It can also be queued when a CHANGE or
TRANSFER command is processed. The TAGPRIOR field contains the file's priority value. This value is set
by the file's origin, incoming NJE headers, or a previous call to Exit 6.

On return from the exit, TASHADOW elements are queued on each link that can send the file. The
TASHADOW elements are queued according to how each link queues files (priority, FIFO, or size). For
priority queuing, TAGPRIOR field in the TAG element determines the file's priority on the link.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the TAG element

Exit Conditions
On return, Exit 6 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point. Normal
processing continues; the file is queued on appropriate links.

Programming Considerations
• Your exit routine should not alter any fields in the file's TAG element other than TAGPRIOR.

Exit 6

52 z/VM: 7.3 RSCS Networking Exit Customization

• For more information about changing a file's priority on an individual link, see “Exit 31 – Sort Priority
Change” on page 103.

Exit 6

Chapter 3. IBM-Defined Exit Points 53

Exit 7 – Auto-Answer Sign-On Time Out

Use Exit 7 to create an accounting record, or perform other functions, when the sign-on time out value for
an auto-answer port expires.

Point of Processing
Process Exit Attribute

Auto-answer Reentrant

Exit 7 is called when an auto-answer task receives a phone call, but has not received any data records
during the time out period. The default time out period is 5 minutes.

On return from the exit, RSCS disables the port if the port has reached the maximum number of sign-on
attempts. Otherwise, the call is terminated and must be dialed again.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the PORT entry

Exit Conditions
On return, Exit 7 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
regular processing.

Programming Considerations
• Your exit routine should not modify any accessible control blocks.
• To generate an accounting record at this exit, use CP DIAGNOSE code X'4C'. For more information, see

z/VM: CP Programming Services.

Exit 7

54 z/VM: 7.3 RSCS Networking Exit Customization

Exit 8 – Auto-Answer Unrecognizable Data

Use Exit 8 to create an accounting record when an auto-answer port receives unrecognizable data.

Point of Processing
Process Exit Attribute

Auto-answer Reentrant

Exit 8 is called when an auto-answer task receives a phone call that contains unrecognizable data in the
first record. This may occur if the data does not match a sign-on card format supported by RSCS. It may
also occur if the link-identifier of the sign-on card does not match any links defined to RSCS.

On return, if return code 8 is not issued, RSCS disables the port if it has reached the maximum number of
sign-on attempts. If this number has not been reached, the call is terminated and will be re-enabled.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the PORT entry
Word 3 (+8)

Address of a halfword field containing the length of the unrecognizable data record
Word 4 (+12)

Address of the data record

Exit Conditions
On return, Exit 8 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point.

4 RSCS does not call any other exit routines associated with this exit point.

8 RSCS returns control to GCS. RSCS does not increment the incorrect sign-on counter
nor end the phone call.

Programming Considerations
• Your exit routine should not modify any accessible control blocks.

Exit 8

Chapter 3. IBM-Defined Exit Points 55

• To generate an accounting record at this exit, use CP DIAGNOSE code X'4C'. For more information, see
z/VM: CP Programming Services.

Exit 8

56 z/VM: 7.3 RSCS Networking Exit Customization

Exit 9 – Auto-Answer Sign-On Validation

Use Exit 9 to create an accounting record or reject a sign-on attempt when an auto-answer port receives a
valid sign-on card.

Your exit routine can reject sign-on cards using the criteria you define for your installation. For example,
you can make some Binary Synchronous Communications (BSC) links ineligible for an auto-answer
session or you can make links ineligible at defined times.

Point of Processing
Process Exit Attribute

Auto-answer Reentrant

Exit 9 is called when an auto-answer task receives a phone call and has verified that the sign-on record is
valid. However, RSCS has not completed the link validation process.

On return, if the exit routine does not issue return code 8, RSCS transforms the dial-up task into the link
driver specified on the sign-on record.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the PORT entry
Word 3 (+8)

Address of the LINKTABL entry
Word 4 (+12)

Address of a halfword field containing the length of the sign-on record
Word 5 (+16)

Address of the sign-on record

Exit Conditions
On return, Exit 9 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

Exit 9

Chapter 3. IBM-Defined Exit Points 57

Return Code Results

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS rejects this sign-on attempt.

Programming Considerations
• If RSCS recognizes the sign-on identification and finds a valid link identifier within the sign-on card, it

determines that the sign-on card is valid. However, each link driver must determine if the entire sign-on
card is valid for that link. For example, a password may be incorrect or may not have been specified.

• Your exit routine should not modify any accessible control blocks.
• To generate an accounting record at this exit, use CP DIAGNOSE code X'4C'. For more information, see

z/VM: CP Programming Services.

Exit 9

58 z/VM: 7.3 RSCS Networking Exit Customization

Exit 10 – Auto-Answer Sign-On Reject

Use Exit 10 to create an accounting record, or perform other functions, when RSCS receives a valid
sign-on card from an auto-answer port that, after further validation, has been rejected by the associated
link driver.

Point of Processing
Process Exit Attribute

Auto-answer Reentrant

Exit 10 is called when an RSCS auto-answer task receives a call that contains a sign-on card with valid
sign-on identification and a valid link identifier. However, the associated link driver has rejected this
sign-on attempt because the specified link type is not valid, the link is already active, or the password is
missing or incorrect. The sign-on attempt may also have been rejected by an Exit 9 routine.

On return, RSCS disables the port if the maximum number of sign-on attempts is reached. Otherwise,
RSCS terminates the call and must re-enable the port.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the PORT table entry
Word 3 (+8)

Address of the LINKTABL entry
Word 4 (+12)

Address of a halfword field containing the length of the sign-on record
Word 5 (+16)

Address of the sign-on record

Exit Conditions
On return, Exit 10 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

Exit 10

Chapter 3. IBM-Defined Exit Points 59

Programming Considerations

• Your exit routine should not modify any accessible control blocks.
• To generate an accounting record for sign-on attempts that are not valid, your exit routine can use CP

DIAGNOSE code X'4C'. For more information, see z/VM: CP Programming Services.

Exit 10

60 z/VM: 7.3 RSCS Networking Exit Customization

Exit 11 – NJE Job Header Creation

Use Exit 11 to scan the job header, as created by RSCS, and, as needed, change fields or add user sections
to the job header. For example, you can add sections to the header to associate other information with the
files, including: accounting and security information, and other file characteristics.

The NHDTR macro contains the recommended format for the job header and user sections. For more
information on the recommended format of a user section, see z/OS: Network Job Entry (NJE) Formats
and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/
hasa600_v2r5.pdf).

Point of Processing
Process Exit Attribute

NJE header creation Reentrant

Exit 11 is called as RSCS creates an NJE job header for a file. Any job header options specified on the CP
TAG are already reflected in the job header RSCS creates. For more information about TAG options, see
z/VM: RSCS Networking Operation and Use.

Files that originate from the local node or from a workstation connected to the local node do not contain
NJE headers. RSCS will create a job header for files that will be sent on a networking or list processor link.
Exit 11 is not called for files that already have NJE headers.

On return, if your exit routine issues return code 0 or 4, RSCS uses the NJE header created before Exit 11
was called. RSCS then sends the first part of the file on the appropriate link and continues processing.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the TIB for the stream on which the file is sent
Word 4 (+12)

Address of the job header, as RSCS has created it before Exit 11 was called
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none

Exit 11

Chapter 3. IBM-Defined Exit Points 61

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Exit Conditions
On return, Exit 11 sets the following register contents. To ensure the data in R0 and R1 is restored for any
repeated calls to Exit 11, your exit routine should specify REGS=(0,12) on the REXIT macro. For more
information, see “REXIT – Defining a Module Return Point” on page 295.

Register Contents

R0 Length of the user section to add to the job header. RSCS uses this register only for
return codes 8, 12, 16, or 20.

R1 Address of the user section to add to the job header. R1 is used only for return codes 8,
12, 16, or 20.

R2 - R13 Restored to the same values as on entry.

R14 Not applicable.

R15 Return code.

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS appends the user section created by the exit routine (pointed to by R0 and R1 on
return) to the job header it created. This is the final section of the job header.

12 RSCS appends the user section created by the exit routine (pointed to by R0 and R1 on
return) to the job header it created. RSCS then re-calls all exit routines associated with
this exit point.

16 RSCS appends the user section created by the exit routine (pointed to by R0 and R1
on return) to the job header it created. RSCS then calls the next exit routine associated
with the point. Use this return code to create more than one user section.

20 RSCS appends the user section created by the exit routine (pointed to by R0 and R1 on
return) to the job header it created. RSCS then re-calls this exit routine. Use this return
code to create more than one user section and to check the results of adding the new
section.

Programming Considerations
• If your exit routine issues return code 0 or 4, it must not pass back a user section. If one is passed back,

RSCS ignores it.
• After returning from the exit, the following conditions end the link and cause the specified user abend:

Abend Condition

7 A user section without identifier B'11XXXXXX' (NJHUTYPE X'C0').

7 User section has the same identifier and modifier as an existing user section.

8 The length of a user section caused the total job header length to exceed 32764
records.

8 A user section is 1 - 3 bytes long.

Exit 11

62 z/VM: 7.3 RSCS Networking Exit Customization

Abend Condition

9 The exit routine issued return code 8 or 12 but did not set up R0 and R1 correctly (one
or both contain 0).

Exit 11

Chapter 3. IBM-Defined Exit Points 63

Exit 12 – NJE Data Set Header Creation

Use Exit 12 to scan the data set header as created by RSCS, change some fields, and create user sections
for the data set header. You can add sections to the header to associate other information with the file,
including: accounting and security information and other file characteristics.

The NHDTR macro contains the recommended format of the data set header and user sections. For more
information, see z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf).

Point of Processing
Process Exit Attribute

NJE header creation Reentrant

Exit 12 is called as RSCS creates a data set header for a file that will be sent on a networking link but
does not have NJE headers. Files that originate from the local node or from a workstation connected to
the local node do not have NJE headers. RSCS does not create data set headers for SYSIN files.

Before calling Exit 12, RSCS creates a data set header using information in the file's TAG element,
XAB, and other data areas. If a LISTPROC-type link is processing a file that contains an unprocessed
distribution list, several dataset headers may be created and included in the file.

On return if your exit routine issues return code 0 or 4, RSCS uses the data set header it created before
calling Exit 12 to send the file.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the TIB for the stream on which the file is sent
Word 4 (+12)

Address of the data set header, as RSCS has created it before calling Exit 12
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none

Exit 12

64 z/VM: 7.3 RSCS Networking Exit Customization

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Exit Conditions
On return, Exit 12 sets the following register contents. To ensure the data in R0 and R1 is restored, your
exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT – Defining a Module Return
Point” on page 295).

Register Contents

R0 Length of the user section, created by the exit routine, to add to the data set header.
RSCS uses this register only for return codes 8, 12, 16, or 20.

R1 Address of the user section, created by the exit routine, to add to the data set header.
R1 is used only for return codes 8, 12, 16, or 20.

R2 - R13 Restored to the same values as on entry.

R14 Not applicable.

R15 Return code.

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routine associated with this exit point and continues
usual processing.

8 RSCS appends the user section created by the exit routine (pointed to, on return, by R0
and R1) to the data set header. This is the final section of the data set header.

12 RSCS appends the user section created by the exit routine (pointed to, on return, by R0
and R1) to the data set header. RSCS then re-calls Exit 12 so that the exit routine can
create additional user sections.

16 RSCS appends the user section created by the exit routine (pointed to by R0 and R1
on return) to the data set header it created. RSCS then calls the next exit routine
associated with the point. Use this return code to create more than one user section.

20 RSCS appends the user section created by the exit routine (pointed to by R0 and R1 on
return) to the data set header it created. RSCS then re-calls this exit routine. Use this
return code to create more than one user section and to check the results of adding
the new section.

Programming Considerations
• If an exit routine issues return code 0 or 4, it must not pass back a user section. If one is passed back,

RSCS ignores it.
• After returning from the exit, the following conditions result in the link ending and the specified user

abend:

Abend Condition

7 A user section without identifier B'11XXXXXX' (NDHUTYPE X'C0').

7 User section has the same identifier and modifier as an existing user section.

8 The length of user section created by the exit routine caused the total data set header
length to exceed 32764 records.

8 A user section is 1 - 3 bytes long.

Exit 12

Chapter 3. IBM-Defined Exit Points 65

Abend Condition

9 The exit routine issued return code 8 or 12 but did not set up R0 and R1 correctly (one
or both contain 0).

Exit 12

66 z/VM: 7.3 RSCS Networking Exit Customization

Exit 13 – NJE Job Trailer Creation

Use Exit 13 to scan the job trailer created by RSCS, change some fields, or add user sections to the
job trailer. You can add sections to the trailer to associate other information with the files, including:
accounting and security information and additional file characteristics.

The NHDTR macro contains the recommended format of the job trailer and user sections. For
more information on the recommended formats, see z/OS: Network Job Entry (NJE) Formats
and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/
hasa600_v2r5.pdf).

Point of Processing
Process Exit Attribute

NJE header creation Reentrant

Exit 13 is called as RSCS creates an NJE job trailer for a file that will be sent on a networking link but does
not have a job trailer. Files that originate on the local node or from a workstation connected to the local
node do not have NJE job trailers. RSCS creates the job trailer from information in the file's TAG element,
CP SFBLOK, and other data areas. For more information about the SFBLOK, see z/VM: CP Programming
Services.

On return, if your exit routine issues return code 0 or 4, RSCS sends the file, using the NJE job trailer it
created before calling Exit 13.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the TIB for the stream on which the file is sent
Word 4 (+12)

Address of the job trailer, as RSCS has created it before calling Exit 13
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none

Exit Conditions
On return, Exit 13 sets the following register contents. To ensure the data in R0 and R1 is restored on
multiple calls to Exit 13, your exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT
– Defining a Module Return Point” on page 295).

Exit 13

Chapter 3. IBM-Defined Exit Points 67

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Register Contents

R0 Length of the user section, created by the exit routine, to add to the job trailer. RSCS
uses this register only for return codes 8, 12, 16, or 20.

R1 Address of the user section, created by the exit routine, to add to the job trailer. R1 is
used only for return codes 8, 12, 16, or 20.

R2 - R13 Restored to the same values as on entry.

R14 Not applicable.

R15 Return code.

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routine associated with this exit point and continues
usual processing.

8 RSCS appends a user section created by the exit routine (pointed to on return by R0
and R1) to the job trailer. This is the final section of the job trailer.

12 RSCS appends the user section created by the exit routine (pointed to on return by R0
and R1) to the job trailer. RSCS then re-calls all exit routines associated with this exit
point.

16 RSCS appends the user section created by the exit routine (pointed to by R0 and R1
on return) to the job header it created. RSCS then calls the next exit routine associated
with this exit point. Use this return code to create more than one user section.

20 RSCS appends the user section created by the exit routine (pointed to by R0 and R1 on
return) to the job header it created. RSCS then re-calls this exit routine. Use this return
code to create more than one user section and to check the results of adding the new
section.

Programming Considerations
• If your exit routine issues return code 0 or 4, it must not pass back a user section. If one is passed back,

RSCS ignores it.
• After returning from the exit, the following conditions end the link and cause the specified user abend:

Abend Condition

7 A user section without identifier B'11XXXXXX' (NJTUTYPE X'C0').

7 User section has the same identifier and modifier as an existing user section.

8 A length of a user section caused the total header length to be greater than 32764
records.

8 A user section has a length of 1 - 3 bytes.

9 A return code of 8 or 12 was issued without setting up R0 and R1 correctly (one or both
contain 0).

Exit 13

68 z/VM: 7.3 RSCS Networking Exit Customization

Exit 14 – NJE Job Header Reception

Use Exit 14 to scan the job header file received by RSCS before RSCS updates the TAG element. Your exit
routine can examine information from the following sections:

• NJE header, which contains information you can use to determine if the file should be rejected or
rerouted based on:

– Destination
– Origin
– Attributes
– Security information

• User sections, which contain information about:

– Accounting
– Security
– Other file characteristics

• Other header sections, which provide information for:

– Accounting routines
– Security validation routines

The NHDTR macro contains the format for the job header RSCS creates. However, headers received on the
link may have been created by a different release of RSCS or by another product. For more information the
general format of all NJE job headers, see z/OS: Network Job Entry (NJE) Formats and Protocols (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf).

The NHDTR macro also contains the recommended format for a user section. However, you should ensure
that your exit routine can process the DSECTs specified by the exit routine that created the user section.
These areas may differ from the recommended format (see “Exit 11 – NJE Job Header Creation” on page
61 for more information).

If you want to override the information in the job header after RSCS updates the information in the TAG
element, see “Exit 41 – NJE Job Header Post-Processing” on page 121 for more information.

Point of Processing
Process Exit Attribute

NJE header reception Reentrant

Exit 14 is called each time RSCS receives a file over a networking link (GATEWAY-type, LISTPROC-type,
NJE-type, SNANJE-type, or TCPNJE-type). Each of these files will have a job header. As a file is sent, RSCS
first receives its job header, which contains information about the remaining file transmission. Exit 14 is
called before RSCS places any information from the general section into a TAG element for the file. RSCS
also calls Exit 14 when it finds a user section in the job header.

On return, if your exit routine issues return code 0 or 4, RSCS transfers the information in the general
section of the header into various control blocks (for example, the TAG element). RSCS then receives the
rest of the file. RSCS does not process the data in any user sections of the file's job header. Rather, it
continues to process the remaining sections of the header.

Exit 14

Chapter 3. IBM-Defined Exit Points 69

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code indicating why the exit is called:
0

The general section has been processed.
4

A user section has been found.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which RSCS receives the file
Word 4 (+12)

Address of the job header
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none
Word 7 (+24)

Address of the user section being processed, or 0 if this exit point is called when
RSCS processes the general section of the job header

Exit Conditions
On return, Exit 14 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the job header.

4 RSCS does not call any other exit routine associated with this exit point and continues
processing the job header.

8 RSCS rejects this file and does not process the job header.

Programming Considerations
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any fields in the job headers. If these fields are altered, RSCS may not

correctly process NJE store-and-forward files.

Exit 14

70 z/VM: 7.3 RSCS Networking Exit Customization

• If your exit routine sets the TAGORLOC field in the TAG element, RSCS queues the file for transmission
as if it were destined to the node in the TAGORLOC field. Because this field may be reset when RSCS
receives the data set header, you may need to provide a similar Exit 15 routine to use this feature.

Exit 14

Chapter 3. IBM-Defined Exit Points 71

Exit 15 – NJE Data Set Header Reception

Use Exit 15 to scan the data set header as received by RSCS before RSCS updates the TAG element. Your
exit routine can examine information from the following sections:

• NJE header, which contains information you can use to determine if a file should be rejected based on:

– Destination
– Origin
– Attributes
– Security information

• User sections, which contain:

– Accounting information
– Security information
– Other file characteristics

• Other header sections, which provide information for:

– Accounting routines
– Security validation routines

The NHDTR macro contains the recommended format for the job header and user section. However, your
exit routine should be able to use the DSECTs specified by the exit routine that created the job header if
they differ from the recommended format (see “Exit 12 – NJE Data Set Header Creation” on page 64 for
more information).

If you want to override the information in the data set header after RSCS updates the information in the
TAG element, see “Exit 42 – NJE Data Set Header Post-Processing” on page 123 for more information.

Point of Processing
Process Exit Attribute

NJE header reception Reentrant

Exit 15 is called when RSCS receives a file on a networking (GATEWAY-type, LISTPROC-type, NJE-type,
SNANJE-type, or TCPNJE-type) link. The exit point is called before RSCS has placed any information from
the general section of the data set header in a control block, such as a TAG element. Exit 15 is also called
each time RSCS finds a user section in the data set header.

For SYSOUT files, the data set headers identify the various sections of the file and the file's destinations.
SYSIN files generated by RSCS do not contain data set headers. SYSIN files generated by some
z/OS® systems may contain a data set header. Here, the data set header will contain only a record
characteristics change section (RCCS).

Your exit routine can also access the job header for the file; the RIB contains a pointer to the address of
the job header.

On return, if your exit routine issues return code 0 or 4, RSCS transfers the information in the general
section of the header into various control blocks (for example, the TAG element). RSCS then receives the
rest of the file. RSCS does not process the data in any user sections of the file's job header. Rather, RSCS
continues to process the remaining sections of the header.

Exit 15

72 z/VM: 7.3 RSCS Networking Exit Customization

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code to show why the exit has been called:
0

The general section has been processed.
4

A user section has been processed.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which the file is received
Word 4 (+12)

Address of the data set header
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none
Word 7 (+24)

Address of the user section being processed, or 0 if the exit point is called for
general section processing

Exit Conditions
On return, Exit 15 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit and continues to process the
data set header.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS rejects this file, issues a message, and stops processing the job header.

Programming Considerations
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any fields in the job headers. If these fields are altered, RSCS may not

correctly process NJE store-and-forward files.
• If your exit routine sets the TAGORLOC field in the TAG element, RSCS queues the file for transmission

as if it were destined to the node in the TAGORLOC field.

Exit 15

Chapter 3. IBM-Defined Exit Points 73

Exit 16 – NJE Job Trailer Reception

Use Exit 16 to scan the job trailer for each file RSCS receives over a networking link before RSCS updates
the TAG element for the file. Your exit routine can examine information from the following sections:

• NJE header, which contains information you can use to determine if a file should be rejected based on:

– Destination
– Origin
– Attributes
– Security information

• User sections, which contain:

– Accounting information
– Security information
– Other file characteristics

• Other header sections, which provide information for:

– Accounting routines
– Security validation routines

The NHDTR macro contains the recommended format for the job header and user section. However, your
exit routine should also be able to use the DSECTs specified by the exit routine that created the job
header if they differ from the recommended format. For more information, see “Exit 13 – NJE Job Trailer
Creation” on page 67.

If you want to override the information in the job trailer after RSCS updates the information in the TAG
element, see “Exit 43 – NJE Job Trailer Post-Processing” on page 125 for more information.

Point of Processing
Process Exit Attribute

NJE header reception Reentrant

Exit 16 is called each time RSCS receives a file over a networking link (GATEWAY-type, LISTPROC-type,
NJE-type, SNANJE-type, or TCPNJE-type). The job trailer is the last part of the file transmission. Exit 16 is
called before RSCS places any information from the general section into a TAG element for the file. RSCS
also calls Exit 16 when it finds a user section in the job header.

On return, if your exit routine issues return code 0 or 4, RSCS transfers the information in the general
section of the header into various control blocks (for example, the TAG element). RSCS then receives the
rest of the file. RSCS does not process the data in any user sections of the file's job header. Rather, it
continues to process the remaining sections of the header.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Exit 16

74 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R0 A code to show why the exit has been called:
0

The general section is being processed.
4

A user section is being processed.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which the file is received
Word 4 (+12)

Address of the job trailer
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none
Word 7 (+24)

Address of the user section being processed, or 0 if called for general section
processing

Exit Conditions
On return, Exit 16 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit and continues to process the
job trailer.

4 RSCS does not call any other exit routines associated with this exit point and continues
to process the job trailer.

8 RSCS rejects the file, issues a message, and stops processing the job trailer.

Programming Considerations
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any fields in the job trailers. If these fields are altered, RSCS may not

correctly process NJE store-and-forward files.
• The TAG address that is passed to your exit routine is the TAG that corresponds to a file associated with

the job trailer. Because the file may have had multiple dataset headers and RSCS may have split the
incoming file into several files, several TAG elements may be associated with this job trailer.

• If your exit routine sets the TAGORLOC field in the TAG element, RSCS queues the file for transmission
as if it were destined to the node in the TAGORLOC field.

Exit 16

Chapter 3. IBM-Defined Exit Points 75

Exit 17 – Separator Page Selection

Use Exit 17 to select or suppress the separator page for each print file. The separator page can use
the RSCS or VM style or a user-generated style. For examples of separator page styles, see z/VM: RSCS
Networking Operation and Use.

Point of Processing
Process Exit Attribute

Separator page creation Reentrant

Exit 17 is called as RSCS is about to generate a copy of a print file. RSCS has not determined the separator
page format, if any, for the file.

On return, if your exit routine issues return code 0 or 4, RSCS generates the appropriate header and trailer
separator pages:

• If the configuration file contains a matching FORM statement, RSCS uses the specified form name.
• If a SEP parameter is specified for the link, RSCS uses that format.
• If neither option is specified, RSCS-style separator pages are generated.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code to show why the exit has been called:
0

The file has been opened and a header page is processed.
4

The file has been printed and a trailer page is processed.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the SEPBLOK

Exit Conditions
On return, Exit 17 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues to
process the separator pages.

4 RSCS does not call any other exit routine associated with this exit point and continues
to process the separator pages.

Exit 17

76 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

8 RSCS does not print the header or trailer separator pages.

12 RSCS calls Exit 18 to generate an alternate header or trailer page (see “Exit 18 –
Separator Page Generation” on page 78). Do not use return code 12 if you have not
loaded or enabled Exit 18.

Exit 17

Chapter 3. IBM-Defined Exit Points 77

Exit 18 – Separator Page Generation

Use Exit 18 to create an alternative style for separator pages. Your exit routine returns only one line of
a separator page at a time. Use return code 8 to have RSCS call your exit routine for each line in the
separator page.

Point of Processing
Process Exit Attribute

Separator page generation Reentrant

Exit 18 is called only when an Exit 17 routine issues return code 12 to generate an alternate style
separator page.

On return, if your exit routine issues return code 0 or 4, RSCS stops formatting the separator page and
continues processing the file. If a header page is being processed, RSCS starts to print the file. If a trailer
page is processed, the file has been printed. If your exit routine issues return code 8, one line is written to
the separator page in progress.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code to show why the exit has been called:
0

A header page is being processed.
4

A tailer page is being processed.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the SEPBLOK
Word 3 (+8)

Address of the output data area
Word 4 (+12)

Address of a halfword data area to contain the length of the output data returned

Exit Conditions
On return, Exit 18 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing.

Exit 18

78 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

4 RSCS does not call any other exit routines associated with this exit point and continues
processing.

8 RSCS writes a line of text to the separator page and calls this exit point again to
process the next line.

Programming Considerations
• To write each line of the separator page, your Exit 18 routine should issue return code 8. To identify the

line being processed, your exit routines can maintain a counter in the first fullword of SEPUSER field in
the SEPBLOK. This counter can be initialized at Exit 17 and incremented each time an Exit 18 routine
generates a line.

• Your Exit 18 routine can use the SEPUSER field to communicate between multiple calls to Exit 17. The
Exit 18 routine that generates a separator page should correspond to the Exit 17 routine that called it to
make the request.

In exit packages that generate separator pages, Exit 17 routines should store a unique identifier in the
second fullword of SEPUSER before issuing return code 8.

An Exit 18 routine can then check this field to identify the exit routine that called it. If it recognizes the
Exit 17 routine, the exit routine can generate the separator line and issue return code 8. If the Exit 18
routine does not recognize the identifier, it can issue return code 0. RSCS will then call the next exit
routine associated with Exit 18.

• Use the output area (word 3) and length (word 4) fields to store the line of separator page text. The first
byte in the output area is a channel-command opcode that can be used to create various effects. The
rest of the output area is the separator page text. The following list describes some of the opcodes:
X'01'

Writes data, but does not perform a line feed (use for overprinting)
X'09'

Writes data, then a linefeed
X'0B'

Does a linefeed, but does not print data
X'11'

Writes data, then moves two lines
X'13'

Does two linefeeds, but does not print data
X'19'

Writes data, and spaces three lines
X'1B'

Does three linefeeds, but does not print data
X'89'

Writes data, then a page eject
X'8B'

Does a page eject, but does not write data

Note: If you have no separator page text, you must pass back an opcode and a blank in the output area
field (word 3) and a value of 1 in the length field (word 4). If you do not pass these values back, the link
driver may cause RSCS to abend.

• Your exit routine should check the SEPFLAG field in the SEPBLOK data area to determine when to issue
a page eject. Some printers require a page eject before the header page is started; others require a page
eject after the header page is finished. The printer link drivers set the SEPFLAG flag in SEPBLOK to show
when the page eject is required.

Exit 18

Chapter 3. IBM-Defined Exit Points 79

• SNARJE-type, MRJE-type, and RJE-type links need to have different headers generated for them if the
file being printed is a punch file. This is determined by checking the TAGINDEV flag in the file's TAG
element and the SEPFLAG field in the SEPBLOK control block. If the TYPPUN flag is set in TAGINDEV,
the file is a punch file. If the SETPUNCH flag is set in SEPFLAG, your exit routine must generate a short,
one-line header.

Exit 18

80 z/VM: 7.3 RSCS Networking Exit Customization

Exit 19 – Command Screening

Use Exit 19 to determine if RSCS should process a command. You can modify the command element,
bypass RSCS authorization checking, or cause RSCS to ignore the command.

Point of Processing
Process Exit Attribute

Command processing Serially reusable

Exit 19 is called when RSCS prepares to run a command. At this point, RSCS has identified the origin of
the command, but has not yet processed the command.

On return, if your exit routine issues return code 0 or 4, RSCS processes and runs the command.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code indicating where the command originated:
0

From the RSCS console.
-1

From a user through the SMSG command.
+n

From a remote node. R0 contains the address of the LINKTABL entry for the link on
which RSCS received the command.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the command execution request buffer, which is mapped by the
CMNDAREA macro

Exit Conditions
On return, Exit 19 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and processes the
command.

4 RSCS does not call any other exit routines associated with this exit and processes the
command.

Exit 19

Chapter 3. IBM-Defined Exit Points 81

Return Code Results

8 RSCS does not process this command as if the originator was not authorized to issue
the command. RSCS issues message DMT209E to the command originator.

12 RSCS processes the command as if it had been issued by the RSCS console operator.

16 RSCS ignores this command and does not issue a message to the command originator.

Programming Considerations
• The Type L3 format of the CMNDAREA data area maps the command element. Your exit routine can

change any field in the element including the command originator and text.
• To alter the authorization level usually required for a command, your exit routine should issue return

code 8 or 12.
• To process a command, your exit routine should issue return code 16; RSCS will then ignore the

command.

Note: If you want to implement new RSCS commands, you should use Exit 29 (see “Exit 29 – Unknown
Command” on page 99).

Exit 19

82 z/VM: 7.3 RSCS Networking Exit Customization

Exit 21 – Spool File Accept/Reject

Use Exit 21 to define the criteria for accepting or rejecting an input spool file. Your exit routine can use any
information from the file's TAG element, CP TAG text, and SFBLOK to determine if RSCS should accept the
file.

Point of Processing
Process Exit Attribute

Spool file processing Serially reusable

Exit 21 is called when RSCS begins to process an input file. The file may be store-and-forward or may
have originated at the local node. At this point, RSCS knows the file's origin and destination from the
information in the file's CP TAG. RSCS has also determined if second-level addressing and rerouting are
needed.

Exit 21 is called each time RSCS finds a new file in its virtual reader, including when a REORDER command
is being processed. Here, Exit 21 may process some incoming files twice.

On return from Exit 21, if your exit routine issues return codes 0 or 4, RSCS accepts files that originated at
the local node. RSCS also accepts store-and-forward files if they originated from the RSCS virtual machine
and have not been transferred.

RSCS then sends the file to its destinations. Files for local users are transferred to the specified user ID.
Files for remote users are queued on all available links to the specified node.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of parameter list, which contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the file's TAG element
Word 3 (+8)

Address of a 70-byte accounting record work area
Word 4 (+12)

Address of the halfword field that contains the length of the file's CP TAG text
Word 5 (+16)

Address of the CP TAG text
Word 6 (+20)

Address of the file's CP SFBLOK
Word 7 (+24)

Address of the REORDER command element if a reorder is in progress, or 0 if a
reorder is not in progress

Exit 21

Chapter 3. IBM-Defined Exit Points 83

Register Contents

Note: If RSCS has previously processed a file, including one that originated on the local system, it
may have a modified origin user tag. RSCS places any information it needs at the beginning of the
origin user tag. If the file originated from a remote node, word 5 contains the address of the RSCS
store-and-forward tag.

Exit Conditions
On return, Exit 21 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS rejects the file. If the file originated at the local node, RSCS transfers it to the
originating user ID. If the file originated at a remote node, RSCS purges it and issues
message DMT112E.

12 RSCS accepts the file as if it had passed all standard authorization checks.

16 RSCS rejects the file. If the file originated at the local node, RSCS transfers it to the
originating user ID. If the file originated at a remote node, RSCS purges it but does not
issue a message.

Programming Considerations
• Your exit routine should not alter any TAG fields for files with NJE headers; changes to the TAG element

may not be reflected in the headers before the file is transmitted to the next node.

Store-and-forward files originating from workstation links may not contain NJE headers; they will have
a blank TAGCNTRL field. Your exit routine can modify the TAG fields for these files. Any changes are
reflected in the NJE headers created to send the file to the next node.

• To accept store-and-forward files from a trusted RSCS virtual machine or another virtual machine on the
same processor, your exit routine should issue return code 12.

• If a file is destined to the local node and does not contain a valid destination user ID, RSCS will queue
the file on links that are determined by the routing of the *USER* node. RSCS rejects the file if no routes
to the *USER* node have been defined.

• Your exit routine can set the TAGORLOC field in the file's TAG element to force the file to be queued
onto one or more links, without regard to the destination node ID of the file. Use this feature to queue
files on NOTIFY-type links or to use information, other than that specified on the ROUTE statements and
commands, to route the file.

• To generate an accounting record at this exit point, your exit routine should issue return code 0. It can
then use CP DIAGNOSE code X'4C' or another facility to create the record.

Note: Because Exit 21 is called when a REORDER command is processed, some incoming files may
appear more than once in the accounting record.

• For more information about the SFBLOK and DIAGNOSE code X'4C', see z/VM: CP Programming
Services.

Exit 21

84 z/VM: 7.3 RSCS Networking Exit Customization

Exit 22 – NOTIFY Driver Note Selection

Use Exit 22 to determine if a NOTIFY link driver should create and issue a note when a file is queued on
the link.

Point of Processing
Process Exit Attribute

NOTIFY link driver Reentrant

Exit 22 is called when a file is queued on a NOTIFY-type link. RSCS has not yet issued a note.

On return, if your exit routine issues return code 0 or 4, RSCS generates a note. The contents and
destination of the note are specified by the TEMPLATE file with which the NOTIFY-type link was initialized.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the NOTEBLOK

Exit Conditions
On return, Exit 22 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS purges the misdirected file and sends a message to the file originator.

12 RSCS calls Exit 23 to modify the note sent to the file originator.

16 RSCS holds the file on the NOTIFY-type link but does not send a note to the file
originator.

Programming Considerations
• To communicate between Exit 22 and Exit 23, your exit routine should use the NOTEUSER field in the

NOTEBLOK.

Exit 22

Chapter 3. IBM-Defined Exit Points 85

Exit 23 – NOTIFY Driver Note Editing

Use Exit 23 to modify the note that the NOTIFY link driver creates in response to a file queued on the link.
You can use Exit 23 to perform special substitutions on &-symbols in the note text. You can also use Exit
23 to edit the note's distribution list, which includes all lines before the first blank line in the note.

Point of Processing
Process Exit Attribute

NOTIFY link driver Reentrant

Exit 23 is called only when Exit 22 issues return code 12 to modify the note or its distribution list. Flags
in the NOTEFLAG field of the NOTEBLOK identify the types of records to be processed from the TEMPLATE
file. All substitution fields in the file (&-symbols) have been converted to their correct values.

On return, RSCS adds the record to the distribution list or text of the note.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 One of the following codes:
0

A record is being edited.
4

There are no more records in the note.

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT.
Word 2 (+4)

Address of the NOTEBLOK.
Word 3 (+8)

Address of an area containing a 1-byte field, which contains the length of the text,
and the text of record. This word contains 0 if R0 contains 4.

Exit Conditions
On return, Exit 23 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing.

Exit 23

86 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

4 RSCS does not call any other exit routines associated with this exit point and continues
processing.

8 RSCS adds the current record to the note but has not yet read the next record from the
TEMPLATE file. Rather, it creates a blank line and adds it to the note.

Programming Considerations
• To add sections to the note or entries to the distribution list, your exit routine should issue return

code 8. The list processor sends notes to multiple destinations. If your exit routine specifies additional
destinations and your node does not define a LISTPROC-type link, the NOTIFY-type link will end.

• The NOTEUSER field contains a pointer to a record that contains the text to be placed in the note. All
IBM-defined variables have already been substituted in the text.

Your exit routine can change this text, alter the length, and issue any valid return code. The length of the
text cannot, however, exceed 251 bytes.

• To ensure communication between Exit 22 and Exit 23, your exit routine should use the NOTEUSER
field. NOTEUSER can be used to identify the Exit 22 routine that requested the user-format note file and
ensure that the appropriate Exit 23 routine is called.

It is recommended to use the second fullword in NOTEUSER to identify the exit routine that issued
return code 12 at Exit 22. Exit 22 and Exit 23 should use the first fullword of the NOTEUSER field in the
same way (for example, as a counter or a pointer to a working storage area).

Exit 23

Chapter 3. IBM-Defined Exit Points 87

Exit 24 – Spooling CP Command Screening

Use Exit 24, with Exit 25, to examine, modify, or extend the CP commands run by the RSCS spool manager
task.

Point of Processing
Process Exit Attribute

Spool command processing Serially reusable

Exit 24 is called before RSCS processes a CP command. This exit point may be called by the spool
manager or link driver tasks. However, RSCS ensures that its spool resources are serialized and are used
by only one task at a time.

On return, if your exit routine issues return code 0 or 4, RSCS runs the CP command as it was entered.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code identifying the CP command to be processed:
0

CHANGE
4

CLOSE
8

DEFINE
12

DETACH
16

PURGE
20

SPOOL
24

TAG
28

TAG and SPOOL
32

TRANSFER

Exit 24

88 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of parameter list which contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the CP command to be run
Word 3 (+8)

Length of the CP command to be run
Word 4 (+12)

Contents vary, depending on command issued:
CHANGE

Address of TAG element
CLOSE

Address of TAG element, or 0 if none
DEFINE

0
DETACH

0
PURGE

Address of TAG element, or 0 if none
SPOOL

Address of TAG element, or 0 if none
TAG

Address of TAG element, or 0 if none
TAG/SPOOL

0
TRANSFER

Address of TAG element, or 0 if none

Note: For code 28, the TAG and SPOOL commands are in the same buffer, separated by a X'15'
character. When this buffer is processed by CP DIAGNOSE code X'08', both commands are run.

Exit Conditions
On return, Exit 24 sets the following register contents. To ensure the data in R0 and R1 is restored, your
exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT – Defining a Module Return
Point” on page 295).

Register Contents

R0 If the return code in R15 is 8, R0 contains the length of the command string passed
back by the exit routine. Otherwise, R0 is ignored.

R1 If the return code in R15 is 8, R1 contains a pointer to the substitute command that is
to be run. Otherwise, R1 is ignored.

R2 - R13 Restored to the same values as on entry.

R14 Not applicable

R15 Return code

Exit 24

Chapter 3. IBM-Defined Exit Points 89

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
processing.

8 RSCS runs a different command supplied by the exit routine; on return, R1 points to
the substituted command and R0 contains its length.

Programming Considerations
Attention

Use extreme caution when issuing return code 8 from your exit routine. If a substituted command does
not perform the same type of function that was originally intended by RSCS, severe damage may occur
to RSCS spool file processing.

• To process multiple-line commands, your exit routine should separate the lines of the command by a
X'15' byte. The commands can be processed by DIAGNOSE code X'08'.

Exit 24

90 z/VM: 7.3 RSCS Networking Exit Customization

Exit 25 – Post-CP Command Screening

Use Exit 25, with Exit 24, to examine the CP commands run by the RSCS spool manager task and the
return codes from those commands.

Point of Processing
Process Exit Attribute

Spool command processing Serially reusable

Exit 25 is called after RSCS has issued a CP command or a substitute command from Exit 24. It may be
run under the spool manager or link driver tasks. However, RSCS ensures that only one task can use its
spool resources at a time.

On return, if your exit routine issues return code 0 or 4, RSCS passes the return code from the CP
command or substitute command to the calling task.

Entry Conditions

The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code identifying the CP command that was run:
0

CHANGE
4

CLOSE
8

DEFINE
12

DETACH
16

PURGE
20

SPOOL
24

TAG
28

TAG and SPOOL
32

TRANSFER

Exit 25

Chapter 3. IBM-Defined Exit Points 91

Register Contents

R1 Address of parameter list which contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the CP command that was run
Word 3 (+8)

Length of the CP command that was run
Word 4 (+12)

Contents varies, depending on command issued:
CHANGE

Address of TAG element
CLOSE

Address of TAG element, or 0 if none
DEFINE

0
DETACH

0
PURGE

Address of TAG element, or 0 if none
SPOOL

Address of TAG element, or 0 if none
TAG

Address of TAG element, or 0 if none
TAG/SPOOL

0
TRANSFER

Address of TAG element, or 0 if none
Word 5 (+16)

Return code from the processed command

Note: For code 28, the TAG and SPOOL commands are in the same buffer, separated by a X'15'
character. When this buffer is processed by CP DIAGNOSE code X'08', both commands are run.

Exit Conditions
On return, Exit 25 sets the following register contents. To ensure the data in R0 and R1 is restored, your
exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT – Defining a Module Return
Point” on page 295).

Register Contents

R0 If the return code in R15 is 8, R0 contains the return code from the issued command.

R1 Not applicable.

R2 - R13 Restored to the same values as on entry.

R14 Not applicable.

R15 Return code.

Exit 25

92 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS uses the value passed back in R0 as the return code from the previous CP
command.

Programming Considerations
Attention

Use extreme caution when using this exit point to process a return code from a substituted command.
Severe damage may occur to RSCS spool file processing if the substituted command does not perform a
function similar to the original CP command.

• To replace or force usual processing from a nonzero CP return code, your exit routine may supply a
different return code in register 0 by issuing return code 8.

Exit 25

Chapter 3. IBM-Defined Exit Points 93

Exit 26 – Link State Change Accounting

Use Exit 26 to create accounting records or to start recovery procedures when a link changes state.

Point of Processing
Process Exit Attribute

Link state accounting Reentrant

Exit 26 is called when any RSCS task causes a link to change state. On return, RSCS returns control to the
calling task and the link changes to the specified state.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of parameter list which contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

A fullword value indicating the previous state of the link
Word 4 (+12)

A fullword value indicating the next state of the link:
0

Inactive
4

Retry-wait
8

Dial-queue
12

Starting
16

Active
20

Intervention required
24

Released
28

Connected
32

RPL-wait

Exit 26

94 z/VM: 7.3 RSCS Networking Exit Customization

Exit Conditions
On return, Exit 26 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

Programming Considerations

• To generate an accounting record at this exit, use CP DIAGNOSE code X'4C'. For more information, see
z/VM: CP Programming Services.

Exit 26

Chapter 3. IBM-Defined Exit Points 95

Exit 27 – Message Request Screening

Use Exit 27 to inspect, log, modify, or suppress RSCS messages. The exit routine may inspect or modify
any fields in the MSGBLOK passed to it, except the message number. For user-supplied messages, the exit
routine may not modify the conversion or translation repository.

Note: Exit 27 and Exit 28 replace the function of Exit 20, which was defined in RSCS V2.3.

Point of Processing
Process Exit Attribute

Message processing Reentrant

Exit 27 is called when an RSCS task or an exit routine issues a message. The calling task provides a
MSGBLOK, which contains information about the message, such as the message number and destination
code. At this point, RSCS has acquired any necessary message work areas. It has also determined that the
conversion repository contains information about the specified message.

On return, if your exit routine issues return code 0 or 4, RSCS proceeds to format the message and issue it
to all relevant destinations.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the MSGBLOK

Exit Conditions
On return, Exit 27 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with Exit 27 and continues to process the
message.

4 RSCS does not call any other exit routines associated with this exit point and continues
to process the message.

8 RSCS does not issue the message.

Exit 27

96 z/VM: 7.3 RSCS Networking Exit Customization

Programming Considerations
• Your exit routine can inspect or modify any fields in the MSGBLOK, except for the message number and,

for user-supplied messages, the conversion or translation repository fields.
• To suppress a routing code for a message (for example, prevent a message from being routed to the

console), your exit routine can use the IRRELMSG routing code.

To do so, your exit routine must ensure that the MSGBRCOD field contains a nonzero value. The exit
routine can then turn off the unwanted routing code and turn on the IRRELMSG code. The exit routine
must ensure, however, that RSCS does not use the default routing code for the message. (The message
conversion repository contains the default routing code.) Your exit routine should then issue return code
0 to allow usual processing of the message.

• To issue a message from an exit routine for Exit 27 or Exit 28, you should specify the RF=REX parameter
on the RMSG macro (see “RMSG – Issuing a Message” on page 299).

Exit 27

Chapter 3. IBM-Defined Exit Points 97

Exit 28 – Message Language Selection

Use Exit 28 to change the language which RSCS uses to issue a message. You can also use Exit 28 to
suppress a message or issue it from a different message repository.

Note: Exit 27 and Exit 28 replace the function of Exit 20, which was defined in RSCS V2.3.

Point of Processing
Process Exit Attribute

Message processing Reentrant

Exit 28 is called when a message (with routing code O or V only) is about to be formatted and issued in the
specified local and network languages. Exit 28 also processes messages that are part of a subscription.
However, it is not called if a message is issued with CRI specifications.

On return, if your exit routine issues return code 0 or 4, RSCS uses the specified local language to issue
the message to the local user. RSCS issues messages to remote users in the specified network language.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of parameter list which contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the MSGBLOK

Exit Conditions
On return, Exit 28 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and issues the message.

4 RSCS does not call any other exit routines associated with this exit point and issues the
message.

8 RSCS does not issue the message.

12 RSCS issues the message in the local language.

16 RSCS issues the message in the network language.

20 RSCS issues the language-independent form of the message.

Exit 28

98 z/VM: 7.3 RSCS Networking Exit Customization

Exit 29 – Unknown Command

Use Exit 29 to examine any command that RSCS cannot identify. Your exit routine can process, suppress,
or reject the command.

Point of Processing
Process Exit Attribute

Command processing Serially reusable

Exit 29 is called when RSCS does not recognize the first token of a command text. At this point, RSCS
knows the origin of the command and the authorization level of the originator. RSCS has also parsed any
CRI prefixes that may have been specified on the command.

On return from the exit routine, RSCS issues message DMT201E to show that it did not recognize the
command.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code indicating the command origin:
0

From the RSCS console.
-1

From a user through the SMSG command.
+n

From a link; R0 contains the address of the LINKTABL for the link on which the
command was received.

Exit 29

Chapter 3. IBM-Defined Exit Points 99

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT.
Word 2 (+4)

Address of the command execution request buffer, which is mapped by the
CMNDAREA macro.

Word 3 (+8)
Address of the MSGBLOK that RSCS set up to issue command responses.

Word 4 (+12)
Address of the AUTHBLOK that describes the command originator (if the originator
is an authorized alternate or link operator), or 0 if no AUTHBLOK exists for the
command originator. If there are multiple AUTHBLOKs for the command originator,
only the first AUTHBLOK found is supplied.

Word 5 (+16)
Address of a 16-byte field containing the name of the unknown command; it is
padded on the right with blanks.

Word 6 (+20)
Address of the first character after the command verb in the command execution
request buffer.

Exit Conditions
On return, Exit 29 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and issues message
DMT201E.

4 RSCS does not call any other exit routines associated with this exit point and issues
message DMT201E.

8 RSCS ignores this command and does not issue a message.

Programming Considerations
• To implement your own RSCS commands, your exit routine can use the command verb passed in R1 to

identify the command. Your exit routine must parse this command text.

If the exit routine can process the command, it should issue return code 8. If your exit routine does not
recognize the command, it should issue return code 0.

• The Type L3 format of the CMNDAREA data area contains information about the command, such as its
origin and text.

• Destination and CRI-related fields are preset in the MSGBLOK passed in R1 to the exit routine. The
MSGBLOK also contains space for 16 message substitution variables.

Exit 29

100 z/VM: 7.3 RSCS Networking Exit Customization

Exit 30 – Reroute Interception

Use Exit 30 to determine if RSCS should reroute a file, command, or message. If the options on the
REROUTE command or statement are insufficient for your installation, you can also use Exit 30 to define
additional criteria for rerouting the data traffic.

Point of Processing
Process Exit Attribute

Reroute processing Reentrant

Exit 30 is called when RSCS attempts to reroute a file, message, or command.

On return, if your exit routine issues return code 0 or 4, RSCS uses information provided by the REROUTE
command and statement to determine if the message or file can be rerouted.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of FOR node
Word 3 (+8)

Address of FOR user ID
Word 4 (+12)

Address of 1-byte field that contains a symbolic reference to the data being
rerouted; the symbols are defined in the REROUTE macro:
RERCMDS

Command
RERFILES

File
RERMSGS

Message
RERNTRCV

Not-received message
Word 5 (+16)

Address of 8-character field containing the new (TO) node ID
Word 6 (+20)

Address of 8-character field containing the new (TO) user ID

Exit Conditions
On return, Exit 30 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Exit 30

Chapter 3. IBM-Defined Exit Points 101

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
processing.

8 RSCS does not scan the REROUTE table; the exit routine has supplied the reroute
destination node and user ID.

12 RSCS does not scan the REROUTE table; the exit routine has supplied the reroute
destination node and user ID. RSCS does not issue a message.

16 RSCS does not reroute the message or file; the REROUTE table is not scanned.

Exit 30

102 z/VM: 7.3 RSCS Networking Exit Customization

Exit 31 – Sort Priority Change

Use Exit 31 to change the sort priority of a file's TASHADOW elements before they are queued on links.
You can ensure that the TAG priority option is not misused (for example, priority 1 for a very large file).
Your exit routine can extend the RSCS file queuing algorithms (for example, time spent at a node can be
used to modify the queue order). You can also determine the criteria for file selection (for example, record
count, originating user ID, or location ID).

Point of Processing
Process Exit Attribute

Spool file processing Serially reusable

Exit 31 is called when RSCS has determined a TASHADOW element's sort priority according to the link's
queuing algorithm (priority, size, or FIFO). RSCS is about to place the TASHADOW element on a link's
queue.

On return, RSCS places the TASHADOW element on the queue using the value in the TASSORT field. If
your exit routine issues return code 8, RSCS holds the file on the link. If you issue the QUERY command to
find the status of the file, the indicator exit-held will be displayed in the status column.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the file's TAG element
Word 3 (+8)

Address of the TASHADOW element
Word 4 (+12)

Address of the LINKTABL for the link on which the file will be queued
Word 5 (+16)

Address of the REORDER command element if a reorder is in progress, or 0 if a
reorder is not in progress

Exit Conditions
On return, Exit 31 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Meaning to RSCS

0 RSCS calls the next exit routine associated with this exit point and continues
processing.

Exit 31

Chapter 3. IBM-Defined Exit Points 103

Return Code Meaning to RSCS

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS queues the file on the link but marks the file as ineligible for transmission.

Programming Considerations
• Do not alter any fields in the file's TAG or TASHADOW element except TASSORT, which contains the sort

value that RSCS uses to queue the file.
• To limit file transmission during certain times of the day or on certain links, check the TSHIFT field in

the CVT. This field is set by the RSCS SHIFT command. If the file should not be sent during the specified
shift, your exit routine should issue return code 8.

Exit 31

104 z/VM: 7.3 RSCS Networking Exit Customization

Exit 32 – NMR Reception

Use Exit 32 to scan the Nodal Message Records (NMRs) RSCS receives on a link. The exit routine can use
the NMR to determine if the message or command should be rejected based on its destination, origin,
attributes, or security information.

Point of Processing
Process Exit Attribute

NMR processing Reentrant

Exit 32 is called each time RSCS receives an NMR on a GATEWAY-type, LISTPROC-type, NJE-type,
SNANJE-type, or TCPNJE-type link. At this point, CMD or MSG rerouting has completed.

On return, if the exit routine issues return code 0 or 4, RSCS sends or runs the command or delivers the
message. If a message that was rerouted by a NOTRCVG request is not delivered, Exit 32 processes the
message again.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry for the link that received the element
Word 3 (+8)

Address of command execution request buffer, which is mapped by the
CMNDAREA macro

Exit Conditions
On return, Exit 32 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the record.

4 RSCS does not call any other exit routines associated with this exit point and continues
to process the record.

8 RSCS rejects the record and issues message DMT944E to the NMR originator.

12 RSCS ignores this record but does not issue a message.

Exit 32

Chapter 3. IBM-Defined Exit Points 105

Programming Considerations
• The Type L3 format of the CMNDAREA data area maps the command or message element. Your exit

routine can modify any fields in the element. Any changes are reflected if the command or message is
rerouted.

Exit 32

106 z/VM: 7.3 RSCS Networking Exit Customization

Exit 33 – User Parm Processing

Use Exit 33 to process the values specified on the UPARM operand of the RSCS DEFINE command.

Point of Processing
Process Exit Attribute

Command processing Serially reusable

Exit 33 is called when the UPARM operand is specified on a DEFINE command. At this point, RSCS has
validated all other operands specified on the command.

On return, if your exit routine issues return code 0 or 4, RSCS completes its processing of the DEFINE
command. It then queues a REORDER request to the spool manager task.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL for the link whose UPARM has been changed
Word 3 (+8)

Address of an initialized MSGBLOK

Exit Conditions
On return, Exit 33 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Meaning to RSCS

0 RSCS calls the next exit routine associated with Exit 33 and continues processing the
DEFINE command.

4 RSCS does not call any other exit routine associated with this exit point and continues
processing the DEFINE command.

8 The exit routine has rejected the DEFINE command. RSCS issues message DMT559E
and stops processing the command.

12 The exit routine has rejected the DEFINE command. RSCS does not issue a message;
however, the exit routine may use the supplied MSGBLOK to issue a message.

Exit 33

Chapter 3. IBM-Defined Exit Points 107

Programming Considerations
• LUSRPARM field of the LINKTABL points to the user parameter string. This string consists of a 2-byte
field, which contains the length of the text, and the text of the parameter.

• Use Exit 0 to scan UPARM values specified in the configuration file. You can then use Exit 33 to monitor
any changes that may occur to the UPARM values as RSCS operates.

Exit 33

108 z/VM: 7.3 RSCS Networking Exit Customization

Exit 34 – Spool Manager Command

Use Exit 34 to determine if RSCS should process a spool manager command.

Point of Processing
Process Exit Attribute

Spool manager command Serially reusable

Exit 34 is called when a task has passed a command element to the spool manager for synchronous
processing. At this point, the calling task has also gained exclusive use of all RSCS spool file resources.
These resources include TAG and TASHADOW elements.

On return, if your exit routine does not issue return code 8, RSCS processes the command request. It then
returns control to the calling task.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the command element

Exit Conditions
On return, Exit 34 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
command processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual command processing.

8 RSCS does not process the command element nor issue a message.

Programming Considerations
• Your exit routine can modify the command element before RSCS processes it by issuing return code 0 or

4. To process the command element only in your exit routine, issue return code 8.
• The RSCS communications task queues the encoded forms of the following command elements to the

spool manager task: CHANGE, FLUSH, PURGE, REORDER, and TRANSFER. The end-of-task routine can
also queue a CLOSE command request to the spool manager task.

Exit 34

Chapter 3. IBM-Defined Exit Points 109

Exit 35 – Dump Processing

Use Exit 35 to determine if RSCS should generate a dump, as part of ESTAE exit processing, when a task
abends.

Point of Processing
Process Exit Attribute

Dump processing Serially reusable

Exit 35 is called when a task abends and ESTAE processing begins. At this point, interrupts have been
disabled.

On return, RSCS issues a CP DUMP or VMDUMP command, as specified on the DUMP configuration file
statement, to process the dump. For more information about the DUMP statement, see z/VM: RSCS
Networking Planning and Configuration.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 A code indicating the task that abended:
0

System task
4

Link driver task
8

Auto-answer task

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Abend code X'00sssuuu' (where sss is the system code and uuu is the user abend
code)

Word 3 (+8)
Address of the SYSIDENT, LINKTABL, or PORT entry for the task identified in R0

Exit Conditions
On return, Exit 35 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

Exit 35

110 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS issues a symptom summary message to the console but does not generate a
dump for this abend.

Programming Considerations
• RSCS does not request a dump or call Exit 35 if an S804, S80A, or S878 abend occurs in a link driver or

auto-answer task.
• Return code 8 prevents RSCS from issuing a DUMP or VMDUMP command. However, if GCS does not

provide a system diagnostic work area (SDWA), it may perform a dump for RSCS. For example, GCS
processes a dump for RSCS if an S13E abend occurs when the FORCE command is issued. Here, the
ESTAE exit and Exit 35 are not called.

Exit 35

Chapter 3. IBM-Defined Exit Points 111

Exit 36 – NOTIFY Driver Purge

Use Exit 36 to determine if a NOTIFY link driver should purge a file.

Point of Processing
Process Exit Attribute

NOTIFY link driver Reentrant

Exit 36 is called when the specified PURGE period has expired and a file queued on a NOTIFY-type link is
about to be purged.

On return, if your exit routine issues return code 0 or 4, RSCS purges the file and sends a message to the
file originator.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the NOTEBLOK

Exit Conditions
On return, Exit 36 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point, purges the file, and
issues message DMT834I.

4 RSCS does not call any other exit routines associated with this exit point, purges the
file, and issues message DMT834I.

8 RSCS does not purge the file.

Programming Considerations
• If your exit routine issues return code 8, the file remains on the NOTIFY-type link for the specified purge

period. If this time expires and the user has not taken action on the file, Exit 36 will process the file
again.

Exit 36

112 z/VM: 7.3 RSCS Networking Exit Customization

Exit 37 – NJE Job Header Transmission

Use Exit 37 to scan information from user sections in the NJE job header before a file is transmitted.
All files transmitted over networking links have job headers. The job header, which describes the file's
characteristics, is always the first part of the file transmission.

