
z/VM
7.3

OpenExtensions POSIX Conformance
Document

IBM

GC24-6298-73



 
Note:

Before you use this information and the product it supports, read the information in “Notices” on page
75.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-08-31
© Copyright International Business Machines Corporation 1993, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

Tables.................................................................................................................. ix

About This Document............................................................................................xi
Intended Audience......................................................................................................................................xi
Conventions Used in This Document.......................................................................................................... xi
Where to Find More Information.................................................................................................................xi

Links to Other Documents and Websites.............................................................................................. xi

How to Send Your Comments to IBM....................................................................xiii

Summary of Changes for z/VM: OpenExtensions POSIX Conformance Document... xv
GC24-6298-73, z/VM 7.3 (September 2022)........................................................................................... xv
GC24-6298-01, z/VM 7.2 (September 2020)........................................................................................... xv
GC24-6298-00, z/VM 7.1 (September 2018)........................................................................................... xv

Part 1. POSIX.1 Conformance Document................................................................1

Section 1. General........................................................................................................................................3
1.3 Conformance.................................................................................................................................... 3

1.3.1 Implementation Conformance................................................................................................3
1.3.3 Language-Dependent Services for the C Programming Language.........................................3

Section 2. Terminology and General Requirements................................................................................... 5
2.2 Definitions.........................................................................................................................................5

2.2.2 General Terms......................................................................................................................... 5
2.3 General Concepts............................................................................................................................. 6

2.3.1 extended security controls......................................................................................................6
2.3.2 file access permissions........................................................................................................... 6

2.4 Error Numbers.................................................................................................................................. 7
2.5 Primitive System Data Types........................................................................................................... 7
2.6 Environment Description..................................................................................................................8
2.8 Numerical Limits.............................................................................................................................. 8

2.8.3 Run-Time Increasable Values................................................................................................. 8
2.8.4 Run-Time Invariant Values......................................................................................................8
2.8.5 Pathname Variable Values.......................................................................................................8

2.9 Symbolic Constants..........................................................................................................................9
2.9.3 Compile-Time Symbolic Constants for Portability Specifications..........................................9
2.9.4 Execution-Time Constants for Portability Specifications....................................................... 9

Section 3. Process Primitives.................................................................................................................... 11
3.1 Process Creation and Execution.................................................................................................... 11

3.1.1 Process Creation....................................................................................................................11
3.1.2 Execute a File........................................................................................................................ 11

3.2 Process Termination...................................................................................................................... 12
3.2.1 Wait for Process Termination................................................................................................ 12
3.2.2 Terminate a Process..............................................................................................................12

3.3 Signals............................................................................................................................................ 12
3.3.1 Signal Concepts..................................................................................................................... 13
3.3.2 Send a Signal to a Process.................................................................................................... 13
3.3.3 Manipulate Signal Sets..........................................................................................................13

  iii



3.3.4 Examine and Change Signal Action...................................................................................... 13
3.3.6 Examine Pending Signals...................................................................................................... 14

3.4 Timer Operations........................................................................................................................... 14
3.4.3 Delay Process Execution....................................................................................................... 14

Section 4. Process Environment................................................................................................................15
4.2 User Identification......................................................................................................................... 15

4.2.3 Get Supplementary Group IDs..............................................................................................15
4.2.4 Get User Name...................................................................................................................... 15

4.4 System Identification.....................................................................................................................15
4.4.1 Get System Name..................................................................................................................15

4.6 Environment Variables...................................................................................................................16
4.6.1 Environment Access..............................................................................................................16

4.7 Terminal Identification...................................................................................................................16
4.7.1 Generate Terminal Pathname............................................................................................... 17
4.7.2 Determine Terminal Device Name........................................................................................ 17

4.8 Configurable System Variables......................................................................................................17
4.8.1 Get Configurable System Variables...................................................................................... 17

Section 5. Files and Directories.................................................................................................................19
5.1 Directories...................................................................................................................................... 19

5.1.2 Directory Operations............................................................................................................. 19
5.2 Working Directory...........................................................................................................................19

5.2.2 Get Working Directory Pathname......................................................................................... 19
5.3 General File Creation..................................................................................................................... 20

5.3.1 Open a File.............................................................................................................................20
5.3.3 Set File Creation Mask...........................................................................................................20
5.3.4 Link to a File...........................................................................................................................20

5.4 Special File Creation...................................................................................................................... 20
5.4.1 Make a Directory....................................................................................................................20
5.4.2 Make a FIFO Special File.......................................................................................................21

5.5 File Removal...................................................................................................................................21
5.5.1 Remove Directory Entries..................................................................................................... 21
5.5.2 Remove a Directory............................................................................................................... 21
5.5.3 Rename a File........................................................................................................................ 21

5.6 File Characteristics.........................................................................................................................22
5.6.2 Get File Status....................................................................................................................... 22
5.6.3 Check File Accessibility.........................................................................................................22
5.6.4 Change File Modes................................................................................................................ 22
5.6.5 Change Owner and Group of a File....................................................................................... 22

5.7 Configurable Pathname Variables................................................................................................. 22
5.7.1 Get Configurable Pathname Variables..................................................................................22

Section 6. Input and Output Primitives.....................................................................................................25
6.3 File Descriptor Deassignment........................................................................................................25

6.3.1 Close a File............................................................................................................................ 25
6.4 Input and Output............................................................................................................................25

6.4.1 Read from a File.....................................................................................................................25
6.4.2 Write to a File.........................................................................................................................25

6.5 Control Operations on Files........................................................................................................... 25
6.5.2 File Control............................................................................................................................ 26
6.5.3 Reposition Read/Write File Offset........................................................................................ 26

Section 7. Device- and Class-Specific Functions......................................................................................27
7.1 General Terminal Interface............................................................................................................27

7.1.1 Interface Characteristics.......................................................................................................27
7.1.2 Parameters That Can Be Set................................................................................................. 28
7.1.3 Baud Rate Functions............................................................................................................. 29

iv  



7.2 General Terminal Interface Control Functions..............................................................................29
7.2.1 Get and Set State...................................................................................................................29
7.2.2 Line Control Functions.......................................................................................................... 30

Section 8. Language-Specific Services for the C Programming Language............................................... 31
8.1 Referenced C Language Routines..................................................................................................31

8.1.1 Extensions to Time Functions............................................................................................... 31
8.1.2 Extensions to setlocale() Function........................................................................................31

8.2 C Language Input/Output Functions............................................................................................. 32
8.2.1 Map a Stream Pointer to a File Descriptor............................................................................32
8.2.2 Open a Stream on a File Descriptor...................................................................................... 32
8.2.3 Interactions of Other FILE-Type C Functions....................................................................... 32

