z/VM
7.3

REXX/VM User's Guide

—

—

- - .

- Y E————
[—— -
- - . .
I S S W E—
I 7 E—

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
185.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-09-07

© Copyright International Business Machines Corporation 1991, 2023.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

FiBUI S cuuiuiieiieiiiiiiiiiiiiiiiiiieiieiieitetentaetsesssstestastostossassassasssssssssessessassassassassssssnssns iX
L= 1 (= N XV
About This DOCUMENT......c.ccuiieiieiiiiiieiieiieiiiiiiettettestestetatastessssssssssssessassassansas Xvii
Y (T Te [=Te I XU Te [=Y oo TR XVii
Syntax, Message, and ReSPONSE CONVENTIONS......ccccuiiiiieeiciieccieeectteeseteeeeteeeeteeeseseeesesseeeesseeseseeesesseeanns XVii
Where to FINd More INfOrmMation.......eiiciee ittt e te e e te e e ete e e ae e e e ae e s enaeeeateeennes XX
Links to Other Documents and WEDSITES.cccuuii ittt et e e te e e e e e e ree e saaaeens XX

How to provide feedback to IBM........ccccuiieiiiiiniiiiniiniinnieiieiieiieieiecscsecssssassassens XXi
Summary of Changes for z/VM: REXX/VM User's Guide.......cccccceruireiaiencencencnnnes xXiii
SC24-6315-73,2/VM 7.3 (SeptemMber 2023)...cc.ccciiiiireeieseerieseeseeeesesssessesssesssessesssessesssessesssesssessenns xxiii
SC24-6315-73,2/VM 7.3 (SePtemMbEr 2022)......ccciviereeieeeeriereeseeeesesssesressseseessesssessesssessesssessaessenns xxiii
SC24-6315-01, z/VM 7.2 (September 2020).......cceiviereeriereereneeseseesesssesessseseessesssessesssesesssesssessenns xxiii
SC24-6315-00, Z/VM 7.1 (September 2018)......ccceeveererreeeeriereeseeeeseessessessseseessesssessesssessasssessaessenns xxiii
Chapter L. INtroduction.....ccccuiieiieiiiieiiiieiieiieiiiiiiiiieciettesiestestetscsssssssssssssassassans 1
WAL IS REXX?..eiteiteeteeieieeseseesteetesteessesseestesstestesssesseestesssessesssessesssessesssesssessesseessesssesseessesseessesssessesssessenns 1
FRATUIES OF REXX . uiiiiiieieiieieiie ettt et e e tee s e te e e s te e e e ttee e e atee e eabeesestaesentae e staeesstaeenstaeennseesnnteeensseesnees 1

REXX QNG Z/VMu ittt sttt st ste st e s tessae s e st e st e et e ssa et e sss e be et e sseessessaessesseessesnsessesssesseessennees 2

FAY o YoYU L A oY d = T o1 011 o = SRR 2
RSN 2T Lo [T a = - U TSRS 2

If You Have Never Written a Computer Program........ccccueeciieeeiieeeiieeceieeerveeesteeesreeesveeesveessnsaessnveas 3

If You Are Already Familiar with AnNOther LAaNgGUAZE.....cccuveeeiiieeiiieeeeecceeecee et eee e e e 3

e o EY =Y a e I - T ol o] (=T RS 3

ThE REXX REFEIENCE. ..cii ittt ettt e et e e e et e e e abe e s taae e sbae e ateeesntaesnsbaesnnsaeannseeennsens 3
Chapter 2. Starting Out With REXX.....ciiiiiuiieiieiieiieieiiiiiienieiiesiesiesiescsscsscsssssssanss 5
HOW @ PrOZram WOTKS.....cvieieieeieieeeeteeeeteeeeteeeeteeeeteeseateeseateesesteeeessae s staesestesastaesssesensseesnsseesasseesnssesannees 5

(000 01V =T 4= U4 [[T 5
TYPING IN @ PrOZIAM .. cuiiicciieecciee ettt ecte et eee e etee e e rtee e estae e e beeesbeeessaeesssaeesabaeaassaeeansasesnseeesnseessnsaeennses 6
RUNNING @ PrOZIAM....uiiiciiiieiieeeiteeeitteeeitteee e e e stre e e saeestteeessseeesaeessseeesssesssaesssaeenssaeenssasensseeenssasennses 7

Y (o] o] o [Y= 8- W nd o] ={ =T o TS 8

LTS A o TU T SRR 8

What GOES INtO @ PrOZIaM...c.uiiiicieeiciieceieeectee et e eeteeee e e e ete e setteeeeateesesteesesteeeesteessteesstessnseeesseeeeseeesnsens 8
(07T 00l a1 O N T T o= (=3 0 =SSR 8

(G Ao o I N a1 (o3 4 o] o 1T TR 9

I =Y =] 4 T =L SRR 9

L0 oYU LT 10
Y1 = P = 0] £ TP PO PPPPPPPRRRR 11

LTS A o TU T] TSR 12
SUDSHITULION RULES.ceceiieeciie ettt ettt e e e e e te e e e te e e e teeeeateeeestaeeentaeesssaeesnsaeesssaseesseeeansaeannes 14
REPEALEA SUDSTITULION. . .iiiiiieciiecciee et et e e e et e e e bee e abe e e abae e sbaeesabeeesnsaeennsaesnnseas 14
ThE VALUE() FUNCHION. ..ttt ettt e et e s te e s atee e ateesenteesentaessntaesnsteesassessassassnssasannes 14
(07T 0] oo T aTe IR V7a 01 To T E 3 USRS 15

The INTERPRET INStIUCTION...iiiciieiciie ettt ettt ettt e e e e te e e e te e s e tee e eateeseateeeeateesentaeennsaesnnenas 15

Chapter 3. Variables.....cccciiieiieiiiieiiieiieiiiieiieieiienicestesastessecassecscessscssssssscassessssass L7

WAt AFE Vari@blES?... . ittt eeeeec e e e e e e e e e e e e abbbaaa e e e e eeseeesesssssssseseaeraseeseessnsssssreees 17
NAMES AN VALUES...eeveiiieiieii ettt e et et e e s e e eabbbb e e e e e eeeeeeseesassssasaeereeseeeeesensnsssssrareeseens 18
LN T4 010 1= 0L (T OO USRS 18
Displaying a Variable's ValUB........cucuiiiiiiiiieiiecetesste sttt e st e s e s sbe e s s e e s s abeessans 19
Choosing NamES fOr Variables......uiiiiiiiiieciieeciecctee sttt ettt e s e s sae e s ae e e sseeessaaeesseaesas 20
Example: SEtting Variables..... .ottt ettt seaee e s eeesans 20
TEST YOUISEI ... ettt e et e eee et e e e e e et eeses e ssb bbb e eeeeeeeeeeesasassssssasseeseeaeesessassnsssssrasenneens 21
OB ASSIENMENTS. . utiiiiieieiee ittt et e e e et e s ste e s ssteessaeeessaeeessseeesanteesseeessseeesnseeesseessseessnseessnsens 21
Variables @S SYMDOLS.uiiii e cee e e et ee e e e et ee e e e e s asteeeesessteeeeeensaneesesnseeeeeennsseeeenannes 22
CoNSTANTS AN VATIADLIES...uuvveiiiiiieie et e e e e e e e e ba e e e e e e e eeeessssssssasseeseeeeeesesannnns 23
(07 g a] o ToTUTaTe IR} Y7181 o o] £ 23
STEMS AN TaAULS.eetiiiiiiiiiiiecceeeee e e e et e e e e bbb e e e e e e e eeeesesssssssaaaeeseeeeeseesssssssaresseeseesensans 24
DEIIVEA INAIMES. .. ututtiiiiiiee et e ettt et e e et s ee s brerreereeeeeesesaasssatsearaaseeeeesesaassssbassesseeeeessesaasssssrssnnnesees 24
CrEATING AN ATTAY..eiictteeiiiee ittt seteeseteeseteesetteeseteeeseseeesabeeesaseeesbeeesseessaseeesseessseessnseessnseesssseesssseesssees 25
LT A o TU T 1= SRRSO ORI 27
AVOIdING DUPLICALE NAMIES.....eiiiiiieiciie ettt ettt ettt e st e s s bee s s be e e sbaeessbaeesbaeesbaesssaeesseesssaeesnns 28
How Much Should You Tell YOUT SUBDFOULINE?......cciiietiteeeee ettt e e e eeeecararreeeee e e e e e e s eeeannnes 29
The PROCEDURE TNSTIUCTION. .. .uutiiiiiieiieieeiiieeiciiiteeeeeeeeeeeeeeeessssreeeeeeeeeeeesessssssssssseeseesessessssssssssessens 30
The PROCEDURE EXPOSE INSTIUCTION..ciiiiiiiiiiccittteeeeee et ee e e e e e eeeenasrreeeeeeeeseseseennsssseaseenas 31
The EXiStENCE Of Variable NAMES.....uvveiiiiiiii ittt e e e e e sabr e e e e e e e e seeensssssseeeeereeeens 31
RN aTSRS N 04110 1N I 5T o Tt 4o o P 31
THE DROP INStIUCTION.c.iiiiiiecciittteieeeee et e e e et e e e e ababeeeeeeeeeeeeseseasssbeseerreeeeeseesaasssssrsranenreeeens 32
Arrays with More Than ONe DIMENSION........uiiii e cieeeecccieee e eectre e eeetrre e e e ettee e e e sesbeeeesssnseeeeeesnseeseseesssenasnans 32

Chapter 4. EXPreSSiONS...cccieiieiiieiietitettesstestessstsssosasssssssassssssssssssssssssssssssssssassscs 3D

(0] 01T -1 (o =7 SRR 35
(0] o1 =N (o] §3=Y 2 e I =T 0 =R 36
(O o [T aro) il V=1 U F= | o] o TSR 36
e U]] A TCY Y=Y TSRS 37
BT A 0T U =Y RS 37
TECINE ettt ittt ettt st e e st e s ete e s e ate e s e ateesaaeeesaueee s seee s seeesaneeesaseee s seeesaseeesseeesaseaesaseaesseeesseessseeesnsees 38
DY = T 1Y 1= T3S UPRPRRN 39
oY Q0T T=T Y o] =T RS 40
o a1 AV O o T=T - L o] =TS 40
USINE Par@NTESES. ... uviiiiee ettt sttt ettt sttt e s st e s sbee s s bt e e s bt e s sabeessabeeesabeessasaessseessaseesnnses 41
BT A 0T U =Y RS 41
RO L= YT =Y TSR 41
(070 paY o =T T=To] o 1TSS 42
USINE TrUE AN FAlSE...uiiiiiiiiiiiieeiie ettt ettt et e s te e s te e ssate e s s teessabaesstaessbaesssaesnnsaenan 42
ThE EQUAL SISN (2)1utieiieiiecie ettt et e st e s te et e st te s sve e et e e beesse e sste e seesaseenseesnseenseessaesnseesseesnsesnsanans 43
THE AND (&) OPEIAtO ... uiiieiiieeciiieecie e et e e et e ecteeeete e e tbeeesreeeesbeeeesseeeasseeeansaeeassaeeassaseanseeeansesaansesesnses 43
THE OR () OPOIatOr .. uiiiciiee ettt ettt eette e e ette e et e e e eteeesetteesebeeesabaeessaeesasaaessaeessseesasasesassassassaasans 43
BT A 0T U =Y RS 43
oY ={Tor- O o= =1 (o] TSP 44
BT A 0T U =Y RS 45
LU o (o] =SSR 45
The Idea Of @ FUNCHION....ciii ettt e e e e et tee e e e e b e e e e s abeeeeeeenstaeeesesseneesennssnnenns 46
BUILE=IN FUNCHIONS . cceie ittt e et e e s et re e e e et e e e e e ataeeeeeessaeeseesssteeeesensbeneeesnnseneesennssnnens 47
8Ty e =Y o T U T ot £] o TSR 47
BT A o]0 =Y S 47
WILING YOUr OWN FUNCEIONS....tiiiiiieiieeecieeccie ettt st e s site e s te e seaee e ssaeeesesteesestaessneeessseesnnsaesneaesans 48
FAN G F=y VTt A o TSR 48
THE ARG() FUNCHION ... ittt e et ee e et e e et e e e be e e eabaeesbae e s seeaensaseensesaensasesnsasaenseaann 48
ol IO 1V) Tt o o PSR 48

=TS A (o TN Y= P RRRRRRRRR 49

PN o (=T 3 (oo A 1] a T o o PSSR UTS 51

B =Yg o LU Tt T -SRI 52
Functions Written in ASSEMDBLEr LANGUAEE.ccutiiriieriiieiriteesitessitesssieessieesssieessbeesssreessreessneessnnens 53
o o 17U 53
B a3 01O I 1 =1 4 U Tox £] o TR USSRt 53
A DO UNTIL LOOP.cuttiaieeteesieeiteesteesteesseeetessseesssesssessssesssessssssssesssesssesssessssesssessssssssessssssssessssssssessseeans 53
(CT= adTa Y= O T} o)l e o] o 13PN 54
BT A 0T U =Y RS 55
AN] 11 4 oSSR 56
N U] 01T SRS 57
(0 aT=Tod 1q] o= CoTUT i N] o 11) S PSR TRTPPR 57
Addition, Subtraction, MULtIPLICATION.......cccuiiie e rree e e e rrre e e e e nree e e e e nnees 58
DAV =] o o PSS 58
e T oY= o) N TU]] 0= =PRI 59
D q o] a =T A} A E= B N\ o) =Y A o o VOSSR 60
BT A o]0 =Y S 60
FOrmatting NUMEIC OULPUL...cciiiiiiiiie ittt ste s s ste e s saee e s siee e ssaee e saee e sateesbeeesnseeesnnens 61
Specifying Conventional (Fixed Point) NOtAtiON.......cccuieiercieenie ettt 62
Specifying Exponential (Floating Point) NOtation.......c.eceeecieceeicieceecie e eesene e 62
BT A o]0 =Y S 63
D Sq 0o a =1 A} A= o] o TR USSR 63
The NUMERIC DIGITS INSTIUCTION....uiiiiiiciieeiccctiiee e ecieee e eette e e eette e e s e tte e e e e enbe e e s senbaeessensaeeesennsnneens 64
THE SIGN() FUNCHION...cc ittt ee e e te e e te e et e e e ate e e tteeeeateessteessteeesesesseeessaeasnseeesnsens 64
0o 10l aTe [T T=S-TaTe BN (U] o or-\ £To] s AU PP 65
BT A o]0 =Y S 65
GrOUPS Of INSTIUCTIONS. . uiiiiieiiiie ettt e e e e e rre e e s et ee e e e e e sbeee e e s sbeeeeeenseeeesannseeeeeesnssenesnansses 66
B L= G O PO U TP P RPN 66
(070] aToF=1 (=T 0 =1 o 1 67
ThE SUBSTR() FUNCHION.....eiietie ettt ettt et e ettt e e te e e e te e e e teeeesbaeesasaeeeasasaensasaensaeannneeans 67
THE LENGTH() FUNCHION...icctieeeteeeeiee ettt ettt e ettt e e tte e e ett e e ette e e tte e e aseeessae e sseeesseesnseesenseesnseesnses 68
THE COPIES() FUNCHION. c..tiieiee ettt ee ettt eeette e et e e et teeeeateeeesteeeesteeeestaaeesseesesseesassaeeassaennnes 68
THE LEFT() FUNCHION...ei ittt ettt ettt e e e e et e e et ee e et ee e eabeeeeataeeeaseeeensaeaensaeeenseeeenseaeensaeennses 68
THE RIGHT() FUNCHION. .. ettt ettt e et e et e e e te e e et e e e e tee e eabeeeeateeeenseeeesseeeenseesensaasnseas 68
Arranging Your OULPUL iN COLUMINS....cociiiiieiieieiteeeiteeete e see s re s s saee e s saee e s saee e ssbeeessaeeesseessnenssnnees 68
BT A 0T U =Y SR 69
Using a Subroutine to SImpLify Tabulation.......couciiiiciiiiiiieieeceec e saee e seiee e 70
THE POS() FUNCHION. ..ttt ettt e e ettt e ettt e et e e e be e e taeeeessee e sbee e sseeeasseessseeessesesseeasseenanseenn 71
D=1]] (= TR 71
LA o £ SR 72
The WORDPOS() FUNCHION....ciiiiie et et e eetee et e et e et e e te e e abeeeeabeeesabeeesaseeeenseeaensesaensesaensesasnseessnsens 73
PrOVIAING HELP oo ceiee ettt sttt e e st e s s be e s s be e s s be e e sabaeesabeeesasaessaseessasaesnnses 73
BT A o]0 =Y S 74
ThE OVERLAY () FUNCHION. ..eiictieeetieecctee ettt e teeeecteeeeteeeeteeeeteeeeabaeeetaeeeasaeeessasasnsaeasasasesnsaeesnsasesseeans 75
The WORDS() and WORD() FUNCHIONS......uiiiiiieeeiieeetieeette et e tee e tee e teeeeteeeeaeeeeseeeensaeeeasaeesaneeans 76
(03] 4 a1 =T 0 1= SRS SRR 78
(CT=T =T = | RS 79
N U 0] 0T SRSt 79
(01 5 F= U=Vt =Y S 79
BT A o]0 =Y RS 80
The COMPARE () FUNCHON.c..eiii ettt ettt e e tee e et e e et e e e bee e eabeeeeaseeeeasaeeensaeennseas 80
The ABBREV() FUNCHION....eii ittt ettt e et e et e e e tte e eeteeeetaeesseeesseeessaeesseeesseeesseeanans 81
BT A 0T U =Y S 81
EXQCT COMPAIISONS. .. uiiieiieitieeieeiteeeeeecttee e e e ebereeeeebaeeeeeesssteeeesanstaeeeaastasesaaasssaseesasseseesannseneesansseneannns 82
Fuzzy ArithmetiCal CoOMPariSONS. ...cii i iiieeieciteeeeectte e e e eetee e e eetree e sesbereeeessseeeeessseeeesesnseesesesnssenesannn 82
LI L 151 = 4T o TSRSt 83
[L=) =T L=T ol 1 o =Y S 83
(070 812 1 o o 1RSSR 83
(0P U= Vot L=Y ST £ SRS 85

THE VERIFY () FUNCHION . cttteteeieeeeee ettt ettt et e e e e e et e eeeeeeeesessssssasssasseeeeeessessssssssssssreseeesesssssnnn 86

Chapter 5. CoNVersations.....cccceiieiieieiieiieceiieneteniecactessocestosssassscssssssscessssasssssacases 8 7

THE SAY INSIIUCTION . ..eiiiiet ittt ettt ettt et e e st e e s tte e s bee e s bt e s s ebee e sbeeesabeeesabaessaseessssaessnsaeesseeennses 87
THhE PULL INSTIUCTION . ctttiittee ettt ettt sttt tte s ste s st e s st e s sbe e e sabae e s bee s sabaeesabaessssaessaseesssseessnseesnasens 88
The UPPER INSTIUCTION....iiiiiiiiitieeiieesite st ssit e st e st e st e s s be e s s e e s sabeesssbaessaseessaseesssseessnseesssseessnsens 88
TEST YOUISELT ettt ettt s st e e st e e s bt e e s bee e s aee e s steessteesnteesneaesnntaesansaesans 88
ParSING WOTTS. e uieiiiieeiiee ittt ettt ste e sttt e s ette e sebee e sbee e sbeeesabeeesaseeesabeeesnseessaseessnseessseessseesssens 90
The Period s @ PlaCeROlde ... ittt ettt et e s sbe e s s be e s s beesnaseas 91
TEST YOUISELT ettt ettt s st e e st e e s bt e e s bee e s aee e s steessteesnteesneaesnntaesansaesans 91
Getting Data from the CoOmMMEANd LiNE....cii ittt et s s siee s s sbee s s saee e s saee e s saeeesneas 92
MIXEA CASB.ureiiuiieiiuieeiitee ettt et e s ettt e sttt e sttt e sttt e sstee s seee s steesastaesaaseesssaesssaesassaesanseesasseesasseesanseessnseenns 92
RECOZNIZING OPTIONS.cciuiiiieiiiieiteeete ettt s st e sttt e s sate e s sbee e s sseeesbeaessbeesseaesasseesnssaesnssaesnssnesnssnas 92
SETINE PatlOINS ettt e te e s sate e s te e s s te e s ate e s ste e s ate e s atee s rteesanteesantaesantaesnee 93
Parsing Variables and EXPraSSiONS......ccuiiiiiiiiiiriiteeiiee st e st e st e s teessbeessbeessbeessseessaseessaseessnnens 93
TEST YOUISELT ettt e st e e st e e s bt e e s bee e saee e s staessteesseeesneaesntaesansaesane 94
Parsing USING PatlerNS....cccuuiiiiiieiiieeiiieescie e st et e st e ssite e s stteessateessaeessteessstaessaaesnsseessseesssseesnnsaenn 95

Chapter 6. COMMANS....ccccceiieiinieiieiieienteteniecietastocatessecasssssscessssssssssscassssassassscasse 97

Issuing Commands t0 CMS @Nd CP.....cciuiiiiiiiiiieeciee sttt sste e s ste e ssate e ssateessseeesssteessssaessnsaesnns 97
Clauses That BECOME COMMANUS....ccuutirciiiieiieieiteeeiteesiee s st e e steeesreessteessbaeessaessseesssaesssaeessseesnns 97
When t0 USE QUOTATION MAIKS.....cuuriiiiiiiieiiiieeeeiiiiiteee e e eeseeeiarrreeeeeeeeeeseessssssssseseeeseeeeeseesssssssssnees 99
(04 00 a0 na¥- 11 o [-F OO 99
IS0 T 4= 2SR 100
RETUIN COUES .o itiiiiieieiee ettt sttt e e s ate e s ate e sbte e sabeeesastaesaseeesaseaesseaesseaesseeesantessan 100
Yo TTo = A = T o] 1P 101
TS A Lo TU =T SRR 101
Debugging Individual CoOMMAaNAS.....ccccuiiiiiiiiiiiieiriee sttt et esste e sste e ssee s s saee s ssreeessseeesseeessveessnnens 102
Debugging Execs That Contain ComMMAaNdS.......ccccveiiiieiriieiniieiniteeseesssieeeseesseeessreessseessseessaneas 102
Making a Common Routine for Handling Return Codes........couviiiiiiiiriieeiiieeniieencieescieee e e seeee e 102
Getting Messages from @ REPOSITONY Fil...iccuiiiiiiiieiiiiiiieeeiieceite sttt aae s 103
How to Suppress Messages Issued by CMS COMMANGS......cccceeiiiiiiiieeiiieeinieesieessieesseeesseeesenee 104
A USETUL SUBIOUTINE ...ttt s st e s st e s s e e e s e e e s baessbeeesabeeesnsens 104
TS A oYU T /SRR 105

USING the Program STACK.....cii ittt ettt saee e s sbe e e s saee e saee e sbeeesneas 107
D= 1] T To] o F- T TR 108
2T =T 3 OSSPSR 109
HOoWw t0 USE the Program STACK......ciuiiiiiiiiiiriieriee ettt ettt e st e st e st e st e s ste e sssba e s sbaesnaeaees 110
Example: A CMS Command That Puts Data onto the Program Stack.......cccecceevvvieinieenniieenniieennnen. 111
Example: A CMS Command That Requires Data from the Program Stack........cccoccevrvieeriieerieennnns 112

CP COMIMANGAS...utitiiiieieite ettt et e sttt s et e e s bt e e s bt e s sateesssbaeessbaesssbaessssaessssaesassaesssseesasseeessaessssaesnnsenenne 112
How to Suppress Messages Issued by CP COMMANAS.....cccccviriiirriieiniiiennieeesieeesieessveessveessneeens 112
How to Obtain the Response from a CP COMMANG......ccuuiiiiieciiiiee et cvree e e evree e 113

The COMMAND ENVIFONMENT....iiiiiieiiiieiiiteeeiteeeite s siee s stee e st e s st e e steessbaessabeessaseessssaesssseessssnesssseesnsees 115

Chapter 7. XEDIT.....ccccetuiitniienirencrenietnniseeeineasinsescrsssrsssssssssssscsssscsssssssssssssssees 117

XEDIT SubcoOmMMAaNdS @aNd MaACTOS......ciiiiiiiiieiiiiieriieessieessreessieessseeessseeesssseesssseesssseesssseesssseesssseessseens 117
XEDTIT MACHOS.ceitiiuitteeeeeitte e ettt e e et e et e st et e ettt e e s e use e e e e s neteesseaseteeeaasateeeeanseeeeesanneeaeesansaaaeaan 118
NaMINEG OF XEDIT MaACIOS..cictteieieiiriieieieeisieeisieessteessteesseeessseeessstesssssesssssesssssessssesssssesssssasssssessnne 118
Example: Changing the Settings of the SCroll KeYs.......cuiiiiiiniieinieceiecse e 118
RETUIN COUES . tiiiieeeiee ettt e st e s ate e s ate e sataesebteesstaesaseeesastaesseaesseeesaseessaneessan 118
PSS AES. . e iiuutteeeeeitte et e ettt e ettt e e sttt e e e e re e e e e e seteeese b e teeae s b eeeee s bte e e e e nneeee e e nneeee e e nreeeeeaanreeeeean 119

The EXTRACT SUDBCOMMANTG...ciiiiiiiiiiiiiieiiieeeeiee et ssit e st e s st e s st e ssbe e s s baessbaeesaseeesasaeessseessnsaessnsaeens 119
THE CUITENT LINE.iiiiiiiieiieiee sttt ettt ete e s saee e sate e s bee e s beeesbeessaseeesaseeesaseeessseessnseessnseessnsees 120
An Example: Moving through a File a Paragraph at @ Time....couiieiieenniienieeeiecsee e 120

YOUE XEDIT PrOfilB.uuuii ittt ittt sttt et ste e st e e st e e s bt e s sbee e sabeeesabeeessbeeesaseessaseessnseessnses 121

MENUS USING XEDITeiiiiiiiiiiieiiitereite st e st e s st e s s bt esssbe e s sba e s s baeesbaesssseeessseesssseeessseesssseeesssenssnseessnsens 122

Chapter 8. CoNtrol.....cccceiieiiieiieieiieiieieniecetesiecastessecassesscessesssessssssssssssassscassasss 12D

IST=1 (=Tox 1T o TSRS PTPPR 125
LI L= L 103 (o3 1T o T PSR 126
THE ELSE KEYWOIT....eiiiiciiiiee ettt e ettt e e ettt e e e e ettte e e e e eatte e e e e aate e e e senstasesseensseeeseensseeaesensenaessassenesanas 127
ThE DANGLING ELSE....ccoiiiiieeieiee ettt sttt st s st e s te e s te e s eate e s ate e seate e s staessteessseeesnnsaesnnsassnnes 128
TS A oYU T /SRR 128
The SELECT INSTIUCTION.ciuttiiititietteeeite ettt sttt s it e s bee e s e e e s bee e s bee e sbbe e sabeesstaesnssaesnnsaesnes 129
D=1]] (= T PSSR 131
THE NOP INSTIUCTION.ccicttiieitieieiie ettt ettt e st e e st e s s te e s sbaeesbeeesabeeessbaessssaessnsaesssaeesnsaeennee 131
TS A Lo TU =T SRR 132

o o 17U 133
SIMPLE REPETITIVE LOOPS . utiieiiicitiiie ettt eettee e eectte e e e e tree e e e ettr e e e e s nbee e e senbeeeesesnsaeeeeesnsseneesenssenaenannes 134
USINE @ CONTIOL Variable. . ..ii ittt ettt s sste e sabe e s sabeesssaesneaesn 135
THE BY EXPIrESSION. . utiiiiiictiiieeccitiee e eectte e e eeette e e e eetteeeseesbeeeeseasaseesesasseeeeeansseesesaansenseeannsseneessasseneenann 136
TS A oYU L= SRR 136
Conditional Loops: The LEAVE INStrUCTION...c.iccciiieeiecciteeceecitee e e eciteee e eecvtre e s eesvee e e s eenseeeesensaneesennnnes 137
Conditional Loops: The DO WHILE INSTrUCTION.....ciiiicciiieececiiiee e ecctie e eecrie e e eere e e eenveee e e e eneeeeeeeanes 138
Conditional Loops: The DO UNTIL INStrUCTION....cccuiiieececitieeeeciteeeeeeree e e eecvee e e e evee e e s eseeee s s naaeeeeean 139
(0fe] pTe 1A TeT -1 IoToT o LT I a T Lo ol ST 139
TS A oYU T PR SRTPR 140
(07e] aYoTo 10T aTe D T@ I N =] 4 U Tox £ 0] o =PRSS 141
LeaVing @ SPECITIEA LOOP . uuiiiiiiiiiiieiiite ettt sttt et e s s e s be e e s bt e s s bae e sbeeessbaeesseeesnseeesseeesnnes 141
The ITERATE INSTIUCTION.c..uiiiiiiee ittt sttt ste sttt e e st e e st e s st e e sabee e sbeessaneeesaseessaseeesnsens 142