The NHDTR macro contains the format of the job header RSCS creates. However, headers for files
being transmitted on the link may have been created by a different release of RSCS or by another
product. For more information on the general format of all NJE job headers, see z/OS: Network
Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa320988/$file/hasa600_v2r5.pdf).

The NHDTR macro also contains the recommended format for a user section. However, you should ensure
that your exit routine can process the DSECTs specified by the exit routine that created the user section;
these areas may differ from the recommended format.

Point of Processing
Process Exit Attribute

NJE header transmission Reentrant

Exit 37 is called as RSCS prepares to send an NJE store-and-forward file on a networking link (GATEWAY-
type, LISTPROC-type, NJE-type, SNANJE-type, or TCPNJE-type). The exit routine is called before RSCS
segments the NJE header into buffers for the transmission.

On return from your exit routine, RSCS sends the file on the networking link.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the TIB for the stream on which the file is sent
Word 4 (+12)

Address of the job header
Word 5 (+16)

Address of the file's TAG element

Exit Conditions
On return, Exit 37 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Exit 37

Chapter 3. IBM-Defined Exit Points 113

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the file.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

Programming Considerations
• Your exit routine should not alter any fields in the job headers. When RSCS processes NJE store-and-

forward files, it assumes that all NJE headers are preserved.
• Exit 37 is not called for job headers that are initially built at the local node. Use Exit 11 to process job

headers created at the local node (see “Exit 11 – NJE Job Header Creation” on page 61).

Exit 37

114 z/VM: 7.3 RSCS Networking Exit Customization

Exit 38 – NJE Data Set Header Transmission

Use Exit 38 to scan information from user sections in the NJE data set header before a file is transmitted.
Generally, only SYSOUT files transmitted over networking links contain data set headers. A SYSIN file from
some z/OS systems may contain a data set header. If present, the data set header will contain only a
Record Characteristics Change Section (RCCS) (identifier X'00', modifier X'40'). RSCS does not generate
an RCCS section.

The NHDTR macro contains the format of the data set header RSCS creates. However, headers for files
being transmitted on the link may have been created by a different release of RSCS or by another
product. For more information on the general format of all NJE data set headers, see z/OS: Network
Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa320988/$file/hasa600_v2r5.pdf).

The NHDTR macro also contains the recommended format for a user section. However, you should ensure
that your exit routine can process the DSECTs specified by the exit routine that created the user section;
these areas may differ from the recommended format.

Point of Processing
Process Exit Attribute

NJE header transmission Reentrant

Exit 38 is called as RSCS prepares to send an NJE store-and-forward file over a networking link. The exit
routine is called before RSCS places the NJE header into transmission buffers. LISTPROC-type, NJE-type,
SNANJE-type, and TCPNJE-type links may segment the headers before placing them in buffers.

On return from your exit routine, RSCS sends the file on the networking link.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the TIB for the stream on which the file is sent
Word 4 (+12)

Address of the job header
Word 5 (+16)

Address of the file's TAG element

Exit 38

Chapter 3. IBM-Defined Exit Points 115

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Exit Conditions
On return, Exit 38 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the file.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

Programming Considerations
• Your exit routine should not alter any fields in the job headers. When RSCS processes NJE store-and-

forward files, it assumes that all NJE headers are preserved.
• Exit 38 is not called for data set headers that are initially built at the origin node. Use Exit 12 to process

data set headers created at the local node (see “Exit 12 – NJE Data Set Header Creation” on page 64).

Exit 38

116 z/VM: 7.3 RSCS Networking Exit Customization

Exit 39 – NJE Job Trailer Transmission

Use Exit 39 to scan information from user sections in the NJE job trailer before a file is transmitted.
All files sent over networking links contain job trailers. The job trailer is always the last part of the file
transmission.

The NHDTR macro contains the format of the job trailer that RSCS creates. However, trailers for files being
transmitted on the link may have been created by a different release of RSCS or by another product. For
more information on the general format of all NJE job trailers, see z/OS: Network Job Entry (NJE) Formats
and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/
hasa600_v2r5.pdf).

The NHDTR macro also contains the recommended format for a user section. However, you should ensure
that your exit routine can process the DSECTs specified by the exit routine that created the user section;
these areas may differ from the recommended format.

Point of Processing
Process Exit Attribute

NJE header transmission Reentrant

Exit 39 is called as RSCS prepares to send a file over a networking link (GATEWAY-type, LISTPROC-type,
NJE-type, SNANJE-type, or TCPNJE-type). The exit routine is called before RSCS places the NJE header
into transmission buffers. LISTPROC-type, NJE-type, SNANJE-type, TCPNJE-type links may segment the
headers before placing them in the buffers.

On return from your exit routine, RSCS sends the file on the networking link.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the TIB for the stream on which the file is sent
Word 4 (+12)

Address of the job header
Word 5 (+16)

Address of the file's TAG element

Exit Conditions
On return, Exit 39 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Exit 39

Chapter 3. IBM-Defined Exit Points 117

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the file.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

Programming Considerations
• Your exit routine should not alter any fields in the job headers. When RSCS processes NJE store-and-

forward files, it assumes that all NJE headers and trailers are preserved.
• Exit 39 is not called for job trailers that are initially built at the local node. Use Exit 13 to process job

trailers created at the local node (see “Exit 13 – NJE Job Trailer Creation” on page 67).

Exit 39

118 z/VM: 7.3 RSCS Networking Exit Customization

Exit 40 – NJE Record Reception

Use Exit 40 to scan all records and record segments, except NJE headers, for each file RSCS receives on a
networking link.

Point of Processing
Process Exit Attribute

NJE record reception Reentrant

Exit 40 is called when RSCS receives a file on a networking link (GATEWAY-type, LISTPROC-type, NJE-
type, SNANJE-type, or TCPNJE-type). At this point, RSCS has previously received the job header and has
just decompressed an NJE record or segment. However, RSCS does not expect to receive segmented
records. The exit routine is called before RSCS writes the record to an output device associated with the
transmission stream.

On return, if your exit routine does not reject the record, RSCS writes the record to the appropriate output
device.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which the file is sent
Word 4 (+12)

Address of a halfword field that contains the length of the data
Word 5 (+16)

Address of the SRCB
Word 6 (+20)

Pointer to the data

Exit Conditions
On return, Exit 40 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Exit 40

Chapter 3. IBM-Defined Exit Points 119

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing the file.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS rejects the file.

Programming Considerations
• The data pointed to by Word 6 of R1 begins with a carriage control byte, if applicable, or a first data byte.

It does not include length fields found in the NJE records.
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any part of the records or NJE headers associated with the file.
• Word 5 of the R1 parameter list contains the sub record control bytes (SRCBs) for the record, which are
defined in the NJEEQU macro.

Exit 40

120 z/VM: 7.3 RSCS Networking Exit Customization

Exit 41 – NJE Job Header Post-Processing

Use Exit 41 to scan the job header file received by RSCS after RSCS updates the TAG element. Your exit
routine can override the information RSCS puts in the TAG element from the job header.

The NHDTR macro contains the format for the job header RSCS creates. However, headers received on the
link may have been created by a different release of RSCS or by another product. For more information the
general format of all NJE job headers, see z/OS: Network Job Entry (NJE) Formats and Protocols (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf).

The NHDTR macro also contains the recommended format for a user section. However, you should ensure
that your exit routine can process the DSECTs specified by the exit routine that created the user section.
These areas may differ from the recommended format. See “Exit 11 – NJE Job Header Creation” on page
61 for more information. Also, see “Exit 14 – NJE Job Header Reception” on page 69 for more information
about scanning the job header before RSCS updates the TAG element.

Point of Processing
Process Exit Attribute

NJE header reception Reentrant

Exit 41 is called each time RSCS receives a file over a networking link (GATEWAY-type, LISTPROC-type,
NJE-type, SNANJE-type, or TCPNJE-type). Each of these files will have a job header. As a file is sent, RSCS
first receives its job header, which contains information about the remaining file transmission. Exit 41 is
called after RSCS places any information from the general section into a TAG element for the file.

On return, if your exit routine issues return code 0 or 4, RSCS receives the rest of the file.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which RSCS receives the file
Word 4 (+12)

Address of the job header
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none

Exit 41

Chapter 3. IBM-Defined Exit Points 121

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

Exit Conditions
On return, Exit 41 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues usual
processing.

4 RSCS does not call any other exit routine associated with this exit point and continues
usual processing.

8 RSCS rejects this file.

Programming Considerations
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any fields in the job headers. If these fields are altered, RSCS may not

correctly process NJE store-and-forward files.
• If your exit routine sets the TAGORLOC field in the TAG element, RSCS queues the file for transmission

as if it were destined to the node in the TAGORLOC field. Because this field may be reset when RSCS
receives the data set header, you may need to provide a similar Exit 42 routine to use this feature.

Exit 41

122 z/VM: 7.3 RSCS Networking Exit Customization

Exit 42 – NJE Data Set Header Post-Processing

Use Exit 42 to scan the data set header as received by RSCS after RSCS updates the TAG element. Your
exit routine can override the information RSCS puts in the TAG element from the data set header.

The NHDTR macro contains the recommended format for the job header and user section. However, your
exit routine should be able to use the DSECTs specified by the exit routine that created the job header if
they differ from the recommended format. See “Exit 12 – NJE Data Set Header Creation” on page 64 for
more information. Also, see “Exit 15 – NJE Data Set Header Reception” on page 72 for more information
about scanning the data set header before RSCS updates the TAG element.

Point of Processing
Process Exit Attribute

NJE header reception Reentrant

Exit 42 is called when RSCS receives a file on a networking link (GATEWAY-type, LISTPROC-type, NJE-
type, SNANJE-type, or TCPNJE-type). The exit point is called after RSCS places any information from the
general, VM, 3800, and output processing sections of the data set header into a control block, such as a
TAG element and after Exit 15 has been called to process any user sections.

For SYSOUT files, the data set headers identify the various sections of the file and the file's destinations.
SYSIN files generated by RSCS do not contain data set headers. SYSIN files generated by some
z/OS systems may contain a data set header. Here, the data set header will contain only a record
characteristics change section (RCCS).

Your exit routine can also access the job header for the file; the RIB contains a pointer to the address of
the job header.

On return, if your exit routine issues return code 0 or 4, RSCS receives the rest of the file.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which the file is received
Word 4 (+12)

Address of the data set header
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none

Exit 42

Chapter 3. IBM-Defined Exit Points 123

Exit Conditions
On return, Exit 42 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS rejects this file.

Programming Considerations
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any fields in the job headers. If these fields are altered, RSCS may not

correctly process NJE store-and-forward files.
• If your exit routine sets the TAGORLOC field in the TAG element, RSCS queues the file for transmission

as if it were destined to the node in the TAGORLOC field.

Exit 42

124 z/VM: 7.3 RSCS Networking Exit Customization

Exit 43 – NJE Job Trailer Post-Processing

Use Exit 43 to scan the job trailer for each file RSCS receives over a networking link after RSCS updates
the TAG element. Your exit routine can override the information RSCS puts in the TAG element from the
job trailer.

The NHDTR macro contains the recommended format for the job header and user section. However, your
exit routine should also be able to use the DSECTs specified by the exit routine that created the job
header if they differ from the recommended format. See “Exit 13 – NJE Job Trailer Creation” on page 67
for more information. Also, see “Exit 16 – NJE Job Trailer Reception” on page 74 for more information
about scanning the job trailer before RSCS updates the TAG element.

Point of Processing
Process Exit Attribute

NJE header reception Reentrant

Exit 43 is called each time RSCS receives a file over a networking link (GATEWAY-type, LISTPROC-type,
NJE-type, SNANJE-type, or TCPNJE-type). The job trailer is the last part of the file transmission. Exit 43 is
called after RSCS places any information from the general section into a TAG element for the file and after
Exit 16 has been called to process all user sections.

On return, if your exit routine issues return code 0 or 4, RSCS receives the rest of the file.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the first exit routine associated with this
exit point. For more information about other register contents, see “Standard Entry Conditions” on page
39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the RIB for the stream on which the file is received
Word 4 (+12)

Address of the job trailer
Word 5 (+16)

Address of the file's TAG element
Word 6 (+20)

Address of the file's XAB, or 0 if there is none

Exit Conditions
On return, Exit 43 sets the standard register contents (see “Standard Exit Conditions” on page 39).

Exit 43

Chapter 3. IBM-Defined Exit Points 125

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit and continues usual
processing.

4 RSCS does not call any other exit routines associated with this exit point and continues
usual processing.

8 RSCS rejects the file.

Programming Considerations
• If your exit routine issues return code 8 to reject a file, RSCS issues a Receiver Cancel with reason code

X'2000' to the node that sent the file.
• Your exit routine should not alter any fields in the job trailers. If these fields are altered, RSCS may not

correctly process NJE store-and-forward files.
• The TAG address that is passed to your exit routine is the TAG that corresponds to a file associated with

the job trailer. Because the file may have had multiple dataset headers and RSCS may have split the
incoming file into several files, several TAG elements may be associated with this job trailer.

• If your exit routine sets the TAGORLOC field in the TAG element, RSCS queues the file for transmission
as if it were destined to the node in the TAGORLOC field.

Exit 43

126 z/VM: 7.3 RSCS Networking Exit Customization

Exit 44 – Link Termination

Use Exit 44 to perform any special termination processing that might be needed for a print output link.
You can use this exit for accumulating accounting information or to perform any general clean up of a link.
As supplied, RSCS does not provide for any special processing when a printer link is terminated.

Point of Processing
Process Exit Attribute

File Account Processing Reentrant

Exit 44 is called when a printer link is in the process of terminating. On return from the exit routine, RSCS
continues termination processing for the link.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the exit routine associated with this exit
point. For more information about other register contents, see “Standard Entry Conditions” on page 39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the DWA for the link

Exit Conditions
On return, Exit 44 restores the registers to the same values as upon entry.

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues to
terminate the link.

4 RSCS does not call any other exit routines associated with this exit point and continues
to terminate the link.

Programming Considerations
• Your exit routine should not alter any fields in the file's LINKTABL, DWA, or CVT.
• Your exit routine can use the ACNTBUFF macro as the basis for any accounting record. Use CP

DIAGNOSE code X'4C' to create the record. For more information, see z/VM: CP Programming Services.
Your exit routine can also write the accounting information to a CMS file.

Exit 44

Chapter 3. IBM-Defined Exit Points 127

Exit 45 – Output Page Accounting

Use Exit 45 to perform any output page accounting process that may be needed for a printer link. Your
exit routine can verify or adjust the actual data buffers being processed on the link. You can use this
information for billing purposes and to help you determine the total number of pages being sent to a
printer. As supplied, RSCS does not provide for any special processing when a buffer is printed.

Point of Processing
Process Exit Attribute

File Account Processing Reentrant

Exit 45 is called each time a data buffer has been prepared for output to a printer. Your Exit 45 routine can
view or alter this data buffer, as required by your installation.

On return, RSCS continues normal buffer output processing for the printer link.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the exit routine associated with this exit
point. For more information about other register contents, see “Standard Entry Conditions” on page 39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of DWA for the link
Word 4 (+12)

Address of the buffer to be examined
Word 5 (+16)

Address of the length of the buffer

Exit Conditions
On return, Exit 45 sets the following register contents. To ensure the data in R1 is restored for any
repeated calls to Exit 45, your exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT
– Defining a Module Return Point” on page 295).

Register Contents

R0 Not applicable.

R1 Actual length of new buffer data contents, if altered; the return code must be set to 4.

R2 - R13 Restored to the same values as on entry.

R14 Not applicable.

R15 Return code.

Exit 45

128 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing until all routines are called. The last exit will cause the buffer to be sent
as is; no adjustments are needed. The buffer must be identical to what was initially
passed to the exit routine.

4 RSCS does not call any other exit routines associated with this exit point and continues
processing the buffer. No adjustments are needed to send the buffer. The buffer must
be identical to what was initially passed to the exit routine.

8 The link driver must readjust the buffer size; register 1 contains the new length of the
buffer.

Programming Considerations
• Your exit routine should not alter any fields in the file's LINKTABL or any other RSCS control blocks.
• Your exit can use the ACNTBUFF macro as the basis of the accounting record. Use CP DIAGNOSE code

X'4C' to create the record. For more information, see z/VM: CP Programming Services. Your exit routine
can also write the accounting information to a CMS file.

Exit 45

Chapter 3. IBM-Defined Exit Points 129

Exit 46 – Verification of Page Accounting

Use Exit 46 to adjust any output page accounting process that might be needed for billing by pages
printed. Exit 46 is valid only for 3270P-type and TN3270E-type links.

This exit is called if an I/O error has occurred while processing the output. As supplied, RSCS does not
provide for any special processing when an I/O error has occurred while processing a data buffer. The
information about the I/O error condition is available in the IOTABLE control block. Your Exit 46 routine
can review this information and perform any needed adjustments. For example, it could request to send
the buffer again or adjust the buffer size and issue the I/O again.

Point of Processing
Process Exit Attribute

Verification of Output Page Processing Reentrant

Exit 46 is called each time an I/O error has completed unsuccessfully. Your exit routine can adjust or
verify the buffer data and can reissue the I/O request on the 3270P-type link.

On return from the exit, the I/O process will be issued again on the link after the indicated return code
actions have completed.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the exit routine associated with this exit
point. For more information about other register contents, see “Standard Entry Conditions” on page 39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the DWA for the link
Word 4 (+12)

Address of buffer
Word 5 (+16)

Address of the length of the buffer (halfword)

Exit Conditions
On return, Exit 46 sets the following register contents. To ensure the data in R1 is restored for any
repeated calls to Exit 46, your exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT
– Defining a Module Return Point” on page 295).

Register Contents

R0 Not applicable.

R1 Actual length of new buffer data contents, if altered; the return code is set to 4.

Exit 46

130 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R2 - R13 Restored to the same values as on entry.

R14 Not applicable.

R15 Return code.

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues
processing until all routines are called. The last exit routine will cause the I/O
operation to be retried; the buffer data and length will be the same as it was for the
last I/O operation.

4 RSCS does not call any other exit routines associated with this exit point. Processing
continues, with the buffer data and length as it was for the last I/O operation.

8 RSCS must adjust the buffer size; register 1 contains the new length. The I/O operation
is issued again after this new length has been used. The buffer data contents are left
as returned by the exit.

Programming Considerations
• Your exit routine should not alter any fields in the file's LINKTABL element or any other RSCS control

blocks.
• Your exit can use the ACNTBUFF macro as the basis of the accounting record. Use CP DIAGNOSE code

X'4C' to create the record. For more information, see z/VM: CP Programming Services. Your exit routine
can also write the accounting information to a CMS file.

Exit 46

Chapter 3. IBM-Defined Exit Points 131

Exit 47 – Driver Initialization

Use Exit 47 to perform any initialization required to perform page accounting for an SNA3270P-type link.
Your Exit 47 routines can also perform any processing that may be unique to the SNA printer environment
at your installation. As supplied, RSCS does not provide for any special processing when an SNA3270P
link driver is initialized.

Point of Processing
Process Exit Attribute

Verification of Output Page Processing Reentrant

Exit 47 is called when the SNA Control Task attaches a SNA3270P link driver and passes control to it.

On return from the exit, initialization of the SNA3270P link driver continues. The SNA3270P-type link can
start to process file traffic.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the exit routine associated with this exit
point. For more information about other register contents, see “Standard Entry Conditions” on page 39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the DWA for the link

Exit Conditions
On return, Exit 47 sets the following register contents. To ensure the data in R1 is restored for any
repeated calls to Exit 47, your exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT
– Defining a Module Return Point” on page 295).

Register Contents

R0 Not applicable

R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

Exit 47

132 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues to
initialize the link.

4 RSCS does not call any other exit routines associated with this exit point and continues
to initialize the link.

Programming Considerations
• Your exit routine should not alter any fields in the file's LINKTABL or in any other RSCS control blocks.
• Your exit can use the ACNTBUFF macro as the basis of the accounting record. Use CP DIAGNOSE code

X'4C' to create the record. For more information, see z/VM: CP Programming Services. Your exit routine
can also write the accounting information to a CMS file.

Exit 47

Chapter 3. IBM-Defined Exit Points 133

Exit 48 – Verification of Output Page Error

Use Exit 48 to handle any special processing needs if an error occurs while an SNA3270P-type link
is processing a print file. Your Exit 48 routine can accumulate any special accounting that may be
needed when a file can no longer be processed. For example, Exit 48 routines can adjust the accounting
information that has been gathered up to, and including, the file currently being processed on the link.

Point of Processing
Process Exit Attribute

Verification of Output Page Error Reentrant

Exit 48 is called when an error occurs while an SNA3270P link driver is processing a file.

On return from the exit, the file termination procedure continues. The SNA3270P link driver file
termination and requeue processes also continue.

Entry Conditions
The following table shows the parameters passed in R0 and R1 to the exit routine associated with this exit
point. For more information about other register contents, see “Standard Entry Conditions” on page 39.

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the DWA for the link

Exit Conditions
On return, Exit 48 sets the following register contents. To ensure the data in R1 is restored for any
repeated calls to Exit 48, your exit routine should specify REGS=(0,12) on the REXIT macro (see “REXIT
– Defining a Module Return Point” on page 295).

Register Contents

R0 Not applicable

R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

Exit 48

134 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
Return Code Results

0 RSCS calls the next exit routine associated with this exit point and continues to
terminate the link.

4 RSCS does not call any other exit routines associated with this exit point and continues
to terminate the link.

Programming Considerations
• Your exit routine should not alter any fields in the file's LINKTABL or in any other RSCS control blocks.
• Your exit can use the ACNTBUFF macro as the basis of the accounting record. Use CP DIAGNOSE code

X'4C' to create the record. For more information, see z/VM: CP Programming Services. Your exit routine
can also write the accounting information to a CMS file.

Exit 48

Chapter 3. IBM-Defined Exit Points 135

Exit 48

136 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 4. Transmission Algorithm Processing

Networking link drivers (GATEWAY, LISTPROC, NJE, SNANJE, and TCPNJE) support a feature called
multistreaming. This feature lets the links send many files at the same time. LISTPROC-type, NJE-type,
SNANJE-type, and TCPNJE-type links can support up to 7 transmission streams. GATEWAY-type links can
support up to 32 streams; the gateway program you supply determines the number of streams that are
used. You specify the number of transmission streams for a link on the STREAMS parameter in a link's
PARM text.

Transmission algorithms determine how files are selected for transmission on a networking link. A
transmission algorithm is called in the following situations:

• When a link is started (an open transmission algorithm request)
• When each file is queued on a link (an accept request)
• When the link tries to get a file for transmission (a select request)

A transmission algorithm, however, does not affect how a link receives files on multiple streams. The
number of transmission streams you specify to send files does not have to equal the number of streams
on which the link receives files. The RSCS networking link drivers support any number of incoming
streams. When communicating with some other systems, however, you may need to inform them of the
number of incoming streams.

Specifying a Transmission Algorithm
The transmission algorithm to be used for a networking link is identified on the TA operand on the
PARM configuration statement for the link or in the link operational parameters on the RSCS DEFINE or
START command. By specifying the TA=epname link parameter, you can have RSCS access transmission
algorithms that reside in load modules outside the RSCS load library. See “External Transmission
Algorithms” on page 138.

RSCS can also access transmission algorithms that reside within the RSCS load library. RSCS supplies
transmission algorithms 0 and 1 (accessible by specifying TA=0 or TA=1). For compatibility with previous
versions of RSCS, you can also create transmission algorithms 2 - F. However, there are some restrictions
to using this method to create a transmission algorithm. See “Internal Transmission Algorithms” on page
142.

You can also specify a transmission algorithm parameter string on the TAPARM parameter. This string
can be used to configure a transmission algorithm in several different ways. The string is passed to the
transmission algorithm as part of the initial open request when a networking link driver initializes.

Transmission Algorithm Programming Considerations
Transmission algorithms need only to be serially reusable. You can supply external or internal
transmission algorithms.

External transmission algorithms are similar to other exit routines because they do not reside in the
RSCS load library. You can create any number of external transmission algorithms. External transmission
algorithms can also support up to 32 transmission streams.

RSCS also provides internal transmission algorithms in DMTAXA. This module contains transmission
algorithms 0 and 1, which are supplied by IBM. You do not need to modify these transmission algorithms
for usual RSCS processing. DMTAXA also contains the initial structure for transmission algorithms 2 - F.
Unlike external exit routines, however, if you modify or create an internal transmission algorithm, you
must reassemble DMTAXA and rebuild the RSCS load library to implement your routines. This can reduce
the portability of your transmission algorithms and can increase the chance of errors. Also, internal
transmission algorithms can support only up to seven transmission streams.

If you modify or create a transmission algorithm, consider the following:

Transmission Algorithms

© Copyright IBM Corp. 1990, 2022 137

• Links do not start if you specify an undefined transmission algorithm on its START command.
• Any transmission algorithms you supply must provide the processing functions needed to support the

transmission algorithm requests.

External Transmission Algorithms
The first word of the parameter list RSCS passes to an external transmission algorithm points to the CVT,
which contains several fields available for use by transmission algorithms.

The second word of the parameter list contains a pointer to a function byte. This byte, which identifies the
function of the transmission algorithm, has the following values:
X'00'

Open request
X'80'

Accept request
X'40'

Select request

Open Request Processing
An open transmission algorithm request occurs when a networking link is started. The transmission
algorithm validates the STREAMS and TAPARM values specified on the PARM statement or on the DEFINE
or START commands for the link.

The request spool device block (RDEVBLOK) contains information that the transmission algorithms use
to process these requests. The RDEVSTR field contains the number of streams defined for the link. The
RDEVTAP field contains the address of the 80 byte transmission algorithm parameter (TAPARM).

During an open request, the transmission algorithm must validate the TAPARM input string. If it is
accepted, the transmission algorithm then converts information in the input string to a data structure
that is processed in accept and select requests.

While processing the TAPARM string, the transmission algorithm should build a data structure that
describes the contents of the string. This data structure cannot be larger than 80 bytes. To do so, it
should use a work area that has been defined in the module containing the transmission algorithm. Before
returning control to RSCS, the transmission algorithm should copy this data structure into the storage that
was used by the TAPARM string. RSCS then passes this string to the transmission algorithm during accept
and select requests.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the function byte X'00'
Word 3 (+8)

Address of the RDEVBLOK

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Transmission Algorithms

138 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R15 Entry address

Exit Conditions
Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

Return Codes
Return Code Results

0 The transmission algorithm has completed its processing. RSCS copies the values in
RDEVSTR and RDEVTAP fields into the LMSSMAX and LMSTAP fields, respectively, of
the LINKTABL.

4 The transmission algorithm does not accept the specified TAPARM value; the link
driver issues message DMT814E.

8 The value specified for TAPARM is not valid; the link driver issues message DMT815E.

12 The value specified on the STREAMS operand was not valid; the link driver issues
message DMT816E.

16 An undefined transmission algorithm was specified for a link; the link driver issues
message DMT817E. Transmission algorithms 2 - F are initially configured to issue this
return code.

Accept Request Processing
An accept request occurs when a file is queued on a link; it identifies the stream or streams over which a
file may be sent. A transmission algorithm processes accept requests:

• When a networking link is started; all files on the link's queue are processed.
• When individual files are queued on an active networking link.
• For any file that is affected by a file queue reorder on a networking link.

If the REORDER command is issued, all files are processed. If the reorder results from other commands,
the minimum number of files necessary to correctly reorder the queues are affected.

For the SHIFT command, all files are processed; transmission algorithms that work with a defined shift
manager can change a file's eligibility for various streams when a shift changes. (To prevent files from
being sent during certain hours, you can use Exit 31; see “Exit 31 – Sort Priority Change” on page 103
and “Example 1: Defining Printing Shifts” on page 18.)

To determine the stream on which the file is processed, the transmission algorithm can use information
in the file's TAG element and the CVT. The transmission algorithm receives pointers to these areas when
it is called. The TAG element contains information about the number of records in the file, its spool class,
priority, origin, and destination. The CVT contains information about the shift setting of the RSCS virtual
machine.

The transmission algorithm then determines the streams on which the file can be sent. It returns an
identification mask for the selected streams to RSCS in register 1. RSCS uses this mask to determine
when it should pass a file to the transmission algorithm during a select request. The following bit values in
the mask represent the streams:

Transmission Algorithms

Chapter 4. Transmission Algorithm Processing 139

Bit Value Stream

X'80000000' Stream 1

X'40000000' Stream 2

X'20000000' Stream 3

X'10000000' Stream 4

⋮ ⋮

X'00000008' Stream 29

X'00000004' Stream 30

X'00000002' Stream 31

X'00000001' Stream 32

If the file is eligible for two or more streams, the transmission algorithm must return a composite value
for all applicable stream identifications to RSCS. For example, if streams 1, 3, and 7 match the selection
criteria, the transmission algorithm returns the identifier X'A2000000'. If the file in not eligible for any
streams, register 1 contains zeros; if you query the status of the file, "no stream" is displayed.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT.
Word 2 (+4)

Address of the function byte X'80'.
Word 3 (+8)

Address of the TAG element for the file being queued on the link. The transmission
algorithm must not change any fields in the TAG element.

Word 4 (+12)
Address of the LINKTABL entry, which contains the STREAMS value in LMSSMAX
and a pointer to the 80 byte data structure created in the open request in
the LMSTAP field. The transmission algorithm must not alter any fields in the
LINKTABL.

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Exit Conditions
Register Contents

R0 Not applicable

R1 A hexadecimal identifier for all streams that match the transmission algorithm's
selection criteria

R2 - R13 Restored to the same values as on entry

Transmission Algorithms

140 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R14 Not applicable

R15 Return code

Return Code
Return Code Results

0 The transmission algorithm has completed its processing; RSCS continues to process
the file.

Select Request Processing
A select request is made when a link requests to select a file for transmission. All files that are queued
on the link and are eligible to be sent on idle streams are passed to the transmission algorithm (eligible
streams are determined during accept processing). These files are passed in the order they appear on the
queue until a file is selected or all files have been checked.

After examining file characteristics (class, number of records, origin address, and destination address),
the transmission algorithm may assign the file for transmission on a stream. If this stream is currently
active, RSCS ignores the selection and prompts the transmission algorithm for the next suitable file.

After processing a select request, the transmission algorithm must return a single stream identification
in register 1. Individual streams are identified by the values used in accept requests for external
transmission algorithms (see “Accept Request Processing” on page 139). The transmission algorithm
should not return a composite stream identification.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT.
Word 2 (+4)

Address of the function byte X'40'.
Word 3 (+8)

Address of the TAG element for the file presented to the transmission algorithm for
select processing. The transmission algorithm must not change any TAG fields.

Word 4 (+12)
Address of the LINKTABL entry, which contains the STREAMS value in LMSSMAX
and a pointer to the 80 byte data structure created in the open request in the
LMSTAP field. The LMSSACT field contains a mask that describes which streams
are currently active on the link. The transmission algorithm must not alter any
fields in the LINKTABL.

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Transmission Algorithms

Chapter 4. Transmission Algorithm Processing 141

Exit Conditions
Register Contents

R0 Not applicable

R1 A hexadecimal value identifying the selected stream

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

Return Code
Return Code Results

0 The transmission algorithm has completed its processing; RSCS continues to process
the file.

Internal Transmission Algorithms
RSCS provides transmission algorithms 0 and 1 in DMTAXA. You do not need to modify these
transmission algorithms or supply additional ones for usual RSCS processing. You can request one of
these transmission algorithms by specifying TA=0 or TA=1 on a networking link's DEFINE or START
commands or PARM statement.

For compatibility with previous versions of RSCS, DMTAXA also contains 14 reserved entry points
(DMTAXAG2 - DMTAXAGF) for additional transmission algorithms. These can be accessed by specifying
TA=2 - TA=F.

If you modify transmission algorithm 0 or 1 or create additional internal transmission algorithms, you
must reassemble DMTAXA and rebuild the RSCS load library. IBM recommends that you supply any
additional transmission algorithms in a load module separate from the RSCS load library. External
transmission algorithms can improve the maintenance and portability of your code and reduce the chance
of errors.

Programming Considerations
If you modify or create an internal transmission algorithm in DMTAXA, you should consider these
differences:

• The parameter lists for the open, accept and select requests do not include a pointer to the CVT. The
parameter lists begin at word 2 of the parameter lists described in “Open Request Processing” on page
138, “Accept Request Processing” on page 139, and “Select Request Processing” on page 141.

• Internal transmission algorithms cannot support 32 streams for GATEWAY-type links.
• The stream masks returned by the accept and select requests in register 1 differ from those specified

by external transmission algorithms. The following stream identifiers are applicable only to internal
transmission algorithms:

Bit Value Stream

X'00000080' Stream 1

X'00000040' Stream 2

X'00000020' Stream 3

X'00000010' Stream 4

X'00000008' Stream 5

Transmission Algorithms

142 z/VM: 7.3 RSCS Networking Exit Customization

Bit Value Stream

X'00000004' Stream 6

X'00000002' Stream 7

Transmission Algorithm 0
Transmission algorithm 0 does not place restrictions on the use of the streams for a networking link
driver. If a link is connected to a system that does not support multistreaming, you should specify
one stream for use with transmission algorithm 0. If the link is started with more than one stream,
transmission algorithm 0 makes all files queued on the link eligible for all streams. The order which the
files are queued on the link determines the order they are selected for transmission.

Open Request
For open requests, transmission algorithm 0 validates the STREAMS value to ensure that at most 7
streams are being used on the link. Links that want to use more than 7 streams must use an external
transmission algorithm. Transmission algorithm 0 also checks for a TAPARM value and issues the
following return codes:

Return Code Results

0 No TAPARM value was specified.

4 A TAPARM value was specified but not needed.

12 The specified STREAMS value is not valid.

Accept Request
Transmission algorithm 0 builds a composite mask for the number of streams requested. It then returns
this string to RSCS in register 1.

Select Request
Transmission algorithm 0 scans the LMSSACT field in the LINKTABL to determine the active transmission
streams on the link. When it finds an inactive stream, the transmission algorithm sets a value in a register
that corresponds to the selected stream.

Transmission Algorithm 1
Transmission algorithm 1 supports 1 - 7 transmission streams. It selects files by the number of records
or the number of spool file blocks in the file. The TAPARM specified with transmission algorithm 1 can
specify the upper and lower size limit for the defined streams.

Open Request
On an open request, transmission algorithm 1 verifies the value specified on the STREAMS parameter. If
more than 7 streams are specified, transmission algorithm 1 issues return code 12 in register 15. If the
STREAMS value is valid, the transmission algorithm validates the TAPARM values.

If the TAPARM value is not valid, the transmission algorithm issues return code 8. If valid, transmission
algorithm 1 places the specified limits for each stream (or the default values) in the TAPARM character
string and issues return code 0. Transmission algorithm 1 then uses this TAPARM value as it processes
accept and select requests.

Return Code Results

0 The specified TAPARM value is valid.

8 The specified TAPARM value is not valid.

Transmission Algorithms

Chapter 4. Transmission Algorithm Processing 143

Return Code Results

12 The specified STREAMS value is not valid.

The default number of streams is 2 and the default TAPARM is TH=(,100),(101,). The operational
parameters for each networking link describes the format of the TAPARM values for transmission
algorithm 1. For more information, see z/VM: RSCS Networking Operation and Use.

Accept Request
For an accept request, transmission algorithm 1 checks the upper and lower limits for each stream to
determine if the file is eligible for transmission on the stream. It then returns a composite mask to RSCS
that describes the streams that are eligible to send the file. If the file is ineligible for all defined streams
on the link, the transmission algorithm returns zeros in register 1.

Select Request
For select requests, transmission algorithm 1 checks the size of the file against the upper and lower limits
for each defined stream. It then returns the stream identifier of the first idle stream that can send the file
in register 1.

Transmission Algorithms 2 - F
The entry points DMTAXAG2 - DMTAXAGF are provided for compatibility with previous releases of RSCS.
These transmission algorithms contain standard linkage code only; no other functions are provided. If you
specify TA=2 - TA=F without installing the transmission algorithm at the appropriate entry point, the entry
point issues return code 16. The link then issues message DMT817E and deactivates.

Packaging Transmission Algorithms
Figure 27 on page 144 shows part of an external transmission algorithm, TRANALGX. Like all transmission
algorithms, TRANALGX is serially reusable.

TRANAL RMOD
*
 USING CVT,R6 Get CVT addressability
 USING TAG,R7 Get TAG addressability
 USING LINKTABL,R9 Get LINKTABL addressability
TRANALGX RENTRY RENT=NO,SAVEAREA=NO,ARGS=(@CVT,@FUNC)
 L R6,@CVT Get CVT address
 L R2,@FUNC Get address of function byte
 CLI 0(R2),X'00' 'Open' request?
 BE TRANOP Yes ... process it
 CLI 0(R2),X'80' 'Accept' request?
 BE TRANACC Yes ... process it
*
* We've received a select request
*
⋮
 REXIT RC=(R15),REGS=(0,12) Return to caller
*
 CVT DSECT=YES Communications Vector Table
 LINKTABL DSECT=YES Link table entry for this link
 TAG DSECT=YES Tag element entry
 END

Figure 27. Sample External Transmission Algorithm

If your transmission algorithm calls other routines, you should specify SAVAREA=PREALLOC on the
RENTRY macro. If the transmission algorithm calls any RSCS routines that are accessible through the
CRV, you should add the following to the RMOD macro:

CRVCALL=YES,CRVBASE=TCRVTAB

Transmission Algorithms

144 z/VM: 7.3 RSCS Networking Exit Customization

You should also place the following statement at the end of the module:

CRV DSECT=YES

See Chapter 12, “Supported Routines in the CRV,” on page 321 and Chapter 11, “RSCS Macros,” on page
265 for more information.

Next, you create a link-edit control file (see Figure 28 on page 145) for the transmission algorithm.

* TRANAL Exit load library load list
%CONTROL RSCSV3
%MAXRC 8
%LIBRARY TRANAL
%ERASE
%LEPARMS NCAL LIST XREF LET NOTERM REUS AMODE 31 RMODE ANY
*
 INCLUDE TRANAL
 ALIAS TRANALGX
 NAME TRANAL

Figure 28. Sample LKEDCTRL File: External Transmission Algorithm

Installing External Transmission Algorithms
To install an external transmission algorithm, like the one shown in Figure 27 on page 144, take the
following steps:

1. Issue the following command to assemble the TRANAL ASSEMBLE file:

vmfhlasm tranal rscsv3

2. Issue the following command to build the PLIMIT LOADLIB:

vmflked tranal

3. Place the TRANAL LOADLIB on a disk that is accessible to RSCS.
4. Add TRANAL LOADLIB to the GCS GLOBAL command in the RSCS machine's PROFILE GCS; do not add

another GLOBAL command.
5. Add TA=TRANALGX to the PARM statement for a networking link and add the appropriate TAPARM

specification for this transmission algorithm.
6. Restart RSCS.

You can place up to 16 transmission algorithms in a load module and an unlimited number of
transmission algorithms in a load library. To do so, add the name of each transmission algorithm's entry
point to the ALIAS statement in the link-edit control file.

Installing Internal Transmission Algorithms
To install a new or modified internal transmission algorithm in DMTAXA, perform the following steps after
you install RSCS and before you start your RSCS virtual machine:

1. Edit the DMTAXA source code at the appropriate entry point to modify or create the required
transmission algorithm.

2. Place the modifications on the service disk.
3. Issue the VMFHLASM command to assemble the DMTAXA module and create an updated TEXT file.
4. Specify the transmission algorithm name (TA0 - TAF) on the PARM statement or the START or DEFINE

commands for the networking link.
5. Regenerate and link-edit the RSCS LOADLIB.
6. Replace the existing RSCS LOADLIB with the new one.

Transmission Algorithms

Chapter 4. Transmission Algorithm Processing 145

Transmission Algorithms

146 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 5. ASCII Printer and Plotter Exit Processing

The ASCII and TCPASCII link drivers use the ASCII printer and plotter exits to build device-specific data
streams for transmission to a printer or plotter. With ASCII-type links, the ASCII printers or plotters are
connected to RSCS by an IBM 3171 controller. TCPASCII-type links communicate with ASCII printers or
plotters that are attached to a terminal server in a TCP/IP network.

ASCII printer and plotter exit routines are called at seven points in the ASCII and TCPASCII link
drivers' operational cycle. Each exit routine contains entry points, which provide the following additional
processing for each of the seven calls.

Entry Point Function

Initialization Called when the link driver is being initialized.

TAG Processing Called when the link driver opens a new spool file.

Record Processing Called when a record is read from the input spool file.

Device Reset Called when a file ends or is flushed, backspaced, or forward-spaced.

Message Processing Called when a message is received for output to the printer or plotter.

Attention Interrupt
Processing

Called when the controller device generates an attention interrupt.

Termination Called when the link driver is terminating.

The message, attention interrupt, and termination processing routines, are not necessary to support an
ASCII or TCPASCII link driver; you do not have to supply these routines.

The termination routine is not necessary to support an ASCII or TCPASCII link driver; you do not have to
supply this routine. An exit may require the termination routine for potential clean up processing such as
returning any storage obtained in any of the other six exit routines.

The order in which the exit routines are listed above are not necessarily the order in which the ASCII or
TCPASCII link driver will call them when processing a print stream.

The exit routine module that contains the exit routines to be used for a specific ASCII-type or TCPASCII-
type link must be identified on the PARM configuration statement for the link or in the link operational
parameters on the RSCS DEFINE or START command. For more information, see z/VM: RSCS Networking
Planning and Configuration and z/VM: RSCS Networking Operation and Use.

ASCII Exit Programming Considerations
The programming requirements for the ASCII exit routines are described in the following sections.

Required Values
The first seven fullwords of each ASCII exit routine module must contain the following values.

Word 1
Address of the initialization routine

Word 2
Address of the TAG processing routine

Word 3
Address of the record processing routine

Word 4
Address of the device reset routine

ASCII Exits

© Copyright IBM Corp. 1990, 2022 147

Word 5
Address of the message processing routine, or 0 if the routine is not provided

Word 6
Address of the attention interrupt processing routine, or 0 if the routine is not provided

Word 7
Address of the termination routine, or 0 if the routine is not provided

Note: For compatibility with exits written prior to these enhancements, the ASCII or TCPASCII link driver
will accept six or seven fullwords of addresses at the beginning of an exit routine module.

Entry Conditions
When each exit routine receives control, it is passed the address of the CVT and the LINKTABL entry for
the link. It may also receive the address of a file's TAG element. The TAG element contains information
about a file's characteristics.

The exit routine also receives the address of the print record vector (see “Print Record Vector” on page
148) and the EPARM value. The EPARM value, specified on the PARM configuration statement or on the
RSCS DEFINE or START command, contains a parameter string that is associated with the ASCII exit
routine.

Print Record Vector
The ASCII printer and plotter exits use the logical print record vector to pass information between the
ASCII or TCPASCII link driver and other ASCII exit routines. However, the attention interrupt processing
routine does not receive the print vector record. The "Entry Conditions" section of each exit routine
describes the contents of the print record vector.

Exit Conditions
When an ASCII exit routine returns control to RSCS, the registers contain the following values.

Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

Some exit routines also issue a return code in register 15. If applicable, the return codes are described for
the exit routines.

ASCII Exit Routines
The following sections describe each of the exits supported for ASCII-type and TCPASCII-type links.

Initialization Routine
This routine initializes the device, including logically switching to the hardcopy device, setting and
resetting default states, and setting the stand by mode. The exit routine inserts into the print record
the characters that RSCS passes to the device to set it into its initial (default) state.

If you specify RENT when link-editing this routine, any storage that will be used by the remaining entry
points must be obtained by issuing a GCS GETMAIN macro. The address of this storage must be placed
in word 7 of the parameter list so that the other routines can access the work area. In this case it is
required that a termination exit routine issue the GCS FREEMAIN macro to return the storage obtained in
the initialization exit routine.

The exit routine must specify the length of the data that is passed back to the ASCII or TCPASCII link
driver in the data count field of the print record vector. If this routine does not generate data, it should set

ASCII Exits

148 z/VM: 7.3 RSCS Networking Exit Customization

the data count field to zero. If the data count is negative or greater than 1280 bytes, the ASCII-type or
TCPASCII-type link terminates with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Bytes 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Bytes 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0
Word 7 (+24)

0

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Exit Conditions
On return, the Initialization routine sets the register conditions described in “Exit Conditions” on page
148.

Return Codes
Return Code Results

0 Tells RSCS that initialization processing is complete.

4 Tells RSCS that an EPARM value was specified, but the exit routine does not need it;
the link terminates.

8 Tells RSCS that the specified EPARM value is not valid; the link terminates.

12 Tells RSCS that the specified EPARM value is valid; this exit routine is called again.

16 Tells RSCS to terminate the ASCII or TCPASCII link driver.

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 149

TAG Processing Routine
This routine examines a file's TAG element. Based on a file's characteristics, the exit routine can create
header lines or separator pages. The exit routine inserts the characters that RSCS passes to the device to
print the separator into the print record portion of the print record vector.

The exit routine must specify the length of the data that is passed back to the ASCII or TCPASCII link
drivers in the data count field of the print record vector. If the exit routine does not generate data, it
should set the data count field to zero. If the data count is negative or greater than 1280 bytes, the link
terminates with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Bytes 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Bytes 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0
Word 7 (+24)

Address of the work area established by the initialization routine

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Exit Conditions
On return, the TAG processing routine sets the register contents described in “Exit Conditions” on page
148.

Return Codes
Return Code Results

0 Tells RSCS that the TAG element processing is complete.

ASCII Exits

150 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the ASCII or TCPASCII link driver.

12 Tells RSCS to terminate the ASCII or TCPASCII link driver.

16 Tells RSCS to terminate the ASCII or TCPASCII link driver.

Record Processing Routine
The record processing routine carries out any appropriate translation of the print data. If the exit routine
changes the length of the data, the data count field (pointed to by Bytes 0 - 1 in Word 3 of the parameter
list) must reflect this change before returning to the link driver. When the link driver regains control from
this entry point, the data from the print record moves into the link driver's output buffer. When it is full,
the link driver sends the buffer to the ASCII device.

Your exit routine must set the data count field in the print record vector to reflect the length of the data
passed to the link driver. If your routine does not send a particular print record, it should set the data
count field to zero. A data count that is negative or exceeds 1280 bytes terminates the link with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Bytes 0 - 1

Number of bytes in the print record (does not include the 1-byte CCW in Byte 2)
Byte 2

CCW opcode associated with the print record
Bytes 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0
Word 7 (+24)

Address of the work area established by the initialization routine

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 151

Exit Conditions
On return, the Record Processing routine sets the register contents described in “Exit Conditions” on page
148.

Device Reset Routine
This routine tells RSCS to reset the ASCII device for the next file (for example, feed paper to the top of a
new page). The exit routine inserts into the print record portion of the print record vector the characters
that RSCS should pass to reset the device.

Your routine must set the data count field in the print record vector to reflect the length of the data that is
passed to the link driver. If your routine does not generate any data, it should set the data count field to
zero. A data count that is negative or exceeds 1280 bytes terminates the link with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Bytes 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Bytes 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0
Word 7 (+24)

Address of the work area established by the initialization routine

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Exit Conditions
On return, the Device Reset routine sets the register contents described in “Exit Conditions” on page 148.

ASCII Exits

152 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
Return Code Results

0 Tells RSCS that the RESET processing is complete.

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the ASCII or TCPASCII link driver.

12 Tells RSCS to terminate the ASCII or TCPASCII link driver.

16 Tells RSCS to terminate the ASCII or TCPASCII link driver.

Message Processing Routine
The message processing routine translates EBCDIC code to ASCII code; it is an optional routine. If the
exit routine changes the length of the message, the data count field must reflect this change before
returning to the link driver. Bytes 0 - 1 in Word 3 of the parameter list point to the data count field. When
the link driver regains control from this entry point, the data from the print record moves into the link
driver's output buffer. When the buffer is full, the link driver sends it to the ASCII device.

Your exit routine must set the data count field in the print record vector to show the length of the data
that is being passed back to the link driver. If your routine does not send a message, it should set the
data count field to zero. A data count that is negative or exceeds 1280 bytes terminates the link with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Bytes 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Bytes 3 - n

Message text (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0
Word 7 (+24)

Address of the work area established by the initialization routine

R2 - R12 Not applicable

R13 Save area address

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 153

Register Contents

R14 Return address

R15 Entry address

Exit Conditions
On return, the Message Processing routine sets the register contents described in “Exit Conditions” on
page 148.

Attention Interrupt Processing Routine
The entry conditions for the Attention Interrupt Processing exit routine vary for ASCII-type links or
TCPASCII-type links.

For ASCII-type links, an attention interrupt is generated each time RSCS sends a data buffer. RSCS
performs a Read Modified operation each time it receives an attention interrupt. This is required by the
7171 ASCII Device Attachment Control Unit to obtain the Attention Identifier (AID) byte. A null AID (X'E8')
is usually returned. If the ASCII device has a keyboard, the attention generating keys (ENTER, PF key, or
PA) can change the value of the AID. The exit routine can examine the AID byte and optionally pass a
RSCS command back to the link driver for execution.

A TCPASCII-type link does not receive a single AID character. Rather, the exit is passed all data received
from the terminal server as it arrives on the link.

If your routine passes a command to RSCS for execution, it must use the workstation operator form of the
command. The length and address of the command are returned in registers 0 and 1. Setting register 0 to
zero means that no command is to be processed and the default PF key commands are to be ignored. The
only way to have RSCS use the default PF key commands is not to code an attention interrupt processing
exit routine. A command length that is negative or exceeds 80 bytes terminates the link with user ABEND
012.

Entry Conditions
Register Contents

R0 Not applicable

ASCII Exits

154 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Content varies, depending on the link type:
ASCII-type:

Address of the Attention Identifier (AID).
TCPASCII-type:

Address of a 1-byte field containing the length of the received data; the actual
data follows.

Word 7 (+24)
Address of the work area established by the initialization routine

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Exit Conditions
On return, this routine sets the register conditions described in “Exit Conditions” on page 148.

Termination Routine
This exit routine is called just before the ASCII-type or TCPASCII-type link terminates to perform any
special termination processing that might be needed. As supplied, RSCS does not provide for any special
processing when an ASCII-type or TCPASCII-link is terminated. This exit routine is optional.

Attention

This exit might be required if any of the other ASCII exit routines (such as initialization) obtain storage
from GCS which has not yet been returned to GCS.

Entry Conditions
Register Contents

R0 Not applicable

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 155

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0
Word 7 (+24)

Address of work area established by the initialization routine

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, this routine sets the register conditions described in “Exit Conditions” on page 148.

Sample ASCII Printer and Plotter Exit Modules
IBM provides samples of the ASCII printer and plotter exits to demonstrate use of typical printer and
plotter processing modules. The samples do not provide any processing for the message and attention
interrupt routines.

The following sections describe the sample ASCII exit routine modules that are supplied by IBM. These
exit routines are provided in the sample load library, RSCSEXIT LOADLIB.

Generally, these sample exit modules respond to options supplied on the CP TAG, SPOOL, or CLOSE
commands to perform any needed translations of the print data. These commands are usually specified
in the following forms (where cuu is the virtual device number or a symbolic name and option is the
command operand and values):

tag dev cuu option
spool cuu option
close cuu option

See z/VM: CP Commands and Utilities Reference for more information.

If you choose to support one of these devices differently or to support a new device, you can modify a
sample module or use the samples as a guide for creating your own exit routines.

Attention

The sample ASCII printer and plotter exit routines are provided for illustrative purposes and on an as is
basis only. However, you may be able use the samples with little or no modifications, depending on your
installation's needs and configuration.

ASCII Exits

156 z/VM: 7.3 RSCS Networking Exit Customization

Printer Exit Modules
The printer modules print separator pages containing the file originator's user ID in block characters and
an identifier line. The printer exit modules are:
ASCXDSOE

DS180 Matrix Printer from Datasouth
ASCXDWRE

LA120 DECwriter Printer from DEC
ASCXONE

Generic ASCII printer
ASCXPROP

IBM Proprinter
ASCXPSE

PostScript printer
ASCXSPWE

NEC 3515 Spinwriter Printer

The TAG and SPOOL commands are valid for ASCII printers and produce the following effects on the
processing of the printer exit modules. In addition, if a file is sent from an NJE network, the external writer
name can be used to specify the userid value.

CP Command Exit Module Processing

tag dev cuu nodeid standard If STANDARD, options other than those listed
below, or no options are specified on a CP TAG
command, the spool file is in EBCDIC and contains
printable characters. The exit routines translate
each print record from EBCDIC to ASCII.

tag dev cuu nodeid aplf The spool file is in EBCDIC and contains 3270 APL
characters. The APL characters are printed, if an
APL character set is available.

tag dev cuu nodeid ascii The spool file is in ASCII. Control characters, such
as linefeed and carriage return, are interpreted. No
EBCDIC to ASCII translation occurs.

tag dev cuu nodeid asciic The spool file is in ASCII; no EBCDIC to ASCII
translation occurs. Control characters, such as
linefeed and carriage return, are not interpreted.
The control characters are printed as a character
corresponding to a X'2A' (a # in most cases).

tag dev cuu nodeid asciinoc The spool file is in ASCII; no EBCDIC to ASCII
translation occurs. RSCS does not add any control
characters.

Notes:

1. The IBM Proprinter and the NEC 3515 Spinwriter Printer do not support the APLF option of the TAG
command.

2. The TAG command ASCIINOC option is supported only by the ASCXPROP sample routine.
3. The ASCXONE sample routine supports only the ASCII and ASCIIC options of the TAG command.

The IBM Proprinter requires a carriage return line-feed. However, if you use the ASCXPROP routine with
a device that does not require control characters, you should specify the ASCIINOC option on the TAG
command. Also, the IBM Proprinter uses a compressed font to print class C files and files with the file type
LISTING.

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 157

ASCXPSE Routine
The ASCXPSE exit routine handles one printer queue to a PostScript-only printer. This sample exit routine
is similar to the LPRXPSE sample provided for the LPR exits (see “LPRXPSE Routine” on page 204). This
exit routine assumes that the remote printer is PostScript only, or that it will switch into PostScript mode
when it receives a %!PS string following an EOT (X'04') character.

Available EPARM Parameters
When using the ASCXPSE routine, you can specify parameters in the EPARM value on the PARM
configuration statement or on the RSCS DEFINE or START command.

Notes:

1. Because the EPARM parameter is limited to 239 bytes, these options may be useful only for small
amounts of data.

2. Any command received through the CP SMSG facility or the RSCS console will be truncated at 132
bytes.

The following parameters are supported:
Sep=

specifies whether a separator page is printed for each file.
Yes

Prints a separator page. This is the default. The origin user ID, node ID, and distribution
information are printed in large characters; other file information is printed in small characters
in Times-Bold font.

No
Does not print a separator page.

2p
Produces a two-page separator page. This is useful with duplexing so that the print data starts on
a fresh page.

Config=ddname
specifies the ddname which has been defined as an exit configuration file. If the ddname does not
exist, the ASCXPSE exit will pass back a return code to cause the TCPASCII-type link to issue an
error message and drain. If this exit parameter is not used, a configuration file is not read by the exit,
causing existing defaults to be used for values which can be defined by the configuration file. For more
information see “ASCXPSE Configuration File” on page 160.

Trailer=
specifies whether a trailer page will be printed.
Yes

Prints a trailer page after the file. It is identical to the header page with the addition of a count of
the bytes in the file.

No
Does not print a trailer page. This is the default.

EOT=
specifies whether EOT characters will be inserted.
Yes

EOT characters will be inserted after the separator page, data file, and trailer page. This is the
default.

No
EOT characters will not be inserted.

ASCII Exits

158 z/VM: 7.3 RSCS Networking Exit Customization

Ehandler=
specifies whether a PostScript error handler will be downloaded to the printer the first time a file is
sent to the printer after the link is started. This error handler enables any errors to be printed, so the
information will not be lost.
Yes

The error handler is downloaded; this is the default.
No

The error handler is not downloaded.
Prefix=hex_string

optionally specifies a hexadecimal string to be sent in front of each file; this string is not translated. By
default, a prefix string is not sent with each file. Up to 200 bytes of data can be specified.

The prefix string can be split with part sent before the separator page and part sent after. The string
will be split if the X'FF04' divider characters are detected within the prefix string. The part before the
divider characters will be sent prior to the separator page with the remaining sent after.

SUFfix=hex_string
optionally specifies a hexadecimal string to be sent after each file; the string is not translated. By
default, a suffix string is not sent with each file. Up to 200 bytes of data can be specified.

Initial=hex_string
optionally specifies a hexadecimal string that is sent when the link initializes; the string is not
translated. By default, an initial string is not sent. Up to 200 bytes of data can be specified.

FOrm=OrFnFsLs
specifies the default orientation, font name, font size, and additional leading size to use when printing
plain text files, overriding the defaults used by the exit. The spool file form name can be used to
further override the values specified here.

Note: The actual fonts selected must be installed and used by the printer.

The following values can be specified for OrFnFsLs (or allowed to default as indicated):
Or

is the file orientation:
PO

Portrait (default)
LA

Landscape
Fn

is the font name code:
CB

Courier-Bold
CI

Courier-Oblique
CP

Courier (default)
CX

Courier-BoldOblique
HB

Helvetica-Bold
HI

Helvetica-Oblique
HP

Helvetica

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 159

HX
Helvetica-BoldOblique

SP
Symbol

TB
Times-Bold

TI
Times-Italic

TP
Times-Roman

TX
Times-BoldItalic

Fs
is the font size, 04 - 99. The default is 11 for portrait and 10 for landscape orientation.

Ls
is the additional leading size, 0.0 - 9.9. This value is added to the font size to give leading, and is
specified as 00 - 99. The default is 09 for portrait and 12 for landscape.

Note: Any entry not one of the above will cause the default to be used for Or, Fn, Fs, or Ls. The value
supplied here will be substituted for the form if the form on the spool file does not start with P+, P-,
LA, or PO. For more information, see note “2” on page 163.