8.3 Other C Language Functions..........................................................................................................32
8.3.2 Set Time Zone........................................................................................................................32

Section 9. System Databases.................................................................................................................... 35
9.1 System Databases..........................................................................................................................35
9.2 Database Access............................................................................................................................ 35

9.2.1 Group Database Access........................................................................................................ 35
9.2.2 User Database Access...........................................................................................................36

Section 10. Data Interchange Format....................................................................................................... 37
10.1 Archive/Interchange File Format................................................................................................ 37

10.1.1 Extended tar Format........................................................................................................... 37
10.1.2 Extended cpio Format.........................................................................................................37
10.1.3 Multiple Volumes.................................................................................................................38

Part 2. POSIX.2 Conformance Document.............................................................. 39

Section 1. General......................................................................................................................................41
1.3 Conformance..................................................................................................................................41

1.3.1 Implementation Conformance..............................................................................................41

Section 2. Terminology and General Requirements................................................................................. 43
2.2 Definitions...................................................................................................................................... 43

2.2.2 General Terms....................................................................................................................... 43
2.4 Character Set..................................................................................................................................44

2.4.1 Character Set Description File.............................................................................................. 44
2.5 Locale............................................................................................................................................. 44
2.6 Environment Variables...................................................................................................................45
2.9 Dependencies on Other Standards................................................................................................45

2.9.1 Features Inherited from POSIX.1......................................................................................... 45
2.11 Utility Description Defaults..........................................................................................................45

2.11.5 External Influences............................................................................................................. 45
2.13 Configuration Values....................................................................................................................46

2.13.1 Symbolic Limits................................................................................................................... 46
2.13.2 Symbolic Constants for Portability Specifications............................................................. 47

2.14 Terminal Characteristics..............................................................................................................47

Section 3. Shell Command Language........................................................................................................49
3.5 Parameters and Variables..............................................................................................................49

3.5.3 Variables................................................................................................................................ 49
3.6 Word Expansions............................................................................................................................49
3.7 Redirection..................................................................................................................................... 49

Section 4. Execution Environment Utilities...............................................................................................51
4.1 awk — Pattern Scanning and Processing Language...................................................................... 51

  v



4.1.7 Extended Description............................................................................................................51
4.2 basename — Return Nondirectory Portion of Pathname.............................................................. 51

4.2.2 Description............................................................................................................................ 51
4.5 cd — Change Working Directory.....................................................................................................51

4.5.2 Description............................................................................................................................ 51
4.5.4 Operands............................................................................................................................... 51

4.7 chmod — Change File Modes......................................................................................................... 51
4.7.2 Description............................................................................................................................ 52
4.7.7 Extended Description............................................................................................................52

4.13 cp — Copy Files............................................................................................................................ 52
4.13.2 Description.......................................................................................................................... 52
4.13.3 Options................................................................................................................................ 53

4.18 dirname — Return Directory Portion of Pathname......................................................................53
4.18.2 Description.......................................................................................................................... 53

4.19 echo — Write Arguments to Standard Output............................................................................. 53
4.19.4 Operands............................................................................................................................. 53

4.20 ed — Edit Text...............................................................................................................................54
4.20.7 Extended Description..........................................................................................................54

4.24 find — Find Files........................................................................................................................... 54
4.24.4 Operands............................................................................................................................. 54

4.33 ln — Link Files...............................................................................................................................54
4.33.2 Description.......................................................................................................................... 54
4.33.4 Operands............................................................................................................................. 54

4.34 locale — Get Locale-Specific Information................................................................................... 54
4.34.3 Options................................................................................................................................ 54
4.34.4 Operands............................................................................................................................. 55

4.35 localedef — Define Locale Environment......................................................................................55
4.35.2 Description.......................................................................................................................... 55
4.35.3 Options................................................................................................................................ 55
4.35.4 Operands............................................................................................................................. 55
4.35.9 Consequences of Errors......................................................................................................55

4.36 logger — Log Messages................................................................................................................ 55
4.36.2 Description.......................................................................................................................... 55

4.39 ls — List Directory Contents.........................................................................................................56
4.39.3 Options................................................................................................................................ 56
4.39.5 External Influences............................................................................................................. 56
4.39.6 External Effects................................................................................................................... 56

4.40 mailx — Process Messages.......................................................................................................... 56
4.40.4 Operands............................................................................................................................. 56
4.40.6 External Effects................................................................................................................... 57
4.40.7 Extended Description..........................................................................................................57

4.43 mv — Move Files...........................................................................................................................57
4.43.2 Description.......................................................................................................................... 57

4.45 od — Dump Files in Various Formats........................................................................................... 57
4.45.7 Extended Description..........................................................................................................57

4.48 pax — Portable Archive Interchange........................................................................................... 58
4.48.2 Description.......................................................................................................................... 58
4.48.3 Options................................................................................................................................ 59
4.48.5 External Influences............................................................................................................. 59
4.48.6 External Effects................................................................................................................... 59

4.55 sed — Stream Editor.....................................................................................................................60
4.55.7 Extended Description..........................................................................................................60

4.56 sh — Shell, the Standard Command Language Interpreter........................................................ 60
4.59 stty — Set the Options for a Terminal.......................................................................................... 60

4.59.2 Description.......................................................................................................................... 60
4.59.4 Operands............................................................................................................................. 60

4.62 test — Evaluate Expression..........................................................................................................61
4.62.4 Operands............................................................................................................................. 61

vi  



4.63 touch — Change File Access and Modification Times................................................................. 61
4.63.3 Options................................................................................................................................ 61

4.64 tr — Translate Characters............................................................................................................ 61
4.64.7 Extended Description..........................................................................................................61

4.68 uname — Return System Name................................................................................................... 61
4.68.2 Description.......................................................................................................................... 62
4.68.6 External Effects................................................................................................................... 62

Section 5. User Portability Utilities Option................................................................................................63
5.12 fc — Process Command History List............................................................................................ 63

5.12.2 Description.......................................................................................................................... 63
5.12.5 External Influences............................................................................................................. 63

5.19 newgrp — Change to a New Group.............................................................................................. 63
5.23 ps — Report Process Status.........................................................................................................63

5.23.2 Description.......................................................................................................................... 64
5.23.3 Options................................................................................................................................ 64
5.23.6 External Effects................................................................................................................... 64

Section 6. Software Development Utilities Option................................................................................... 65
6.2 make — Maintain, Update, and Regenerate Groups of Programs.................................................65

6.2.7. Extended Description...........................................................................................................65

Annex A. C Language Development Utilities Option................................................................................. 67
A.1 c89 — Compile Standard C Programs............................................................................................67