THhE EXIT INSTIUCTION. ettt ittt ittt sttt ste e s ite s site e st e e sbee e s bee e sbee e sbee e sabeeesabaeesaseessaseessnsaessnseesnnses 143

U OUTINES e ittt ettt e s sttt e st e e st b e e s bbe e s st e e sabeessbaesaseesnssaesansaessnseeesasaesnnsaesnnsens 144
The Idea Of @ SUBIOULINE.....cii ettt e s e e s s e e s s ea e ssaraeenaeeas 144
THE CALL INSTIUCTION. c.ettiicttte ettt ettt srte e st e st e st e st e e st e e s s abeessabeessabeeesabeessaseessaseessnseessnsens 146
THE ARG INSTIUCTION...ciiiititiiite ettt ettt e st e st e s st e e s s be e s beessab e e ssaseessssaesssseeesssaeensseesnnseeenn 147
The RETURN INSTIUCTION.c.utiiiitei ittt sttt sttt stte e site s stee s st e s sbee s sbae s sbeesssbaessasaessaseessasaessasens 147
D=1 1] (= TSP 147
When 10 Leave OUL the ArgUMENTS......ciiiiiiiiiiiiieceieeesit ettt s st e s e s st e s st e s sbeeesbaessabeessasees 148
TS A Lo TU =] PRSPPI 148
SUDIOUTINES AN FUNCIIONS ..ttt sttt ste e ste e siee e sbee e st e e sbee e sbeeesraessseessnseeesnses 149
Using a Call of the Other KiNd......c..ooiiiirieectese ettt sttt re e s e s 150
Parsing the ArBUMENTS......uiiiieeeieeeteeete ettt te st e e s bee e s bee e sbee e sbeeesssaessssaesnseaesnnsans 151
EXTErNal SUBIOULINES. . .eiiiiiee ettt st e s st e s st e s s be e e s e e s sbeeesabaessaseas 151

013] 01 P UUUPRPRN 152
The SIGNAL INSTIUCTION . ccttiieiiteecieee sttt ettt sttt e st e st e s s be e s s beessabeesssbeessaseesssseesnaseessnsens 152
Abnormal Changes Of CONTIOL.....iiciiiiiiiiicieecctee ettt e s e s s bae s s e e e s beeesaneas 152

(0fe] aTe [ATe] g F3=YaTe 0o T a o [1] o I I = o 1SS 153
THhe CALL ON CONAITION.ciiittiiiiiiiiiiteeiitesiieessite st e st e ssteessbeessbeessbaessbaessseesssseesssseessnseessssenesnsens 153
The SIGNAL ON CONAITION..ciicuiiiiiiieiiiieriiiesiiee st e st e sseeessabeessibeessbeessabeessssaessabeessaseessseesssseesssees 153
Action Taken When a Condition iS TraPPed...cccccuiieeiieciieeeeeciiieeeeectie e e e ecrte e e e eetteee e senteeesseensseeesenanes 155

The CONDITION FUNCIION..ciuttiiiiteieitesstte st e st e s st e s st e s st e s sabe e s s beeesbaessabeeesasaessssaesssseessnseesssseeesnsees 155

Chapter 9. Input and OUtPUL.......ccccceieiiieiieriieiinteiiettetestecstecsecasessecessessssassecasse 157

A Stream Of INTOrMAtioN....cii i st s e e st e e s sabe e ssabe e sseeesnbeesasbae s nreenn 157
FILE PrOCESSING . viiieieeieittieitteetteestee s st e e st e s ste e s sateessteessaaeessateessataessseeesaseeessteeanseeesseeesnsseesnssassnseeesnsens 158
WHILING Data t0 @ STrEAM...uiiiiiiiiciieeeite ettt ettt s e e s ee e s bte e s saee e ssbeessabaesnseeesnssaesnnsaas 158
LINEOUT (Line OULPUL) FUNCHION. ..cccciieecieecctee ettt ettt ete e ettt e eateeeetteeeaaee e ateeeenseesnsaeennsaeenseean 158
CHAROUT (Character OUtPUL) FUNCHION.....ccuiee ettt ettt etee e ctee e etee e e eree e eree e esaeeenaeaas 160
Reading Data frOmM @ STrEaAM ... c.uiiiciee ittt ettt ettt srte et e e st e s sbe e s s e e e s e e s sbeessbaessabaessasaesnans 161
LINEIN (Lin€ INPUL) FUNCHION....iiiitiiecieeecte ettt eete et e ettt e et e e ae e e ate e e aae e et e e eensae e nsaeenreeeensaesanses 161
CHARIN (Character INput) FUNCHION.....oii ettt et e tee e tee et e e e tee e e be e e e aee e enneas 162
Counting the Data REMAINING......cutiiiiiiriiieeiieeerte et sree e st e s sieeessaeeessabeessaeeessasaesnssaessssaesnssaesnnsens 163
LINES (Lines RemMaining) FUNCLION.....ccciiiieecieectecieete e et et ste e e e ste e sreesae e e e snae e beesneesnreesnaeeneas 163

vii

viii

CHARS (Characters Remaining) FUNCHION.......iccuiiiieeieeieecieecie e te et esee e e sveeste e e sneeeee e sraeeaeesnee s 164

HaNAUING STrEAMIS...iiiiiiiiiiieiiee ettt e st e st e s s be e s st ae e s beessabeeessbeesssbeeessbeessseeessseessnseesssens 164
OpPENING aNd CLOSING FIlES....uuiiiiiiiiiieiiiiee ittt scte e stte e sste e ssree e ssaee e ssbeeessbeeesseeesseeesaseeesaseessan 165
TO SUMIMIAIIZE 1ot etteeeitee ettt ettt ertt e ettt e ettt e sttt e sttt e e bt e e sbae e s steesaseeessaeeeaseeesasaeesasteesseeessseessseessenesnsseenn 165
Additional Stream I/O INfOrmMation.......ooooiiiiiiiiieiiceee e s e s s e e e e e eeaaasanes 167
MOTE abOUL DAta STrEAMS. .. .viiiiiiiieiieeeite ettt ettt e st e e st e s s be e s sbe e e sabaeessbeessasaessssaessnsaesssseeanns 167
DETAULL SEIEAMIS. . et i itieieiteectte ettt ste e et e e st e e e st e e s be e e sbaeesabaeesabaeesasaessasaeessaeesnseeesns 167
Performing StrEam TaSKS. ... cuiiiiieieiieieie ettt ettt ettt e e s ee e e st e e e s bt e e sbaeessbaeesasaeesseeesasaeesseaens 169
STREAM FUNCLION. ..cttitteiiiteeeite ettt ssite st eessete e ssbeeesaeeessateesseae s sseesstaesnseesssaesnnsaesnsseesnsseesnses 169
Accessing Data WIithin @ STrEaM.. .t s e e e s e e e s baeesbaeessaeeas 172
Techniques For USIiNg REXX I/O FUNCLIONS.....ciiiitiiiiieiiieesciee st e st e ssiieesseeeessieeessneeessseeessnseesssseesssseens 173
Lo @] o 1=] g 1o gl o S Ko 10 01 o TN 173
REXX I/O QN CMS....eiiiiiiieieeeie ettt ettt e st e st essate e s saae e s steessaeesssaesssaesssaesnsaessseessnsaesns 173
T ol = e | T o T~ PO PRSP 174
ALLEINALE TECNNIGUES...cei ittt ree e e et e e e e et e e e e s abee e e s eanstaeeeeessaeeeeeanstneeseannsaneens 174

Chapter 10. Programming Style and Techniques.......ccccccceccreiieirecrniinccnccneceecnecnenss 175

(000] aT-1Te [T g (o[B - - VPSR PPRRTPPRRPPPPRRPPRIN: 175
TS A Lo TU =T PRSPPI 176
HaAPPY HOUT s e e e e e s e e e e e e et ettt et a e e e s e s b e e s assessaesaeseeeeeeeeseeseeeesnssssssnsssssssssnnnsnnns 176
DESIZNING @ PrOSIaM. i iciiiieiieieiteieieessittessteessteeesteessteesssteesssseessseaessssaesssseesssseesssesssssassssseesssseessssaesnns 178
Methods fOr DESIZNING LOOPS...c.uiiiiieiiiieeiciee sttt escte e sertesssite e ssree s s sbee s sbee s sbeessbeessasaesssaesssseessaseesnnses 179
THE CONCLUSION . ..tiiitteeecitee ettt ettt ettt e e st e s st e e s bt e e sbee e s beessabeeesabeeesabaeesasaeesssaessssaessnseesnnses 179
What DO WE HAVE SO FAI?....ci ittt sttt stee e site s te s sate s sbte s sbae s sbeessabaessabaessabaessnsaessnsens 179
Stepwise Refinement: AN EXAMPLe.. ...ttt et e s e ree e e s e rae e e e e nreeaeeennes 180
RECONSIAET ThE DAt .iiiiiiiiiiieiiiieieite ettt ettt eiee st e st e e s ba e e sbe e e s bteesabaeesbaeesasaeesnsaeessaeessaeenns 180
COrrECTING YOUE PrOZIamMi....uiiiicieiiiieeicieesciee sttt e seieeeseitessreeesteeeseseeesbeessbeeesaseesssseessseessnseesssseessseessnses 180
MOITYING YOUT PrOZIAM .. ciiiiiiiieiieeeiiteeeiiteeeite e ettt e ettt e steeessseeesssaeesseeesseeesssseesnsseessseessssnesssseessssnenn 181
TraCiNG YOUE PrOZIamMi....cciiccieieiieieiiteeeiteseittessteesstee s st e s steessteesseeessaseessaseesssseessssaesnssnesnsseessssnesnnens 181

(00 Ta (107 =0] 4V (TSP SPUSPR 182
1 0 4o - PP & - 12
Programming Interface INformation......couciii ettt see e e 186
= e (=100 =T OO OO URROPPRRPPRPRNt 186
Terms and Conditions for Product DOCUMENTAtION......cuiiiiiiiiiieiriie et sree e sre e sree e sveeeeas 186
IBM ONliNg Privacy Stat@mMENt....cc i eieeei ettt eectte e e cttee e s e e tte e e e e ette e e e sente e e s s ntaeeesesnseneeeesnnsenansan 187

Bibliography...ccccciiiiiiiiiiiieiiniiniiniiiiiiiiieiiiiesiesieiiasiaeiscscsssessesssssssssssassssssscses 189

Where 10 Get Z/VM INTOrmMation....ccocoi oot e aaa s s sesseesseeeanes 189
Z/VM BASE LIDIAIY..ueiiiiie ittt e ettt e ettt e e et e e e s e bt e e e e e e taeeeeeenteeeeeeabaeaesenseeaeeeansstaeeeanseneesennseens 189
Z/VM FaCIlities AT FEATUIES.....ociiiiiieeeeeeeeee et e e e e e e ettt s sessseseeeeaaesaesseeererssssssnes 190
PrErEQUISITE PrOQUCTS. . eiiiiiciiiie e ettt e cecttte e et e e e e cte e e e e ebte e e e eeateeeeseeasteeeseenssaseeeanssasessennsaneessassensesannes 192
RELIATEA PrOQUCTS.c.iiiiiii ittt eeee e e e e e e e e e e se e ababbaaraeseeeeeeeessssssssraesneeeesesesennannes 192
])0 GO0 1 11 11 LT SR 192

L =) R |-)]

Figures

L HELLO EXEC... ittt ettt ettt ettt st b e st s b st s bt et s st et e st e bt et e s bt et e see e bt smee b e emeesbesasesmeensennis 6
2. SHAGGY EXEC...iiiiiiteeieeiteteeeittee e sttt e e seitteesssateeesseusteessssusateesssssaeesesssaaeessasseaeessanssaeessssnseaessnssseeesnan 10
SLURAH EXEC. . ettt ettt ettt et sttt st b et sttt b et e bt b e s a e e bt et e e bt et e s h e et e st e h e e e e nreeaee 11
4, HELLO2 EXEC With @ SYNtAX BITO . .uuiiiiiciiieeeeeitieeeeeeireeeeeeiteeeesesseeeseesssaeesessseseessssssssesssssssesssssssssssessssnes 12
5. ERRAND EXEC.... ittt ettt ettt et b et s b st e s st e bt s et e st e s bt et e s bt e eesate bt emtesbeemeesheeasesneensesmeensenas 14
6. VENTS EXEC.... ittt ettt e ette s e et te e e s ssnt e e e s sasteee s sssbaaes s asaaeesesasbaeeessnssaaessasseaessnsnseaeessnasseaesaas 15
T MATH EXEC... ettt ettt ettt st ettt b et s bt st s st e bt s st e b e st e bt et e e bt e b e sae e b e e st e sbeemeeseeeasesneensenne 15
8. TWOPLUSS EXEC... . uittiiiieieieeeeiteeeee ettt s e ettt e s s rte e e s siseteesssasaeeessssaeaesssssaeessennsaaessanssaessssnsnaeesssssneeeeans 17
9. ADD2NUM EXEC......iitiitiiieeiteieeiterte sttt st et st et sate st st e sbe st e s st et e sae e bt st e sae e e e sbeebesae e bt emeenseeaeesaeensesntens 18
D0, ASSIGN EXEC... . ittt ettt ettt e ettt e sttt e e s s at et e s sttt e s s abbae e s e assaeeessnseaeesesnsaeaessssseaessssseeaessanns 19
D2, NOASSIGN EXEC... i iutiiieteeieeterieete ettt et st et sttt s et st e bt e s st e besat e st et e s bt e aesae e bt emtesbesaeesreenbesneenbesaeen 20
12, MCDONALD EXEC.....ciiiiottteiieittee ettt eesirteeeesinteeessssteeeesssuseeeessensseaessesssasessssssaeesssssseeesssssssaeessssseseesnnn 20
D3 ADD EXEC. ..ttt ettt ettt et ettt st e b st s bt st s bttt e st b e st e bt et e e bt et e s he e bt e a e e bt e e e e he e bt sae e beentens 22
DA AREAS EXEC... ittt iititeeeiteee e ettte ettt e e s sttt e e s sttt e s seatteeesesasaaeesesassaeesesassaeeeesnseaeessanstaaesssnnsnaessnsnseaeennen 22
15, TWELVDAY EXEC... ..o ititeiteiieterteeteste ettt sttt sit et s e s bt st e s bt et e sst et e saeesbe st e bt e e e s st eneesaeeabeentesneemeeseeenee 25
M O N o = L O (= U A A]) TR 26
17. GAME EXEC (PArt 2 0F 2)...ciiieieieeieeteteeee ettt sttt et sttt sb st she et st e st s e see st e smeenneems 27
D8 MESSY EXEC.... itiiieiitie ettt ettt e s ettt e e e ettt e e s st e e e e s aste e e e s asbaae s s nbaaesaansbaeesesnsaeeeeenreaeeeesnraeeeenannes 29
19. COUNT Used for TWO DIifferent PUIMPOSES.......ccciiiiceeecciieecieeeette e ectteestee e etee e e tee e steeestaeesasaessnsaessnnaesnanes 30
20. TICKETS EXEC.... tttiieiitteeeiittet ettt s eeiteessestteesssssteeessnseeeeesanstaaessesnsaaessanssaeesssssseeesssnsseaessssasseeesssannes 32
21, CHECKERS EXEC.....ciititeitieieeitete ettt ettt st sttt st et st e s bt st sat et e st e st e st e bt et e s bt et e saeebesmaenneemeeneesane 34
22 TTRACE EXEC...ciiiiittteiieiittee ettt e e eittee e e sttt e e e sartt e e sseastteesssssstaeessuseaeessanssaeessassatessessssaeesssassaeesssnssaeeeenn 38
23. RTRACE EXEC... ittt sttt ettt sttt ettt sttt b et s ae et sat e bt et e e bt et e sae e bt emtesbe e e e sreeasesseenbesneen 39

S DICEY EXEC. it itiiee ettt ettt ettt e e ettt e e e et e e e e et e e e s et ee e s ab et e e e e abe e e e e e e nb et e e eenreteeee e nraeeeesanreeeeeaanne 40
e SQUARE EXEC.....iiiiiiriieiiniieieeiteeteit et sttt stt st sttt sae bt s st saesb s bt sbe s bt sb e bt s bt sbessesbesbesbesbesbesbtesesbesbesbesbesaeenes 49
CHALF EXEC... ettt ettt ettt ettt s ettt e e s et e e e e s sbt e e e e s nn et e e e s ane e e e e e e aseee e e e nnbeeeeeenreteeeennreeeaanan 50
e SORT EXEC ... itetetetetetetet ettt ettt ettt ettt s bbb e b e b e b e b e b e b e b e b e b e b e b e b e b e ebe b e bt ebeeb e b e ebeebeenene 52
S ROOTS EXEC... ettt ettt ettt ettt e e sttt e e sttt e e sttt e e s e ase e e e s e uset e e s e e nseees s anseeeeaeaasaeeeeeaanseeeeesanneaaeens 53
S DOZEN EXEC...c. ittt sttt ste sttt st st st ettt et et et et et et et et e b e b et et enb et et e benbebenbenbebebentens 54
INEVER EXEC... ettt ettt e ettt ettt e e e e ettt e e e e e bt e e e s e abat e e s e s nseeee e e nneeeeeeanreeeeeanreeeesaannet 54
c ABRACADA EXEC.....c..tiiiteietetetetetet ettt eat et et et st et e st s bt s bt e bt e st e st eatsaeeatesteaeebeest e bt sateseebtebeeseebeenesbesseenes 55
WHATDAY EXEC. .. ettt ettt ettt ettt e e s ettt e e e e e bt e e e e e stee e e s ane e e e e e e aseae e s e nnbeeeseenseteeaenannaeeeanan 56
S VALNUM EXEC ... titetetetetententest ettt est st estesee st sbesbe st esbesbesaesaesbesbesbesaesbesbesbesaesbesbesbesbesbesbesbesbeseesbesbenees 57
c SHARE EXEC... ettt ettt ettt ettt e ettt e e st e e e s sttt e e s et e e e e e s et e e e e sstee e e e nreeeeeeurbeeeeesnnaeeaanas 59
S INVOTICE EXEC... . ititeetitetententestestesteste st e te st este st estestestesbe st estentensensentantensensentansentensensentensansensensensensensansansan 61
ACCURATE EXEC. .. eeteeeeeetee ettt ettt ettt e e ettt e e e sttt e e s ae et e e s e as bt e e e e e anbeeesaeanseteeseaanseeeeesnseaeeenanneees 64
S TTRUNG EXEC..... ottt ettt et et et et et et et et e st et et et et et et et embenten s et ent et ent et enbensentansensensentensensansan 65
S TABLETL EXEC... ittt ettt ettt ettt e e et e e e et e e e s e ne e e e e e e ab et e e e e nee e e e senbeteeaeareteeeeenneeeeeaanne 69
CTABLEZ EXEC.....cutiiiieieieeiteieeieeie et teit st st st st sbtsbe st sbeshesbesbesbesbesbesbe s bt sbesbesbesbesbesbesbesbesbesbesbesbesbesbesbesbenbenees 70
S TABLES EXEC. .. ettt ettt ettt ettt e e ettt e e et e e e e et e e e e e ab et e e e e nee e e e eenreteeaeereteeeesnreeeeeaanne 71
S VALIDFN EXEC. ..cttitititetetentetententeste st estestestesbesbe st esbesbensesbebe s esessebensenbensensensensenseasensesesensensensensensensenes 72
CREVERE EXEC.... ittt ettt ettt e ettt e e e sttt e e sttt e e s be e e e e e set e e e e e nseeeeeenseeeeeeaanneaeeaanseeeas 73
S MYPROG EXEC. ..uuititetetetetetetentestestete st teste st e te st e eetese st ensensesensensensensensensensensesensensensensensensensensensenes 74
< ORDCHARS EXEC.... it i ittttieeitete ettt e ettt e s ettt e e s e st e e e s e s et e e e e s ase e e e e sauseteeesansbteesaennseeeseenreeeesennneaeeanan 76
cXE EXEC (Pt L OF 2).cuuitietieieeieeteeiestesiesteste sttt ettt sttt e stesbe st st st e st e sbe st esbe st esbestenbentenbenbenbensensensensensan 77
B o) L O (- U A2 o]) TSP 78
. Comparing Character DY CharaCter......cuii ittt st e s re e s eate e s e ate e s rteessneee s nteesnnes 79

CYEP EXEC. ettt ettt et b e s b e e s ne e s n e e e s ne e e s neeesanerens 81

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

NOFUZZ EXEC..... . ettt ettt ettt ettt e e e et e e e e et e e e e abeee e e e nseeees s nseetessannseteesennseeeeaesnneeeeennnne 82
FUZZ EXEC.... oottt ettt ettt ettt ettt et et b e st e st e e e st e e e st e bt e e e s bt e e e sae e st emeesreeaeesseeasenntens 82
NOPUNC T EXEC.... i itieieeiitteeeettte ettt e ettt e s sttt e e s e et e e e seesateeeesnseeeee s nneeeeeeanneeeeesaaneeaeesanseaeeaaanneaeas 86
DIGITS EXEC.....iiiiiiieteieetenieetesite sttt sitess et st e et sat e bt ese e bt st e s bt e b e e st et e sae e be s et e st et e sseesesmneaneeneesseeneens 86
CHITCHAT EXEC. .. etiee ettt ettt ettt ettt e e sttt e e e e et e e e e e st e e e s e see e e e e e nseeeeeaanneeeessensbaeeaesanseeesenanneees 88
WHATDAY 2 EXEC.... e iteitteieeteite ettt sttt sttt st st st s bt et e st e b e st e st st e bt e e e s bt e s e sseesseemeessesaeenseensennis 88
PARSWORD EXEC..... . eeiieieiteet ettt ettt e ettt e e sttt e e ettt e e s e esee e e e s e st e e e e e sseeeeesanneeeeesanneeaessanseaeesannnes 90
FUSSY EXEC..... ettt ettt ettt ettt ettt sttt s sttt st e bt e s bt et e s et e bt e mteebe st e seeeneemeenseeneenreeane 91
MIX EXEC. .. ettt ettt ettt ettt e e e et e e e e et e e e s e anb e e e e e ss e e e e e s aseeeeeenneeeeesannbeaeesanseaeesasnseeeenannnne 92
TAKE EXEC. .. tteteeteetenteetee ettt ettt sttt ettt b e s s bt et e s st e e e s me e b e st e st et e e bt et e sae e bt eaeesbesaeesreennenneen 93
PARSING EXEC....c i ietiet ittt ettt ettt e sttt e e sttt e e e et e e s e e st e e s seanseteeseanbaee e e e nseeeeesanneaaeesanseaeesannneneas 94
MYPROG2 EXEC.....cutiieeteierteitete ettt sttt sttt st s st sst et e st e st e st e s st et e s st eeesae e st emeesbesaeesreensesntensesaeensenns 94
CHANGE EXEC.... ettt ettt ettt ettt sttt e e sttt e e s et e e s e s nbt e e e s e anb e e e e e nseeeeesanneeeeesanseaeesaanseeeesananne 95
ERASER EXEC.... ittt sttt ettt st sttt st me et st e b e s me e bt et e s bt e eesan e st eneesreeneens 98
ELIST EXEC. it ieteeieeitte ettt ettt ettt e e sttt e e e e s et e e e e s st e e e e e st e e e e s nbeteeaaauneeeeeeenseteesenseeeeeeanseeeeeann 98
BACKUP EXEC.....u ittt sttt ettt sttt s st et st e et st e bt s e s bt st e s st et e s st et e sae e bt et e sneeneesaeensesneenne 99
LINKHELP EXEC.... e cii ettt ettt ettt sttt ettt e s ettt e s st e e s e s sbe e e e e s nseeeeeenneeee e e nnbeeessansaeeesaanseaeenan 100
| Taa] o] (SIS U] o] o TV 4] o= T TSP 105
PAIRS EXEC (Part L O 2)..iiciieciiecieccieesteee et ete st este e tessseesaeesreeete e seessteebeesnsessseesnsesnsesssessnsesnsesnnses 106
PAIRS EXEC (Part 2 0 2)...ceuieieieieieietetetet ettt ettt ettt et ettt ettt et ettt et et et et et et eneen 107
A STack USING PUSH @Nd PULL...iiiiiiiiiieieteeeett ettt e ssiae e s esnsaaesnaeaesneas 108
A Stack USINg QUEUE AN PULL.c..uviiieiee ettt ee e vee s s vae s aa e e e ba e e s be e e sbaeesnbaeesnveas 108
A Stack Using Queue, PUSh, @nd PULL.......oooiiiiiieccteeeeete ettt see s 109
NEARFULL EXEC......iitiiteieeteienteet ettt st sr et s et sie et s st st e shtesesse e bt smeesbeeasesseensesmeessesasenseensenns 111
LEFT7 EXEC. ittt ettt ettt ettt e ettt e e ettt e e e et e e e e e nt e e e e s aneee e e e ase e e e e e sbeeessennreteeaesannaeeeenanneeaeenn 112

xi

xii

74.

75.

76.

717.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

TDISK EXEC (Pt L O 3)..ueeeiieieieeeeeieterteeeneeseet ettt et se e se e e s e se e sneseesaeseesaesnesnesneseeseennes 114
TDISK EXEC (Part 2 0 3)..ueeietetetetetetetest ettt ettt st este st et et st e saestesbesbesbesbesbesbesbeseeseesaessesseseessenees 114
TDISK EXEC (Pt 3 0 3) ittt ettt ettt et et e sae s snesn e seesaesnesnesneseesnennes 115
TEN XEDIT oottt bbb bb e s bb e e sbb e s s bb e s sba e s sbaeesnas 118
PAGE XEDIT .o bbb e 118
DENTAL XEDIT...utiiiiiiiiiiiiiiiiiiiti ittt ab s ab e saa e saa s e saas e sabs e ssabaesabaesas 119
T I 0) R 120
PARA XEDIT ittt ab s s aa s s aa e s saa e s sabe s s b e s sabessanns 121
PROFILE XEDIT ...ttt e b s ae e s ab s sbs e s b s an e 122
TESTMENU EXEC....iiiiiiiiiiiiiiiiiiiiiciicit ittt e saas s b s sabs e ssabs e ssabae e 123
SAMPMENU XEDIT (Part 1 OF 2).c..ceeiieresienisieseseseses st sne s snesnen 123
SAMPMENU XEDIT (Pt 2 OF 2).c.uiiieiieierieeienieetesiesiesiesie sttt sttt stesbe st st sbesbesbesbesbesbesbesbesbesbesbessensens 124
CENSUS EXEC.... i a s s aa e b 131
PILOT EXEC.. ittt aa s s aa e s sba e sabe s saa e s sabaessanaes 132
TRUCKER EXEC......oiiiiiiiiicit bbb s s ae s aa e 132
HANDOUTS EXEC...ciiiiiiiiiiiiiiiiiiiiiiii ittt sttt sas s sas st ssabs e s sabs e ssabs e ssansessans s 134
RECTANGL EXEC......ii it a s 135
TRIANGLE EXEC....iiiiiiiiiiiiiiiiiticiiiiit ittt as s ba e s s aa e s aae s snae s snn s 136
SUM EXEC .. e e 138
POSN EXEC....iiiiiiiiiiiiiiiiiiiiiiiititi ittt aa e s aa e s sab s e sabs e sabe e sabsessabaeeas 141
I PR 144
CHEER EXEC...iiiiiiiiiiiiiiiiiiiiiiiittt ittt ab e s aa e saa s e sabas e sabas e snasesnase s 146
I = P 159
CHAROUTL EXEC....iiiiiiiiiiiiiiiiiiiiiiiceniien ettt sttt st saat e s sas e s saas e s sabaessanas 161
SHOLINT EXEC... ittt b e s bbb 162

99. SHOCHARTL EXEC.... ittt ettt st et s e s e e e s st e s see e s smree s smneesemneeesmnnessnsnessnne 163

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

SHOLINZ EXEC..ciiitiiiice e s 164
SHOLINS EXEC... it bbb s 168
SHOLINZ EXEC... it 168
STREAM EXEC.... i s 170
STREAMLP EXEC.....coiiiiiiiiiiiiiiiiiiiiiiiic ittt sttt ettt sas e s saas e s saas e ssnns s 170
QRYFILEL EXEC... ittt a s b a e 171
QRYFILEZ EXEC...c ittt ssaas s b s sabs e ssaba e ssaas e ssanae s 171
CHAROUTZ EXEC.....o ittt 173
CATMOUSE EXEC (Part 1 0 2)...ccueiieiiriieiieieriirieeteresteiest ettt sttt st ve sttt sae e 177
CATMOUSE EXEC (Part 2 0f 2)...cciiieiieieiieieeiereresertesreseei ettt 178
O I b = O 181

xiii

xiv

Tables

1. Examples of Syntax Diagram Conventions
2. Results from the REFORMAT EXEC
3. Inputs and Outputs of Hexadecimal Functions
4. Keywords Used in Programming Languages

5. Read and Write Functions

XV

About This Document

If you would like to be able to write programs, this document is for you. You will need a terminal with
access to IBM z/VM, and you should be reasonably familiar with z/VM, but you need not have had any
previous programming experience.