ASCXPSE Configuration File
The ASCXPSE sample routine can read a configuration file. This configuration file supplies these:

• Translation table to override the one used by the exit
• Postscript program to override the one sent to the printer when printing plain text files
• Additional font names used when printing plain text files

The configuration file can have any desired file name and file type and must be on a disk accessed by the
RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME used
must be supplied on the Config= link exit parameter statement when defining the TCPASCII-type link in
the RSCS CONFIG file.

An example of a PROFILE GCS DDNAME entry is:

'FILEDEF ASCXPSE DISK ASCXPSE CONFIG *'

In this example, ASCXPSE is the defined DDNAME and ASCXPSE CONFIG is the name of the configuration
file.

The following is an example of the RSCS CONFIG parameter (PARM) for a TCPASCII-type link with
linkname TCPAP using the DDNAME defined on the FILEDEF statement in the PROFILE GCS:

PARM TCPAP EXIT=ASCXPSE EPARM='C=ASCXPSE'

Layout of the ASCXPSE Configuration File
An asterisk (*) in column one denotes a comment line. Any line that does not have an asterisk (*) in
column one will be interpreted as a configuration entry. All entries must be capitalized.

The following configuration records are supported.

FONT=xxname
provides a 2-character font name abbreviation (xx) followed by a 32-character font name. There
should be no blanks between the abbreviation and full font name. Multiple records can be provided
for supplying as many additional fonts as required. The abbreviation should be unique on each FONT=
record. In addition, the fonts must be loaded and available at the printer.

ASCII Exits

160 z/VM: 7.3 RSCS Networking Exit Customization

The available fonts are:
xx

name
CB

Courier-Bold
CI

Courier-Oblique
CP

Courier (exit default)
CX

Courier-BoldOblique
HB

Helvetica-Bold
HI

Helvetica-Oblique
HP

Helvetica
HX

Helvetica-BoldOblique
SP

Symbol
TB

Times-Bold
TI

Times-Italic
TP

Times-Roman
TX

Times-BoldItalic

PSCRIPT='string'
provides a replacement postscript program to be used when printing a plain text file. The postscript
program must be enclosed within quotes. Anything after the ending quote will be ignored allowing for
comments.

For example:

PSCRIPT='this is line one' comment for line one
PSCRIPT='this is line two'

Multiple PSCRIPT= records can be provided in order to supply the entire program. ASCXPSE will add a
carriage return (X'0A') after each record, and will translate the record from EBCDIC to ASCII.

Note: When replacing the postscript program, the ability to tailor the file orientation, font name, font
size, and additional leading size through a FORM is lost. The supplied postscript program must define
all of these.

TOASCII=string
provides a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCII= records to replace the
256-byte translation table.

Using the FORM Operand of the CP SPOOL Command
When using the ASCXPSE exit routine, you can also specify the following values on the FORM operand of
the SPOOL command.

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 161

FORM=value
specifies how the file will be printed:
P-SCRIPT

PostScript programs.
P+SCRIPT

PostScript programs (streaming); see note “2” on page 163.
P-ASCII

PostScript programs in ASCII; see note “3” on page 163.
P+ASCII

PostScript ASCII (streaming); see note “4” on page 163.
OrFnFsLs

Text file information; if all defaults are used, the value is POCP1109; see note “1” on page 163.
Or

is the file orientation:
PO

Portrait (default)
LA

Landscape
Fn

is the font name code:
CB

Courier-Bold
CI

Courier-Oblique
CP

Courier (default)
CX

Courier-BoldOblique
HB

Helvetica-Bold
HP

Helvetica
HI

Helvetica-Oblique
HX

Helvetica-BoldOblique
SP

Symbol
TB

Times-Bold
TI

Times-Italic
TP

Times-Roman
TX

Times-BoldItalic
Fs

is the font size, 04 - 99. The default is 11 for portrait and 10 for landscape orientation.

ASCII Exits

162 z/VM: 7.3 RSCS Networking Exit Customization

Ls
is the additional leading size, 0.0 - 9.9. This value is added to the font size to give leading, and
is specified as 00 - 99. The default is 09 for portrait and 12 for landscape.

Notes:

1. If the FORM value does not start with the characters PO or LA, the exit routine checks the first
record for the string %!PS in EBCDIC and ASCII. If found, it will treat the file as a PostScript file.

2. Streaming means that the spool file is treated as a stream of bytes without regard to record
boundaries. Because CP spooling removes trailing blanks, records are padded with blanks up to 80
bytes. Wide PostScript files can be printed by packing them into blocks of 80 bytes, separating the
records with linefeeds and punching them to the driver.

3. ASCII means that the data is ASCII and need not be translated before being sent.
4. ASCII streaming is useful for files that were received using the BINARY subcommand of the FTP

command. These files should be punched 80 bytes per record to the driver.
5. If an installation requires different strings to be sent to the printer based on the data to print,

multiple ASCII links can be defined for the same printer (same host address) with the different
desired strings. For example, if the printer can accept five different prefix strings, define five
separate links to the same printer, each one with a different prefix string.

ASCXONE Routine
The ASCXONE sample exit routine performs function for a generic ASCII printer. It also performs simple
translation of data to ASCII.

Attention

ASCII translation is controlled by the value specified on the userid operand of the TAG command. The
following values for userid have special meaning:
ASCII

The file will not be translated into ASCII. No carriage control will be added by the exit. Any imbedded
control characters within the file will be left as is.

ASCIIC
The file will not be translated into ASCII. Carriage controls will be added after each data record by
the exit. Any imbedded control characters within the file will be translated to an ASCII # character.

If userid is set to any other value, the file will be translated and carriage control will be performed.

If a file is sent from an NJE network, the NJE external writer name can be used to specify the userid
value.

Available EPARM Parameters
When using the ASCXONE routine, you can specify parameters in the EPARM value on the PARM
configuration statement or on the RSCS DEFINE or START command.

Notes:

1. Because the EPARM parameter is limited to 239 bytes, these options may be useful only for small
amounts of data.

2. Any command received through the CP SMSG facility or the RSCS console will be truncated at 132
bytes.

The following parameters are supported:
Sep=

specifies whether a separator page will be printed for each file.

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 163

Yes
Prints a separator page. This is the default. The origin user ID and node ID and distribution
information are printed in large characters; other file information is printed in small characters in
the Times-Bold font.

No
Does not print a separator page.

2p
Produces a two-page separator page. This is useful with duplexing so that the print data starts on
a fresh page.

FF=
specifies how printer form-feeds are performed.
TOP

Form-feed is sent in the front of the file.
Bottom

Form-feed is sent after the file; this is the default.
None

Form-feed is not sent.
Prefix=hex_string

optionally specifies a hexadecimal string to be sent in front of each file; this string is not translated. Up
to 200 bytes of data can be specified.

The prefix string can be split with part sent before the separator page and part sent after. The string
will be split if the X'FF04' divider characters are detected within the prefix string. The part before the
divider characters will be sent prior to the separator page with the remaining sent after.

SUFfix=hex_string
optionally specifies a hexadecimal string to be sent after each file; the string is not translated. Up to
200 bytes of data can be specified.

Initial=hex_string
optionally specifies a hexadecimal string that is sent when the link initializes; the string is not
translated. By default, an initial string is not sent. Up to 200 bytes of data can be specified.

Config=ddname
specifies the ddname which has been defined as an exit configuration file. If the ddname does not
exist, the ASCXONE exit will pass back a return code to cause the TCPASCII-type link to issue an
error message and drain. If this exit parameter is not used, a configuration file is not read by the exit,
causing existing defaults to be used for values which can be defined by the configuration file. For more
information, see “ASCXONE Configuration file” on page 165.

CONVert=No
CONVert=Yes

specifies whether to allow protocol conversion. The default is CONVERT=NO. This function has been
added for printers moved from coax connected protocol converters to LAN attached, connected to
multiprotocol cards for TCP/IP. Some applications use the functions built in to protocol converters.

The ASCXONE exit will look for strings starting with a header defined by the PCL exit parameter and
ending with a trailing X'4A' character, which surround pairs of bytes that spell out PCL commands.
These pairs of bytes will be packed into single bytes that are the equivalent PCL bytes, which are
already in ASCII. Multiple PCL strings can be contained in each record of the print file as long as each
string contains the X'4A' trailing character.

In addition, the ASCXONE exit will look for the SCS (SNA Character String) transparency strings
contained anywhere within each record. The SCS transparency string is defined with a X'35' followed
by a one byte length, followed by data for the defined length that is sent unaltered (not translated).
Multiple SCS transparency strings can be contained within a single record.

ASCII Exits

164 z/VM: 7.3 RSCS Networking Exit Customization

PCL=hex_string
specifies a 2- to 8-character hexadecimal string which defines the header for PCL strings. When the
CONVERT=YES exit parameter is specified, the ASCXONE exit will search for this string in each record
of the file to be printed. An even number of characters must be specified; the default is 6A79.

ASCXONE Configuration file
The ASCXONE sample exit routine can read a configuration file. This configuration file supplies translation
tables to override the ones used by the exit.

The configuration file can have any desired file name and file type and must be on a disk accessed by the
RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME used
must be supplied on the Config= link exit parameter statement when defining the TCPASCII-type link in
the RSCS CONFIG file.

A example of a PROFILE GCS DDNAME entry is:

'FILEDEF ASCXONE DISK ASCXONE CONFIG *'

In this example, ASCXONE is the defined DDNAME and ASCXONE CONFIG is the name of the
configuration file.

The following is an example of the RSCS CONFIG parameter (PARM) for a TCPASCII-type link with
linkname TCPA using the DDNAME defined on the FILEDEF statement in the PROFILE GCS:

PARM TCPA EXIT=ASCXONE EPARM='C=ASCXONE'

Layout of the ASCXONE Configuration File
An asterisk (*) in column one denotes a comment line. Any line that does not have an asterisk (*) in
column one will be interpreted as a configuration entry. All entries must be capitalized.

These configuration records are supported:
ASCII=string

provides a table for translating ASCII control characters, overriding the default used by the exit.
ASCXONE uses this translation table when files are already in ASCII and the user ID field of the TAG is
set to ASCIIC. Up to 512 hexadecimal characters (0 - 9, A - F) may be specified on multiple ASCII=
records to replace the 256-byte translation table.

TOASCII=string
provides a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCII= records to replace the
256-byte translation table.

IBM XY/749 Plotter Exit Module
ASCX749E contains the sample plotter exit module for the IBM Instruments XY/749 Multipen Digital
Plotter. The following table shows the valid CP commands for the IBM XY/749 plotter and their effect on
plotter exit module processing.

CP Command Exit Module Processing

tag dev cuu nodeid standard If STANDARD, options other than those listed
below, or no options are specified on a CP TAG
command, the spool file is in EBCDIC. The exit
routines translate each print record from EBCDIC
to ASCII.

tag dev cuu nodeid ascii The spool file is in ASCII; no EBCDIC to ASCII
translation occurs.

ASCII Exits

Chapter 5. ASCII Printer and Plotter Exit Processing 165

CP Command Exit Module Processing

tag dev cuu nodeid gddmpl The file is a GDDM® plot file. The first 2 bytes of
each record specify its length and are discarded; no
EBCDIC to ASCII translation occurs.

spool cuu class a-y, 0-9 An identification line is plotted vertically with pen 1
on the left side of the output medium.

spool cuu class z An identification line is not plotted.

Nicolet Zeta 8 Plotter Exit Module
ASCXZETE is the sample exit module for the Nicolet Zeta 8 Plotter. This exit module examines the first
ten characters in the first data record of the spool file. If each of these characters is the letter Z, the exit
routine translates the first 64 bytes of each print record to ASCII. If not, the file is not translated into
ASCII. This exit module also plots an identification line on the output.

Sending Files with Sample Exit Routines
Use the CMS PRINT and PUNCH commands to send a file to a printer or plotter. The PRINT command
accepts up to 204 characters, depending on the virtual printer type. The PUNCH command limits the
logical record length of a file to 80 characters. The exit module for the Nicolet Zeta 8 Plotter (ASCXZETE),
however, accepts only files sent by the PUNCH command and uses only the first 64 characters of each
record. All other exit modules accept both PRINT and PUNCH files.

If no EBCDIC to ASCII translation is performed, each print record is checked to see if the CMS PRINT
command produced the header line. If the line is a CMS PRINT header line, FILE: are the first 6
characters of the line; PAGE are the 5 characters starting at position 99. If the previously processed line
was the end of a page, the current line is assumed to be a page header. The printer exit modules then
translate the line into ASCII. The CMS PRINT command can produce only EBCDIC headers, even if the
actual file contains ASCII characters. The IBM XY/749 plotter exit module discards the header line. The
ASCXPSE and ASCXONE exit routines do not search for the CMS print header line.

ASCII Exits

166 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 6. Gateway Programming Interface

The gateway programming interface (GPI) lets you create routines that enable RSCS to exchange data
between systems using NJE or other networking protocols, such as TCP/IP and Systems Network
Architecture Distribution Services (SNA/DS).

In RSCS, GPI support consists of the GATEWAY link driver and gateway service macros that provide
networking functions for the gateway program, which you supply. The system to which the gateway
program is communicating must also provide a corresponding routine to communicate with RSCS.

The GATEWAY link driver task initializes the information (data areas, work areas) needed for your gateway
program. It then loads and passes control to the gateway program.

The gateway program must start the communication medium it uses for the link. It also issues gateway
service macros to communicate with RSCS. When its processing completes or a STOP or DRAIN command
is issued for the GATEWAY-type link, the gateway program returns control to RSCS. The GATEWAY link
driver task carries out the stopping process, deletes the gateway program, and ends.

The exit routine module that contains the gateway program to be used for a specific GATEWAY-type link
must be identified on the PARM configuration statement for the link or in the link operational parameters
on the RSCS DEFINE or START command. For more information, see z/VM: RSCS Networking Planning and
Configuration and z/VM: RSCS Networking Operation and Use.

Gateway Program
The gateway program can use the gateway service macros provided by RSCS (see “Gateway Service
Macros” on page 174) to process each record of the NJE data. The gateway program must then convert
data between the format required for spool storage and the communication medium used for the link. It
must also manage that communication medium. For more information about writing a gateway program,
see “Programming Considerations” on page 169. The GPSAMP sample package contains a sample
gateway program called GPI.

Attention

The GPI sample program is provided for illustrative purposes and on an as is basis only. You can modify
the sample program or use it as a guide for writing your own gateway program.

Entry Conditions
After processing the link parameters and necessary RSCS control blocks, the GATEWAY link driver task
calls the gateway program with the following register conditions.

Register Contents

R0 Not applicable

© Copyright IBM Corp. 1990, 2022 167

Register Contents

R1 Address of parameter list that contains:
Word 1 (+0)

Address of the gateway work area, which contains a vector of routines that enable
the gateway service macros to link to RSCS. It also contains three fullwords that
are used to store parameter lists for those routines. Each gateway service macro
needs this address to function. It is passed to them when the WORK parameter is
specified.

Word 2 (+4)
Address of the 80-byte parameter string specified in the EPARM parameter.

Word 3 (+8)
Address of the file-arrival ECB. RSCS posts this ECB when a file is queued for
transmission on the GATEWAY-type link.

Word 4 (+12)
Address of the command ECB. RSCS posts this ECB when a command or message
NMR element is queued for transmission or processing on the GATEWAY-type link.

Word 5 (+16)
Address of the receiver-online ECB. RSCS posts this ECB when a FREE command is
issued and the link is in an input-held state.

Word 6 (+20)
Address of the terminate ECB. When a STOP or SHUTDOWN QUICK command is
issued, RSCS posts this ECB to tell the GATEWAY-type link to end as quickly as
possible.

Word 7 (+24)
Address of an 8-byte field containing the name of the local RSCS node.

Word 8 (+28)
Address of an 8-byte field containing the name of the GATEWAY-type link.

Word 9 (+32)
Address of the CVT.

Word 10 (+36)
Address of the LINKTABL entry.

R2 - R12 Not applicable

R13 Save area address

R14 Return address

R15 Entry address

Exit Conditions
When the gateway program returns control to RSCS, it should set the following register values.

Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

168 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
When the gateway program returns to RSCS, it should restore registers in the conventional manner and
issue a return code in R15.

Return Code Meaning

0 Normal ending. Open input files are closed and requeued; open output files are closed
and purged. Queued messages and commands are purged.

4 The gateway program did not accept the EPARM parameters passed to it. RSCS issues
message DMT819E and ends the link.

8 The gateway program cannot function because of insufficient resources. RSCS issues
message DMT708I and ends the link.

12 The gateway program detected a programming error. RSCS issues message DMT824E
and ends the link.

Programming Considerations
This section describes some considerations for writing and implementing gateway programs. Chapter 2,
“Customizing RSCS,” on page 9 contains more information about writing exit routines.

Work Area Considerations
When a gateway program receives control, it should generate additional save areas. To do so, specify the
NUMSAVE parameter on the RENTRY macro for the gateway program (see “RENTRY – Defining a Module
Entry Point” on page 290). RSCS automatically acquires any save areas it needs when the gateway service
macros are called.

The first time you specify a gateway service macro, you should specify the WORK parameter. This
parameter points to the gateway work area that is passed to the gateway program. If you do not move
this pointer in the gateway program, you do not have to specify the WORK parameter on any following
invocations of a gateway service macro. For example, in Figure 29 on page 169 the work area address in
register 10 is used when each gateway service macro is called.

X99CAT RMOD
*
X99CATEP RENTRY RENT=YES,NUMSAVE=10,
 ARGS=(@GWA,@EPARM,@FILEARR,@CMDARR,@TERM,
 @LOCALID,@LINKID,@CVT,@LINKTAB)
 L R10,@GWA Gateway work area pointer
⋮
 NJECONCT WORK=(R10) Indicate we are connected
⋮
 NJEOPEN file No need for WORK=
⋮
 NJECLOSE file No need for WORK=
⋮
 NJEDSCON No need for WORK=
⋮
 END

Figure 29. Specifying the WORK Parameter

Link-Editing Considerations
In most cases, your gateway program should be reentrant. You should specify RENT=YES on the RENTRY
macro and the RENT parameter in your VMFLKED link-edit control file options. If your gateway program is
nonreentrant, you should also ensure it is nonreusable. Here, do not specify the RENT and REUS link-edit
control options. You can specify RENT=YES or RENT=NO on the RENTRY macro. For more information, see
“Link-Editing Considerations” on page 33.

Programming Considerations

Chapter 6. Gateway Programming Interface 169

Program Structure
Figure 30 on page 170 shows the basic structure of a gateway program. During its processing, your
gateway program should consider any specified EPARM values and the type of communications used
on the link. The gateway program should start its initialization by issuing the NJECONCT macro. Normal
ending should be started by issuing the NJEDSCON macro. When terminating, the gateway routine should
also consider the requirements of the communications medium.

read EPARM text
initialize communications medium
do other initialization
issue NJECONCT to put into connect state

do while not ready to terminate
 wait for work to do
 do the work
 end

issue NJEDSCON to return to active state
tidy up communications medium
do other termination
return 0

Figure 30. Basic Structure of Gateway Program

Your gateway program may need to perform additional functions if errors force the GATEWAY-type link
to end. You should, however, ensure that any processing that is started during initialization is completed
before the link ends. RSCS system tasks may also perform termination processing.

Types of Work
As Figure 30 on page 170 shows, the gateway program can contain a loop in which it waits for and
carries out various types of work. The type of work the gateway program may perform is described by the
following categories.

Transmitting Files
Files to be transmitted are called input files. Input files must be represented by a file control block that
has the NJEINP bit set in the NJESMODE field.

To open these files, the gateway program should issue the NJEOPEN macro. Each record of the file can be
obtained by issuing the NJEGET macro. To close the file, the gateway program should issue the NJECLOSE
macro. If an error occurs, the gateway program can stop the transmission by issuing the NJERJECT
macro.

NJEGET can return records that are up to 32 KB long. These records may contain NJE protocol elements
identified by sub record control bytes (SRCBs). See “Supported NJE Sub Record Control Byte Values” on
page 172. For SYSOUT files, the records may contain a job header, one or more data set headers, data,
and a job trailer. For SYSIN files, the records may contain a job header, data, and a job trailer. Some
SYSIN files created by non-VM systems may have Record Characteristics Change dataset headers to show
that data other then fixed 80 byte records will follow. The gateway program should pack these record
elements into transmission buffers. It should then ensure that the remote system can unpack the records
as they are received.

Receiving Files
Files to be received are called output files because their records are written to spool. Output files must be
represented by an output file control block (NJESMODE field should be set to NJEOUTP).

To open these files, the gateway program should issue the NJEOPEN macro. It can obtain each record of
the file by issuing the NJEPUT macro. To close the file, the gateway program should issue the NJECLOSE
macro. If an error occurs, the gateway program can stop the reception by issuing the NJEABORT macro.

Programming Considerations

170 z/VM: 7.3 RSCS Networking Exit Customization

Before NJEOPEN is processed for an output file, the correct SYSIN or SYSOUT flag must be set in the file
control block. The gateway program should inspect the first record it receives to ensure that it is a job
header from the file.

When the gateway program receives buffers, it must unpack their contents job headers, dataset headers,
and data records. It should also identify them using their SRCB. Depending on the type of data received,
the gateway program should then issue an NJEOPEN, NJEPUT, or NJECLOSE macro. NJEPUT carries out
processing, such as writing data to spool and splitting multiple destination files.

Sending Messages and Commands
Messages and commands are represented by NMR elements, which are sent as records with the SRCB
X'00'. To send an NMR element, the gateway program must set up an input file control block for the NMRs
(NJESTAT field should be set to NJENMR).

After it initializes, the gateway program should issue the NJEOPEN macro to open the file control block; it
should not close this file. When NMR records are available, the gateway program should issue the NJEGET
macro and pack each record into a transmission buffer.

Receiving Messages and Commands
The gateway program processes the messages and commands it receives similarly to those it is
transmitting. The gateway program should establish a file control block for NMR output and open it after
initialization completes. When NMRs are identified in a received buffer, SRCB X'00', the gateway program
should issue the NJEPUT macro to write the NMR records to the output file.

RSCS then routes the message or command, which can be processed by Exit 32, to its destination.
Messages are delivered to a local user or sent to another node. Commands are run at the local node or
sent to another node.

Terminating
The gateway program must respond to error conditions and requests to end the GATEWAY-type link. The
gateway program must stop the processing and end or perform appropriate recovery procedures.

Scheduling Work
To schedule work, the gateway program should monitor a list of event control blocks (ECBs). Each ECB
represents a specific type of work that a gateway routine must perform. These ECBs are described in the
following sections.

Terminate ECB
RSCS posts this ECB in the gateway program when the GATEWAY-type link must end. When posted, the
gateway program should end its processing when possible.

File Arrival ECB
RSCS passes this ECB to the gateway program. When posted, the gateway program should issue the
NJEOPEN macro to start sending the input file. It should get each record in the file by issuing the NJEGET
macro. After it reads the file, sends it to its destination, and receives an acknowledgement from the
receiving system, the gateway program should issue the NJECLOSE macro.

After transmitting a file, the gateway program should clear the file arrival ECB and call the NJEOPEN
macro again without waiting for this ECB to be posted. If the NJEOPEN macro fails, the gateway program
should wait on the ECB and issue NJEOPEN again when it is posted. This ensures that the GATEWAY-type
link transmits files when they are queued.

However, you should consider the following factors when creating your gateway program:

Programming Considerations

Chapter 6. Gateway Programming Interface 171

• Files may take a long time to send. The entire file is not sent at one time because it may prevent the
gateway program from processing messages, commands, files on other streams, incoming traffic, and
termination requests.

• On multistreaming links, many files may be transmitting at the same time.
• Many records from different sources may be packed into one transmission buffer, or one record may

need several buffers.

Command ECB
RSCS passes this ECB to the gateway program. It is posted when a message or command must be sent to
another node on the link. The gateway routine should clear the ECB and call the NJEGET macro to obtain
each record. Your gateway routine should then pack the records into transmission buffers and wait on
the command ECB for any new commands or messages. This ensures that commands and messages are
transmitted when they are queued.

Buffer Received ECB
The gateway program chooses the teleprocessing medium it uses to communicate with a remote node.
When data arrives in a buffer, GCS drives an interrupt handler in the gateway program. The gateway
program must provide and identify this interrupt handler to GCS. The gateway program must then ensure
that its buffer received ECB is posted. RSCS does not provide this interrupt handler nor post this ECB for
the gateway program.

When it receives a buffer, the gateway program should unpack its contents and process it according to
the SRCBs. The gateway program may call the NJEPUT macro to write these records to an appropriate
stream. The gateway program may also have to send an acknowledgment, close input files when an
acknowledgment is received, or drain the link.

Receiver-Online ECB
RSCS passes this ECB to the gateway program. This ECB is posted when a FREE command is issued for
the link while it is in input-held state. The link may be placed in this state when an authorized operator
issues a HOLD linkid INPUT command for the link. The RSCS SLOWDOWN facilities may also place the
link in this state.

The gateway program must be able to determine when a FREE command has been issued for the link. It
must also identify when the link is in input-held state. To do so, the gateway program can check the
LHOLDINP flag in the LINKTABL. It can also determine if the link is in this state if it receives return code
12 after calling the NJEOPEN macro. The NJERJCOD field will contain the reason code X'1404'.

Most gateway programs should also carry out a control flow to tell the remote node when the input flow is
held and when it can continue.

Additional ECBs and Subtasks
Your gateway program may require other ECBs to monitor timeouts on the link or other exception
conditions. These ECBs depend on the function of the gateway program.

The gateway program may use subtasks to control various parts of its operation. For example, a subtask
in the gateway program can process each input and output transmission stream for the link. Different
subtasks within a gateway program can issue gateway service macros at the same time. However, each
subtask must specify its own ESTAE and ETXR routines. They should not use the RSCS-defined ESTAE
exits.

Supported NJE Sub Record Control Byte Values
A sub record control byte (SRCB) identifies each record sent or received over an NJE link. The
following list identifies the SRCB values that RSCS uses. For more information, see z/OS: Network
Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa320988/$file/hasa600_v2r5.pdf).

Programming Considerations

172 z/VM: 7.3 RSCS Networking Exit Customization

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf

X'00'
Used for NMRs.

X'80'
Record without carriage control; the data begins immediately after the SRCB.

X'90'
Record with machine carriage control. The carriage control opcode byte immediately follows the
SRCB; the data follows the carriage control byte.

X'A0'
Record with ASA carriage control. The carriage control opcode byte follows the SRCB; the data begins
immediately after the carriage control byte.

X'B0'
Advanced Function Printing (AFP) record; the SRCB is followed by an X'5A' carriage control byte and
the data.

X'C0'
Job header, starting with the general section, immediately follows the SRCB.

X'D0'
Job trailer, starting with the general section, immediately follows the SRCB.

X'E0'
Dataset header, starting with the general section or (rarely) the record characteristics change section,
immediately follows the SRCB.

Reason Code Responses
When the gateway program rejects an NJE stream or file, it should supply a hexadecimal reason
code. This code determines the RSCS responses. The following table lists the reason codes and RSCS
responses, if applicable (x means any value can appear in that position).

Code Condition RSCS Response

04xx Abort request Flush and hold current file. The next NJEOPEN request opens a different
file.

08xx Receiving system shutting
down

RSCS indicates that the link is draining. The next NJEOPEN request
receives return code 4.

0C04 RIF received on
unsupported stream

None

0C08 RIF received on drained
stream

Flush and requeue current file. The next NJEOPEN call obtains the same
file, unless a new file with a higher queuing order arrives.

0C0C RIF received on an
unknown stream

None

0C10 FCS conflict Flush and requeue current file. The next NJEOPEN call obtains the same
file, unless a new file has arrived with a higher queuing order.

1004 Lack of real storage None

1008 Lack of virtual storage Flush and requeue current file. The next NJEOPEN call obtains the same
file, unless a new file, with a higher queuing order, arrives.

100C Lack of spool space Flush and requeue current file. The next NJEOPEN call obtains the same
file, unless a new file, with a higher queuing order, arrives.

1010 Lack of processor
resources

Flush and requeue current file. The next call to NJEOPEN obtains the
same file, unless a new file, with a higher queuing order arrives.

Programming Considerations

Chapter 6. Gateway Programming Interface 173

Code Condition RSCS Response

1404 HOLD command issued for
link

RSCS flushes and requeues the current file. The next NJEOPEN call
obtains a different file, unless a new file with a higher queuing order
arrives.

1408 STOP command issued for
link

RSCS indicates that the link is draining. The next call to NJEOPEN
receives return code 4.

140C FLUSH command issued
for link

Flush and hold current file. The next NJEOPEN request opens a different
file.

1804 Last transmission ended
incorrectly

RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

1808 Compression/compaction
error

RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

180C Records sent are out of
sequence

RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

1810 Mixed RCBs in buffer when
mixed RCB support not in
effect

RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

1814 Undefined RCB/SRCB
combination

RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

1Cxx Data stream error RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

20xx File rejected by
installation security
function or exit routine

RSCS flushes and holds current file. The next NJEOPEN call obtains a
different file.

Gateway Service Macros
Gateway programs use the gateway service macro supplied by IBM to run specific gateway functions. The
WORK parameter, which points to the gateway work area, must be specified on at least the first invocation
of a gateway service macro within a gateway program. If the WORK parameter is not specified, later
invocations of the macros use the value defined on the latest specification of the parameter.

The macros issue a return code in R15 to show the success of the operation or a reason for its error.
Sometimes, R0 and R1 return additional information. Generally, however, you should rely only on registers
2 - 13 being preserved when a gateway service macro is called.

The following sections describe each gateway service macro. For information about the macro notational
conventions, see “Specifying Parameters” on page 265. For information about the conventions used in the
syntax diagrams, see “Syntax, Message, and Response Conventions” on page xv.

Programming Considerations

174 z/VM: 7.3 RSCS Networking Exit Customization

NJEABORT

label

NJEABORT filecb

,WORK=  address

Purpose
The NJEABORT macro halts operations on an output (receiving) file. The file is closed and purged from
spool.

Parameters
label

is an optional assembler label.
filecb

is the address of the NJE file control block for the output NJE file. This value may be specified as an
RX-type address or as register (2) - (12).

,WORK=address
specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Usage Notes
The gateway program does not have to issue an NJECLOSE macro.

Return Codes
Return Code Meaning

0 File transmission halted.

8 File not open or open for input only. The file control block had not been successfully
opened by an NJEOPEN macro, or it had been opened but for output; the request is
ignored.

NJEABORT

Chapter 6. Gateway Programming Interface 175

NJECLOSE

label

NJECLOSE filecb

,WORK=  address

Purpose
The NJECLOSE macro closes a file previously opened with the NJEOPEN macro. Input files are considered
to have been sent successfully on the link and are purged from spool. All output files are considered
to have been successfully received. They are closed and spooled to their destination or to RSCS for
store-and-forward processing.

Parameters
label

is an optional assembler label.
filecb

is the address of the file's NJE file control block. This value may be specified as an RX-type address or
as register (2) - (12).

,WORK=address
specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Usage Notes
1. Your gateway program should not issue NJECLOSE for NMR streams.
2. Your gateway program should not issue NJECLOSE until it receives an acknowledgment that the

remote system has received the file. Otherwise, the file may be lost.
3. To stop transmission of an input file, use the NJERJECT macro rather than NJECLOSE. The file will be

held in the RSCS virtual reader. RSCS may purge the file or re-enqueue it for transmission. To stop
reception of an output file, use the NJEABORT macro to stop reception; the file will then be purged
from spool.

Return Codes
Return Code Meaning

0 The file has been successfully closed.

8 The file was not open.

12 An internal error was detected. The file control block is marked as closed, but RSCS
may not have successfully closed the spool file or some other error may have occurred.

NJECLOSE

176 z/VM: 7.3 RSCS Networking Exit Customization

NJECONCT

label

NJECONCT

,WORK=  address

Purpose
The NJECONCT macro shows that the gateway program has initialized. After this macro is run, RSCS
marks the GATEWAY-type link as connect.

Parameters
label

is an optional assembler label.
,WORK=address

specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Results
Return Code Meaning

0 The gateway program has initialized and the GATEWAY-type link is connected.

NJECONCT

Chapter 6. Gateway Programming Interface 177

NJEDSCON

label

NJEDSCON

,WORK=  address

Purpose
The NJEDSCON macro shows that the GATEWAY-type link is no longer connected and cannot process any
files, messages, or commands. RSCS closes any files that are active on the link and changes the link's
status from connect to active.

Parameters
label

is an optional assembler label.
,WORK=address

specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Usage Notes
The gateway program should issue this macro before it returns control to RSCS to deactivate the link. If
the gateway program returns control without issuing NJEDSCON, however, RSCS automatically issues the
macro.

Return Codes
Return Code Meaning

0 The GATEWAY-type link is disconnected.

NJEDSCON

178 z/VM: 7.3 RSCS Networking Exit Customization

NJEGET

label

NJEGET filecb

,WORK=  address

Purpose
The NJEGET macro gets a record to be transmitted in a file or gets an NMR element to run or send.

Parameters
label

is an optional assembler label.
filecb

is the address of the file's NJE file control block. This value may be specified as an RX-type address or
as register (2) - (12).

,WORK=address
specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Return Codes
Return Code Meaning

0 Record successfully read. R1 points to the record; R0 contains its length.

4 End of file. No record has been read. For files, the gateway program should finish
transmitting the file and issue an NJECLOSE macro. For the input NMR stream, the
gateway program should stop trying to get NMR records and perform other work or
WAIT on the NMR ECB.

8 File not open. The specified NJE file control block had not been successfully opened;
the request is ignored.

12 An internal error occurred; RSCS cannot supply another record. This occurs only on file
streams; the file is closed and NJERJCOD has been set to show the error. NJERJECT
should not be issued by the gateway program in response to this return code; the
NJEFILE has already been closed internally. It should also notify the receiving system
that the file transmission is ending prematurely.

NJEGET

Chapter 6. Gateway Programming Interface 179

NJEOPEN

label

NJEOPEN filecb

,TYPE= SYSIN

SYSOUT

,WORK=  address

Purpose
The NJEOPEN macro opens a file for input or output (SYSIN or SYSOUT).

Parameters
label

is an optional assembler label.
filecb

is the address of the NJE file control block for the NJE file to be opened. This value may be specified
as an RX-type address or as register (2) - (12).

,TYPE=
specifies the type of file (SYSIN or SYSOUT) created by the gateway program when the filecb is
MODE=OUTPUT on the NJEFILE macro. If not specified, the value already in the NJESTYPE field of the
filecb is used. This field may be set by:

• Specifying the TYPE parameter on the filecb (if not reset)
• The TYPE value specified on a previously-processed NJEOPEN macro
• An NJESTYPE value set by the gateway program

,WORK=address
specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Usage Notes
1. After a file is opened for input (transmission), the NJESYIN or NJESYOUT flag in the NJE file control

block specifies the type of file that has been opened. For output files, however, the gateway program
must set the appropriate bit in the NJE file control block to specify the type of file to be opened. The
gateway program should issue the NJEOPEN macro to begin every file to be transmitted or received.
It should issue the NJECLOSE macro to end files (unless they are stopped or rejected, whereas the
NJEABORT or NJERJECT macro should be used).

2. Commands and messages are treated as records in an NMR stream. NMR streams are treated like files
that are open all the time. After it initializes, your gateway program should issue NJEOPEN to open an
NJE file control block to receive NMRs and an NJE file control block to send NMRs. It does not need to
issue NJECLOSE to close the streams.

Return Codes
Return Code Meaning

0 The file was opened successfully.

NJEOPEN

180 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Meaning

4 No input files are available to be opened. This can occur when there are no files in the
queue. It can also occur when the transmission algorithm or a query of the GATEWAY-
type link show that no queued files are eligible for transmission. The gateway program
should perform other work or wait on the file-arrival ECB.

8 Too many open files. For input and output NMR streams, the maximum number of files
is one. Your gateway program should ensure that this return code is not issued for NMR
streams.

Up to 32 streams can be used for input streams, depending on the value of the
STREAMS parameter. If the gateway program receives this return code when trying to
open an input file, the number of currently active streams specifies the stream limit.
The gateway program should not try to open files beyond its stream limit again.

There is no limit on the number of output files that can be open; this return code
should not be issued now.

12 Internal error occurred; the file was not opened. The NJERJCOD field in the file control
block contains the reason code.

NJEOPEN

Chapter 6. Gateway Programming Interface 181

NJEPUT

label

NJEPUT filecb

, length ,WORK=  address

,BUFF=(0)

,BUFF=  address

Purpose
The NJEPUT macro writes a record that has been received to spool. You can also use NJEPUT to pass a
received NMR element to RSCS for sending, execution (for commands), or delivery (for messages).

Parameters
label

is an optional assembler label.
filecb

is the address of the file's NJE file control block. This value may be specified as an RX-type address or
as register (2) - (12).

,BUFF=(0)
,BUFF=address

specifies the address of the buffer containing the record to be written. It may be specified as an
RX-type address, as register (0), or as registers (2) - (12). If not specified, the address is assumed to
be in R0.

,length
is the length of the buffer containing the record to be written. The length may be specified as an
assembler program label or constant, or as register (2) - (12). If not specified, the buffer length is
assumed to be specified in field NJERCLEN in the NJE file control block.

,WORK=address
specifies the address of the NJE work area that was originally passed to the gateway program as word
1 of the R1 parameter list. It may be specified as register (2) - (12). It may also be specified as a
fullword where the work area address has been stored. If not specified, the address specified on the
WORK parameter for the previous NJE macro is used.

Return Codes
Return Code Meaning

0 Record successfully written.

8 The NJE file control block had not been successfully opened by a previous NJEOPEN
macro; the request is ignored.

12 An internal error occurred (for example, RSCS could not write the file to spool);
the NJERJCOD field contains the reason code. The gateway program should issue
NJEABORT to close the file and purge it from spool. It should also supply a reason
code to tell the remote system to end the transmission.

NJEPUT

182 z/VM: 7.3 RSCS Networking Exit Customization

NJERJECT

label

NJERJECT filecb

,WORK=  address

Purpose
The NJERJECT macro stops processing of an input (transmitting) file.

Parameters
label

is an optional assembler label.
filecb

is the address of the file's NJE file control block. This value may be specified as an RX-type address or
as register (2) - (12).

,WORK=address
specifies the address of the NJE work area that was originally passed to the gateway program as
word 1 of the R1 parameter list. It may also be specified as a fullword where the work area address
has been stored. If not specified, the address specified on the WORK parameter for the previous NJE
macro is used.

Usage Notes
Before you run this macro, ensure that the NJERJCOD field in the NJE file control block contains the
reason the file was rejected. Often, this is a reason code sent by the receiving system. Depending on the
reason code, RSCS will either:

• Purge the file from spool
• Hold the file
• Queue on the link again for later transmission

Return Codes
Return Code Meaning

0 File is rejected. The input file is closed; it will be purged, held, or requeued.

8 File not open. The file was not successfully opened by a previous NJEOPEN macro or
was opened for output; the request is ignored.

NJERJECT

Chapter 6. Gateway Programming Interface 183

NJE File Control Block Fields
Your gateway program may examine or modify any of the following fields in the NJE file control block.

Field Name Length/ Value Examine/
Modify

Function

NJERCLEN 2 bytes Modify After an NJEGET function, it contains the length of the record
read from spool. Before an NJEPUT function, it contains the
length of the record to be written.

NJERJCOD 2 bytes Modify Contains a reason code indicating why a file is rejected (see
“Reason Code Responses” on page 173). When NJEOPEN or
NJEPUT issue return code 12 for an input file, this field shows
the reason the file was rejected. The gateway program can
examine this field to determine its recovery action.

The gateway program can also specify a reason code in this
field before issuing the NJERJECT macro to reject a file.

NJESTAT 1 byte Examine Contains status flags that describe the state of the file. The
following fields list the status flags accessible to the gateway
program.

NJEOPN X'80' Examine The NJE file control block has been opened by an NJEOPEN
function.

NJEFIL X'40' Examine The NJE file control block is for a file stream.

NJENMR X'20' Examine The NJE file control block is for an NMR stream.

NJESTYPE 1 byte Modify Shows if the file-type stream is SYSIN or SYSOUT. This field
should be set before NJEOPEN is issued for a MODE=OUTPUT
NJE file control block. The following bits are defined in this
field.

NJESYIN X'80' Modify The NJE file control block is processing a SYSIN file.

NJESYOUT X'40' Modify The NJE file control block is processing a SYSOUT file.

NJESMODE 1 byte Modify Shows if a file is INPUT or OUTPUT. This field should be set
before NJEOPEN is issued for a file control block. The following
bits are defined in this field.

NJEINP X'80' Modify This is an input file (for transmission). Only the NJEGET
and NJERJECT macros can be issued between invocations of
NJEOPEN and NJECLOSE.

NJEOUTP X'40' Modify This is an output file (being received). Only NJEPUT and
NJEABORT macros can be issued between invocations of
NJEOPEN and NJECLOSE.

FCB Fields

184 z/VM: 7.3 RSCS Networking Exit Customization

NJEFILE

label NJEFILE STREAM= FILE

NMR

,MODE= INPUT

OUTPUT

,TYPE= SYSIN

SYSOUT

Purpose
The NJEFILE macro creates an NJE file control block, which the gateway routine can use to process an
NJE stream. An NJE file can represent a file or a series of NMRs. Files are described as SYSIN or SYSOUT;
it can be input (transmitting) or output (receiving).

Parameters
label

is the assembler label that references the NJE file control block. You must specify a unique label on
each NJEFILE macro.

STREAM=
specifies the type of stream (FILE or NMR) associated with the NJE file control block.

MODE=
specifies the type of processing the gateway program may perform on the file.
INPUT

The gateway program may perform NJEOPEN and NJECLOSE functions on the file. Between these
operations, it may perform only NJEGET and NJERJECT functions.

OUTPUT
The gateway program may perform NJEOPEN and NJECLOSE functions on the file. Between these
operations, it may perform only NJEPUT and NJEABORT functions.

TYPE=
specifies the type of data (SYSIN or SYSOUT) processed on the stream when STREAM=FILE and
MODE=OUTPUT are also specified.

Usage Notes
The NJEFILE macro expands to produce DC instructions to define a file control block, which can be
mapped with the NJEFILED macro. If your gateway program is reentrant, it should copy the model file
descriptions, generated by NJEFILE, into a work area for the appropriate stream.

NJEFILE

Chapter 6. Gateway Programming Interface 185

NJEFILED

NJEFILED

label

NJEFILED

Purpose
The NJEFILED macro creates a DSECT that maps the NJE file control blocks generated by the NJEFILE
macro.

Parameters
label

is the name used for the mapping DSECT. The default is NJEFILED.

NJEFILED

186 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 7. TCP/IP LPR Exit Points

The TCP/IP LPR link driver uses exits to build device-specific data streams for transmission and to control
the remote host and port to which the transmission is destined. Exit routines are called at six points in the
LPR link driver's operational cycle.

Each LPR exit routine contains entry points, which provide the following additional processing for each of
the six calls.

Entry Point Function

Initialization Called when the LPR link driver is being initialized.

TAG Processing Called when the LPR link driver opens a new spool file.

Record Processing Called when a record is read from the input spool file for the LPR link
driver.

End of File Processing Called when a file as been completely read from the input spool file for the
LPR link driver.

Control File Processing Called when the LPR link driver needs a control file.

Termination Called when the LPR link driver is terminating.

The termination routine is not necessary to support an LPR link driver; you do not have to supply this
routine. An exit may require the termination routine for potential clean up processing such as returning
any storage obtained in any of the other five exit routines.

The order in which the exit routines are listed above is not necessarily the order in which the LPR link
driver will call them when processing a print stream.

The LPR exit routine module that contains the exit routines to be used for a specific LPR-type link must
be identified on the PARM configuration statement for the link or in the link operational parameters on
the RSCS DEFINE or START command. For more information, see z/VM: RSCS Networking Planning and
Configuration and z/VM: RSCS Networking Operation and Use.

LPR Programming Considerations
The programming requirements for the LPR exit routines are described in the following sections.

Required Values
The first six fullwords of each LPR exit routine module must contain the following values:
Word 1

Address of the initialization routine
Word 2

Address of the TAG processing routine
Word 3

Address of the record processing routine
Word 4

Address of the end of file processing routine
Word 5

Address of the control file processing routine
Word 6

Address of the termination routine, or 0 if the routine is not provided

© Copyright IBM Corp. 1990, 2022 187

Note: For compatibility with exits written prior to these enhancements, the LPR link driver will accept 5 or
6 fullwords of addresses at the beginning of an exit routine module.

Entry Conditions
When an LPR exit routine receives control, it may be passed the following information:

• Address of the CVT
• Address of the LINKTABL entry
• Remote host IP address
• Remote host name
• Remote host port
• Remote printer queue name
• Printer flag fields
• User-defined filter
• User-defined prefix string
• User-defined suffix string
• User-defined separator page setting
• User-defined translate table

All exit routines, except the LPR initialization and termination routines, also receive a pointer to the
TAG element. The TAG element contains information about a file's characteristics. The exit routine also
receives the EPARM value for the link and the address of the print record vector. The EPARM value,
specified on the PARM configuration statement or on the RSCS DEFINE or START command, contains a
parameter string that is associated with the LPR exit routine.

Printer Flag Fields
Each LPR exit routine is passed the address of the following printer flag fields.

Table 4. Printer Flag Fields and Values

Bit Field Name Values

0 PASS= 0
One pass is performed on the file; RSCS sends the file
directly to the line printer daemon.

1
Two passes are performed on the file. On the first pass
(CURRENT_PASS=1), RSCS first counts the number of bytes
in the file; no data within the file is sent. On the second
pass, RSCS then sends the file on to the line printer
daemon.

1 CTLIST= 0
Data is sent first.

1
Control file is sent first.

2 CURRENT_PASS= 0
This is the second pass through the file.

1
This is the first pass through the file.

188 z/VM: 7.3 RSCS Networking Exit Customization

Print Record Vector
The LPR exits use the logical print record vector to pass a data stream to a link driver exit for conversion
from EBCDIC to ASCII or binary. The logical print record vector is also used to pass a control file between
the exit routine and the link driver. The "Entry Conditions" section for each exit routine describes the
contents of the print record vector.

Exit Conditions
When an LPR exit routine returns control to RSCS, the registers contain these values:

Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

LPR Exit Routines
The following sections describe each of the exits supported for LPR-type links. For more information, see
“Required Values” on page 187.

LPR Initialization Routine
This exit routine initializes the LPR-type link. It can also customize where files are to be printed in the
TCP/IP network by changing TCP/IP-specific information that was defined by the link PARM statement.

The exit routine is passed an address to these areas, which contain information about the line printer
daemon:

• Remote host IP address
• Remote host port
• Remote printer queue name
• Link driver flag fields (see Table 4 on page 188)
• Host name
• User-defined prefix string (length followed by data)
• User-defined suffix string (length followed by data)
• User-defined filter
• User-defined translation table
• User-defined separator page setting

If you specify RENT when link-editing this routine, any storage that will be used by the remaining entry
points must be obtained by issuing a GCS GETMAIN macro. The address of this storage must be placed
in word 6 of the parameter list so that the other routines can access the work area. In this case, it is
required that a termination exit routine issue the GCS FREEMAIN macro to return the storage obtained in
the initialization exit routine.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 7. TCP/IP LPR Exit Points 189

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0 on entry; on return, it may contain the address of the work area for the LPR exit
routines

Word 7 (+24)
Address of a fullword containing the remote host IP address

Word 8 (+28)
Address of a fullword containing the remote host port

Word 9 (+32)
Address of the remote printer queue name

Word 10 (+36)
Address of the LPR link driver flags (see Table 4 on page 188)

Word 11 (+40)
Address of a 255-character host name

Word 12 (+44)
Address of a fullword containing the length of a user-defined prefix string followed
by the 250-byte prefix string

Word 13 (+48)
Address of a fullword containing the length of a user-defined suffix string followed
by the 250-byte suffix string

Word 14 (+52)
Address of a 1-character user-defined filter

Word 15 (+56)
Address of a 256-character user-defined translate table

Word 16 (+60)
Address of a 4-character user-defined separator page setting

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPR Initialization routine sets the register conditions described in “Exit Conditions” on page
189.

190 z/VM: 7.3 RSCS Networking Exit Customization

Return Codes
Return Code Results

0 Tells RSCS that initialization processing is complete

4 Tells RSCS that an EPARM value was specified, but the exit routine does not need it;
the LPR link driver terminates.

8 Tells RSCS that a specified EPARM value was not valid; the LPR link driver terminates.

12 Tells RSCS to terminate the LPR link driver.

16 Tells RSCS to terminate the LPR link driver.

LPR TAG Processing Routine
This exit routine examines a file's TAG element. Based on a file's characteristics, the exit routine can
create header lines or separator pages. The exit routine inserts the characters that RSCS passes to the
TCP/IP line printer daemon into the print record portion of the print record vector. This exit may be called
twice if doing two passes on the file.

The LPR TAG processing exit can also be used to customize where individual files are to be printed in a
TCP/IP network. Your exit routine can change TCP/IP-specific information that was defined by the PARM
statement for the LPR-type link. The exit routine is passed an address to the following information, which
can be modified for the line printer daemon information:

• Remote host IP address
• Remote host port
• Remote printer queue name
• Link driver flag fields (see Table 4 on page 188)
• Host name
• User-defined prefix string (length followed by data)
• User-defined suffix string (length followed by data)
• User-defined filter
• User-defined translation table
• User-defined separator page setting

The exit routine must specify the length of the data that is passed back to the LPR link driver in the data
count field of the print record vector. If the exit routine does not generate data, it should set the data
count field to zero. If the data count is negative or greater than 1280 bytes, the link terminates with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 7. TCP/IP LPR Exit Points 191

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Byte 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of a fullword containing the remote host IP address
Word 8 (+28)

Address of a fullword containing the remote host port
Word 9 (+32)

Address of the remote printer queue name
Word 10 (+36)

Address of the LPR link driver flags (see Table 4 on page 188)
Word 11 (+40)

Address of a 255-character host name
Word 12 (+44)

Address of a fullword containing the length of a user-defined prefix string followed
by the 250-byte prefix string

Word 13 (+48)
Address of a fullword containing the length of a user-defined suffix string followed
by the 250-byte suffix string

Word 14 (+52)
Address of a 1-character user-defined filter

Word 15 (+56)
Address of a 256-character user-defined translate table

Word 16 (+60)
Address of a 4-character user-defined separator page setting

R2 - R12 Not applicable

R13 Save area address

R14 Return address

192 z/VM: 7.3 RSCS Networking Exit Customization

Exit Conditions
On return, the LPR Tag processing routine sets the register conditions described in “Exit Conditions” on
page 189.

Return Codes
Return Code Results

0 Tells RSCS that the TAG element processing is complete.

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the LPR link driver.

12 Tells RSCS to terminate the LPR link driver.

16 Tells RSCS to terminate the LPR link driver.

LPR Record Processing Routine
The record processing routine may translate the print data, for example from EBCDIC to ASCII. If the exit
routine changes the length of the data, the data count field (pointed to by Bytes 0 - 1 in Word 3 of the
parameter list) must reflect this change before returning to the link driver. When the link driver regains
control from this entry point, the data from the print record moves into the link driver's output buffer.
When it is full, the link driver sends the buffer to the TCP/IP line printer daemon. This exit is called for
each record of the spool file being sent to a TCP/IP line printer daemon.

Your exit routine must set the data count field in the print record vector to reflect the length of the data
passed to the link driver. If your exit routine does not send a particular print record, it should set the data
count field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 7. TCP/IP LPR Exit Points 193

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Byte 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of a fullword containing the remote host IP address
Word 8 (+28)

Address of a fullword containing the remote host port
Word 9 (+32)

Address of the remote printer queue name
Word 10 (+36)

Address of the LPR link driver flags (see Table 4 on page 188)
Word 11 (+40)

Address of a 255-character host name
Word 12 (+44)

Address of a fullword containing the length of a user-defined prefix string followed
by the 250-byte prefix string

Word 13 (+48)
Address of a fullword containing the length of a user-defined suffix string followed
by the 250-byte suffix string

Word 14 (+52)
Address of a 1-character user-defined filter

Word 15 (+56)
Address of a 256-character user-defined translate table

Word 16 (+60)
Address of a 4-character user-defined separator page setting

R2 - R12 Not applicable

R13 Save area address

R14 Return address

194 z/VM: 7.3 RSCS Networking Exit Customization

Exit Conditions
On return, the LPR record processing routine sets the register conditions described in “Exit Conditions” on
page 189.

Return Codes
Return Code Results

0 Tells RSCS that the spool record element processing is complete.

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the LPR link driver.

12 Tells RSCS to terminate the LPR link driver.

16 Tells RSCS to terminate the LPR link driver.

LPR End of File Routine
This exit routine allows for additional information to be sent to the TCP/IP line printer daemon. It is
called after the last spool file record has been processed. This enables any specific device-dependent
information (for example, feed paper to the top of a new page) to be transmitted.

Your exit routine must set the data count field in the print record vector to reflect the length of the data
that is passed to the link driver. If your exit routine does not generate any data, it should set the data
count field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user
ABEND 011.

Entry Conditions

Register Contents

R0 Not applicable

Chapter 7. TCP/IP LPR Exit Points 195

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Byte 3 - n

Print record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of a fullword containing the remote host IP address
Word 8 (+28)

Address of a fullword containing the remote host port
Word 9 (+32)

Address of the remote printer queue name
Word 10 (+36)

Address of the LPR link driver flags (see Table 4 on page 188)
Word 11 (+40)

Address of a 255-character host name
Word 12 (+44)

Address of a fullword containing the length of a user-defined prefix string followed
by the 250-byte prefix string

Word 13 (+48)
Address of a fullword containing the length of a user-defined suffix string followed
by the 250-byte suffix string

Word 14 (+52)
Address of a 1-character user-defined filter

Word 15 (+56)
Address of a 256-character user-defined translate table

Word 16 (+60)
Address of a 4-character user-defined separator page setting

R2 - R12 Not applicable

R13 Save area address

R14 Return address

196 z/VM: 7.3 RSCS Networking Exit Customization

Exit Conditions
On return, the LPR end of file processing routine sets the register conditions described in “Exit
Conditions” on page 189.

Return Codes
Return Code Results

0 Tells RSCS that the end of file processing is complete.

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the LPR link driver.

12 Tells RSCS to terminate the LPR link driver.

16 Tells RSCS to terminate the LPR link driver.

LPR Control File Routine
This exit routine creates control file information that is sent to the TCP/IP line printer daemon. It is
entered once for each spool file that is selected for transmission; this enables the exit routine to specify
any device-dependent information.

Your exit routine must set the data count field in the print record vector to reflect the length of the data
that is passed to the link driver. If your exit routine does not generate any data, it should set the data
count field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user
ABEND 011.

On entry, bytes 0 and 1, which are pointed to by the address of word 3, contain the length of the data file
name. This is followed by the data file name, which has this format:

• X'DFA' (prefix)
• 3-byte sequence number
• File origin node name, which may be up to 8 bytes long

This name is from the HOSTDAFN LPR parm statement or the file's TAG and should be used in control
file commands, where appropriate.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 7. TCP/IP LPR Exit Points 197

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print vector that contains:
Byte 0 - 1

Number of bytes in the control file record
Byte 2

Not applicable
Byte 3 - n

Control file record data (where n is a maximum of 1280); on entry, this is the
length of the data file name

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of the work area established by the initialization routine

Word 7 (+24)
Address of a fullword containing the remote host IP address

Word 8 (+28)
Address of a fullword containing the remote host port

Word 9 (+32)
Address of the remote printer queue name

Word 10 (+36)
Address of the LPR link driver flags (see Table 4 on page 188)

Word 11 (+40)
Address of a 255-character host name

Word 12 (+44)
Address of a fullword containing the length of a user-defined prefix string followed
by the 250-byte prefix string

Word 13 (+48)
Address of a fullword containing the length of a user-defined suffix string followed
by the 250-byte suffix string

Word 14 (+52)
Address of a 1-character user-defined filter

Word 15 (+56)
Address of a 256-character user-defined translate table

Word 16 (+60)
Address of a 4-character user-defined separator page setting

R2 - R12 Not applicable

R13 Save area address

R14 Return address

198 z/VM: 7.3 RSCS Networking Exit Customization

Exit Conditions
On return, the LPR control file processing routine sets the register conditions described in “Exit
Conditions” on page 189.

Return Codes
Return Code Results

0 Tells RSCS that the control file processing is complete.

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the LPR link driver.

12 Tells RSCS to terminate the LPR link driver.

16 Tells RSCS to terminate the LPR link driver.

LPR Termination Routine
This exit routine is called just before the LPR-type link terminates to perform any special termination
processing that might be needed. As supplied, RSCS does not provide for any special processing when an
LPR link is terminated. This exit routine is optional.

Attention

This exit might be required if any of the other LPR exit routines (such as initialization) obtain storage
from GCS which has not yet been returned to GCS.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 7. TCP/IP LPR Exit Points 199

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

0
Word 8 (+28)

Address of a fullword containing remote host port
Word 9 (+32)

Address of the remote printer queue name
Word 10 (+36)

Address of the LPR link driver flags (see Table 4 on page 188)
Word 11 (+40)

Address of a 255-character host name
Word 12 (+44)

Address of a fullword containing the length of a user-defined prefix string followed
by the 250-byte prefix string

Word 13 (+48)
Address of a fullword containing the length of a user-defined suffix string followed
by the 250-byte suffix string

Word 14 (+52)
Address of a 1-character user-defined filter

Word 15 (+56)
Address of a 256-character user-defined translate table

Word 16 (+60)
Address of a 4-character user-defined separator page setting

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPR Termination routine sets the register conditions described in “Exit Conditions” on page
189.

Sample LPR Exit Routines
The following sections describe the sample LPR exit routine modules supplied by IBM. These exit routine
modules are provided in the sample load library, RSCSEXIT LOADLIB.