A.1.2 Description............................................................................................................................ 67
A.1.3 Options.................................................................................................................................. 67
A.1.4 Operands............................................................................................................................... 68
A.1.5 External Influences............................................................................................................... 68
A.1.6 External Effects..................................................................................................................... 68
A.1.7 Extended Description............................................................................................................69

A.2 lex — Generate Programs for Lexical Tasks...................................................................................70
A.2.6 External Effects..................................................................................................................... 70
A.2.7 Extended Description............................................................................................................71

A.3 yacc — Yet Another Compiler Compiler.........................................................................................71
A.3.6 External Effects..................................................................................................................... 71
A.3.7 Extended Description............................................................................................................72

Global Issues............................................................................................................................................. 73
Window Size......................................................................................................................................... 73
Modes and the Sticky Bit......................................................................................................................73

Notices................................................................................................................75
Trademarks................................................................................................................................................ 76
Terms and Conditions for Product Documentation...................................................................................76
IBM Online Privacy Statement.................................................................................................................. 77

Bibliography........................................................................................................79
Where to Get z/VM Information................................................................................................................ 79
z/VM Base Library...................................................................................................................................... 79
z/VM Facilities and Features......................................................................................................................80
Prerequisite Products................................................................................................................................ 82
Related Products........................................................................................................................................82
Additional Publications..............................................................................................................................83

  vii



viii  



Tables

1. OpenExtensions Non-POSIX Error Codes.....................................................................................................7

2. OpenExtensions Non-POSIX Primitive System Data Type...........................................................................7

3. OpenExtensions POSIX Primitive System Data Types................................................................................. 7

4. OpenExtensions Runtime Invariant Values.................................................................................................. 8

5. OpenExtensions Path Name Variable Values............................................................................................... 8

6. Compile-Time Symbolic Constants for Portability Specifications................................................................9

7. Execution-Time Symbolic Constants for Portability Specifications............................................................. 9

8. OpenExtensions Non-POSIX Signals..........................................................................................................13

9. Formats for OpenExtensions utsname Members.......................................................................................15

10. Initial Values for Special Control Characters........................................................................................... 29

11. Default Values for Required and OpenExtensions-Specific Categories.................................................. 31

12. POSIX.2 Standard 2.13.1: Table 2-18: Symbolic Utility Limits............................................................... 46

13. POSIX.2 Standard 2.13.2: Table 2-19: Optional Facility Configuration Values...................................... 47

  ix



x  



About This Document

This document describes how IBM® z/VM® meets the criteria for a conforming implementation as defined
in the following Institute of Electrical and Electronics Engineers (IEEE) Portable Operating System
Interface for Computer Environments (POSIX) standards:

• International Organization for Standardization and International Electrotechnical Commission (ISO/IEC)
9945-1: 1990 (IEE Std. 1003.1-1990), hereafter referred to as POSIX.1

• International Organization for Standardization and International Electrotechnical Commission (ISO/IEC)
9945-2: 1992 (IEE Std. 1003.2-1992), hereafter referred to as POSIX.2

This document describes the z/VM implementation of those areas of the POSIX.1 and POSIX.2 standards
that were declared to be optional, or implementation-defined.

The implementation of these POSIX standards in z/VM is known as OpenExtensions™, and is included in
the Conversational Monitor System (CMS).

This document also describes the symbols and values in the files <limits.h> and <unistd.h>.

Intended Audience
This information is intended to help technical personnel evaluate how the POSIX.1 and POSIX.2
standards are implemented in z/VM.

Conventions Used in This Document
As an aid to cross-referencing with the POSIX.1 and POSIX.2 standards (and as required by those
standards), the section and topic numbers used in each part of this document correspond to the same
sections and topics in the standards. As a further aid to cross-referencing, the terminology used in the
topic names in this document is the same as is used in the POSIX standards (for example, "pathname",
"filename", and so on ). However, in the text explaining the z/VM implementation (except in quotation
marks from the POSIX standards), the z/VM convention is used (for example, "path name", "file name",
and so on).

Where to Find More Information
More detailed information on the OpenExtensions implementation can be found in the following
publications:

• z/VM: OpenExtensions User's Guide
• z/VM: OpenExtensions Callable Services Reference
• z/VM: OpenExtensions Commands Reference
• z/VM: OpenExtensions Advanced Application Programming Tools

For the complete list of books in the z/VM library, see the “Bibliography” on page 79.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1993, 2022 xi



xii  z/VM: 7.3 OpenExtensions POSIX Conformance Document



How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1993, 2022 xiii

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/


xiv  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Summary of Changes for z/VM: OpenExtensions POSIX
Conformance Document

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

GC24-6298-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

GC24-6298-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

GC24-6298-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1993, 2022 xv



xvi  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Part 1. POSIX.1 Conformance Document

© Copyright IBM Corp. 1993, 2022 1



2  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 1. General

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.1 Requirements
For information about how to start an interactive session, see “2.2.2.46 login” on page 5. From an
interactive session, a user can run applications with the behavior specified by POSIX.1.

In addition to using the interactive environment, a C program behaves in a POSIX.1-conforming fashion
when the following conditions are met:

• The program does not use z/VM services that are not part of a POSIX.1 or ANSI C library call. In other
words, the program uses only POSIX.1-conforming functions.

• The program receives control through one of the exec family of C function calls.
• The environment variables LOGNAME and HOME, which are required by Federal Information Processing

Standard (FIPS) 151-1, must be defined and passed to the exec call.
• Prior to the exec call to the program, STDIN, STDOUT, and STDERR are opened for either file /dev/tty

or some other file system file.

The following meet the conditions required to give control to a C program to guarantee that it behave in a
POSIX.1-conforming fashion:

• OPENVM SHELL command and the shell
• OPENVM RUN command

1.3.1.2 Documentation
OpenExtensions conforms to the IEEE Std 1003.1-1990 and ISO/IEC 9945-1:1990(E), hereafter referred
to as POSIX.1 in this document, except that the OpenExtensions implementation of the fork() function
does not meet all POSIX.1 specifications. Any extensions beyond POSIX.1 are described in other
OpenExtensions books.

The OpenExtensions implementation supports the POSIX.1 standard and the FIPS 151-1 restrictions on
that standard.

This report is published to satisfy the requirement of the POSIX.1 standard for a conformance document,
as outlined in section 1.3.1.2 Documentation of the POSIX.1 standard.

This document has the same structure as the POSIX.1 standard. It lists all section numbers and titles
as they appear in the POSIX.1 standard and in the same order. (It omits empty sections.) It also uses
typographical conventions similar to those used in the POSIX.1 standard. This document supplements,
but does not replace, the POSIX.1 standard.