The programming language described by this document is called the REstructured eXtended eXecutor
language (sometimes abbreviated REXX). The document also describes how the z/VM REXX/VM language
processor (shortened, hereafter, to the language processor) processes or interprets the REstructured
eXtended eXecutor language.

You will learn about:

« Contents of a REXX program, rules of syntax and substitution, and the use of variables

- How to write expressions, use conversations, enter CMS and CP commands, control your program, and
construct and design your REXX programs

« Examples of REXX programs, and tailoring XEDIT through REXX programs.

Intended Audience

You should read this document if:
« You want to learn how to write programs but do not have any previous programming experience
« You are familiar with other programming languages but want to learn how to use REXX

« You have had some experience with the REXX language but want to gain more knowledge of practical
examples.

As you can see, this document is not intended for any particular user possessing any particular title. REXX
is a very powerful, yet adaptable language suited to fit many varying programming needs.

Before reading this document, it is important for you to consider the following items:

« If you are not familiar with CMS or SFS, read z/VM: CMS Primer first.
 You will need a VM user ID and logon password.
« If you are using REXX in the GCS environment, see z/VM: REXX/VM Reference.

Syntax, Message, and Response Conventions

The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

e The =~ ~——symbol indicates the beginning of the syntax diagram.

« The — symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.

« The =——symbol, at the beginning of a line, indicates that the syntax diagram is continued from the
previous line.

e The — < symbol indicates the end of the syntax diagram.

© Copyright IBM Corp. 1991, 2023 xvii

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb2_v7r3.pdf#nameddest=dmsb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xviii.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants »»— KEYWORD <

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or

constant in uppercase letters, lowercase letters, or

any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

Abbreviations »— KEYWOrd -»<

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or

KEYWORD.

Symbols *

You must specify these symbols exactly as they appear in the Asterisk

syntax diagram. :
Colon
Comma
Equal Sign
Hyphen

0

Parentheses
Period

Variables »w— KEYWOrd — var_name -»<

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

xviii About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example
Repetitions

An arrow returning to the left means that the item can be {
repeated. repeat

A character within the arrow means that you must separate)
each repetition of the item with that character. £
repeat

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated. £ 1

. . repeat
Syntax notes may also be used to explain other special
aspects of the syntax. Notes:

1 Specify repeat up to 5 times.

Required Item or Choice A -pd

When an item is on the line, it is required. In this example,

you must specify A. A

Tl
LLi

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

Defaults

When an item is above the ling, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

St

In this example, you can choose any combination of A, B, or
C.

About This Document Xix

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example
Syntax Fragment
Some diagrams, because of their length, must fragment thg A Fragment
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram A
after a heading with the same fragment name.

B
In this example, the fragment is named "A Fragment." c

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

XXX
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

Brackets enclose optional text that might be displayed.
{}
Braces enclose alternative versions of text, one of which will be displayed.

The vertical bar separates items within brackets or braces.

The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information

You can find more information about VM and REXX in the publications listed in the back of this book. See
“Bibliography” on page 189.

Links to Other Documents and Websites

The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xx z/VM: 7.3 REXX/VM User's Guide

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1991, 2023 XXi

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xxii z/VM: 7.3 REXX/VM User's Guide

Summary of Changes for z/VM: REXX/VM User's Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (]) to the
left of the change.

SC24-6315-73, z/VM 7.3 (September 2023)

This edition includes terminology, maintenance, and editorial changes.

SC24-6315-73, z/VM 7.3 (September 2022)

This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6315-01, z/VM 7.2 (September 2020)

This edition supports the general availability of z/VM 7.2.

SC24-6315-00, z/VM 7.1 (September 2018)

This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1991, 2023 xxiii

xxiv z/VM: 7.3 REXX/VM User's Guide

Introduction

Chapter 1. Introduction

We'll begin each chapter with a brief description of its contents.
In this chapter:

What is REXX?

Features of REXX

REXX and z/VM

« How to use the reading plan.

What is REXX?

The REstructured eXtended eXecutor language, or REXX language, is a versatile, easy to use structured
programming language that is an integral part of z/VM. Its simplicity and free format make it a good
first language for beginners. For more experienced users and computer professionals, REXX offers
powerful functions, extensive mathematical capabilities, and the ability to send commands to multiple
environments.

REXX is an adaptation of the CMS (Conversational Monitor System) EXEC 2 language; however, REXX
instructions are quite different and easier to use. If you are a newcomer to programming, you will find that
it is fairly easy to learn and write programs in REXX.

On the other hand, if you are an experienced programmer, you will find that REXX somewhat resembles
PL/I. There are a number of differences, but the main difference is that a REXX program is interpreted
(the language processor operates on the program directly as it runs). In PL/I, the program is compiled
(translated into machine language) first, then run.

Using the REXX Compiler (which runs under CMS on z/VM), you can improve performance, maintain
code security, and improve your program's documentation. The REXX Compiler translates REXX source
programs into compiled programs, which run faster because they do not have to be translated while
running. For additional information on the benefits of using the REXX Compiler, see the CMS REXX
Compiler General Information manual.

Features of REXX

Ease of use: The REXX language is easy to learn and use because many instructions are meaningful
English words. Unlike some programming languages that use abbreviations, REXX instructions are
common words, such as SAY, PULL, IF..THEN...ELSE, DO...END, and EXIT.

Free format: REXX has few rules about format. A single instruction might span many lines or multiple
instructions may be entered on a single line. Instructions need not begin in a particular column; you
can skip spaces in a line or skip entire lines. You can type instructions in upper, lower, or mixed case.
And there is no line numbering.

Interpreted: When a REXX program runs, its language processor reads each language statement
from the source file and runs it, one statement at a time. Languages that are not interpreted must be
compiled into machine language (in separate files) before they can be run.

Built-in functions: REXX supplies built-in functions that perform various processing, searching,
and comparison operations for both text and numbers. Other built-in functions provide formatting
capabilities and arithmetic calculations.

Parsing capabilities: REXX includes extensive capabilities for manipulating character strings. This
lets your programs read and separate characters, numbers, and mixed input.

Debugging: When a REXX program contains an error, messages with meaningful explanations are
displayed on the screen. In addition, the TRACE instruction provides a powerful debugging tool.

© Copyright IBM Corp. 1991, 2023 1

Introduction

REXX and z/VM

By far, the most vital role REXX plays is as a procedural language for z/VM. That means a REXX program
can be a kind of script for z/VM to follow. By using REXX, you can reduce long or complex or repetitious
tasks to a single command or program that can be run from CMS.

REXX is a built-in feature of z/VM, so there is no installation process or separate environment. Any REXX
program can call CMS and CP commands.

Note: In an XA or XC virtual machine, REXX execs and XEDIT macros can reside in storage above the
16MB line.

About Programming

Think of a program as a list of directions, like a recipe.

First of all, the directions have a basic sequence: you cannot mix an omelet until you have broken the
eggs.
In a recipe, there are some instructions that indicate actions: chopping and mixing, for example.

« Other directions simply specify the ingredients and their proportions or measurements: a pound of
almonds, two cups of flour.

Then there are directions to tell you how to carry out other directions.

— Some are iterative; that is, they specify repetitious actions, like stirring and kneading.

— Some are conditional; they indicate when an action should begin or end: "bake for 30 minutes or until
brown."

And that is all a program is: a list of directions and some directions about directions.

Now, you may think of programming as a skill practiced only by computer experts, but that is not true. You
need not know how a computer works to write a program any more than you have to know chemistry to
bake a souffle—although even a little knowledge helps when you are troubleshooting.

You will have to take care to be very precise—in your typing as well as your thinking—because computers
are extremely literal. They simply cannot overlook minor errors the way people can. Even so, by solving a
program's errors, you are sure to learn more about the job you want your program to perform. And that is
useful, too.

Anyone can write a program, and anyone who uses a computer eventually finds a good reason to do so.
With even a little programming know-how, you can reduce a long or repetitious series of commands into a
single command. Or you can customize z/VVM and other programs to work more the way you want them to.

You will see that programming helps you let the computer do the work it does best. That is what REXX
was meant for, and this book should make REXX itself that much easier.

The Reading Plan

To assist beginners and less-experienced programmers, each subject is dealt with at three levels: Reading
1, Reading 2, and Reading 3.

Reading 1
The first reading introduces you to all the basic concepts of REXX. You will learn these concepts by
writing programs suggested in the text. We expect you will also write some programs for your own
use.

Reading 2
The second reading expands your knowledge of the first reading's information and teaches you the
main body of the REXX language. You will also write, copy, and modify more programs.

Reading 3
The third reading contains information on features that are not often used or that are specific for
special kinds of programs.

2 z/VM: 7.3 REXX/VM User's Guide

Introduction

To guide you through these readings, there are headings (like the one following) at the top of each page
that tell you what reading level you are on.

Reading 1

In addition, there are reminders in at the beginning of each reading. These reminders
will tell you where a particular reading begins. Following is an example.

Reading 1

There are also bold type reminders at the end of each reading. These reminders will tell you where the
reading ends and where you should go next.

The three-level reading scheme should help maintain your interest while you build up your knowledge and
skill.

If You Have Never Written a Computer Program...

If you are a newcomer to programming, you will find it fairly easy to learn and write programs in REXX.
Start by reading just the basics of each chapter in sequence.

When you have read all of the basics, go back and read the remainder of each chapter to learn more about
specific topics.

If You Are Already Familiar with Another Language...

Even if you are already an expert programmer, you might want to skim the basics just to get an overview of
the REXX language. Or, you may prefer to read about individual topics, one at a time. Here are some areas
you might want to investigate:

« If you are skilled in BASIC, you will want to note in particular the ways that REXX differs from BASIC:
— There is no line numbering
— There are no GOSUB or GOTO statements; use CALL and SIGNAL instead
— REXX variables have no data type.

« If you are familiar with development languages like C and Pascal, you will find REXX somewhat similar.
Again, the main difference is that a REXX program is interpreted; that is, the source code of the program
is processed line by line. There is no compiling process (unless you purchase the compiler).

Exercises and Examples

As with any other language, you do not learn a programming language just by reading about it. You learn
it by using it, by trying it out. That is why this book will devote a good deal of space to hands-on exercises
and examples. To get the most out of this book, set it down next to your computer and:

 Test yourself with the exercises as you read.
« Examine the sample programs in the text. Type them in just as you find them here.

« Try out your own variations of each program. See if you can find a different—or better—way to do what
the sample program does.

The REXX Reference

The z/VM: REXX/VM Reference contains the most complete description of the grammar of the REXX
language. You will need to have your own copy of this book on hand, so you can look up any instruction or
function not completely defined here.

Think of the Reference as your dictionary for REXX and this User's Guide as a kind of cookbook of simple
(and a few fairly sophisticated) recipes and ideas.

Chapter 1. Introduction 3

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Introduction

4 z/VM: 7.3 REXX/VM User's Guide

Reading 1

Chapter 2. Starting Out with REXX

In this chapter:

Reading

Describes

Reading 1

Reading 2

Reading 3

How a Program Works

immediately following, describes:

« How a program works

- Conversations

- Typing in a program

« Running a program

« Stopping a program

- What goes into a program

« Comments

« Keyword instructions

« Strings (in quotation marks)
« Lowercase characters (a...z)
 Blanks

 Clauses

- Syntax error.

“Substitution Rules” on page 14, describes:

« Substitution rules.

“Repeated Substitution” on page 14, describes:

- Repeated substitution using
— The VALUE() function
— Compound Symbols
— The INTERPRET instruction.

We have described a REXX program as a list of instructions to your computer, something like a recipe. The

program itself is simply a text file that you create with a word processor or text editor.

Sometimes the computer runs a program with no guidance. Other times it may need additional

information from the operator to do its work. One way that a computer can communicate with its user is
to ask questions and then compute results based on the answers typed in. As part of the recipe, then, the
programmer (you) can include instructions that let the computer converse with whomever is using it.

Conversations

One way that a computer can communicate with a user is to ask questions and then compute results
based on the answers typed in. In other words, the user has a conversation with the computer. You can
easily write a list of REXX instructions that will conduct a conversation. We call such a list of instructions a

© Copyright IBM Corp. 1991, 2023

Reading 1

program. Figure 1 on page 6 shows a sample REXX program. What it does is ask for the user to give his
or her name. Then the program greets the user by the name given.

For instance, if the user types in the name Jean, the program replies Hello JEAN . Or else, if the user
does not type anything in, the reply Hello stranger! isdisplayed instead.

First, you will look closely at how this program works; then you can try it for yourself.

/* HELLO EXEC - A conversation */

say "Hello! What is your name?"

pull who

if who = "" then say "Hello stranger!"
else say "Hello" who

Figure 1. HELLO EXEC

This sample program consists of six statements, one to each line, called clauses. Briefly, the various
pieces of the program are:

[* ... %/
The first clause is a comment explaining what the program is about. All REXX programs must begin
with a begin-comment delimiter (/*). Apart from this, comments are ignored.

say
The second clause is a keyword instruction, say, that displays text on screen.

"Hello!..."
Anything in quotation marks after say is displayed just as it is. This is called a literal string.

pull
This keyword instruction reads and stores the response entered by the program's user. This is the
third clause.

who
A variable: a name given to the place in storage where the user's response is stored.

if
The fourth clause begins with the if instruction; it tests a given condition.

who = nn
The condition to be tested: whether the variable who is empty.

then
Tells REXX to process the instruction that follows, if the tested condition is true.

say "Hello stranger!"
Displays Hello stranger! on the screen (but only if the condition is true).

else
This final clause gives an alternative direction: process the instruction that follows, if the tested
condition is not true.

say "Hello" who
Displays Hello, followed by whatever data is stored in who (if the tested condition is not true).

That is what the program does.

Typing in a Program

To type in the following program, use the same editor as you use for other work; any editor will do. This
discussion will assume that you use XEDIT, the z/VM editor.

The name of the program is HELLO EXEC (for now, assume that the file type must be exec).

1. Log on to z/VM and type the command:

xedit hello exec

6 z/VM: 7.3 REXX/VM User's Guide

Reading 1

2. Type in the program, exactly as it is shown in Figure 1 on page 6, beginning with /* HELLO EXEC -
A conversation */.Then file it using the XEDIT command:

====> file
The system will reply with the ready message:

Ready;

Now your program is ready to run.

Running a Program

If you want to run a program that has a file type of EXEC, you just type in its file name. In this case, type
hello onthe command line and press Enter. Try it!

Suppose your name is Fred. Type fred and press Enter. Hello FRED is displayed.

Ready;

hello

Hello! What is your name?
fred

Hello FRED

Ready;

Here is what happens:

1. The SAY instruction displays Hello! What is your name?
2. The PULL instruction pauses the program, waiting for a reply.
3. You type fred on the command line and then press Enter.
4

. The PULL instruction puts the word FRED into the variable (the place in the computer's storage) called
who.

5. The IF instruction asks, Is who equal to nothing?

who =

This means, "is the value stored in who equal to nothing?" To find out, REXX substitutes that stored
value for the variable name. So the question now is: Is FRED equal to nothing?

"ERED" = """

6. Not true. The instruction after then is not processed. Instead, REXX processes the instruction after
else.

7. The SAY instruction displays "Hello" who, which is evaluated as

Hello FRED

Now, here is what happens if you press Enter without typing a response first.

hello
Hello! What is your name?

Hello stranger!
Ready;

Then again, maybe you did not understand that you had to type in your name. (Perhaps the program
should make your part clearer.) Anyhow, if you just press Enter instead of typing a name:

1. The PULL instruction puts "" (nothing) into the place in the computer's storage called who.
2. Again, the IF instruction tests the variable

Chapter 2. Starting Out with REXX 7

Reading 1

meaning: Is the value of who equal to nothing? When the value of who is substituted, this scans as:

And this time, it is true.
3. So the instruction after then is processed, and the instruction after else is not.

Stopping a Program

Most of the programs we use in this book run pretty fast. But if you ever need to stop a program from
running further, just enter the CMS immediate command to halt interpretation:

HI

REXX then stops running the program and returns to the CMS prompt.

Test Yourself...

Did you get your version of HELLO EXEC to run on your z/VM system? If not, check that you have correctly
typed it in. If it still does not work and you cannot understand the error messages, ask for help. Usually,
experienced users are happy to help a beginner. At some installations the System Support people will give
help over the telephone.

Do not worry if you did not fully understand how you could use the SAY, PULL, and IF instructions. This
will be explained again later.

What Goes into a Program

You can write a program in any accessed SFS directory for which you have write authority or on any
minidisk accessed read/write.

Use the same editor as you use for other work; any editor will do. In this book, we shall assume that you
use XEDIT, the z/VM editor.

In order to explain what goes on when you run a REXX program, we have introduced a lot of terms. There
will be more, so before we go on, we will define the ones we have used so far.

Comments in Programs

When you write a program, remember that you will almost certainly want to read it over later (before
improving it, for example). Other readers of your program also need to know what the program is for, what
kind of input it can handle, what kind of output it produces, and so on. You may also want to write remarks
about individual instructions themselves. All these things, words that are to be read by humans but are
not to be interpreted, are called comments.

To indicate which things are comments, use:
/*

to mark the start of a comment
*/

to mark the end of a comment.

The /* causes the language processor to stop interpreting; interpreting starts again only after a */ is found,
which may be a few words or several lines later. For example,

/* This is a comment. =/
say ... /[/* This is on the same line as the instruction %/
/* Comments may

occupy more

than one line. %/

8 z/VM: 7.3 REXX/VM User's Guide

Reading 1

Comments with Special Meaning to CMS
The first line of a REXX program must start with a comment. Why?

Historically, there are three languages that can be used for writing execs for z/VM. The oldest is called
CMS EXEC; the next is EXEC 2; and the latest is REXX. For technical reasons, they all have a file type of
EXEC. Because each type of exec requires its own special processing, CMS must be able to distinguish
one type from another. It does this by looking at the first line of the exec file. So, to tell CMS that your
program is written in REXX, the first line of the file must start with a comment.

/* This is a REXX program. x/

Although /* */ is sufficient, a better use for this space is to provide a brief description of your program. You
can even do it this way:

* HELLO EXEC written by Denise B. *
* May 12, 1994 *
* A program to greet a user by name. *
*************************************/

Keyword Instructions

Words like PULL, IF, and SAY are part of the REXX language called instructions. The words themselves
are referred to as keywords. You will notice that they are usually (though not always) verbs. They are the
directions that tell REXX what to do with this or that information at a certain point in the program:

« Say (display on screen) "hello".
 Pull (accept and store) information from the user.
« If this situation true, then perform this action.

When you list these instructions in the order you want REXX to carry them out, you have a program.

Clauses

In a more formal sense, we say that a REXX program is made up of clauses—that is, a complete
instruction, including the information it works on and any options that may be used. REXX reads each
individual clause and then processes it before going on to the next. That is why we say that REXX is an
interpreted language.

In the sample program just given, each line of text corresponds to a single clause. REXX allows exceptions
to this (they are discussed in detail in “When Does a Clause End?” on page 11). For clarity's sake, we

will follow the convention of one clause to a line. This is the case for all the examples in this book, except
where explicitly noted.

Literal Strings

When REXX finds a quotation mark (either " or ') it stops processing and looks ahead for the matching
quotation mark. The string of characters inside the matching quotation marks is used just as it is. Hence,
the name literal string. Examples of literal strings are:

« 'Hello'
« "Final result:"

If you want to use a quotation mark within a literal string, use quotation marks of the other kind to delimit
string as a whole.

« "Don't panic"
 'He said, "Bother"

There is another way. Within a literal string, a pair of quotation marks (the same kind that delimits the
string) is interpreted as one of that kind.

Chapter 2. Starting Out with REXX 9

Reading 1

« 'Don"t panic' (same as "Don't panic")
« "He said, ""Bother""" (same as 'He said, "Bother"")

Uppercase Translation

When a clause is processed, any letters that are not in quotation marks are translated to uppercase. In
other words, the letters

a,b,c, ..z
get changed to
A B,C,..Z

REXX also ignores some of the blanks that you may have written into your program, keeping only one
blank between words. If this is not what you want, you should use quotation marks. Figure 2 on page 10
shows an example.

/* SHAGGY EXEC */
/* Example: cases and spaces */
say a long story /* Result if "a," "long," and %/
/* "story" have not been */
/* assigned a value. See */
/* “Example: Setting Variables” on page 20. x/
say "A long story" /% Quotation marks mean to */
/* print exactly as entered. */
say about" "a dog

Figure 2. SHAGGY EXEC

When you run the SHAGGY program, here is what appears on your screen:

shaggy

A LONG STORY

A long story
ABOUT A DOG

Ready;

One more point: Remember in the sample program how the user's input fred got changed to FRED? That
had nothing to do with the process we just described. Rather, that particular translation is a feature of the
pull instruction, which always converts user input to uppercase. The practical value of this is that the
user can type in any combination of uppercase and lowercase letters.

Variables

When we need to work with changeable information (such as the user's name in HELLO EXEC), we can
reserve a place in storage. That memory niche is called a variable.

When REXX processes a clause containing a variable, it substitutes the variable name with the stored
data. That is how the stored entry FRED took the place of the variable name who in our first example.

We will cover variables in more depth in Chapter 3, “Variables,” on page 17.

Clauses
Your REXX program consists of a number of clauses. A clause can be:

1. An instruction that tells the language processor to do something; for example,
say "the word"

In this case, the language processor will display the word on the user's screen.

10 z/VM: 7.3 REXX/VM User's Guide

Reading 1

2. An assignment; for example,

Message = 'Take care!'
This means that the string Take care! isto be putinto a place called MESSAGE in the computer's
storage.

Because MESSAGE can be given different values in different parts of the program, it is called a
variable (discussed in Chapter 3, “Variables,” on page 17).

3. A label, which is a name followed by a colon; for example,

MYSUB:

(Labels are discussed in “The CALL Instruction” on page 146 and “The SIGNAL Instruction” on page
152).

4. A null clause, such as a completely blank line, or

’

Note: Anything that is not one of these (an instruction, an assignment, a label, or a null clause) is taken
to be:

5. A command; for example,

erase hello exec

Commands are passed to CMS (or other environments; discussed in “Issuing Commands to CMS and
CP” on page 97).

When Does a Clause End?

It is sometimes useful to be able to write more than one clause on a line, or to extend a clause over many
lines. The rules are:

« Usually, each clause occupies one line.
« If you want to put more than one clause on a line you must use a semicolon (;) to separate the clauses.

- If you want a clause to span more than one line you must put a comma (,) at the end of the line
to indicate that the clause continues on the next line. The comma cannot, however, be used in the
middle of a string or it will be interpreted as part of the string itself. The same situation holds true for
comments.

What will you see on the screen when this exec is run?

/* RAH EXEC */

/* Example: there are six clauses in this program x/
say "Everybody cheer!"

say II2II; say II4II; say “6“; say II8II;

say "Who do we",

"appreciate?"

Figure 3. RAH EXEC

(If you are not sure, use XEDIT to create a file called RAH EXEC and try out the program.)

Syntax Errors

The rules governing the arrangement of words and punctuation marks in a language are called its syntax.
The actions we have been describing are part of the syntax for the REXX language. If REXX encounters
something that does not make sense according to its syntax, it stops running your program and returns to
CMS. REXX then displays the incorrect instruction line and an error message saying what is wrong.

Chapter 2. Starting Out with REXX 11

Reading 1

We will go back to our sample program. Suppose we alter it to read so:

/* HELLO2 EXEC */

/* A conversation x*/

say "Hello! What is your name?"

pull who /* Get the answer!
if who = "" then say "Hello stranger"
else say "Hello" who

Figure 4. HELLO2 EXEC with a syntax error

There is a syntax error here. We have forgotten to put a */ at the end of the third comment. When we run
the program, what appears on the screen is:

hello
Hello! What is your name?

3 +++ pull who /% Get the answer!if who = "" then say "Hello
stranger"else say "Hello" who
DMSREX453E Error 6 running HELLO EXEC, line3: Unmatched "/*" or quotation mark
Ready (20006) ;

Here is what the error message means:

« 3 +++ means the language processor was interpreting the clause that started on line 3. (The clause
itself is displayed following the +++.)

« Exrroxr 6 gives the REXX error number.

The error message gives you a good idea what went wrong. If you need more information, look up
Exrror 6 inthe list of error messages in the back of your z/VM: REXX/VM Reference.

« Ready (20006) ; is the return code that the language processor returns to CMS.

Leaving out a final quotation mark at the end of a literal string causes REXX to issue a similar error
message.

Test Yourself...

1. Read the following program carefully. Take a pencil and write down what each word is and what REXX
will do with it, depending on how the user responds.

/* WHOAMI EXEC */

/* Who Am I? game */

say "What is my name?"

pull guess

if guess = "REXX" then say "You win!"
else say no but guess "is a good guess."

Now create a file called WHOAMI EXEC and try out the program. Did everything happen as you
expected? If not, read this chapter again and then study the explanation below.

2. This next program has an error in it. Type the program in and run it.

/* TROUBLE EXEC */

/* Example: a syntax error */
say Unfortunately, there is an error here

Use the error number to look up the cause of the error in your z/VM: REXX/VM Reference. Correct the
error and test the program again.

12 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

Answers:
1. The syntax of the program WHOAMI EXEC is:

/* WHOAMI EXEC =%/ is a comment describing the program. (The first line of a REXX program must
start with a comment.)

« The say instruction displays, What is my name?
« pull is another instruction. The variable guess gets the value entered by the user.
« The if instruction checks to see if the user entered REXX.
Note: Because pull translates the entry to uppercase, the user can type it in any combination of
uppercase and lowercase letters (rexx, Rexx, TExX, and so on).
« Ifso (if GUESS = 'REXX'),thenYou win! is displayed.
- If the user enters something other than REXX, then the clause beginning with else say is
interpreted and the result is displayed.
— no butischanged to uppercase. It is a string, but it is not in quotation marks. It is displayed as:
NO BUT
— guess is the name of a variable. The user's entry, translated to uppercase, is substituted.
— "is a good guess." isa literal string. It is displayed just as it is, even though GUESS is also the
name of a variable.

Here is what actually appears on the screen if the user guesses right:

whoami

What is my name?
rexx

You win!