Sample LPR Exits

200 z/VM: 7.3 RSCS Networking Exit Customization

Generally, the sample exit routines respond to options supplied on the CP TAG, SPOOL, or CLOSE
commands to perform any needed translations of the print data. These commands are usually specified
in the following forms (cuu is the virtual device number or a symbolic name and option is the command
operand and values):

tag dev cuu option
spool cuu option
close cuu option

Attention

The sample LPR exit routines are provided for illustrative purposes and on an as is basis only. However,
you may be able use the sample exits with little or no modifications, depending on your installation's
needs and configuration.

If you choose to support the LPR link drivers differently or to support additional devices, you can modify
a sample module or use the sample as a guide for creating your own exit routines.

LPRXONE Routine
The LPRXONE sample exit routine performs functions for one printer queue. It also performs simple
translation of data to ASCII.

Attention

ASCII translation is controlled by the value specified on the userid operand of the TAG command. The
following values for userid have special meaning:
ASCII

The file will not be translated into ASCII. No carriage control will be added by the exit. Any imbedded
control characters within the file will be left as is.

ASCIIC
The file will not be translated into ASCII. Carriage controls will be added after each data record by
the exit. Any imbedded control characters within the file will be translated to an ASCII # character.

If userid is set to any other value, the file will be translated and carriage control will be performed.

If a file is sent from an NJE network, the NJE external writer name can be used to specify the userid
value.

Available EPARM Parameters
When using the LPRXONE routine, you can specify parameters in the EPARM value on the PARM
configuration statement or on the RSCS DEFINE or START command.

Notes:

1. Because the EPARM field is limited to 239 bytes, these parameters may be useful only for small
amounts of data.

2. Any command received through the CP SMSG facility or the RSCS console will be truncated at 132
bytes.

3. EPARM parameters must be separated by one or more blanks. They can be specified in any order.

The following parameters are supported:
Config=ddname

specifies the DDNAME which has been defined as an exit configuration file. If the DDNAME does not
exist, the LPRXONE initialization routine will pass back a return code to cause the LPR-type link to
issue an error message and drain. If this exit parameter is not used, a configuration file is not read
by the LPRXONE exit, causing existing defaults to be used for values which can be defined by the
configuration file. For more information, see “LPRXONE Configuration file” on page 203.

Sample LPR Exits

Chapter 7. TCP/IP LPR Exit Points 201

CONVert=No
CONVert=Yes

specifies whether to allow protocol conversion. The default is NO. This function has been added for
printers moved from coax connected protocol converters to LAN attached, connected to multiprotocol
cards for TCP/IP. Some applications use the functions built in to protocol converters.

The LPRXONE exit will look for strings starting with a header defined by the PCL exit parameter and
ending with a trailing X'4A' character, which surround pairs of bytes that spell out PCL commands.
These pairs of bytes will be packed into single bytes that are the equivalent PCL bytes, which are
already in ASCII. Multiple PCL strings can be contained in each record of the print file as long as each
string contains the X'4A' trailing character.

In addition, the LPRXONE exit will look for the SNA Character String (SCS) transparency strings
contained anywhere within each record. The SCS transparency string is defined with a X'35' followed
by a 1-byte length, followed by data for the defined length that is sent unaltered (not translated).
Multiple SCS transparency strings can be contained within a single record.

FF=
specifies how printer form-feeds are performed.
TOP

Form-feed is sent in the front of the file.
Bottom

Form-feed is sent after the file; this is the default.
None

Form-feed is not sent.
FIlter=filter

specifies the printer filter used in the control file sent to the line printer daemon. One EBCDIC
character is passed; if it is uppercase alphabetic, it will be translated to lowercase. The default is f.

FOrm=value
specifies the default form sent to the printer when one has not been supplied when the file was
spooled to RSCS.

PCL=hex_string
specifies a 2- to 8-character hexadecimal string which defines the header for PCL strings. When the
CONVERT=YES exit parameter is specified, the LPRXONE exit will search for this string in each record
of the file to be printed. An even number of characters must be specified; the default is 6A79.

Prefix=hex_string
specifies an optional hexadecimal string to be sent in front of each file; this string is not translated. Up
to 200 bytes of data can be specified. By default, a prefix string is not sent with each file.

The prefix string can be split with part sent before the separator page and part sent after. The string
will be split if the X'FF04' divider characters are detected within the prefix string. The part before the
divider characters will be sent prior to the separator page with the remaining sent after.

Sep=
specifies whether a separator page will be printed for each file.
Yes

Prints a separator page; this is the default. The origin user ID and node ID and distribution
information are printed in large characters; other file information is printed in small characters in
the Times-Bold font.

No
Does not print a separator page

Host
An L control file record is sent to request that the host produce the separator page.

2p
Produces a two-page separator page. This is useful with duplexing so that the print data starts on
a fresh page.

Sample LPR Exits

202 z/VM: 7.3 RSCS Networking Exit Customization

SUFfix=hex_string
specifies an optional hexadecimal string to be sent after each file; the string is not translated. Up to
200 bytes of data can be specified. By default, a suffix string is not sent with each file.

LPRXONE Configuration file
The LPRXONE sample exit routine can read a configuration file. This configuration file can supply the
following:

• Translation tables to override the ones used by the exit
• Overrides for the control file created by LPRXONE

The configuration file can have any desired file name and file type and must be on a disk accessed by the
RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME used
must be specified on the Config= parameter in the EPARM value on the PARM statement for the link in the
RSCS CONFIG file or in the link operational parameters on the RSCS DEFINE or START command.

The following is an example of a DDNAME entry in the PROFILE GCS in which LPRONE is the defined
DDNAME and LPR CONFIG is the name of the configuration file:

'FILEDEF LPRONE DISK LPR CONFIG *'

The following is an example of the PARM statement for an LPR-type link named LPR using the DDNAME
defined on the FILEDEF statement in the PROFILE GCS:

PARM LPR EXIT=LPRXONE EPARM='C=LPRONE'

Layout of the LPRXONE Configuration File
The following rules apply to the LPRXONE configuration file:

• An asterisk (*) in column one denotes a comment line.
• Any line that does not have an asterisk (*) in column one will be interpreted as a configuration entry.
• All configuration entries must be capitalized.

The following configuration records are supported:

ASCII=string
specifies a table for translating ASCII control characters, overriding the default used by the exit.
LPRXONE uses this translation table when files are already in ASCII and the user ID field of the TAG is
set to ASCIIC. Up to 512 hexadecimal characters (0 - 9, A - F) may be specified on multiple ASCII=
records to replace the 256-byte translation table.

DOMAINAME=string
specifies a domain name, up to 255 characters, to be appended after the host name of the H control
file record. A period (.) will be inserted between the host name and domain name. This record can be
used to add a domain name after the host name, which by default is the node name where the file
originated or as specified in the HOSTNAME= record.

HOSTNAME=string
specifies a host name, up to 255 characters, for the H control file record, overriding the default, which
is the node name where the file originated.

TOASCII=string
specifies a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCIIC= records to replace the
256-byte translation table.

TOASCIIC=string
specifies a table for EBCDIC to ASCII translation of the LPR control file, overriding the default used
by the exit. Up to 512 hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCIIC=
records to replace the 256-byte translation table.

Sample LPR Exits

Chapter 7. TCP/IP LPR Exit Points 203

USERNAME=string
specifies a user name, up to 32 characters, for the P control file record, overriding the default name
used by the exit, which is the user name of the file originator. This record can be used to cause all
error messages to be sent to a central location.

LPRXPSE Routine
The LPRXPSE exit routine handles one printer queue to a PostScript-only printer. This exit routine
assumes that the remote printer is PostScript only, or that it will switch into PostScript mode when it
receives a %!PS string following an EOT (X'04') character.

Available EPARM Parameters
When using the LPRXPSE routine, you can specify parameters in the EPARM value on the PARM
configuration statement or on the RSCS DEFINE or START command.

Notes:

1. Because the EPARM field is limited to 239 bytes, these parameters may be useful only for small
amounts of data.

2. Any command received through the CP SMSG facility or the RSCS console will be truncated at 132
bytes.

3. EPARM parameters must be separated by one or more blanks. They can be specified in any order.

The following parameters are supported:
Config=ddname

specifies the DDNAME which has been defined as an exit configuration file. If the DDNAME does not
exist, the LPRXPSE initialization routine will pass back a return code to cause the LPR-type link to
issue an error message and drain. If this exit parameter is not used, a configuration file is not read
by the LPRXPSE exit, causing existing defaults to be used for values which can be defined by the
configuration file. For more information, see “LPRXPSE Configuration file” on page 206.

Ehandler=
specifies whether a PostScript error handler will be downloaded to the printer the first time a file is
sent to the printer after the link is started. This error handler enables any errors to be printed, so the
information will not be lost.
Yes

The error handler is downloaded; this is the default.
No

The error handler is not downloaded.
EOT=

specifies whether EOT characters will be inserted.
Yes

EOT characters will be inserted after the separator page, data file, and trailer page; this is the
default.

No
EOT characters will not be inserted.

FIlter=filter
specifies the printer filter used in the control file sent to the line printer daemon. One EBCDIC
character is passed; if it is uppercase alphabetic, it will be translated to lowercase. The default is f.

FOrm=OrFnFsLs
specifies the default orientation, font name, font size, and additional leading size to use when printing
plain text files, overriding the defaults used by the exit. The spool file form name can be used to
further override the values specified here.

Note: The actual fonts selected must be installed and used by the printer.

Sample LPR Exits

204 z/VM: 7.3 RSCS Networking Exit Customization

The following values can be specified for OrFnFsLs (or allowed to default as indicated):

Or
is the file orientation:
PO

Portrait (default)
LA

Landscape
Fn

is the font name code:
CB

Courier-Bold
CI

Courier-Oblique
CP

Courier (default)
CX

Courier-BoldOblique
HB

Helvetica-Bold
HI

Helvetica-Oblique
HP

Helvetica
HX

Helvetica-BoldOblique
SP

Symbol
TB

Times-Bold
TI

Times-Italic
TP

Times-Roman
TX

Times-BoldItalic
Fs

is the font size, 04 - 99. The default is 11 for portrait and 10 for landscape orientation.
Ls

is the additional leading size, 0.0 - 9.9. This value is added to the font size to give leading, and is
specified as 00 - 99. The default is 09 for portrait and 12 for landscape.

Note: Any entry not one of the above will cause the default to be used for Or, Fn, Fs, and Ls. The value
supplied here will be substituted for the form if the form on the spool file does not start with P+, P-,
LA, or PO.

Prefix=hex_string
specifies an optional hexadecimal string to be sent in front of each file; this string is not translated. Up
to 200 bytes of data can be specified. By default, a prefix string is not sent with each file.

The prefix string can be split with part sent before the separator page and part sent after. The string
will be split if the X'FF04' divider characters are detected within the prefix string. The part before the
divider characters will be sent prior to the separator page with the remaining sent after.

Sample LPR Exits

Chapter 7. TCP/IP LPR Exit Points 205

Sep=
specifies whether a separator page will be printed for each file.
Yes

Prints a separator page; this is the default. The origin user ID, node ID, and distribution
information are printed in large characters; other file information is printed in small characters
in the Times-Bold font.

No
Does not print a separator page.

Host
Sends an L control file record to request that the host produce the separator page.

2p
Produces a two-page separator page. This is useful with duplexing so that the print data starts on
a fresh page.

SUFfix=hex_string
specifies an optional hexadecimal string to be sent after each file; the string is not translated. Up to
200 bytes of data can be specified. By default, a suffix string is not sent with each file. See note “5” on
page 163.

Trailer=
specifies whether a trailer page will be printed.
Yes

Prints a trailer page after the file. It is identical to the header page, with the addition of a count of
the bytes in the file.

No
Does not print a trailer page; this is the default.

LPRXPSE Configuration file
The LPRXPSE sample exit routine can read a configuration file. This configuration file can supply the
following:

• Translation table to override the one used by the exit
• Postscript program to override the one sent to the printer when printing plain text files
• Additional font names used when printing plain text files
• Overrides for the control file created by LPRXPSE

The configuration file can have any desired file name and file type and must be on a disk accessed by the
RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME used
must be specified on the Config= parameter in the EPARM value on the PARM statement for the link in the
RSCS CONFIG file or in the link operational parameters on the RSCS DEFINE or START command.

The following is an example of a DDNAME entry in the PROFILE GCS in which LPRPSE is the defined
DDNAME and LPR CONFIG is the name of the configuration file:

'FILEDEF LPRPSE DISK LPR CONFIG *'

The following is an example of the PARM statement for an LPR-type link named LPR using the DDNAME
defined on the FILEDEF statement in the PROFILE GCS:

PARM LPR EXIT=LPRXPSE EPARM='C=LPRPSE'

Layout of the LPRXPSE Configuration File
The following rules apply to the LPRXPSE configuration file:

• An asterisk (*) in column one denotes a comment line.
• Any line that does not have an asterisk (*) in column one will be interpreted as a configuration entry.

Sample LPR Exits

206 z/VM: 7.3 RSCS Networking Exit Customization

• All configuration entries must be capitalized.

The following configuration records are supported:

DOMAINAME=string
specifies a domain name, up to 255 characters, to be appended after the host name of the H control
file record. A period (.) will be inserted between the host name and domain name. This record can be
used to add a domain name after the host name, which by default is the node name where the file
originated or as specified in the HOSTNAME= record.

FONT=xxname
specifies a 2-character font name code (xx) followed by a 32-character font name. There should be
no blanks between the code and the full font name. Multiple records can be provided for supplying as
many additional fonts as required. The font name code should be unique on each FONT= record. In
addition, the fonts must be loaded and available at the printer.

The available fonts are:
CB

Courier-Bold
CI

Courier-Oblique
CP

Courier (exit default)
CX

Courier-BoldOblique
HB

Helvetica-Bold
HI

Helvetica-Oblique
HP

Helvetica
HX

Helvetica-BoldOblique
SP

Symbol
TB

Times-Bold
TI

Times-Italic
TP

Times-Roman
TX

Times-BoldItalic

HOSTNAME=string
specifies a host name, up to 255 characters, for the H control file record, overriding the default, which
is the node name where the file originated.

PSCRIPT='string'
specifies a replacement PostScript program to be used when printing a plain text file. The PostScript
program must be enclosed within quotes. Anything after the ending quote will be ignored allowing for
comments. For example:

PSCRIPT='this is line one' comment for line one
PSCRIPT='this is line two'

Sample LPR Exits

Chapter 7. TCP/IP LPR Exit Points 207

Multiple PSCRIPT= records can be provided in order to supply the entire program. LPRXPSE will add a
carriage return (X'0A') after each record, and will translate the record from EBCDIC to ASCII.

Note: When replacing the PostScript program, the ability to tailor the file orientation, font name, font
size, and additional leading size through a FORM is lost. The supplied PostScript program must define
all of these.

TOASCII=string
specifies a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCII= records to replace the
256-byte translation table.

TOASCIIC=string
specifies a table for EBCDIC to ASCII translation of the LPR control file, overriding the default used
by the exit. Up to 512 hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCIIC=
records to replace the 256-byte translation table.

USERNAME=string
specifies a user name, up to 32 characters, for the P control file record, overriding the default name
used by the exit, which is the user name of the file originator. This record can be used to cause all
error messages to be sent to a central location.

Using the FORM Operand of the CP SPOOL Command
When using the LPRXPSE exit routine, you can also specify the following values on the FORM operand of
the SPOOL command.

FORM=value
specifies how the file will be printed:
P-SCRIPT

PostScript programs.
P+SCRIPT

PostScript programs (streaming); see note “2” on page 209.
P-ASCII

PostScript programs in ASCII; see note “3” on page 209.
P+ASCII

PostScript ASCII (streaming); see note “4” on page 209.
OrFnFsLs

Text file information; if all defaults are used, the value is POCP1109; see note “1” on page 209.
Or

is the file orientation:
PO

Portrait (default)
LA

Landscape
Fn

is the font name code:
CB

Courier-Bold
CI

Courier-Oblique
CP

Courier (default)
CX

Courier-BoldOblique

Sample LPR Exits

208 z/VM: 7.3 RSCS Networking Exit Customization

HB
Helvetica-Bold

HP
Helvetica

HI
Helvetica-Oblique

HX
Helvetica-BoldOblique

SP
Symbol

TB
Times-Bold

TI
Times-Italic

TP
Times-Roman

TX
Times-BoldItalic

Fs
is the font size, 04 - 99. The default is 11 for portrait and 10 for landscape orientation.

Ls
is the additional leading size, 0.0 - 9.9. This value is added to the font size to give leading, and
is specified as 00 - 99. The default is 09 for portrait and 12 for landscape.

Notes:

1. If the FORM value does not start with the characters PO or LA, the exit routine checks the first record
for the string %!PS in EBCDIC and ASCII. If found, it will treat the file as a PostScript file.

2. Streaming means that the spool file is treated as a stream of bytes without regard to record
boundaries. Because CP spooling removes trailing blanks, records are padded with blanks up to 80
bytes. Wide PostScript files can be printed by packing them into blocks of 80 bytes, separating the
records with linefeeds and punching them to the driver.

3. ASCII means that the data is ASCII and need not be translated before being sent.
4. ASCII streaming is useful for files that were received using the BINARY subcommand of the FTP

command. These files should be punched 80 bytes per record to the driver.

Sample LPR Exits

Chapter 7. TCP/IP LPR Exit Points 209

Sample LPR Exits

210 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 8. TCP/IP LPD Exit Points

The LPD link drivers use exits to build specific data streams for acceptance into the RSCS network and to
control the remote node and user ID to which the print data is destined. Exit routines are called at seven
points in the LPD link driver's operational cycle.

Each LPD exit routine contains entry points, which provide the following additional processing for each of
the seven calls:

Entry Point Function

Initialization Called when the LPD link driver is being initialized.

Print Command Processing Called when the LPD link driver receives a print command from an LPR
client.

Print Job Command
Processing

Called when the LPD link driver receives a print job command from an LPR
client.

Data Processing Called when data has been read from an LPR client for the LPD link driver.

End of File Processing Called when a file has been completely read from an LPR client for the
LPD link driver.

Control File Processing Called for each line of a control file read from an LPR client for the LPD link
driver.

Termination Called when the LPD link driver is terminating.

The termination routine is not necessary to support an LPD link driver; you do not have to supply this
routine. An exit may require the termination routine for potential clean up processing such as returning
any storage obtained in any of the other six exit routines.

The order in which the exit routines are listed above is not necessarily the order in which the LPD link
driver will call them when processing a print stream from an LPR client.

The LPD exit routine module that contains the exit routines to be used for a specific LPD-type link must
be identified on the PARM configuration statement for the link or in the link operational parameters on
the RSCS DEFINE or START command. For more information, see z/VM: RSCS Networking Planning and
Configuration and z/VM: RSCS Networking Operation and Use.

LPD Programming Considerations
The programming requirements for the LPD exit routines are described in the following sections.

Required Values
The first seven fullwords of each LPD exit routine module must contain these values:
Word 1

Address of the initialization routine
Word 2

Address of the print command processing routine
Word 3

Address of the print job command processing routine
Word 4

Address of the data processing routine

© Copyright IBM Corp. 1990, 2022 211

Word 5
Address of the end of file processing routine

Word 6
Address of the control file processing routine

Word 7
Address of the termination routine, or 0 if the routine is not provided

Entry Conditions
When an LPD exit routine receives control, it may be passed the following information:

• Address of the CVT
• Address of the LINKTABL entry
• Address of a SOCKADDR structure for the remote host

This is a 16-byte structure containing the addressing family, port number, and IP address of the line
printer remote host. This information is not passed to the initialization or termination routines.

All exit routines, except the initialization and termination routines, also receive a pointer to the TAG
element. The TAG element contains information about a file's characteristics. The exit routine also
receives the EPARM value for the link and the address of the print record vector. The EPARM value,
specified on the PARM configuration statement or on the RSCS DEFINE or START command, contains a
parameter string that is associated with the LPD exit routine.

Order of the Control File and Data File
It is recommended that the control file be sent by the LPR client in order for the LPD driver and exits
to work in as simple and seamless a fashion as possible. Otherwise, the exit routines will have to make
assumptions about the data prior to obtaining the file attributes from the control file.

Response Messages
All exit routines, except the initialization and termination routines, can send a response message to the
TCP/IP LPR client. In most cases this will be in the form of a negative acknowledgement. The sending of
appropriate positive acknowledgments is the responsibility of RSCS and not any of the exit routines.

RFC 1179 requires acknowledgments to be returned to an LPR client when a line printer daemon
receives:

• A printer job command
• Control file command
• Data associated with the control file
• Data file command
• Data associated with the data file

A positive acknowledgement is a single byte containing all zero bits. A negative acknowledgement is one
or more bytes with the first byte containing a nonzero bit pattern (this could be in the form of an error
message).

A return code of 4 from the Print Command and Print Job Command exit routines can be used to send a
message to the TCP/IP LPR client and have the exit routine called again. A return code of 8 from all exit
routines, except the initialization and termination routines, can be used to send a response message to
the TCP/IP LPR client, close and purge the spool file if already created, and close the connection.

Print Record Vector
The LPD exits use the logical print record vector to pass a data stream to a link driver exit for conversion
from ASCII to EBCDIC. The logical print record vector is also used to pass a control file between the exit

212 z/VM: 7.3 RSCS Networking Exit Customization

routine and the link driver. The "Entry Conditions" section for each exit routine describes the contents of
the print record vector.

Exit Conditions
When an LPD exit routine returns control to RSCS, the registers contain these values:

Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

LPD Exit Routines
The following sections describe each of the exits supported for LPD-type links. For more information, see
“Required Values” on page 211.

LPD Initialization Routine
This exit routine initializes the LPD-type link. The exit is not passed any link options and therefore cannot
change the TCP/IP port the link is listening on during this exit routine processing.

If you specify RENT when link-editing this routine, any storage that will be used by the remaining entry
points must be obtained by issuing a GCS GETMAIN macro during this exit routine processing. The
address of this storage must be placed in word 6 of the parameter list so that the other routines can
access the work area. In this case, it is required that a termination exit routine issue the GCS FREEMAIN
macro to return the storage obtained in the initialization exit routine.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0 on entry; on return, it may contain the address of the work area for the LPD exit
routines

Word 7 (+24)
0

R2 - R12 Not applicable

R13 Save area address

Chapter 8. TCP/IP LPD Exit Points 213

Register Contents

R14 Return address

Exit Conditions
On return, the LPD Initialization routine sets the register conditions described in “Exit Conditions” on page
213.

Return Codes
Return Code Results

0 Tells RSCS that initialization processing is complete.

4 Tells RSCS that an EPARM value was specified, but the exit routine does not need it;
the LPD link driver terminates.

8 Tells RSCS that a specified EPARM value was not valid; the LPD link driver terminates.

12 Tells RSCS to terminate the LPD link driver.

16 Tells RSCS to terminate the LPD link driver.

LPD Print Command Processing Routine
This exit routine is called when a print command is received from a TCP/IP LPR client. The command
received is contained within the print record vector and is in ASCII format. This exit routine carries out any
appropriate data translation from ASCII to EBCDIC, returning a command ready to be processed by RSCS
or a response message in ASCII to be sent to the TCP/IP LPR client.

This routine is also responsible for filling in the file's TAG text fields based on information received from
the LPR client. The exit routine inserts the TAG characteristics into the TAG text fields portion of the
parameter list.

The possible print commands that can be received, and the response from RSCS when this exit routine
completes with return code 0, are:
Print any waiting jobs

RSCS will send a positive acknowledgment to the LPR client and close the connection.
Receive a printer job

RSCS will use the QUEUE name returned in the print record vector when issuing message
DMTLPD214I and continue receiving data from the LPR client.

Send queue state (short and long)
RSCS will send a negative acknowledgment to the LPR client in the form of an Unsupported print
command message and close the connection.

Remove jobs
RSCS will send a negative acknowledgment to the LPR client in the form of an Unsupported print
command message and close the connection.

This exit routine must set the data count field in the print record vector to reflect the length of the data
passed back to the LPD link driver. If this exit routine does not generate data, it must set the data count
field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user ABEND
011.

Entry Conditions
Register Contents

R0 Not applicable

214 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Byte 3 - n

Print command data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPD TAG processing routine sets the register conditions described in “Exit Conditions” on
page 213.

Return Codes
Return Code Results

0 Tells RSCS to process the translated command contained within the print record
vector.

4 Tells RSCS to send the response message contained within the print record vector to
the TCP/IP LPR client and call this exit routine again.

8 Tells RSCS to send the response message contained within the print record vector to
the TCP/IP LPR client, flush the spool file if created, and close the connection.

Chapter 8. TCP/IP LPD Exit Points 215

Return Code Results

12 Tells RSCS to terminate the LPD link driver.

16 Tells RSCS to terminate the LPD link driver.

LPD Print Job Command Processing Routine
This exit routine is called when a print job command is received from a TCP/IP LPR client. The command
received is contained within the print record vector and is in ASCII format. This exit routine carries out any
appropriate data translation from ASCII to EBCDIC, returning a command ready to be processed by RSCS
or a response message in ASCII to be sent to the TCP/IP LPR client.

The possible print job commands that can be received, and the response from RSCS when this exit routine
completes with return code 0, are:
Abort job

RSCS will send a positive acknowledgment to the LPR client and close the connection.
Receive control file

RSCS will receive the control file from the LPR client.
Receive data file

RSCS will receive the data file from the LPR client.

This exit routine must set the data count field in the print record vector to reflect the length of the data
that is passed back to the LPD link driver. If this exit routine does not generate data, it must set the data
count field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

216 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable
Byte 3 - n

Print Job command data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPD record processing routine sets the register conditions described in “Exit Conditions” on
page 213.

Return Codes
Return Code Results

0 Tells RSCS to process the translated command contained within the print record
vector.

4 Tells RSCS to send the response message contained within the print record vector to
the TCP/IP LPR client and call this routine again.

8 Tells RSCS to send the response message contained within the print record vector to
the TCP/IP LPR client, flush the spool file if created, and close the connection.

Chapter 8. TCP/IP LPD Exit Points 217

Return Code Results

12 Tells RSCS to terminate the LPD link driver.

16 Tells RSCS to terminate the LPD link driver.

LPD Data Processing Routine
The record processing routine carries out appropriate translation from ASCII to EBCDIC of the print data
to be spooled. This exit is called whenever a portion of the data file to be printed is received from TCP/IP.
On exit the print record vector may contain EBCDIC data to be spooled, or it may contain a response
message in ASCII to be sent to the TCP/IP LPR client. If the data returned is in EBCDIC, then a CCW
opcode associated with the data must also be returned in the print record vector.

Incoming data for the file may not arrive on any kind of record boundary. This exit will have to save data
in a local buffer to accumulate a record over multiple calls or there may be multiple records in a buffer.

This exit routine must set the data count field in the print record vector to reflect the length of the data
passed back to the LPD link driver. If this exit routine does not generate data. it must set the data count
field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user ABEND
011.

Entry Conditions

Register Contents

R0 Not applicable

218 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable on entry; on return, contains the CCW opcode associated with
the print line

Byte 3 - n
Print record data (where n is a maximum of 1280)

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of the work area established by the initialization routine

Word 7 (+24)
Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPD end of file processing routine sets the register conditions described in “Exit
Conditions” on page 213.

Return Codes
Return Code Results

0 Tells RSCS to write the current print data to spool if returned length is greater than 0.

4 Tells RSCS to write the current print data to spool if returned length is greater than 0,
and call this exit routine again.

8 Tells RSCS to send response message contained within the print record vector to the
TCP/IP LPR client, flush the spool file if created, and close the connection.

Chapter 8. TCP/IP LPD Exit Points 219

Return Code Results

12 Tells RSCS to terminate the LPD link driver.

16 Tells RSCS to terminate the LPD link driver.

LPD End of File Routine
This exit routine allows for additional EBCDIC data to be spooled, or a response message in ASCII to be
sent to the TCP/IP LPR client. It is called after the last piece of data has been received from the TCP/IP
LPR client. This enables any specific information in EBCDIC to be forwarded. On entry, the print record
vector is empty. On exit the print record vector may contain EBCDIC data to be spooled, or it may contain
a response message in ASCII to be sent to the TCP/IP LPR client. If the data returned is in EBCDIC, then a
CCW opcode associated with the data must also be returned in the print record vector.

This exit routine must set the data count field in the print record vector to reflect the length of the data
that is passed back to the LPD link driver. If this exit routine does not generate any data, it must set the
data count field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

220 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Byte 0 - 1

Number of bytes in the print record
Byte 2

Not applicable on entry; on return, contains the CCW opcode associated with
the print line

Byte 3 - n
Print record data (where n is a maximum of 1280)

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of the work area established by the initialization routine

Word 7 (+24)
Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPD control file processing routine sets the register conditions described in “Exit
Conditions” on page 213.

Return Codes
Return Code Results

0 Tells RSCS to write the current print data to spool if returned length is greater than 0.

4 Tells RSCS to write the current print data to spool if returned length is greater than 0,
and call this exit routine again.

8 Tells RSCS to send response message contained within the print record vector to the
TCP/IP LPR client, flush the spool file if created, and close the connection.

Chapter 8. TCP/IP LPD Exit Points 221

Return Code Results

12 Tells RSCS to terminate the LPD link driver.

16 Tells RSCS to terminate the LPD link driver.

LPD Control File Routine
This exit routine is entered for each line of control file received from a TCP/IP LPR client. The line is
contained within the print record vector and is in ASCII. Either the line is returned in EBCDIC for RSCS
processing, or a response message in ASCII is returned to be sent to the TCP/IP LPR client.

This exit routine must set the data count field in the print record vector to reflect the length of the data
passed back to the LPD link driver. If this exit routine does not generate data. it must set the data count
field to zero. If the data count is negative or exceeds 1280 bytes, the link terminates with user ABEND
011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical print record vector that contains:
Byte 0 - 1

Number of bytes in the control file record
Byte 2

Not applicable
Byte 3 - n

Control file record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

222 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPD Termination routine sets the register conditions described in “Exit Conditions” on page
213.

Return Codes
Return Code Results

0 Tells RSCS that the control file processing is complete.

4 Tell RSCS to ignore this control file line.

8 Tells RSCS to send response message contained within the print record vector to the
TCP/IP LPR client, flush the spool file if created, and close the connection.

12 Tells RSCS to terminate the LPD link driver.

16 Tells RSCS to terminate the LPD link driver.

LPD Termination Routine
This exit routine is called just before the LPD-type link terminates to perform any special termination
processing that might be needed. As supplied, RSCS does not provide for any special processing when an
LPD link is terminated. This exit routine is optional.

Attention

This exit may be required if any of the other LPD exit routines (such as initialization) obtain storage from
GCS which has not yet been returned to GCS.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 8. TCP/IP LPD Exit Points 223

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

0

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the LPD Termination routine sets the register conditions described in “Exit Conditions” on page
213.

Sample LPD Exit Routine
The following sections describe the sample LPD exit routine module supplied by IBM. This exit routine
module is provided in the sample load library, RSCSEXIT LOADLIB.

Generally, the sample exit routine responds to options supplied on a control file sent from a TCP/IP LPR
client. These options are supplied when using an LPR command, whose specific format depends on the
platform from which it is issued.

Attention

The sample LPD exit routine is provided for illustrative purposes and on an as is basis only. However, you
may be able to use the sample exit with little or no modifications, depending on your installation's needs
and configuration.

If you choose to support the LPD link drivers differently or to support additional devices, you can modify
the sample module or use the sample as a guide for creating your own exit routines.

LPDXMANY Routine
The LPDXMANY sample exit routine performs functions to support a single LPD printer queue. Multiple
LPD link drivers can be defined using this sample exit. It also performs simple translation of data to
EBCDIC.

The spool file created will be of type VAFP. A record width up to 255 characters will be supported. Any
records received with a width greater than 255 characters will be split into multiple records. The CMS
receive command will create a file with a record length of 204. Any data in a record past 204 will be

Sample LPD Exit

224 z/VM: 7.3 RSCS Networking Exit Customization

truncated. CP will also truncate the data with a record length greater than 204 if the spool file is destined
to a CP system printer.

Attention

The LPDXMANY sample LPD link driver exit will operate more consistently and seamlessly if the control
file is sent prior to the data file. LPDXMANY will accept the control file after the data file, but information
required for file processing may not be set up as desired.

The LPDXMANY routine parses the queue name on the printer job command received from the LPR client,
as shown in the following examples:
KERRY@MAINE

Sets the node ID to MAINE and the user ID to KERRY, causing the file to be sent to user KERRY at
node MAINE.

KERRY%MAINE
Sets the node ID to MAINE and the user ID to KERRY, causing the file to be sent to user KERRY at
node MAINE.

KERRY@
Sets the node ID to the local node name and the user ID to KERRY, causing the file to be sent to user
KERRY on the local system.

KERRY%
Sets the node ID to the local node name and the user ID to KERRY, causing the file to be sent to user
KERRY on the local system.

@LASER1
Sets the node ID to LASER1 and the user ID to SYSTEM, causing the file to be sent to the network
node LASER1.

%LASER2
Sets the node ID to LASER2 and the user ID to SYSTEM, causing the file to be sent to the network
node LASER2.

LASER3
Sets the node ID to LASER3 and the user ID to SYSTEM, causing the file to be sent to the network
node LASER3.

Notes:

1. If you are using an LPDXMANY configuration file, LPDXMANY will first look for a queue name record
with that name, or a record called DEFAULT. See “LPDXMANY Configuration file” on page 226. If
LPDXMANY cannot find a matching queue name record (or a DEFAULT record), or if it cannot find the
configuration file, it will parse the queue name as described above.

2. When parsing the queue name, LPDXMANY will assume that any queue name which does not include
the @ or % operator is a node ID.

3. LPDXMANY will limit the length of the user ID and node ID to 8 characters each and will discard any
extra data in those fields of the queue name.

Supported Control File Commands
The control file commands supported by this exit are:
H

Host name - The first 8 characters of the host name will be used for the distribution field of the TAG.
N

File name - The first 8 characters of the file name will be used for the data set name field of the TAG.
Some parsing will be done to remove dots and slashes. For example, the string:

c:\AUTOEXEC.BAT

Sample LPD Exit

Chapter 8. TCP/IP LPD Exit Points 225

will become AUTOEXEC BAT.
I

Indent - Defines the maximum allowed line width. The default is 255.
C

Class name - The class name will be used to set the form field and class field of the TAG, and to pass a
job name in. LPDXMANY will parse the class name looking for the following:
F=formname

specifies the 1- to 8-character form name that will be used for the form field. Any blanks within
the name will be translated to underscores (_).

C=class
specifies the 1-character class name.

J=jobname
specifies the 1- to 8-character job name.

Note: This must be used with the JOBName=userid option.

J
Job name - The first 8 characters of the job name will be used for the data set name field of the TAG if
not already set by the N record.

P
User name - The first 8 characters of the user name will be used for the origin user field of the TAG if
not already set by J=jobname passed in the C record.

T
Title - The first 8 characters of the title will be used for the title printed at the top of every page.

W
Width - Defines the line width, with a maximum size limited by the length specified in the I record. The
default is 255 or the maximum specified in the I record (up to 255). Records received with a width
greater than what is specified using either the W record or I record or the default maximum of 255 will
be split into multiple records.

f
Print formatted file - Requests that page ejects and title pages be inserted into the created spool file.

l
Print file leaving control characters - Used as the default filter.

p
Print file with pr format - Requests that page ejects be inserted into the created spool file.

Note: The following control file commands will be used to determine the TAG copy count: f, l, p, r, o, v. The
first occurrence of any in the list will be accepted. A count of the number of times this command occurs in
the control file will determine the TAG copy count. Any others in the list after the first one is accepted will
be ignored. The default TAG copy count is 1.

Available EPARM Parameters
When using the LPDXMANY routine, you can specify the following parameter in the EPARM value on the
PARM configuration statement or on the RSCS DEFINE or START command.
Config=ddname

specifies the ddname which has been defined as an exit configuration file. If the ddname does not
exist, the LPDXMANY initialization routine will pass back a return code to cause the LPD-type link to
issue an error message and drain. If this exit parameter is not used, a configuration file is not read
by the LPDXMANY exit, causing existing defaults to be used for values which can be defined by the
configuration file.

LPDXMANY Configuration file
The LPDXMANY exit routine can read a configuration file. This configuration file can supply the following:

Sample LPD Exit

226 z/VM: 7.3 RSCS Networking Exit Customization

• Overrides for processing when a file is received from a remote LPR command, based on the printer
queue name

• Translate table to override the one used by the exit

The configuration file can have any desired file name and file type and must be on a disk accessed by the
RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME used
must be specified on the Config= parameter in the EPARM value on the PARM statement for the link in the
RSCS CONFIG file or in the link operational parameters on the RSCS DEFINE or START command.

The following is an example of a DDNAME entry in PROFILE GCS in which LPDX is the defined DDNAME
and LPD CONFIG is the name of the LPDXMANY configuration file:

'FILEDEF LPDX DISK LPD CONFIG *'

The following is an example of the PARM statement for an LPD-type link named LPD using the DDNAME
defined on the FILEDEF statement in PROFILE GCS:

PARM LPD EXIT=LPDXMANY PORT=994 EPARM='C=LPDX'

Layout of the LPDXMANY Configuration File
The following rules apply to the LPDXMANY configuration file:

• An asterisk (*) in column one denotes a comment line.
• Any line that does not have an asterisk (*) in column one will be interpreted as a configuration entry.
• All configuration entries must be capitalized.

The following configuration records are supported:

LOCAL_NODE=string
provides a 1- to 8-character origin node name that LPDXMANY assigns to the created spool file. If this
option is not specified, LPDXMANY will use the link name assigned to the LPD-type link as the origin
node name.

TOASCII=string
provides a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCII= records to replace the
256-byte translation table.

TOEBCCMD=string
provides a table for ASCII to EBCDIC translation of the LPR control file and commands, overriding the
default used by the exit. Up to 512 hexadecimal characters (0 - 9, A - F) may be specified on multiple
TOEBCCMD= records to replace the 256-byte translation table.

TOEBCDIC=string
provides a table for ASCII to EBCDIC translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOEBCDIC= records to replace the
256-byte translation table.

queuename
provides the ability to override defaults used by LPDXMANY on a printer queue name basis when
receiving a file from a remote host. Multiple unique printer queue name records can be specified.

When a printer queue name arrives, LPDXMANY will first look for a matching queue name record. If
none is found, it will look for a record with the name DEFAULT. A DEFAULT record can be used to
define parameters for any printer queue not defined by its own configuration record. If a DEFAULT
record is not found, LPDXMANY will use the existing defaults.

The format of the printer queue name record is:

queuename ppos lpage class forms jobn dest pagination translation userid nodeid
tcpxlbin

The following rules apply to the printer queue name record:

Sample LPD Exit

Chapter 8. TCP/IP LPD Exit Points 227

• One record is allowed per line; continuation is not supported.
• The parameters of the record must be separated by one or more blanks.
• The parameters are not column dependent but they are position dependent.
• An asterisk (*) can be used for any parameter except queuename to tell LPDXMANY to use the

existing default.

The parameters of the printer queue name record are defined as follows:

DEFAULT
queuename

is a printer queue name up to 32 characters, or DEFAULT.

LPDXMANY parses the printer queue name into a user ID and node ID, as follows:
userid@nodeid

Node ID and user ID will be set as specified.
userid%nodeid

Node ID and user ID will be set as specified.
userid@

Node ID will be set to the local node name, user ID will be set as specified.
userid%

Node ID will be set to the local node name, user ID will be set as specified.
@nodeid

Node ID will be set as specified, user ID will be set to SYSTEM.
%nodeid

Node ID will be set as specified, user ID will be set to SYSTEM.
nodeid

Node ID will be set as specified, user ID will be set to SYSTEM.

The user ID and node ID parsed from the printer queue name can be overridden within the record.
If the queuename value is DEFAULT or any other value that does not conform to one of the
variations listed above, the user ID and node ID should be set (overridden) within the record. If
both are overridden, the queuename value is not parsed. If neither is overridden, the queuename
value is assumed to be a printer queue name, which is parsed into the user ID and node ID, which
must be valid (either of which can still be overridden within).

Notes:

1. When parsing the queue name, LPDXMANY will assume that any queue name which does not
include the @ or % operator is a node ID.

2. LPDXMANY will limit the length of the user ID and node ID to 8 characters each and will discard
any extra data in those fields of the queue name.

ppos
is the logical record length. This value can be 1 - 1280. The default is 255.

The virtual printer type will be defined based on the ppos value:

ppos Virtual Printer

1 - 132 1403

133 - 150 3211

151 - 204 3800

205 - 1280 VAFP

lpage
is the number of lines per page. This value can be 1 - 99. The default is 66.

Sample LPD Exit

228 z/VM: 7.3 RSCS Networking Exit Customization

class
is the 1-character spool file class. The default is blank.

forms
is the 1- to 8-character spool file form. The default is blank.

jobn
is the 1- to 8-character job name. The default is SYSTEM.

dest
is the 1- to 8-character PSF destination. The default is blank. When using a PSF destination,
LPDXMANY will set the user ID field of the TAG to SYSTEM.

When using a PSF destination, the printer queue name can be in the form SYSTEM@nodeid.
Alternatively, the printer queue name can be anything unique as long as the user ID field is
SYSTEM or * and the node ID field is specified.

pagination
specifies how pagination will be performed.
PAGE

LPDXMANY will always paginate regardless of the control file print filter.
NOPAGE

LPDXMANY will paginate only as defined by the f or p control file print filters. This is the
default. To be effective, the control file must be received prior to the data file.

translation
specifies whether to translate the data file prior to spooling.
TRAN

Translate data received into EBCDIC removing any CR/LF/FF (carriage return, line feed, form
feed) control characters. This is the default.

NOTRAN
Do not translate data received into EBCDIC, but remove any CR/LF/FF (carriage return, line
feed, form feed) control characters.

ASISCC
Leave the data received as is; do not translate nor remove any control characters. ASISCC
would be desired when data received is destined to be printed by an LPR-type link.

userid
is the 1- to 8-character user ID to which the file should be spooled. The default is derived from the
printer queue name.

Note: If a PSF destination is provided by the dest field, then the userid field can be set only to
SYSTEM.

nodeid
is the 1- to 8-character destination node ID to which the file should be spooled. The default is
derived from the printer queue name.

tcpxlbin
is the file name of a TCP/IP translation table (TCPXLBIN file) to be used for this printer queue
name. The file must exist on any accessed disk. If this parameter is not specified, the translation
table used will be either the default table within LPDXMANY or the override specified on one or
more TOEBCDIC= records in the LPDXMANY configuration file.

Printer Queue Name Examples
This example would allow a file to be received without translating, and spooled to an LPR link using the
LPRXONE exits, causing the file to be sent unaltered to a line printer daemon:

LPR@NODEONE 1280 50 * STDN * * * ASISCC ASCII

This example defines a printer queue used to spool input to the system printer:

Sample LPD Exit

Chapter 8. TCP/IP LPD Exit Points 229

LOCALNODE * * * * * SYSTEM

This example shows the defaults defined within LPDXMANY:

DEFAULT 255 66 * * SYSTEM * NOPAGE TRAN * * *

Using an LPD-Type Link as a Print Server
It is feasible to use RSCS for routing workstation printing for delivery to IP (internet) attached printers
using LPR-type links. To do so, you will need to use the LPRXFORM exit as well as the LPDXMANY CONFIG
file. For more information, see z/VM: RSCS Networking Operation and Use.

Sample LPD Exit

230 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 9. TCP/IP UFT Exit Points

The TCP/IP UFT link driver uses exits to build specific data streams for transmission and to control the
remote host and port to which the transmission is destined. Exit routines are called at six points in the
UFT link driver's operational cycle.

Each UFT exit routine contains entry points, which provide the following additional processing for each of
the six calls:

Entry Point Function

Initialization Called when a UFT link driver is being initialized.

TAG Processing Called when the UFT link driver opens a new spool file, and prior to
connecting to the remote UFT daemon.

Record Processing Called when a record is read from the input spool file for the UFT link
driver.

End of File Processing Called when a file as been completely read from the input spool file for the
UFT link driver.

UFT Command Processing Called when the UFT link driver needs a command file.

Termination Called when the UFT link driver is terminating.

The termination routine is not necessary to support a UFT link driver; you do not have to supply this
routine. An exit may require the termination routine for potential clean up processing such as returning
any storage obtained in any of the other five exit routines.

The order in which the exit routines are listed above is not necessarily the order in which the UFT link
driver will call them when processing a spool file.

The UFT exit routine module that contains the exit routines to be used for a specific UFT-type link must
be identified on the PARM configuration statement for the link or in the link operational parameters on
the RSCS DEFINE or START command. For more information, see z/VM: RSCS Networking Planning and
Configuration and z/VM: RSCS Networking Operation and Use.

UFT Programming Considerations
The programming requirements for the UFT exit routines are described in the following sections.

Required Values
The first six fullwords of each UFT exit routine module must contain these values:
Word 1

Address of the initialization routine
Word 2

Address of the TAG processing routine
Word 3

Address of the record processing routine
Word 4

Address of the end of file processing routine
Word 5

Address of the command processing routine
Word 6

Address of the termination routine, or 0 if the routine is not provided

© Copyright IBM Corp. 1990, 2022 231

Entry Conditions
When a UFT exit routine receives control, it will be passed the following information:

• Address of the CVT
• Address of the LINKTABL entry
• Address of a UFTBLOK structure containing the following pointers:

– Address of a fullword containing the remote host IP address (dotted decimal)
– Address of the 255-character remote host name (fully qualified)
– Address of a halfword containing the remote host port
– Address of the 256-character user name the file is destined for
– Address of the 8-character transform name
– Address of the 256-character translate table
– Address of the 1-character record format (either V for variable or F for fixed), derived from an

INMR02 NETDATA control record
– Address of a doubleword containing the file logical record length, derived from an INMR02 NETDATA

control record
– Address of a doubleword containing the file size, in bytes, derived from an INMR02 NETDATA control

record
– Address of a doubleword containing the number of files, derived from an INMR01 NETDATA control

record
– Address of a 23-character field containing the last change date of the file in standard (UTC) or GMT

time zone ISO format (yyyy.mm.dd hh:mm:ss), derived from an INMR02 NETDATA control record
– Address of a 44-character field containing the file name, derived from an INMR02 NETDATA control

record
– Address of a 1-character field containing the server's UFT level

This information is not passed to the initialization or termination routines.

All exit routines, except the UFT initialization and termination routines, also receive a pointer to the
TAG element. The TAG element contains information about a file's characteristics. The exit routine also
receives the EPARM value for the link and the address of the data record vector. The EPARM value,
specified on the PARM configuration statement or on the RSCS DEFINE or START command, contains a
parameter string that is associated with the UFT exit routine.

UFT Commands
The command and end of file routines will have the sole responsibility for creating UFT commands
that RSCS will send to the TCP/IP UFT daemon. RSCS will generate only the DATA, QUIT, and ABORT
commands, relying on the exit routines to generate all other appropriate UFT commands.

The command and end of file routines should generate only the DATA command when that exit is also
going to send additional data to the UFT daemon. They should not generate the DATA command in
response to actual data created by the record processing routines. RSCS will generate the DATA command
when it has buffered enough data, that was output from the record processing routine, to send to the
remote daemon.

A return code of 8 from the command and end of file exit routines can be used to send a UFT command to
the TCP/IP UFT daemon.

Data Record Vector
The UFT exits use the logical data record vector to pass a data stream to a link driver exit for conversion
from EBCDIC to ASCII or binary, if appropriate. The logical data record vector is also used to pass a UFT

232 z/VM: 7.3 RSCS Networking Exit Customization

command from the exit to the link driver. The "Entry Conditions" section for each exit routine describes
the contents of the data record vector.

Exit Conditions
When a UFT exit routine returns control to RSCS, the registers contain these values:

Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

UFT Exit Routines
The following sections describe each of the exits supported for UFT-type links. For more information, see
“Required Values” on page 231.

UFT Initialization Routine
This routine initializes the UFT-type link. The exit is not passed any link options, such as the remote port
to which to connect.

If you specify RENT when link-editing this routine, any storage that will be used by the remaining entry
points must be obtained by issuing a GCS GETMAIN macro during this exit routine processing. The
address of this storage must be placed in word 6 of the parameter list so that the other routines can
access the work area. In this case, it is required that a termination exit routine issue the GCS FREEMAIN
macro to return any persistent storage obtained in the initialization exit routine.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0 on entry; on return, it may contain the address of the UFT exits work area
Word 7 (+24)

Address of the UFTBLOK

R2 - R12 Not applicable

R13 Save area address

Chapter 9. TCP/IP UFT Exit Points 233

Register Contents

R14 Return address

Exit Conditions
On return, the UFT Initialization routine sets the register conditions described in “Exit Conditions” on page
233.

Return Codes
Return Code Results

0 Tells RSCS that initialization processing is complete.

4 Tells RSCS that an EPARM value was specified, but the exit routine does not need it;
the UFT link driver terminates.

8 Tells RSCS that an EPARM value was specified which was not valid; the UFT link driver
terminates.

12 Tells RSCS to terminate the UFT link driver.

16 Tells RSCS to terminate the UFT link driver.

UFT TAG Processing Routine
This routine examines a file's TAG element. Based on a file's characteristics, the exit routine can be
used to customize where individual files are to be sent in a TCP/IP network. Your exit can change TCP/
IP-specific information that was defined by the PARM statement for the UFT-type link, or provided with
the file. The exit routine is passed an address of a control block containing addresses to the following
information, which can be modified, or used by later exit processing, for the UFT information:

• The remote host IP address
• The remote host name
• The remote host port
• The remote user name
• The transform to be used
• The translate table to be used

In addition, this exit routine can be used to reject the transmission of a file to a remote UFT daemon.

This exit routine does not generate data, it must set the data count field to zero. If the data count is not
zero, the link terminates with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

234 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data vector that contains:
Byte 0 - 1

0
Byte 2 - n

Not applicable
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of the UFTBLOK

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the UFT TAG processing routine sets the register conditions described in “Exit Conditions” on
page 233.

Return Codes
Return Code Results

0 Tells RSCS that the TAG element processing is complete.

4 Tells RSCS to reject processing this file and place it on hold.

8 Tells RSCS to terminate the UFT link driver.

12 Tells RSCS to terminate the UFT link driver.

16 Tells RSCS to terminate the UFT link driver.

UFT Record Processing Routine
The record processing routine carries out any appropriate translation of the data, for example from
EBCDIC to ASCII. If the exit routine changes the length of the data, the data count field (pointed to by
Bytes 0 - 1 in Word 3 of the parameter list) must reflect this change before returning to the link driver.
When the link driver regains control from this entry point, the data from the data record moves into
the link driver's output buffer. When it is full, the link driver sends the buffer to the remote TCP/IP UFT
daemon. This exit is driven for each record of the spool file being sent to a TCP/IP UFT daemon.

Chapter 9. TCP/IP UFT Exit Points 235

Each spool file record read will be in NETDATA format. Therefore, the spool file data may not be read on
any kind of record boundary. This exit will have to save data in a local buffer to accumulate a record over
multiple calls or there may be multiple records in a buffer.

Your exit routine must set the data count field in the data record vector to reflect the length of the data
passed to the link driver. If your routine does not send a particular data record, it should set the data
count field to zero. A data count that is negative or exceeds 1280 bytes terminates the link with user
ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data vector that contains:
Byte 0 - 1

Number of bytes in the data record
Byte 2

CCW opcode associated with the data record
Byte 3 - n

Data record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of the UFTBLOK

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the UFT record processing routine sets the register conditions described in “Exit Conditions” on
page 233.

Return Codes
Return Code Results

0 Tells RSCS that the spool file record element processing is complete.

4 RSCS adds the current record to the buffer and calls this exit routine again.

8 Tells RSCS to terminate the UFT link driver.

236 z/VM: 7.3 RSCS Networking Exit Customization

Return Code Results

12 Tells RSCS to terminate the UFT link driver.

16 Tells RSCS to terminate the UFT link driver.

UFT End of File Routine
This exit routine allows for additional information to be sent to the TCP/IP UFT daemon. It is called after
the last spool file record has been processed. This allows for the following:

• Any specific device-dependent information to be transmitted
• EOF UFT command to be transmitted
• Any other UFT commands to be transmitted
• Any necessary clean up to be performed

Your routine must set the data count field in the data record vector to reflect the length of the data that
is passed to the link driver. On exit the data vector may contain ASCII or binary data to be transmitted.
If your routine does not generate any data, it should set the data count field to zero. A data count that is
negative or exceeds 1280 bytes terminates the link with user ABEND 011.

Entry Conditions

Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data vector that contains:
Byte 0 - 1

Number of bytes in the data record
Byte 2

Not applicable
Byte 3 - n

Data record data (where n is a maximum of 1280)
Word 4 (+12)

Address of the TAG element
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

Address of the UFTBLOK

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Chapter 9. TCP/IP UFT Exit Points 237

Exit Conditions
On return, the UFT end of file processing routine sets the register conditions described in “Exit
Conditions” on page 233.

Return Codes
Return Code Results

0 Tells RSCS to transmit the current command or data to the remote UFT daemon; end of
file processing is complete.

4 RSCS adds the current data or command to the buffer and calls this exit routine again.

8 RSCS transmits the current command or data to the remote UFT daemon and waits for
positive acknowledgement; when received, call this exit routine again.

12 Tells RSCS to terminate the UFT link driver.

16 Tells RSCS to terminate the UFT link driver.

UFT Command Routine
This exit routine creates one UFT command to be sent to the TCP/IP UFT daemon. If more than one UFT
command is to be transmitted to the remote daemon, this exit routine should return the command with
appropriate return code to be called again. The exit will be responsible for remembering which commands
have already been transmitted, which commands still require transmitting, and for clean up (in the End of
File routines) when a negative acknowledgement has been received and transmission has been aborted.

This exit routine can also be used to create additional data, such as header information, that RSCS passes
to the TCP/IP UFT daemon.

Your routine must set the data count field in the data record vector to reflect the length of the data that is
passed to the link driver. If your routine does not generate any data, it should set the data count field to
zero. A data count that is negative or exceeds 1280 bytes terminates the link with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

238 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data vector that contains:
Byte 0 - 1

Number of bytes in the UFT command
Byte 2

Not applicable
Byte 3 - n

Not applicable on entry; on return, contains one UFT command (where n is a
maximum of 1280)

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of the work area established by the initialization routine

Word 7 (+24)
Address of the UFTBLOK

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the UFT command processing routine sets the register conditions described in “Exit
Conditions” on page 233.

Return Codes
Return Code Results

0 Tells RSCS to transmit the current command or data to the remote UFT daemon; UFT
command processing is complete.

4 RSCS adds the current data or command to the buffer and calls this exit routine again.

8 RSCS transmits the current command or data to the remote UFT daemon and waits for
positive acknowledgement; when received, call this exit routine again.

12 Tells RSCS to terminate the UFT link driver.

16 Tells RSCS to terminate the UFT link driver.

UFT Termination Routine
This exit routine is called just before the UFT-type link terminates to perform any special termination
processing that might be needed. As supplied, RSCS does not provide for any special processing when a
UFT-type link is terminated. This exit routine is optional.

Chapter 9. TCP/IP UFT Exit Points 239

Attention

This exit might be required if any of the other UFT exit routines (such as initialization) obtain persistent
storage from GCS which has not yet been returned to GCS.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

0

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the UFT Termination routine sets the register conditions described in “Exit Conditions” on page
233.

Sample UFT Exit Routine
The following sections describe the sample UFT exit routine module supplied by IBM. This exit routine
module is provided in the sample load library, RSCSEXIT LOADLIB.

Generally, the sample exit routine responds to options supplied on the CP TAG, SPOOL, or CLOSE
command, or on the CMS SENDFILE command, to perform any needed translations of the data as well as
when constructing UFT commands.

Attention

The sample UFT exit routine is provided for illustrative purposes and on an as is basis only. However, you
may be able use the sample exit with little or no modifications, depending on your installation's needs
and configuration.

If you choose to support the UFT link drivers differently or to support additional devices, you can modify
the sample module or use the sample as a guide for creating your own exit routines.

Sample UFT Exit

240 z/VM: 7.3 RSCS Networking Exit Customization

UFTXOUT Routine
The UFTXOUT sample exit routine performs functions to support transmitting one file to a remote UFT
daemon at a time. Multiple UFT link drivers can be defined using this sample exit. It also performs simple
translation of data to ASCII.

Supported UFT Commands
The UFT commands created by UFTXOUT are the minimum necessary for transmitting the data. These
include:
CLASS

From the TAG (TAGCLASS), if specified. If TRANSFORM=SPOOL is specified within the spool file, a
second operand will be provided with the device type of 1403, 3211, 3800, PUN, or VAFP. Print files
with a logical record length equal to or less than 1280 are supported.

COPY
From the TAG (TAGCOPY).

DATE
The date, time, and time zone of the file from the UFTBLOK (as specified by an INMR02 NETDATA
control record), if specified, otherwise from the TAG (TAGINTOD).

DEST
From the TAG (TAGDEST), if specified.

DIST
From the TAG (TAGDIST), if specified.

EOF
FILE

This only needs to be an estimated size. The value specified in the UFTBLOK (from an INMR02
NETDATA control record) will be used if specified; otherwise zero is used.

In addition, the second required parameter will be the originator of the file (TAGINVM).

FORM
From the TAG (TAGFORMN), if specified.

NAME
This will be in the form filename.filetype. From the UFTBLOK (as specified by an INMR02
NETDATA control record).

OWNER
From the OWNER= record of the configuration file, if specified.

RECFMT
From the UFTBLOK (as specified by an INMR02 NETDATA control record).

RECLEN
From the UFTBLOK (as specified by an INMR02 NETDATA control record).

TYPE
This will be determined from the transform field of the UFTBLOK. UFTXOUT supports the following
transform types and specifies the indicated TYPE code.