1.3.3 Language-Dependent Services for the C Programming Language

1.3.3.2 C Standard Language-Dependent System Support
The OpenExtensions implementation conforms to ISO/IEC 9899:1990(E) C, as well as to the IEEE Std
1003.1-1990 C Language Binding (C Standard Language-Dependent System Support).

POSIX.1 Section 1

© Copyright IBM Corp. 1993, 2022 3



POSIX.1 Section 1

4  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 2. Terminology and General Requirements

2.2 Definitions

2.2.2 General Terms

2.2.2.4 appropriate privileges
For those functions where IEEE Std 1003.1-1990 specifies "appropriate privilege" is required,
appropriate privilege is defined as superuser authority. A user (that is, the process calling a callable
service) has superuser authority if the effective UID of the calling process is 0.

You can assign a UID of 0 to a user by specifying 0 as the UID value on the POSIXINFO statement in the
z/VM User Directory. This change to the directory can be done using the IBM Directory Maintenance z/VM
product. You can also set an effective UID for a user's process to 0 by executing a setuid file that has an
owner UID of 0. Only a superuser can create a setuid file with an owner UID of 0.

2.2.2.9 character special file
The character special files supported are the pseudoterminal files (pseudo-TTYs), the null file (/dev/null),
and the controlling terminal file (/dev/tty).

2.2.2.27 file
The file system supports the file types listed in POSIX.1 except block special files. The file system also
supports symbolic link files and external link files.

2.2.2.46 login
A user gains interactive access to the shell by first logging on to a z/VM user ID through existing
documented z/VM externals. Once in CMS, a user can run the shell by entering the OPENVM SHELL
command from the CMS command line.

2.2.2.55 parent process ID
When a process ends, the parent process ID of the children of the ended process is set to the process ID
of the init process, which is 1.

2.2.2.57 pathname
The C functions fopen(), freopen(), remove(), and rename() interpret names with all of the
following to mean that the rest of the name refers to a traditional CMS file on an accessed minidisk
or shared file system directory.

• Exactly two leading slashes
• No leading blanks or other characters
• The third character is not a slash

2.2.2.69 read-only file system
A file system specified as read-only when it is mounted. No updates are made or allowed to a read-only
file system. Writes are permitted to FIFO special files within a read-only file system, but FIFO data is kept
only in memory and no updates are made to the disk.

POSIX.1 Section 2

© Copyright IBM Corp. 1993, 2022 5



2.2.2.83 supplementary group ID
An attribute of a process used in determining file access permissions.

A process has up to {NGROUPS_MAX} supplementary group IDs (GIDs).

When maintained by CP (that is, when no external security manager (ESM) exists, or an external
security manager defers to CP), the list of supplementary groups normally includes the effective group
ID. When a user logs on to OpenExtensions and there is no ESM support, or the ESM defers to CP,
{NGROUPS_MAX} OpenExtensions groups listed in the user's CP directory entry, including the initial
effective group ID, become associated with the virtual machine. When a new POSIX** application is
started, the supplementary GIDs of its process are assigned from the groups that are associated with the
virtual machine. When a process is created by spawn(), the supplementary GIDs of the child process are
the same as the parent process.

2.3 General Concepts

2.3.1 extended security controls
OpenExtensions allows for the extension to the access security mechanisms by providing for the use of
an External Security Manager (ESM). In addition, OpenExtensions provides the following access security
extensions:

• A POSIXOPT QUERYDB option on the USER_DEFAULTS system configuration file statement allows an
installation to define whether or not all users on the system are permitted to query other user's user
and group database information. The system default can be overridden for users on an individual
basis using the POSIXOPT directory control statement. This authorization applies to the getpwuid(),
getpwnam(), getgrgid() and getgrnam() functions.

• For any one of the exec family of functions, if the executable file has the set-user-id mode bit set
and the effective UID of the process is not the same as the file owner, or if the executable file has
the set-group-id mode bit set and the effective GID is not the same as the file group, the caller must
have CP authorization to execute these files. This authorization is defined on a system-wide basis in the
system configuration file or on an individual user basis in the CP directory. It specifies whether or not a
user with the appropriate file access permissions is allowed to execute a file that will result in a change
of POSIX IDs.

In addition, the file server on which the object file resides must have CP authorization to specify that
the POSIX IDs for the caller be changed. This permission is also defined in the CP directory. If either of
these security checks fails, the existing process will be terminated, and the new file will not be invoked.

setuid(), setgid(), seteuid(), and setegid() allow a process with appropriate privileges to
change its IDs to a value that is not currently defined in the CP directory. An ESM can be used to
provide additional authorization and validity checks. If an ESM indicates that the input UID or GID value
is undefined, each of these functions returns -1 and sets errno to [EINVAL]. These functions change
the security environment that is checked by POSIX (OpenExtensions) functions. They do not affect the
security environment checked by other z/VM services.

If a user has no UID defined in the CP directory entry or the ESM user database, the default value
4,294,967,295 (X'FFFFFFFF') is assigned. If a user has no GID defined in the CP directory entry or the
ESM user database, the default value 4,294,967,295 (X'FFFFFFFF') is assigned.

chown() checks the input UID and GID value. chown() can set a file's owner UID or GID to a value that
is not currently defined in the user database. A file with an undefined UID or GID can also result from
deleting a user or group that still owns files.

2.3.2 file access permissions
Appropriate privilege is defined as having superuser authority (see “2.2.2.4 appropriate privileges” on
page 5). No alternate access control mechanisms are provided.

POSIX.1 Section 2

6  z/VM: 7.3 OpenExtensions POSIX Conformance Document



2.4 Error Numbers
The OpenExtensions-defined values for the POSIX-defined error numbers are defined in <errno.h>. Table
1 on page 7 shows the codes that are provided in addition to those defined by POSIX:

Table 1. OpenExtensions Non-POSIX Error Codes

Error Code Description

EBUFLEN The buffer is not long enough for the path name.

ECMSBADCHAR There is an incorrect character in the environment variable name.

ECMSERR A CMS environment or internal error occurred.

ECMSINITIAL A process initialization error occurred.

ECMSLOCK A Token Manager locking error occurred.

ECMSNORTL Access to the OpenExtensions version of the C run-time library is
denied.

ECMSPARM Incorrect parameters were passed to the service.

ECMSPFSFILE The byte file system encountered a permanent file error.

ECMSPFSPERM The byte file system encountered a system error.

ECMSSTORAGE A storage management error occurred.

ECPERR A security authorization facility error occurred.

EEXTLINK The file being referenced is an external link.

ENODD There is no pathdef for the ddname in effect.