Ready;

But if the user guesses wrong:

whoami

What is my name?

spot

NO BUT SPOT is a good guess.
Ready;

Now, what happens if the user types nothing, but just presses Enter?

whoami
What is my name?

NO BUT is a good guess.
Ready;

The variable GUESS was empty, so the say instruction displayed nothing. Only two blanks remain—the
ones before and after the variable in the program.

That last response does not make much sense. See if you can think of a way to fix WHOAMI EXEC so
that it does. (A hint: take another look at HELLO EXEC).
2. The error number for the program TROUBLE EXEC is 37. The error message reads Unexpected

","OI II)II.

Obviously, REXX found a comma where it did not belong. What may not be obvious is what to do about
it. When you get a message like this, turn to the z/VM: REXX/VM Reference. In the back of the book, you
will find a list of error messages and explanation of their causes.

In this case, the comma has a special meaning for REXX when it is used outside of a literal string (this
is described in “When Does a Clause End?” on page 11). For a comma to be used as it is intended here,
it would have to be enclosed in matching quotation marks.

Chapter 2. Starting Out with REXX 13

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

/* TROUBLE2 EXEC */

/* Example: a syntax error fixed =/
say "Unfortunately, there is an error here"

Reading 1 continues in Chapter 3, “Variables,” on page 17.

begins here.

If you would like to review Reading 1 of this section, read Chapter 2, “Starting Out with REXX,” on page 5.

If you wish to start Reading 2, continue on.

Substitution Rules

When replacing the names of variables with their values, the language processor does not look at the
words it substitutes to see if they are also the names of variables.

For example:

food = meat

meat = steak

steak = sirloin

say "Buy us some" food /* says "Buy us some MEAT" x/

This rule applies to simple symbols. Compound symbols, discussed in “Compound Symbols” on page 15
(and in more detail in “Compound Symbols” on page 23), provide a further level of substitution.

Reading 2 continues in Chapter 3, “Variables,” on page 17.

Repeated Substitution

begins here.

For repeated substitution, you can use

« The VALUE() function
« Compound symbols
« The INTERPRET instruction.

The VALUE() Function

To specify a computed value as the name of a variable, use the VALUE() function. The example in
“Substitution Rules” on page 14 could be redesigned like this:

/* ERRAND EXEC */

/* Example: the name of the name of ... */
food = meat

meat = steak

steak = "sirloin"

say "Buy us some" value(food)

’
n n

|
; I mean some" value(value(food))".

/* says "Buy us some STEAK; I mean some sirloin." =/

Figure 5. ERRAND EXEC

14 z/VM: 7.3 REXX/VM User's Guide

Reading 3

Compound Symbols

Many programmers who use REXX are familiar with compound symbols, but only a few have ever used
the VALUE() function. Therefore, when you find a program that can be coded using either method, choose
compound symbols.

/* VENTS EXEC */
/* Part of a ventilation monitor. The user can query */
/* settings of certain ventilators. */

vent.front.door = open; vent.back.door = shut
vent.front.window = open; vent.back.window = open

do until noun -=
say "Enter command"
pull verb adjective noun /* user enters */
end /* "query front door" x/

if abbrev("QUERY",verb,1) then
say adjective noun "is" vent.adjective.noun

/* says "FRONT DOOR is OPEN" x/

Figure 6. VENTS EXEC

The same example could have been coded:

frontdoor = open; ...

say adjective noun "is" value(adjective]| |noun)

This is less familiar, though still readable.

The INTERPRET Instruction

To use a computed value as though it were a line in an exec file, use the INTERPRET instruction.

»— INTERPRET — expression —»«

The specified expression is evaluated and the result is interpreted. (For a complete description, see z/VM:
REXX/VM Reference.)

Here is an example:

/* MATH EXEC */

/* Simple calculator =*/
say "Please enter an expression to be evaluated."
say "Enter a null line to end:"
do forever
parse pull expr
if expr='"' then leave
interpret "Say" expr
end

Figure 7. MATH EXEC

To avoid confusing anyone reading your programs, it is better not to use INTERPRET in situations where a
simple VALUE() or a CALL would do instead.

Reading 3 continues in Chapter 3, “Variables,” on page 17.

Chapter 2. Starting Out with REXX 15

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 3

16 z/VM: 7.3 REXX/VM User's Guide

Reading 1

Chapter 3. Variables

Variables are a means of handling changeable information by representing it in terms of symbols. In this
chapter, we will see why that is important when writing programs; then we will describe the basic rules for
using variables.

In this chapter:

Reading Describes

Reading 1 immediately following, describes:
« What a variable is and how to assign values to them.

Reading 2 “Variables as Symbols” on page 22, describes:

« How to use variables as symbols
« How to use compound symbols to build arrays
« How to avoid duplicate names.

Reading 3 “How Much Should You Tell Your Subroutine?” on page 29, describes:

« How to limit the scope of variable names with the PROCEDURE
instruction

« How to find out whether a particular symbol is the name of a variable
« How to DROP a variable
« How to build arrays with more than one dimension.

What Are Variables?

One basic requirement of any program is that it must work with unknown information—unknown, that is,
when the program is written.

For example, you could write a program that simply totals a fixed list of numbers, like this:

/* TWOPLUS3 EXEC */
/* the sum of two and three %/
say "2 + 3 equals" 2 + 3

Figure 8. TWOPLUS3 EXEC

and you would get the result 5 every time you ran it.

But that is all you would get: a reliable program, but not a very useful one. More useful is a program that
can process different information each time it is run. You do this by using variables to stand in for values
to be processed. A variable is a symbol (one or more characters) that represents a value.

Take as an example this program, the simplest calculator you will ever see:

© Copyright IBM Corp. 1991, 2023 17

Reading 1

/* ADD2NUM EXEC */
/* the sum of two numbers x/
say "Enter a number:"

pull first /> waits for entry =*/
say "Enter another number:"
pull second /* waits for entry =%/

say "The sum is" first + second

Figure 9. ADD2NUM EXEC

Here is what it looks like when you run it:

add2num

Enter a number:

25

Enter another number:
32

The sum is 57

Ready;

We used two PULL instructions to let the user enter the two numbers to be added and then assign (store)
them in the variables first and second. The SAY instruction displays the sum of the two.

You can see for yourself what this program does if the user enters only one number. For this program to be
anywhere as reliable as TWOPLUS3 EXEC, it will have to make certain that the user has entered the input
numbers properly. That is an important topic in itself, but one we will leave for later chapters.

Right now, we will look at how you can use variables to manipulate information.

Names and Values

The information stored in a variable is called its value. The value might be one or more words of text, or it
might be a number. It might be nothing at all.

A variable's value can change any time you want it to. It can be different each time the program is run, or it
may change many times in a single run.

But no matter how the value of a variable changes, the variable's name stays the same. We made up
the names we chose for the variables, first and second. The names need only be meaningful to the
programmer—you.

You can think of a variable, then, as simply the name for the kind of values you want it to hold.

Assignments

An instruction that stores a value in a variable or changes its value is called an assignment.

The simplest form of assignment is the equals sign, a REXX clause of the form
name = value

where:

name
is the name you give the variable

value
is the value it will hold.

In more formal terms, the syntax of an assignment looks like this:
symbol = expression

where:

18 z/VM: 7.3 REXX/VM User's Guide

Reading 1

symbol
is a valid variable name

expression
is the information to be stored: a number, a string, or some calculation that you want REXX to perform.

We will cover expressions in more detail in the next chapter. For the time being, all you need to know is
that REXX first evaluates (computes) the expression and then puts the result of that evaluation into the
variable called symbol. In plain English, the assignment instruction says:

« "Evaluate the expression and store the result as symbol".
In an assignment, then, you name a variable and give it a value. Here are some examples:

- To give the variable called TOTAL the value 0, use this kind of assignment:
total = 0

- To give another variable, called PRICE, the same value as TOTAL, assign the value this way:
price = total

« To give the variable called TOTAL a new value, namely the old value of TOTAL plus the value of
SOMETHING, use the assignment:

total = total + something
« Here is a different kind of assignment, one we have already used:
pull something

This PULL instruction gives the variable SOMETHING a value that the user enters while the program is
running.

Displaying a Variable's Value

To display a variable's value at any given point in a program, use the SAY instruction.

/* ASSIGN EXEC */

/* some assignments x/

amount = 100 /* assigns 100 to AMOUNT */
money = "dollars" /* assigns "dollars" to MONEY */
say amount money /* displays "100 dollars" */
amount = amount + 25 /* adds 25 to AMOUNT */
say amount money /* displays "125 dollars" */

/* Now get some input from the user *x/

say "Type a line, then press Enter" /x prompts the user to type */
pull anything /* waits for user to press Enter x/
say "You typed:" anything /* displays the input on screen =x/

Figure 10. ASSIGN EXEC

What if you SAY a variable that has not yet been assigned a value? In some languages, you would get an
error. In REXX, the default value of a variable is its own name, converted to uppercase letters.

Chapter 3. Variables 19

Reading 1

/* NOASSIGN EXEC */
/* display unassigned variables */
say amount /* displays "AMOUNT" =/
say first /* displays "FIRST" «/
say price /* displays "PRICE" «/
say who /* displays "WHO" */

Figure 11. NOASSIGN EXEC

Note: There is another way to peek at the value of a variable while a program is running—the TRACE
instruction, used for correcting programs. We will look at it in Chapter 4, “Expressions,” on page 35.

Choosing Names for Variables
You can choose any symbol as the name of a variable, with these restrictions:
1. The first character must be one of:
AZa-z@#$¢!?_
Note: The language processor translates lowercase characters to uppercase before using them.
2. The rest of the characters may be any of the following:
A-Za-z@#$¢!?_.or0-9

But you should not use a period unless you understand the rules for “Compound Symbols” on page
23, described in Reading 2 of this chapter.

Example: Setting Variables

To make your program easy to understand, use ordinary English words for the names of variables, as in
Figure 12 on page 20.

/* MCDONALD EXEC */

/* Example: farmyard noises explained x/

say "What animal?"

pull beast /* user enters name of animal =/

select
when beast “LAMB" then noise
when beast "DONKEY" then noise
when beast "PIG" then noise
otherwise noise

end

say 'The' beast 'says' noise

“Baah! Baah! Baah!"
"Eeyozre!"

"Grunt! Grunt!"

"T don't exist"

Figure 12. MCDONALD EXEC

Use XEDIT to create this file called MCDONALD EXEC and try it out. Did it work? If not, study the error
messages and make sure you copied everything correctly.

In the MCDONALD EXEC BEAST and NOISE were the names of variables.

say
displays a string on the screen.

pull
causes the program to pause. The user may now type something in. When the user presses Enter,
whatever the user typed in is put into the variable BEAST and the program continues.

select
chooses one of four assignment instructions, according to the value of the variable BEAST. The
chosen instruction sets the variable NOISE.

noise =

20 z/VM: 7.3 REXX/VM User's Guide

Reading 1

(We shall discuss how to use select, when, then and otherwise later, in “The SELECT
Instruction” on page 129.)

end
indicates that this is the end of the select. (To make the program easier to read, the instructions
between the select andthe end areindented three spaces to the right.)

say
uses the symbols BEAST and NOISE to obtain the values of these variables and to display them on
the screen.

When the language processor finds a symbol (a word that is not in quotation marks) it looks to see if the
symbol is the name of a variable; that is, whether it has been given a value. If so, the language processor
substitutes that value for the symbol. If not, it translates the symbol to uppercase and uses that.

The idea of a variable (such as NOISE in Figure 12 on page 20) is very important in computing. However,
before we can make much more use of it we shall have to find out how expressions are handled. This is
the topic of the next chapter.

Test Yourself...

Which of the following could be used as the name of a REXX variable?
1. DOG

2. K9

3.9T

4. nine_to_five

5. #7

Answers:

1. OK

2. 0K

3. Incorrect, because the first character is a numeric digit.
4. OK, same as NINE_TO_FIVE

5. OK

Other Assignments

You can also use variables to store unknown information—unknown, that is, while you are writing the
program.

Assigning User Input

One such use for variables that we have already encountered is as a holding place for information
supplied by the user. Here are two keyword instructions commonly used for this purpose.

The PULL Instruction

This instruction pauses the running of a program to let the user type one or more items of data which are
then assigned to variables. For example we used PULL in Figure 9 on page 18 to get two numbers to add:

say "Enter a number:"

pull first /* waits for entry %/
say "Enter another number:"
pull second /* waits for entry x/

Each PULL instruction pauses the program so the user can type a number and press Enter. It then assigns
the entry to the variable named in the instruction.

Chapter 3. Variables 21

Reading 2

You can also use PULL to collect more than one item in an entry, so long as the items are separated by
spaces. We could replace the four lines above with:

say "Type two numbers (leave a space between) and press Enter"
pull first second

Here too, PULL pauses the program so the user then can then type the two numbers to add. When the
user presses Enter, PULL reads the two numbers and assigns them, in the order they were typed, to
the list of variables (first and second). This process of reading and breaking up information is called
parsing, and we will devote much discussion to that in later chapters.

The ARG Instruction

Another way to assign data from the user is with ARG. It works in the same manner as PULL, except that
items are entered at the command prompt along with the program name. Our mini-calculator in Figure 9
on page 18 could also work this way:

/* ADD EXEC */
/* the sum of two numbers, this time */
/* entered at the command prompt */
arg first second /* collects entries x/

say "The sum is" first + second

Figure 13. ADD EXEC

Here is how it looks when you run it:

add 20 33
The sum is 53
Ready;

Notice that with ARG, there is no pause because the numbers are entered along with the command that
starts the program.

Assigning an Expression Result

Take another look at the program ASSIGN EXEC in Figure 10 on page 19. The instruction amount =
amount + 25 demonstrates how variables can represent another kind of unknown information: data
that must be calculated or otherwise manipulated. You can simply assign to a variable the result of a
calculation or expression. Here is another example:

/* AREAS EXEC */

/* area of a 3 by 5 in. rectangle */

area = 3 x 5

say area "sq. in." /* displays "15 sq. in." */

/* area of a 5 in. circle */

diameter = 5

radius = diameter/2

area = 3.14 % radius * radius

say area "sq. in." /* displays "19.6250 sq. in." %/

Figure 14. AREAS EXEC

Simple enough. But REXX expressions can have very complex forms as well, and they can work with all
kinds of information. They are our topic for the next chapter.

Reading 1 continues in Chapter 4, “Expressions,” on page 35.

Variables as Symbols

22 z/VM: 7.3 REXX/VM User's Guide

Reading 2

Variables are part of a class of REXX language elements called symbols. These include:

« REXX keywords and instructions

« Labels used to call internal subroutines (see the discussion of the CALL instruction in “Subroutines” on
page 144)

« Constants

« Variables.

REXX uses a symbol's context to determine if it is to be taken as a keyword or a label or a variable. For
each symbol it encounters, REXX takes the following steps to determine how it will be handled:

1. Is the symbol the very first token in a clause? If so...

a. If it is followed by an equal sign (=), then the clause is an assignment instruction. The symbol is a
variable, and is assigned the expression that follows the equal sign.

b. If it is followed by a colon (), then it is a label, signaling the beginning of a subroutine.
c. Is the symbol among the list of REXX keyword instructions?

2. Is the symbol a keyword used in a control structure? (such as WHILE or THEN; see Chapter 8,
“Control,” on page 125). If so, REXX interprets the keyword accordingly.

3. Is it a constant (an unchangeable value)?

If none of these steps determine how the symbol is to be handled, REXX evaluates it as a variable and
substitutes its stored value for the variable name.

Constants and Variables
Symbols that begin with a digit (0-9), a period, or a sign (+ or -) are constants. They cannot be assigned
new values and therefore cannot be used as variables. Here are some examples of constants:

77
a valid number

.0004
begins with a period (decimal point)

1.2e6
Scientific notation (equal to 1,200,000)

42nd
Not a valid number; its value is always 42ND

Note that:
« A symbol that begins with a number cannot be assigned a different value; it cannot be a variable.

« The default value for a symbol is its own name, translated into uppercase letters. A variable that has not
been assigned a value contains this default value.

« All valid numbers are constants, but not all constants are valid numbers. The symbol 3girls is nota
valid number, but neither can it be used as a variable name; its value is always 3GIRLS.

There is a special class of symbols in which variables and constants are combined to create groups of
variables for easy processing. These are called compound symbols.

Compound Symbols

A variable containing a period is treated as a compound symbol. Here are examples of compound
symbols:

fred.3
row.column
array.I.J.
gift.day

Chapter 3. Variables 23

Reading 2

Stems and Tails

The stem of a compound symbol is the portion up to and including the first period. That is, it is a valid
variable name that ends with a period.

The stem is followed by a tail comprising one or more valid symbols (constants or variables), separated by
periods.

Derived Names

You can use compound symbols to create an array of variables that can be processed by their derived
names. Take for example this collection:

gift.1 = "A partridge in a pear tree"
gift.2 = "Two turtle doves"
gift.3 = "Three French hens"

= "Four calling birds"

gift.4
Now, if we know what day it is, we know what gift will be given. Suppose, we also assign a variable called
DAY avalue of 3.

day = 3
Then this instruction:

say gift.day

displays Three French hens on the screen. Sounds a bit tricky, but here is what happens:

REXX recognizes the symbol gift.day as compound because it contains a period.

REXX checks to see if the characters following the period form the name of a variable; in this case, it is
the variable name day.

The value of day is substituted for its name, producing a derived name of GIFT. 3.

And the value of the variable GIFT. 3 is the literal string Three French hens.

But note: If day had never been given a value, its value would have been its own name, DAY, and the
derived name of the compound symbol gift.day would have been GIFT.DAY.

A collection of consecutively numbered variables like this is sometimes called an array. Figure 15 on page
25 is an example of our gift-giver's array in action.

24 z/VM: 7.3 REXX/VM User's Guide

Reading 2

/* TWELVDAY EXEC */
/* What my true love sent ... */

/* First, assign the gifts to the days */

gift.1 = 'A partridge in a pear tree'
gift.2 = 'Two turtle doves'

gift.3 = 'Three French hens'

gift.4 = 'Four calling birds'
gift.5 = 'Five golden rings'

gift.6 = 'Six geese a-laying'
gift.7 = 'Seven swans a-swimming'
gift.8 = 'Eight maids a-milking'
gift.9 = 'Nine ladies dancing'
gift.10 = 'Ten lords a-leaping'
gift.11 = 'Eleven pipers piping'
gift.12 = 'Twelve drummers drumming'

/* list all gifts from the 12th day to */
/* the 1st day Rrefer to the discussion */
/* of loops in “Loops” on page 53. x/

do day=12 to 1 by -1

say gift.day

end

/* now display the gift for a chosen day x/
say "Enter a number from 1 to 12."
pull day

/* check for proper input %/
/* See "Checking Your Input” on page 57. %/

if -datatype(day,"n™) then /* 1f the entry is not a number x/

exit /* then exit the program */
if day < 1 | day > 12 then /* same if it is out of range */
exit

say gift.day

Figure 15. TWELVDAY EXEC

Creating an Array

You can refer to all the variables in an array by using its stem. It is often convenient to set all variables in
an array to zero using their stem.

The example in Figure 16 on page 26 shows how compound symbols can collect and process data. In
the first part of the program, the first player's score is entered into SCORE . 1, the second player's into
SCORE. 2, and so on. Thus, using compound symbols, the array of SCOREs is processed to give the result
in the required form.

Chapter 3. Variables 25

Reading 2

/* GAME EXEC */
/* This is a scoreboard for a game. Any number of */
/* players can play. The rules for scoring are these: */
/* */

/* Each player has one turn and can score any number of x/
/* points; fractions of a point are not allowed. The =%/
/* scores are entered into the computer and the program */

/* replies with */
/* */
/* the average score (to the nearest hundredth of =*/
/* a point) */
/* the highest score */
/* the winner (or, in the case of a tie, */
/* the winnezrs) */
Y R e */
/* 0Obtain scores from players */
R T e R T *

say "Enter the score for each player in turn. When all"
say "have been entered, enter a blank line!"

say

n=1

do forever

say "Please enter the score for player "n
pull score.n
select
when datatype(score.n,"whole") then n=n+1
when score.n="" then leave
otherwise say "The score must be a whole number."
end
end
n=n-1 /* now n = number of players x/
if n = 0 then exit
Y R e */
/* compute average score */
e */
total = 0
do player = 1 to n
total = total + score.player
end
/* continued ... */

Figure 16. GAME EXEC (Part 1 of 2)

26 z/VM: 7.3 REXX/VM User's Guide

Reading 2

say "Average score is",
format(total/n,,2,0) /* format "total/n" with
/* no leading blanks,
/* round to 2 decimal places,

/* do not use exponential
/* notation
Y R e R T T T
;* compute highest score
S L R T R TR R e e e - =L L L T IR R R R
highest = 0
do player = 1 to n
highest = max(highest,score.player)
end

say "Highest score is" highest

/* * W, the total number of players that have a score

/* equal to HIGHEST

/* * WINNER.1, WINNER.2 ... WINNER.W, the id-numbers

/* of these players

Y R e
w =20 /* number of winners

do player = 1 to n
if score.player = highest then do
w=w+ 1
winner.w = player
end

ifw=1
then say "The winner is Player #"winner.1
else do
say "There is a draw for top place. The winners are"
dop=1tow
say " Player #"winner.p
end
end
exit

Figure 17. GAME EXEC (Part 2 of 2)

*/

Test Yourself...

1. Write a program to say the days of the week repeatedly, as:

- Sunday

- Monday

« Tuesday

- Wednesday

» Thursday

« Friday

- Saturday

- Sunday

- Monday

You can use the CMS command, HI or HX, to stop it.
2. Extend this program to say the days of the month, as:

« Sunday 1st January

- Monday 2nd January

Chapter 3. Variables 27

Reading 2

Answers:

1. The simplest solution is:

/* DAYS1 EXEC x/

/* to say the days of the week indefinitely x/
do forever

say "Sunday"

say "Monday"

say "Tuesday"

say "Wednesday"

say "Thursday"

say "Friday"

say "Saturday"
end

Note: To stop this exec, type HX. This is the immediate command to halt execution.

But, in view of the next question, consider a solution that uses compound variables, like this:

/* DAYS2 EXEC */

/* to say the days of the week indefinitely =/

day.1l = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"
j=0
do forever

ij=3+1

say day.j

if j = 7 then j = 0
end

2. This idea can be extended, like this:

/* MONTH1 EXEC */

/* to say the days of the month for January =/

day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"

do dayofmonth = 1 to 31
dayofweek = (dayofmonth+6)//7 + 1
select

when dayofmonth = 1 then th = "st"
when dayofmonth = 2 then th = "nd"
when dayofmonth = 3 then th = "zd"
when dayofmonth = 21 then th = "st"
when dayofmonth = 22 then th = "nd"
when dayofmonth = 23 then th = "zd"
when dayofmonth = 31 then th = "st"
otherwise th = "th"

end

say day.dayofweek dayofmonth||th "January"

end

Avoiding Duplicate Names

In any program, it is important not to use a symbol in more than one way. Here is an extreme example.
The SAY expressions show how the values of the variables LINE and DATA change, during execution.

28 z/VM: 7.3 REXX/VM User's Guide

Reading 3

/* MESSY EXEC */
/* NOT a good example *x/
do line = 1 to 10
say line
say Enter a line of data
pull line
say line
data = data line
say data
line = length(data)
say line
end line
say Done

Figure 18. MESSY EXEC

Looking at some sample input to this exec will help in understanding why you should not use a symbol in
more than one way. If you enter

melvin

as input to this exec, the following will be displayed:

messy

1

ENTER A 1 OF DATA
melvin

MELVIN

DATA MELVIN

11

DONE

Ready;

Notice how the values of the variables LINE and DATA change. Try running the exec again but with
different input.

From this horrid mess you can learn that:
- It is safer and neater to put what you want to SAY in quotation marks.

A good example of this can be seen in the result from MESSY EXEC. Because the expression

Enter a line of data

is not enclosed in quotation marks, the symbol, LINE, is evaluated and its value is displayed instead.
For example,

Enter a 1 of data

« Each symbol should be used for only one purpose.

In the MESSY EXEC, the language processor cannot keep track of all the different uses of the symbols
LINE and DATA. Thus, the program does not run correctly.

For small programs it is fairly easy to limit the use of a symbol to one purpose; however, it is more
difficult to do this for large programs. We shall return to this subject in the next reading of this chapter.

Reading 2 continues in Chapter 4, “Expressions,” on page 35.

How Much Should You Tell Your Subroutine?

When you are writing a subroutine, you may not be aware of the names of all the variables in the main
program. Of course, you could check by reading through the whole program every time you wanted to
invent a new name. But this is tedious and prone to error.

Chapter 3. Variables 29

Reading 3

The PROCEDURE Instruction

To make the language processor forget, for the time being, all the variables it knows, use the PROCEDURE
instruction.

After this instruction has been run, new variables can be created that will be regarded as different, even if
some of them have the same names as variables that existed before the PROCEDURE instruction was run.

When a RETURN instruction is executed, the new variables are forgotten and the original variables are
remembered.

A PROCEDURE instruction can only be used within an internal routine; within that routine, it can only be
used one time. If the PROCEDURE instruction is used in an internal routine, it must be the first instruction
in the routine. For further details on the PROCEDURE instruction, see z/VM: REXX/VM Reference.

In this next example, COUNT is used for two separate purposes.

count = 999
list = 3 4 5 6 7

CALL average list

|
/* At this point: COUNT = 999 */
/* RESULT = 5 */
EXIT
AVERAGE :
/* The argument must be a list */
/* of numbers, delimited by blanks.*/
/* The average is returned. */
PROCEDURE
/* At this point the value of LIST */
/* would be LIST */

v

ARG inputlist

sum = 0

do count = 1 to words(inputlist)
sum = sum + word(inputlist,count)

end

RETURN sum/words (inputlist)

—

Figure 19. COUNT Used for Two Different Purposes

30 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 3

The PROCEDURE EXPOSE Instruction

To share a limited set of variables between the main routine and the subroutine (leaving all the other
variables protected) use:

1——EXPOSE Z name :
name

is the name of a variable to be shared. For further details, see the PROCEDURE instruction in your
z/VM: REXX/VM Reference.

For more information about sharing variables, see the GLOBALV command in the z/VM: CMS Commands
and Utilities Reference.

»— PROCEDURE - e

where:

The Existence of Variable Names

You can find out if a symbol already exists with the SYMBOL() function or unassign a variable with the
DROP instruction.

The SYMBOL() Function

It is sometimes useful to know whether a symbol has already been used as a name of a variable. The
SYMBOL() function returns:

BAD
if the argument is not a valid symbol

VAR
if the variable exists

LIT
if the variable does not exist, or if the argument is a constant symbol, such as 3D.

This example shows how to make sure that payment is never added to an empty string, which would
cause a syntax error.

if symbol("CASH") = "LIT" then cash = 0
cash = cash + payment

Notice what happens if the argument of SYMBOL() is not in quotation marks.

cash = 100

say symbol(CASH) /* says "LIT", because 100 is */
/* a literal */

say symbol("CASH") /* says "VAR", because CASH is x/
/* the name of a variable */

Without the enclosing quotation marks CASH is treated as a variable, and its value is substituted before
the function is performed.

Finally, an example:

Chapter 3. Variables 31

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Reading 3

/* TICKETS EXEC */
/* Example: the SYMBOL() function %/
firstclass = 120
secondclass = 80
do until symbol(ans]||class) = "VAR"
say "What class? First or second."
pull ans
end
say "That will be" value(ans||class) "dollars, please."

Figure 20. TICKETS EXEC

The DROP Instruction

Usually, the place where you want the language processor to temporarily hide variables is at the
beginning of subroutines. For this you can use the PROCEDURE instruction (described earlier). But in
other situations, you may want the language processor to forget about a variable altogether. In this case,
use the DROP instruction.

»— DROP Z name : ; P

’

where:

name
is name of a variable to be dropped.

You can drop more than one variable using a single DROP instruction. You can also drop all the elements
of an array by specifying the stem of the array. For example:

DROP player.

Once dropped in this way, the old values of the variables cannot be remembered.