Type Code Processing

ASCII A Data will be translated and X'0D0A' added to the end of each record.

BINARY I File data will be transmitted unaltered.

EBCDIC E X'15' will be added to the end of each record.

MAIL M Data will be translated to ASCII.

NETDATA N File will be transmitted in NETDATA format.

Sample UFT Exit

Chapter 9. TCP/IP UFT Exit Points 241

Type Code Processing

SPOOL V M A 2-byte length followed by a CCW opcode will precede each data
record. This allows VM spool files to be transferred to another VM system
unaltered.

TEXT A Data will be translated and X'0D0A' added to the end of each record.

VARREC V A 2-byte length will precede each data record.

Note: VARREC does not support a logical record length greater than
65535.

Note: The ASCII, BINARY, EBCDIC, NETDATA, TEXT, or VARREC transform type can be specified
on the UFTASYNC option of the CMS SENDFILE command. UFTXOUT also supports transform types
MAIL and SPOOL. Any other type received will be rejected.

USER
This will be as parsed from the data prior to the at sign (@) character in the DESTADDR= keyword.

Available EPARM Parameters
When using the UFTXOUT routine, you can specify the following parameter in the EPARM value on the
PARM configuration statement or on the RSCS DEFINE or START command.
Config=ddname

specifies the DDNAME which has been defined as an exit configuration file. If the DDNAME does not
exist, the UFTXOUT initialization routine will pass back a return code to cause the UFT-type link to
issue an error message and drain. If this exit parameter is not used, a configuration file is not read
by the UFTXOUT exit, causing existing defaults to be used for values which can be defined by the
configuration file.

UFTXOUT Configuration File
The UFTXOUT sample exit routine can read a configuration file. This configuration file can supply the
following:

• Translation tables to override the ones used by the exit
• Overrides for the UFT commands created by UFTXOUT

The configuration file can have any desired file name and file type and must be on a disk accessed by
the RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME
used must be supplied on the Config= link exit parameter statement when defining the UFT-type link in
the RSCS CONFIG file.

The following is an example of a DDNAME entry in the PROFILE GCS in which UFTOUT is the defined
DDNAME and UFTO SCONFIG is the name of the configuration file:

'FILEDEF UFTOUT DISK UFTO SCONFIG *'

The following is an example of the RSCS CONFIG parameter (PARM) for a UFT-type link called UFT using
the DDNAME defined on the FILEDEF statement in the PROFILE GCS:

PARM UFT EXIT=UFTXOUT EPARM='C=UFTOUT'

Layout of the UFTXOUT Configuration File
The following rules apply to the UFTXOUT configuration file:

• An asterisk (*) in column one denotes a comment line.
• Any line that does not have an asterisk (*) in column one will be interpreted as a configuration entry.

Sample UFT Exit

242 z/VM: 7.3 RSCS Networking Exit Customization

• All configuration entries must be capitalized.
• Entries can span multiple records.

The following configuration records are supported:
OWNERNAME=string

specifies an owning user ID name, up to 32 characters, for the OWNER UFT command.
TOASCII=string

provides a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCII= records to replace the
256-byte translation table.

TOASCIIC=string
provides a table for EBCDIC to ASCII translation of UFT commands, overriding the default used by the
exit. Up to 512 hexadecimal characters (0 - 9, A - F) may be specified on multiple TOASCIIC= records
to replace the 256-byte translation table.

Sample UFT Exit

Chapter 9. TCP/IP UFT Exit Points 243

Sample UFT Exit

244 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 10. TCP/IP UFTD Exit Points

The TCP/IP UFTD link driver uses exits to build specific data streams for acceptance into the RSCS
network and to control the remote node and user ID to which the data is destined. Exit routines are called
at six points in the UFTD link driver's operational cycle.

Each UFTD exit routine contains entry points, which provide the following additional processing for each
of the six calls.

Entry Point Function

Initialization Called when the UFTD link driver is being initialized.

Connect Processing Called when a connect request has been received from a TCP/IP UFT
client for the UFTD link driver.

Command Processing Called when the UFTD link driver receives a UFT command from a UFT
client.

Data Processing Called when data has been read from a TCP/IP UFT client for the UFTD
link driver.

End of File Processing Called when a file has been completely read from a TCP/IP UFT client for
the UFTD link driver.

Termination Called when the UFTD link driver is terminating.

The termination routine is not necessary to support a UFTD link driver; you do not have to supply this
routine. An exit may require the termination routine for potential clean up processing such as returning
any storage obtained in any of the other five exit routines.

The order in which the exit routines are listed above is not necessarily the order in which the UFTD link
driver will call them when processing a data stream from a UFT client.

The UFTD exit routine module that contains the exit routines to be used for a specific UFTD-type link
must be identified on the PARM configuration statement for the link or on the RSCS DEFINE or START
command. For more information, see z/VM: RSCS Networking Planning and Configuration and z/VM: RSCS
Networking Operation and Use.

UFTD Programming Considerations
The programming requirements for the UFTD exit routines are described in the following sections.

Required Values
The first six fullwords of each UFTD exit routine module must contain the following values:
Word 1

Address of the initialization routine
Word 2

Address of the connect processing routine
Word 3

Address of the UFT command processing routine
Word 4

Address of the data processing routine
Word 5

Address of the end of file processing routine

© Copyright IBM Corp. 1990, 2022 245

Word 6
Address of the termination routine, or 0 if the routine is not provided

Entry Conditions
When a UFTD exit routine receives control, it will be passed the following information:

• Address of the CVT.
• Address of the LINKTABL entry.
• Address of a SOCKADDR structure for the remote host. This is a 16-byte structure containing the

addressing family, port number, and IP address of the remote UFT client. This information is not passed
to the initialization or termination routines.

All exit routines, with the exception of the initialization and termination routines, also receive a pointer
to the TAG element. The TAG element contains information about a file's characteristics. The exit routine
also receives the EPARM value for the link and the address of the data record vector. The EPARM value,
specified on the PARM configuration statement for the link or on the RSCS DEFINE or START command,
contains a parameter string that is associated with the UFTD exit routine.

Order of the UFT Commands and Data
It is recommended that UFT commands be sent first by the UFT client in order for the UFTD driver and
exits to work in as simple and seamless a fashion as possible. Otherwise, the exit routines will have to
make assumptions about the data prior to obtaining the file attributes from UFT commands.

Response Messages
All exit routines, with the exception of the initialization and termination routines, will have the sole
responsibility for creating both positive and negative response messages which RSCS will send to the
TCP/IP UFT client. In most cases this will be in the form of a positive acknowledgement. RSCS will not
generate any response messages, instead relying on the exit routines to do so.

Acknowledgments are returned to a UFT client whenever a UFT command is received, in the form of a
response code number. A positive acknowledgement is a response code number of 1nn or 2nn.

A return code of 0 from the Connect and Command exit routines can be used to send a response number
to the TCP/IP UFT client. A return code of 4 from the Connect and Command exit routines can be used to
send a response number to the TCP/IP UFT client and have the exit routine called again. A return code of
8 from all exit routines, with the exception of the initialization, end of file, and termination routines, can
be used to send a response message to the TCP/IP UFT client, close and purge the spool file if already
created, and close the connection.

Data Record Vector
The UFTD exits use the logical data record vector to pass a data stream to a link driver exit for conversion
from ASCII or binary to EBCDIC. The logical data record vector is also used to pass UFT commands
between the link driver and the exit routine as well as pass response messages between the exit routine
and the link driver.

Handling of data within the data record vector for the UFTD-type link is different than for other links which
use a data or print record vector (such as the ASCII-type, LPD-type, LPR-type, and UFT-type links). For
UFTD-type links, the data record vector is used as follows:

• On entry to the exit, the data record vector may contain:
Byte 0 - 1

Number of bytes in the data record.
Byte 2

Not applicable

246 z/VM: 7.3 RSCS Networking Exit Customization

Byte 3 - n
Data or UFT command received from the remote client

• On return from the exit, the data record vector may contain:
Byte 0 - 1

Number of bytes at the address pointed to by bytes 4 - 7, which must not exceed 32760 bytes
Byte 2

The CCW associated with any data to be spooled
Byte 3

Not applicable
Byte 4-7

An address pointing to the data to be spooled or pointing to the response message to be sent to the
remote client

The "Entry Conditions" section for each exit routine describes the contents of the data record vector.

Exit Conditions
When a UFTD exit routine returns control to RSCS, the registers contain these values:

Register Contents

R0 - R1 Not applicable

R2 - R13 Restored to the same values as on entry

R14 Not applicable

R15 Return code

UFTD Exit Routines
The following sections describe each of the exits supported for UFTD-type links. For more information,
see “Required Values” on page 245.

UFTD Initialization Routine
This exit routine initializes the UFTD-type link. The exit is not passed any link options and therefore
cannot change the TCP/IP port the link is listening on during this exit routine processing.

If you specify RENT when link-editing this routine, any storage that will be used by the remaining entry
points must be obtained by issuing a GCS GETMAIN macro during this exit routine processing. The
address of this storage must be placed in word 6 of the parameter list so that the other routines can
access the work area. In this case, it is required that a termination exit routine issue the GCS FREEMAIN
macro to return any persistent storage obtained in the initialization exit routine.

Entry Conditions
Register Contents

R0 Not applicable

Chapter 10. TCP/IP UFTD Exit Points 247

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

0 on entry; on return, it may contain the address of the work area for the UFTD exit
routines

Word 7 (+24)
0

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Exit Conditions
On return, the UFTD Initialization routine sets the register conditions described in “Exit Conditions” on
page 247.

Return Codes
Return Code Results

0 Tells RSCS that initialization processing is complete.

4 Tells RSCS that an EPARM value was specified, but the exit routine does not need it;
the UFTD link driver terminates.

8 Tells RSCS that a specified EPARM value was not valid; the UFTD link driver terminates.

12 Tells RSCS to terminate the UFTD link driver.

16 Tells RSCS to terminate the UFTD link driver.

UFTD Connect Processing Routine
This exit routine is called when a connect request has been received, and accepted, from a TCP/IP UFT
client. This exit routine determines if the file should be received from the remote host and processed. This
exit routine returns a response message in ASCII to be sent to the TCP/IP UFT client.

This exit routine must set the data count field in the data record vector to reflect the length of the data
that is passed back to the UFTD link driver. If the data count is negative, zero, or exceeds 32760 bytes, the
link terminates with user ABEND 011.

248 z/VM: 7.3 RSCS Networking Exit Customization

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data record vector that contains:

• On entry to the exit:
Byte 0 - 1

0
Byte 2

Not applicable
Byte 3 - n

Not applicable
• On return from the exit:

Byte 0 - 1
Number of bytes at the address pointed to by bytes 4 - 7, which must not
exceed 32760 bytes

Byte 2
Not applicable

Byte 3
Not applicable

Byte 4 - 7
An address pointing to the response message to be sent to the remote client

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of work area established by the initialization routine

Word 7 (+24)
Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Chapter 10. TCP/IP UFTD Exit Points 249

Register Contents

Exit Conditions
On return, the UFTD connect processing routine sets the register conditions described in “Exit Conditions”
on page 247.

Return Codes
Return Code Results

0 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client and continue processing.

4 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client and call this exit routine again.

8 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client, reject the connect request, and close the connection.

12 Tells RSCS to terminate the UFTD link driver.

16 Tells RSCS to terminate the UFTD link driver.

UFTD Command Processing Routine
This exit routine is called when a command is received from a TCP/IP UFT client. The command received
is contained within the data record vector and is in ASCII format. This exit routine carries out any
appropriate data translation from ASCII to EBCDIC, returning a response message in ASCII to be sent to
the TCP/IP UFT client.

This routine is also responsible for filling in the file's TAG text fields based on information received from
the UFT client. The exit routine inserts the TAG characteristics into the TAG text fields portion of the
parameter list.

This exit routine must set the data count field in the data record vector to reflect the length of the data
that is passed back to the UFTD link driver. If the data count is negative or exceeds 32760 bytes the link
terminates with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

250 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data record vector that contains:

• On entry to the exit:
Byte 0 - 1

Number of bytes in the data record
Byte 2

Not applicable
Byte 3 - n

UFT command data
• On return from the exit:

Byte 0 - 1
Number of bytes at the address pointed to by bytes 4 - 7, which must not
exceed 32760 bytes

Byte 2
Not applicable

Byte 3
Not applicable

Byte 4 - 7
Address of the response message to be sent to the remote client

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of work area established by the initialization routine

Word 7 (+24)
Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Chapter 10. TCP/IP UFTD Exit Points 251

Exit Conditions
On return, the UFTD command processing routine sets the register conditions described in “Exit
Conditions” on page 247.

Return Codes
Return Code Results

0 Tells RSCS to send the response message contained within the data record vector
to the TCP/IP UFT client, if the returned length is greater than zero, and continue
processing.

4 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client and call the end-of-file processing exit routine.

8 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client and flush the spool file if created.

12 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client, flush the spool file if created, and close the connection.

16 Tells RSCS to terminate the UFTD link driver.

UFTD Data Processing Routine
The record processing routine carries out appropriate translation from ASCII to EBCDIC of the data to be
spooled. This exit is called whenever a portion of the data is received from a TCP/IP UFT client. On exit
the data record vector may contain EBCDIC data to be spooled, or it may contain a response message
in ASCII to be sent to the TCP/IP UFT client. If the data returned is in EBCDIC, then a CCW opcode
associated with the data must also be returned in the data record vector.

Incoming data for the file may not arrive on any kind of record boundary. This exit will have to save data
in a local buffer to accumulate a record over multiple calls or there may be multiple records in a buffer.

This exit routine must set the data count field in the data record vector to reflect the length of the data
that is passed back to the UFTD link driver. If the data count is zero, a zero length record will be spooled
for print files. If this exit routine does not generate data, it must set the data count field to zero. If the
data count is negative or exceeds 32760 bytes, the link terminates with user ABEND 011.

Entry Conditions
Register Contents

R0 Not applicable

252 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data record vector that contains:

• On entry to the exit:
Byte 0 - 1

Number of bytes in the data record
Byte 2

Not applicable
Byte 3 - n

Data received from the remote client
• On return from the exit:

Byte 0 - 1
Number of bytes at the address pointed to by bytes 4 - 7, which must not
exceed 32760 bytes

Byte 2
CCW opcode associated with the data

Byte 3
Not applicable

Byte 4 - 7
Address pointing to the data to be spooled or pointing to the response
message to be sent to the remote client

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of the work area established by the initialization routine

Word 7 (+24)
Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Chapter 10. TCP/IP UFTD Exit Points 253

Exit Conditions
On return, the UFTD data processing routine sets the register conditions described in “Exit Conditions” on
page 247.

Return Codes
Return Code Results

0 Tells RSCS to write the current data to spool.

4 Tells RSCS to write the current data to spool and call this exit routine again.

8 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client; receipt of this data section is complete.

12 Tells RSCS to send the response message contained within the data record vector to
the TCP/IP UFT client, flush the spool file if created, and close the connection.

16 Tells RSCS to terminate the UFTD link driver.

UFTD End of File Routine
This exit routine allows for additional EBCDIC data to be spooled, as well as any necessary clean up to be
performed. It is called after the last piece of data has been received from the TCP/IP UFT client, and an
EOF UFT command has been received and responded to. This enables any specific information in EBCDIC
to be forwarded. On entry, the data record vector is empty. On exit the data record vector may contain
EBCDIC data to be spooled. If data is returned, then a CCW opcode associated with the data must also be
returned in the data record vector.

This exit routine must set the data count field in the data record vector to reflect the length of the data
that is passed back to the UFTD link driver. If this exit routine does not generate data, it must set the data
count field to zero. If the data count is negative or exceeds 32760 bytes, the link terminates with user
ABEND 011.

Entry Conditions

Register Contents

R0 Not applicable

254 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

Address of the logical data record vector that contains:

• On entry to the exit:
Byte 0 - 1

0
Byte 2

Not applicable
Byte 3 - n

Not applicable
• On return from the exit:

Byte 0 - 1
Number of bytes at the address pointed to by bytes 4 - 7, which must not
exceed 32760 bytes

Byte 2
CCW opcode associated with the data

Byte 3
Not applicable

Byte 4 - 7
Address of the data to be spooled

Word 4 (+12)
Address of the TAG element

Word 5 (+16)
Address of the EPARM value

Word 6 (+20)
Address of the work area established by the initialization routine

Word 7 (+24)
Address of a SOCKADDR structure for the remote host that contains:
Byte 0 - 1

Addressing Family
Byte 2 - 3

Port number
Byte 4 - 7

IP host address
Byte 8 - 15

Reserved

R2 - R12 Not applicable

R13 Save area address

R14 Return address

Chapter 10. TCP/IP UFTD Exit Points 255

Exit Conditions
On return, the UFTD end of file processing routine sets the register conditions described in “Exit
Conditions” on page 247.

Return Codes
Return Code Results

0 Tells RSCS to write the current data to spool, if the returned length is greater than zero,
and close the spool file.

4 Tells RSCS to write the current data to spool, if the returned length is greater than zero,
and call this exit routine again.

8 Tells RSCS to terminate the UFTD link driver.

12 Tells RSCS to terminate the UFTD link driver.

16 Tells RSCS to terminate the UFTD link driver.

UFTD Termination Routine
This exit routine is called just before the UFTD-type link terminates to perform any special termination
processing that might be needed. As supplied, RSCS does not provide for any special processing when a
UFTD link is terminated. This exit routine is optional.

Attention

This exit might be required if any of the other UFTD exit routines (such as initialization) obtain persistent
storage from GCS which has not yet been returned to GCS.

Entry Conditions
Register Contents

R0 Not applicable

R1 Address of a parameter list that contains:
Word 1 (+0)

Address of the CVT
Word 2 (+4)

Address of the LINKTABL entry
Word 3 (+8)

0
Word 4 (+12)

0
Word 5 (+16)

Address of the EPARM value
Word 6 (+20)

Address of the work area established by the initialization routine
Word 7 (+24)

0

R2 - R12 Not applicable

R13 Save area address

R14 Return address

256 z/VM: 7.3 RSCS Networking Exit Customization

Register Contents

Exit Conditions
On return, the UFTD Termination routine sets the register conditions described in “Exit Conditions” on
page 247.

Sample UFTD Exit Routine
The following sections describe the sample UFTD exit routine module supplied by IBM. This exit routine
module is provided in the sample load library, RSCSEXIT LOADLIB.

Generally, the sample exit routine responds to options supplied on a command sent from a TCP/IP UFT
client. These options are supplied when using an appropriate sendfile command, whose specific format
depends on the platform from which it is issued.

Attention

The sample UFTD exit routine is provided for illustrative purposes and on an as is basis only. You may
be able use the sample exit with little or no modifications, depending on your installation's needs and
configuration. However, it is not intended to support all possible UFT commands.

If you choose to support the UFTD link drivers differently or to support additional devices, you can
modify the sample module or use the sample as a guide for creating your own exit routines.

UFTXIN Routine
The UFTXIN sample exit routine performs functions to support a single UFTD connect request. Multiple
UFTD link drivers can be defined using this sample exit. It also performs simple translation of data to
EBCDIC.

Attention

The UFTXIN sample UFTD link driver exit will operate more consistently and seamlessly if UFT
commands are sent prior to the data. UFTXIN will accept UFT commands sent after the data, but
information required for file processing might not be set up as desired.

The UFTXIN routine parses the user name on the USER command received from the UFT client, as shown
in the following examples:
KERRY@GDLVM7

Sets the node ID to GDLVM7 and the user ID to KERRY, causing the file to be sent to user KERRY at
node GDLVM7.

KERRY%GDLVM7
Sets the node ID to GDLVM7 and the user ID to KERRY, causing the file to be sent to user KERRY at
node GDLVM7.

KERRY@
Sets the node ID to the local node name and the user ID to KERRY, causing the file to be sent to user
KERRY on the local system.

KERRY%
Sets the node ID to the local node name and the user ID to KERRY, causing the file to be sent to user
KERRY on the local system.

KERRY
Sets the node ID to the local node name and the user ID to KERRY, causing the file to be sent to user
KERRY on the local system.

Sample UFTD Exit

Chapter 10. TCP/IP UFTD Exit Points 257

@LASER3
Sets the node ID to LASER3 and the user ID to SYSTEM, causing the file to be sent to the network
node LASER3.

%LASER2
Sets the node ID to LASER2 and the user ID to SYSTEM, causing the file to be sent to the network
node LASER2.

Notes:

1. UFTXIN will use only the first 32 characters of the user name.
2. If you are using a UFTXIN configuration file, UFTXIN will first look for a user name record with that

name, or a record called DEFAULT. See “UFTXIN Configuration File” on page 259. If UFTXIN cannot
find a matching user name record (or a DEFAULT record), or if it cannot find the configuration file, it will
parse the user name as described above.

3. When parsing the user name, UFTXIN will assume that any user name which does not include the @ or
% operator is a user ID.

4. UFTXIN will limit the length of the user ID and node ID to 8 characters each and will discard any extra
data in those fields of the user name.

Supported UFT Commands
The UFT commands supported by the UFTXIN exit are:
ABORT

Causes the spool file to be closed and purged.
CLASS

First character of the first operand of the data will be used for the class field of the TAG (TAGCLASS).
The second operand, if specified when TYPE is V M (the operand is ignored for all other TYPE values),
will indicate the file was from VM spool and whether it was a 1403, 3211, 3800, VAFP, or PUN device.

COPY
Will be used for the copy count field of the TAG (TAGCOPY).

DATE
Will be used to create the file origin TOD value in the TAG (TAGINTOD).

DESTination
First 8 characters of the data will be used for the destination field of the TAG (TAGDEST).

DISTribution
First 8 characters of the data will be used for the distribution field of the TAG (TAGDIST).

EOF
This causes the SPOOL file to be closed and delivered.

FILE
First 8 characters of the from data will be used for the origin user field of the TAG (TAGINVM).

FORM
First 8 characters of the data will be used for the form field of the TAG (TAGFORMN).

NAME
First 8 characters of the file name and first 8 characters of the file extension will be used for the
data set name field of the TAG (TAGDSN). Some parsing will be done to remove dots and slashes. For
example, the string:

C:\WINDOWS\SYSTEM\AUTOEXEC1234.BAT

will become AUTOEXEC BAT.
OWNER

First 8 characters of the data will be used for the origin user field of the TAG (TAGINVM) overriding the
information supplied on the FILE UFT command if provided.

Sample UFTD Exit

258 z/VM: 7.3 RSCS Networking Exit Customization

RECFmt
Used when creating the INMR2 control record.

RECLen
Defines the maximum allowed line width. This will become TAG field TAGRECLN.

TITLE
Will be used for the title line on each page if pagination was requested in the matching user name
record (or DEFAULT record) defined within the UFTXIN configuration file.

TYPE
Determines whether to translate data into EBCDIC and how to spool the data. UFTXIN supports these
data types (TYPE codes):

Data Code Processing

ASCII A Data will be translated to EBCDIC and spooled in NETDATA format. Trailing
CR/LF (X'0D0A') characters will be removed.

Binary I or B Data will be spooled in NETDATA format.

EBCDIC E Data will be spooled in NETDATA format. Trailing NL (X'15') characters will
be removed.

Mail M Data will be translated to EBCDIC and spooled in NETDATA format.

NETDATA N Data will be spooled as received.

Spool V M Data will be spooled as is after the CCW opcode and the 2-byte length
characters are removed.

Variable V Data will be spooled in NETDATA format after the 2-byte length characters
are removed.

USER
First 17 characters of the data will be used for the destination user field of the TAG (TAGTOVM) and
the destination node field of the TAG (TAGTOLOC).

In addition, the first 32 characters of the data will be used to search for a matching user name record
within the UFTXIN configuration file.

In addition, the UFTXIN routine supports comment records * and #.

Available EPARM Parameters
When using the UFTXIN routine, you can specify the following parameter in the EPARM value on the PARM
configuration statement for the link or on the RSCS DEFINE or START command.
Config=ddname

specifies the DDNAME which has been defined as an exit configuration file. If the DDNAME does not
exist, the UFTXIN initialization routine will pass back a return code to cause the UFTD-type link to
issue an error message and drain. If this exit parameter is not used, a configuration file is not read
by the UFTXIN exit, causing existing defaults to be used for values which can be defined by the
configuration file.

UFTXIN Configuration File
The UFTXIN sample exit routine can read a configuration file. This configuration file can supply the
following:

• Overrides for processing when a file is received from a remote UFT client, based on the user name
• A translate table to override the one used by the exit
• Override the host name used in the herald response message
• Provide a domain name used in the herald response message

Sample UFTD Exit

Chapter 10. TCP/IP UFTD Exit Points 259

The configuration file can have any desired file name and file type and must be on a disk accessed by the
RSCS user ID. This file must be defined with a FILEDEF statement in the PROFILE GCS. The DDNAME used
must be specified on the Config= parameter in the EPARM value on the PARM statement for the link in the
RSCS CONFIG file or in the link operational parameters on the RSCS DEFINE or START command.

The following is an example of a DDNAME entry in the PROFILE GCS in which UFTIN is the defined
DDNAME and UFTI SCONFIG is the name of the UFTXIN configuration file:

'FILEDEF UFTIN DISK UFTI SCONFIG *'

The following is an example of the PARM statement for a UFTD-type link named UFTD using the DDNAME
defined on the FILEDEF statement in the PROFILE GCS:

PARM UFTD EXIT=UFTXIN EPARM='C=UFTIN'

Layout of the UFTXIN Configuration File
The following rules apply to the UFTXIN configuration file:

• An asterisk (*) in column one denotes a comment line.
• Any line that does not have an asterisk (*) in column one will be interpreted as a configuration entry.
• All configuration entires must be capitalized.
• Entries can span multiple records.

The following configuration records are supported.

DOMAINAME=string
specifies a domain name, up to 255 characters, to be appended after the host name of the positive
herald response message (the message sent in response to a connect request from a remote UFT
client). A period (.) will be inserted between the host name and domain name. This record can be used
to add a domain name after the host name, which by default is the local RSCS node name.

HOSTNAME=string
specifies a host name, up to 255 characters, used within the positive herald response message (the
message sent in response to a connect request from a remote UFT client), overriding the default,
which is the local RSCS node name.

TOASCII=string
provides a table for EBCDIC to ASCII translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) can be specified on multiple TOASCII= records to replace the
256-byte translation table.

TOEBCCMD=string
provides a table for ASCII to EBCDIC translation of the UFT commands, overriding the default used
by the exit. Up to 512 hexadecimal characters (0 - 9, A - F) can be specified on multiple TOEBCCMD=
records to replace the 256-byte translation table.

TOEBCDIC=string
provides a table for ASCII to EBCDIC translation, overriding the default used by the exit. Up to 512
hexadecimal characters (0 - 9, A - F) can be specified on multiple TOEBCDIC= records to replace the
256-byte translation table.

username
provides the ability to override defaults used by UFTXIN on a user name basis when receiving a file
from a remote UFT client. Multiple unique user name records can be specified.

When a user name arrives, UFTXIN will first look for a matching user name record. If none is found, it
will look for a record with the name DEFAULT. A DEFAULT record can be used to define parameters for
any user name not defined by its own configuration record. If a DEFAULT record is not found, UFTXIN
will use the existing defaults.

The format of the user name record is:

Sample UFTD Exit

260 z/VM: 7.3 RSCS Networking Exit Customization

username ppos lpage class forms jobn dest pagination userid nodeid tcpxlbin
netdata

The following rules apply to the user name record:

• One record is allowed per line; continuation is not supported.
• The parameters of the record must be separated by one or more blanks.
• The parameters are not column dependent but they are position dependent.
• An asterisk (*) can be used for any parameter except username to tell UFTXIN to use the existing

default.

The parameters of the user name record are defined as follows.

DEFAULT
username

is a user name up to 32 characters, or DEFAULT.

UFTXIN parses the user name into a user ID and node ID, as follows:
userid@nodeid

Node ID and user ID will be set as specified.
userid%nodeid

Node ID and user ID will be set as specified.
userid@

Node ID will be set to the local node name, user ID will be set as specified.
userid%

Node ID will be set to the local node name, user ID will be set as specified.
userid

Node ID will be set to the local node name, user ID will be set as specified.
@nodeid

Node ID will be set as specified, user ID will be set to SYSTEM.
%nodeid

Node ID will be set as specified, user ID will be set to SYSTEM.

The user ID and node ID parsed from the user name can be overridden within the record. If the
username value is DEFAULT or any other value that does not conform to one of the variations
listed above, the user ID and node ID should be set (overridden) within the record. If both are
overridden, the username value is not parsed. If neither is overridden, the username value is
assumed to be a user name, which is parsed into the user ID and node ID, which must be valid
(either of which can still be overridden within).

Notes:

1. When parsing the user name, UFTXIN will assume that any user name which does not include
the @ or % operator is a user ID.

2. UFTXIN will limit the length of the user ID and node ID to 8 characters each and will discard
any extra data in those fields of the user name.

ppos
is the logical record length. This value can be 1 - 65535 when the file will be spooled in NETDATA
format; otherwise, it can be 1 - 32760. The default is 255 if the RECLen UFT command is not
received.

If the file is not spooled as NETDATA, then the following virtual printer type will be defined based
on the ppos value:

ppos Virtual Printer

1 - 132 1403

Sample UFTD Exit

Chapter 10. TCP/IP UFTD Exit Points 261

ppos Virtual Printer

133 - 150 3211

151 - 204 3800

205 - 1280 VAFP

lpage
is the number of lines per page, 1 - 99. The default is 66. This parameter is valid only if the
pagination parameter has been set to PAGE.

class
is the 1-character spool file class. The default is blank if the CLASS UFT command is not received.

forms
is the 1- to 8-character spool file form. The default is blank if the FORM UFT command is not
received.

jobn
is the 1- to 8-character job name. The default is SYSTEM.

dest
is the 1- to 8-character PSF destination. The default is blank if the DESTination UFT command
is not received. When using a PSF destination, UFTXIN will set the user ID field of the TAG to
SYSTEM.

When using a PSF destination, the user name can be in the form SYSTEM@nodeid. Alternatively,
the user name can be anything unique as long as the userid parameter in the record is either
SYSTEM or * and the nodeid parameter is specified.

pagination
specifies how pagination will be performed.
PAGE

UFTXIN will paginate.
NOPAGE

UFTXIN will not paginate. This is the default.
userid

is the 1- to 8-character user ID to which the file should be spooled. The default is derived from the
user name.

Note: If a PSF destination is provided by the dest parameter, then the userid parameter can be set
only to SYSTEM.

nodeid
is the 1- to 8-character destination node ID to which the file should be spooled. The default is
derived from the user name.

tcpxlbin
is the file name of a TCP/IP translation table (TCPXLBIN file) to be used for this user name. The
file must exist on any accessed disk. If this parameter is not specified, the translation table used
will be either the default table within UFTXIN or the override specified on one or more TOEBCDIC=
records in the UFTXIN configuration file.

netdata
specifies whether the data should be spooled in NETDATA format.
YES

Spools the data in NETDATA format. This is the default.
NO

Spools the data as plain records, not in NETDATA format. This is the desired format if the
destination of the file is a printer.

Sample UFTD Exit

262 z/VM: 7.3 RSCS Networking Exit Customization

Note: This option does not apply if the transform type (UFT TYPE command code) is N (NETDATA)
or V M (Spool).

User Name Examples
This example would allow a file to be received without translating, and spooled to an LPR link using the
LPRXONE exits, causing the file to be sent unaltered to a remote UFT daemon:

LPR@NODEONE 1280 50 * STDN * * * ASCII * * NO

This example defines a user name used to spool input to the system printer:

LOCALNODE * * * * * SYSTEM * * * NO

This example shows the defaults defined within UFTXIN.

DEFAULT 255 66 * * SYSTEM * NOPAGE * * * YES

Sample UFTD Exit

Chapter 10. TCP/IP UFTD Exit Points 263

Sample UFTD Exit

264 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 11. RSCS Macros

This section describes the RSCS macros that you can use with your exit routines. For information about
the conventions used in the syntax diagrams, see “Syntax, Message, and Response Conventions” on page
xv.

Specifying Parameters
There are two ways to specify parameters: positional and keyword. You must write positional parameters
in a specific order. If you omit a positional parameter and specify another parameter to its right, you must
include a comma before the omitted parameter. You can omit the comma when the positional parameter
is followed by a keyword parameter or a blank.

A keyword parameter is immediately followed by an equal sign and an optional variable. You can specify
keyword parameters, but you must specify them to the right of any positional parameters in the macro.

Program Structure Macros
RSCS provides program structure macros to generate standard OS register saving and savearea
conventions. The macros also create standard entry and exit conditions in RSCS modules and your exit
routines. You can use these macros in reentrant and nonreentrant environments. Reentrant modules can
also use these macros to allocate storage for dynamic work areas.

Attention

These macros require knowledge of systems programming and assembler language conventions. The
macros do not provide complete syntax checking; some combinations of keywords and parameters are
not supported. Please read the parameter descriptions and the usage notes carefully before attempting
to use these macros.

© Copyright IBM Corp. 1990, 2022 265

BRC – Branch on Return Code

label

BRC (

,

target_addr)

Purpose
The BRC macro branches to one of a series of specified target addresses using the return code, passed in
register 15, from an exit routine. The exit routine must return standard return code values (multiples of 4,
starting with 0). Use this macro after issuing RCALL to call an exit routine.

The BRC macro generates a branch table. For any return code, RSCS processes two branch on condition
(BC) instructions.

Attention: The IBM High Level Assembler (HLASM) supports the ESA/390 opcode BRC, which
conflicts with the use of the RSCS BRC macro. Therefore the BRC assembler instruction cannot be
used in parts which use the RSCS BRC macro.

Parameters
label

is any valid assembler statement label.
target_addr

is the address of a label where control is passed for a return code. If you specify multiple addresses,
they must be separated by commas. Each label corresponds to a return code, starting with return
code 0 and continuing for the return code sequence (4, 8, 12, and so on). Addresses can be specified
as any value that is valid in an RX-type instruction.

To pass control to the next sequential instruction following the BRC macro, specify the value NSI.

BRC

266 z/VM: 7.3 RSCS Networking Exit Customization

EXITCALL – Providing an Exit Point

label

EXITCALL nnn

Setup ,( address_parameters)

,VL

,MAXRC=4

,MAXRC=  nn

,WORKREG=2

,WORKREG=  number ,CVTREG=  number

,ITRACE=NO

,ITRACE=YES ,MF= L

(E, address)

,SAVERC=NO

,SAVERC=YES

Setup

SETUP

,EXIT=NO

,EXIT= label

( reg)

YES

,EXITRC=NONE

,EXITRC= ALL

(

,

nn)

Purpose
The EXITCALL macro passes control to an exit routine, if the exit point has been enabled by the EXIT
statement or command. The linkage established is the same as that created by a BASR instruction; the
issuing program expects to regain control. The macro allows an address parameter list to be constructed.
Standard, list, and execute forms of the EXITCALL macro can be coded.

Parameters
label

is any valid assembler statement label.
nnn

is a number, 0 - 255, that identifies an exit point. You can specify the nnn number symbolically or with
an absolute expression. If you specify MF=L, you must omit the nnn and specify a comma (,) to show
its absence.

SETUP
identifies special conditions to be processed by the next EXITCALL nnn invocation, which must
follow immediately after this invocation. When specified, SETUP also initializes the ECXBLOK area,
which stores exit routine return codes, to zeros.
,EXIT=

identifies another routine that RSCS calls before calling the next exit routine associated with this
exit point. RSCS calls this routine only if the exit routine issues the return code specified on the
EXITRC parameter.
NO

Tells RSCS to continue its usual processing for this exit point. This is the default.

EXITCALL

Chapter 11. RSCS Macros 267

label
Specifies the assembler label of the routine to be called.

(Rn)
Specifies that register n contains the address of the routine to be called.

YES
Tells RSCS to call the next sequential instruction.

,EXITRC=
identifies the return code for which RSCS calls the routine specified on the EXIT parameter.
NONE

Specifies that RSCS does not call additional routines when the exit routine issues any return
code. This is the default.

ALL
Specifies that RSCS calls the specified routine when the exit routine issues any valid return
code.

nn
Specifies a return code for which the routine is called.

address_parameters
specifies one or more addresses, separated by commas, passed to the exit routine. Each address
is expanded, in order, to a fullword on a fullword boundary. R1 contains the address of the first
parameter. If you do not specify address parameters, the contents of R1 do not change.

If you code the standard form of the macro, you can specify addresses as any valid A-type address
constant or as R2 to R12. You can specify registers symbolically or with an absolute expression; they
must be coded within parentheses.

If you specify the list form of the macro, you must state address parameters. Specify address as any
valid A-type address constant, or show their absence with commas.

If you specify the execute form of the macro, you can specify addresses as any value that is valid
in an RX-type instruction or as R2 to R12. You can specify registers symbolically or with an absolute
expression; they must be coded within parentheses.

,VL
sets the high-order bit of the last address parameter in the macro expansion to 1. The exit routine
can test this bit to find the end of the parameter list. VL is coded only if address parameters are
designated. It should be used only when a variable number of parameters can be passed to the called
program.

,MAXRC=code
specifies the maximum acceptable return code, code, issued by the exit routine. If this parameter is
omitted, the default is 4.

,WORKREG=number
specifies an internal work register, number, destroying the register's original contents; R2 is the
default. You can specify registers symbolically or with an absolute expression. Do not specify registers
0, 1, 12, 13, 14, or 15 as a work register. If the module containing this EXITCALL macro uses many
base registers, registers 9, 10, and 11 may also be unavailable.

,CVTREG=number
specifies a register, number, that contains the address of the CVT control block. You can specify
registers symbolically or with an absolute expression. The contents of this register are not destroyed,
unless register 1, 14, or 15 is specified. Do not specify registers 0, 12, or 13. If the module containing
this EXITCALL macro uses many base registers, registers 9, 10, and 11 may also be unavailable. If you
do not specify a register, RSCS generates a LOAD instruction and a V-type address constant to get the
address of the CVT.

,ITRACE=
specifies whether an ITRACE macro is called within the EXITCALL expansion to trace the call to the
exit routine.

EXITCALL

268 z/VM: 7.3 RSCS Networking Exit Customization

NO
Does not generate an ITRACE macro. This is the default.

YES
Generates an ITRACE macro. This option is intended for IBM use only.

,MF=
specifies the format of the macro.
L

List form.
(E,address)

Execute form. The address is any valid RX-type address or a register, 1 - 12, that was previously
loaded with the specified address. You can specify the register symbolically or with an absolute
expression; it must be coded within parentheses. For example, Register 1 must be specified as (1).

,SAVERC=
specifies whether the return code from an exit routine should be stored in the ECXBLOK.
NO

Does not store the return code. This is the default.
YES

Stores the return code.

Usage Notes
1. EXITCALL generates literal expressions. You must ensure that literals are not generated outside the

boundaries of the CSECT that contains the EXITCALL macro. Use of an assembler LTORG statement is
recommended.

2. The EXITCALL macro expansion uses the TEXITS label generated by the CVT; you must code the CVT
macro in any module that calls EXITCALL.

3. When the code generated by the EXITCALL macro is processed, the contents of registers 14, 15, and
the specified WORKREG register are altered. If you code address parameters, R1, and possibly R0, are
also altered.

4. If the exit routine issues a return code that exceeds the MAXRC value or is not a multiple of 4, user
abend 1xx is generated (where xx is the number of the exit point in hexadecimal).

EXITCALL

Chapter 11. RSCS Macros 269

HASHBLOK – Defining a Hash Table

label

HASHBLOK
DSECT=YES

DSECT=NO

,LABELS=NO

,LABELS=YES

,EYECAT=  eyecatcher ,ANCHORS=  number

,CHAIN=0

,CHAIN=  offset

,COLLIDE=4

,COLLIDE=  offset ,KEY=  offset ,KEYLEN=  length

,FLAGS= (
1

,

GENERICS

LOCK

PERSIST

PRESET

)
1

Notes:
1 The () delimiters are required only if you specify more than one option.

Purpose
The HASHBLOK macro defines the characteristics of a hash table. A HASHBLOK macro can be used to
describe the hashing function to be used for any type of data area.

Parameters
label

is any valid assembler statement label.
DSECT=

specifies whether a DSECT statement is generated.
YES

Generates a DSECT statement. This is the default.
NO

Does not generate a DSECT statement. The macro expansion is generated as a continuation of the
current CSECT or DSECT.

,LABELS=
specifies whether assembler labels are generated for each statement in the macro expansion.
NO

Does not generate labels. This is the default.
YES

Generates labels.
,EYECAT=eyecatcher

specifies a value used to identify the macro invocation within storage.

HASHBLOK

270 z/VM: 7.3 RSCS Networking Exit Customization

,ANCHORS=number
specifies the size of the hash index.

,CHAIN=offset
specifies the offset value of the chain pointer within the data area to be hashed. The default is 0.

,COLLIDE=offset
specifies the offset into a data area to be used as a collision chain. The default is 4.

,KEY=offset
specifies the offset into the data area for the hash key, which is used for the hash table index.

,KEYLEN=length
specifies the length of the hash key.

,FLAGS=
specifies one or more of the following characteristics for the hash table:
GENERICS

The hash table supports generic searches for hash table entries.
LOCK

Disables interrupts for other routines when the hash table is being updated.
PERSIST

Persistent storage creates the hash table. The HASHBLOK remains in storage after the routine that
created it is detached.

PRESET
The value specified on the ANCHORS parameter is used as the size of the hash table.

HASHBLOK

Chapter 11. RSCS Macros 271

INSTALIT – Adding a Record Format Table

label

INSTALIT

,

nn, label

Purpose
The INSTALIT macro adds an ITRACE record format table to the list of format tables that RSCS
recognizes. Do not use this macro to replace any IBM-defined trace types for the ITRACE macro.

Parameters
label

is any valid assembler statement label.
nn

is the number of the event type for this trace record. If you specify an nn value on more than one
invocation of the INSTALIT macro, only the last occurrence of that nn is added to the table.

label
is the label specified on the ITFORMAT macro that defines the format of the specified nn type.

INSTALIT

272 z/VM: 7.3 RSCS Networking Exit Customization

ITFORMAT – Building a Format Table

label ITFORMAT

,

entryid , length , eyecatcher

Purpose
The ITFORMAT macro builds a format table for an internal trace record you have defined in the ITRACE
macro. The resulting table must then be added to the list of IBM-defined trace formats by running the
INSTALIT macro.

Parameters
label

is any valid assembler statement label. You must specify a label when calling this macro.
entryid

identifies the data area to be placed in the internal trace record.
length

is the length of the data area. This value cannot exceed the size of the internal trace table.
eyecatcher

is a 10-byte character string that identifies the data area.

ITFORMAT

Chapter 11. RSCS Macros 273

ITRACE – Tracing an Event

label

ITRACE TYPE=  nn
1

,ACB= addr ,AECODE=  addr

,ARG=( nn, addr , length

)

,BIND=  addr

,CCODE=  addr ,CDEF=  addr ,CMDEL=  addr

,CMDTEXT=  addr ,CVTREG=  regnum ,DIAG=  addr

,EXITADR=  addr ,EXITNUM=  addr ,EXLIST=  addr

,FILTER=  addr ,FIOA=  addr ,IOTABLE=  addr

,LDEF=  addr ,LINKTAB=  addr

,MF=AUTO

,MF= (E, address)

L

,MSGBLOK=  addr ,NIB= addr ,NUMARGS=  number

,PDEF=  number ,PLIST=  addr ,PORT=  addr

,QANCH=  addr ,QSABLOK=  addr ,RDEVBLK=  addr

,RDRPARM=  addr ,RETCODE=  addr ,RIB= addr

,RPL= addr ,RX= addr

,RX1= addr1

,RY= addr

,RY1=  addr1

,R0= addr ,R1= addr

,SDWA=  addr ,TIB=  addr ,TANK=  addr ,TASKBLK=  addr

Notes:

ITRACE

274 z/VM: 7.3 RSCS Networking Exit Customization

1 TYPE is not required if MF=L is specified.

Purpose
The ITRACE macro records events that occur in an exit routine and places them in the RSCS trace table.

Parameters
label

is any valid assembler statement label.
TYPE=nn

specifies the format of the trace record for the event being recorded in the RSCS internal trace table.
(See usage note “1” on page 277 for the IBM-defined values.) This parameter is not needed for the
MF=L form.

,ACB=addr
specifies a pointer to the ACB control block used by the SNA control task when the RSCS/VTAM
interface begins and ends.

,AECODE=addr
specifies the pointer to the system completion code that identifies the type of program interruption
(for example, S0C4).

,ARG=(nn,addr,length)
specifies the free-form method of specifying fields and data areas to be placed in a RSCS internal
trace record. This is useful when using customer or IBM-defined format tables; however, you must use
the correct format for each type of record.

,BIND=addr
specifies a pointer to the BIND area pointed to by an RPL.

,CCODE=addr
specifies the pointer to the condition code returned by a diagnose code.

,CDEF=addr
specifies a pointer to the CDEF control block that defines a command or statement name. It also
contains a pointer to the next transition level.

,CMDEL=addr
specifies a pointer to a command element.

,CMDTEXT=addr
specifies a pointer to the command or statement text issued.

,CVTREG=regnum
specifies a register that contains the address of the CVT.

,DIAG=addr
specifies the pointer to the diagnose code for which a trace entry is to be recorded.

,EXITADR=addr
specifies a pointer to the exit routine being called.

,EXITNUM=addr
specifies the pointer to the exit point for which the entry is to be recorded.

,EXLIST=addr
specifies a pointer to a VTAM EXLST block.

,FILTER=addr
specifies a pointer to a filter program.

,FIOA=addr
specifies a pointer to a file I/O area.

ITRACE

Chapter 11. RSCS Macros 275

,IOTABLE=addr
specifies a pointer to an IOTABLE control block.

,LDEF=addr
specifies a pointer to an LDEF control block to define the parser transition level for a state while
processing a command or statement.

,LINKTAB=addr
specifies a pointer to a LINKTABL entry.

,MF=
specifies the format of the macro.
AUTO

The macro automatically obtains it’s required work area from the RSCS TASKBLOK associated with
this task; the macro expansion generates a call to DMTTASKG. This is the default.

L
List form. When you specify this form, you must include a label.

(E,address)
Execute form. The address is either an address that is valid in an RX-type instruction or a register,
1 - 12, that contains the specified address. A register may be specified symbolically or within
parentheses.

,MSGBLOK=addr
specifies a pointer to the message block for a message.

,NIB=addr
specifies a pointer to the Node Initialization Block for a VTAM request.

,NUMARGS=number
specifies the number of double words for the macro to generate for the execute form of the macro
invocation. This parameter can be specified only on the list form of the macro; it is an alternative to
specifying commas for all other parameters.

,PDEF=addr
specifies a pointer to a PDEF control block that defines the parser transition level for processing a
command or statement.

,PLIST=addr
specifies a pointer to an initialization vector passed to a task when it is attached.

,PORT=addr
specifies a pointer to a PORT entry of an auto-dial or auto-answer task.

,QANCH=addr
specifies the queue anchor for command or message elements that is passed to DMTCOMNQ and
DMTCOMDQ.

,QSABLOK=addr
specifies a pointer to a QSABLOK data area.

,RDEVBLK=addr
specifies a pointer to a spool file request element, which a link driver task passes to DMTAXMRQ to
request a file.

,RDRPARM=addr
specifies a pointer to the parameter list mapped by the RDR macro.

,RETCODE=addr
specifies the pointer to the value of the return code in register 15, generally on completion of a VTAM
request or macro.

,RIB=addr
specifies a pointer to the Receiving Information Block.

,RPL=addr
specifies a pointer to the RPL passed to, or received from, VTAM during processing of VTAM requests
issued by a session driver or the RSCS SNA control task.

ITRACE

276 z/VM: 7.3 RSCS Networking Exit Customization

,RX=addr,RX1=addr1
specifies the pointer to the general storage registers that contain addresses or function code passed
to a CP DIAGNOSE code; the registers may also contain a return code from the DIAGNOSE function.

,RY=addr,RY1=addr1
specifies the pointer to the general storage registers that contain addresses or function code passed
to a CP DIAGNOSE code; the registers may also contain a return code from the DIAGNOSE function.

,R0=addr
specifies the pointer to the value of register 0, generally on completion of a VTAM request or macro.

,R1=addr
specifies the pointer to the value of register 1, generally on completion of a call to a subroutine, that
returns a pointer to a data area.

,SDWA=addr
specifies the pointer to the system diagnostic work area provided by GCS when an abend occurs.

,TIB=addr
specifies a pointer to a Transmission Information Block.

,TANK=addr
specifies a pointer to a holding area for NJE buffers that are not compressed.

,TASKBLK=addr
specifies a pointer to a TASKBLOK data area.

Usage Notes
1. You can specify the following IBM-defined values on the TYPE=nn parameter:

nn Trace Record

00 Start of a task

01 End of a task

02 Call to a GCS exit routine

03 I/O interrupt

04 Call to DMTAXMRQ (request a file)

05 Call to DMTCOMNQ (add an element to a queue)

06 Call to DMTCOMDQ (remove a queue element)

07 Call to DMTMGXEP (issue a message)

08 Call to allocate storage

09 Command entry

0B Initial call to VTAM

0C Completion of VTAM call

0D Call to an exit (EXITCALL)

0E Exit point return

0F Call to DMTRDREP

10 Call to DMTUROEP or DMTUROFL

11 Call to DMTIOTHD or DMTIOTST

12 NJE record sent

13 A scheduled event

14 Data buffers sent and received

ITRACE

Chapter 11. RSCS Macros 277

nn Trace Record

15 Diagnosis code

16 VTAM exit routine

17 NJE job header

18 NJE data set header

19 NJE job trailer

1A NJE request to open

1B NJE permission granted

1C NJE end of file

1D NJE receiver online

1E NJE reject

1F NJE abend

20 NJE connection, RJE connection, or sign-on record

21 Used for exit routines

22 Call to deallocate storage

23 NJE record received

24 IUCV calls to TCP/IP

25 Normal IUCV completion from TCP/IP

26 IUCV immediate error returns

27 Send and receive buffer trace for MRJE

28 - EF Reserved for IBM use

24 - DF Not used

E0 - EF Reserved for IBM use

F0 - FF Reserved for customer use

2. If your exit routine is reentrant, you must specify MF=L and NUMARGS=nn to ensure that the parameter
lists for tasks are not overlaid when the ITRACE macro is called.

3. ITRACE does not check if the nn value specified on the TYPE parameter represents a defined trace
record type. If you specify an undefined TYPE value, ITRACE does not create a trace record.

ITRACE

278 z/VM: 7.3 RSCS Networking Exit Customization

PARDSECT – Defining a Keyword Table

label

PARDSECT
TABLE=MAIN

TABLE= TYPE01

TYPE02

TYPE03

,DSECT=YES

,DSECT=NO

Purpose
The PARDSECT macro creates a keyword table. This keyword table maps the entries generated by the
PARKEY macro. You can place the PARDSECT macro anywhere before the end of the module that is using
the PAREND, PARKEY, and PAROPT macros. See Figure 31 on page 283 for an example of using the
PARDSECT, PAREND, PARKEY, and PAROPT macros.

Parameters
label

is any valid assembler statement label.
TABLE=

specifies the type of table to be used. See the usage notes below for examples of what DSECT each
type of table generates.
MAIN

Creates a main keyword table. This is the default.
TYPE01

Creates a character keyword table.
TYPE02

Creates a subkeyword table.
TYPE03

Creates a number keyword table.
,DSECT=

specifies whether a DSECT statement is generated.
YES

Generates a DSECT statement. This is the default.
NO

Does not generate a DSECT statement. The macro expansion is generated as a continuation of the
current CSECT or DSECT.

Usage Notes
1. If you specify TABLE=MAIN, RSCS generates the following DSECT:

PARKWORD DC CL8' ' VALID KEYWORD NAME.
PAROPADR DC A(0) ADDRESS FOR KEYWORD SPECIFICATION
PARTAADR DC A(0) ADDRESS FOR RESULT TO BE RETURNED
PARPRADR DC A(0) ADDRESS OF EXTERNAL PROC. ROUTINE
PARKYLEN DC AL1(0) MIN. LENGTH FOR THAT KEYWORD.
PARKYTYP DC X'00' KEYWORD TYPE X'01',X'02' OR X'03'
PARKYDUP DC X'00' X'MN', DUPLICATE/CONFLICT INDICATOR
PARESERV DC X'00' RESERVED BYTE
PARKELEN EQU *-&LABEL MAIN KEYWORD ENTRY LENGTH

PARDSECT

Chapter 11. RSCS Macros 279

2. If you specify TABLE=TYPE01, RSCS generates the following DSECT:

PAROLENL DC F'0' MINIMUM LENGTH OF OPTION STRING
PAROLENH DC F'0' MAXIMUM LENGTH OF OPTION STRING
PAROLEN1 EQU *-&LABEL TYPE01 KEYWORD OPTION ENTRY LENGTH

3. If you specify TABLE=TYPE02, RSCS generates the following DSECT:

PARSUBKY DC CL8' ' SUB-KEYWORD NAME
PARSUBKL DC AL1(0) MINIMUM LENGTH OF THE OPTION
PARSOPCD DC X'00' CODE FOR THIS OPTION
PARSNOPC DC X'00' ANTI-CODE FOR THIS OPTION
PAROLEN2 EQU *-&LABEL TYPE02 KEYWORD OPTION ENTRY LENGTH

4. If you specify TABLE=TYPE03, RSCS generates the following DSECT:

PARNUMTP DC CL2' ' DC, DD, HC OR HD
PARVCOUN DC H'0' COUNT OF 'V' VALUES
PARVENT DS 0F VALUE ENTRY FOLLOWS

PARDSECT

280 z/VM: 7.3 RSCS Networking Exit Customization

PAREND – Defining the End of a Keyword Table

label

PAREND

Purpose
The PAREND macro defines the end of a keyword table. You must specify PAREND after the last use of the
PARKEY macro. See Figure 31 on page 283 for an example of using the PARDSECT, PAREND, PARKEY, and
PAROPT macros.

Parameters
label

is any valid assembler statement label.

PAREND

Chapter 11. RSCS Macros 281

PARKEY – Defining a Keyword

label

PARKEY KEY= keyword ,OPTADR=  symbol
,TARADR=0

,TARADR=  symbol

,PROADR=0

,PROADR=  symbol

,KEYLEN=1

,KEYLEN=  n

,OPTYPE=CHAR

,OPTYPE= NUMBER

SUBKEY

,CFGROUP=0

,CFGROUP=  nn

Purpose
The PARKEY macro defines the characteristics of a keyword. You can specify the PARKEY macro only
after you have specified all the PAROPT macros. See Figure 31 on page 283 for an example of using the
PARDSECT, PAREND, PARKEY, and PAROPT macros.

Parameters
label

is any valid assembler statement label.
KEY=keyword

specifies the 1- to 8-character alphanumeric keyword. This parameter is required.
,OPTADR=symbol

specifies the label of the PAROPT macro that describes this option. This parameter is required.
,TARADR=0
,TARADR=symbol

specifies the target address or label of an address constant (ADCON) where RSCS will store the result
of the parsing of this keyword. If this parameter is omitted, RSCS assumes that TARADR=0, which
means there is no result, just a return code.

,PROADR=0
,PROADR=symbol

specifies the address of the external processing routine of this option. If this parameter is omitted,
RSCS assumes that PROADR=0, which means there is no external processing routine.

,KEYLEN=n
specifies the number of characters in the minimum abbreviation for the keyword. This value can be
any decimal number, 1 - 8. The default is 1.

,OPTYPE=
specifies the type of option.
CHAR

The option is character data. This is the default.
NUMBER

The option is a number.
SUBKEY

The option is a subkeyword.

PARKEY

282 z/VM: 7.3 RSCS Networking Exit Customization

,CFGROUP=nn
specifies the conflict group for keywords or options that should not be specified together. This value
can be any decimal number, 0 - 15. The default is 0, which means there are no conflict groups.

Examples

Figure 31 on page 283 shows an example of how to define keywords with the PARDSECT, PAREND,
PARKEY, and PAROPT macros.

EXMOD RMOD

*
* MODULE NAME - *----------------*
* * EXMOD *
* *----------------*
⋮
EXMODEP RENTRY WORK=YES,NUMSAVE=16,RENT=YES,WRKBASE=10, X
 BASES=2,ARGBASE=R2, X
 ARGS=(@CVT,@PARML,@PARMS,@LINKTAB,@DPARML,@DPARMS)
⋮
*--
* PAROPT DEFINITIONS
* TRANS KEYWORD (TRKEY) VALID OPTIONS (EXTRANR)
* ITO KEYWORD (ITOKEY) VALID VALUES (EXITO)
*--
EXTRANR PAROPT SUBKEY=((APL,3,X'80',X'A1'), X
 (TEXT,4,X'40',X'61'), X
 (DBCS,4,X'10',X'31'), X
 (DBCSAPL,7,X'08',X'29'), X
 (DBCSTEXT,8,X'04',X'25'), X
 (ASISCC,6,X'02',X'2B'))

EXITO PAROPT NUMBER=(DC,2,0,100)
⋮
*--
* TARGETS FOR:
* ITOKEY (PARKEY) (EXITO OPTIONS)
* TRKEY (PARKEY) (EXTRANR OPTIONS)
*--
ITOVAL DC F'-1' ITO PARM VALUE

EXTRAN DC AL1(0) TERMINAL DEVICE TRANSLATION
⋮
*--
* PARKEY DEFINITIONS
*--
TRKEY PARKEY KEY=TRANS, X
 KEYLEN=2, X
 TARADR=EXTRAN, X
 OPTADR=EXTRANR, X
 OPTYPE=SUBKEY

ITOKEY PARKEY KEY=ITO, X
 KEYLEN=3, X
 TARADR=ITOVAL, X
 OPTADR=EXITO, X
 OPTYPE=NUMBER
 PAREND
⋮
*--
* PARDSECT
*--
EXPARS PARDSECT TABLE=MAIN
 END

Figure 31. Defining Keywords

PARKEY

Chapter 11. RSCS Macros 283

PAROPT – Defining Options for a Keyword

label

PAROPT

CHAR=( minlen , maxlen)

NUMBER=( type , vcount , v)

SUBKEY=(

,

( keyword

, len

,  v
, negv

))

Purpose
The PAROPT macro defines the valid options for a keyword and starts the keyword table. You must specify
the PAROPT macro before specifying any PARKEY macros. See Figure 31 on page 283 for an example of
using the PARDSECT, PAREND, PARKEY, and PAROPT macros.