In the OpenExtensions implementation, the [EFBIG] error occurs when the size of a file exceeds the
maximum file size of 17,592,186,044,416 (244) bytes.

2.5 Primitive System Data Types
In addition to the primitive system data types specified by POSIX.1, the OpenExtensions implementation
supports the non-POSIX data type whose name ends with _t, shown in Table 2 on page 7.

Table 2. OpenExtensions Non-POSIX Primitive System Data Type

Defined Type Header Description

mtm_t <sys/types.h> Mount mode

In addition to those primitive system data types specified by POSIX.1 to be defined in <sys/types.h>, the
OpenExtensions implementation defines the POSIX.1 or ANSI C data types shown in Table 3 on page 7.

Table 3. OpenExtensions POSIX Primitive System Data Types

Defined Type Header Description

cc_t <sys/types.h> Control character

clock_t <sys/types.h> Number of clock ticks

sigset_t <sys/types.h> A set of signals

speed_t <sys/types.h> Baud rate

tcflag_t <sys/types.h> Terminal control flags

POSIX.1 Section 2

Section 2. Terminology and General Requirements  7



Table 3. OpenExtensions POSIX Primitive System Data Types (continued)

Defined Type Header Description

time_t <sys/types.h> Time since the Epoch

2.6 Environment Description
The OpenExtensions implementation permits all strings composed of 8-bit characters (except for the "="
character) to be used in environment variable names. If the "=" character is found in an environment
variable name, the getenv() function returns a NULL value, and errno is set to [ECMSBADCHAR].

2.8 Numerical Limits
The following subsections list magnitude limitations imposed by the OpenExtensions implementation.

2.8.3 Run-Time Increasable Values
The default maximum number of simultaneous supplementary group IDs per process value is:

NGROUPS_MAX 32

An ESM is permitted to specify a number between 32 and 125 (inclusive) as the system's NGROUPS_MAX
value. If no POSIX-capable ESM is installed, the value of NGROUPS_MAX is 32.

2.8.4 Run-Time Invariant Values
Table 4 on page 8 shows extended values that are available in the OpenExtensions implementation
with the sysconf() function. They are not defined in <limits.h>.

Table 4. OpenExtensions Runtime Invariant Values

Name Description

ARG_MAX Maximum argument and environment length

CHILD_MAX Maximum number of simultaneous processes per z/VM user

OPEN_MAX Maximum number of simultaneous open files

STREAM_MAX Maximum number of streams that a single process can have open at the same
time

TZNAME_MAX Maximum number of bytes supported for the name of a time zone

2.8.5 Pathname Variable Values
Table 5 on page 8 shows extended values that are available in the OpenExtensions implementation
with the pathconf() function. They are not defined in <limits.h>.

Table 5. OpenExtensions Path Name Variable Values

Name Description

LINK_MAX Maximum value of the file link count

MAX_CANON Maximum unprocessed input

MAX_INPUT Maximum length of an input queue

NAME_MAX Maximum length of a file name

PATH_MAX Maximum length of a path name

POSIX.1 Section 2

8  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Table 5. OpenExtensions Path Name Variable Values (continued)

Name Description

PIPE_BUF Maximum atomic pipe write

2.9 Symbolic Constants
The <unistd.h> header defines the symbolic constants and structures referred to in the following
subsections.

2.9.3 Compile-Time Symbolic Constants for Portability Specifications
The constants for portability specifications in Table 6 on page 9 can be used by application programs at
compile time to determine which optional facilities are present.

Table 6. Compile-Time Symbolic Constants for Portability Specifications

Name Description Value

_POSIX_JOB_CONTROL Job control 1

_POSIX_SAVED_IDS Saved set-user or group IDs 1

_POSIX_VERSION Standard publish date 199009L

2.9.4 Execution-Time Constants for Portability Specifications
The constants for portability specifications shown in Table 7 on page 9 are available in the
OpenExtensions implementation with the pathconf() or fpathconf() function. They are not defined
in <unistd.h>.

Table 7. Execution-Time Symbolic Constants for Portability Specifications

Name Description

_POSIX_CHOWN_RESTRICTED chown() restricted

_POSIX_NO_TRUNC Error if the path name length is greater than
{NAME_MAX}

_POSIX_VDISABLE The value used to disable terminal special
characters

POSIX.1 Section 2

Section 2. Terminology and General Requirements  9



POSIX.1 Section 2

10  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 3. Process Primitives

3.1 Process Creation and Execution

3.1.1 Process Creation
Function: fork()

3.1.1.2 Description
ATTENTION: You should use this function only during a porting exercise until you can convert to spawn()
or threading functions.

The child process created by the OpenExtensions implementation of the fork() function is not an exact
copy of the parent, but is another process residing within the same CMS session. The child has all the
attributes associated with CMS processes. For more information about CMS processes, see z/VM: CMS
Application Multitasking.

The OpenExtensions implementation of the fork() function has the following restrictions:

• The child process is not allowed to issue an exit() call or to call any function that will invoke exit()
before the child process issues the exec() function.

• The child process is not allowed to issue any function that will cause the child process to be blocked (for
example, a pipe read() or a pause()), before the child issues the exec() function.

• Any local variables in the application that are changed in the child process before the exec() is issued
will be changed in the parent process as well. This is because the child and parent processes are still
using the same program storage. The exec() function causes the child process to begin using its own
program storage.

• Any global or environment variables in the application that are changed in the child process before the
exec() is issued will be changed in the parent process as well. This is because the child and parent
processes are still using the same program storage. The exec() function causes the child process to
begin using its own program storage.

3.1.1.4 Errors
The following additional errors may be returned by the system:

• If the CMS FORK function is not turned on, the fork() function returns a -1 and sets errno to
[ENOSYS].

• If the child process issues exit() or calls any function that invokes exit() before the child issues the
exec() function, the request fails with an abnormal end code of X'AE5'.

• If the child process calls any function that causes the child to be blocked before the child issues the
exec() function, the request fails with an abnormal end code of X'AE6'.

3.1.1.5 Cross-References
Because the OpenExtensions implementation of fork() is not full-function, the only valid cross-
reference is to exec(), 3.1.2.

3.1.2 Execute a File
Functions: execl(), execv(), execle(), execve(), execlp(), execvp()

POSIX.1 Section 3

© Copyright IBM Corp. 1993, 2022 11



3.1.2.2 Description
If the PATH environment variable is not present and the file name given to execlp() or execvp() does
not have a slash, the file is accessed as given (no additional implementation-defined search lists are used)
in the argument.

The number of bytes for {ARG_MAX} includes the argument strings, environment strings, and the null
bytes that end these strings.