Arrays with More Than One Dimension

You can have more than one period in a compound symbol. For example, here is the beginning of a
program that sets up a board for playing checkers. BOARD is a 2-dimensional array, 8 squares by 8
squares. The squares on the board are called BOARD.ROW.COL and there are 64 of them altogether. The
picture shows how the "men" are set out at the start of the game.

32 z/VM: 7.3 REXX/VM User's Guide

Reading 3

Row 2

Column

Chapter 3. Variables 33

Reading 3

/* CHECKERS EXEC
/* This program segment sets up a board on which the
/% game of checkers can be played.
/* In the internal representation, Red's "men" are
/* represented by the character "r" and red's "kings"
/* by the character "R". Similarly, Black's "men" and
/* "kings" are represented by "b" and "B".
R e e R T
/* Clear the board
R e
board. = " "
Y R e
/* Set out the men
R T R T T
do col =1 by 2 to 7
board.1l.col = "r"
board.3.col = "r"
board.7.col = "b"
end
do col =2 by 2 to 8
board.2.col = "r"
board.6.col = "b"
board.8.col = "b"
end /* Now the board is set up.
Figure 21. CHECKERS EXEC

*/

Reading 3 continues in Chapter 4, “Expressions,” on page 35.

34 z/VM: 7.3 REXX/VM User's Guide

Chapter 4. Expressions

An expression is something that can be computed. In your z/VM: REXX/VM Reference, you will find model
instructions like:

symbol = expression
SAY expression
IF expression THEN ...

When you are writing instructions in one of your programs, you can replace the word expression with
any expression that can be evaluated. Here are some expressions:

2+2
/* Its value is "4" x/

IIAII IIBII IICII
/* Its value is "A B C" =%/

5<7
/* Its value is "1", because */

/* the comparison is true */

In this chapter we discuss how to write expressions that the language processor can compute. The rules
that the language processor uses for evaluating an expression (that is, finding its value) will be explained.
The chapter is divided into sections, namely:

« Operators

 True and False

 Functions

 Loops (see note below)

« Arithmetic

« Groups (see note below)

« Text

« Comparisons

 Conversion and translation.

Each section has its own introduction describing what is in it and advising you what to leave until Reading
2 or Reading 3.

Note: This chapter includes brief discussions on "Loops" and "Groups of Instructions". These topics
are included here so that you will be able to understand some of the examples given later in this
chapter. There are further discussions on both topics later in the book (“Loops” on page 133, Groups of
Instructions in “Selection” on page 125).

Operators

In this section:

© Copyright IBM Corp. 1991, 2023 35

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

Reading Describes

Reading 1 immediately following, describes:

« Operators and Terms
« Order of evaluation
« Parentheses.

Reading 2 “Tracing” on page 38, describes:

« Using the TRACE instruction to see how expressions are being evaluated
« Data types

 Prefix operators

« Priority of operators

 Using parentheses.

Reading 3 skips this section.

 Continue Reading 3 in “Functions” on page 45.

Operators and Terms

An expression can include operators that operate on the adjacent terms. Here are some operators:

+
Add

Multiply
I

Concatenate (join together).

In this example, the operators act on the terms 4 and 3.

say 4 + 3 /* says "7" */
say 4 * 3 /* says "12" */
say 4 || 3 /* says "43" */

The terms that the operators work on can be numbers, strings in quotation marks, variables, the results
obtained from a function call, or the result that has been obtained by evaluating the expression so far.

Order of Evaluation

Expressions are usually evaluated from left to right.

For example,

]
L + 2
;'_J

In other words, the value of: 10 - 3 + 2 is: 9.

But some operations are given priority over others. The rules are generally the same as in ordinary
algebra. For example, multiply (*) has a higher priority than subtract (-).

36 z/VM: 7.3 REXX/VM User's Guide

Reading 1

|

10 - 6
|
4

In other words, the value of: 10 - 3 * 2 is: 4.

We shall discuss the rules of priority again in Reading 2 in “Priority of Operators” on page 40.

Parentheses

When the language processor finds an expression in parentheses, it evaluates the value of the expression
inside the parentheses first.

For example:
e« Thevalueof 10* (3 +4)is: 70
« Thevalueof 10 * (3 || 4) is: 340.

Note, however, that if there is a symbol or a string immediately to the left of the left parenthesis, this
denotes a function. This concept is discussed later in “Functions” on page 45.

Test Yourself...

You probably remember that if the name of a variable is found in an expression, the value of that variable
will be substituted for its name.

For example:

/* After the instructions =%/

something = "mice"

a =717

say "Cats chase" something /* says "Cats chase mice" x/
say a + 3 /* says "10" */

1. What will this program display on the screen?

/* PERSONS EXEC */

/* Example: simple arithmetic using variables x*/

pa =1
ma =1
kids = 3

say "There are" patmatkids "people in this family"

2. What will this program display on the screen?

/* COUNTING EXEC */

/* Example: simple arithmetic using variables x*/
thumbs = 1
fingers = 4
hands = 2
say "It's easy to count up to",
hands * (thumbs + fingers)

Answers:

1. There are 5 people in this family
2.It's easy to count up to 10

Reading 1 continues in “True and False” on page 41.

Chapter 4. Expressions 37

Reading 2

Tracing

Reading 2

To find out how the language processor will evaluate an expression, use the TRACE instruction. Some
useful forms of this instruction are:

TRACE Intermediates
As each expression is evaluated, the result of each operation (that is, Intermediate results) is
displayed on the screen.

TRACE Results
When each expression has been evaluated, the final result is displayed on the screen.

TRACE Normal
Only commands that are rejected by the environment are displayed on the screen.

When a TRACE instruction is being interpreted, the first letter of the second word determines what type of
tracing will be switched on, and the rest of the word is ignored.

For example, to trace intermediate results for an expression, you could write:

TRACE I
... expression
TRACE N

Here is a practical example:

/* TTRACE EXEC */
/* Example: to show how an expression is evaluated, */
/* operation by operation */
X =9

y =2

trace I

if x+1>5 %y
then say "x is big enough"
trace N

Figure 22. TTRACE EXEC

This would cause the following to be displayed on your screen:

ttrace

6 x-%x if x + 1 >5 %y
>V> "9
>L> "1
>0> “10“
>L> ROk
>V> "2
>0> “10“
>0> "o"
8 x-%x trace N
Ready;
where:
*=%
This is the instruction being traced. The number on the left is the line number in your program.
>V>
Value of a Variable.
>L>
Value of a Literal.
>0>

Result of an Operation.

38 z/VM: 7.3 REXX/VM User's Guide

Reading 2

For Figure 22 on page 38, you can see that the final result is 0 (false). And because the IF expression is
false, the THEN clause is not executed.

To display only the final results use TRACE Results:
TRACE R
TRACE N

For example:

/* RTRACE EXEC */
/* Example: to show how an expression is evaluated, */
/* operation by operation using TRACE R */
X =9

y =2

trace R

if x+1>5 %y
then say "x is big enough"
trace N

Figure 23. RTRACE EXEC

When used in the same program, this would give:

ttrace
6 x-%x if x + 1 >5 %y
>>> 0"
8 *-x trace N
Ready;
where:
>>>
This is the final result.

Again, you can see that the final result is 0 (false). And because the IF expression is false, the THEN
clause is not executed.

Here is a suggested order for tracing your programs that will make it easier for you to find errors:
1. TRACE SCAN—shows unmatched DO/ENDs, quotation marks, missing commas, and so on.

2. TRACE 'RESULTS—(use only if there are host commands)—separates host command errors from REXX
instruction errors.

3. TRACE RESULTS—checks host and REXX commands.
4. TRACE INTERMEDIATES—looks at each step.

Data Types
The values of REXX variables and expressions are always character strings.
So it is possible to write, for example:

dollars

=5
cents = 95

if cents < 10 then price = dollars".Q"cents
else price = dollars"."cents
say "Price =" price /* says "Price = 5.95" x/

A string of digits is like any other character string but, when an arithmetical operation is performed on a
string, the result is rounded. (The default is to round to nine significant digits.)

Chapter 4. Expressions 39

Reading 2

/* DICEY EXEC */
/* Example: an arithmetical operation on a string of */
/* digits results in a number (rounded if necessary) */
dicey = 123456.123456 /* Assigns the 13-character */
/* string to DICEY */
say dicey /* Says "123456.123456" */
say dicey + 0 /* The expression is evaluated x/
/* with an accuracy of 9 */
/* significant digits (The */

/* default). The result is */
/* "123456.123"; and this is */
/* what is displayed. */

Figure 24. DICEY EXEC

Prefix Operators

Most operators work on the terms of the expression on both sides of the operator. If you omit either term,
an error occurs. However, three operators work only on the term that follows them:

+
Take (a number) as is

Negate (a number)

\ -

Logical NOT; negates, 1 becomes 0 and 0 becomes 1.

These three operators are called prefix operators. (Notice that the characters “+” and “~” can represent
both ordinary operators and prefix operators.)

Priority of Operators

When evaluating an expression, the language processor usually works from left to right. But some
operators are given a higher priority than others.

The complete order of precedence of the operators is (highest at the top):

Operator Description

\ - - + (prefix operators)

* (exponentiation)

| % (multiply and divide)

+ - (add and subtract)

" " || abuttal (concatenation, with/without blank)
== = \== -== (comparison operators)

== \= a= /=

> < >> << ><
<> >= \< =<
>>= \<< <<
<= \> > <<=

\>> ->>

& (and)

| && (or, exclusive or)

40 z/VM: 7.3 REXX/VM User's Guide

Reading 2

For any expression, you can discover the sequence that will be used from the preceding list of priorities.
For example:

Say 3 + 2%5 /* says "13" */

Because multiply (*) has a higher priority than add (+), the multiply operation is done before the operation
on its left.

Similarly, because add (+) has a higher priority than concatenate (blank),

Say 3 2+2 5 /* says "3 4 5" */

For full details see z/VM: REXX/VM Reference.

Using Parentheses

You can use parentheses to force evaluation in a different order, because expressions inside parentheses
are evaluated first. For example:

« Thevalueof 6 -4 + 1is 3.

« Thevalueof 6 -(4 +1)is 1.

« The value of 3 + 2||2 + 3 is 55.

« The value of 3 +(2]|2)+ 3 is 28.

For full details on the use and priority of operators, see z/VM: REXX/VM Reference.

Test Yourself...
What is the value of:
. 4 + 20 "tailors"
.24=4+20
."eggs" = "eggs" &2*2=4
.3/2%5
30747
.3(2+2)
. (2+2)3.

N o0 oA WN R

Answers:

. 24 tailors (add before concatenate)

. 1 (add before comparison)

. 1 (comparison before AND, multiply before AND, comparison before AND)

. 7.5 (operators that have the same priority are processed left to right)

. 314 (add before concatenate)

. calls the function 3 with the argument 4 (or gives a syntax error if 3 does not exist)

N O oA WN R

. 43 (evaluate expression in parentheses first; then abut).

Reading 2 continues in “True and False” on page 41.

True and False

In this section:

Chapter 4. Expressions 41

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

Reading Describes

Reading 1 immediately following, describes:

« Comparisons

« Using TRUE and FALSE
- The Equal Sign

« The AND operator

« The OR operator.

Reading 2 “Logical Operators” on page 44, describes:

« The logical operators: NOT, AND and OR.

Comparisons

Comparisons are performed using the operators

>
Greater than

Equal
Less than.

These operators can be combined with each other and with the not character (\ or =). The result of these
comparisons is either TRUE or FALSE. For more information see z/VM: REXX/VM Reference.

Using True and False
If the expression is:

TRUE, the computed resultis 1
FALSE, the computed result is 0.

For example:
say 4 < 7 /* says "1", meaning TRUE */
say "Chalk" = "Cheese" /* says "0", meaning FALSE */

Instructions like:
IF expression THEN

must be given an expression that computes to 0 or 1.

The following two fragments will give the same result.

ready = "YES"
if.ready = "YES" then ...

or

ready = 1

if.ready then ...

You can use whichever form you prefer.

42 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

The Equal Sign (=)
Notice that the equal sign (=) can have two meanings in REXX depending on its position in a clause.

For example:

amount = 5 /* The variable AMOUNT gets the value 5 x/
say amount = 5 /% Compare the value of AMOUNT with 5 */
/* If they are the same, says "1" */
/* Otherwise, says "0O" */

The rule is, a clause beginning
symbol = ...

is an assignment. An equal sign appearing anywhere else in a clause stands for the comparison operator.
(In a comment or a string, the equal sign is simply a character; it is not an operator.)

The AND (&) Operator

To write an expression that is only true when every one of a set of comparisons is true, use the AND (&)
operator:

If ready = "YES" & steady = "RIGHT"
then say "GO"

This means "If READY has a value of YES and STEADY has a value of RIGHT, then say GO. Otherwise, do
nothing".

The OR (]) Operator

To write an expression that is true when any one of a set of comparisons is true, use the inclusive OR (])
operator:

If ready = "YES" | steady = "RIGHT"
then say "GO"

This means "If either READY has a value of YES or STEADY has a value of RIGHT, then say GO. Otherwise,
do nothing".

Test Yourself...

1. What appears on the screen when the following program is run?

/* FAIR EXEC */

/* A fair comparison =/
say "Apples" = "Apples"

2. What appears on the screen when the following program is run?

/* MEASURES EXEC */

/* Example: comparing numbers x/
dozen = 12

score = 20

say score = dozen + 8

/* Using the AND operator */
say dozen = 12 & score = 21

Chapter 4. Expressions 43

Reading 2

Answers:
1. What is displayed is:

fair
1
Ready;
This is because Apples is equal to Apples, so the result is 1 (true).

2. What is displayed is:

measures
1

0

Ready;

The last line of output may need some explanation. The first comparison (dozen = 12) gives 1 (true);
but the second comparison (score = 21) gives 0 (false). So the result is O (false).

Remember, the AND operation gives a result of 1 (true) only if both operands are 1.

Reading 1 continues in “Functions” on page 45.

Logical Operators

Reading 2

The three most frequently used logical operators are:

Logical Operator Description

- NOT
& (ampersand) AND
| (vertical bar) OR

(There is also an Exclusive OR operator (&&), but it is not often used.)

Logical operators can only process the values 1 or 0.

The NOT (-, \) Operator
The not operator (-, \), is placed in front of a term and changes its value from true to false or from false to
true.
say -~ 0 /* says "1" */
say - 1 /* says "Q" */
say - 2 /* gives a syntax error */
say \ (3 = 3) /* says "0" */
The AND (&) Operator
The and operator (&), is placed between two terms. It gives a value of true only if both terms are true.
say (3 =3) & (5 =5) /* says "1" */
say (3 =4) & (5 = 5) /* says "0" */
say (3 =3) & (4 = 5) /* says "0" */
say (3 =4) & (4 =5) /* says "0" */

44 z/VM: 7.3 REXX/VM User's Guide

Reading 2

The OR (]) Operator

The or operator (|), is placed between two terms. It gives a value of true unless both terms are false.

say (3 =3) | (5=05) /* says "1" */
say (3 =4) | (5 =05) /* says "1" */
say (3 =3) | (4 =5) /* says "1" */
say (3 =4) | (4 =5) /* says "0" */

Test Yourself...

1. Suggest suitable values for X and Y in this program fragment:
a.if month = "DECEMBER" & day of month = 25 then say X
b.if command = "STOP" | message = "WATCH OUT" then color of flag =Y
2. In the preceding program fragment, what happens if:
a.month = JUNE but day of month = 25?
b. command = GO but message = WATCH OUT?
3. Suitors may be TALL (or not), DARK (or not), HANDSOME (or not), and RICH (or not). A certain princess
specifies:

If TALL & DARK | HANDSOME & RICH
then say "I will marry him"
A certain prince has the following attributes:
« TALL—yes
« DARK—vyes
« HANDSOME—no
* RICH—nNo.

If he asks for her hand (and half the kingdom, of course) what will she say? You may need to review
“Priority of Operators” on page 40.

Answers:
1. The answers are:

a. X could be Merry Christmas.
b.Y could be RED.
2. If so,

a. Nothing is said
b. COLOR OF FLAG is settothe value of Y.
3.1 will marry him

The AND operator (&) has priority over the OR operator (|). In other words, REXX computes the
expression as

(TALL & DARK) | (HANDSOME & RICH)

Reading 2 continues in “Functions” on page 45.

Functions

A function call can be written anywhere in an expression. It performs the computation named by the
function and returns a result, which is then used in the expression in place of the function call.

In this section:

Chapter 4. Expressions 45

Reading 1

Reading Describes

Reading 1 immediately following, describes:

* The idea of a function
« REXX built-in functions
« User-written functions.

Reading 2 “Writing Your Own Functions” on page 48, describes:

« Writing your own functions

— The ARG instruction and the ARG function
— The RETURN instruction.

Reading 3 “A Square Root Function” on page 51, describes:

« Including your own functions in the exec file of the program that uses
them

« Functions written in Assembler Language.

The Idea of a Function
To help explain the idea of a function, think about the fictitious function:
HALF()

For example:

« The value of HALF(6) is 3.
« The value of HALF(3+5) is 4.
« The value of 7 + HALF(5-3) is 8.

(The full specification and code for the HALF() function will be discussed later, in Figure 26 on page 50.)

Generally, if the language processor finds
symbol (expression ...)

in an expression, with no space between the last character of the symbol and the left parenthesis, it
assumes that symbol is the name of a function and that this is a call to the function symbol ().

The value of a function call depends on what is inside the parentheses. (It is an error to leave out the
right parenthesis). When the value of the function has been calculated, the result is put back into the
expression in place of the function call.

For example:

say 7 + HALF(6) /* becomes 7 + 3 which says "10" %/
x = HALF(4 + 6) - 1 /* becomes x =5 - 1 */
say X /* says "4" */

The expression inside the parentheses is called an argument. As you can see, an argument can itself be
an expression; the language processor computes the value of this expression before passing it to the
function.

If a function requires more than one argument, they must be separated by commas. For instance, to
obtain the greatest of a set of numbers you can use the REXX function:

46 z/VM: 7.3 REXX/VM User's Guide

Reading 1

»w— MAX(fnumt:erU—)—N

For example:

« The value of MAX(2,3,7,4) is 7.
« The value of MAX(-9,3+4,5) is 7.

Remember that a function call, like any other expression, does not usually appear in a clause by itself.

x = 12
y = half(x) /* makes y equal to half(x) =/
half(x) /* calls "6 EXEC" if it */
/* exists! */
/* See Chapter 6, “Commands,” on page 97. %/
x = half(x) /* halves x */

Built-in Functions

Over 50 functions (like the MAX() function, shown previously), are built-in to REXX. In this book, they

will be introduced where you are most likely to want to use them. For example, arithmetical functions like
FORMAT() and TRUNC() appear in the section on arithmetic. You will find a dictionary of built-in functions
in your z/VM: REXX/VM Reference. From now on, if we refer to a function without saying where to find it,
assume that it is a REXX built-in function.

User-Written Functions

You can also write your own functions. And you can use functions written by other people in your
organization.

If a function is in the same file as the program that uses it, it is called an internal function. If itisin a
separate file it is called an external function. Later, we shall see that HALF() is an external function.

Test Yourself...
1. What is the value of:
a. HALF (HALF(26) + HALF(6))
b. MAX(3, HALF(8))
c. HALF (100)
d. HALF (100)

2. The RANDOMY() function can be used for games and for statistical models. For example, to obtain a
number, chosen at random from the range 1 through 6, you could write:

random(1,6)

Write a program called TOSS that will display either the word Heads or (just as likely) the word Tails.
Run your program a number of times. Are the results like those you could obtain by tossing a coin?

Answers:

1. If used as an expression (for example, as part of a SAY instruction) the result would be:
a. 8
b. 4
c. 50

d. HALF 100 (Not a function, because there is no name immediately to the left of the left parenthesis.)
2. A simple solution would be:

Chapter 4. Expressions 47

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

/* TOSS EXEC */

/* Simulates tossing a coin x/
if random(1,2) = 1

then say "Heads"

else say "Tails"

If you needed to make a lot of two-way decisions, you might make use of this program. The CP
command

set pf6 immed toss

would let you reach a decision quickly, just by pressing the Program Function key.

Reading 1 continues in “Loops” on page 53.

Writing Your Own Functions

If you find you need a function that is not provided by REXX, you can easily write one of your own. You will
need:

« The ARG instruction (or the PARSE ARG instruction, or the ARG() function) to obtain the arguments
« The RETURN instruction to return the result.

ARG Instruction

To obtain the arguments (that is, the computed values of the expression or expressions inside the
parentheses of the function call), use:

»—ARGgfgl'—N

where:
myarg are the names you choose for the variables that will be given the values of the arguments.

These values will be translated to uppercase. If you want to assign them without translating them to
uppercase, use

»— PARSE ARG fmy:rgl ;e

The ARG() Function

If you do not want to give names to the arguments, you can use the function:

»— ARG(Ln f) >«
l——,opﬂbn ——J

In this way you can refer to the nth argument.

RETURN Instruction

To use the result from a function call, the data must be returned from the function call to the main
program. To return the result, use the following instruction:

48 z/VM: 7.3 REXX/VM User's Guide

Reading 2

»— RETURN L J ;
expression

The language processor computes the value of expression and returns the value to the main program.
A function must return some data.

In this next example, the expression in the main program is a string of words. One of the words is
computed by a function.

/* SQUARE EXEC */
/* in main program */
height = 4
width = 4
say THIS THING IS5 A SHAPE (height,width) OBJECT

SHAPE EXEC

v A4
arg first, second
if first = second
then return “SQUARE”

/* is equivalent to */
/* the instruction: */

A 4
say THIS THING IS5 A SQUARE OBJECT

Figure 25. SQUARE EXEC

The RETURN instruction must specify some data when returning from a function. If the RETURN
instruction does not do so, you will receive a syntax error. You can intentionally leave out the data on
the RETURN instruction if you want to warn the user that the input arguments, if any, are incorrect.

For example, you can write:
return /* error message */

When the function is called with incorrect arguments, the RETURN instruction, including the comment, is
displayed on the screen (Error 45) followed by the line containing the function call (Error 40).

It might be wise to check that the right number of arguments has been submitted. This can be done using
the ARG() function.

if arg() -=1
then return /* wrong number of arguments x*/

See the ARG() function in your z/VM: REXX/VM Reference for other ways of using this function.

Test Yourself...

Here is the specification and code for the HALF() function that we discussed in “The Idea of a Function”

on page 46.

Chapter 4. Expressions 49

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

/* HALF EXEC */
/* HALF (number) */
/* */
/* This function returns half of "number". If "number" =/
/* is not even, the "big half" is returned. That is, */
/* integer division by 2 is performed and, if there is =*/
;* a remainder, it is added to the result. *;
* *
/* The value of HALF (6) is 3 */
/* The value of HALF (7) is 4 */
/* */
/* If "number" is not a whole number, nothing is */
/* returned. This will cause a syntax error to be */
/* raised in this program and in the calling program. */
/* */

arg number

if datatype(number,whole)

then return number9%2 + number//2

else return /* first argument is not a whole number x/

Figure 26. HALF EXEC

1. Use XEDIT to create a file containing the last five lines of HALF EXEC. Write an exec called TESTHALF
that uses HALF and displays the result of:

a. Half(3) Half(4) Half(5)
b. Half(4.5)

2. Alter HALF EXEC so that it signals an error if more than one argument is supplied. Alter TESTHALF so
that it contains:

say "Testing" HALF(5,7)

Write an exec that will give you a simple set of error messages.

Answers:

1. A possible answer is:

/* TESTHALF EXEC */

/* Test cases for HALF EXEC */
say "Case 1(a)"

say half(3) half(4) half(5)
say

say "Case 1(b)"

say half(4.5)

When run, the TESTHALF EXEC gives the result:

testhalf
Case 1(a)
223

Case 1(b)

18 +++ return /* first argument is not a whole number x/
DMSREX480E Error 45 running HALF EXEC, line 18: No data specified
on function RETURN

6 +++ say half(4.5)
DMSREX475E Error 40 running TESTHALF EXEC, line 6: Incorrect call
to routine
Ready (20040) ;

2. A possible answer is:

50 z/VM: 7.3 REXX/VM User's Guide

Reading 3

/* TESTHAL2 EXEC x/

/* Test case for modified HALF EXEC (See Question 2) =%/
say "Testing" half2(5,7)

The TESTHAL2 EXEC calls a modified version of HALF EXEC, named HALF2 EXEC.

/* HALF2 EXEC x/

/* */
if arg() -= 1
then return /* wrong number of arguments */

arg number

if datatype(number,whole)

then return number9%2 + number//2

else return /* first argument is not a whole number */

When run, the HALF2 EXEC results in:

testhal2

3 +++ return /* wrong number of arguments x/
DMSREX480E Error 45 running HALF2 EXEC, line 3: No data specified
on function RETURN

2 +++ say "Testing" half2(5,7)
DMSREX475E Error 40 running TESTHAL2 EXEC, line 2: Incorrect call
to routine
Ready (20040) ;

Reading 2 continues in “Arithmetic” on page 56.

A Square Root Function

This is an example of a function that you could code for yourself.

Chapter 4. Expressions 51

Reading 3

/* SQRT EXEC */
/* The SQUARE ROOT function. */
/* */
/* A function to calculate the square root of a number */
/* using the Newton-Raphson method. */
/* */
/% SQRT (number) */
/* */
/* where "number" is a nonnegative REXX number, */
/* returns the square root of "number". If the number */
/* is negative or not a decimal number, then this function will */
/* return a null character and report the error. */
arg num /* get the number */
null = '
if -datatype(num, 'Number') /* valid number? */
then do
say 'Invalid input argument:' Num'. Must be a positive decimal number.'
return null
end
if num < © /* check for negative */
then do
say 'Invalid input argument:' Num'. Must be a positive decimal number.'
return null
end
else if num = 0 then
return 0 /* check for 0O */
XNew = num /* initialize answer */
/* calculate maximum */
eps = 0.5 x 10%*(1+fuzz()-digits()) /* accuracy */
/* Loop until a sufficiently accurate answer is obtained. */
do until abs(xold-xnew) < (eps*xnew)
xold = xnew /* save the old value */
xnew = 0.5 * (xold + num / xold) /% calculate the new */
end
xnew = xnew / 1 /* strip unnecessary zeros x/
return xnew
Figure 27. SQRT EXEC

Internal Functions

Instead of writing a function as a separate file, you may prefer to include it in your main program. If
the function is called many times by your main program, there will be a perceptible improvement in
performance.

Begin your function with a label. To avoid problems with duplicate names, use the PROCEDURE
instruction (see “The PROCEDURE Instruction” on page 30).

52 z/VM: 7.3 REXX/VM User's Guide

Reading 1

/* ROOTS EXEC */
/* This program tabulates the square roots of the */
/* whole numbers in the range 1 to 100. */
/* */
/* The output is stored in the file ROOTS TABLE A. */
/* The previous version of that file, if any, is */
/* overwritten. */

"ERASE ROOTS TABLE A"
do j =1 to 100 until rc -= 0
"EXECIO 1 DISKW ROOTS TABLE A (STRING",
format(j,3,0) format(sqrt(j),3,8)
end
if rc -= 0
then say "Unexpected return code" zxc,
"from EXECIO 1 DISKW command in ROOTS EXEC"

exit

R T R T T */
/* square root function */
L e T */

SQRT: procedure

/* From here on, the code */
/* is the same as that shown in %/
/* SQRT EXEC Figure 27 on page 52. */

Figure 28. ROOTS EXEC

Functions Written in Assembler Language

A further improvement in performance can be obtained by writing your function in assembler language.
However, this is only likely to be worthwhile for a function used very frequently, and by many programs.

Consult your System Support specialist or z/VM: REXX/VM Reference for more information.

Reading 3 continues in “Arithmetic” on page 56.

Loops

This whole section, "Loops" is covered in Reading 1.

A loop is a part of a program in which the same sequence of instructions are executed repeatedly. This is a
good point to interrupt our discussion on expressions and take a look at one or two things about loops:

- How to write a loop that keeps asking for input until a valid answer is keyed in
« How to stop a program that is in an endless loop.