Parameters
label

is any valid assembler statement label.
CHAR=(minlen,maxlen)

specifies the minimum and maximum lengths of a character option.
NUMBER=(type,vcount,v)

specifies the characteristics of a number keyword.
type

specifies the type of number to be used.
DC

Decimal and continuous
DD

Decimal and discrete
HC

Hexadecimal and continuous
HD

Hexadecimal and discrete
vcount

specifies the number of values to follow.
v

is a number value. For discrete numbers, you specify a list of individual numbers. For continuous
numbers, you must specify one or two pairs of numbers to indicate one or two ranges of numbers.
If you specify one pair of numbers (v1,v2), v1 is the minimum number in the range and v2 is
the maximum number in the range. If you specify two pairs of numbers (v1,v2,v3,v4), v1 and v2
are the minimum and maximum numbers in the first range, and v3 and v4 are the minimum and
maximum numbers in the second range.

SUBKEY=
specifies the characteristics of each subkeyword.

PAROPT

284 z/VM: 7.3 RSCS Networking Exit Customization

keyword
is the name of the subkeyword.

len
is the length of the minimum abbreviation for the subkeyword.

v
is the positive value flag for the subkeyword.

negv
is the negative value flag for the subkeyword.

PAROPT

Chapter 11. RSCS Macros 285

QSABLOK – Defining a Storage Request

label

QSABLOK

LENGTH=  n ,INIT=  value

,OPT4K=NO

,OPT4K=YES

,EYECAT=  eyecatcher

,PERSIST=YES

,PERSIST=NO

,GETMAIN=RCTYPE

,GETMAIN=RTYPE

,LOC=ANY

,LOC=BELow

,LOC=RES

Purpose
The QSABLOK macro defines the characteristics of the storage that your exit routine requires.

Parameters
label

is any valid assembler statement label.
LENGTH=n

specifies the length of the required piece of storage. If the LENGTH value is greater than the INIT
value, the amount of storage specified by the INIT value is initialized as requested. The remaining
LENGTH value is then initialized to zeros.

,INIT=value
specifies the number of bytes of storage to be initialized. The value can be specified as a number or
as an equate symbol of a data area from which you want to initialize storage. If specifying an equate,
the associated data area must follow the QSABLOK invocation. If you specify 0, the storage area is
initialized to zeros.

,OPT4K=
specifies whether RSCS should acquire a page of storage.
NO

RSCS acquires only the amount of storage specified on the LENGTH parameter. This is the default.
YES

RSCS acquires a page of storage and subdivides it as needed.
,EYECAT=eyecatcher

specifies a value that identifies the macro invocation within storage.
,PERSIST=

specifies the type of GCS subpool from which the storage should be acquired.
YES

The storage is acquired from a persistent subpool. This is the default.
NO

The storage is acquired from a nonpersistent subpool. This storage will be acquired from subpool
0. It will automatically be released when the task that initially acquired the storage terminates.

,GETMAIN=
specifies the type of GETMAIN macro to be issued to acquire the storage.

QSABLOK

286 z/VM: 7.3 RSCS Networking Exit Customization

RCTYPE
The storage is acquired by a conditional GETMAIN request. If the storage cannot be acquired, the
exit routine will receive a return code. This is the default.

RTYPE
The storage is acquired by an unconditional GETMAIN request. If the request fails, the calling task
will abend.

,LOC=
specifies the location of the requested block of storage.
ANY

The requested storage can be located anywhere. This is the default.
BELow

The requested storage is to be allocated entirely below 16 MB.
RES

The location of the virtual storage requested is to be allocated based on the location of the
requesting routine. If the requesting routine resides below 16 MB, the virtual storage will be
allocated below 16 MB. If the requesting routine resides above 16 MB, virtual storage may be
located anywhere.

QSABLOK

Chapter 11. RSCS Macros 287

RCALL – Passing Control to a Routine

label

RCALL
epname

(15)

,( address_parameters)

,VL

,ID= value

,EP=(15)

,EP=( number)

,CRVCALL=YES

,CRVCALL=NO

,MF= L

(E, address)

Purpose
The RCALL macro passes control to a specified routine. The linkage established is the same as that
created by a BASR instruction; the calling routine expects to regain control. An address parameter list can
be constructed and a calling sequence identifier can be provided. You can code standard, list, and execute
forms of the RCALL macro.

Parameters
label

is any valid assembler statement label.
epname

is the name of the entry point that is given control. If the epname begins with DMT, the name is used
in the macro as the parameter of a V-type address constant; otherwise, the name is used in the macro
as the parameter of an A-type address constant. You can also specify the epname as (15), if register
15 contains the address of the entry point to be given control.

If you specify MF=L, you must omit the epname and specify a comma to show its absence.

address_parameters
specifies one or more addresses, separated by commas, to be passed to the called routine. Each
address is expanded, in the order designated, to a fullword on a fullword boundary. When control is
passed, R1 contains the address of the first parameter. If no address parameters are specified, the
contents of R1 are unchanged.

If you code the standard form of RCALL, you can specify addresses as A-type address constants or as
registers 2 - 12. You can specify registers symbolically or with an absolute expression; they must be
coded within parentheses.

If you code the list form of RCALL, you must specify address parameters. You can specify addresses
as any valid A-type address constant, or show their absence with commas.

If you specify the execute form of RCALL, you can specify addresses as any value that is valid in an
RX-type instruction or as registers 2 - 12. You can specify registers symbolically or with an absolute
expression; they must be coded within parentheses.

,VL
sets the high-order bit of the last address parameter in the macro expansion to 1; the routine can test
this bit to find the end of the list. VL is specified only if address parameters are designated. Use this
option only if the number of parameters passed to the routine varies.

RCALL

288 z/VM: 7.3 RSCS Networking Exit Customization

,ID=value
specifies a unique value, inserted in the macro expansion, used to find information in a dump. The
value is a symbol or number with a maximum value of 4095. The last fullword of the macro is a NOP
instruction containing the ID value in the low-order 2 bytes. When the routine is called, R14 contains
the address of this instruction.

,EP=(number)
specifies a register that contains the address of the entry point to receive control. This must be the
same register specified on the EP parameter of the RENTRY macro for that entry point; register 15 is
the default.

You can specify other registers, except 0, 12, 13, or 14, only when calling an internal entry point.
If the module containing this RCALL macro uses many base registers, registers 9, 10, and 11 may
be unavailable. You can specify this register symbolically or with an absolute expression; it must be
coded within parentheses.

,CRVCALL=
specifies whether this routine should use the CRV to call an exit routine whose name begins with DMT.
Use this parameter only in an exit routine whose module name also begins with DMT.
YES

The CRV finds the addresses of other routines. This is the default.
NO

The CRV is not used to access other routines; you must use V-constants to access other routines.
,MF=

specifies the format of the macro.
L

List form.
(E,address)

Execute form. The address is any address that is valid in an RX-type instruction, or a register,
1 - 12, previously loaded with the address. You can specify the register symbolically or with an
absolute expression; it must be coded within parentheses.

Usage Notes
1. The RCALL macro generates literal statements. You must ensure that literals are not generated outside

the boundaries of the CSECT containing the RCALL macro; use of an assembler LTORG statement is
recommended.

2. If you specify RCALL in an entry point that specifies SAVAREA=NO on its RENTRY macro, an error will
occur.

3. To access an entry point that begins with DMT but does not reside in the RSCS LOADLIB, you should
specify CRVCALL=NO. You should then ensure that you establish proper V-constant linkage to that
routine.

RCALL

Chapter 11. RSCS Macros 289

RENTRY – Defining a Module Entry Point

label

RENTRY
RENT=YES

RENT=NO

,WORK=NO

,WORK=YES

,WRKBASE=13

1

,WRKBASE=  number

,SAVAREA=YES

,SAVAREA= NO

PREALLOC

USER

,SAVE=YES

,SAVE=NO ,NUMSAVE=  number ,BASES=  number

,ARGS=(

,

symbol)

,ARGBASE=  number

,COIBM=NO

,COIBM=YES

,EP=15

,EP= number ,BASED=  symbol

,PGMNUM=  number ,COYR='  copyright ' ,COMMENT='  comment '

,STORAGE=TEMP

,STORAGE=PERM

,WRKREG=2

,WRKREG=  number

,LOC=ANY

,LOC=BELow

,LOC=RES

Notes:
1 If WRKBASE is not specified and WORK=YES is specified, register 13 is used.

Purpose
The RENTRY macro defines a module entry point and generates the following entry point instructions:

• An ENTRY statement
• Entry point label
• Machine-readable eye catcher
• Base register definitions (USING statement and instructions to load the base registers)
• Register saveareas (inline or obtained dynamically for reentrant code)
• Standard OS register and savearea conventions

RENTRY

290 z/VM: 7.3 RSCS Networking Exit Customization

Parameters
label

is the entry point name. The format of the name determines the type of entry point code that is
generated:

• If the first 6 characters of the entry point name match the module name specified on the RMOD
macro, RENTRY generates an external entry point. This entry point is made known externally to the
module by use of an assembler ENTRY statement. The addressability that is generated uses the first
address of the module as the start of the domain of the first base register.

• If the first 6 characters of the entry point name do not match those specified on the RMOD macro,
RENTRY generates an internal or local entry point. This entry point can be called only from within
the module. The addressability that is generated uses the entry point address as the start of the
domain of the base register.

RENT=
specifies whether the generated entry point code is reentrant.
YES

The entry point code is reentrant. This is the default.

Note: The parameters you specify on the RENTRY macro have no connection to the load module
attributes. Thus, if you specify RENT=YES on the RENTRY macro, it has no effect on the link-edit
process. For more information about link-editing, see “Link-Editing Considerations” on page 33.

NO
The entry point code is nonreentrant.

,WORK=
specifies whether the entry point automatically obtains a dynamic work area.
NO

Does not obtain a dynamic work area. This is the default.
YES

Obtains a dynamic work area for this entry point. You must also specify SAVEAREA=YES on this
RENTRY macro and include RWORK and RWORKEND macros in this module (see “RWORK –
Defining the Start of a Module Work Area” on page 302). Each entry point must provide code to
obtain addressability to the dynamic work area. You can specify this option only once within a
module.

,WRKBASE=number
specifies a register that provides addressability for the work area defined by the RWORK macro.
Any register can be specified, except 0, 12, 14, or 15. If multiple base registers were specified by
the BASES parameter, registers 9, 10, and 11 may not be available for use. If this parameter is not
specified and WORK=YES is specified, register 13 is used.

,SAVAREA=
specifies whether a register savearea is generated for this entry point.
YES

Generates a savearea. This is the default. You must specify this option if you also specified
WORK=YES.

NO
Does not generate a savearea. If you specify SAVAREA=NO, this entry point cannot call any other
entry point using standard linkage conventions.

PREALLOC
Specifies that the caller has provided a savearea for use by this entry point at 26 fullwords past
the address in register 13.

Note: You must specify SAVAREA=PREALLOC in exit routines for numbered exits.

RENTRY

Chapter 11. RSCS Macros 291

USER
Specifies that this module will provide code in the entry point to obtain a savearea to store the
caller's registers. This code must immediately follow the RENTRY statement.

,SAVE=
specifies whether the caller's registers are saved.
YES

The registers are saved. This is the default. The caller must provide the address of a 26-fullword
savearea in register 13.

NO
Does not save the registers.

,NUMSAVE=number
specifies the number of 26-fullword saveareas that are generated. If this parameter is omitted, one
savearea is generated.

,BASES=number
specifies the number of base registers defined for this entry point. The number value must be 1 - 4.
If this parameter is omitted, one base register is defined. The first (or only) base register defined
is register 12. Additional base registers are defined in descending numeric order. This parameter is
ignored for an internal entry point; only register 12 is defined for use as a base register.

,ARGS=(symbol)
specifies one or more symbolic names, separated by commas, that are associated with any parameter
list provided by the caller. This parameter list is in the format generated by the OS CALL, LINK, or
ATTACH macros. These macros generate a DSECT that can be used to obtain the caller's parameters.
Addressability for the DSECT containing the symbolic names is provided by the register specified by
the ARGBASE parameter.

,ARGBASE=number
specifies a register that provides addressability for the symbolic names specified by the ARGS
parameter. The register is specified by a number value; R1 is the default. You can specify any register
except 0, 12, 13, 14, or 15. If multiple base registers are specified by the BASES parameter, registers
9, 10, and 11 might not be available.

,COIBM=
specifies whether the machine-readable IBM copyright notification is generated.
NO

Does not generate the copyright. This is the default.
YES

Generates the copyright. COIBM=YES is intended for IBM use only and should be specified only
for modules that are not part of the RSCS load module (for example, RSCS modules called by the
Dump Viewing Facility).

,EP=number
specifies a register containing the address of the entry point when this entry point is given control.
This register must be loaded by the caller. You can specify any register except 0, 12, 13, or 14. If the
module containing this RENTRY macro uses multiple base registers, registers 9, 10, and 11 might not
be available. Only internal entry points can use a register other than register 15. If this parameter is
not specified, register 15 is assumed.

,BASED=symbol
specifies the name of a previously generated internal entry point on which addressability for the
current entry point is based. Because it lets several entry points share common code, you should
specify this option only on a RENTRY macro that defines an internal entry point.

,PGMNUM=number
specifies the program number for the machine-readable copyright notice that is generated when
COIBM=YES is specified. The default value is the program number of the current RSCS function level.
This option is intended for IBM use only.

RENTRY

292 z/VM: 7.3 RSCS Networking Exit Customization

,COYR='copyright'
specifies the copyright year (or years) in the machine-readable copyright notification generated by
COIBM=YES. The copyright value must be enclosed within single quotation marks. The default value
is '1979,year', where year is the year of the general availability of the current RSCS function level.
This option is intended for IBM use only.

,COMMENT='comment'
specifies a character string that is generated after the machine-readable eye catcher. This option is
ignored if you specify COIBM=YES. The comment string must be enclosed in single quotation marks.

,STORAGE=
specifies whether any dynamically obtained storage is returned when the REXIT macro is issued to
return control to the caller.
TEMP

Returns dynamically obtained storage. This is the default.
PERM

Does not return dynamically obtained storage.
,WRKREG=number

specifies an internal work register, destroying the register's original contents. The register may be
specified symbolically or by an absolute expression. Do not specify registers 0, 1, 12, 13, 14, or 15 as
a work register. This register is used only if SAVE=YES and SAVAREA=NONE are also specified. If you
do not specify a register, R2 is the default.

,LOC=
specifies the location of the requested block of storage.
ANY

The requested storage can be located anywhere. This is the default.
BELow

The requested storage is to be allocated entirely below 16 MB.
RES

The location of the virtual storage requested is to be allocated based on the location of the
requesting routine. If the requesting routine resides below 16 MB, the virtual storage will be
allocated below 16 MB. If the requesting routine resides above 16 MB, virtual storage may be
located anywhere.

Usage Notes
1. The machine-readable eye catcher contains the entry point name, as specified on the label of the

RENTRY macro.
2. RENT=YES generates a re-entrant entry point. If you specify SAVAREA=YES, RSCS issues a GETMAIN

macro to obtain any necessary register saveareas and your exit routine must manage the savearea
chain. If you specify SAVAREA=PREALLOC, RSCS uses a savearea that was preallocated by the calling
routine and RSCS will manage the save area chain for you.

RENT=NO generates nonreentrant entry point code. The register savearea is generated in-line in the
macro expansion.

3. You cannot specify the same register for the WRKBASE and ARGBASE parameters.
4. Issuing supervisor macros or calls to other programs will destroy the contents of R1; use caution if

specifying this register for WRKBASE or ARGBASE.
5. If a dynamic work area is specified, it is allocated contiguous with any register saveareas. If register

13 is specified for WRKBASE, it points to the first register savearea. If you specify another register
for WRKBASE, that register points to the actual work area; register 13 always points to the register
savearea. To make data in a dynamic work area available to the called routine, you must not specify
register 13 on WRKBASE.

6. A NUMSAVE value greater than 1 preallocates saveareas used by the called routines, which must
specify SAVAREA=PREALLOC to use the previously allocated saveareas. The saveareas are allocated

RENTRY

Chapter 11. RSCS Macros 293

only by a module at the subtask level (for example, link driver or spool manager tasks). You must
ensure that there are enough saveareas allocated so that they are available for calls to lower level
modules.

7. Word 1 of the first savearea contains the length of the register saveareas and dynamic work area. In
RSCS, only the RENTRY and REXIT macros use this reserved word in OS register saving conventions.
This allows the REXIT macro to issue a FREEMAIN macro to release this area when the routine
returns control to the caller.

8. Each generated savearea is 104 bytes (26 words) long. The first 72 bytes are the OS register savearea
used by the RENTRY and REXIT macros. The 32-byte area after the register savearea is a general
purpose work area that is available to the called routine. The address of the work area can be found
by adding 72 to the contents of register 13 (this is the same as the SAVEWRK1 field of the SAVEAREA
DSECT).

9. If you specify SAVE=NO, the caller's registers are not saved. This option is usually used in a VTAM exit
routine (with RENT=NO) because the caller does not care if its registers are destroyed.

Care must be taken if the called exit routine calls another routine. Because the RENTRY code has not
saved register 14 (the return register), linkage back to the caller would be destroyed. Here, the exit
routine must save and restore register 14.

10. Using internal entry points for subroutines, you can avoid exceeding addressability restrictions in a
module; only one base register (12) is required. Each subroutine can be a maximum of 4096 bytes in
length. Subroutines issue the RCALL macro to call each other. For this type of module, a register must
be reserved (and initialized) to point to the static DC area, if all entry points are to be able to address
it; another register must be reserved to point to any dynamic area. Register 13 can be used to point to
the savearea and the dynamic area.

11. The machine-readable IBM copyright notification has the following format (where number is the
PGMNUM value and copyright is the COYR value):

number (C) COPYRIGHT IBM CORP copyright LICENSED MATERIAL - PROGRAM
PROPERTY OF IBM

12. You can specify the WORK=YES parameter only once within the module. If more than one entry point
calls a work area, additional coding is needed to obtain addressability to the work area.

13. If you specify SAVAREA=YES, RSCS links the acquired saveareas into a doubly linked list. Entry points
that specify SAVAREA=PREALLOC can then detect when they find the last allocated savearea. Here, a
protection exception occurs and R1 points to the last savearea in the list.

14. If you specify SAVE=YES and SAVAREA=NONE, RSCS acquires storage for the specified number of
saveareas and places them in a doubly linked list. However, RSCS does not assume that the calling
routine has provided a savearea. Here, a work register is required; unless specified on the WRKREG
parameter, register 2 is the default. This special condition is used only when VTAM does not provide a
savearea for VTAM exits.

15. When RSCS acquires storage for saveareas, it places the subpool of the storage in the first byte of the
first savearea; the second and third bytes of this savearea contain the length of the storage.

The fourth byte of all saveareas specifies the number of available saveareas in the list. You can use
this area for debugging purposes or to determine if RSCS has provided enough saveareas for an exit
routine.

RENTRY

294 z/VM: 7.3 RSCS Networking Exit Customization

REXIT – Defining a Module Return Point

label

REXIT
FLAG=YES

FLAG=NO

,RC=0

,RC= number

(15)

,REGS=(2,12)

,REGS=(

,

reg1

, reg2
)

,PARMS=NO

,PARMS=YES

Purpose
The REXIT macro defines a return point from a module. REXIT generates all necessary instructions to
restore the caller's registers, release a dynamically obtained register savearea, and return to the caller.

Parameters
label

is any valid assembler statement label.
FLAG=

specifies whether the caller's savearea is flagged when returning control.
YES

Flags the savearea. This is the default.
NO

Does not flag the savearea.
,RC=number

specifies the return code passed in register 15 to the calling program. The return code number has a
maximum value of 4095.

If you specify RC=(15), it shows that the return code has been previously loaded into register 15. If
this parameter is not specified, REXIT issues a return code of 0.

,REGS=(reg1,reg2)
specifies the registers that are restored when returning control. The registers are specified as one or
more pairs of numbers between 0 and 12. To specify one register, omit the second value in a pair. If
you do not specify a value, registers 2 - 12 are restored. Registers 0 and 1 must be restored if they are
used as temporary or work registers and are not passed back to the caller by the PARMS parameter.
See usage note “3” on page 296 for examples of specifying register pairs.

,PARMS=
specifies whether this entry point passes values back to the caller in registers 0 and 1.
NO

Does not pass back any values. This is the default.
YES

Passes parameters in R0 and R1.

REXIT

Chapter 11. RSCS Macros 295

Usage Notes
1. If you specify FLAG=YES, an NI (AND immediate) instruction of X'7F' is performed on the high-order

byte of word 4 of the savearea after the registers are restored. If the caller has not provided a savearea
address in register 13, the routine must specify FLAG=NO when returning control.

2. The parameters you specify and the assembler global variables set by the immediately preceding
RENTRY macro determine the code generated by the REXIT macro.

If used in pairs, you can specify many RENTRY and REXIT macros in a module. However, if you use one
REXIT macro, you must specify the same values for the RENT, SAVE, and SAVAREA parameters on all
RENTRY macros. Otherwise, errors might occur on exit from the routine.

3. Examples of REGS parameter usage:

• To restore registers 4 to 12 and return the values in registers 2 and 3 to the caller, specify
REGS=(4,12).

• To return the value in register 3 to the caller and restore register 2 and registers 4 - 12, specify
REGS=(2,,4,12).

4. Specify PARMS=YES only if RENT=YES and SAVAREA=YES were specified on the RENTRY macro for the
module. This saves the values of registers 0 and 1 on return from the routine. For other cases, REXIT
always passes the value of registers 0 and 1 to the calling routine.

REXIT

296 z/VM: 7.3 RSCS Networking Exit Customization

RMOD – Defining a Module

name RMOD
COIBM=NO

COIBM=YES

,EC=YES

,EC=NO

,CRVCALL=NO

,CRVCALL=YES

,CRVBASE= (R n)

label

,TITLE='  extra_text '

Purpose
The RMOD macro generates the TITLE statement, CSECT statement, machine-readable eye catcher, and
standard RSCS equate symbols (defined by RSSEQU COPY). It can also generate the machine-readable
IBM copyright notification. You can specify RMOD only once in a module; it must appear before any
RENTRY macros. (See the RENTRY macro for more information about generating internal and external
entry point names.)

Parameters
name

is any valid assembler statement that identifies the name of the module. This parameter must contain
6 characters.

COIBM=
specifies whether the machine-readable IBM copyright notification is to be generated.
NO

Does not generate the copyright. This is the default.
YES

Generates the copyright for the first module in the RSCS load module. COIBM=YES is intended for
IBM use only.

,EC=
specifies whether the machine-readable eye catcher is generated.
YES

Generates the eye catcher. This is the default.
NO

Does not generate the eye catcher.
,CRVCALL=

specifies whether the CRV should be used to call a routine whose name begins with DMT. This is done
if the first 3 characters of name are not DMT.
NO

The address of the routine is not taken from the CRV table. This is the default. Specify this option if
the routine can be accessed from the RSCS LOADLIB by a standard V-constant linkage.

YES
The address of the routine is taken from the CRV table. Specify this option if you are accessing
routines that are not in the RSCS LOADLIB.

,CRVBASE=
specifies how the CRV table is accessed if you specified CRVCALL=YES to find the address of a
routine.

RMOD

Chapter 11. RSCS Macros 297

(Rn)
Reserves register n to point to the CRV table; a USING statement is automatically generated.

label
Specifies the location where the CRV address is stored. Each time RCALL is issued, RSCS finds the
CRV table, using the address stored at the label, to find the address of the requested routine.

,TITLE='extra_text'
specifies the extra text added to the TITLE statement. The extra_text value must be enclosed in single
quotation marks. The default text is 'program function', where program and function are the
current RSCS program number and function level.

Usage Notes
1. Equate symbols are not printed in the assembler listing, unless you specify the EXP option of the

VMFHLASM command when you assemble the module.
2. The machine-readable eye catcher contains the specified module name and the date and time it was

assembled:

name mm/dd/yy hh.mm

3. The machine-readable IBM copyright notification has the following form:

program (C) Copyright IBM Corp. - copyright

4. You must specify EC=NO if the module name is also used as its entry point name. If you specify
EC=YES, the eye catcher appears at the entry point defined by the module name, rather than
executable code.

5. RMOD generates the following TITLE statement (where xxx are characters 4 - 6 of the module name
and extra_text is the value on the TITLE parameter):

xxx name - VM RSCS NETWORKING extra_text

6. If you specify CRVCALL=YES, you should include the following statement at the end of the module:

CRV DSECT=YES

RMOD

298 z/VM: 7.3 RSCS Networking Exit Customization

RMSG – Issuing a Message

label

RMSG

function

(

,

var)

,ROUTES=( code, node , user , qual) ,ORIG=  origid ,SEV=  sevcode

,LINK=  linkid ,MODULE= PRESET

modid

,WORKREG=R  n

,BUFFER=  address ,SHOW=  mask ,REPS=( convrep , transrep)

,RF=MGX

,RF=(REX,  workaddr)

Purpose
The RMSG macro updates MSGBLOK fields to describe a message. RSCS then begins the process of
formatting and issuing the specified message.

Parameters
label

is any valid assembler statement label.
function

specifies one of the following functions for this invocation of RMSG.
msgnum

Specifies the decimal number of the message to be issued.
(Rn)

Specifies a register that contains the number of the message to be issued.
ALLOCATE

Allocates a MSGBLOK, which will remain allocated after the message is issued. Its address
is stored in the location specified on the BUFFER parameter; any values specified on other
parameters are stored in the MSGBLOK, except for the REPS parameter. For more information,
see the REPS parameter.

FREE
Deallocates a MSGBLOK that was previously allocated by the ALLOCATE parameter.

SET
Sets various information, specified by other RMSG parameters, in the MSGBLOK, but does not
issue the message.

var
is a value that is placed in an MSGBVARS field in the MSGBLOK. The var values can be specified as
RX-type addresses. Eight bytes of data from the address are moved to the appropriate MSGBVARS

RMSG

Chapter 11. RSCS Macros 299

field. They may also be specified as register numbers, where the number is stored in the first fullword
in a MSGBVARS field.

,ROUTES=(code,node,user,qual)
specifies routing information for the message.
code

is the routing code of the message.
node

is the destination node.
user

is the destination user ID.
qual

is the qualifier for the destination node.
,ORIG=origid

identifies the origin of the command; the response message is then sent to that location. The
origid points to an area, mapped by the CMORIG DSECT, that contains subfields that describe the
destination node, user ID, and qualifier. Each subfield corresponds to the ROUTES parameter options.
This area also contains three subfields that describe CRI specifications. The origid is found in data
areas, such as the LINKTABL (LSTORIG) and CMNDAREA.

,SEV=sevcode
specifies the override severity code of the message.

,LINK=linkid
identifies the link that is associated with this message.

,MODULE=
identifies the module from which the message is issued.
PRESET

Specifies that the MSGBLOK already contains the module name.
modid

Identifies the routine that issues the message. The modid defaults to bytes 4 - 6 of the module
name specified on the RMOD macro.

,WORKREG=Rn
specifies a work register when ALLOCATE, FREE, or SET is specified as the function parameter; R1 is
the default work register.

,BUFFER=address
specifies a buffer that contains a MSGBLOK. The address can be specified as an RX-type address that
refers to a fullword that contains the actual buffer address; you can also specify it as the number of a
register that contains the buffer address.

,SHOW=mask
specifies the name of a mask that identifies the columns to be displayed in a columnar message. If
this parameter is omitted, RMSG issues the message from the RSCS message repository.

,REPS=(convrep,transrep)
identifies repositories that contain information about the message.
convrep

is the address of a conversion repository.
transrep

is the address of a translation repository.

Note

The REPS parameter applies only to an individual RMSG macro invocation. After exiting the code
generated by the RMSG macro, RSCS clears the fields. This lets you write an application that issues
messages from the RSCS message repository and any other user-defined message repositories.

RMSG

300 z/VM: 7.3 RSCS Networking Exit Customization

,RF=
specifies how the message should be issued.
MGX

Specifies that the message builder processes the MSGBLOK directly.
(REX,workaddr)

Specifies that the routine first passes the MSGBLOK and a work area address, workaddr, to the
communications task, which then calls the message builder to issue the message.

RMSG

Chapter 11. RSCS Macros 301

RWORK – Defining the Start of a Module Work Area

RWORK

Purpose
The RWORK macro defines the start of a dynamic work area; RWORD starts a DSECT that maps all of
the storage that follows. This storage is automatically obtained if WORK=YES is specified on the RENTRY
macro (see “RENTRY – Defining a Module Entry Point” on page 290).

Usage Notes
1. You can specify RWORK only once within a module.
2. DSECT or CSECT statements must not appear within the code delimited by the RWORK and

RWORKEND macros.
3. You can specify only one set of RWORK and RWORKEND macros in a module.
4. The register savearea is generated immediately after the RWORK macro and appears at displacement

zero within the dynamic work area DSECT. All defined areas appear at a displacement equal to the
total length of all the register saveareas (104 multiplied by the value of the NUMSAVE parameter on
the RENTRY macro).

5. The total length of the dynamic work area (including the register saveareas) cannot exceed 4095
bytes. If you attempt to define an area larger than 4095 bytes, an assembler error occurs from the
expansion of the RENTRY macro.

RWORK

302 z/VM: 7.3 RSCS Networking Exit Customization

RWORKEND – Defining the End of a Module Work Area

RWORKEND

Purpose
The RWORKEND macro defines the end of a dynamic work area that was started by the RWORK macro.

Usage Notes
You can specify RWORKEND only once in a module.

RWORKEND

Chapter 11. RSCS Macros 303

SOCKET – Using the TCP/IP Socket Interface

label

SOCKET function ,( function_parameters)

,SOCKBLK=  address

,ECB= address ,RC= address ,ERRNO=  address

,CALLID=  address

,MF=I

,MF= L

(E, address)

Purpose
Use the SOCKET macro to simplify the use of the RSCS socket interface to TCP/IP.

Parameters
label

is any valid assembler statement label.
function

is one of the following socket functions. (For descriptions of these functions, see “SOCKET Function
Descriptions” on page 307.) This parameter is required for the standard form of this macro; it may be
omitted on the list and execute formats.

ACCEPT BIND CANCEL CLOSE

CONNECT DSECT FCNTL GETCLIENTID

GETHOSTID GETHOSTNAME GETPEERNAME GETSOCKNAME

GETSOCKOPT GIVESOCKET INITIALIZE IOCTL

LISTEN READ RECV RECVFROM

SELECT SEND SENDTO SETSOCKOPT

SHUTDOWN SOCKET TAKESOCKET TERMINATE

WRITE

Note: The DSECT function does not generate a socket call; it generates the equates and DSECTs that
are useful when using sockets.

function_parameters
specifies the parameter list for the socket function. Parameters are required for all function calls
except DSECT, GETHOSTID, and TERMINATE. For descriptions of the parameters for each of the
socket functions, see “SOCKET Function Descriptions” on page 307.

,SOCKBLK=address
specifies a pointer to the socket block for all functions, except INITIALIZE. For the INITIALIZE
function, this value is a pointer that will be filled in with the address of the socket block allocated by
the call.

This parameter is required for the standard form of this macro; it may be omitted on the list and
execute formats.

SOCKET

304 z/VM: 7.3 RSCS Networking Exit Customization

,ECB=address
specifies the ECB to be posted when the socket call completes.

This parameter is required for the standard form of this macro; it may be omitted on the list and
execute formats.

,RC=address
specifies a fullword to receive the return code from the socket function. If you do not want to receive
this return code, specify the address value as a null (0) pointer.

Note: This return code is not the return code issued from the SOCKET macro. Rather, it is the TCP/IP
return code value from the actual socket call; see usage note “2” on page 305 for more information.

,ERRNO=address
specifies a fullword to receive the error number from the socket function; see usage note “2” on page
305. If you do not want the return code, specify the address value as a null (0) pointer.

,CALLID=address
specifies an 8-character string to receive the unique call ID from the socket function. If this value is
not wanted, you can specify address as a null (0) pointer. See usage note “3” on page 306 for more
information.

,MF=
specifies the format of the macro.
I

Generates an inline parameter list. This is the default.
L

Generates only a parameter list.
(E,address)

Specifies the execute form of the macro. The storage at the specified address is used as a
parameter list. The address value is any valid RX-type address or a register, 1 - 12, that was
previously loaded with the specified address. You can specify registers symbolically or with an
absolute expression; they must be coded within parentheses. That is, register 1 must be specified
as (1) or (R1).

For example, if (R2) is specified as the address, register 2 is pointing to the start of the parameter
list. If MYLIST is specified, MYLIST is treated as the label on a parameter list. Only the parameters
specified on the SOCKET macro will be altered in the parameter list; parameters need to be
specified only if their value changes.

Usage Notes
1. On return from the SOCKET macro, register 15 may contain the following return code values (this value

is not from TCP/IP):

Return Code Results

0 Socket function call has completed.

4 Socket function call has started; when the TCP/IP socket function completes, your
ECB will be posted.

8 Temporary error occurred; retry the call later. Return code 8 occurs only if a
recoverable error has been detected on the IUCV CONNECT request. For example,
this may occur if the virtual machine that is the target of the connection request is
not logged on or if it has not issued an IUCV declare buffer.

2. Each socket function call produces a TCP/IP return code. This return code value is returned in the
RC=address field of the SOCKET macro. This value is not the return code produced by the SOCKET
macro itself.

SOCKET

Chapter 11. RSCS Macros 305

When the socket call completes successfully, the RC=address field will be set to 0, or it will contain
the rc output value indicated in some function call descriptions. (The rc output value is not listed in the
following sections for function calls that produce a 0 return code.)

If a TCP/IP error occurs and the function call is not successful, the RC=address field will be set to -1. If
an IUCV error occurs (EIBMIUCV (1002)), the TCP/IP socket return code will have one of the following
meanings, depending on the type of error that occurred:

• If the TCP/IP return code complement is less than 1256, the return code is the same as the one
issued from the GCS IUCVINI and IUCVCOM macros.

• If the TCP/IP return code complement is greater than 1256, the return code is the address of the
IUCV interrupt IPARML

3. The CALLID=address field is filled in only after the IUCV SEND function has successfully started.
The INITIALIZE socket call fills in this value only after it has sent the initial message to the TCP/IP
virtual machine. The field will contain blanks if the IUCV SEND function has not yet occurred or if the
IUCV path has quiesced and RSCS is waiting for an IUCV RESUME request. Do not attempt to cancel
an outstanding socket call when the CALLID=address field contains blanks; wait until it contains a
non-blank value.

SOCKET

306 z/VM: 7.3 RSCS Networking Exit Customization

SOCKET Function Descriptions
This section shows the format of the individual socket calls that are supported as function parameters on
the SOCKET macro. Each call and its input parameters are described. Output parameters (if any) are also
described. These input parameters are the function_parameters of the SOCKET macro. All parameters
shown must be coded and separated by a comma; they must also be enclosed in parentheses. For more
information about each socket function (except DSECT, GETHOSTBYNAME, INITIALIZE, and TERMINATE,
which are RSCS-only IUCV socket calls), see the section on IUCV sockets in z/VM: TCP/IP Programmer's
Reference.

Invoking the SOCKET Macro
In the following descriptions, the other parameters of the SOCKET macro are omitted. Typically, however,
you would specify additional parameters. For example, Figure 32 on page 307 shows how an INITIALIZE
call can be coded on the SOCKET macro.

SOCKET INITIALIZE,(AXSLINK,MAXDESC,TCPID,MAXACALL), X
 SOCKBLK=ASOCKBLK,ECB=UTLECB,RC=URETCODE,ERRNO=UERRNO, X
 CALLID=UCALLID,MF=(E,UTLSPL)

Figure 32. Sample of a SOCKET Macro Invocation

In this INITIALIZE call, AXSLINK is a label within the assemble file. The address of AXSLINK could also
be loaded in a register. That register can then be specified on the macro in the form 0(Rx), where x is the
register number.

ACCEPT
The ACCEPT call is used by a server to accept a connection request from a client.

SOCKET ACCEPT,(socket,from,fromlen)

socket
is the address of a fullword integer socket descriptor.

from
is the address of a string to receive information about the connecting client (remote address and port).
The format is defined by the SOCKADDR DSECT generated by the SOCKET DSECT macro call.

fromlen
is the address of a fullword containing the length of the from parameter. The fromlen value must be
16.

rc
(Output) is a value returned when the socket call completes successfully, which contains the socket
number that was allocated.

BIND
The BIND call binds a unique local name to the socket that has the specified integer socket descriptor.

SOCKET BIND,(socket,name,namelen)

socket
is the address of a fullword integer socket descriptor.

name
is the address of the local address and port to which the socket is to be bound. The format of this
structure is defined by the SOCKADDR DSECT generated by the SOCKET DSECT macro call.

SOCKET Functions

Chapter 11. RSCS Macros 307

namelen
is the address of a fullword containing the length of the name parameter. The namelen value must be
16.

CANCEL
The CANCEL call ends an outstanding socket call. Only the following socket calls may be canceled:
read-type, write-type, ACCEPT, and SELECT.

SOCKET CANCEL,(callid)

callid
is the 8-byte call ID string from the previous socket call.

CLOSE
The CLOSE call is issued to shut down the socket associated with the specified socket descriptor and free
the resources allocated for the socket.

SOCKET CLOSE,(socket)

socket
is the address of a fullword integer socket descriptor.

CONNECT
The CONNECT call attempts to establish a connection between two sockets.

SOCKET CONNECT,(socket,name,namelen)

socket
is the address of a fullword integer socket descriptor.

name
is the address of a string containing the remote address and port to which the socket is to be
connected. The format of this structure is defined by the SOCKADDR DSECT generated by the SOCKET
DSECT macro call.

namelen
is the address of a fullword containing the length of the name parameter. The namelen value must be
16.

DSECT
The DSECT call generates the equates and DSECTs that are used when making socket calls. This is an
RSCS-only socket call.

SOCKET DSECT

FCNTL
The FCNTL call controls the operating characteristics of a specified socket.

SOCKET FCNTL,(socket,cmd,arg)

socket
is the address of a fullword integer socket descriptor.

cmd
is the address of a fullword containing the command to perform:

SOCKET Functions

308 z/VM: 7.3 RSCS Networking Exit Customization

F_SETFL
Sets socket flags. FNDELAY, which is the only valid flag, sets the socket in nonblocking mode.

F_GETFL
Queries the status of socket flags.

arg
is the address of a fullword containing the address of the data argument associated with the
command. Only 0 and FNDELAY are supported.

rc
(Output) is a value returned when the socket call completes successfully for the F_GETFL command,
which contains the flags set as a bit mask.

GETCLIENTID
The GETCLIENTID call returns the identifier by which the calling program is known to the TCP/IP virtual
machine.

SOCKET GETCLIENTID,(domain,clientid)

domain
is the address of a fullword containing the domain. Only AF_INET (2), which defines addressing in the
internet domain, is supported.

clientid
is the address of a string to receive the client ID. The format of this structure is defined by the
CLIENTID DSECT generated by the SOCKET DSECT macro call.

GETHOSTBYNAME
The GETHOSTBYNAME call returns the unique 32-bit identifier for the host name being queried. This is an
RSCS-only socket call. It results in a GetAddrInfo C call by the GETHOSTC user ID.

SOCKET GETHOSTBYNAME,(name,namelen,dnsport)

name
is the address of a string containing the host name.

namelen
is the address of a fullword containing the length of the name parameter. The namelen value must be
1 - 256.

dnsport
is the address of a halfword containing the port number of the RSCS domain name server on the local
system.

GETHOSTID
The GETHOSTID call returns the unique 32-bit identifier for the current host.

SOCKET GETHOSTID

rc
(Output) is a value returned when the socket call completes successfully, which contains the 32-bit
host ID.

GETHOSTNAME
The GETHOSTNAME call returns the name of the host processor on which the program is running.

SOCKET GETHOSTNAME,(name,namelen)

SOCKET Functions

Chapter 11. RSCS Macros 309

name
is the address of a string to receive the host name.

namelen
is the address of a fullword containing the length of the name parameter.

GETPEERNAME
The GETPEERNAME call returns the name of the peer connected to the socket that is associated with the
specified fullword socket descriptor.

SOCKET GETPEERNAME,(socket,name,namelen)

socket
is the address of a fullword integer socket descriptor.

name
is the address of a string to receive the remote address and port to which the socket is connected. The
format of this structure is defined by the SOCKADDR DSECT generated by the SOCKET DSECT macro
call.

namelen
is the address of a fullword containing the length of the name parameter. The namelen value must be
16.

GETSOCKNAME
The GETSOCKNAME call stores the current name for the socket that is associated with the specified
fullword socket descriptor into the structure pointed to by the name parameter.

SOCKET GETSOCKNAME,(socket,name,namelen)

socket
is the address of a fullword integer socket descriptor.

name
is the address of a string to receive the local address and port to which the socket is bound. The
format of this structure is defined by the SOCKADDR DSECT generated by the SOCKET DSECT macro
call.

namelen
is the address of a fullword containing the length of the name parameter. The namelen value must be
16.

GETSOCKOPT
the GETSOCKOPT call returns the options associated with a specified socket.

SOCKET GETSOCKOPT,(socket,level,optname,optval,optlen)

socket
is the address of a fullword integer socket descriptor.

level
is the address of a fullword containing the option level. SOL_SOCK (X'FFFF') is the only supported
level. It refers to the socket protocol level, as opposed to the TCP or IP level.

optname
is the address of a fullword containing an option name.

optval
is the address of a string to receive the option value.

SOCKET Functions

310 z/VM: 7.3 RSCS Networking Exit Customization

optlen
is the address of a fullword containing the length of the optval parameter.

GIVESOCKET
The GIVESOCKET call tells TCP/IP to make the specified socket available to a TAKESOCKET call that is
issued by another application running on the same host.

SOCKET GIVESOCKET,(socket,clientid)

socket
is the address of a fullword integer socket descriptor.

clientid
is the address of a string containing the client ID. The length is assumed to be 40 bytes. The format of
this structure is defined by the CLIENTID DSECT generated by the SOCKET DSECT macro call.

INITIALIZE
The INITIALIZE call sets up the IUCV connection to the TCP/IP virtual machine and allocates a
SOCKBLOK that must be passed on all other calls. It also sends the initial parameters to the TCP/IP
virtual machine and allocates a socket set. This is an RSCS-only socket call.

SOCKET INITIALIZE,(taskid,maxdesc,tcpid,maxcall)

taskid
is the address of an 8-character string that contains the task ID, which is usually the link ID or the
name of the RSCS task. This value and the user ID of the RSCS machine uniquely identify this socket
set.

maxdesc
is the address of a fullword integer (0 - 2000) that indicates the maximum number of sockets that will
be used in this socket set. If 0 is specified, the default value 50 is assumed.

tcpid
is the address of an 8-character string that contains the user ID of the TCP/IP virtual machine. If
specified as a null (0) parameter, the user ID is assumed to be TCPIP.

maxcall
is the address of a fullword integer that indicates the maximum number of simultaneous socket calls
that can be requested. If specified as a null (0) parameter, the default of 2 calls is used. On return, this
will be set to the maximum number that TCP/IP allows.

IOCTL
The IOCTL call controls the operating characteristics of the specified sockets.

SOCKET IOCTL,(socket,request,data)

socket
is the address of a fullword integer socket descriptor.

request
is the address of a fullword containing the name of a request. These are listed in equates generated by
the SOCKET DSECT macro call.

data
is the address of a string containing any request data.

SOCKET Functions

Chapter 11. RSCS Macros 311

LISTEN
The LISTEN call completes the binding necessary for the socket associated with the specified fullword
socket descriptor, if BIND has not been called. LISTEN also creates a queue of incoming connect
requests.

SOCKET LISTEN,(socket,backlog)

socket
is the address of a fullword integer socket descriptor.

backlog
is the address of a fullword integer (0 - 2000) that specifies the length for the pending queue of
connect requests.

READ
The READ call reads data on the socket associated with the specified fullword socket descriptor and
stores it in a buffer. This call is applicable only for connected sockets.

SOCKET READ,(socket,buffer,buflen)

socket
is the address of a fullword integer socket descriptor.

buffer
is the address of the storage area to which the data will be received.

buflen
is the address of a fullword containing the length of the buffer parameter.

rc
(Output) is a value returned when the socket call completes successfully, which contains the number
of bytes read.

RECV
The RECV call receives data on the socket that is associated with the specified fullword socket descriptor
and stores it in a buffer. This call is applicable only for connected sockets.

SOCKET RECV,(socket,buffer,buflen,flags)

socket
is the address of a fullword integer socket descriptor.

buffer
is the address of the storage area to which the data will be received.

buflen
is the address of a fullword containing the length of the buffer parameter.

flags
is the address of a fullword containing one of the following supported receive flags:
MSG_OOB (1)

Reads any out-of-band data on the socket.
MSG_PEEK (2)

Peeks at the data present at the socket. The data is returned but is not consumed; the same data
will be peeked by a subsequent receive operation.

rc
(Output) is a value returned when the socket call completes successfully, which contains the number
of bytes read.

SOCKET Functions

312 z/VM: 7.3 RSCS Networking Exit Customization

RECVFROM
The RECVFROM call receives data on the socket associated with the specified fullword socket descriptor
and stores it in a buffer. This call applies to any datagram socket that is connected or unconnected.

SOCKET RECVFROM,(socket,buffer,buflen,flags,from,fromlen)

socket
is the address of a fullword integer socket descriptor.

buffer
is the address of the storage area to which the data will be received.

buflen
is the address of a fullword containing the length of the buffer parameter.

flags
is the address of a fullword containing one of the following supported receive flags:
MSG_OOB (1)

Reads any out-of-band data on the socket.
MSG_PEEK (2)

Peeks at the data present at the socket. The data is returned but is not consumed; the same data
will be peeked by a subsequent receive operation.

from
is the address of a string to contain the remote address and port that sent the data. Specify this value
with a null (0) pointer if you do not want this data. The format of this structure is defined by the
SOCKADDR DSECT generated by the SOCKET DSECT macro call.

fromlen
is the address of a fullword containing the length of the from parameter. If a null value is specified for
from, this value may also contain a null value. If a from parameter is specified, the fromlen value must
be 16.

rc
(Output) is a value returned when the socket call completes successfully, which contains the number
of bytes read.

SELECT
The SELECT call monitors activity on a set of sockets to determine if any sockets are ready for reading,
writing, or have an exceptional condition pending.

SOCKET SELECT,(nsds,rmask,wmask,emask,timeout)

nsds
is the address of a fullword integer that defines the maximum number of socket descriptors to be
checked. This value should not be larger than 1 plus the largest descriptor number actually in use.

rmask
is the address of a bit mask string that contains the read descriptors to be checked for data. If this
value is null, no descriptors will be checked.

The offset of the word containing the bit for a socket descriptor is calculated as follows:

offset=(descriptor_number/32)*4

The bit for a descriptor is masked as follows (<< is the left shift operator):

bitmask=X'00000001'<<(descriptor_number modulo 32)

SOCKET Functions

Chapter 11. RSCS Macros 313

wmask
is the address of a fullword bit mask string containing the write descriptors that will be checked
to determine if TCP/IP has buffer space available to write data to the socket. If specified as a null
pointer, no descriptors are to be checked.

emask
is the address of a bit mask string containing the exception descriptors that will be checked for
exceptional pending conditions. If specified as a null pointer, no descriptors are to be checked.

timeout
is the address of an 8-byte field that contains a value that determines how long the task will wait
for the SELECT call to complete. The format of this structure is defined by the TIMEVAL DSECT that
is generated by the SOCKET DSECT macro call. The first 4-byte field contains the seconds value;
the second 4-byte field contains the microseconds value. This value determines how the SELECT call
completes:
Null

Completes only when one of the mask values is satisfied.
0

Completes immediately.
Non-zero

Completes when the timeout period expires or when one of the masks is satisfied.
rc

(Output) is a value returned when the socket call completes successfully, which contains the total
number of ready sockets in all mask sets.

SEND
The SEND call sends packets on the socket that is associated with the specified fullword integer socket
descriptor. This call applies only to connected sockets.

SOCKET SEND,(socket,buffer,buflen,flags)

socket
is the address of a fullword integer socket descriptor.

buffer
is the address of the storage area to which the data will be received.

buflen
is the address of a fullword containing the length of the buffer parameter.

flags
is the address of a fullword containing one of the following supported send flags:
MSG_OOB (1)

Sends any out-of-band data on sockets for which it is supported.
rc

(Output) is a value returned when the socket call completes successfully, which contains the number
of bytes sent. This does not indicate, however, that the data was actually received or delivered to the
other side of the socket. An rc value of -1 indicates a locally detected error.

SENDTO
The SENDTO call sends packets on the socket that is associated with the specified fullword integer socket
descriptor. This call applies to any datagram socket, whether connected or unconnected.

SOCKET SENDTO,(socket,buffer,buflen,flags,to,tolen)

socket
is the address of a fullword integer socket descriptor.

SOCKET Functions

314 z/VM: 7.3 RSCS Networking Exit Customization

buffer
is the address of the storage area to which the data will be received.

buflen
is the address of a fullword containing the length of the buffer parameter.

flags
is the address of a fullword containing one of the following supported send flags:
MSG_OOB (1)

Sends any out-of-band data on sockets for which it is supported.
to

is the address of a string to receive the remote address and port that will receive the data. The format
of this structure is defined by the SOCKADDR DSECT generated by the SOCKET DSECT macro call.

tolen
is the address of a fullword containing the length of the to parameter. The tolen value must be 16.

rc
(Output) is a value returned when the socket call completes successfully, which contains the number
of bytes sent. This does not indicate, however, that the data was actually received or delivered to the
other side of the socket. An rc value of -1 indicates a locally detected error.

SETSOCKOPT
The SETSOCKOPT call sets options associated with the specified socket.

SOCKET SETSOCKOPT,(socket,level,optname,optval,optlen)

socket
is the address of a fullword integer socket descriptor.

level
is the address of a fullword integer containing the option level. SOL_SOCK (X'FFFF') is the only
supported level. It refers to the socket protocol level, as opposed to the TCP or IP levels.

optname
is the address of a fullword containing an option name.

optval
is the address of a string containing the option value. This is a fullword integer except for the
SO_LINGER option, which is a doubleword.

optlen
is the address of a fullword containing the length of the optval parameter.

SHUTDOWN
The SHUTDOWN call shuts down all or part of a duplex connection.

SOCKET SHUTDOWN,(socket,how)

socket
is the address of a fullword integer socket descriptor.

how
is the address of a fullword integer that describes how the socket is to be shutdown:
0

End communication from the socket.
1

End communication to the socket.
2

End communication to and from the socket.

SOCKET Functions

Chapter 11. RSCS Macros 315

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket descriptor that represents
the endpoint.

SOCKET SOCKET,(domain,type,protocol)

domain
is the address of a fullword integer containing the domain. Only AF_INET (2) is supported, which
defines addressing in the internet domain.

type
is the address of a fullword containing one of the following supported socket types:
SOCK_STREAM (1)

Provides the sequence of 2-way byte streams that are reliable and connection-oriented.
SOCK_DGRAM (2)

Provides the datagrams that are connectionless messages with a fixed maximum length whose
reliability is not guaranteed.

SOCK_RAW (3)
Provides an interface to internal protocols, such as IP and ICMP.

protocol
is the address of a fullword containing the protocol. Only PF_INET (2) is supported. If set to 0, the
default protocol number for the requested domain and socket type is used.

rc
(Output) is a value returned when the socket call completes successfully, which contains the socket
number allocated.

TAKESOCKET
The TAKESOCKET call acquires a socket from another program.

SOCKET TAKESOCKET,(clientid,socket)

clientid
is the address of a string containing the client ID. The length is assumed to be 40 bytes. The format of
this structure is defined by the CLIENTID DSECT that is generated by the SOCKET DSECT macro call.

socket
is the address of a fullword integer socket descriptor.

rc
(Output) is a value returned when the socket call completes successfully, which contains the socket
number allocated.

TERMINATE
The TERMINATE call ends IUCV communication with the TCP/IP virtual machine and deallocates the
SOCKBLOK and all SOCKCBLKs. Because storage that is allocated by INITIALIZE is deallocated only by
TERMINATE, this function should be called even if the INITIALIZE call ended in error. This is an RSCS-only
socket call.

SOCKET TERMINATE

WRITE
The WRITE call writes data on the socket associated with the specified socket descriptor. This call applies
only to connected sockets.

SOCKET Functions

316 z/VM: 7.3 RSCS Networking Exit Customization

SOCKET WRITE,(socket,buffer,buflen)

socket
is the address of a fullword integer socket descriptor.

buffer
is the address of the storage area that contains the data to write.

buflen
is the address of a fullword containing the length of the buffer parameter.

rc
(Output) is a value returned when the socket call completes successfully, which contains the number
of bytes written.

SOCKET Functions

Chapter 11. RSCS Macros 317

Control Block Macros

Format1

Format2

Format3

IOTABLE

RESCHAIN

RLOADEP

Format1
format1

Format2

label

format2
DSECT=YES

DSECT=NO

Format3

label

format3
DSECT=YES

DSECT=NO

,LABELS=YES

,LABELS=NO

IOTABLE

label

IOTABLE
DSECT=YES

DSECT=NO

,LABELS=YES

,LABELS=NO

,TYPE=DEVTABLE

RESCHAIN

label

RESCHAIN BLOCK= (R n)

label ,WRKREG=R  n

RLOADEP

label

RLOADEP regnum, epname
,CRVCALL=YES

,CRVCALL=NO

Purpose
The RSCS control block macros define the format of RSCS control blocks or mapping DSECTs. Most RSCS
control block macros conform to one of the formats shown in this syntax diagram. Some control block
macro functions are local to some modules and are not included in this syntax diagram.

Control Block Macros

318 z/VM: 7.3 RSCS Networking Exit Customization

Parameters
label

is any valid assembler statement label. If the label is omitted and LABELS=YES is specified (or
allowed to default), RSCS generates a label with the name of the macro, except for the following
macros:

Macro Generated Label

RDR RDRPARMS

IOTABLE DEVTABLE (if TYPE=DEVTABLE is specified)

format1
specifies one of the following macro names. RSCS generates a label that matches the name of the
macro.

NHDTR NJEEQU NMR RIB TIB

format2
specifies one of the following macro names:

ACNTBUFF AUTHBLOK CMNDAREA CRV CVT

ECXBLOK FILREQ ITRACREC LINKTABL MSGLINE

MSGWA PORT PRDBLOK ROUTEGRP SAFTAG

SAVEAREA SOCKBLOK SOCKCBLK SYSIDENT TAG

TASHADOW TASKBLOK XABHDR

format3
specifies one of the following macro names:

MSGBLOK NOTEBLOK RDEVBLOK RDR REROUTE

RESBLOK SEPBLOK

IOTABLE
specifies the IOTABLE macro, which maps the IOTABLE control block that RSCS uses when
performing I/O operations to a device.

DSECT=
specifies whether a DSECT statement is generated.
YES

Generates a DSECT statement. This is the default.
NO

Does not generate a DSECT statement. The macro expansion is generated as a continuation of the
current CSECT or DSECT.

,LABELS=
specifies whether assembler labels are generated for each statement in the macro expansion. The
generated labels are defined for the appropriate control blocks.
YES

Generates labels. This is the default. You can specify YES only once for each control block macro
in the module.

NO
Does not generate labels.

Control Block Macros

Chapter 11. RSCS Macros 319

,TYPE=DEVTABLE
generates a device block (DEVxxxxx) for use with a device other than an input or output unit record
device.

RESCHAIN
specifies the RESCHAIN macro, which adds a RESBLOK to the RSCS global resource chain.

BLOCK=
identifies the RESBLOK to be enqueued. It can be identified by a register (Rn) that contains its
address, or by an associated label.

,WRKREG=Rn
specifies an internal work register, n.

RLOADEP regnum,epname
specifies the RLOADEP macro, which loads a register with an entry point address. The entry point is
identified by register regnum, which contains the entry point address, and by its name (epname).

,CRVCALL=
specifies whether the CRV should be used to find the address of the entry point whose epname begins
with DMT.
YES

The entry point address is taken from the CRV. This is the default.
NO

The address of the entry point is not taken from the CRV. The entry point must be externalized and
accessible by standard V-constant linkage.

Usage Notes
1. If you specify DSECT=YES, the specified label (or the default label) is generated as the label of the

DSECT statement. If you specify DSECT=NO, the label is generated as a DS 0D statement.
2. The NHDTR macro maps the NJE job headers, data set headers, and job trailers. It generates the

following DSECT labels: NJH, NDH, and NJT.

Control Block Macros

320 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 12. Supported Routines in the CRV

The RSCS common routines vector table (CRV) contains a list of pointers to RSCS routines that are
supported for use by exit routines. The following sections identify the executable entry points and the
nonexecutable entry points.

Executable Entry Points
This section describes the executable entry points listed in the CRV that are supported for customer
use. The routines are listed here in alphabetical order, and the following information is provided for each
routine:

• Intended function
• Significant input and output parameters
• Return codes and their meanings

DMTAXMRQ
The DMTAXMRQ routine processes requests to open or close an input or output spool file.

Parameter Reg Function

Input Parameter R1 Address of an RDEVBLOK

Output Parameter R15 Return code:
0

Requested processing completed.
4

File not found.
8

File already opened.
12

Unavailable resources (storage, TAG elements, or devices).
16

CP spool error.