If an exec function fails but was able to locate the process image file, the st_atime field of the file is
updated.

For any one of the exec family of functions, if the executable file has the set-user-id mode bit set and the
effective UID of the process is not the same as the file owner or if the executable file has the set-group-id
mode bit set and the effective GID is not the same as the file group, the caller must have CP authorization
to execute these files. This permission is defined in the CP directory on an individual or system-wide
basis, and specifies whether or not a user with the appropriate file access permissions is allowed to
execute a file that will result in a change of POSIX IDs. In addition, the file server on which the object
file resides must have CP authorization to specify that the POSIX IDs for the caller be changed. This
permission is also defined in the CP directory. If either of these security checks fails, the existing process
will be terminated, and the new file will not be invoked.

For any one of the exec family of functions, if the file in the Byte File System associated with the specified
path name cannot successfully be opened for execution, the path name is interpreted as a CMS file
identifier. A search is done for this file using the accessed file modes and, under certain circumstances,
the nucleus extensions. If the file is found in the record file system, it is executed. Otherwise, the exec
function returns with an errno that reflects the reason for the original open failure.

3.1.2.4 Errors
The exec functions return an errno of [ENOMEM] if the new process requires more memory than is
permitted by the hardware or operating system. The exec functions return an errno of [ECMSERR] if there
is insufficient storage to allow the system to perform the request.

Nonregular files cannot be executed.

3.2 Process Termination

3.2.1 Wait for Process Termination
Functions: wait() and waitpid()

3.2.1.2 Description
In addition to returning status for child processes, wait() or waitpid() may return status for processes
that are being debugged.

3.2.2 Terminate a Process
Function: _exit()

3.2.2.2 Description
If a process ends, any children for which wait() has not been run are inherited by the init process,
whose process ID is 1.

The init process waits for and discards the status for any terminated children that it inherits.

3.3 Signals

POSIX.1 Section 3

12  z/VM: 7.3 OpenExtensions POSIX Conformance Document



3.3.1 Signal Concepts

3.3.1.1 Signal Names
Table 8 on page 13 shows signals that are supported in addition to those specified by POSIX.1.

Table 8. OpenExtensions Non-POSIX Signals

Symbolic Constant Description

SIGABND Abend signal

In addition, the symbol SIGCLD is provided, with the same signal value as SIGCHLD.

For the list of default actions and values associated with these signals, see z/VM: OpenExtensions Callable
Services Reference.

3.3.1.2 Signal Generation and Delivery
If the action associated with a blocked signal is to ignore the signal and if that signal is generated for the
process, the OpenExtensions implementation leaves the signal pending.

Signals are not queued. If a subsequent occurrence of a pending signal is generated, the signal is
delivered only once.

3.3.2 Send a Signal to a Process
Function: kill()

3.3.2.2 Description
A signal sent to process ID 0 is sent to all processes in the current process group, with no system-defined
exclusions.

The range of a signal is limited to processes in the same virtual machine as the sending process; signals
may not be sent to processes in other virtual machines.

3.3.3 Manipulate Signal Sets
Functions: sigemptyset(), sigfillset(), sigaddset(), sigdelset(), and sigismember()

3.3.3.4 Errors
sigaddset(), sigdelset(), and sigismember() generate errno [EINVAL] if the signal number is less
than 1 or greater than 64. They do not detect unsupported signal numbers between 1 and 64.

3.3.4 Examine and Change Signal Action
Function: sigaction()

3.3.4.2 Description
The contents of oact returned by sigaction() for a signal whose action was last set by signal()
rather than sigaction() is:

struct sigaction {
   void (*)()  sa_handler; -- will contain the address of the user
                              signal catcher function specified in
                              signal()
   sigset_t sa_mask;    -- will be set to the empty set
   int         sa_flags;   -- the SA_OLD_STYLE flag will be set
}

POSIX.1 Section 3

Section 3. Process Primitives  13



An attempt to set the action for a signal that cannot be caught or ignored to SIG_DFL is returned with a
return value of 0, and errno is not set to [EINVAL].

3.3.6 Examine Pending Signals
Function: sigpending()

3.3.6.4 Errors
sigpending() may return errno set to a value defined in the OpenExtensions implementation.

3.4 Timer Operations

3.4.3 Delay Process Execution
Function: sleep()

3.4.3.2 Description
The following list describes actions for a SIGALRM signal generated during the execution of sleep():

• If the calling process has SIGALRM being blocked before calling sleep(), then sleep() does not
return when this SIGALRM is generated and the SIGALRM signal is left pending when sleep() returns.

• If the calling process has SIGALRM being ignored before calling sleep(), then sleep() does not
return when this SIGALRM is generated and the SIGALRM signal is ignored.

• If the calling process has SIGALRM being set to a signal-catching function, the SIGALRM signal-
catching function interrupts sleep() and the signal-catching function receives control. The sleep()
function returns any unslept amount of time, as it does for any other type of signal.

If a signal-catching function interrupts the sleep() function and either examines or changes the time a
SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal is the same as it
is for any other function that is interrupted by a signal-catching function.

POSIX.1 Section 3

14  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 4. Process Environment

4.2 User Identification

4.2.3 Get Supplementary Group IDs
Function: getgroups()

4.2.3.4 Errors
For the getgroups() function, the following error conditions are detected:
[ECMSERR]

Unforeseen CMS error
[ECPERR]

Unforeseen CP or ESM error

4.2.4 Get User Name
Function: getlogin()

4.2.4.3 Returns
The data returned by getlogin() does not point to static data that will be overwritten by each call.

4.2.4.4 Errors
getlogin() is never expected to fail and does not have any error conditions.

4.4 System Identification

4.4.1 Get System Name
Function: uname()

4.4.1.2 Description
In the OpenExtensions implementation, the structure utsname contains the members and formats shown
in Table 9 on page 15. Each member is padded with blanks to fill out the structure.

Table 9. Formats for OpenExtensions utsname Members

Member Name Description Format

sysname Name of implementation char [16]

nodename Network node name char [32]

POSIX.1 Section 4

© Copyright IBM Corp. 1993, 2022 15



Table 9. Formats for OpenExtensions utsname Members (continued)

Member Name Description Format

release The level of CMS in use, expressed as the string CMS_l_s_f,
where:
l

is the CMS level as returned by the QUERY CMSLEVEL
command.

s
is the 4-digit CMS service level as it appears in DMSLVLTB.

f
is the CMS level code returned by the DMSQEFL routine in
its output parameter cms_level.