The DO Instruction

To build loops, you should use the REXX instruction DO. This is described fully in a later section, “Loops”
on page 133.

A DO UNTIL Loop

There is one particular kind of loop that we shall need to use in our examples in the next two sections. It is
the one where, when all the instructions inside the loop have been executed, a decision is made either to
go on or to go back and repeat the instruction again.

The diagram shows why this is called a loop. The diamond represents a decision about which way to go.

Chapter 4. Expressions 53

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

Y

i

B

cxpresson™, Fls (Goback

True (Go on)

v
In REXX programs, this should be written:

DO UNTIL expression
instructionl
instruction2
instruction3

... /* and so on %/

END

where:

expression is any expression that evaluates to give 1 (true) or O (false). The value of expression s
computed every time the language processor reaches the keyword END; if the result is 0, the language
processor loops back to instructionl. Otherwise, execution continues with the instruction following
the END instruction.

For example, the program in Figure 29 on page 54 will go on asking the same question until the user
answers 12.

/* DOZEN EXEC */

/* Just testing you x/

DO UNTIL answer = 12
say "What is three times four?"
pull answer

END

Figure 29. DOZEN EXEC

Getting Out of Loops

This program will never finish.

/* NEVER EXEC */
/* This program never ends x/
DO UNTIL moon = blue
say "We are still waiting"
moon = silver
END

Figure 30. NEVER EXEC

54 z/VM: 7.3 REXX/VM User's Guide

Reading 1

You can recognize this situation because, when you type in another command, CMS does not run it. If by
any chance you find that you are running such a program and your screen fills with "We are still waiting",
enter the CMS immediate command to halt interpretation:

HI

Sooner or later, you will return to CMS.

On the other hand, the program in Figure 31 on page 55 is nearly impossible to get out of if you do not
know what the answer is.

/* ABRACADA EXEC */
/* Guess the secret password! *x/
DO UNTIL answer = "I QUIT"
say "What is your answer"
pull answer
END

Figure 31. ABRACADA EXEC

You can recognize this situation because, whatever you do, the words VM READ continue to appear in

the bottom right hand corner of your screen. And typing in HI is no good. It just gets compared with I
QUIT.

If you do not know the answer, the simplest way out is to enter CP mode and re-IPL CMS. Enter:

J#cp i cms

This will cause CP to take over and issue an IPL CMS command.

Test Yourself...

1. Write a program called WHATDAY EXEC that keeps on asking what day of the week it is. Your program

should finish as soon as the user gives the right answer. You can use the function DATE(WEEKDAY) to
find out what the date really is.

2. Write a program called TESTS EXEC that keeps on asking simple arithmetical questions until the user
has given five correct answers. You can use the RANDOM() function to generate some numbers at
random, and ask the user to add them together.

For example:

RANDOM(1,9)

Gives a whole number in the range 1 through 9.

Answers:

1. A possible answer is:

Chapter 4. Expressions 55

Reading 1

/* WHATDAY EXEC %/

/* Example: to make the user say what day of the */
/* week it is today. */
do until reply = date(weekday)
say "What day of the week is it?"
say "(The first letter of your response should be in
say "uppercase, the rest of the word should be in"
say "lowercase.)"
parse pull reply
if reply -= date(weekday)
then say "No, it is" date(weekday)
end
say "Correct!"

Figure 32. WHATDAY EXEC

2. A possible answer is:

/* TESTS EXEC */

/* Arithmetical test =/
credits = 0
do until credits = 5

a = random(1,9) /* Choose a whole number */
/* between 1 and 9. Choose */
/* at random. */

b = random(1,9)

say “What isll a II+II b II?II

pull answer

if answer = a + b

then credits = credits + 1

else say a "+" b "is" a+b
end

That is enough about loops for now. Let us return to the subject of expressions by discussing “Arithmetic”
on page 56.

Reading 1 continues in “Arithmetic” on page 56.

Arithmetic
In this section:
Reading Describes
Reading 1 immediately following, describes:
« Numbers

« Checking your input

« Addition, subtraction, multiplication
« Division

- Range of numbers allowed

« Exponential notation.

Reading 2 “Formatting Numeric Output” on page 61, describes:

« Formatting numeric output
« Specifying conventional and exponential notation.

Reading 3 “Exponentiation” on page 63, describes:

56 z/VM: 7.3 REXX/VM User's Guide

Reading 1

Reading Describes

 Using the ** operator to compute the nth power of a number
« Using the NUMERIC DIGITS instruction

« Using the SIGN() function

« Rounding and truncation.

Numbers

We begin this section with some examples of numbers:

12
This is a whole number or integer.

0.5
This is a decimal fraction or decimal (one half).

3.5E6
This is a floating point number (three and a half million). It uses exponential notation. The portion that
follows the E says how many places the decimal point must be moved to the right to make it into an
ordinary number.

This notation is useful when dealing with very large or very small numbers.

-5
This is a signed number (minus five).

Checking Your Input

Before attempting to do arithmetic on data entered from the keyboard, you should check that the data is
valid. You can do this using the DATATYPE() function.

In its simplest form, this function returns the word, NUM, if the argument (the expression inside
the parentheses) would be accepted by the language processor as a number that could be used in
arithmetical operations. Otherwise, it returns the word, CHAR.

« The value of datatype(49) is NUM.

The value of datatype(5.5) is NUM.

The value of datatype(5.5.5) is CHAR.

« The value of datatype(5,000) is CHAR.
« The value of datatype(5 4 3 2) is CHAR.

So, if you want the user to keep trying until entering a valid number you could write:

/* VALNUM EXEC */
/* Example requiring numeric input x/
do until datatype(howmuch) = "NUM"
say "Enter a number"
pull howmuch
if datatype(howmuch) = "CHAR"
then say "That was not a number. Try again!"
end
say "The number you entered was" howmuch

Figure 33. VALNUM EXEC

If you were interested only in whole numbers you could use the alternative form of the DATATYPE()
function. This form requires two arguments:

1. The data to be tested

Chapter 4. Expressions 57

Reading 1

2. The type of data to be tested for, for example, a whole number.

Only the first character is inspected. Thus, to test for whole numbers it would be sufficient to write W
or w. But in this book we shall write whole to remind you of the meaning of this argument.

This form of the function:
DATATYPE (number, "whole")

returns 1 (true) if number is a whole number, 0 (false) otherwise.
For example:
do until datatype(howmany, "whole")
pﬁii howmany
end o

And if you also wanted to restrict the input to numbers greater than zero you could write:
do until datatype(howmany, "whole") & howmany > 0
pﬁii howmany
end o
(The & is the AND operator. See “The AND (&) Operator” on page 43.)

By the way, the DATATYPE() function can test for other types of data, as well. See the DATATYPE function
in your z/VM: REXX/VM Reference for further details.

Addition, Subtraction, Multiplication

These operations are performed in the usual way. You can use both whole numbers and decimal fractions.

Operand Operation Example

+ (plus sign) Add Say 7 + 2 /% says "9" %/

- (minus sign) Subtract Say 7 - 2 /% says "5" %/

* (asterisk) Multiply Say .7 * .2 /% says ".14" %/
Division

When it comes to division, you can say whether or not you want the answer expressed as a whole number
(integer). The operators you can use are:

Operator Description
% (percent sign) Integer divide. The result will be a whole number. Any remainder is
ignored.

For example:

Say 7 % 2 /* says "3" */

/] (two slashes) Remainder after integer division.

For example:

Say 7 // 2 /% says "1" */

58 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

Operator Description

/ (one slash) Divide.

For example:

Say 7 / 2 /* says "3.5" %/

Notice which of these operators is used here:

/* SHARE EXEC */
/* This program works out how to share zero or more */
/* sweets between one or more children, assuming that *x/
/* a single sweet cannot be split. */
R e R T T */
/> Get input from user */
Y R e */

do until datatype(sweets, "whole") & sweets >= 0
say "How many sweets"
pull sweets

end

do until datatype(children, "whole") & children > 0
say "How many children"
pull children

end
Y R e */
/* Compute result */

"and there will be" sweets//children "left over."

Figure 34. SHARE EXEC

You should be careful not to divide by zero. If you do, a syntax error will result. That is why in Figure 34 on
page 59 the user was not allowed to answer 0 to the question "How many children."

Because apples and oranges can be cut into pieces, you can use the other kind of division operator.

children = 5; apples = 7;
say "Each child gets" apples/children "apples."
/* says "Each child gets 1.4 apples." */

Fractions are usually computed with an accuracy of nine significant digits:

children = 3; oranges = 7;
say "Each child gets" oranges/children "oranges."
/* says "Each child gets 2.33333333 oranges." %/

To summarize:

« The result of a % operation is always a whole number. There may be a remainder; to compute the
remainder, write out the expression again, using the // operator.

« The result of a / operation can be a decimal.

Range of Numbers

Like a good quality hand-held calculator, the language processor works out the result correct to nine digits
if necessary. This means nine significant digits, not counting the zeros that come just after the decimal
point in very small decimal fractions.

say 1x2x3x4x5x6x7*8*9*x10x11x12 /* says "479001600" */
say 7/30000000000 /* says: ".000000000233333333" */

The accuracy of computed results can be changed using the NUMERIC DIGITS instruction. This
instruction is described in “The NUMERIC DIGITS Instruction” on page 64.

Chapter 4. Expressions 59

Reading 1

Exponential Notation

Numbers much bigger or smaller than these are difficult to read and write, because it is easy to make a
mistake counting the zeros. It is simpler to use exponential notation. Very big numbers can be written as
an ordinary (fixed point) number, followed by a letter E, followed by a whole number. The whole number
says how many places to the right the decimal point of the fixed point number would have to be moved to
obtain the same value as an ordinary nhumber. So:

« 4.5E6 is the same as 4500000 (four and a half million).
« 23E6 is the same as 23000000 (twenty-three million).
« 1E12 is the same as 1000000000000 (a million million).

The number to the right of the E is called the exponent. If the exponent is negative, this means that the
decimal point is to be shifted to the left, instead of to the right. So:

« 4,5E-3 is the same as 0.0045 (four and a half thousandths).
« 1E-6 is the same as 0.000001 (one millionth).

You can write numbers like this in expressions, and also when entering numeric data requested by REXX
programs. The language processor will use this notation when displaying results that are too big or too
small to be expressed conveniently as ordinary numbers or decimals. When the language processor uses
this notation, the part of the number that comes before the E (the mantissa) will usually be a number
between 1 and 9.99999999.

For example:
j=1
do until j > 1el2
say j /* says "1" */
j = :| * 11 /* ||11|| */
end /* 121" */
/* ||1331|| */
/% "14641" */
/* "161051" */
/* "1771561" */
/* "19487171" */
/* "214358881" */
/* "2.35794769E+9" */
/* "2.59374246E+10" */
/* "2.85311671E+11" */

Numbers written in exponential notation (for example, 1.5e9) are sometimes called floating point
numbers. Conversely, ordinary numbers (for example, 3.14) are sometimes called fixed point numbers.

Test Yourself...

What is displayed on the screen when this program is run?

/* ARITHOPS EXEC x/

/* Example: arithmetical operations x/
quarter = 25

deuce = 2

say quarter+deuce
say quarter-deuce
say quarterxdeuce
say quarter/deuce
say quarter%deuce
say quarter//deuce
X = quarter"E"deuce
say x + 0

Answer:
The following is displayed:

60 z/VM: 7.3 REXX/VM User's Guide

Reading 2

arithops
27

23

50

12.5

12

1

2500
Ready;

The last two lines of the program require some explanation. First, x gets the value 25E2. This is the same
as 25.00 with the decimal point moved two places to the right (in other words, 2500). When x is used in
the arithmetical expression, the number 25E2 is added to zero, giving a result of 2500.

Reading 1 continues in “Groups of Instructions” on page 66.

Formatting Numeric Output

Columns of figures are easier to read if the numbers are all lined up with the units in the same column.
The FORMAT() function will help you to do this. The first three arguments are:

1. The number to be formatted
2. The number of character positions before the decimal point
3. The number of character positions after the decimal point.

Here is an example:

/> INVOICE EXEC */
/* Example showing how columns of figures are formatted */
qty.1 = 101; unitprice.1l = 0.73; remark.1l = OK
qty.2 = 500; unitprice.2 = 1995; remark.2 = OK
gty.3 = 60000; unitprice.3 = 70000; remark.3 = OK
qty.4 = 500; unitprice.4 = 400/12; remark.4 = 0K
say "Quantity Unit Price Total Price Observations"

do item = 1 to 4
say format(qty.item,5,0),
format(unitprice.item,11,2),
format(qty.item = unitprice.item,12,2),
" " remark.item
end

Figure 35. INVOICE EXEC

It displays the data formatted like this:

invoice

Quantity Unit Price Total Price Observations
101 0.73 73.73 0K
500 1995.00 997500.00 0K

60000 70000.00 4.20E+9 OK
500 33.33 16666.67 0K

Ready;

The numbers to be formatted should always be small enough to fit into the space you have reserved for
them with FORMAT().

« A simple rule is: always specify at least 9 for the "before the decimal point" argument. If you do,
numbers with more than nine digits will be displayed in Exponential Notation, and the extra characters
required will cause fields to the right of the number to be shifted right, thus drawing attention to the
exception.

« If you do not, the person using your program may be faced with a syntax error that is difficult to
understand.

Chapter 4. Expressions 61

Reading 2

Look at item 3 in the preceding example. The quantity times the unit price (60,000 times 70,000) gives
a total price of 4,200,000,000, which is too big for the nine-digit field that was specified. The result has
therefore been displayed in exponential notation. This in turn has caused OK to be shifted right.

On the other hand, suppose we add the following:
gty.5 = 880000; unitprice.5 = 1; remark.5 = "Big deal"

and change the 4 to a 5 in the DO instruction.

Then the display reads:

invoice
Quantity Unit Price Total Price Observations
101 0.73 73.73 0K
500 1995.00 997500.00 0K
60000 70000.00 4.20E+9 0K
500 33.33 16666.67 0K
12 +++ say format(qgty.item,5,0), format(unitprice.item, 11,2),

format(qty.item * unitprice.item,12,2), remark.item
DMSREX475E Error 40 running INVOICE EXEC, line 12: Incorrect call to routine
Ready (20040) ;

This error could have been avoided:

1. In a real program, by testing the input values for a maximum number of 99999, or

2. By allowing space enough for at least nine digits for the integer part.
say format(qty.item,9,0),
format(unitprice.item,9,2),

format(qty.item * unitprice.item,11,2),
" " remark.item

Where the formatted data is:

invoice
Quantity Unit Price Total Price Observations
101 0.73 73.73 0K
500 1995.00 997500.00 0K
60000 70000.00 4 .20E+9 0K
500 88,88 16666.67 0K
880000 1.00 880000.00 Big deal
Ready;

Specifying Conventional (Fixed Point) Notation

To stop FORMAT() from returning floating point numbers (when results would usually be expressed in
floating point numbers) use the fourth argument of FORMAT(). This argument specifies the number of
character positions reserved for the exponent. Exponential notation will not be used if you write:

FORMAT (number, before,after,0)

Be quite sure that the space you have allowed for before and aftex is sufficient.

Specifying Exponential (Floating Point) Notation

To make FORMAT() return floating point numbers (when results would usually be expressed in fixed point
numbers) use the fifth argument of FORMAT(). This argument specifies the threshold for expressing the
result in exponential notation. Exponential notation will be used if you write:

FORMAT (number, before,after,,0)

For other uses of the FORMAT() function, see z/VM: REXX/VM Reference.

62 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 3

A Special Case

When a floating point number has an absolute value between 1 and 9.99999999 (that is, when the
exponent is zero) the characters E+0 are always omitted even when floating point has been specified.

Test Yourself...

1. Write an exec called REFORMAT that expresses numbers entered by the user in both fixed point and
exponential notation.

2. Test your program with the numbers:
« 123456789

0.0000000000012345

* 999999999999e-6

« 1.2e10

1.2

- 1.2e+0

Or, use any other numbers you can think of.

Answers:

1. A possible answer would be:

/* REFORMAT EXEC x/

/* Example: to change the format of a number x*/
do forever
say "Enter a number"
pull answer
if - datatype(answer,number) then exit
say "Fixed point equivalent:" format(answer,,,0)
say "Exponential equivalent:" format(answer,,,,0)
end

2. The following table lists the results you should get when using the test numbers with the REFORMAT

EXEC.
Table 2. Results from the REFORMAT EXEC
Number entered: Fixed point equivalent: Exponential equivalent:
123456789 123456789 1.23456789E+8
0.0000000000012345 0.0000000000012345 1.2345E-12
999999999999e-6 1000000.00 1.00000000E+6
1.2e10 12000000000 1.2E+10
1.2 1.2 1.2
1.2e+0 1.2 1.2

Reading 2 continues in “Text” on page 66.

Exponentiation

The operator ** means "raised to the whole-number power of". So:
« 2**1 =2 =2 (2 to the power of 1)

Chapter 4. Expressions 63

Reading 3

e 2¥*2 =2%2 =4 (2 to the power of 2, or 2 squared)
e 2¥*3 =2%*2*2 =8 (2 to the power of 3, or 2 cubed)
o 2%*4 = 2*2*2*2 =16 (2 to the power of 4).

And, as in ordinary algebra:

2**0=1
2**-1 =1/(2**1) = 0.5 (2 to the power of minus 1)
2**-2 =1/(2**2) = 0.25 (2 to the power of minus 2).

The number on the right of the ** must be a whole number.

In the order of precedence, the exponentiation (**) operator comes below the prefix operators and above
the multiply and divide operators.

For example:

say -5%%2 /* Says "25". Same as (-5)%*2 */
say 10%%3/2%%2 /* Says "250". Same as (10%%3)/(2%x%2) */

The NUMERIC DIGITS Instruction

If you want to avoid using exponential notation, or simply want to increase the accuracy of your
calculations, you can use the NUMERIC DIGITS instruction to change the number of significant digits.
(The default setting for NUMERIC DIGITS is 9.)

For example:

/* ACCURATE EXEC */
/* examples of numbers with unusually high precision x/
numeric digits 10

say "The largest signed number that can be held"

say "in a general register is" 2%%31 - 1 "exactly."

say

numeric digits 48

say "1/7 =" 1/7

Figure 36. ACCURATE EXEC

The sample program results in the display of:

accurate

The largest signed number that can be held

in a general register is 2147483647 exactly.

1/7 = 0.142857142857142857142857142857142857142857142857
Ready;

To check the current setting of the NUMERIC DIGITS instruction use the DIGITS() function. For example,
if no setting was specified for NUMERIC DIGITS:

DIGITS()

would return 9 because the default setting for NUMERIC DIGITS is nine significant digits.

The SIGN() Function

You can determine whether a number is positive, negative, or zero by using the SIGN() function.

First the number inside the parentheses is rounded according to the current NUMERIC DIGITS setting. If
this number is <0, =0, or >0, the value returned by the SIGN() function is -1, 0, 1, respectively.

For example:

say sign(1/7) /* says "1" */

64 z/VM: 7.3 REXX/VM User's Guide

Reading 3

Rounding and Truncation

Each arithmetical operation is carried out in such a way that no errors are introduced, except during final
rounding.

For example:

numeric digits 3
say 100.3 + 100.3 /* gives 200.6, which is rounded x/
/> to "201" */

For a complete description of rounding, see the z/VM: REXX/VM Reference.

When your program performs a series of arithmetical operations, you may inadvertently introduce
additional errors. Look at the fourth item in INVOICE EXEC in Figure 35 on page 61. The customer appears
to have been overcharged by $1.67! The price was $400 a dozen. FORMAT() has rounded this to 33.33
each. But Total Price was not rounded until after it had been multiplied by 500.

For rounding numbers, use FORMAT() at the point in your calculations where you want rounding to occur.
For rounding down, use TRUNC().

/* TTRUNC EXEC */

/* An example of rounding. x/

qty.1 = 500; unitprice.l1 = 400/12
gty.2 = 500; unitprice.2 = 200/12
say

say "Quantity Unit price Total price Remarks"
say copies("-",58)
do item = 1 to 2
unitprice = FORMAT(unitprice.item,9,2)
say format(qty.item,6,0),
format(unitprice,7,2),
format(qty.item = unitprice,10,2),
! Rounding conventionally"
unitprice = TRUNC (unitprice.item,2)
say format(qty.item,6,0),
format(unitprice,7,2),
format(gqty.item * unitprice,10,2),
! Rounding down"
end

Figure 37. TTRUNC EXEC

When run, the following is displayed:

ttrunc
Quantity Unit price Total price Remarks

500 33.33 16665.00 Rounding conventionally
500 33.33 16665.00 Rounding down
500 16.67 8335.00 Rounding conventionally
500 16.66 8330.00 Rounding down

Ready;

Test Yourself...

1. In this program:

/* EXPONENT EXEC x*/

/* Example of a negative exponent x/
if 2 %% -3 = 1/(2%%3) then say "True"
else say "False"

a. What is displayed on the screen?
b. Are the parentheses in this expression really necessary?

Chapter 4. Expressions 65

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

2. What value will be computed for the expression:

say 9 xx (1/2)

Answers:
1. The answers are:

a. True

b. No. The ** operator has a higher priority than the / operator, so the language processor would
evaluate the expression in the same way if the parentheses were removed.

2. Syntax error! The ** operator must be followed by a whole number (or an expression which, when
evaluated, gives a whole number).

In mathematics, x ** (1/2) means "the square root of x". There is an example of a SQRT() function
in “A Square Root Function” on page 51.

Reading 3 continues in “Text” on page 66.

Groups of Instructions

This whole section, "Groups of Instructions", is covered in Reading 1.
We are interrupting our discussion of expressions to explain how instructions can be grouped together.

Instructions can be grouped together using:

DO
instructionl
instruction2
instruction3

END...

If the keyword DO is in a clause by itself, the list of instructions is executed one time (no loop is implied).

The DO instruction and the END keyword make the whole group into a single instruction, which can be
used after a THEN or ELSE keyword.

IF sun = shining
THEN
DO
say "Get up!"
say "Get out!"
say "Meet the sun half way!"
END

In this example, if sun = shining, all three SAY instructions will be executed. But if sun -=
shining, none of them will.

We shall be using DO in this way in the sections that follow.

Reading 1 continues in “Text” on page 66.

Text
In this section:
Reading Describes
Reading 1 immediately following, describes:

66 z/VM: 7.3 REXX/VM User's Guide

Reading 1

Reading Describes
« How to concatenate
« How to use the SUBSTR(), LENGTH(), COPIES(), LEFT(), and RIGHT()
built-in functions for string manipulation.
Reading 2 “Using a Subroutine to Simplify Tabulation” on page 70, describes:
« How to use a subroutine to simplify tabulation
« How to search for a string of characters using the POS() and
WORDPOS() functions.
« How to display lines from your own program using SOURCELINE().
Reading 3 “The OVERLAY() Function” on page 75, describes:
« How to use the OVERLAY(), WORD(), and WORDS() functions.
Concatenation

To concatenate two terms means to join them together to make a string. The concatenate operators are:

|| (two vertical bars)
concatenate with no blanks in between

(blank)

concatenate with one blank in between

abuttal

concatenate with no blank in between (as long as the two terms can be recognized separately).

Here are some examples:

say "slow"||"coach"
say "slow" “coach"
/* And */

adjective = "slow"

say adjective'coach"

say adjective

"coach"

say "("adjective")"

The SUBSTR() Function

/* says
/* says

/* says "slowcoach", This is
/* an example of an abuttal.
"slow coach"

/* says "(slow)"

/* says

"slowcoach"
"slow coach"

*/
*/

*/
*/

*/

The value of any REXX variable is a string of characters. To select a part of a string, use the SUBSTR()
function. SUBSTR is an abbreviation for substring. The first three arguments are:

1. The string from which a part will be taken

2. The position of the first character that is to appear in the result (Characters in a string are numbered

1,2,3,..)

3. The length of the result.
(For a complete definition, see z/VM: REXX/VM Reference.)

Here is a simple example:

S = "reveal"
say substr(S,2,
say substr(S,3

3)
l4)

/* says "eve"

/* says

'veal"

*/
*/

Chapter 4. Expressions 67

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

The LENGTH() Function
To find out the length of a REXX variable, use the LENGTH() function.

S = "reveal"
say length(S) /* says "6" */

Here is an example that uses these two functions:

say "Enter a file name"

pull fn . /* The period ensures that */
/* FN is assigned only one */
/* word. */
if length(fn) > 8
then
do /* A group. See */

/* "“Groups of Instructions” on page 66. */
fn = substr(fn,1,8)
say "The file name you entered was too long. ",
fn "will be used."

end

The COPIES() Function

To produce a number of copies of a string, use the COPIES() function. The arguments are:

1. The string to be copied
2. The number of copies required.

For example:
say COPIES("Ha ",3)! /* says "Ha Ha Ha !" */
The LEFT() Function

To obtain a string that is always length characters long, with string at the left hand end of it, use the
LEFT() function.

LEFT(string, length)

If string is too short, the result will be padded with blanks; if string is too long, the extra characters will be

truncated.

For example:
say "|"left("Long",6)"|" /* says "|Long |" */
say "|"left("Longer",6)"|" /* says "|Longer|" */
say "|"left("Longest",6)"|" /* says “|Longes|" */

The RIGHT() Function

The RIGHT() function works the same as the LEFT() function, except the returned string is padded or
truncated on the left.

Arranging Your Output in Columns

You can use the LEFT() function to arrange your output in columns:

68 z/VM: 7.3 REXX/VM User's Guide

Reading 1

say
say
say
say
say
say

/* TABLE1 EXEC */
/* Example: tabulated output */
cl =14 /* Width of column 1 */
c2 = 20 /* Width of column 2 */
ruler = cl1 + c2 + 16 /* Width of ruled line */
say left("First Name",cl)Left("Last Name",c2)"Occupation"
say copies("-",ruler)

say left("Bill",cl)Left("Brewer",c2)"Innkeeper"

left("Jan",cl)Left("Stewer",c2)"Cook"
left("Peter",cl)Left("Gurney", c2)"Farmer"
left("Peter",cl)Left("Davey",c2)"Laborer"
left("Daniel",cl)Left("Whiddon",c2)"Gamekeeper"
left("Harry",cl)Left("Hawke",c2)"Exciseman"
left("Tom",cl)Left("Cobley",c2)"Sailor (retired)"

Figure 38. TABLE1 EXEC

And you can vary the tab settings by changing the values of C1 and C2. The output looks like this:

tablel

First Name Last Name Occupation

Bill Brewer Innkeeper

Jan Stewer Cook

Peter Gurney Farmer

Peter Davey Laborer

Daniel Whiddon Gamekeeper
Harry Hawke Exciseman

Tom Cobley Sailor (retired)
Ready;

Test Yourself...

Given that C = "Continent", what is the value of:

O 00 9 O o0 A W N P

=
o

. C "of America"

.Cll"al"

. C"al"

. LENGTH("Continent")

. LENGTH(C)

. LENGTH("C")

. Substr(c,1,4)substr(c,7,3)

. Substr(c,1,2)substr(c,5,2)

. LEFT("Q",8)"QUERY"

. LEFT("COPY",8)"COPYFILE"

Answers:

1. Continent of America

. Continental

. Continental

.9

.1

. Content

2
3
4
5.9
6
7
8

. Coin

Chapter 4. Expressions 69

Reading 2

|---+----+----+----|
(This scale can help you check the number of blanks in the following answers.)
9.0Q QUERY

10. COPY COPYFILE

Reading 1 continues in “Comparisons” on page 78.

Using a Subroutine to Simplify Tabulation

To make your main program easier to read, leave formatting of output to a subroutine. For example, the
exec in Figure 39 on page 70 shows how a subroutine can be used several times in order to create a

table.