DMTBPLLX
The DMTBPLLX routine loads exit modules into storage for RSCS.

Parameter Reg Function

Input Parameter R1 Address of 8-character module name to be loaded

Output Parameter R15 Return code:
0

Processing completed; R0 contains the address of the loaded
module.

4
Module not loaded.

CRV Routines

© Copyright IBM Corp. 1990, 2022 321

DMTCOMDG
The DMTCOMDG routine validates EBCDIC decimal values that are sent by the calling routine and
converts them into binary values.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of the decimal value to validate
Word 2

Length of the value (up to 10 bytes)
Word 3

Address of the valid range (low value in first fullword, high value
in second fullword)

Output Parameters R0 Converted value

R15 Return code 0

DMTCOMDQ
The DMTCOMDQ routine dequeues command and message elements from a queue, in FIFO order, and
places them in a buffer supplied by the calling routine.

Parameter Reg Function

Input Parameter R1 Address of parameter list, containing:
Word 1

Address of queue anchor (4 bytes)
Word 2

Address of buffer (1 - 256 bytes), or 0 if the element is to be
purged

Output Parameter R15 Return code:
0

Normal processing completed.
4

End of queue.

DMTCOMFI
The DMTCOMFI routine accesses records from files on any disk that GCS has accessed in the RSCS virtual
machine.

Parameter Reg Function

Input Parameter R1 Address of FILREQ request block

CRV Routines

322 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Output Parameters R0 Length of retrieved record

R1 Pointer to retrieved record

R15 Return code:
0

Normal processing completed.
4

End of file.
8

No storage available.
12

Bad return code from FILEDEF or OPEN failed.
16

File format not valid.
20

IMBED record not valid.
24

Maximum number of open files (1000) exceeded.
28

Maximum IMBED depth (10) reached.

DMTCOMGG
The DMTCOMGG routine scans the ROUTEGRP table to find a specified routing group name.

Parameter Reg Function

Input Parameter R1 Pointer to 8-byte group field

Output Parameters R1 Pointer to the ROUTEGRP entry

R15 Return code:
0

Normal processing completed.
4

Entry not found.

DMTCOMGN
The DMTCOMGN routine searches the ROUTEGRP table to find the route information for a node.

Parameter Reg Function

Input Parameter R1 Pointer to 8-byte node name

Output Parameters R0 Pointer to NODE entry

R1 Pointer to ROUTEGRP

R15 Return code:
0

Normal processing completed.
4

NODE entry not found.

CRV Routines

Chapter 12. Supported Routines in the CRV 323

DMTCOMHG
The DMTCOMHG routine validates EBCDIC hexadecimal values sent by the calling program and converts
them into binary values.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of hexadecimal value to validate
Word 2

Length of the value (up to 10 bytes)
Word 3

Address of the valid range (low value in first fullword, high value
in second fullword)

Output Parameters R0 Contains converted value

R15 Return code:
0

Normal processing completed.
4

Value is out of range.
8

Characters in parameter are not valid.

DMTCOMLK
The DMTCOMLK routine locates entries in the link table (LINKTABL).

Parameter Reg Function

Input Parameter R1 Pointer to 8-byte link ID field

Output Parameters R1 Pointer to the LINKTABL entry

R15 Return code:
0

Normal processing completed.
4

Link not found.

DMTCOMNQ
The DMTCOMNQ routine places command and message elements, which are supplied by the calling
routine, in FIFO order in a task's queue.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of queue anchor (4 bytes)
Word 2

Address of element (1 - 256 bytes); byte 0 must contain the
length of the element - 1

CRV Routines

324 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Output Parameter R15 Return code:
0

Normal processing completed.
4

Insufficient storage; element not queued.

DMTCOMSM
The DMTCOMSM routine sends L3 type command or message elements on a link.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Pointer to LINKTABL entry
Word 2

Pointer to Type L3 element

Output Parameter R15 Return code:
0

Normal processing completed.
4

Message cannot be sent on the link.

DMTCOMTE
The DMTCOMTE routine converts TOD clock values into EBCDIC time and date format.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of input time in TOD format (8 bytes)
Word 2

Address of time zone number (0, non-0, 1 byte)
Word 3

Address of area in which to place the converted value
Word 4

Address of a work area that is aligned on a doubleword

Output Parameter R15 Return code 0; the date, time, and time zone are placed in the area
specified by Word 3.

The work area pointed to by Word 3 should have the following format;

DC AL1() Length of edit area to follow (not including 6-byte
 time zone specification).
 On return it will be overwritten.
DC XL Edit area to place converted value into.
DC XL6 Time zone specification.

The work area pointed to by Word 4 should have the following format. It should not be modified after the
first call to DMTCOMTE.

CRV Routines

Chapter 12. Supported Routines in the CRV 325

DC 3D'0' For date and time decimal conversion
DC A(0) Reserved
DC F'-1' To hold last calculation elapsed hours
DC A(0) Reserved
DC A(0) Reserved

DMTCOMTS
The DMTCOMTS routine converts EBCDIC time and date values into TOD clock values.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of EBCDIC time value (mm/dd/yyhh:mm:ss)
Word 2

Address of time zone number (0-24, 1 byte)
Word 3

Address of a field to hold the converted time value (8 bytes)
Word 4

Address of a doubleword aligned work area

Output Parameter R15 Return code 0; the TOD clock value is placed in the area specified by
Word 3.

The work area pointed to by Word 4 has the following format:

DC D'0' Utility work area
DC F'0' Save area for decimal date
DC F'0' Save area for decimal time

DMTDDLEP
The DMTDDLEP routine punches data in NETDATA NOTE format to a unit record device.

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

Address of a work area (contains 0 on first call)
Word 2

Address of a record buffer in the following format (contains 0 on
last call):

AL1(nn), CLnn'data'

Word 3
Pointer to IOTABLE

Word 4
Pointer to LINKTABL entry

Word 5
Logical record length (LRECL) override value (default is 80)

CRV Routines

326 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Output Parameters R0 Work area address (contains 0 for last call)

R15 Return code:
0

Normal processing completed.
4

Problem with storage.
8

Error in unit record device output.

DMTHASHA
The DMTHASHA routine adds an element to a hash table. It does not allocate storage or check for
duplicate keys to the hash table.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of HASHBLOK
Word 2

Address of the element

Output Parameter R15 Return code 0

DMTHASHB
The DMTHASHB routine builds a hash table for various types of data areas.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of HASHBLOK
Word 2

Address of a control block chain anchor

Output Parameter R15 Return code:
0

Normal processing completed.
4

Insufficient storage for hash index table.

DMTHASHC
The DMTHASHC routine clears a hash table and its associated storage when RSCS ends.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of HASHBLOK

Output Parameter R15 Return code 0

CRV Routines

Chapter 12. Supported Routines in the CRV 327

DMTHASHD
The DMTHASHD routine deletes a data area from a hash table. The calling routine, however, must first
locate the data area before it can be deleted.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of HASHBLOK
Word 2

Address of element to be deleted

Output Parameter R15 Return code 0

DMTHASHF
The DMTHASHF routine finds a data area in the hash table. It returns the address of the data area to the
calling routine.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of HASHBLOK
Word 2

Address of the requested key

Output Parameter R15 Return code:
0

Element was found; R1 contains its address.
4

Element was not found; R1 contents are destroyed.

DMTHASHG
The DMTHASHG routine finds generic entries in hash tables. If the hash table does not support generics
(see “HASHBLOK – Defining a Hash Table” on page 270), DMTHASHG will abend.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of HASHBLOK
Word 2

Address of requested key

Output Parameter R15 Return code:
0

Element was found; R1 contains its address.
4

Element was not found; R1 contents are destroyed.

CRV Routines

328 z/VM: 7.3 RSCS Networking Exit Customization

DMTHASHS
The DMTHASHS routine determines the number of hash chain anchors in use and the length of the longest
chain.

Parameter Reg Function

Input Parameter R1 Address of HASHBLOK

Output Parameter R15 Return code 0

DMTIOTHD
The DMTIOTHD routine translates general I/O halt processing requests into GCS I/O requests.

Parameter Reg Function

Input Parameter R1 Address of IOTABLE

Output Parameter R15 Return code 0; IODSIOCC field is set accordingly:
X'00'

Normal processing completed.
X'03'

GENIO error occurred.

DMTIOTST
The DMTIOTST routine translates general I/O start requests into GCS I/O requests. If the number of
consecutive I/O requests is exceeded or a programming error occurs, abend X'010' will occur.

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

Address of IOTABLE
Word 2

Address of LINKTABL entry

Output Parameter R15 Return code 0; the IODSIOCC field is also set accordingly:
X'00'

Normal processing completed.
X'01'

CSW stored.
X'03'

GENIO error occurred.

DMTLOGCL
The DMTLOGCL routine flushes output to a log spool device and closes the device.

Parameter Reg Function

Input Parameter R1 Address of LOGPARMS control block

CRV Routines

Chapter 12. Supported Routines in the CRV 329

Parameter Reg Function

Output Parameter R15 Return code:
0

Normal processing completed.
4

An error specified by DMTAXMRQ.
n

The return code passed from DMTUROFL.

DMTLOGEP
The DMTLOGEP routine opens an output device and places records, passed by the calling routine, in that
device.

Parameter Reg Function

Input Parameter R1 Address of LOGPARMS area

Output Parameter R15 Return code:
0

Normal processing completed.
4

Output device could not be opened.
8

Irrecoverable I/O error on output device.

DMTMANDE
DMTMANDE is the common ESTAE processing routine for RSCS. The requirements for the input
parameters vary, depending on the availability of SDWA storage.

Parameter Reg Function

Input Parameter
(Storage available)

R0 I/O processing return code (X'10')

R1 Address of the ESTAE diagnostic area (SDWA)

Input Parameter
(Storage unavailable)

R0 Indicator X'0C' (no SDWA available)

R1 Abend completion code

R2 Address of the LINKTABL entry for failed link driver task

Output Parameter R15 Return code 0

DMTMGFFM
The DMTMGFFM routine formats a message described by the specified MSGBLOK.

Parameter Reg Function

Input Parameters R8 Pointer to the MSGBLOK that describes the requested message

R9 Pointer to a message work area (MSGWA)

CRV Routines

330 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Output Parameter R15 Return code:
0

Normal processing completed; the message is formatted.
4

Message is not formatted; insufficient storage or message was
not found in the specified repository.

DMTMGXEP
The DMTMGXEP routine issues a message in a specified language.

Parameter Reg Function

Input Parameter R1 Pointer to the MSGBLOK that describes the requested message

Output Parameter R15 Return code:
0

Normal processing completed; the message is issued
12

Message is undefined.

DMTMPTBP
The DMTMPTBP routine parses a parameter from an input string and compares it to a list of keywords
defined in the calling routine. Each keyword is associated with the address of a processing routine. If the
parameter matches a keyword, DMTMPTBP passes control to the associated processing routine. If it does
not match, DMTMPTBP returns control to the calling routine.

Parameter Reg Function

Input Parameters R0 Points to keyword table

R1 Address of a parameter list, containing:
Word 1

Pointer to 16-byte parameter area
Word 2

Pointer to start of previous token
Word 3

Length of previous token
Word 4

Pointer to end of the text to be parsed

Output Parameter R15 Return code:
0

Normal processing completed. If a matching keyword is not
found, control returns to the calling routine. Otherwise, control
passes to the processing routine associated with the keyword.

4
Parameter missing.

8
Parameter too long.

CRV Routines

Chapter 12. Supported Routines in the CRV 331

DMTMPTCK
The DMTMPTCK routine compares a parsed parameter to the keyword table supplied by the calling
routine. If it finds a match, DMTMPTCK issues return code 0 and passes the corresponding fullword value
in R0.

Parameter Reg Function

Input Parameters R0 Pointer to keyword table

R1 Address of a parameter list, containing:
Word 1

Pointer to 16-byte keyword area

Output Parameter R15 Return code:
0

A match was found in the keyword table; R0 contains the address
of the keyword.

4
No match was found; R0 contains zero.

DMTMPTGD
The DMTMPTGD routine converts input parameter string values from decimal EBCDIC to a signed binary
fullword. The parameter, which must be an integer value, may be preceded by a plus (+) or minus (-) sign.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Pointer to 16-byte parameter area
Word 2

Pointer to start of previous token
Word 3

Length of previous token
Word 4

Pointer to end of the text to be parsed

Output Parameter R15 Return code:
0

Normal processing completed; R0 contains the converted
decimal number.

4
Parameter missing.

8
Parameter too long.

12
Parameter is not a valid decimal or is too large.

DMTMPTGP
The DMTMPTGP routine parses a parameter from an input string. To identify a keyword, it specifies the
start address and length in the original parameter string. DMTMPTGP can also copy up to 16 bytes into an
output area and translate this data into uppercase.

CRV Routines

332 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Pointer to 16-byte parameter area
Word 2

Pointer to start of previous token
Word 3

Length of previous token
Word 4

Pointer to end of the text to be parsed

Output Parameter R15 Return code:
0

A parameter has been parsed successfully and stored in the
area pointed to by Word 1. The addresses in Words 2 and 3 are
updated to refer to this parameter.

4
No parameter found; the area pointed to by Word 1 contains
blanks.

8
Parameter is longer than 16 bytes; it is truncated and stored in
the area pointed to by Word 1.

DMTPAREP
The DMTPAREP routine verifies the syntax of a parameter string. Keywords and options are verified
against a keyword table, which the calling routine must supply.

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

Address of first byte in the parameter
Word 2

Length of the parameter
Word 3

Address of the keyword table
Word 4

Address of a 16-byte field to contain the feedback

CRV Routines

Chapter 12. Supported Routines in the CRV 333

Parameter Reg Function

Output Parameter R15 Return code:
0

The field pointed to by the target address in the keyword table is
updated.

4
Error found in a keyword. The first 8 bytes of the area pointed to
by Word 4 contain the keyword.

8
Duplicate or conflicting keyword found. The first 8 bytes of the
area pointed to by Word 4 contain the keyword.

12
Error found in a keyword option. The first 8 bytes of the area
pointed to by Word 4 contain the keyword. The second 8 bytes
contain the option, which may be truncated.

DMTPRDDQ
The DMTPRDDQ routine receives information that has been posted by the port redirector task.

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

Address of the task name
Word 2

Address of a PRDBLOK to receive the response

Output Parameters None

DMTPRDNQ
The DMTPRDNQ routine posts the port redirector task to start or cancel a LISTEN request.

Parameter Reg Function

Input Parameter R1 Address of the PRDBLOK containing the post request

Output Parameters None

DMTQSAAB
The DMTQSAAB routine allocates a storage buffer for the calling routine. The characteristics of the
storage are defined by the QSABLOK macro (see “QSABLOK – Defining a Storage Request” on page 286).

Parameter Reg Function

Input Parameter R0 Pointer to the area mapped by QSABLOK

Output Parameter R15 Return code:
0

Storage buffer acquired. R0 contains the length of the buffer and
R1 points to the buffer.

4
Buffer not allocated because of a GETMAIN problem.

CRV Routines

334 z/VM: 7.3 RSCS Networking Exit Customization

DMTQSAFA
The DMTQSAFA routine frees all buffers associated with a QSABLOK and releases the storage.

Parameter Reg Function

Input Parameter R0 Pointer to the area mapped by QSABLOK

Output Parameter R15 Return code 0

DMTQSAUB
The DMTQSAUB routine frees one storage buffer that is no longer needed by the calling routine. The
buffer is chained to the existing queue anchor.

Parameter Reg Function

Input Parameters R0 Pointer to the area mapped by QSABLOK

R1 Pointer to the buffer to deallocate

Output Parameter R15 Return code 0

DMTRDREP
The DMTRDREP routine reads records from input spool files.

Parameter Reg Function

Input Parameter R1 Address of RDR area, containing the following fields:
RDRTAG

Address of file's TAG element
RDRFIOA

Address of the input file I/O area
RDRLINK

LINKTABL address
RDRDREA

Address of area to contain input record
RDRMAX

Maximum logical record length (non-NJE links)
RDRIFLG

One of the following values:
X'04'

Work station input
X'02'

3211-type FCB input

CRV Routines

Chapter 12. Supported Routines in the CRV 335

Parameter Reg Function

Output Parameter R15 Return code:
0

Normal processing completed; fields set as follows:
RDRAREA

Address of returned logical record
RDRLRECL

Logical record length
RDRCCWOP

CCW opcode for this record
RDROFLG

One of the following values:
X'02'

Data found.
X'01'

CCW is an immediate command.
X'04'

Alternate input area in use.
4

End of file reached.

DMTRDROP
The DMTRDROP routine initializes processing of an input spool file.

Parameter Reg Function

Input Parameter R1 Address of RDR area, containing the following fields:
RDRTAG

Address of file's TAG element
RDRFIOA

Address of the input file I/O area
RDRLINK

LINKTABL address (non-NJE links only)
RDRDREA

Address of area to contain input record
RDRMAX

Maximum logical record length (non-NJE links only)
RDRIFLG

One of the following values:
X'04'

Work station input
X'02'

3211-type FCB input
X'10'

CCW optimization requested

CRV Routines

336 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Output Parameter R15 Return code:
0

Noraml processing completed; fields set as follows:
RDRAREA

Address of returned logical record
RDRLRECL

Logical record length
4

No storage available for alternate input area (for NJE requests
only).

DMTRERSC
The DMTRERSC routine determines if a file, command, or message should be rerouted based on its node,
user ID, and request type.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of FOR node (ignored for NOTRCVG messages)
Word 2

Address of FOR user (ignored for CMDS)
Word 3

Address of flag bytes
Word 4

Address of TO node
Word 5

Address of FOR user (ignored for CMDS)
Word 6

Address of MSGBLOK, or 0 for forced QUIET processing

Output Parameter R15 Return code:
0

Data should be rerouted to the specified TO node and user ID.
4

The data should not be rerouted.

DMTRESLO
The DMTRESLO routine lets a routine get exclusive use of RSCS spool or file resources or a resource
defined by an exit routine.

Parameter Reg Function

Input Parameter R1 Pointer to the RESBLOK that describes the resource

Output Parameters None

DMTRESUN
The DMTRESUN routine removes a lock held on a resource by a routine.

CRV Routines

Chapter 12. Supported Routines in the CRV 337

Parameter Reg Function

Input Parameter R1 Pointer to the RESBLOK that describes the resource

Output Parameters None

DMTSEPBL
The DMTSEPBL routine formats block letters for printed output. Each letter is 10 characters high by 9
characters wide.

Parameter Reg Function

Input Parameter R1 Address of a parameter list, containing:
Word 1

Address of a 1-byte field that contains the current line number,
which is updated on return

Word 2
Address of the character string to be printed

Word 3
Address of a 1-byte field containing the length of the string

Word 4
Address of the output area for processed string

Output Parameters None

DMTSOKET
The DMTSOKET routine provides access to the RSCS TCP/IP socket interface.

CRV Routines

338 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

An integer that identifies the socket function.
Word 2

Address of SOCKBLOK created by the INITIALIZE function.
Word 3

Pointer to the ECB to post when the socket call completes.
Word 4

Address of a word to receive the TCP/IP return code; if not
needed, this may be a null (0) pointer.

Word 5
Address of a word to receive the TCP/IP error number; if not
needed, this may be a null (0) pointer.

Word 6
Address of an 8-character string to receive the unique call ID
associated with the socket call. This ID is needed if the CANCEL
request is used to terminate the call; if not needed, this may be a
null (0) pointer.

Word 7
Address of parameter 1, if applicable.

Word 8
Address of parameter 2, if applicable.

Word 9
Address of parameter 3, if applicable.

Word 10
Address of parameter 4, if applicable.

Word 11
Address of parameter 5, if applicable.

Word 12
Address of parameter 6, if applicable.

Output Parameters R1 Return code
0

Socket function call completed.
4

Socket function call has started.
8

Temporary error has occurred; retry the function call later.

DMTTASKA
The DMTTASKA routine adds a task entry to the RSCS task table or to a chain of entries anchored at the
task table.

CRV Routines

Chapter 12. Supported Routines in the CRV 339

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

TASKFLAG value to identify the task:
1

System task
2

Link driver task
3

Auto-answer task
Word 2

Pointer to the main control block associated with the identified
task (SYSIDENT, LINKTABL, or PORT)

Output Parameter R15 Return code:
0

Normal processing completed; R1 points to the added entry.
4

An error occurred; entry not added.

DMTTASKD
The DMTTASKD routine deletes entries from any task table.

Parameter Reg Function

Input Parameter R1 Pointer to task ID

Output Parameter R15 Return code 0

DMTTASKF
The DMTTASKF routine finds entries in the task table, using their task ID.

Parameter Reg Function

Input Parameter R1 Pointer to task ID

Output Parameter R15 Return code:
0

Normal processing completed; R1 contains a pointer to the
TASKBLOK.

4
Error occurred; TASKBLOK not found.

DMTTASKG
The DMTTASKG routine finds entries in the task table, using the task ID of the current task.

Parameter Reg Function

Input Parameters None

CRV Routines

340 z/VM: 7.3 RSCS Networking Exit Customization

Parameter Reg Function

Output Parameters R15 Return code:
0

Normal processing completed; R1 contains a pointer to the
TASKBLOK.

4
Error occurred; TASKBLOK not found.

DMTUROEP
The DMTUROEP routine builds a chain of CCWs and data for a unit record output device. It then schedules
the I/O operation.

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

Address of output file I/O area
Word 2

Address of LINKTABL entry

Output Parameter R15 Return code:
0

Noraml processing completed.
4

Irrecoverable I/O error occurred.

DMTUROFL
The DMTUROFL routine completes the CCW chain started by DMTUROEP and schedules an I/O operation.
It also processes recoverable error conditions, such as reaching the end of page on an FCB-type printer.

Parameter Reg Function

Input Parameter R1 Address of a parameter list containing:
Word 1

Address of output file I/O area of the RDEVBLOK
Word 2

Address of LINKTABL entry

Output Parameter R15 Return code:
0

Normal processing completed.
4

Fatal I/O error occurred.

Nonexecutable Entry Points
This section describes the nonexecutable entry points listed in the CRV that are supported for use by exit
routines. The entry points are listed alphabetically.

DMTASTCM
The internal command ECB for the RSCS autostart task.

CRV Routines

Chapter 12. Supported Routines in the CRV 341

DMTASTCQ
The anchor associated with the internal command ECB for the RSCS autostart task.

DMTAXMCM
The command ECB for the RSCS spool manager task. It can be posted to tell the spool manager task
to process a command.

DMTAXMCQ
The anchor for the command queue associated with the spool manager task's command ECB.

DMTBOXPR
Contains the logo image used for separator page output.

DMTCOMTN
Contains the local time zone abbreviation.

DMTCOMTO
Contains the address of the time zone offset.

DMTEVECM
The command ECB for the RSCS event scheduler task. It can be posted to tell the event scheduler
task to process a command.

DMTEVECQ
The anchor for the command queue associated with the event scheduler task's command ECB.

DMTIRWLK
Contains an empty link table entry, which can be used to start a new entry in the LINKTABL.

DMTIRWTA
Contains an empty tag entry, which can be used to start a new TAG table entry.

DMTIRXHL
A predefined HASHBLOK, used to add entries to the RSCS hashing tables for links.

DMTIRXHN
A predefined HASHBLOK, used to add entries to the RSCS hashing tables for nodes.

DMTIRXHR
A predefined HASHBLOK, used to add entries to the RSCS hashing tables for routing groups.

DMTQSAAU
A QSABLOK that defines the storage used for AUTHBLOKs.

DMTQSAEC
A predefined QSABLOK, which can be used to acquire 256 bytes of storage from a conditional
GETMAIN macro invocation.

DMTQSAEU
A predefined QSABLOK, which can be used to acquire 256 bytes of storage from an unconditional
GETMAIN macro invocation.

DMTQSAEV
The QSABLOK that defines the storage used for event blocks.

DMTQSAMB
The QSABLOK that defines storage used for message blocks.

DMTQSAML
The QSABLOK that defines the storage used for message line areas.

DMTQSAMW
The QSABLOK that defines the storage used for message work areas.

DMTREXCM
The internal command ECB for the RSCS communications task.

DMTREXCQ
The anchor associated with the internal command ECB for the communications task.

CRV Routines

342 z/VM: 7.3 RSCS Networking Exit Customization

DMTREXME
The message ECB for the RSCS communications task, it can be posted to tell the communications task
to issue a message.

DMTREXMQ
The anchor for the message element queues associated with the RSCS communications task.

DMTREXTE
The terminate ECB for the RSCS communications task, it can be posted to tell RSCS to end
immediately.

DMTSCTAC
The access control block for the RSCS/VTAM interface, which communicates with VTAM when running
a RSCS session driver.

CRV Routines

Chapter 12. Supported Routines in the CRV 343

CRV Routines

344 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 13. Message Repositories

This section describes the format of the RSCS message repositories. You should follow this format if
you modify the repositories supplied with RSCS or create alternate repositories for your installation. This
section also describes the MCOMP and MCONV execs, which are used to compile the repositories.

Conversion Repository
The conversion repository contains all parts of a message that cannot be translated. For example, a
conversion repository entry contains the following information about a message:

• Routing code
• Type of data to be displayed
• How to find the data
• How to convert and justify the data in the message text

Naming Convention
A conversion repository file should have a 6-character file name in the form xxxyyy. When you compile the
repository with the MCONV exec (see “MCOMP and MCONV – Compiling Message Repositories” on page
360), the resulting file is named xxxyyy TEXT. The entry point xxxyyyNX identifies the main index into the
repository. The first 3 characters of the EMSG header created for any message issued from this repository
are xxx.

If your exit routine issues messages from another repository, it should set the MSGBCONV field in the
MSGBLOK to point to that conversion repository. To do so, you can use the RMSG macro or set the field
directly.

When supplying a conversion repository for exit packages, you should use a 6-character file name. The
first 3 characters should be the same as the first 3 characters of the module names of the exit routines in
the package. To identify the conversion repository, use MGC as the next 3 characters.

Repository Structure
The conversion repository must be a fixed-format, 80-character file with standard sequence numbers.
Updates to the file are applied by the CMS UPDATE facility.

The repository contains statements that describe the characteristics of the file itself and the messages
it defines. Each statement usually consists of one line in the repository. As the conversion repository
is compiled, individual lines, statements, and tokens are identified. Each token represents a keyword,
punctuation character, or other element in the message text. If an error occurs as the repository is
compiled, MCONV issues a message and a pointer to the line or token that caused the error.

Control Statements
The conversion repository can contain any of the following control statements.

*CHARS Statement

*CHARS charname c

Conversion Repository

© Copyright IBM Corp. 1990, 2022 345

The *CHARS statement identifies characters that have a special meaning within the conversion repository.
The valid character names, default characters, and their functions are described as follows:

charname c Function

SEPCH \ Separates each line in a message and the items in a dictionary.

INDCH ! Shows that indirection is needed to access a field in a message.

CONTCH # Continues a statement to another line if the last non-blank character (before
column 73 or the first @) is a # character. The statement continues to the first
non-blank character of the following line. If blanks are needed in the following
line, the # character specifies where the line should continue.

IGNORECH @ When specified, all characters following the first occurrence of the @ are
ignored.

SUBCH $ Identifies a substitution within the message text.

The compiler inspects columns 1 - 72 of each physical line in the repository. All lines that begin with an
asterisk (*) are considered comment lines and are not processed.

INCLUDE Statement

INCLUDE macro

The INCLUDE statement identifies macros that should be called to generate symbolic references.

For example, if you specify the following statement, you could use symbolic references to TAG fields in the
conversion repository.

INCLUDE TAG

Some macros contain more than one DSECT. Only macros that generate DSECTs by default should be
specified on an INCLUDE statement; you cannot specify any operands of a macro.

COPY Statement

COPY copyfile

The COPY statement identifies files that should be copied into the assembler source. This allows any
DSECTs within the files to be used for symbolic references.

For example, by specifying the following statement, the conversion repository can use the SPOOL and
DEVTYPES COPY files to resolve symbolic references.

COPY SPOOL DEVTYPES

BASE Statement

BASE base
1

Conversion Repository

346 z/VM: 7.3 RSCS Networking Exit Customization

Notes:
1 You can specify up to 12 base names.

The BASE statement identifies a global base address that converts symbolic references into absolute
values. The base address should be the name of a DSECT. Specify one base for each DSECT that requires
symbolic references. However, you can define only 12 global bases. (Use the BASE option on the message
definition statement to define local bases for a message.)

For example, the following statement identifies the symbol LINKTABL as a global base.

BASE LINKTABL

Symbolic references to the LINKID can be resolved and converted into the absolute value LINKID-
LINKTABL.

Message Definition Statement

msgid route sev
USING 1

USING parmno

BASE base
1

TABLE :
,

message field
2

Notes:
1 You can specify up to 4 base names.
2 Multiple message fields (substitution variables) must be separated by commas.

The message definition statement identifies the characteristics of each message. Each message is
described by a message ID, routing code, severity code, and optional additional information.

msgid
is a number, 0 - 999, that uniquely identifies the message.

route
specifies the default routing code for the message and shows if it is a private message. The routine
that requests the message can override the default routing code by specifying a nonzero MSGBRCOD
field in the MSGBLOK.
R

Message is sent to RSCS console. If the RSCS DISCONNECT command has been issued with the
NOLOG option, the message is not written to the RSCS console. If a user ID was specified on the
DISCONNECT command, the user ID also receives the messages.

O
Message is sent to any user ID/node ID designated in the MSGBLOK.

V
Message is sent to any user ID on the local node only.

C
Message is sent to the OPERATOR user ID (local operator)

P
Message is private; it cannot be part of SET or SETMSG subscriptions.

Conversion Repository

Chapter 13. Message Repositories 347

The routing code can be any combination of the preceding characters, with no intervening blanks. For
example, the code RC means the message is sent to the local RSCS console and the CP operator.
The code VP means that the message is sent to a local user ID and cannot be part of a message
subscription.

sev
is the default severity code of the message. The default can be overridden if the message issuer
specifies a nonzero MSGBSCOD field in the MSGBLOK.
I

Informational message
W

Warning message
E

Error message
S

Severe error message
T

Terminating error message
USING parmno

specifies the parameter in a data area that RSCS should use to provide message information if none
are explicitly specified.

The parmno is a decimal number equal to or greater than 1. It refers to the MSGBLOK variable that
contains a pointer to another data area where all non-explicitly coded fields reside. If the USING
option is not specified, USING 1 is assumed.

For example, if you do not specify the USING option, the reference LINKID is interpreted by the
compiler as 1!(LINKID-LINKTABL). This tells the compiler that the first MSGBLOK variable contains
a pointer to a LINKTABL entry. The specified field resides at LINKID-LINKTABL into the field.

However, if you specify USING 3 in the message definition, the compiler would interpret this
statement as 3!(LINKID-LINKTABL). This tells the compiler that MSGBLOK parameter 3 contains
the pointer to a LINKTABL data area.

BASE base
specifies DSECT names that are referred to only occasionally by a specific message. You can specify
up to four BASE options for a message, but you must repeat the BASE keyword each time. (Use the
BASE statement to define up to 12 global data areas. See “BASE Statement” on page 346.)

For example, the following statement identifies the DSECTs AREA1 and AREA2 as local bases for
message 200 only.

200 V I BASE AREA1 BASE AREA2 …

TABLE
specifies that the message is a columnar message (table display). These messages must conform to
a special columnar format. The task or routine requesting the message must specify the columns that
should be displayed in a message.

Message Fields
Each message definition statement also defines how specific information should be converted and
displayed in each field in the message text. To convert each message field, the RSCS message builder
must have the following information about the field:

• Source of the data to be converted
• Type of conversion needed
• Required output characteristics of the converted data

Conversion Repository

348 z/VM: 7.3 RSCS Networking Exit Customization

A message field is defined by the following structures:

message field
source typedef

output
1

typeinfo
1

Notes:
1 This value is required for some data types.

See “Source Definition” on page 349, “Data Type Definition” on page 350, and “Output Definition” on
page 355. Some data type definitions require additional information (typeinfo). If needed, the typeinfo is
included in the detailed description of the data type.

Source Definition
The source definition of a message field describes the address and length of the binary data to be
converted in the message.

source
addr

. len

addr
Tells the compiler where it can find the data to be converted in the message field. The address value
can be specified in the following ways:

Method Explanation

MSGBLOK parameter

For example: n

Parameters in the MSGBLOK can contain the values to be
converted. Each parameter has a number, starting from 1.
Parameter 1 is at address MSGBVARS+0, parameter 2 at
MSGBVARS+8, and parameter n is at MSGBVARS+(n-1)*8. You can
use this number to refer to a MSGBLOK parameter. For example,
1.8 specifies that the first MSGBLOK parameter (MSGBVARS+0)
contains the field data, which is 8 bytes long.

Offset from a parameter

For example: n+offset

A parameter that is not aligned at the start of a data area can
also point to the address of the field data. Here, you can use the
+ character to identify the appropriate parameter. For example,
2+4.4 specifies that the source starts 4 bytes after parameter 2
(at MSGBVARS+12) and is 4 bytes long.

Conversion Repository

Chapter 13. Message Repositories 349

Method Explanation

Data area pointed to by
a parameter

For example: n!offset

A MSGBLOK parameter can also contain a pointer to a data area
that is the source of a message field. The ! character identifies
when this type of indirection is needed to find the source. For
example, 2!8.2 identifies the following information about the
source:
2!

The first 4 bytes of MSGBLOK parameter 2 are a pointer.
8

Add 8 to the value of the pointer to find the address of the
source.

.2
The length of the source is 2 bytes.

You can specify the ! and + symbols several times in a statement
to create many levels of indirection.

Symbolic reference

For example:
 n!(label-offset)

You can use symbolic references to find information within a
data structure. For example, to find a LINKID in a LINKTABL
entry, you can specify 1!LINKID. This produces the same results
as specifying 1!(LINKID-LINKTABL).L'LINKID. The compiler
calculates the LINKID-LINKTABL offset by treating LINKID as
a relative address, based on the LINKTABL DSECT. The length
defaults to the length of the LINKID field.

You can specify several symbolic references at the same
time. However, when many symbols are used, the last one
in the chain is used as the default length. For example, 1!
PORTLINK!LINKID is the same as specifying 1!(PORTLINK-
PORT)!(LINKID-LINKTABL).L'LINKID. In both cases, the first
parameter in the MSGBLOK is treated as a pointer to the PORT
entry. The PORTLINK field of this PORT entry is taken as a pointer
to a LINKTABL entry. The value of LINKID field of this LINKTABL
entry is then used as the message field.

Parameter default

For example: n!label

If you use the first parameter of a data area to locate the source of
a message field, you do not need to specify the initial parameter.
For example, LINKID is the same as 1!LINKID. However, if
the needed parameter is not parameter 1, you must specify the
parameter (for example, LINKID …, 2!TAGORGID). You can
specify the USING option on a message definition to override the
default parameter number where none is explicitly specified.

len
Length of the value to be converted in the message field. If you specify the len as a decimal integer
in the message definition, that value is used. If you specify a symbolic reference for the address, the
length of the source field is used. For example, if the address is LINKID, the length will be L'LINKID,
which is 8. If you do not specify a len value, the default length of the selected data type is assumed
(see “Data Type Definition” on page 350).

Data Type Definition
The data type definition (typedef) of a message field determines how the input binary source value should
be converted into an EBCDIC string. The output EBCDIC string is also represented by an address and a
length. The following table summarizes each data type recognized by RSCS. It also describes the default
source length, output length, and justification within the message field. The data types are described in
more detail following the table.

Conversion Repository

350 z/VM: 7.3 RSCS Networking Exit Customization

Some data type definitions require additional information (typeinfo). If needed, the typeinfo is included in
the detailed description of the data type.

typedef Explanation Source
Length

Output Length Justification

AL Adlen string 4 As converted Left

ALH Adlen string (hidden characters) 4 As converted Left

ALZ Adlen string (no ellipsis for null) 4 As converted Left

C Character 8 As input Left

D Decimal 4 As converted Right

DB Decimal (leading zeros) 4 10 Right

DZ Decimal (leading zeros) 4 10 Right

E Enumerator 1 As converted Left

S Selector 1 As converted Left

T TOD clock 8 As converted Left

W Word 8 As input None

X Hex 4 As converted Right

XZ Hex (leading zeros) 4 8 Right

AL – Adlen String (Ellipsis)
Use this data type for converting general variable-length strings. The source addr is the address of the
start of string text; the source len is ignored. If the source address is zero, the string is converted into an
ellipsis (…).

To find the area that contains the length of the source, you must specify a typeinfo value in the following
format:

source AL output : lensource_addr

. lensource_len

Like the source addr, the lensource address and length must be defined, using indirection and offset
values. The lensource field is treated as an unsigned binary integer that is 1 to 4 bytes long (if longer, it is
truncated). The integer is padded with binary zeros to create a fullword value that is used as the length
of the string. If the length is zero, an ellipsis is returned. Otherwise, the converted data is the string text,
starting at the source address.

For example, to define an Adlen string, you can place the address of the text string and its length in a
MSGBLOK parameter. To show that the source pointer for the text is at MSGBVARS+4 and its length is in
the fullword at MSGBVARS+0, you can specify the value:

1+4!0 AL: 1.4

ALH – Adlen String (Hidden Characters)
Use this data type to convert strings that contain information that you do not want to display (for example,
passwords). The source addr is the address of the start of string text; the length is ignored. If the source
address is zero, the string is converted to an ellipsis. Otherwise, you must specify a typeinfo value in the
following format to find its length:

Conversion Repository

Chapter 13. Message Repositories 351

source ALH output : lensource_addr

. lensource_len

Like the source addr, the lensource address and length must be defined, using indirection and offset
values. The lensource field is treated as an unsigned binary integer that is 1 to 4 bytes long (if longer, it is
truncated). The integer is padded with binary zeros to create a fullword value that is used as the length
of the string. If the length is zero, an ellipsis is returned. Otherwise, the converted data is the string text,
starting at the source address.

For example, to define an Adlen string, you can place the address of the text string and its length in a
MSGBLOK parameter. You can then specify the value

1+4!0 AL: 1.4

to indicate that the source pointer for the text is at MSGBVARS+4; its length is in the fullword at
MSGBVARS+0.

Now, however, all characters that are placed within two occurrences of the hide character or after one
hide character will appear as the string XXXX. The default hide character (\) can be changed by the
HIDECHARACTER statement, which is described in z/VM: RSCS Networking Planning and Configuration.

ALZ – Adlen String (No Ellipse)
Use this data type to convert general variable-length strings if you do not want to generate an ellipsis
when the string is zero. The source address is the address of the start of string text; source length is
ignored. To find the length of the string, specify a typeinfo value in the following format:

source ALZ output : lensource_addr

. lensource_len

Like the source addr, the lensource address and length must be defined, using indirection and offset
values. The lensource field is treated as an unsigned binary integer that is 1 to 4 bytes long (if longer, it is
truncated). The integer is padded with binary zeros to create a fullword value that is used as the length of
the string. However, an ellipsis is not produced if the length is zero.

C – Character
Use this data type for fixed-length character data. The source address defines the beginning of the string.
The explicitly coded length defines the (fixed) length of the string. The converted output data is the data
given as the source.

source C output

For example, the following entry denotes a field that has a fixed length of one character:

TAGCLASS C 1

D – Decimal
Use this data type for general signed decimal numbers. The source address is expected to point at a 1- to
4-byte binary integer. If the source length is greater than 4 bytes, it is truncated. The source value must
then be converted into a fullword value. If its original length is 2 bytes, it is interpreted as a signed binary
integer and sign-extended. If the length is 1 or 3 bytes, it is treated as an unsigned binary integer and no
sign extension takes place.

Conversion Repository

352 z/VM: 7.3 RSCS Networking Exit Customization

source D output

If the resulting binary fullword is X'80000000', it is converted to an ellipsis. Use this value to represent
an area that has not been set or is not applicable. Otherwise, the binary value specified by the source
information is converted to an EBCDIC value. The EBCDIC value can contain up to 10 digits and a minus
sign (-), if the source value is negative. Leading zeros are removed.

DB – Decimal (Leading Zeros)
Use this data type to display spool IDs that may contain more than 4 digits. You should specify the output
length for the number of digits needed. The source address points to a 1- to 4-byte unsigned binary
integer. If the source length exceeds 4 bytes, it is truncated. The resulting number is converted into a
10-digit unsigned decimal number that includes leading zeros.

source DB output

As the number is being converted to a displayable format, RSCS determines if the 5-digit spool ID
support is enabled. This support is enabled by the OPTION statement, which is described in z/VM: RSCS
Networking Planning and Configuration. If this support is not enabled, which is the default, a 4-digit
number will be returned. If the number being converted is greater than 9999 and 5-digit support is not in
effect, zeros will be returned. If the 5-digit support is enabled, a number for the specified output length
will be returned.

DZ – Decimal (Leading Zeros)
Use this data type to convert decimal numbers that need leading zeros (for example, spool IDs). You
should also specify an output length for the number of digits needed. The source address points to the
beginning of a 1- to 4-byte unsigned binary integer. If the source length is not 1 - 4 bytes, it is truncated.
The resulting number is converted into a 10-digit unsigned decimal number, including leading zeros.

source DZ output

E – Enumerator
Use this data type to explicitly identify a dictionary item to be used in a message field. The source address
points to the beginning of a 1- to 4-byte unsigned binary integer. If the source length is greater than 4
bytes, it is truncated. The source value is then converted to a fullword and padded on the left with binary
zeros.

This resulting value is used as an index into a dictionary supplied in the translation repository. The output
data and length are taken from this dictionary definition. To prevent RSCS from referencing past the index
value, you must identify the number of terms in the dictionary. To do so, specify a typeinfo value in the
form:

source E: number

The fullword index into the dictionary must be in the range 0 - number-1, where number is the number of
terms defined. If it is not in this range, the data is converted into the string ???.

When the language-independent form of the CRI is used, dictionary items in the translation repository are
not used. Rather, the index is converted into the character string Dnn. The index is incremented by one so
that nn is in the range 01 - number. If the index is wrong, the characters D?? are used.

Conversion Repository

Chapter 13. Message Repositories 353

S – Selector
Use this data type to analyze flag bytes in a data area and dynamically determine the dictionary item to be
used in a message text. The source address points to the beginning of a 1- to 4-byte bitmap. If the source
length is greater than 4 bytes, it is truncated. The source is then converted to a fullword and padded
to the left with binary zeros. The selector value determines the index to use to find a dictionary value.
Incorrect indexes are identified by ??? values for regular messages, and D?? values for messages issued
with the language independent form of the CRI.

For this data type, you must specify a typeinfo value in the following format:

source S:

mask :
1

value

Notes:
1 If mask is not specified, value is used as the mask.

The mask and value pair tests for certain conditions; if a condition is true, the appropriate item can
be selected from a dictionary. The number of mask and value pairs specified defines the number of
dictionary terms that should be defined in the translation repository. If omitted, the mask defaults to the
specified value. A mask and value can be specified as:

• A hex number, starting with a decimal digit (for example, X'FF' must be specified as 0FF)
• A symbol (for example, LACTIVE)
• A combination of numbers and symbols (for example, LACTIVE+LCONNECT)

For example in the following statement, RSCS chooses the first dictionary term if the LACTIVE flag is set
and the LCONNECT flag is not set. RSCS selects the second dictionary term if the LCONNECT flag is set.
Finally, if neither flag is set, RSCS selects the third dictionary item.

LFLAG S: LACTIVE+LCONNECT:LACTIVE LCONNECT 0

T – TOD Clock
Use this data type to convert TOD clock values into readable formats. The source address points to the
beginning of an 8-byte TOD clock produced by an STCK instruction; the source length is ignored.

source T output

The TOD clock is converted into the local date and time in the form:

yyyymmddhhmmssuuuuuuzzzzzz

yyyy
Year

mm
Month (01 - 12)

dd
Day (01 - 31)

hh
Hour (00 - 23)

mm
Minutes (00 - 59)

Conversion Repository

354 z/VM: 7.3 RSCS Networking Exit Customization

ss
Seconds (00 - 59)

uuuuuu
Microseconds (000000 - 999999)

zzzzzz
Time zone, which can contain trailing blanks.

This value is then converted into the TOD format described in the translation repository. When the
language-independent form of the CRI is used, however, this TOD format specified in the translation
repository is not used.

W – Word
Use this data type for identifiers and fields, such as link IDs, user IDs, and node IDs. The source address
points to the beginning of a string. The source length is the implied or implicitly stated length of the string.
The converted output data is the same as the input data, without leading and trailing blanks. If the input
data is all blanks, the output is an ellipsis.

source W
1

Notes:
1 There are no output parameters. The output length defaults to the input length.

X – Hexadecimal
Use this data type where you want a hex number with leading zeros suppressed. The source address
points to the beginning of a 1- to 4-byte unsigned binary integer. If the source length is greater than 4
bytes, it is truncated. The source is converted to a fullword and padded on the left with binary zeros. The
resulting number is converted to an unsigned hexadecimal number of up to 8 digits.

source X output

XZ – Hexadecimal (Leading Zeros)
Use this data type to display binary fields in hexadecimal form. Usually, you will specify an output length
that is twice the input length. The source address points to the beginning of a 1- to 4-byte unsigned
binary integer. If the source length is greater than 4 bytes, it is truncated. The source is converted to
a fullword and padded on the left with binary zeros. The resulting number is converted to an 8-digit
unsigned hexadecimal number, including leading zeros.

source XZ output

Output Definition
The output definition of a message field identifies the address and length of the string of EBCDIC
characters that is appended to the message text.

output
len

justification

Conversion Repository

Chapter 13. Message Repositories 355

If the output len specified in the conversion repository is 0, or if no output value is specified, the data is
used as it is entered. If the len is not 0 and the length of the converted data is greater than len, the data is
truncated according to the specified justification value:
L

Left
R

Right
C

Centered
N

None

If the length of the converted data is less than len and justification is specified, the text is padded with
blanks, as appropriate, to the required length. For the language-independent form of the CRI, however,
the data is not padded with blanks.

When using the DB, DZ, and XZ data types in text messages, you should specify an appropriate length. For
columnar messages, you should specify the output width of each column in the message. You should also
ensure that the length of a column header is appropriate for the data to be displayed in that column.

Translation Repository
A translation repository contains all the elements of a message that can be translated into a different
language.

Like the conversion repository, a translation repository must be a fixed-format, 80-character file that is
compatible with the CMS UPDATE facility. Only columns 1 - 72 of each physical line are inspected. Any @
characters on the line, and any following characters, are ignored. You can also identify special characters
in the translation repository with the *CHARS statement. See “*CHARS Statement” on page 345 for more
information.

Naming Convention
A translation repository should have a file name in the form xxxyyyyy and a file type of MSGS. When the
repository is compiled by the MCOMP exec, the resulting file is called xxxyyyyy TEXT. The main index to
the repository, entry point xxxyyyyy, will then have the alias xxxMSGNX.

The alias name ensures that the translation repository can be linked into the RSCS load module and used
as the default message language. A translation repository can also be linked into a separate load module
by specifying the following link-editor control statements:

INCLUDE xxxyyyyy
ENTRY xxxyyyyy
NAME xxxyyyyy

When the translation repository is specified on the LANGUAGE configuration statement, it can then be
used to issue messages. All RSCS messages implicitly refer to the specified local and network languages.
If an exit routine issues messages from another translation repository, it should set a pointer to this
repository in the MSGBLOK. To do so, you can use the RMSG macro or set the MSGBTRAN field directly.

If supplying an alternate translation repository with an exit package, the first 3 characters of the
repository name should match the first 3 characters of each exit module's name. The remaining
characters in the file name should be used to identify the language of the repository.

Repository Structure
The translation repository contains four types of statements:

• Text messages
• Columnar, or table-display, messages

Translation Repository

356 z/VM: 7.3 RSCS Networking Exit Customization

• Dictionary items, which contain text strings that describe states or conditions
• TOD-clock formats, which determine how date and time are to be displayed

Each statement is identified by a message ID (msgid). For text and columnar messages, the range is
0 - 999, and corresponds to the msgid on the message definition statement in the conversion repository.
For TOD and DICT statements, the range is 1000 - 9999.

Text Message Statement
A text message can contain up to nine lines. Each line of the message is separated by the SEPCH
character (\). Each line consists of text strings with optional substitutions. Nulls strings contain two
substitutions without separating text.

msgid :

\

line
1

line

string

substring

Notes:
1 You can specify up to 9 lines.

Substitutions
Each substitution string within a message statement contains a field number (fieldno) that refers to the
field in the definition statement for that message in the conversion repository. The field specification
describes how the data for the substitution can be found and converted.

substring
$( fieldno

DICT msgid

<

\

string >

TOD msgid

< string

todsub

>

)

For enumerator and selector data types, the translation repository contains a dictionary. The dictionary
definition can be literal:

$(1 DICT <yes\no>)

or it can refer to the msgid of a dictionary statement:

$(3 DICT 1049)

Translation Repository

Chapter 13. Message Repositories 357

For the T data type, the translation repository must supply a TOD clock format. Like dictionaries, TOD
clock format definitions can be literal or referenced. For other data types, no other information is needed
in the translation repository.

Columnar Message Statement
A columnar message (TABLE) can contain many columns that have a unique bottom-level header.

msgid TABLE: header

header

<

\

string substring

header

>

You can use the SEPCH (\) to show multi-line header text. You should ensure that the individual lines have
the same length. When creating bottom-level headers, you should consider the output width of the fields
they represent (specified in the conversion repository).

The order in which the bottom-level headers are entered in the translation repository determines the
order in which they are displayed in the columnar message. If the language-independent form of the CRI
is used, the columns are presented in the order their corresponding fields are defined in the conversion
repository. To avoid confusion, you should ensure that the columns and fields are in the same order in
each repository.

Common Headers
Often, when two adjacent bottom-level column headers are selected, one common header can be
displayed. Here, you can specify a common (high-level) header for two or more columns. Multiple-column
headers can also apply to columns that are already grouped by lower level multicolumn headers.

For example, the following statement can be coded in the translation repository:

Origin \Node Userid
 <#
 Origin \Node $(3)#
 Origin \Userid $(4)#
 >

Note: The # symbol is the default line continuation character.

When both columns are selected, the following common header is produced:

 Origin
Node Userid

You should ensure that the total width of each line in the multicolumn header text is the same as total
width of all bottom-level headers. You should also provide one space or character between each column.
Leading blanks may often be needed for multiple-column headers. You should use the continuation
character at the beginning to identify needed blanks.

Dictionary Statement
A dictionary definition item (inline or literal) will translate enumerator or selector data types in the
conversion repository. The dictionary is made of a list of strings separated by a SEPCH (\). A string can
also contain blanks.

Translation Repository

358 z/VM: 7.3 RSCS Networking Exit Customization

msgid
1

DICT

\

string

Notes:
1 Do not specify a : separator following msgid.

TOD Clock Statement
A TOD clock format is required for translating the T data type. Because one TOD format is generally used
for all messages, you can define it with a TOD statement.

msgid
1

TOD string

todsub

Notes:
1 Do not specify a : separator following msgid.

You can specify the following substitution (todsub) values in a TOD definition:
$YEAR

The tens-and-units format of the year yy
$FULLYEAR

The full year yyyy
$MONTH

Month (01 - 12)
$DAY

Day (01 - 31)
$HOUR

Hour (00 - 23)
$MIN

Minutes (00 - 59)
$SECOND

Seconds (00 - 59)
$MILLI

Milliseconds (000 - 999)
$ZONE

Time zone indicator

The following is an example of a TOD string containing todsub substitution values:

$month/$day/$year $hour:$minute:$second $zone

Translation Repository

Chapter 13. Message Repositories 359

MCOMP and MCONV – Compiling Message Repositories

MCOMP

MCONV

repos
DMTVM

control (Options

Options
OUTMODE A1

OUTMODE fm

KEEPList

NOKEEPList

NOKEEPAsm

KEEPAsm

ASMxf

HASM

HLASM

Purpose
RSCS supplies two execs to compile the message repositories. The MCONV exec compiles the conversion
repository (see “Conversion Repository” on page 345). The MCOMP exec compiles the translation
repository (see “Translation Repository” on page 356).

Parameters
repos

is the file name of the repository to be compiled. The file type differs for each repository; the standard
search order determines the file mode.

For translation repositories, the file type must be MSGS. The translation repository supplied with
RSCS is DMTAMENG MSGS.

For conversion repositories, the file type must be MCONV. The conversion repository supplied with
RSCS is DMTMGC MCONV.

control
is the file name of the control file used to apply updates to the repository. The default is DMTVM. The
file type of the control file is CNTRL. The standard search order determines the file mode.

OUTMODE fm
specifies the file mode where the resulting TEXT deck is placed. The default value is A1.

KEEPList
NOKEEPList

specifies whether the compiler listing is kept. The default is KEEPLIST.
NOKEEPAsm
KEEPAsm

specifies whether the intermediate assembler source code is kept. The default is NOKEEPASM. If an
error occurs while assembling, however, the source is kept on the disk. You can then reassemble the
source code for diagnostic purposes.

ASMxf
HASM
HLASM

specifies the assembler used to assemble the source code. The default is the ASMXF assembler.

Usage Notes
1. If you modify a message repository supplied with RSCS (DMTAMENG MSGS or DMTMGC MCONV) or

create other repositories, take these steps:

MCOMP and MCONV Execs

360 z/VM: 7.3 RSCS Networking Exit Customization

a. Issue MCOMP and MCONV to compile the source file for the appropriate repository into a TEXT
deck.

b. Rebuild the RSCS load library to include the new TEXT deck.
c. Re-IPL RSCS to access the message repository.

2. Each compiler exec must have access to a read/write file mode A. This file mode holds intermediate
work files, including:

• Work files used by the CMS UPDATE command
• Updated source
• Compiler listing
• Intermediate assembler code
• Text deck, before it is copied to the output file mode

3. RSCS provides the MCOMP and MCONV execs in source and compiled form. The source form of the
execs have the file type EXEC; the compiled form have the file type CEXEC.

The execs are installed on the 400 minidisk, which is owned by the RSCS installation user ID. If you
want to use the compiled form of the execs, copy and rename the CEXEC files to EXEC files on the 400
disk.

If you have REXX compiler support at your installation, IBM recommends you use the compiled form of
the execs.

4. For every 100 lines processed in a message repository, each exec issues a progress message.
5. z/VM: RSCS Networking Messages and Codes contains the messages that are issued by the RSCS

message compilers.

MCOMP and MCONV Execs

Chapter 13. Message Repositories 361

MCOMP and MCONV Execs

362 z/VM: 7.3 RSCS Networking Exit Customization

Chapter 14. Customizing the RSCS Data Interchange
Manager

This section describes how you can customize the RSCS Data Interchange Manager (RSCS Interchange) to
fit the individual needs of your installation.

Creating Exit Routines
There are four areas where you can code exit routines for processing of RSCS Interchange:

• Accounting (ACCT)
• Commands (CMD)
• Format Recognition of Mail (FMT)
• Security (SEC)

Each exit routine is passed a set of parameters when it receives control. In return, each exit routine must
issue a return code, depending on the action taken by the exit routine.

When an exit area has a group of exit routines to be called, each is passed the same parameters. Unless
a nonzero return code is returned from an exit, the next exit in the group is called. If all exits run
successfully (return code is 0), processing continues as usual.

Exit routines can be execs (EXEC), modules (MODULE), or compiled REXX execs (CEXECs). Because they
run under CMS, CMS services and command interfaces can be used.

After you create an exit routine, you must specify it on an EXIT statement in the RSCS Interchange
configuration file. For more information, see z/VM: RSCS Networking Planning and Configuration.

Using Accounting Exits
You can code accounting exits to audit files processed. This exit is called after a mail file has been handled
(for example, delivered or rejected). If delivered, the original incoming mail file (MAIL MAIL A) as read
in by the RSCS Interchange server and outgoing converted note (MAIL NOTE A) still exist on the disk for
possible analysis.

Parameters Passed (in order shown, separated by blanks):

• RSCSNAME from configuration file
• SMTPNAME from configuration file
• RSCSLINK from configuration file
• DOMAIN name from configuration file
• ADMIN user ID from configuration file
• File Origin

– If NJE, userid@nodeid with no blanks
– If SMTP, SMTPaddr with no blanks

• File Destination

– If NJE, userid@nodeid with no blanks
– If SMTP, SMTPaddr with no blanks

• Disposition of File
DELIVERED

File sent to destination.

Data Interchange Manager

© Copyright IBM Corp. 1990, 2022 363

FORWARDED
File transferred to ADMIN.

RETURNED
File sent back to originator.

IGNORED
Server does not process the file.

Return Codes:

Return Code Results

0 Call next exit; no action taken by this exit.

4 Do not call next exit; process continues normally.

If the z/VM user directory entry for the RSCS Interchange virtual machine includes an OPTION ACCT
statement (see z/VM: RSCS Networking Planning and Configuration), you can issue DIAGNOSE code X'4C'
from your exit routines to create accounting records and pass them to CP to include in the accounting log.
For more information about the OPTION ACCT statement, see z/VM: CP Planning and Administration. For
more information about DIAGNOSE code X'4C', see z/VM: CP Programming Services.

Using Command Exits
You can code command exits, which are called before any command processing, to perform the following
tasks:

• Process special commands not recognized by the RSCS Interchange server
• Authorize or restrict specific users
• Handle an existing command

Parameters Passed (in order shown, separated by blanks):

• RSCSNAME from configuration file
• SMTPNAME from configuration file
• RSCSLINK from configuration file
• DOMAIN name from configuration file
• ADMIN user ID from configuration file
• Command Origin (userid@nodeid with no blanks)
• Command and command text as sent

Return Codes:

Return Code Results

0 Call next exit; no action taken by this exit.

4 Do not call next exit; process continues normally.

8 Reject command because of unauthorized user.

12 Accept command by authorizing user.

16 Exit has handled command; server will ignore.

Using Format Recognition Exits
You can code format recognition exits to enable RSCS Interchange to recognize mail file types other than
CMS, PROFS™, or OfficeVision® notes. These exits can:

• Have the server process and deliver the note.