For example, the release (CMS) information for z/VM Version 6
Release 1.0 is: CMS_25_0000_80.

char [64]

version The level of CP in use, expressed as the string CP_v.r.m_s_f,
where:
v

is the CP version number returned by the QUERY CPLEVEL
command.

r
is the CP release number returned by QUERY CPLEVEL.

m
is the CP modification level returned by QUERY CPLEVEL.

s
is the 4-digit CP service level as it appears in the output of
QUERY CPLEVEL.

f
is the CP level code returned by the DMSQEFL routine in
its output parameter cp_level.

For example, the version (CP) information for z/VM Version 6
Release 1.0 is: CP_6.1.0_0000_76.

char [64]

machine Machine hardware name char [16]

4.6 Environment Variables

4.6.1 Environment Access
Function: getenv()

4.6.1.4 Errors
The following errors may be returned by the system:

• If not enough memory exists to return the environment variable data, the getenv() function returns a
NULL value and sets errno to [ENOMEM].

• If the "=" character is found in an environment variable name, the getenv() function returns a NULL
value and sets errno to [ECMSBADCHAR].

4.7 Terminal Identification

POSIX.1 Section 4

16  z/VM: 7.3 OpenExtensions POSIX Conformance Document



4.7.1 Generate Terminal Pathname
Function: ctermid()

4.7.1.4 Errors
No error conditions are returned.

4.7.2 Determine Terminal Device Name
Functions: ttyname() and isatty()

4.7.2.4 Errors
No error conditions are returned.

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables
Function: sysconf()

4.8.1.2 Description
sysconf() supports system variables other than those listed in the IEEE Std 1003.1-1990. See z/VM:
OpenExtensions Callable Services Reference for more information.

4.8.1.5 Special Symbol {CLK_TCK}
The special symbol {CLK_TCK} is evaluated at run time.

POSIX.1 Section 4

Section 4. Process Environment  17



POSIX.1 Section 4

18  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 5. Files and Directories

5.1 Directories

5.1.2 Directory Operations
Functions: opendir(), readdir(), rewinddir, and closedir()

5.1.2.2 Description
Directory streams use a file descriptor internally, so the opendir() function is subject to the limit on
open files.

The OpenExtensions implementation does not return entries for dot and dot-dot on a call to readdir().

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir() returns an entry for that file depends on the
circumstances. If the new entry was added to the directory at a point beyond the entries being buffered
by the runtime library, the entry is returned; otherwise, it is not returned.

All directory streams are closed after any of the exec family of functions is run.

If both the child and parent use readdir() or rewinddir() for a directory stream after a spawn(), the
results are indeterminate.

5.1.2.4 Errors
For the opendir() function, the OpenExtensions implementation detects the condition and returns the
corresponding errno values for [EMFILE] and [ENFILE].

If the directory-stream argument passed to readdir() or closedir() does not refer to a currently open
directory stream:

• The functions set errno to [EBADF]
• readdir() returns a value of null
• closedir() returns a -1

5.2 Working Directory

5.2.2 Get Working Directory Pathname
Function: getcwd()

5.2.2.2 Description
If buf is a NULL pointer, getcwd() returns a NULL pointer and sets errno to [EINVAL].

5.2.2.3 Returns
The contents of buf after an error is indeterminate.

5.2.2.4 Errors
When read permission is denied for a component of the path name, a call to getcwd() returns the
current working directory.

POSIX.1 Section 5

© Copyright IBM Corp. 1993, 2022 19



When search permission is denied for a component of the path name, a call to getcwd() returns a value
of NULL and errno of [EACCES].

5.3 General File Creation

5.3.1 Open a File
Function: open()

5.3.1.2 Description
If bits other than the file permission bits are set in the mode argument when a file is being created, these
bits are ignored by the OpenExtensions implementation.

If O_CREAT is specified, the file's group ID is set to the group ID of the directory in which the file is being
created.

O_EXCL is ignored if O_CREAT is not set.

O_NONBLOCK is ignored on file types other than FIFO and character special file.

O_TRUNC is ignored on file types other than regular files.

If O_TRUNC and O_RDONLY are set on, the request fails and errno is set to [EINVAL].

5.3.3 Set File Creation Mask
Function: umask()

5.3.3.2 Description
In the OpenExtensions implementation, only the permission bits are put in the file mode creation mask.
Any other bits in cmask are ignored.

5.3.3.3 Returns
The file permission bits from the process's current file mode creation mask are returned. Other bits in the
returned value are set to 0.

5.3.4 Link to a File
Function: link()

5.3.4.2 Description
The OpenExtensions implementation:

• Does not support linking of files across file systems
• Does not support using link() on directories
• Requires that the calling process has permission to access the existing file

5.4 Special File Creation

5.4.1 Make a Directory
Function: mkdir()

POSIX.1 Section 5

20  z/VM: 7.3 OpenExtensions POSIX Conformance Document



5.4.1.2 Description
If bits other than the file permission bits are set in the mode argument, these bits are ignored by the
OpenExtensions implementation.

5.4.2 Make a FIFO Special File
Function: mkfifo()

5.4.2.2 Description
If bits other than the file permission bits are set in the mode argument, these bits are ignored by the
OpenExtensions implementation.

5.5 File Removal

5.5.1 Remove Directory Entries
Function: unlink()

5.5.1.2 Description
The OpenExtensions implementation does not support using unlink() on directories.

5.5.2 Remove a Directory
Function: rmdir()

5.5.2.2 Description
If the named directory is the root directory of any file system, or the working directory of any process,
rmdir() succeeds, provided that the named directory is not the root of a physical file system.

If the named directory is the root of a physical file system, the operation fails and sets errno to [EPERM].

5.5.2.4 Errors
If the named directory is not empty, the request fails with [ENOTEMPTY].

5.5.3 Rename a File
Function: rename()

5.5.3.2 Description
If the old argument points to the path name of a directory, write access permission is not required for the
directory named by the old name nor for a directory named by the new name, if it exists.

If the named directory is the root of a physical file system, the operation fails and sets errno to [EPERM].

5.5.3.4 Errors
[EBUSY]

The directory named by old or new is being used by the system as either the system root or a mount
point. Renaming such directories is not permitted.

[EXDEV]
The links named by old and new are on different file systems. Renaming across file systems is not
permitted.

POSIX.1 Section 5

Section 5. Files and Directories  21



5.6 File Characteristics

5.6.2 Get File Status
Functions: stat() and fstat()

5.6.2.2 Description
There are no additional or alternate file access control mechanisms used by the OpenExtensions
implementation.

5.6.3 Check File Accessibility
Function: access()

5.6.3.2 Description
Regardless of whether the process has appropriate privileges, X_OK does not indicate success for
nondirectory files if none of the execute file permission bits are set.

For directory files, a process with appropriate privileges is given search access, even if none of the
execute file permission bits are set.