For example:
/* TABLE2 EXEC */
/* Example: a simpler way to obtain tabulated output */
call tabout "First Name", "Last Name", "Occupation"
say copies("-",50)
call tabout "Bill", "Brewer", "Innkeeper"
call tabout "Jan", "Stewer", "Cook"
call tabout "Petexr", "Gurney", "Farmer"
call tabout "Peter", "Davey", "Laborer"
call tabout "Daniel", "Whiddon", "Gamekeeper"
call tabout "Harry", "Hawke", "Exciseman'
call tabout "Tom", "Cobley", "Sailor (retired)"
exit
Y R e R R T */
/* Subroutine to tabulate the output */
/* */
/* Input format: CALL TABOUT argl,arg2,arg3 */
/* (number of arguments is not checked) */
/* */
/* Output to screen: argl in Column 1 */
/* arg2 in Column 15 */
/% arg3 in Column 35 */
R e e */
TABOUT
say left(arg(1),14),
[l left(arg(2),20),
[arg(3)
return

Figure 39. TABLE2 EXEC

The output will be the same as Figure 38 on page 69.

For the CALL instructions in Figure 39 on page 70, the arguments are separated by commas. In general,
each argument could be an expression.

The expression, arg(1), refers to the first argument passed to the called subroutine. arg(2) refers to the
second argument passed to the called subroutine, and arg(3) refers to the third argument passed to the
called subroutine. For example, in the TABLE2 EXEC, the first time TABOUT is called, arg(1) is First
Name, arg(2) is Last Name, and arg(3) is Occupation.

For example:

70 z/VM: 7.3 REXX/VM User's Guide

Reading 2

/* TABLE3 EXEC
/* Example: arguments can be expressions

/* Subroutine to tabulate the output
. (See Note 1)

Note:
1. Same as TABLE2 EXEC in Figure 39 on page 70.
Figure 40. TABLE3 EXEC

call tabout "First Name", "Last Name", "Occupation"

say copies("-",50)

r = "(retired)"

firstname = "Tom"

nickname = "Uncle"

lastname = "Cobley"

call tabout firstname "("nickname")", lastname, "Sailor"
exit
R e T T

*/
*/

I

When run, the following is displayed:

table3

First Name Last Name Occupation

Tom (Uncle) Cobley Sailor (retired)
Ready;

The POS() Function

To find the position of a string in another string, use the POS() function. The first two arguments are:

1. The needle to be found
2. The haystack to be searched.

For a complete definition, see z/VM: REXX/VM Reference.

Here is a simple example:

S = "reveal"
say pos("eve",S) /* says "2"
say pos('"revel",S) /* says "0" /% not found %/ %/

Other useful functions of this type are LASTPOS() and COMPARE().

Example

The next example uses some of the functions that you have just been reading about.

Chapter 4. Expressions 71

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

/* VALIDFN EXEC */
/* VALIDATE FILE NAME */
/* This program checks that names conform to a set of */
/* defined standards. The names must have the form: */
/* */
/* namddiii */
/* */
/* where "nam" stands for one of the components (INP, */
/* PRO, or OUT); "dd" are two decimal digits; and */
/* "iii" are the author's initials (from one to three */
/* letters). For example, the fifth module that */
/* Joe Bloggs writes for the INPut component would be %/
/* */
/* INPO5JB */
/* */
do until good /* assume the name is good */

good = 1

Say "Enter file name"

pull fn .

if length(fn) > 8 then do /* length */

say "File name must not be more",
"than 8 characters long"

good = 0O /> bad file name %/
end
componentname = left(fn,3) /* component */
select

when componentname
when componentname
when componentname
otherwise

say "First three characters must be",

"a valid component name"

good = O /* bad file name x/

end

"INP" then nop /% valid names x*/
"PRO" then nop
"OUT" then nop

/*continued ...%/
serial = substr(£fn,4,2)
if datatype(serial,whole) & pos(".

',serial) = 0

then nop
else do
say "Fourth and fifth characters must be numeric"
good = 0O /> bad file name x*/
end
author = substr(fn,6) /* author */
if - datatype(author,upper)
then do

say "Sixth and remaining characters",
"must be alphabetic"

good = O /* bad file name x*/
end
if good = O then say "Try again"
end

Figure 41. VALIDFN EXEC

Words

In REXX, a word is defined as a string of characters delimited by blanks. To process words, rather than
characters, use any of the following REXX functions:

+ DELWORD

« FIND

« SUBWORD

+ WORD

« WORDINDEX
« WORDLENGTH
+ WORDPOS

« WORDS.

72 z/VM: 7.3 REXX/VM User's Guide

Reading 2

The following description highlights the WORDPOS function; all functions are described fully in the z/VM:
REXX/VM Reference.

(Also see the PULL, ARG and PARSE instructions, starting in “The PULL Instruction” on page 88).

The WORDPOS() Function

To find a phrase (of one or more words) in a string, use the WORDPOS() function.

»w— WORDPOS(phrase,string L J) >«
,start

The arguments are:

1. The phrase to be found.

2. The string be searched.

3. The start point of the search (must be a positive number). The default is the first word in the string.

The language processor searches string for the sequence of word(s), phrase. The result is the word-
number of the first word in string that matches the first word in phrase. But, if phrase is not found, zero is
returned.

By default the search starts at the first word in string. By specifying start you can begin the search for
phrase on any word in string.

For example:

/* REVERE EXEC */

/* "The British are coming!" */

text = "Listen, my children, and you shall hear",

"0f the midnight ride of Paul Revere"

name = "Paul Revere"

say WORDPOS (name, text) /* says "13" */

say WORDPOS("my children",text) /% says "0", because the %/
/* Word in TEXT is */
/* "children," */
/* (Notice the comma) */

Figure 42. REVERE EXEC

Providing Help

You may have noticed that CMS commands and REXX instructions are provided with a HELP command, so
that if you forget how to use them you can always get a definition displayed on the screen.

If you are writing programs that other people will use, it will help your users if you do the same. You can
either write a separate HELP file for your program or, more informally, you can provide information from
within your program file.

Here is a program that provides its own HELP, using the SOURCELINE() function to simplify the
job of displaying whole lines. SOURCELINE(n) returns the nth line of the source file. If n is omitted,
SOURCELINE() returns the line number of the final line in the source file.

Chapter 4. Expressions 73

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

/* MYPROG EXEC */
/*
This program processes the input file to give ...
Céiieé{.format is:
MYPROG
Function performed is:
Rhubarb, rhubarb, rhubazrb.
*/
say "Enter file ID of file to be processed"
pull £fn ft £fm

if fh =2 | fn="" | £ft = ""

then do
/* Display lines until comment-end delimiter alone %/
line = 2

do while sourceline(line) -= "%/"
say sourceline(line)
line = line + 1

end

exit
end
e e R E T */
/* Main program starts here. */
B T PP */

say "This is the program"

Figure 43. MYPROG EXEC

Note: Notice that the comment delimiters must be on a separate line in order for the exec to work
properly.

Test Yourself...

Write a subroutine to display data on the screen in the following format:

 The first argument occupies columns 1 to 20. The text is left justified.

« The second argument is an amount of dollars and cents (or pounds and pence, or francs and centimes,
or marks and pfennigs) with the units position of the cents in column 34.

« The third argument occupies columns 37 to 80.

« As a further refinement, extend your program so that, when the third argument is too long to fit onto one
ling, it can be extended into columns 37 to 80 of as many lines as necessary.

Answers:

Here is the answer to the fourth item, with some test cases.

74 z/VM: 7.3 REXX/VM User's Guide

Reading 3

/* AMAT EXEC %/

/* Example: a subroutine for formatting text, and a */
/* main routine for testing it. */
call formatter "whole number", 12, "An easy case"
call formatter "expression",2000/6, "Rounded up"
call formatter "abcdefghijklmnopqrstuvwxyz",,
12345678888, ,
"Precision of this number is that",
"specified by NUMERIC DIGITS"
call formatter "Small number", 1/201,,
"After rounding, this number is",
! less than .005"

exit
e */
/* Subroutine to format data and display it. */
;* (For specification, see “Test Yourself..” on page 74.) x/ ;
e T T e *
FORMATTER:

len =80 - 37 + 1 /* length of */

/* remark field */
parse arg name, value, remark
do j = 1 while length(remark) > len /x slice REMARK */
remark.j = substr(remark,l,len)
remark = substr(remark,len+1)

end
remark.j = remark /* last slice */
say left(name,20), /* say first line */

|| format(value,11,2,0),

[| " "remark.l1

/* say others */
do line = 2 to j
say copies(" ",36)||remark.line

end
return

Note: Notice the double commas in two of the CALL statements in the 4AMAT EXEC. The first comma
indicates that the clause is extended to the next line. The second comma indicates the end of the
argument.

When this program is run, this is what is displayed:

4dmat
whole number 12.00 An easy case
expression 333.33 Rounded up

abcdefghijklmnopqrst12345678900.00 Precision of this number is that specified b
y NUMERIC DIGITS
Small number 0.00 After rounding, this number is
less than .005
Ready;

Reading 2 continues in “Comparisons” on page 78.

The OVERLAY() Function

To overlay one string onto another string, use:

»»— OVERLAY(new, target,position ,length —) -»<

The arguments are:

The string to be overlaid

The target onto which it is to be overlaid
- The position in the target where overlaying is to start
- The number of characters to be overlaid.

Chapter 4. Expressions 75

Reading 3

For example:
say overlay("abc",6 "123456",3,2) /* says "12ab56" */

(For a complete definition, see z/VM: REXX/VM Reference.)

Here is a useful example.

/* ORDCHARS EXEC */
/* This program will help you understand how */
/* comparisons are made. The characters typed in by */
/* the user will be sorted into ascending oxder. */

say "Please type in all the characters you would",
"like to have sorted."
parse pull S /* Do not translate «/
/* to uppercase. */
do until swap = 0
swap = 0
do p =1 to (length(S) - 1)

¢l = substr(S,p,1)
c2 = substr(S,p+1,1)
if c1 > c2 then do /* If out of order, =«/
S = overlay(c2||c1,S,p,2) /* swap them. */
swap = 1 /* Remember the swap %/
end
end
end
say

say "Here are the same characters,",
"arranged in ascending order:"

say

say S

Figure 44. ORDCHARS EXEC

This is not the fastest way of sorting things, but it is one of the simplest.

The WORDS() and WORD() Functions

A word is a string of characters, delimited by blanks. To obtain the number of words in a string, use the
WORDS() function.

For example:

necessity = "the mother of invention."
say words(necessity) /* says "4" */

To obtain a particular word from a string, use the WORD() function. The arguments are:

e The string
« The number of the word to be extracted from it.

For example:

necessity = "the mother of invention."
say word(necessity,2) /* says "mother" %/

This next example demonstrates how the WORD and WORDS functions can be used to search for a word
(in this case, a file type) that matches one of a given list of words.

76 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 3

/* XE EXEC

/* This exec helps you select files to be edited by
/* the XEDIT editor. Use the command

/* XE filename [filetype [filemode]] [(options]

/* You need not specify a file type. If you do not,

/* XE will search

for a file in the following order:

SCRIPT on any filemode
EXEC on any filemode
PLIOPT on any filemode
DOC on any filemode
LISTING on any filemode

/* If none of these can be found, it will select

/* filename
/* filename
/* filename
/* filename
/* filename
/*
/*
/* filename
/*

SCRIPT A

/* However, if you do specify a file type, XEDIT will
/% use the file type that you have specified on the

/* command line.

/* When the file has been chosen, XEDIT will be called

/* and any options that you have specified on the
/* XE command line will be passed to XEDIT

/* continued ...

Figure 45. XE EXEC (Part 1 of 2)

Chapter 4. Expressions 77

Reading 3

if filetype = "" then do

filetype =
"SET CMSTYPE HT"

exit rcs
end /* select %/
end p
if rcs = 28
then filetype = SCRIPT
end

exit rc

"STATE" filename filetype

-- */
/* check arguments */
Y R e */
arg filename filetype filemode " (" options

/* Coding note: */

/* See Figure 58 on page 93. */
if filename = "" | filename = "?" /* Help needed */
then do

do line = 1 while substr(sourceline(line),1,2) = "/%"

say sourceline(line)

end

exit
end
R e */
/* compute file type */

B e i */

do p = 1 to words(types)
word (types,p)

/* does file exist? =/

ICcs = Ic
"SET CMSTYPE RT"
select

when rcs = 28 then nop /* no */

when rcs = 0 then leave p /% yes */

/* Coding note: */
/* See "Leaving a Specified Loop” on page 141.
otherwise

say "Unexpected return code" zcs,
"from STATE command in XE EXEC"

/* not found yet

Figure 46. XE EXEC (Part 2 of 2)

*/

Reading 3 continues in “Comparisons” on page 78.

Comparisons

In this section:

Reading Describes

Reading 1 immediately following, describes:
« Comparing numbers
« Comparing character strings.

Reading 2 “The COMPARE() Function” on page 80, describes:
- Finding the first character that does not match
« Comparing data without regard to case
» Recognizing abbreviations.

Reading 3 “Exact Comparisons” on page 82, describes:

78 z/VM: 7.3 REXX/VM User's Guide

Reading 3

Reading Describes

» Exact comparisons
« Fuzzy arithmetical comparisons.

General

Comparisons are performed using the operators:

>
Greater than

Equal to
Less than.

These characters can also be combined with each other and with the not character (). (For full details,
see z/VM: REXX/VM Reference.)

Numbers

If both the terms being compared are numbers, comparison is numeric, rather than character by
character.

e Thevalueof5>3is1/*true?*/
« Thevalue of 2.0 =002 is 1 /* true */
« The value of 3E2 < 299 is 0 /* false */

Characters

If either of the terms is not a number, leading and trailing blanks are ignored; the shorter string is padded
on the right with blanks; and then the strings are compared from left to right, character by character. If the
strings are not equal, the first pair of characters that do not match determine the result.

For example, if " Chalk" is compared with "Cheese "

pad

|

a <- e s0 Chalk <- Cheese

Figure 47. Comparing Character by Character

Chapter 4. Expressions 79

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

A character is less than another character if it comes earlier in the sequence:
« (lowest)

« blank

« special characters

ca..z

cA.LZ

«0..9

(highest).

There may be exceptions to this for some of the special characters, depending on the features of the
keyboard you are using. You can use the program ORDCHARS EXEC in Figure 44 on page 76 to discover
the sequence of characters for your keyboard.

Test Yourself...

What is the value of each of the following expressions?
1."3" > "five"

. "Kilogram" > "kilogram"

Jtat >

Jgt> e

."9a" > "9"

ot

oA WN

Answers:
All are "1" (true).

Reading 1 continues in “Translation” on page 83.

The COMPARE() Function

To compare two strings and find the position of the first character in the first string that does not match
the second string, use the COMPARE() function.

»— COMPARE(string1,string2 —) -»<
For example:

/* Given that %/

a = "Berry"; b = "Beryl"; c¢ = " Bert"; d = "BEST"
« The value of compare(a,b) is 4.
« The value of compare(a,c) is 1.
« The value of compare(a,d) is 2.

In that last example, notice that e is not the same as E. When you would like your comparisons to be
independent of case, translate everything to uppercase first. Of course, if you obtained your data using
ARG or PULL, this will have been done for you. If not, you can use the UPPER instruction to change one or
more variables to uppercase.

/* Given that %/
a = "Berry"; b = "Beryl"; c¢ = " Bert"; d = "BEST"
UPPER a b c d

80 z/VM: 7.3 REXX/VM User's Guide

Reading 2

« The value of compare(a,d) is 3.

The ABBREV() Function

In a friendly environment, the user might expect to be allowed to use abbreviations, just as you can with
CMS commands. To specify what abbreviations you will accept, use the ABBREV() function.

»— ABBREV(information ,info L J) >«
length

The arguments are:
1. The keyword in full.
2. The user's answer.

3. The minimum number of characters in the user's answer. If you leave this argument out, the minimum
number is assumed to be the same as the actual length of the user's answer. A null answer is also
accepted.

The result is 1 (true) if info (the user's answer) is at least length characters long and all the characters of
info match the corresponding characters of information (the keyword in full).

For example,

/* YEP EXEC */
/* Example: accepting abbreviations */
do until yes -= "YES" /* until YES is set «/
say " . answer Yes or No"
pull answer
select
when abbrev("YES",answer,1) /* accepts "YES", */
/* ||YE|| or ||Y|| */
then yes = 1
when abbrev("NO",answer) /* accepts "NO", "N" x/
/* or ' */
then yes = 0
otherwise say "Try again!"
end /* select %/
end

if yes then say "I take that to mean YES"
else say "I take that to mean NO"

Figure 48. YEP EXEC

Test Yourself...

Given that:
« Q2 ="COPY"
« Q3 ="PRT"

What is the value of:

1. COMPARE(SUBSTR(Q2,3),Q3)
2. ABBREV("COPYFILE",Q2,4)
3. ABBREV("PRINT",Q3,2).

Answers:

1.2
2.1
3. 0 ("PRT" is not equal to the first 3 letters of "PRINT".)

Reading 2 continues in “Translation” on page 83.

Chapter 4. Expressions 81

Reading 3

Exact Comparisons

Strict comparison operators carry out simple character-by-character comparisons, with no padding of
either of the strings. They do not try to perform numeric comparisons because they test for an exact
match between the two strings.

To find out whether two strings are exactly equal (that is, identical) use the == operator.

Given that:

X = ||2||; y = Dag)

The value of X =y is 1 /* true =/
The value of x \=y, x ==y or x /=Yy is 0 /% false %/
The value of X ==y is 0 /*x false %/
The value of X \==y, X =.==y o0or X /==y is 1 /* true =/

You can also find out whether two strings are exactly greater than or exactly less than using the >> and <<
operators. (Remember, a character is less than another character if it comes earlier in the sequence. Refer
to “Characters” on page 79.)

For example:
The value of "cookies" >> "carrots" is 1 /* true %/
The value of "$10" >> "nine" is 0 /*x false %/
The value of "steak" << "fish" is 0 /* false %/
The value of " steak" << "steak" is 1 /* true %/

In the last example, '
characters.

steak" is strictly less than "steak" since the blank is lower in the sequence of

The strict comparison operators would be especially useful if you were interested in leading and trailing
blanks, nonsignificant zeros and so on.

For more information on exact comparison operators, see z/VM: REXX/VM Reference.

Fuzzy Arithmetical Comparisons

There are times when an accurate comparison is inconvenient, for instance:

/* NOFUZZ EXEC */
/* Example: no approximation here x/
say 1 + 1/3 /* says "1.33333333" */
say 1 + 1/3 + 1/3 + 1/3 /* says "1.99999999" */
say 1 + 1/3 + 1/3 + 1/3 =2 /* says "0" (false) */

Figure 49. NOFUZZ EXEC

To make comparisons less accurate than ordinary REXX arithmetic, use the NUMERIC FUZZ instruction.
(For full details, see z/VM: REXX/VM Reference.)

For example:

/* FUZZ EXEC */

/* Example: allowing approximation x/

say 1 + 1/3 +1/3 +1/3 =2 /* says "0" (false) */
numeric fuzz 1

say 1 + 1/3 + 1/3 + 1/3 = 2 /* says "1" (true) */

Figure 50. FUZZ EXEC

82 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 2

To check the current setting of the NUMERIC FUZZ instruction use the FUZZ () function. For example:

FUZZ ()

will return @ by default. This means that 0 digits will be ignored during a comparison operation.

Reading 3 continues in “Translation” on page 83.

Translation

In z/VM, each character or byte contains 8 bits. There are two possible values for each bit, and so there
are 2**8 or 256 possible characters in the character set.

If you need to translate from one character set to another, or if you are dealing with output from programs
that work in binary or hexadecimal, you should study this section.

In this section:

Reading Describes

Reading 1 skips this section.

« Continue Reading 1 in Chapter 5, “Conversations,” on page 87.

Reading 2 “Hexadecimal” on page 83, describes:

« Conversion between Character, Hexadecimal and Decimal.

Reading 3 “Character Sets” on page 85, describes:

« Translation from one character set to another
« The VERIFY() function.

Hexadecimal

In z/VM, each character occupies 8 bits. Each bit can have one of two values, 0 or 1. For example, the
character + has the value:

0100 1110 (binary)

But, because binary is difficult for humans to read, we might write it as a pair of hexadecimal digits. There
are 16 possible hex digits. They are:

0123456789ABCDEF
So the hexadecimal equivalent of + is 4E.
Finally, we could also write the value of the character + as its decimal equivalent, which is 78.

The language processor will accept strings expressed in either character or hexadecimal form.
Hexadecimal numbers are usually expressed with the X in front of the number like X'18'. But REXX only
accepts hexadecimal numbers with the X after the number. So, to indicate that a string is expressed in
hex, write the letter X after the closing quotation mark like '18'X.

The value of + is the same as the value of '4E'X.

Conversion

To convert from one form to another, you can use various built-in functions.

2
means translate to

Chapter 4. Expressions 83

Reading 2

means characters
means hexadecimal

means decimal

» The value of C2X(+) is 4E

« The value of X2C(4E) is +

» The value of C2D(+) is 78

« The value of D2C(78) is +

« The value of D2X(78) is 4E
» The value of X2D(4E) is 78

All these functions will accept strings more than 1-byte long.

To understand the conversion functions, let's look at the input to and the output from the functions in
hexadecimal. The following chart shows example hexadecimal input, the conversion function performed,
and the resultant hexadecimal output. Also shown is another way to remember what the function does.

Table 3. Inputs and Outputs of Hexadecimal Functions

Input Function Result What the function does

OF C2D F1F5 binary in, EBCDIC out (represents a decimal value)

OF C2X FOC6 binary in, EBCDIC out (represents a hexadecimal value)

F1F5 D2C OF EBCDIC representing decimal in, binary out

F1F5 D2X cé6 EBCDIC representing decimal in, EBCDIC representing hexadecimal out
F1C6 X2C 1F EBCDIC representing hexadecimal in, binary out

F1Cé X2D F3F1 EBCDIC representing hexadecimal in, EBCDIC representing decimal out

The input to C2D and C2X can be any hexadecimal value. Hexadecimal input is typically referred to as
binary or character input. The hexadecimal value does not represent an EBCDIC string. Usually the input
to C2D or C2X is generated by another program or a function, such as the REXX DIAG function, that
returns a binary value.

You would use C2X or C2D to convert this binary value into a form that could be displayed on an EBCDIC
terminal, or that could be used in other REXX instructions.

In the first function, C2D, the input is hexadecimal 'OF'. C2D tells REXX to convert the input into a decimal
value and then to convert that decimal value into its EBCDIC representation. Hexadecimal 'OF' has a
decimal value of 15. The EBCDIC representation of 15 is 'F1F5". If you were to display hexadecimal 'F1F5'
on an EBCDIC terminal, what you would see is the character string 15.

Try executing:
say c2d('OF'x)

You should see a 15 displayed on your terminal. Notice that we use the notation '0OF'x for input. This is
because there is not a key on most EBCDIC terminals that causes a hexadecimal 'OF' to be generated.

For the C2X function, the input is, again, hexadecimal 'OF'. C2X tells REXX to convert the hexadecimal
value into an EBCDIC form. The hexadecimal value is 'OF'. The EBCDIC representation of that value is
'FOC6". If you were to display hexadecimal 'FOC6' on an EBCDIC terminal, you would see the character
string OF. Try executing:

say c2x('OF'x)

84 z/VM: 7.3 REXX/VM User's Guide

Reading 3

You should see OF on your terminal.

The input to the next two functions, D2C and D2X must be the EBCDIC representation of a decimal value.
The output of D2C is binary, and hence may be nondisplayable, while the output of D2X is an EBCDIC
representation of a hexadecimal value.

In the preceding chart, the input to D2C is hexadecimal 'F1F5'. By definition, the input to the D2C function
is an EBCDIC string that represents some decimal value. D2C tells REXX to take the decimal value
represented by the input and convert it to a hexadecimal value. The EBCDIC string 'F1F5' represents a
decimal value of 15. Hexadecimal notation for decimal 15 is 'OF". Try executing both of these instructions:

say d2c('f1f5'x)
say d2c(15)

They both mean the same thing. In the first instruction, we supply the hexadecimal string as input. In the
second, we type the characters, which are internally represented as hexadecimal 'F1F5',

Both instructions attempt to display hexadecimal 'OF' on your terminal. On most EBCDIC terminals, 'OF'
does not mean anything. You will either see a blank or, on some models, you might see an unusual
character.

In the chart, Table 3 on page 84, hexadecimal 'F1F5' is also the input to D2X. Again, by definition, the
input to D2X must be an EBCDIC string that represents some decimal value. D2X tells REXX to convert the
EBCDIC representation of the decimal value into the EBCDIC representation of its equivalent hexadecimal
value. EBCDIC 'F1F5' represents a decimal value of 15, which is the hexadecimal value F. The EBCDIC
representation of the character F is 'C6". Try:

say d2x('f1f5'x)
say d2x(15)

Again, the instructions mean the same thing. Both attempt to display hexadecimal 'C6' on your terminal.
In EBCDIC, 'Cé' represents the character F, which is what you will see on your terminal.

The last two functions, X2C and X2D, accept as input EBCDIC strings that represent hexadecimal values.
The output of X2C is binary, while the output of X2D is an EBCDIC string that represents a decimal value.

The input to both functions is hexadecimal 'F1C6". X2C tells REXX to convert the EBCDIC string into its
binary hexadecimal form. The EBCDIC string 'F1C6' represents the hexadecimal value '1F'. The output,
then, is '1F" Try executing:

say x2c('flc6'x)
say x2c(1F)

Both instructions mean the same thing. By now you can probably predict what will happen: because the
output is binary, either a blank or an odd character will be displayed.

X2D tells REXX to convert the EBCDIC input of a hexadecimal value into the EBCDIC representation of its
decimal equivalent. The EBCDIC string 'F1C6' represents a hexadecimal value of 1F. Decimal notation for
hexadecimal '1F'is 31. The EBCDIC representation of '31"'is 'F3F1". Try:

say x2d('flc6'x)
say x2d(1F)

Both instructions mean the same thing. The output is EBCDIC, so you will see the characters 31 displayed
on your terminal.

Reading 2 continues in Chapter 5, “Conversations,” on page 87.

Character Sets

To translate from one character set to another (for example, to translate data before sending it from an
EBCDIC computer to an ASCII printer) use the TRANSLATE() function.

Another use would be for changing punctuation, as in this example.

Chapter 4. Expressions 85

Reading 3

/* NOPUNCT EXEC */
/* Example: using the TRANSLATE() function to change */
/* unwanted characters to BLANK */
text = "Listen, my children, and you shall hear",
"0f the midnight ride of Paul Revere"
say wordpos("my children",text) /% says "0", because the x/
/* word in TEXT is */
/* "children," */
R i */
/* Say whether "my children" can be found in TEXT */
B e e i */
/* remove punctuation */
n n P | ?II

nopunct = translate(text," P
say sign(wordpos("my children", nopunct))

/* Says ||1|| */
say sign(wordpos("kids",nopunct))
/* Says ||0|| */

Figure 51. NOPUNCT EXEC

To help make up strings to put in translation tables use the XRANGE() function. For more information on
this function see to the z/VM: REXX/VM Reference.

The VERIFY() Function

To find out whether a string contains only characters of a given character set, use the VERIFY() function.

»»— VERIFY(string ,reference —) »<

returns the position of the first character in string that is not also in reference. If all the characters in string
are also in reference, zero is returned. For example:

/* DIGITS EXEC */
/* Example: testing that all input characters are valid */
say "Please enter the serial number"

say "(eight digits, no imbedded blanks or periods)"

pull serial rest

if verify(serial, "0123456789") = 0O,

& length(serial) = 8,

& rest = ""

then say "Accepted"

else say "Incorrect serial number. Please start again'

Figure 52. DIGITS EXEC

Reading 3 continues in Chapter 5, “Conversations,” on page 87.

86 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 1

Chapter 5. Conversations

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

« How to write lines to the user's screen using the SAY instruction

- How to obtain data from the user's keyboard using the PULL instruction

- How to translate values to uppercase using the UPPER instruction

« How to parse this data; that is, to separate it into words and to assign
each word or group of words to a different REXX variable.

Reading 2 “Getting Data from the Command Line” on page 92, describes:

« How to obtain data from the command line using the PARSE instruction
« How to parse options using the ARG instruction
« How to parse variables and expressions.

Reading 3 “Parsing Using Patterns” on page 95, describes:

« How to parse using patterns.