Data Interchange Manager

364 z/VM: 7.3 RSCS Networking Exit Customization

• Have the exit process the note and have the server deliver it.
• Have the exit process and deliver the note.

This exit is called after the server has read an incoming mail file from spool and before any conversion
processing. The spool file is still present and available for analysis. If the mail file is a CMS, PROFS, or
OfficeVision note, the file will be written to disk as MAIL MAIL A and is available for analysis.

If the mail file is not a recognized type supported by RSCS Interchange, it must be processed manually
from the spool file by the format recognition exit. In addition, if the exit returns with a return code of 0 or
4, the file will be rejected with no further processing. For a format recognition exit to properly handle a
file type not recognized, it must return with a return code of 8 (file converted to MAIL NOTE A) or 12 (exit
handled).

Parameters Passed (in order shown, separated by blanks):

• RSCSNAME from configuration file
• SMTPNAME from configuration file
• RSCSLINK from configuration file
• DOMAIN name from configuration file
• ADMIN user ID from configuration file
• File Origin (userid@nodeid with no blanks)
• File Destination (SMTPaddr with no blanks)
• Spool ID of the original mail file

Return Codes:

Return Code Results

0 Call next exit; no action taken by this exit.

4 Do not call next exit; process continues normally.

8 Exit has recognized the file and converted it to MAIL NOTE A; the server delivers the
file to its destination.

12 Exit has handled the mail file; the server ignores the incoming mail file and purges the
spool file.

Using Security Exits
You can code security exits to restrict certain users or groups of users from sending mail through RSCS
Interchange. These exits can tell the server to:

• Process the file itself.
• Transfer the file to the system administrator user ID.
• Allow the exit to handle the file completely.

This exit is called prior to reading the file from the spool and writing it to disk as MAIL MAIL and
converting it to MAIL NOTE. The spool file is still present and available for analysis.

Parameters Passed (in order shown, separated by blanks):

• RSCSNAME from configuration file
• SMTPNAME from configuration file
• RSCSLINK from configuration file
• DOMAIN name from configuration file
• ADMIN user ID from configuration file
• File Origin

Data Interchange Manager

Chapter 14. Customizing the RSCS Data Interchange Manager 365

– If NJE, userid@nodeid with no blanks
– If SMTP, SMTPaddr with no blanks

• File Destination

– If NJE, userid@nodeid with no blanks
– If SMTP, SMTPaddr with no blanks

• Spool ID of the original mail file

Return Codes:

Return Code Results

0 Call next exit; no action taken by this exit.

4 Do not call next exit; process continues normally.

8 The file is transferred to the system administrator user ID.

12 Exit has handled the mail file and disposed of the spool file accordingly; the server
ignores the file.

If the spool file is not purged or transferred out of the server's reader by the exit for
this return code, the file will be available for processing again by the server. The exit
must dispose of the spool file appropriately.

Data Interchange Manager

366 z/VM: 7.3 RSCS Networking Exit Customization

Appendix A. DSECTs Generated by Mapping Macros

Table 5 on page 367 lists mapping macros (contained in DMTMAC MACLIB) that generate DSECTs for
RSCS data areas supported as programming interfaces. For macro invocation formats, see “Control Block
Macros” on page 318.

For information about the contents of the data areas, see z/VM: RSCS Networking Diagnosis.

Attention

Only the data areas mapped by the macros listed in Table 5 on page 367 are programming interfaces.
All other data areas described in z/VM: RSCS Networking Diagnosis are not supported as programming
interfaces. Also, some DSECTs generated by the mapping macros might contains fields that are not
supported as programming interfaces.

Table 5. Macros That Map RSCS Data Areas

Macro (Data Area) Function

ACNTBUFF Accounting buffer – contains the format of the standard RSCS accounting
record.

AUTHBLOK Authorization table – lists users who are authorized to act as RSCS alternate
operators or link operators.

CMNDAREA Command area – contains information about a specific command or message
request.

CRV Common routines vector table – contains pointers to various RSCS routines that
can be used by exit routines.

CVT Communications vector table – contains information about RSCS data areas,
counters, and flags that are available for exit routines to use.

DEST Destination table – contains a list of PSF destination names.

ECXBLOK Exit call extension block – stores exit routine return codes.

EVEBLOK Event block – represents a scheduled RSCS event.

EXITBLOK Exit block – contains information about an entry point specified for an IBM-
defined exit point.

FILREQ File request block – contains information about a file.

FORM Form table – describes the characteristics of a print form.

IOTABLE I/O table – defines a request to write output, either to a line or to the spool.

ITRACREC Internal trace table record – defines the prefix for each ITRACE record in the
internal trace table.

LINKTABL Link table – describes the characteristics of a specific link in the network.

MSGBLOK Message request parameter list – contains information about an individual
message request, including its number, routing and severity codes, and
repository information.

MSGLINE Message line element – contains one line of the text when building a message.

DSECTs

© Copyright IBM Corp. 1990, 2022 367

Table 5. Macros That Map RSCS Data Areas (continued)

Macro (Data Area) Function

MSGWA Message work area – used when building the text of a message.

Note: The CMDAREA macro is a prerequisite for MSGWA because MSGWA
contains references to symbols in CMDAREA. When using MSGWA in your exit
routine, you must ensure that CMNDAREA precedes MSGWA.

NHDTR NJE block – defines the formats for NJE headers, trailers, and job set headers.

NJEEQU NJE equates – contains the networking equates used by all networking link
drivers.

NMR Nodal message record – used by networking link drivers to transmit messages
and commands to remote nodes.

NOTEBLOK NOTIFY link driver control block – contains information important to the
NOTIFY link driver exit points.

PORT Port table – contains the addresses of switched telecommunications lines for
auto-answer and auto-dial links.

PRDBLOK TCP/IP port redirector block – contains information about a port redirector task
request.

RDEVBLOK File request element block – contains information about a file request.

RDR RDRPARMS control block – contains a parameter list for processing an input
spool file.

REROUTE Reroute control block – each entry describes a reroute definition in the network.

RESBLOK Resource block – describes an RSCS resource.

RFCBTAB FCB table – contains printer form information specified on FCB statements.

RIB Receiver information block – contains information about a message or file being
received over one stream of a networking link.

Note: The TAG macro is a prerequisite for RIB because RIB contains references
to symbols in TAG. When using RIB in your exit routine, you must ensure that
TAG precedes RIB.

ROUTEGRP Route group table – each entry describes a group of nodes or collection of
groups in the RSCS network.

SAFTAG Store-and-forward TAG – describes the TAG element for store-and-forward
files.

SAVEAREA Register save area block – contains the RSCS register save area and extension.

SEPBLOK Separator page control block – contains information used by the separator page
exit points.

SOCKBLOK Socket set descriptor block – contains information about a socket set.

SOCKCBLK Active socket call block – contains information about an active socket call.

SYSIDENT System ID table – contains information about each RSCS system task.

TAG TAG element (TAG slot) – contains information about a file enqueued for
processing by RSCS, including its origin, destination, network origin time, and
record count.

TANBLOK Task ID number allocation block – contains event task ID numbers.

DSECTs

368 z/VM: 7.3 RSCS Networking Exit Customization

Table 5. Macros That Map RSCS Data Areas (continued)

Macro (Data Area) Function

TANK TANK block – used by networking link drivers as an intermediate buffer to hold
a deblocked output record. There are several forms of the TANK.

TASHADOW TAG shadow element - represents an inactive file on each link that can send the
file.

TASKBLOK Task block – describes a type of active RSCS task (system, link driver, or auto-
answer).

TIB Transmitter information block – contains information about a message or file
being transmitted on one stream of a networking link.

Note: The NJEEQU and TANK macros are prerequisites for TIB because TIB
contains references to symbols in NJEEQU and TANK. When using TIB in your
exit routine, you must ensure that NJEEQU and TANK precede TIB.

XABHDR External attribute buffer – contains the format of the header for an external
attribute buffer (XAB) for files destined for an all-points-addressable printer.

DSECTs

Appendix A. DSECTs Generated by Mapping Macros 369

DSECTs

370 z/VM: 7.3 RSCS Networking Exit Customization

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2022 371

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe and PostScript are either registered trademarks or trademarks of Adobe Systems Incorporated in
the United States, and/or other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

372 z/VM: 7.3 RSCS Networking Exit Customization

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 373

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

374 z/VM: 7.3 RSCS Networking Exit Customization

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1990, 2022 375

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

376 z/VM: 7.3 RSCS Networking Exit Customization

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 377

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

378 z/VM: 7.3 RSCS Networking Exit Customization

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Additional Publications
• IBM 7171 ASCII Device Attachment Control Unit Reference Manual and Programming Guide, GA37-0021
• IPDS Reference, S544-3417
• Systems Network Architecture: Formats, GA27-3136
• Systems Network Architecture: Sessions Between Logical Units, GC20-1868
• Systems Network Architecture: Technical Overview, GC30-3073
• Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084
• VTAM: Programming, SC31-6496
• VTAM: Resource Definition Reference, SC31-6498
• z/OS: MVS JCL Reference, SA22-7597

Bibliography 379

380 z/VM: 7.3 RSCS Networking Exit Customization

Index

Special Characters
:OPTIONS. statement 14, 34
*CHARS repository statement 345
*CHARS statement 356
USER node 84
&-symbols 86
%LEPARMS statement 33

Numerics
31-bit addressing 34
31-bit enablement 13, 36
3270P-type links

output verification (exit 46) 130
5-digit spool IDs 353

A
abend

dumps, suppressing (exit 35) 110
accept request processing

external transmission algorithms 139
internal transmission algorithms

transmission algorithm 0 143
transmission algorithm 1 144
transmission algorithms 2-F 144

ACCEPT socket call 307
accounting

accepting or rejecting a spool file (exit 21) 83
accepting spool files (exit 2) 45
adjusting information (exit 48) 134
driver initialization (exit 47) 132
link state changes (exit 26) 94
output page (exit 45) 128
purging files (exit 4) 49
receiving files (exit 5) 50
records

ACNTBUFF macro 319
creating 40

RSCS Interchange 363
sending files (exit 3) 47
sign-on attempts (exit 9) 57
sign-on rejection (exit 10) 59
sign-on time outs (exit 7) 54
terminating a link (exit 44) 127
unrecognizable data (exit 8) 55
verification of pages (exit 46) 130

ACNTBUFF data area 40
ACNTBUFF macro 40, 319
adding format table records 272
Adlen string data type format 351, 352
AL data type 351
ALH data type 351
ALIAS statements 28
allocation routines, storage 25
altering command authorization levels 82

ALZ data type 352
ASCII printer and plotter exits

ASCXONE sample module
configuration file 165
EPARM parameters 163

ASCXPSE sample module
configuration file 160
CP SPOOL FORM, using 161
EPARM parameters 158

attention interrupt processing routine 154
calling conventions 14
device reset routine 152
initialization routine 148
language requirements 13
link-editing considerations 33
message processing routine 153
print record vector 148
programming considerations 147
record processing routine 151
sample modules

ASCX749E 165
ASCXDSOE 157
ASCXDWRE 157
ASCXONE 163
ASCXPROP 157
ASCXPSE 158
ASCXSPWE 157
ASCXZETE 166
sending files with sample exit routines 166

tag processing routine 150
termination routine 155

ASCII printers and plotters
exit processing 147

ASCX749E exit routine 165
ASCXDSOE exit routine 157
ASCXDWRE exit routine 157
ASCXONE configuration file 165
ASCXONE sample exit routine module 163
ASCXPROP exit routine 157
ASCXPSE configuration file 160
ASCXPSE sample exit routine module 158
ASCXSPWE exit routine 157
ASCXZETE exit routine 166
assembling routines

ASCII printer and plotter 5
gateway programs 5
LPD exits 6
LPR exits 6
RSCS exit facility 3
UFT exits 7
UFTD exits 8

AUTHBLOK macro 319
auto-answer

sign-on rejection (exit 10) 59
sign-on time out (exit 7) 54
sign-on validation (exit 9) 57
unrecognizable data (exit 8) 55

Index 381

B
BASE option on message definition statement 348
BASE repository statement 346
billing information, obtaining 130
BIND socket call 307
branch on return code 266
branch table, generating 266
BRC macro 266
buffer received ECB, gateway program 172
building format tables 273

C
C data type 352
calling a routine 288
calling exit routines using VMFHLASM and VMFLKED 18
CANCEL socket call 308
changing sort priority 103
channel-command opcodes 79
character data type format 352
choosing an exit 9
CLOSE socket call 308
CMNDAREA (command execution request buffer)

mapping macro 319
CMNDAREA macro 319
coding considerations

calling conventions 14
distribution considerations 34
issuing messages 17
link-editing considerations 33
linkage conventions 16
problem solving 33
restoring registers 16
samples

creating a new command 22
defining printing shifts 18
exit routine communication 19
mapping a work area 26

standard
entry conditions 39
exit conditions 39
return codes 39

storage considerations 25
using

data areas 17
RSCS routines 17
storage allocation routines 25

warning 1
command ECB, gateway program 172
command processing

post-CP command screening (exit 25) 91
screening (exit 19) 81
screening CP spooling commands (exit 24) 88
spool manager commands 109
unknown commands (exit 29) 99

command response interface 22
common problems and solutions 33
communication between exit routines

example 19
user fields 31

compiling message repositories 360
composite stream identifiers 139
configuration file

configuration file (continued)
ASCXONE 165
ASCXPSE 160
LPDXMANY 226
LPRXONE 203
LPRXPSE 206
statements, RSCS

DUMP 110
EXIT 2, 34
ITRACE 35
LINKTYPE 8, 34
PARM 137
REROUTE 101

UFTXIN 259
UFTXOUT 242

CONNECT socket call 308
continuation characters 346
control block

macros 318
control statements, repository 345
conventions

linkage 16
message repository, naming 345, 356

conversion repositories
compiling 360
control statements 345
data type definition 350
message definition statement 347
message field 348
naming conventions 345
output justification 355
special characters 345

COPY repository statement 346
copyright notification, generating 292, 293
CP commands

DUMP 110
extending command functions 88
SPOOL 161, 208
VMDUMP 110

creating exit points 267
CRI responses 22
CRV (common routines vector table)

description 17
executable entry points

DMTAXMRQ 321
DMTBPLLX 321
DMTCOMDG 322
DMTCOMDQ 322
DMTCOMFI 322
DMTCOMGG 323
DMTCOMGN 323
DMTCOMHG 324
DMTCOMLK 324
DMTCOMNQ 324
DMTCOMSM 325
DMTCOMTE 325
DMTCOMTS 326
DMTDDLEP 326
DMTHASHA 327
DMTHASHB 327
DMTHASHC 327
DMTHASHD 328
DMTHASHF 328
DMTHASHG 328

382 z/VM: 7.3 RSCS Networking Exit Customization

CRV (common routines vector table) (continued)
executable entry points (continued)

DMTHASHS 329
DMTIOTHD 329
DMTIOTST 329
DMTLOGCL 329
DMTLOGEP 330
DMTMANDE 330
DMTMGFFM 330
DMTMGXEP 331
DMTMPTBP 331
DMTMPTCK 332
DMTMPTGD 332
DMTMPTGP 332
DMTPAREP 333
DMTPRDDQ 334
DMTPRDNQ 334
DMTQSAAB 334
DMTQSAFA 335
DMTQSAUB 335
DMTRDREP 335
DMTRDROP 336
DMTRERSC 337
DMTRESLO 337
DMTRESUN 337
DMTSEPBL 338
DMTSOKET 338
DMTTASKA 339
DMTTASKD 340
DMTTASKF 340
DMTTASKG 340
DMTUROEP 341
DMTUROFL 341

mapping macro 319
nonexecutable entry points 341

CRV macro 319
CVT (communications vector table)

description 17
mapping macro 319
user field 31, 42

CVT macro 319

D
D data type 352
data areas

list of 367
using with exit routines 40

data buffer processing 128
data record vector 232, 246
data set headers, NJE

creation (exit 12) 64
post-processing (exit 42) 123
reception (exit 15) 72
tracing 278
transmission (exit 38) 115

data type definition, message repository 350
DB data type 353
decimal data type format 352, 353
DEFINE command 107
defining

end of keyword table 281
entry points 290
exit points 267

defining (continued)
hash tables 270
keyword 282
keyword options 284
keyword table 279
message characteristics 347
module work area 302, 303
modules 297
printing shifts, example 18
return points, module 295
storage requests 286

Diagnose codes
08

exit 24 90
exit 25 91

4C
exit 10 60
exit 2 46
exit 21 84
exit 26 95
exit 3 48
exit 4 49
exit 44 127
exit 45 129
exit 46 131
exit 47 133
exit 48 135
exit 5 51
exit 7 54
exit 8 56
exit 9 58

tracing 275
dictionary items 358
distributing exit routines 34
distribution lists, modifying 86
DMTASTCM entry point 341
DMTASTCQ entry point 342
DMTAXMCM entry point 342
DMTAXMCQ entry point 342
DMTAXMRQ routine 321
DMTBOXPR entry point 342
DMTBPLLX routine 321
DMTCOMDG routine 322
DMTCOMDQ routine 322
DMTCOMFI routine 322
DMTCOMGG routine 323
DMTCOMGN routine 323
DMTCOMHG routine 324
DMTCOMLK routine 324
DMTCOMNQ routine 324
DMTCOMSM routine 325
DMTCOMTE routine 325
DMTCOMTN entry point 342
DMTCOMTO entry point 342
DMTCOMTS routine 326
DMTDDLEP routine 326
DMTEVECM entry point 342
DMTEVECQ entry point 342
DMTHASHA routine 327
DMTHASHB routine 327
DMTHASHC routine 327
DMTHASHD routine 328
DMTHASHF routine 328
DMTHASHG routine 328

Index 383

DMTHASHS routine 329
DMTIOTHD routine 329
DMTIOTST routine 329
DMTIRWLK entry point 342
DMTIRWTA entry point 342
DMTIRXHL entry point 342
DMTIRXHN entry point 342
DMTIRXHR entry point 342
DMTLOGCL routine 329
DMTLOGEP routine 330
DMTMACEX MACLIB 36
DMTMANDE routine 330
DMTMGFFM routine 330
DMTMGXEP routine 331
DMTMPTBP routine 331
DMTMPTCK routine 332
DMTMPTGD routine 332
DMTMPTGP routine 332
DMTPAREP routine 333
DMTPRDDQ routine 334
DMTPRDNQ routine 334
DMTQSAAB routine 334
DMTQSAAU entry point 342
DMTQSAEC entry point 342
DMTQSAEC QSABLOK 25
DMTQSAEU entry point 342
DMTQSAEU QSABLOK 26
DMTQSAEV entry point 342
DMTQSAFA routine 335
DMTQSAMB entry point 342
DMTQSAML entry point 342
DMTQSAMW entry point 342
DMTQSAUB routine 335
DMTRDREP routine 335
DMTRDROP routine 336
DMTRERSC routine 337
DMTRESLO routine 337
DMTRESUN routine 337
DMTREXCM entry point 342
DMTREXCQ entry point 342
DMTREXME entry point 343
DMTREXMQ entry point 343
DMTREXTE entry point 343
DMTSCTAC entry point 343
DMTSEPBL routine 338
DMTSOKET routine 338
DMTTASKA routine 339
DMTTASKD routine 340
DMTTASKF routine 340
DMTTASKG routine 340
DMTUROEP routine 341
DMTUROFL routine 341
DMTVMEX CNTRL 36
driver initialization, SNA3270P 132
DSECT socket call 308
DUMP command 110
dump processing (exit 35) 110
DZ data type 353

E
E data type 353
ECBs, monitoring 171
ECXBLOK macro 319

enabling sample exit routines 36
entry points

defining 290
identifying 28

enumerator data type format 353
ESA mode 13, 36
ESTAE exit processing 110, 172
event control blocks, monitoring 171
EVENTS CONFIG file 18
events, tracing 274
example

creating a new command 22
defining printing shifts 18
mapping a work area 26
SOCKET macro specification 307
using two exit routines 19

execs
MCOMP 360
MCONV 360
VMFHLASM 18
VMFLKED 18

exit 0 (initialization)
description 41
sample exit routine 19, 32
use with exit 33 108

exit 1 (termination)
description 43
sample routine 26
specifying on EXIT statement 35

exit 10 (auto-answer sign-on reject) 59
exit 11 (NJE job header creation)

description 61
sample exit routine 20

exit 12 (NJE data set header creation) 64
exit 13 (NJE job trailer creation) 67
exit 14 (NJE job header reception)

description 69
sample routine 26

exit 15 (NJE data set header reception) 72
exit 16 (NJE job trailer reception) 74
exit 17 (separator page selection) 76
exit 18 (separator page generation) 78
exit 19 (command screening) 81
exit 2 (spool file accept accounting) 45
exit 20 replacement 10
exit 21 (spool file accept/reject) 83
exit 22 (NOTIFY driver note selection) 85
exit 23 (NOTIFY driver note editing) 86
exit 24 (spooling CP command screening) 88
exit 25 (post-CP command screening) 91
exit 26 (link state accounting) 94
exit 27 (message request screening) 96
exit 28 (message language selection) 98
exit 29 (unknown command)

description 99
sample exit routine 22

exit 3 (spool file send accounting) 47
exit 30 (reroute interception) 101
exit 31 (sort priority change)

description 103
sample exit routine 18

exit 32 (NMR reception) 105
exit 33 (user parm processing) 107
exit 34 (spool manager command) 109

384 z/VM: 7.3 RSCS Networking Exit Customization

exit 35 (dump processing) 110
exit 36 (NOTIFY driver purge) 112
exit 37 (NJE job header transmission) 113
exit 38 (NJE data set header transmission) 115
exit 39 (NJE job trailer transmission) 117
exit 4 (spool file purge accounting) 49
exit 40 (NJE record reception) 119
exit 41 (NJE job header post-processing) 121
exit 42 (NJE data set header post-processing) 123
exit 43 (NJE job trailer post-processing) 125
exit 44 (link termination) 127
exit 45 (output page accounting) 128
exit 46 (verification of page accounting) 130
exit 47 (driver initialization) 132
exit 48 (verification of output page error) 134
exit 5 (spool file receive accounting) 50
exit 6 (TAG priority change) 52
exit 7 (auto-answer sign-on time out) 54
exit 8 (auto-answer unrecognizable data) 55
exit 9 (auto-answer sign-on validation) 57
exit conditions, exit facility 39
exit facility summary table 9
exit packages

packaging considerations 27
sample 36

exit points
defining 2, 290
definition 1
IBM-defined 3, 39
installation-defined 3
invoking, illustration 3
providing 267
writing routines 14

exit routines
ASCII-type links 147
calling 18
definition 1
LPD-type links 211
LPR-type links 187
RSCS exit facility 39
TCPASCII-type links 147
transmission algorithms 137
UFT-type links 231
UFTD-type links 245

EXIT statement
defining exit points 2
FIRST parameter 35

EXITCALL macro
format 267
tracing invocations 277

extending command functions 88
external transmission algorithms

accept request 139
installing 145
open requests 138
programming considerations 137
select requests 141

external writer name 157, 163, 201

F
FCNTL socket call 308
file arrival ECB, gateway program 171
FILREQ macro 319

finding RSCS routines 17
flag fields, printer 188
format table, building 273
format, save area 15
FREEMAIN macro 14, 25
function byte values 138
function parameters, SOCKET macro 307

G
gateway programming interface

calling conventions 14
ECBs, monitoring 171
entry conditions 167
exit 37 113
exit 38 115
exit 40 119
exit conditions 168
gateway service macros

NJEABORT 175
NJECLOSE 176
NJECONCT 177
NJEDSCON 178
NJEGET 179
NJEOPEN 180
NJEPUT 182
NJERJECT 183

language requirements 13
link-editing 169
link-editing considerations 33
NJE file control block fields 184
NJE file control block macros

NJEFILE 185
NJEFILED 186

program structure 170
reason codes 173
return codes 169
WORK parameter, specifying 169
work, types of 170

GCS
GLOBAL statement 27
LOADCMD 28, 29
macros

FREEMAIN 14, 25
GETMAIN 14, 25
IDENTIFY 28, 29

subpools 25
GETCLIENTID socket call 309
GETHOSTBTNAME socket call 309
GETHOSTID socket call 309
GETHOSTNAME socket call 309
GETMAIN macro 14, 25
GETPEERNAME socket call 310
GETSOCKNAME socket call 310
GETSOCKOPT socket call 310
GIVESOCKET socket call 311
GLOBAL statement, GCS 27

H
HASHBLOK macro 270
hexadecimal data type format 355
hidden characters 351

Index 385

I
IBM-defined exits

accounting 40
data areas 40
definition 3
entry conditions 39
exit 0 (initialization processing) 41
exit 1 (termination processing) 43
exit 10 (auto-answer sign-on reject) 59
exit 11 (NJE job header creation) 61
exit 12 (NJE data set header creation) 64
exit 13 (NJE job trailer creation) 67
exit 14 (NJE job header reception) 69
exit 15 (NJE data set header reception) 72
exit 16 (NJE job trailer reception) 74
exit 17 (separator page selection) 76
exit 18 (separator page generation) 78
exit 19 (command screening) 81
exit 2 (spool file accept accounting) 45
exit 21 (spool file accept/reject) 83
exit 22 (NOTIFY driver note selection) 85
exit 23 (NOTIFY driver note editing) 86
exit 24 (spooling CP command screening) 88
exit 25 (post-CP command screening) 91
exit 26 (link state change accounting) 94
exit 27 (message request screening) 96
exit 28 (message language selection) 98
exit 29 (unknown command) 99
exit 3 (spool file send accounting) 47
exit 30 (reroute interception) 101
exit 31 (sort priority change) 103
exit 32 (NMR reception) 105
exit 33 (user parm processing) 107
exit 34 (spool manager command) 109
exit 35 (dump processing) 110
exit 36 (NOTIFY driver purge) 112
exit 37 (NJE job header transmission) 113
exit 38 (NJE data set header transmission) 115
exit 39 (NJE job trailer transmission) 117
exit 4 (spool file purge accounting) 49
exit 40 (NJE record reception) 119
exit 41 (NJE job header post-processing) 121
exit 42 (NJE data set header post-processing) 123
exit 43 (NJE job trailer post-processing) 125
exit 44 (link termination) 127
exit 45 (output page accounting) 128
exit 46 (verification of page accounting) 130
exit 47 (driver initialization) 132
exit 48 (verification of output page error) 134
exit 5 (spool file receive accounting) 50
exit 6 (TAG priority change) 52
exit 7 (auto-answer sign-on time out) 54
exit 8 (auto-answer unrecognizable data) 55
exit 9 (auto-answer sign-on validation) 57
exit conditions 39
return codes 39
summary table 9

identifiers, stream 139, 142
identifying exit routines to RSCS

ASCII printer and plotter exits 5
entry points 28, 29
gateway programs 5
load libraries 27

identifying exit routines to RSCS (continued)
LPD exits 6
LPR exits 6
transmission algorithms 4, 137
UFT exits 7
UFTD exits 8

INCLUDE repository statement 346
initialization processing (exit 0) 41
INITIALIZE socket call 311
INSTALIT macro 272
installation-defined exits 3
intercepting reroutes 101
internal transmission algorithms

installing 145
programming considerations 142
summary 11
transmission algorithm 0

accept requests 143
open request 143
select requests 143

transmission algorithm 1
accept requests 144
open request 143
select request 144

transmission algorithms 2-F 144
IOCTL socket call 311
IOTABLE macro 318
IRRELMSG, routing code 97
issuing messages 17, 299
ITFORMAT macro 273
ITRACE macro 274
ITRACREC macro 319

J
job headers, NJE

creation (exit 11) 61
post-processing (exit 41) 121
reception (exit 14) 69
tracing 278
transmission (exit 37) 113

job trailers, NJE
creation (exit 13) 67
post-processing (exit 43) 125
reception (exit 16) 74
tracing 278
transmission (exit 39) 117

justification, repository output 355

K
keyword

defining 282
defining end of table 281
defining options 284
defining table 279

L
language requirements 13
language selection, message 98
leading zeros, data type format 353
limiting file transmission 104

386 z/VM: 7.3 RSCS Networking Exit Customization

link state accounting (exit 26) 94
link termination processing (exit 44) 127
link-editing

%LEPARMS statement options 33
considerations 33
external transmission algorithms 145
gateway program 169
problem solving 33
using ALIAS statements 28

linkage conventions 16
LINKTABL (link table)

description 367
mapping macro 319
tracing 276
user field 31, 42

LINKTABL macro 319
LINKTYPE statement 8
LISTEN socket call 312
lists, distribution 86
load libraries

characteristics 33
identifying 27–29
separating 28

loadable link drivers
calling conventions 14
language requirements 13
link-editing considerations 33
summary 8, 12

loading exit routines using VMFHLASM and VMFLKED 18
logging messages 96
LPD exits

control file routine 222
data processing routine 218
end of file routine 220
initialization routine 213
LPDXMANY sample module

configuration file 226
control file commands 225
EPARM parameters 226

print command processing routine 214
print job command processing routine 216
print record vector 212
print server, using LPD-type link as 230
programming considerations 211
sample module 224
termination routine 223

LPDXMANY configuration file 226
LPDXMANY sample exit routine module 224
LPR exits

control file routine 197
end of file routine 195
initialization routine 189
LPRXONE sample module

configuration file 203
EPARM parameters 201

LPRXPSE sample module
configuration file 206
CP SPOOL FORM, using 208
EPARM parameters 204

print record vector 189
printer flag fields 188
programming considerations 187
record processing routine 193
sample modules

LPR exits (continued)
sample modules (continued)

LPRXONE 201
LPRXPSE 204

TAG processing routine 191
termination routine 199

LPRXONE configuration file 203
LPRXONE sample exit routine module 201
LPRXPSE configuration file 206
LPRXPSE sample exit routine module 204

M
macros

control block 318
gateway service

NJEABORT 175
NJECLOSE 176
NJECONCT 177
NJEDSCON 178
NJEGET 179
NJEOPEN 180
NJEPUT 182
NJERJECT 183

GCS
FREEMAIN 14, 25
GETMAIN 14, 25
IDENTIFY 28, 29

NJE file control block
NJEFILE 185
NJEFILED 186

program structure
BRC 266
EXITCALL 267
HASHBLOK 270
INSTALIT 272
ITFORMAT 273
ITRACE 274
PARDSECT 279
PAREND 281
PARKEY 282
PAROPT 284
QSABLOK 286
RCALL 288
RENTRY 290
REXIT 295
RMOD 297
RMSG 299
RWORK 302
RWORKEND 303
SOCKET 304

specifying parameters 265
managing auto-answer links

exit 10 (auto-answer sign-on reject) 59
exit 7 (auto-answer sign-on time out) 54
exit 8 (auto-answer unrecognizable data) 55
exit 9 (auto-answer sign-on validation) 57

mapping a work area, example 26
message

calling conventions 24
issuing 17, 299
language selection (exit 28) 98
repositories

compiling 360

Index 387

message (continued)
repositories (continued)

conversion 345
sample entries 24
structure 345, 356
translation 356

rerouting (exit 30) 101
screening requests (exit 27) 96
using RMSG macro 17, 299

message examples, notation used in xviii
migration considerations 13
modifying

distribution lists 86
messages 96, 98
NOTIFY driver notes 85, 86

module
entry points, defining 290
name, defining 297
return point, defining 295
work area, defining 302, 303

MSGBLOK (message request parameter list)
command processing 100
description 367
example 20
mapping macro 319
message processing 96
parameters 349
tracing 276
user field 31

MSGBLOK macro 319
MSGLINE macro 319
MSGWA macro 319
multistreaming 137

N
NHDTR macro 319
NJE reason code responses 173
NJE record processing

creation
data set headers (exit 12) 64
job headers (exit 11) 61
job trailers (exit 13) 67

post-processing
data set headers (exit 42) 123
job header (exit 41) 121
job trailers (exit 43) 125

reception
data set headers (exit 15) 72
job header (exit 14) 69
job trailers (exit 16) 74
nonheader records (exit 40) 119

transmission
data set headers (exit 38) 115
job headers (exit 37) 113
job trailers (exit 39) 117

NJE sub record control byte values 172
NJEABORT macro 175
NJECLOSE macro 176
NJECONCT macro 177
NJEDSCON macro 178
NJEEQU macro 319
NJEFILE macro 185
NJEFILED macro 186

NJEGET macro 179
NJEOPEN macro 180
NJEPUT macro 182
NJERJECT macro 183
NMR (nodal message record)

closing streams, restriction 176
generating a file control block 185
obtaining 179
opening transmission streams 180
reception (exit 32) 105
SCRB representation 171

NMR macro 319
nonpersistent subpools 25, 27
notation used in message and response examples xviii
NOTEBLOK (NOTIFY link driver control block)

description 368
macro format 319
mapping macro 319
user field 31, 85, 87

NOTEBLOK macro 319
notification, copyright 292, 293
NOTIFY-type links

file purging (exit 36) 112
note editing (exit 23) 86
note selection (exit 22) 85
queuing 84
queuing files 46

O
obtaining storage 25
opcodes, channel-command 79
open request processing

external transmission algorithms 138
internal transmission algorithms

transmission algorithm 0 143
transmission algorithm 1 143
transmission algorithms 2-F 144

operating system linkage conventions 16
OS linkage conventions 16
output page

accounting 128
error verification 134
verification on 3270P-type links 130

P
packages, sample exit routines 36
packaging exit routines

communication considerations 31
distribution considerations 34
transmission algorithms 144

page account verification 130
PARDSECT macro 279
PAREND macro 281
PARKEY macro 282
PAROPT macro 284
passing control to a routine 288
persistent subpools 25, 27
PORT (port table)

description 368
mapping macro 319
tracing 276

388 z/VM: 7.3 RSCS Networking Exit Customization

PORT macro 319
PRDBLOK macro 319
print information, obtaining 128
print output link

termination processing (exit 44) 127
print record vector 148, 189, 212
print server, using LPD-type link as 230
printer flag fields 188
printing shifts, defining 18
processing dumps 110
processing NJE user sections

in data set headers
exit 12 (creation) 64
exit 15 (reception) 72
exit 38 (transmission) 115

in job headers
exit 11 (creation) 61
exit 14 (reception) 69
exit 37 (transmission) 113

in job trailers
exit 13 (creation) 67
exit 16 (reception) 74
exit 39 (transmission) 117

in non-header records
exit 40 (reception) 119

processing, data buffers 128
PROFILE GCS 30
programming considerations

exit routines 27
gateway programs 169
identifying entry points 28
separating load modules 28
transmission algorithms 137, 142

purging files
creating accounting records 49
from NOTIFY-type link 112

Q
QSABLOK macro

example 27
format 286

QSABLOKs
defining 286
example 27
predefined 25
tracing 276

quick storage allocation (QSA) routines 25

R
RCALL macro

example usage 20
format 288

RDEVBLOK (request spool device block) 138
RDEVBLOK macro 319
RDR macro 319
READ socket call 312
reason code responses, NJE 173
receiver-online ECB, gateway program 172
receiving NMRs 105
record characteristics change section

data set header reception 72, 123

record characteristics change section (continued)
data set header transmission 115

recovery procedures, link 94
RECV socket call 312
RECVFROM socket call 313
reentrant code

calling conventions 14
definition 13

registers, restoring 16
rejecting

input files 183
nodal message records 105
output file 175
sign-on attempts 57, 59
spool files 45, 83
unknown commands 99
UPARM values 107

RENTRY macro
calling conventions 14
example usage 18, 144
format 290

REORDER command
in accept request processing 139
use in exit 2 45
use in exit 21 84

replace for exit 20 10
request spool device block (RDEVBLOK) 138
REROUTE command 101
reroute interception (exit 30) 101
REROUTE macro 319
RESBLOK macro 319
RESCHAIN macro 318
response examples, notation used in xviii
restoring registers 16
restrictions

macro usage 265
writing exit routines 1

return code
exit facility 39
gateway program 169
TCP/IP 305

return point, defining 295
REXIT macro

format 295
restoring registers 16

RIB (receiver information block)
description 368
mapping macro 319
user field 31

RIB macro 319
RLOADEP macro 318
RMOD macro

calling conventions 14
example usage 18
format 297

RMSG macro
example usage 24
format 299

ROUTEGRP macro 319
routing codes, suppressing 97
RSCS commands

screening 81, 99
spool manager 109

RSCS Data Interchange Manager

Index 389

RSCS Data Interchange Manager (continued)
accounting exits 363
command exits 364
creating exit routines 363
format recognition exits 364
security exits 365

RSCS exit facility
calling conventions 14
description 1
distributing 34
entry conditions 39
exit facilities 39
exit summary table 9
installation-defined exits 3
invoking 3
language requirements 13
link-editing considerations 33
return codes 39
specifying order 35
tracing calls 35

RSCSEXIT LOADLIB 36
RWORK macro 302
RWORKEND macro 303

S
S data type 354
SAFTAG macro 319
sample exit routine modules

ASCX749E 165
ASCXDSOE 157
ASCXDWRE 157
ASCXONE 163
ASCXPROP 157
ASCXPSE 158
ASCXSPWE 157
ASCXZETE 166
enabling the routines 36
LPDXMANY 224
LPRXONE 201
LPRXPSE 204
packages

summary of 36
using 36

UFTXIN 257
UFTXOUT 241

save areas
format 15
generating, gateway program 169
predefined 15

SAVEAREA macro 319
screening

CP spool commands (exit 24) 88
message requests (exit 27) 96
post-CP spool commands (exit 25) 91
RSCS commands (exit 19) 81
unknown commands (exit 29) 99

select request processing
external transmission algorithms 141
internal transmission algorithms

transmission algorithm 0 143
transmission algorithm 1 144
transmission algorithms 2-F 144

SELECT socket call 313

selecting
message languages 98
NOTIFY driver notes 85
separator page styles 76

selector data type format 354
SEND socket call 314
SENDTO socket call 314
separator page

generation (exit 18) 78
selection (exit 17) 76

SEPBLOK (separator page control block)
description 368
macro format 319
mapping macro 319
user field 31, 79

SEPBLOK macro 319
serially reusable

calling conventions 14
definition 13

SETSOCKOPT socket call 315
SHIFT command 104, 139
SHUTDOWN command 43
SHUTDOWN socket call 315
sign-on, auto-answer

rejection (exit 10) 59
time out (exit 7) 54
validation (exit 9) 57

simplifying socket calls 304
SNA3270P-type links

driver initialization (exit 47) 132
special processing (exit 48) 134

SOCKBLOK macro 319
SOCKCBLK macro 319
socket calls, simplifying 304
SOCKET macro

format 304
function parameters 307

SOCKET socket call 316
sort priority, changing 103
specific order 265
specifying exit routine order 35
spool file processing

accept accounting (exit 2) 45
accept/reject (exit 21) 83
purge accounting (exit 4) 49
receive accounting (exit 5) 50
send account record (exit 3) 47
TAG priority change (exit 6) 52

spool IDs, 5-digit 353
spool manager commands 109
SRCBs (sub record control bytes)

supported values 172
use in exit 40 120

standard return codes, exit facility 39
statements, repository control 345
storage

allocation routines 25
obtaining 25
releasing 43

stream identification
external transmission algorithms 139
internal transmission algorithms 142

STREAMS values, validating 143
subpools, GCS 25

390 z/VM: 7.3 RSCS Networking Exit Customization

substitution fields, TEMPLATE 86
substitutions, message 357
subtasks, gateway program 172
summary tables

ASCII printer and plotter exit routines 11
channel-command opcodes 79
CRV routines 321
data areas 367
data type definitions, message repository 350
function byte values 138
IBM-defined exit points 9
internal transmission algorithms 11
LPD exit routines 12
LPR exit routines 12
NJE file control block fields 184
NJE reason code responses 173
routing codes, message 347
samples supplied with RSCS 36
severity codes, message 348
supported SRCB values 172
UFT exit routines 12

suppressing
dumps 110
messages 96, 98
separator pages 76
unknown commands 99

syntax diagrams, how to read xv
SYSIDENT macro 319
SYSIN files

data set headers
creation 64
reception 72, 123
transmission 115

NJE file control block 185
opening 180
processing by gateway program 170

SYSOUT files
data set headers

reception 72, 123
transmission 115

NJE file control block 185
opening 180
processing by gateway program 170

T
T data type 354
table

defining end of keyword 281
defining keyword 279

TABLE option, message definition 348
TAG element

changing priority 52
description 368
mapping macro 319
user field 31

TAG macro 319
TAKESOCKET socket call 316
TAPARM values, validating 143
TASHADOW (TAG shadow)

description 369
mapping macro 319

TASHADOW macro 319
task abend processing 110

TASKBLOK macro 319
TCP/IP

LPD exit points 211
LPR exit points 187
return codes 305
socket calls 304
UFT exit points 231
UFTD exit points 245

telling RSCS about exit routines
ASCII printer and plotter exits 5
entry points 28, 29
gateway programs 5
load libraries 27
LPD exits 6
LPR exits 6
transmission algorithms 4, 137
UFT exits 7
UFTD exits 8

TEMPLATE file 85, 86
terminate ECB, gateway program 171
TERMINATE socket call 316
termination processing (exit 1) 43
termination processing, link (exit 44) 127
TIB (transmitter information block)

description 369
mapping macro 319
user field 31

TIB macro 319
time-outs, auto-answer sign-on 54
TOD

clock formats 359
data type format 354

tracing exit routines
ITRACE macro 274
using ITRACE facility 35

translation repositories
columnar messages 358
compiling 360
dictionary items 358
naming convention 356
substitutions 357
text messages 357
TOD clock formats 359

transmission algorithms
calling conventions 14
function byte values 138
introduction 4
invoking 4
language requirements 13
link-editing considerations 33
packaging suggestions 144
programming considerations 137
sample link-edit control file 145
specifying 137
stream identification 139, 142

troubleshooting 33

U
UFT exits

data record vector 232
end of file routine 237
initialization routine 233
programming considerations 231

Index 391

UFT exits (continued)
record processing routine 235
sample module 240
TAG processing routine 234
termination routine 239
UFT command routine 238
UFT commands 232
UFTXOUT sample module

configuration file 242
EPARM parameters 242
UFT commands 241

UFTD exits
command processing routine 250
connect processing routine 248
data processing routine 252
data record vector 246
end of file routine 254
initialization routine 247
programming considerations 245
sample module 257
termination routine 256
UFTXIN sample module

configuration file 259
EPARM parameters 259
UFT commands 258

UFTXIN configuration file 259
UFTXIN sample exit routine module 257
UFTXOUT configuration file 242
UFTXOUT sample exit routine module 241
unknown commands (exit 29) 99
unrecognizable sign-on data 55
UPARM values, processing 107
user fields

summary table 31
use in exit 0 42
use in exit 18 79
use in exit 22 85
use in exit 23 87
use in exit packages 31

user parameters, DEFINE command 107
USING option, message definition 348
using sample exit packages 36

V
validating, TAPARM values 143
verifying output page errors 134
VMDUMP command 110
VMFHLASM exec 18
VMFLKED exec 18
VMSES/E enablement 36

W
W data type 355
warning

macro usage 265
writing exit routines 1

word data type format 355
work areas

considerations, gateway program 169
defining module 302, 303
mapping, example 26

WORK parameter, specifying 169
WRITE socket call 316
writing exit routines

calling conventions 14
distribution considerations 34
issuing messages 17
link-editing considerations 33
linkage conventions 16
problem solving 33
restoring registers 16
samples

creating a new command 22
defining printing shifts 18
exit routine communication 19
mapping a work area 26

standard
entry conditions 39
exit conditions 39
return codes 39

storage considerations 25
using

data areas 17
RSCS routines 17
storage allocation routines 25

warning 1

X
X data type 355
XABHDR (external attribute buffer header)

description 369
mapping macro 319

XABHDR macro 319
XZ data type 355

392 z/VM: 7.3 RSCS Networking Exit Customization

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6317-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: RSCS Networking Exit Customization
	SC24-6317-73, z/VM 7.3 (September 2022)
	SC24-6317-01, z/VM: 7.2 (September 2020)
	SC24-6317-00, z/VM: 7.1 (September 2018)

	Chapter 1. Introduction
	Types of RSCS Exits
	RSCS Exit Facility
	How the RSCS Exit Facility Works
	IBM-Defined Exit Points
	Installation-Defined Exit Points
	Invoking the RSCS Exit Facility

	Transmission Algorithms
	How Transmission Algorithms Work
	Invoking Transmission Algorithms

	ASCII Printer and Plotter Exits
	How ASCII Printer and Plotter Exits Work
	Invoking ASCII Printer and Plotter Exits

	Gateway Programming Interface
	Invoking a Gateway Program

	LPR Exits
	How LPR Exits Work
	Invoking LPR Exits

	LPD Exits
	How LPD Exits Work
	Invoking LPD Exits

	UFT Exits
	How UFT Exits Work
	Invoking UFT Exits

	UFTD Exits
	How UFTD Exits Work
	Invoking UFTD Exits

	Loadable Link Drivers

	Sample Exit Routines

	Chapter 2. Customizing RSCS
	Selecting Which Exits to Use
	RSCS Exit Facility
	Transmission Algorithms
	ASCII Printer and Plotter Exits
	Gateway Programming Interface
	LPD Exits
	LPR Exits
	UFT Exits
	UFTD Exits
	Loadable Link Drivers

	Exit Routine Considerations
	Language Requirements
	Code Attributes
	31-Bit Enablement
	Return Codes

	Writing Exit Routines
	Calling Conventions
	Save Area Format

	Linkage Conventions
	Restoring Registers
	Using RSCS Facilities
	Data Areas
	Macros
	Routines

	Issuing Messages
	Calling Exit Routines
	Example 1: Defining Printing Shifts
	Invoking the Exit Routine

	Example 2: Using Two Exit Routines
	Exit 0
	Exit 11
	Installing the Exit Routines

	Example 3: Creating a New Command
	Installing the Exit Routine

	Storage Considerations
	Using GCS Macros
	Quick Storage Allocation Routines
	Example 4: Mapping a Work Area

	Packaging Considerations
	Identifying Entry Points
	Separating Load Modules
	Using GCS Facilities

	Sharing Information
	User Fields

	Link-Editing Considerations
	Common Problems and Solutions

	Distribution Considerations
	Specifying the Order of the Exit Routines

	Tracing Exit Routines
	Using Sample Exit Packages
	Enabling Sample Exit Routines
	Summary of Sample Packages

	Chapter 3. IBM-Defined Exit Points
	Usage Conventions
	Standard Entry Conditions
	Standard Exit Conditions
	Standard Return Codes
	Data Areas
	Accounting Records

	Exit 0 – Initialization
	Exit 1 – Termination
	Exit 2 – Spool File Accept Accounting
	Exit 3 – Spool File Send Accounting
	Exit 4 – Spool File Purge Accounting
	Exit 5 – Spool File Receive Accounting
	Exit 6 – TAG Priority Change
	Exit 7 – Auto-Answer Sign-On Time Out
	Exit 8 – Auto-Answer Unrecognizable Data
	Exit 9 – Auto-Answer Sign-On Validation
	Exit 10 – Auto-Answer Sign-On Reject
	Exit 11 – NJE Job Header Creation
	Exit 12 – NJE Data Set Header Creation
	Exit 13 – NJE Job Trailer Creation
	Exit 14 – NJE Job Header Reception
	Exit 15 – NJE Data Set Header Reception
	Exit 16 – NJE Job Trailer Reception
	Exit 17 – Separator Page Selection
	Exit 18 – Separator Page Generation
	Exit 19 – Command Screening
	Exit 21 – Spool File Accept/Reject
	Exit 22 – NOTIFY Driver Note Selection
	Exit 23 – NOTIFY Driver Note Editing
	Exit 24 – Spooling CP Command Screening
	Exit 25 – Post-CP Command Screening
	Exit 26 – Link State Change Accounting
	Exit 27 – Message Request Screening
	Exit 28 – Message Language Selection
	Exit 29 – Unknown Command
	Exit 30 – Reroute Interception
	Exit 31 – Sort Priority Change
	Exit 32 – NMR Reception
	Exit 33 – User Parm Processing
	Exit 34 – Spool Manager Command
	Exit 35 – Dump Processing
	Exit 36 – NOTIFY Driver Purge
	Exit 37 – NJE Job Header Transmission
	Exit 38 – NJE Data Set Header Transmission
	Exit 39 – NJE Job Trailer Transmission
	Exit 40 – NJE Record Reception
	Exit 41 – NJE Job Header Post-Processing
	Exit 42 – NJE Data Set Header Post-Processing
	Exit 43 – NJE Job Trailer Post-Processing
	Exit 44 – Link Termination
	Exit 45 – Output Page Accounting
	Exit 46 – Verification of Page Accounting
	Exit 47 – Driver Initialization
	Exit 48 – Verification of Output Page Error

	Chapter 4. Transmission Algorithm Processing
	Specifying a Transmission Algorithm
	Transmission Algorithm Programming Considerations
	External Transmission Algorithms
	Open Request Processing
	Entry Conditions
	Exit Conditions
	Return Codes

	Accept Request Processing
	Entry Conditions
	Exit Conditions
	Return Code

	Select Request Processing
	Entry Conditions
	Exit Conditions
	Return Code

	Internal Transmission Algorithms
	Programming Considerations
	Transmission Algorithm 0
	Open Request
	Accept Request
	Select Request

	Transmission Algorithm 1
	Open Request
	Accept Request
	Select Request

	Transmission Algorithms 2 - F

	Packaging Transmission Algorithms
	Installing External Transmission Algorithms
	Installing Internal Transmission Algorithms

	Chapter 5. ASCII Printer and Plotter Exit Processing
	ASCII Exit Programming Considerations
	Required Values
	Entry Conditions
	Print Record Vector

	Exit Conditions

	ASCII Exit Routines
	Initialization Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	TAG Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	Record Processing Routine
	Entry Conditions
	Exit Conditions

	Device Reset Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	Message Processing Routine
	Entry Conditions
	Exit Conditions

	Attention Interrupt Processing Routine
	Entry Conditions
	Exit Conditions

	Termination Routine
	Entry Conditions
	Exit Conditions

	Sample ASCII Printer and Plotter Exit Modules
	Printer Exit Modules
	ASCXPSE Routine
	Available EPARM Parameters

	ASCXPSE Configuration File
	Layout of the ASCXPSE Configuration File
	Using the FORM Operand of the CP SPOOL Command

	ASCXONE Routine
	Available EPARM Parameters

	ASCXONE Configuration file
	Layout of the ASCXONE Configuration File

	IBM XY/749 Plotter Exit Module
	Nicolet Zeta 8 Plotter Exit Module
	Sending Files with Sample Exit Routines

	Chapter 6. Gateway Programming Interface
	Gateway Program
	Entry Conditions
	Exit Conditions
	Return Codes

	Programming Considerations
	Work Area Considerations
	Link-Editing Considerations
	Program Structure
	Types of Work
	Transmitting Files
	Receiving Files
	Sending Messages and Commands
	Receiving Messages and Commands
	Terminating

	Scheduling Work
	Terminate ECB
	File Arrival ECB
	Command ECB
	Buffer Received ECB
	Receiver-Online ECB
	Additional ECBs and Subtasks

	Supported NJE Sub Record Control Byte Values
	Reason Code Responses

	Gateway Service Macros
	NJEABORT
	NJECLOSE
	NJECONCT
	NJEDSCON
	NJEGET
	NJEOPEN
	NJEPUT
	NJERJECT
	NJE File Control Block Fields
	NJEFILE
	NJEFILED

	Chapter 7. TCP/IP LPR Exit Points
	LPR Programming Considerations
	Required Values
	Entry Conditions
	Printer Flag Fields
	Print Record Vector
	Exit Conditions

	LPR Exit Routines
	LPR Initialization Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPR TAG Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPR Record Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPR End of File Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPR Control File Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPR Termination Routine
	Entry Conditions
	Exit Conditions

	Sample LPR Exit Routines
	LPRXONE Routine
	Available EPARM Parameters

	LPRXONE Configuration file
	Layout of the LPRXONE Configuration File

	LPRXPSE Routine
	Available EPARM Parameters

	LPRXPSE Configuration file
	Layout of the LPRXPSE Configuration File
	Using the FORM Operand of the CP SPOOL Command

	Chapter 8. TCP/IP LPD Exit Points
	LPD Programming Considerations
	Required Values
	Entry Conditions
	Order of the Control File and Data File
	Response Messages
	Print Record Vector
	Exit Conditions

	LPD Exit Routines
	LPD Initialization Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPD Print Command Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPD Print Job Command Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPD Data Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPD End of File Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPD Control File Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	LPD Termination Routine
	Entry Conditions
	Exit Conditions

	Sample LPD Exit Routine
	LPDXMANY Routine
	Supported Control File Commands
	Available EPARM Parameters

	LPDXMANY Configuration file
	Layout of the LPDXMANY Configuration File
	Printer Queue Name Examples

	Using an LPD-Type Link as a Print Server

	Chapter 9. TCP/IP UFT Exit Points
	UFT Programming Considerations
	Required Values
	Entry Conditions
	UFT Commands
	Data Record Vector
	Exit Conditions

	UFT Exit Routines
	UFT Initialization Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFT TAG Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFT Record Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFT End of File Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFT Command Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFT Termination Routine
	Entry Conditions
	Exit Conditions

	Sample UFT Exit Routine
	UFTXOUT Routine
	Supported UFT Commands
	Available EPARM Parameters

	UFTXOUT Configuration File
	Layout of the UFTXOUT Configuration File

	Chapter 10. TCP/IP UFTD Exit Points
	UFTD Programming Considerations
	Required Values
	Entry Conditions
	Order of the UFT Commands and Data
	Response Messages
	Data Record Vector
	Exit Conditions

	UFTD Exit Routines
	UFTD Initialization Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFTD Connect Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFTD Command Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFTD Data Processing Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFTD End of File Routine
	Entry Conditions
	Exit Conditions
	Return Codes

	UFTD Termination Routine
	Entry Conditions
	Exit Conditions

	Sample UFTD Exit Routine
	UFTXIN Routine
	Supported UFT Commands
	Available EPARM Parameters

	UFTXIN Configuration File
	Layout of the UFTXIN Configuration File
	User Name Examples

	Chapter 11. RSCS Macros
	Specifying Parameters
	Program Structure Macros
	BRC – Branch on Return Code
	EXITCALL – Providing an Exit Point
	HASHBLOK – Defining a Hash Table
	INSTALIT – Adding a Record Format Table
	ITFORMAT – Building a Format Table
	ITRACE – Tracing an Event
	PARDSECT – Defining a Keyword Table
	PAREND – Defining the End of a Keyword Table
	PARKEY – Defining a Keyword
	PAROPT – Defining Options for a Keyword
	QSABLOK – Defining a Storage Request
	RCALL – Passing Control to a Routine
	RENTRY – Defining a Module Entry Point
	REXIT – Defining a Module Return Point
	RMOD – Defining a Module
	RMSG – Issuing a Message
	RWORK – Defining the Start of a Module Work Area
	RWORKEND – Defining the End of a Module Work Area
	SOCKET – Using the TCP/IP Socket Interface
	SOCKET Function Descriptions
	Invoking the SOCKET Macro
	ACCEPT
	BIND
	CANCEL
	CLOSE
	CONNECT
	DSECT
	FCNTL
	GETCLIENTID
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	INITIALIZE
	IOCTL
	LISTEN
	READ
	RECV
	RECVFROM
	SELECT
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	TERMINATE
	WRITE

	Control Block Macros

	Chapter 12. Supported Routines in the CRV
	Executable Entry Points
	DMTAXMRQ
	DMTBPLLX
	DMTCOMDG
	DMTCOMDQ
	DMTCOMFI
	DMTCOMGG
	DMTCOMGN
	DMTCOMHG
	DMTCOMLK
	DMTCOMNQ
	DMTCOMSM
	DMTCOMTE
	DMTCOMTS
	DMTDDLEP
	DMTHASHA
	DMTHASHB
	DMTHASHC
	DMTHASHD
	DMTHASHF
	DMTHASHG
	DMTHASHS
	DMTIOTHD
	DMTIOTST
	DMTLOGCL
	DMTLOGEP
	DMTMANDE
	DMTMGFFM
	DMTMGXEP
	DMTMPTBP
	DMTMPTCK
	DMTMPTGD
	DMTMPTGP
	DMTPAREP
	DMTPRDDQ
	DMTPRDNQ
	DMTQSAAB
	DMTQSAFA
	DMTQSAUB
	DMTRDREP
	DMTRDROP
	DMTRERSC
	DMTRESLO
	DMTRESUN
	DMTSEPBL
	DMTSOKET
	DMTTASKA
	DMTTASKD
	DMTTASKF
	DMTTASKG
	DMTUROEP
	DMTUROFL

	Nonexecutable Entry Points

	Chapter 13. Message Repositories
	Conversion Repository
	Naming Convention
	Repository Structure
	Control Statements
	*CHARS Statement
	INCLUDE Statement
	COPY Statement
	BASE Statement

	Message Definition Statement
	Message Fields
	Source Definition
	Data Type Definition
	AL – Adlen String (Ellipsis)
	ALH – Adlen String (Hidden Characters)
	ALZ – Adlen String (No Ellipse)
	C – Character
	D – Decimal
	DB – Decimal (Leading Zeros)
	DZ – Decimal (Leading Zeros)
	E – Enumerator
	S – Selector
	T – TOD Clock
	W – Word
	X – Hexadecimal
	XZ – Hexadecimal (Leading Zeros)

	Output Definition

	Translation Repository
	Naming Convention
	Repository Structure
	Text Message Statement
	Substitutions
	Columnar Message Statement
	Common Headers

	Dictionary Statement
	TOD Clock Statement

	MCOMP and MCONV – Compiling Message Repositories

	Chapter 14. Customizing the RSCS Data Interchange Manager
	Creating Exit Routines
	Using Accounting Exits
	Using Command Exits
	Using Format Recognition Exits
	Using Security Exits

	Appendix A. DSECTs Generated by Mapping Macros
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Additional Publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