The SAY Instruction

To display data on your screen use:

»— SAY 1-_ __I ; >
expression

The expression is computed and the result is displayed as a new line on the screen. For example, the
instruction:

say 3 * 4 "= twelve"
causes this to be displayed:

12 = twelve

If you want to display a clause that occupies more than one line in your program, use a comma at the end
of a line to indicate that the expression continues on the next line. For example, the instruction:

say "What can't be done today, will have to be put off",
"until tomorrow."

causes this to be displayed:
What can't be done today, will have to be put off until tomozrrow.

Notice that the continuation comma is replaced by a blank when the expression is displayed. (Remember
that the continuation comma cannot be enclosed in quotation marks or the language processor will
consider it part of the string.)

© Copyright IBM Corp. 1991, 2023 87

Reading 1

The PULL Instruction

Having asked the user a question using SAY, you can collect the answer using PULL. When the instruction

;e
1——symbol——I

is executed the program pauses; VM READ appears on the bottom right of the user's screen; the user
should enter some data on the command line and press Enter. Whatever the user enters is translated to
uppercase and then assigned to the variable SYMBOL.

»— PULL

To get the data just as it is, without having the lowercase letters translated to uppercase, use:

»— PARSE PULL ; P
1——symbol——I

This example uses both PULL and PARSE PULL.

/* CHITCHAT EXEC */

/* Another conversation %/

say "Hello! What's your name?"
parse pull name

say "Say," name", are you going to the party?"
pull answer
if answer = "YES"

then say "Good. See you there!"

Figure 53. CHITCHAT EXEC

The user's name will be repeated exactly as it was entered. But ANSWER will be translated to uppercase.
This ensures that whether the user replies yes, or Yes, or YES, the same action is taken.

The UPPER Instruction

To translate the values of one or more variables to uppercase, use the UPPER instruction.

»— UPPER fvari:blel ; >

For example, this might have been used in WHATDAY EXEC, Figure 32 on page 56, to let the user reply in
mixed case.

/* WHATDAY2 EXEC */
/* Example: to make the user say what day of the */
/* week it is today. The user's reply may be in */
/* mixed case. */
today = date(weekday)

upper today /* uppercase */

do until reply = today
say "What day of the week is it?"
pull reply /* uppercase */
if reply -= today
then say "No, it is" today
end
say "Correct!"

Figure 54. WHATDAY2 EXEC

Test Yourself...

1. The following program asks a question:

88 z/VM: 7.3 REXX/VM User's Guide

Reading 1

/* RIDDLE EXEC */

/* Simple question (?) %/

say "Mary, Mary, quite contrary"
say "How many letters in that?"
pull ans

if ans = length(that)

then say "Quite right!"

else say "Oh!"

What happens if the user replies:
a. 21
b. 4
c. Four
2. What would be displayed by:

/* NOAH EXEC =%/

/* Example: expressions that continue for more */
/* than one line. */
X =3
Say IIX =II X
say
say "Ham,",
”Shem” ,
"and Japheth"
say "Silly"
IIBillyll

3. Use XEDIT to create a file called PULLIN EXEC containing the following program, then try to run the

program!

/* PULLIN EXEC */

/* Example: appending input, using PULL, */
/* to a REXX variable */
text = ""

do until input = "QUIT"
say "Text so far is:"
say text
say "Would you like to add to that?",
" If so, type your message.",
" If not, type QUIT."

pull input
text = text]||input
end
Answers:

1. What appears on the screen is:

a. Oh!

b. Quite right!

c. Oh!

Each of these are, of course, followed by Ready ;.
2. What appears on the screen is:

noah

x =3

Ham, Shem and Japheth
Silly

Chapter 5. Conversations 89

Reading 1

10 *-% "Billy"
+++ RC(-3) +++
Ready;

As there is no comma after Silly,Billy is treated as a command. If no such command exists CMS
sets the return code to minus three. So the language processor displays the line that caused the error
and the return code.

3. Did it work? If not, study the error messages and make sure you copied everything correctly.
a. Notice that:
« When you run the exec, everything you type in gets changed to uppercase (capital) letters.
 You are not given any blanks between the old TEXT and the new INPUT.

b. Now alter pull input to parse pull input. Alter the concatenate operator "[|" to a single
blank and try again. Notice that:

 Your input does not get changed to uppercase.
 You are always given one blank between the old TEXT and the new INPUT.
« You cannot get out of the program by entering quit. But you can get out by entering QUIT.

Parsing Words

PULL can also fetch each word into a different variable. In the following example FIRST, SECOND, THIRD,
and REST have been chosen as the names of variables:

/* PARSWORD EXEC */

/* An exec that parses words. *x/

say "Please enter three or more words:"
pull first second third rest

say first second third rest

Figure 55. PARSWORD EXEC

If you type "three wise men on camels" after the prompt (with five spaces between "men" and "on"),
you will see this:

parsword

Please enter three or more words:
three wise men on camels
THREE WISE MEN ON CAMELS
Ready;

As usual, the program pauses and the user can type something on the command line. When the user
presses Enter, the program continues. The variables are given the values as follows:

Variable Value
FIRST "“THREE"
SECOND "WISE"
THIRD "MEN"
REST " ON CAMELS"

In general, each variable gets a word (without blanks) and the last variable gets the rest of the input, if any
(with blanks). If there are more variables than words, the extra variables are assigned the null value.

To make sure that the user types in the right number of words, provide one extra variable and test that
it is empty. Also, test the variable that holds the last word the user is expected to enter. By testing both
variables for a null value, you can be sure that each of your variables contains exactly one word.

90 z/VM: 7.3 REXX/VM User's Guide

Reading 1

/* FUSSY EXEC
/* Example: getting the number of words that you want
good = 0
do until good
say "Please enter exactly three words"
pull first second third rest

select
when third = "" then say "Not enough wozrds"
when rest -= "" then say "Too many wozrds"
otherwise good = 1
end
end

Figure 56. FUSSY EXEC

*/
*/

The Period as a Placeholder

The symbol "." (a period by itself) may not be used as a name but it may be used as a placeholder with the

PULL instruction. For example,

pull . . lastname .

would discard the first two words, assign the third word into LASTNAME, and discard the remainder of the

input.

Test Yourself...

1. What will be displayed on the screen when this program is run?

/* PULLING EXEC %/

/* Example: the PULL instruction x/

Say "Where did Jack and Jill go?"

parse pull one two three four five six .

say one two six

say
Say "Will you buy me a diamond ring?"
pull reply .

/* User replies "Yes, if I can afford it"
say reply

/* User replies "To fetch a pail of water"

x/

*/

2. Write a program that asks the user for his name and greets him by his first name. Your program should

ignore any other names.

Answers:

1. What appears on the screen is:

pulling

Where did Jack and Jill go?

To fetch a pail of water

To fetch water

Will you buy me a diamond ring?
Yes, if I can afford it

YES,

Ready;

2. A possible answer would be:

Chapter 5. Conversations 91

Reading 1

/* HOWDY EXEC x/

/* Example: selecting a single word */

say "Howdy! Say, what's your name?"

pull reply . /* The period causes second */
/* and subsequent words to */
/* be ignored */

say "Pleased to meet you," reply

Reading 1 continues in Chapter 6, “Commands,” on page 97.

Getting Data from the Command Line

When you want to run your exec, type its file name on the command line. This can be followed by more
data, called arguments.

To obtain the data that the user entered on the command line when starting your program, use the ARG
instruction. ARG will parse the arguments in the same way that PULL parses data from the keyboard,
except that the first word entered on the command line (the name of the exec) is not parsed. (The ARG
instruction gives the same results as the PARSE UPPER ARG instruction.)

In the following program FIRST, SECOND, THIRD, and REST are the variable names:

/* MIX EXEC */
/* Example: this program starts by assigning the words */
/* from the command line to REXX variables */

arg first second third rest
say first second third rest

Figure 57. MIX EXEC

If you type "fresh green salad and olives" (with three spaces between "salad" and "and"), after the exec
name, you will see this:

mix fresh green salad and olives
FRESH GREEN SALAD AND OLIVES
Ready;

When the ARG instruction is executed, the variables are given the values as follows:

Variable Value
FIRST "FRESH"

SECOND "GREEN"
THIRD "SALAD"
REST " AND OLIVES"

Mixed Case

To obtain the data that the user entered on the command line when starting your program, without
translating alphabetic characters in the data to uppercase, use the PARSE ARG instruction.

Recognizing Options

In CMS, the ordinary arguments of a command are separated from the options by a left parenthesis.
Optionally you can mark the end of the options with a right parenthesis if you wish.

92 z/VM: 7.3 REXX/VM User's Guide

Reading 1

For example,
SCRIPT myfile (TWOPASS CONTINUE)

tells SCRIPT to process MYFILE SCRIPT with the options TWOPASS and CONTINUE.

Your REXX program can handle data from the command line in a similar way, by using string patterns.

String Patterns

To split up the data being parsed, use string patterns. If your PARSE instruction specifies a string (that is,
one or more characters enclosed in quotation marks) the data being parsed will be split at the point where
the string is found. In this next example, the first pattern is "(" and the second patternis ")". The ARG
instruction parses the data from the command line.

/* TAKE EXEC */

/* Example: recognizing options %/

arg drink type shelf "(" optl opt2 opt3 ")" rest
say drink type shelf optl opt2 opt3 rest

Figure 58. TAKE EXEC

If you type "coffee beans (fresh roasted" after the exec name, you will see this:

take coffee beans (fresh roasted
COFFEE BEANS FRESH ROASTED
Ready;

When the ARG instruction is executed:

« The words in front of the first pattern will be parsed in the usual way, into DRINK, TYPE, and SHELF. For
this example, SHELF will be set to null.

« The words between the first pattern and the second pattern (if there is one) will be parsed in the usual
way, into OPT1, OPT2, and OPT3. For this example, OPT3 will be set to null.

« If there is a second pattern, the words that followed it will be parsed into REST. For this example, REST
will be set to null.

This technique of parsing using string patterns can be used with any of the parsing instructions.

Parsing Variables and Expressions

As well as parsing replies from the user and the data from the command line, you can parse variables and

expressions.
VAR name {:] ; >

WITH _J L argument J
L expression J

»— PARSE

1~——-VALUE

For example:

Chapter 5. Conversations 93

Reading 1

/* PARSING EXEC */

/* Examples: parsing variables and expressions x/

phrase = "Three blind mice "

PARSE VAR phrase number adjective noun

say number /* says "Three" */

say adjective /* says "blind" */

say noun /* says "mice" */

PARSE VALUE copies(phrase,2) WITH . a . b . c

say b a ¢ /* says "Three blind mice" =/

/* and, finally, a very useful trick for taking the */

/* first word away from a sentence */

PARSE VAR phrase first phrase

say first /* says "Three" */

say phrase /* says "blind mice" */
Figure 59. PARSING EXEC

Test Yourself...

Modify MYPROG EXEC in Figure 43 on page 74 to use the ARG instruction. Make a further modification to
test for a CONTINUE option. Allow any abbreviation of COntinue that is two or more letters long. Test for
incorrect options.

Answer:

A possible solution is:

/* MYPROG2 EXEC =/
/*

This program processes the input file to give ...

Correct format is:

MYPROG2 filename filetype [filemode] [(COntinue [)]]
Function performed is:
Rhubarb, rhubarb, rhubarb.

*/

arg fn ft fm "("option")" rest

if fn =2 | fn = "" | ft = "",
| option -= "" & - abbrev(CONTINUE,option,2),
| rest -= ""

then do

do line = 2 by 1 while sourceline(line) -= "%/"
say sourceline(line)

end

exit
end
R L */
/* Main program starts here. */
Y e T T */

say "This is the program"

if abbrev (CONTINUE,option,2)

then say "If an error is detected, processing",
"will continue"

Figure 60. MYPROG2 EXEC

When run, the following is displayed:

myprog2
This program processes the input file to give ...

Céiieéfiformat is:

94 z/VM: 7.3 REXX/VM User's Guide

Reading 3

»w— MYPROG2 — filename — filetype

Lﬁlemode J L((:Ontinue —J L)_J -

Function performed is:
Rhubarb, rhubarb, rhubazrb.
Ready;

Reading 2 continues in Chapter 6, “Commands,” on page 97.

Parsing Using Patterns

The idea of parsing using patterns is fully explained in your z/VM: REXX/VM Reference; however, we will
briefly describe parsing here.

Data can be parsed using patterns. A pattern is part of the template of a PULL, ARG or PARSE instruction
and is recognized if it is:

« In quotation marks, like '(" and)" in the MYPROG2 EXEC Figure 60 on page 94.
« In parentheses (meaning that it is the name of a variable)

« An unsigned number (meaning that parsing is to continue at the specified character position)

« A signed number (meaning that parsing is to continue at the specified character position, relative to the
first character of the last match).

Here is a useful function, in which the second PARSE instruction uses a variable as a pattern.

/* CHANGE EXEC */
/* Function: CHANGE(string,old,new) */
/* */
/* Like XEDIT's *“C/old/new/1 *" */
/* */
/* Changes all occurrences of “old” in “string"” */
/* to "new". If "“old” == “", then “new” is attached */
/* to the beginning of “string”. */
parse arg string, old, new

if old=="" then return new||string

out=""

do while pos(old,string)-=0
parse var string prepart (old) string
out=out| |prepart| |new

end

return out||string

Figure 61. CHANGE EXEC

Reading 3 continues in Chapter 6, “Commands,” on page 97.

Chapter 5. Conversations 95

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

Reading 3

96 z/VM: 7.3 REXX/VM User's Guide

Chapter 6. Commands

In this chapter:

Reading Describes

Reading 1 immediately following, describes:

« How to issue commands to CMS and CP from within your exec
« What are return codes from commands
« The REXX special variable, RC.

Reading 2 “Debugging Individual Commands” on page 102, describes:

« How to debug commands

« How to write a common routine to handle nonzero return codes
« How to access messages from a repository file

« How to suppress messages issued by CMS commands.

Reading 3 “CP Commands” on page 112, describes:

« How to suppress messages issued by CP commands
« How to obtain a reply from a CP command

« Using the COMMAND environment as an alternative environment for
issuing CMS and CP commands.

Issuing Commands to CMS and CP

The language processor can operate in a number of environments (for example, CMS or XEDIT). The
way the language processor handles commands depends on the environment it is operating in. For the
moment, to keep things simple, let us assume that your program was started by typing its name on the
CMS command line. In this case, your program is in the CMS environment.

Clauses That Become Commands

Any clause in your program that the language processor does not recognize as an instruction, an
assignment, a label, or a null clause will be evaluated and passed to the appropriate environment for
execution. For example, if the environment is CMS, CMS and CP commands will be handled in the same
way as if they had been entered on the CMS command line.

/* Example: a CMS command in a REXX program */
"ERASE OLDSTUFF SCRIPT A"

The clause that has been recognized as a command is treated as an expression. The language processor
will compute the value of the expression in the usual way, and will pass the result to the environment. The
expression is always evaluated first.

This rule is extremely useful, but you must be careful how you use REXX operators and special characters.
Also, look out for use of duplicate names.

« In this example, the value of a variable is substituted in an expression, before the expression is passed
to CMS.

© Copyright IBM Corp. 1991, 2023 97

/* ERASER EXEC */
/* Example: to erase a number of SCRIPT files. */
do until fn ="
say "Enter file name of file to be erased"
say " (To return to CMS, enter a null line)"
pull fn
/* The user replies "myfile", x/
/* FN = MYFILE */
if fn -= " then
"ERASE" FN "SCRIPT" /% This clause is treated as */
/* an expression. The result,x/
/* which (in this example) is */
/* ERASE MYFILE SCRIPT */
/* 1is passed to CMS */
end

Figure 62. ERASER EXEC

« If you want to use a REXX operator or special character as an ordinary character, then you must put it in
quotation marks. This is because expressions are evaluated before they are passed to an environment.
Therefore, any part of the expression that is not to be evaluated should be written in quotation marks.

For example:

/* ELIST EXEC */
/* Example: to erase all the files on file mode A */
/* that have a file type of LIST */
"ERASE % LIST" /* This clause is treated as */
/* an expression. The result =x/
/* ERASE * LIST */
/* is passed to CMS */

Figure 63. ELIST EXEC

In Figure 63 on page 98, if the asterisk was not in quotation marks, the language processor would
attempt to multiply ERASE by LIST!

Note: Remember to put quotation marks around all operators and parentheses unless already enclosed
in quotation marks. Either of the following examples is correct. The last example is better, since nothing
has to be evaluated by REXX.

"COPYFILE" MYFILE SCRIPT A "=" BACKUP A " (REPLACE"
COPYFILE MYFILE SCRIPT A "=" BACKUP A " ("REPLACE

"COPYFILE MYFILE SCRIPT A = BACKUP A (REPLACE"

Refer to “When to Use Quotation Marks” on page 99 for more information.

« Another difficulty is the use of duplicate names. In Figure 64 on page 99, the programmer has
chosen A asthe name of a variable. In the COPYFILE instruction, A is used as the file mode and must
be enclosed in quotation marks; otherwise, the current value of A would be substituted.

98 z/VM: 7.3 REXX/VM User's Guide

/* BACKUP EXEC */

/* Example: to save copies of a number of SCRIPT */
/* files. Each copy is given the same file name */
/* as the original, and a file type of BACKUP. */

do until a =
say "Enter file name of file to be backed up"

say " (To return to CMS, enter a null line)"
pull a
/* The user replies "myfile", */
/% A = MYFILE */
if a == " then
"COPYFILE" a "SCRIPT A = BACKUP A (REP"
/* This clause is treated as an */
/* expression. The result, which in */
/* this example is */
/* COPYFILE MYFILE SCRIPT A = BACKUP A (REP =x/
/* 1is passed to CMS */
end

Figure 64. BACKUP EXEC

This example leads on to a more general question.

When to Use Quotation Marks

The syntax for REXX expressions is very flexible. If a symbol, that is not the name of a variable, is written
without quotation marks, no error is signaled. The value used in the result is the symbol itself, translated
to uppercase. This makes it easier to write simple programs in REXX than in some other languages.
However, you must be careful never to use a symbol to stand for itself, when a variable of the same name
exists. (In Figure 64 on page 99, A is the name of a variable, so it must not be used as the literal name of a
file mode without putting quotation marks around it.)

In large programs, or programs that are intended to be very reliable, you can voluntarily adopt the rule
that every symbol that is not the name of a variable should be in quotation marks. In the example
BACKUP EXEC in Figure 64 on page 99, the COPYFILE command would be written:

"COPYFILE" a "SCRIPT A = BACKUP A (REP"
Here, everything is in quotation marks except the symbol "a",
which is the name of a variable.

CP Commands

You can write CP commands in a REXX program. Our example is a program that lets you use files that are
on another user's disk. The CP command LINK makes another user's disk available to you.

»— LINK ﬁ— userid — hisdisk — mydlsk >
TO L mode J L password J

where:

userid
is the user ID of the person the disk belongs to.
hisdisk
is the virtual address of his disk.
mydisk
is the virtual address that the disk will have on your system. Choose any number that you do not
already use.

mode, password
may be required in some installations but are not used in the example found in Figure 65 on page 100.

(For an introduction to this subject, see "LINK" in the z/VM: CMS User's Guide. For full details, see z/VM:
CP Commands and Utilities Reference.)

Chapter 6. Commands 99

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

After LINKing to the other user's disk, you can use the CMS command ACCESS to make the files on his
disk accessible to you.

»— ACCESS — mydisk — filemode -»<«

For mydisk, use the same 3-digit number as you used in the link command. For filemode, choose any letter
that you do not already use.

Now for the example, suppose someone in your support organization has a number of useful programs
that you would like to use. You know that:

 His user ID is HELPDESK.
« The programs are on his disk 196.
« You will not need to use a disk password.

Here is a REXX program that you can use to make everything on his disk available to you.

/* LINKHELP EXEC */
/* For linking to Disk 196 belonging to HELPDESK */
"LINK HELPDESK 196 200" /* a CP command */
"ACCESS 200 B" /* a CMS command */

Figure 65. LINKHELP EXEC

To run the program, type in the command LINKHELP.

Summary

A clause that is an expression by itself will be evaluated, and the result will be passed to the specified
environment. By default the result will be passed to CMS; if the result is not known to CMS, it will be
passed to CP.

Return Codes

When you write a CMS or CP command in your exec, you should consider what would happen if the
command failed to process correctly. For example, a COPYFILE command might result with an error
because the user's disk was full. After such an error, you should at least EXIT from your program. You may
also want to issue a warning message to the user.

Here is how you discover such an error. When commands have finished executing, they always provide a
return code. A return code of zero nearly always means "all's well". Any other number usually means that
something is wrong. You can see these codes on your screen when you enter CMS commands from the
command line, as in these examples:

copyfile profile exec a profile backup a
Ready;
link fred 591 591

FRED not in CP directory
Ready (00053) ;

access 591 b

DMSACC113S B(591) not attached or invalid device address
Ready (00100) ;

copyfile profile exec a = = b (for luck

Invalid parameter LUCK in the option FOR field.
Ready (00024) ;

erase junk exec

100 z/VM: 7.3 REXX/VM User's Guide

File JUNK EXEC A not found
Ready (00028) ;

The first COPYFILE command worked correctly so the return code was zero and CMS displayed the
Ready; message on the screen. (When the return code is zero, CMS does not display the return code.)
All the other commands failed so CMS displayed their return codes as part of the Ready ; message. For
instance, the return code from the LINK command was 53.

Now that you understand how CMS handles commands and return codes, let us see how the language
processor handles them.

Any command that would be valid on the CMS command line is valid as a clause in a REXX program. The
language processor treats the clause like any other expression, substituting the values of variables, and
so on. The language processor takes the result and passes it to CMS or CP. (The rules are the same as
for commands on the CMS command line; for details, see "The CMS Environment" in the z/VM: REXX/VM
Reference.)

When the language processor has issued a command and CMS or CP has finished executing it, the
language processor gets the return code and stores it in the REXX special variable RC. In your program,
you should test this variable to see what happened when the command was executed.

For example:

"COPYFILE PROFILE EXEC A PROFILE BACKUP A"

if rc -= 0

then do
say "Unexpected return code" rc "from COPYFILE command"
exit

end

The EXIT instruction causes your exec to finish. The language processor gives control back to CMS. This
will be explained later in “The EXIT Instruction” on page 143.

To find out what return codes can be expected from a CMS command, look up the command in the z/VM:
CMS Commands and Utilities Reference. Return codes are listed in the last paragraph of the description of
each command.

The return codes associated with CP commands directly correspond to the message numbers. For
example, if you received a return code of 22 when executing the LINK command, you could look at
the description for message number 022:

HCPLNMO22E Virtual device number was not supplied or it was invalid

The CP commands are described in the z/VM: CP Commands and Utilities Reference.

Special Variables

RC is one of the REXX special variables. The other special variables are RESULT and SIGL. You may
use RC, RESULT, and SIGL as the names of your own variables, but you should always remember that
any of them may be assigned new values by the language processor. For example, the special variable
RC is assigned a new value when a command has been executed. (For full details, see z/VM: REXX/VM
Reference.)

Test Yourself...

A program is required that will create a file called PR ALL. In this file there is to be a list of all the files on
file mode A (a directory in your file space or a R/W minidisk) whose names begin with "PR".

« Study the CMS command LISTFILE. You will find it in the z/VM: CMS Commands and Utilities Reference,
or you can get a short description displayed on your screen by entering HELP LISTFILE. Use the
LISTFILE command to display the required list of files on your screen.

« Study the EXEC option of the LISTFILE command. Write a REXX program that issues a command to
generate the required file.

Chapter 6. Commands 101

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Reading 2

« At the end of the description of LISTFILE in the z/VM: CMS Commands and Utilities Reference, you will
find a list of possible return codes. Modify your program to handle all possible errors.

« Add to your program a command that RENAMEs the file that has been created as PR ALL A.
« Test your program by running it twice.

Answer:

/* LISTPR EXEC =%/
/* Lists all the files on file mode A whose file names */

/* begin with "PR". The result is written into the */
/* file PR ALL A. Any previous version of that file */
/* is overwritten. */
/* */

/* CMS EXEC A is used as a work file, then destroyed. */
"LISTFILE PR* = A (EXEC"
if rc -= 0
then do
say "Unexpected return code" rc "from LISTFILE command"
exit
end
"ERASE PR ALL A"
"RENAME CMS EXEC A PR ALL A"
if rc -= 0
then
say "Unexpected return code" rc "from RENAME command"

Reading 1 continues in Chapter 7, “XEDIT,” on page 117.

Debugging Individual Commands

If you cannot understand what is happening when you enter a command, it is possible that your
program did not issue the command correctly. To be sure about this, trace the command that is behaving
mysteriously.

mad = "Delirious"
trace r

"SCRIPT MAD"
trace n

Debugging Execs That Contain Commands

As you know, a program that issues a command should always test the return code immediately afterward
to see if all is well. One way of doing this is to write:

if rc -= 0 then

Also, for programs that are still being tested (or redesigned, or debugged), use the TRACE Errors
instruction

TRACE E

at the beginning of your exec. A nonzero return code will cause the language processor to display the line
number of the command in your program, the command, and the return code.

Making a Common Routine for Handling Return Codes

The third way, suitable for programs that can be used by other people, is to use the SIGNAL ON ERROR
instruction. This instruction switches on a detector in the language processor that tests the return code

102 z/VM: 7.3 REXX/VM User's Guide

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Reading 2

from every command. If a nonzero return code is detected, the usual sequence of clauses is abandoned.
Instead, the language processor searches through your program for the label

ERROR:

Processing continues from there. (This label must be the symbol ERROR followed by a colon.) The line
number of the command is stored in the REXX special variable SIGL. For more information, see “The CALL
ON Condition” on page 153 and “The SIGNAL ON Condition” on page 153.

You can use SIGL to tell the user which command caused typical processing to be interrupted:

signal on error
COPYFILE
"RENAME"
exit /* End of main program */

ERROR:

say "Unexpected Return Code" rc "from command:"
say " " sourceline(sigl)

say "at line" sigl"."

The EXIT instruction is put there to stop the main program from running on into the error handling routine.

To switch off the detector, use the instruction:

SIGNAL OFF ERROR

If you know that one of your commands can give a nonzero return code, you must switch off for that one
command. For example, if you do not know whether OLD LISTING exists, but need to erase it if it does,
this series of instructions will do.

signal off error
"ERASE" old listing a
signal on error

Getting Messages from a Repository File

You can store message texts in a single file that is separate from your program. The CMS XMITMSG
command lets you then access and display these messages from a REXX EXEC. See z/VM: CMS
Commands and Utilities Reference for a complete description of XMITMSG.

When using XMITMSG in a REXX EXEC, variables are enclosed in quotation marks. For example:

Chapter 6. Commands 103

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Reading 2

/* In these examples we use message number 3, */
/* which has one substitution. */
buffer = 'bufferit' /* Variable with the name of buffer. x/
XMITMSG 003 BUFFER /* This will not work because the */
/* variable buffer resolves to */
/* bufferit, which is itself not a */
/* variable, so no substitution */
/* takes place. */
'XMITMSG 003 BUFFER' /* This example will work because */
/* the variable buffer is in */
/* quotation marks and gets passed */
/* to XMITMSG. */
/* bufferit is substituted. */
/* continued ... */
'XMITMSG 003 "BUFFER"' /* Here we substitute the literal */
/* string BUFFER, which will be */
/* taken as the substitution. */
'XMITMSG 003 8002' /* This example shows the use of a */
/* dictionary item, (8002). */
/* The value of 8002 as a dictionary */
/* item is the literal string BUFFER.x/
'XMITMSG 003 "8002"' /* This example is another example */
/* of passing literal strings. */
/* In this case, the number 8002 */
/* gets passed as a substitution */
/* instead of resolving to BUFFER */
/* because 8002 is in quotation */
/* marks.

Note: This is not a complete program and cannot be executed by itself.

How to Suppress Messages Issued by CMS Commands

To suppress all output (except Severe and Terminating messages from CMS commands), use the Halt
Typing command.

SET CMSTYPE HT
To resume typical output, use the Resume Typing command.
SET CMSTYPE RT

Be su