5.6.3.4 Errors
If the access_mode parameter is incorrect, the function returns an errno of [EINVAL].

5.6.4 Change File Modes
Function: chmod()

5.6.4.2 Description
There are no implementation-defined restrictions that cause the S_ISUID and S_ISGID bits in mode to be
ignored.

There is no effect on reading and writing of files that are open at the time of the chmod() function.
However, there are several functions—for example, utime() and stat()—that can provide differing
results when they are performed before and after a chmod() function.

5.6.5 Change Owner and Group of a File
Function: chown()

5.6.5.2 Description
The S_ISUID and S_ISGID bits of the file mode are always cleared upon successful completion of
chown(), even if the process has appropriate privileges, and regardless of the file type.

5.6.5.4 Errors
If the owner or group ID supplied is incorrect, the function returns an errno of [EINVAL].

5.7 Configurable Pathname Variables

5.7.1 Get Configurable Pathname Variables
Functions: pathconf() and fpathconf()

POSIX.1 Section 5

22  z/VM: 7.3 OpenExtensions POSIX Conformance Document



5.7.1.2 Description
The OpenExtensions implementation does not support any configurable file name variables that do not
appear in Table 5-2 of IEEE Std 1003.1-1990.

5.7.1.3 Returns
If name refers to MAX_CANON, MAX_INPUT, or _POSIX_VDISABLE, the following applies:

• If path or fildes does not refer to a terminal file, the function returns -1 and sets errno to [EINVAL].

If name refers to PC_NAME_MAX, PC_PATH_MAX, or PC_NO_TRUNC, the following applies:

• If path or fildes does not refer to a directory, the function still returns the requested information, with
reference to the parent directory.

If name refers to PC_PIPE_BUF the following applies:

• If path or fildes refers to any other type of file besides a pipe or a FIFO special file, the function returns
-1 and sets errno to [EINVAL].

5.7.1.4 Errors
If search permission is denied for a component of the path prefix, the function returns an errno of
[EACCES].

If the configurable file name variable is not supported for the specified file, the function returns an errno
of [EINVAL].

If the path name is longer than 1023 characters, or some component of the path name is longer than 255
characters, the function returns -1 and sets errno to [ENAMETOOLONG].

If the named file does not exist, or if the path name points to an empty string, the function returns -1 and
sets errno to [ENOENT].

If a component of the path prefix is not a directory, the function returns -1 and sets errno to [ENOTDIR].

If the file descriptor is incorrect, the function returns -1 and sets errno to [EBADF].

POSIX.1 Section 5

Section 5. Files and Directories  23



POSIX.1 Section 5

24  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 6. Input and Output Primitives

6.3 File Descriptor Deassignment

6.3.1 Close a File
Function: close()

6.3.1.2 Description
If the close() function is interrupted by a signal that is to be caught, it returns -1 with errno set to
[EINTR], and the fildes argument is closed.

6.3.1.4 Errors
[EIO] may be generated by a close() if an I/O operation fails within z/VM.

6.4 Input and Output

6.4.1 Read from a File
Function: read()

6.4.1.2 Description
If the value of nbyte is greater than {SSIZE_MAX}, the function returns -1 and sets errno to [EINVAL].

6.4.1.4 Errors
[EIO] may be generated by a read() if the I/O operation fails within z/VM.

6.4.2 Write to a File
Function: write()

6.4.2.2 Description
If a write() is interrupted by a signal after it successfully writes some data, it returns the number of
bytes successfully written. (Partial transfers are reported.) This can happen only with a write to a nonpipe
file, a FIFO special file, a socket, or a nonregular file.

If nbyte is 0 and the file is not a regular file, the write() function returns 0 and has no other results.

If the value of nbyte is greater than {SSIZE_MAX}, write() returns -1 and sets errno to [EINVAL].

6.4.2.4 Errors
[EIO] may be generated by a write() if the I/O operation fails within z/VM.

6.5 Control Operations on Files

POSIX.1 Section 6

© Copyright IBM Corp. 1993, 2022 25



6.5.2 File Control
Function: fcntl()

6.5.2.2 Description
F_SETFD

The OpenExtensions implementation also supports the setting of the FD_CLOFORK bit. After this bit
has been set, it cannot be turned off. _OPEN_SYS is the name of the feature test macro that can be
invoked to make FD_CLOFORK visible.

F_GETFL
The OpenExtensions implementation also returns the oflag values for open(), as described in Table
6-4 of the IEEE Std 1003.1-1990 standard. You can extract the file access modes defined in Table 6-6
of the standard, and the file status flags defined in Table 6-5 of the standard, from the return value by
using the mask O_GETFL, which is defined in <fcntl.h>.

F_SETFL
If any bits in arg other than those mentioned here are changed, they are ignored.

F_SETLK, F_SETLKW, F_GETLK
The l_len value cannot be a negative value. A return value of -1 and a return code of [EINVAL] are
returned if a negative l_len is specified.

F_CLOSFD
A process can use fcntl() to close a range of file descriptors by specifying F_CLOSFD for cmd. The
file descriptor specified by filedes is the lower limit of the range of file descriptors to be closed. The
third parameter then specifies a file descriptor to be the upper limit of the range. The third parameter
can be set to -1 to indicate that all file descriptors greater than or equal to filedes are to be closed.

The F_CLOSFD command can be used only to close file descriptors that could be closed with a
close() request. If not all files in the range can be closed, those that can be closed are closed, and
an errno of [EPERM] is reported.

6.5.2.4 Errors
If a deadlock condition is detected for a F_SETLKW request, the function returns an errno of [EDEADLK].

If the action specified was F_CLOSFD, and the file descriptor specified as the upper limit for the range is
less than the file descriptor specified as the lower limit (but is not equal to -1), an error of [EINVAL] is
reported.

If the action requested was F_CLOSFD, and all the file descriptors in the specified range were not closed,
an error of [EPERM] is reported.

6.5.3 Reposition Read/Write File Offset
Function: lseek()

6.5.3.2 Description
On files incapable of seeking, lseek() sets the file offset to the specified value. However, the offset is
not honored by functions that read from or write to such files.

POSIX.1 Section 6

26  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 7. Device- and Class-Specific Functions

7.1 General Terminal Interface
The OpenExtensions implementation does not support any devices that support asynchronous serial
communication. The CMS command OPENVM SHELL is provided, which uses a terminal to provide the
interactive environment. The full programming interface is provided.

Only canonical mode is supported.

7.1.1 Interface Characteristics

7.1.1.2 Process Groups
The condition described in POSIX in which a terminal's process group ID does not match any existing
process group ID, but does match an existing process ID, cannot occur in the OpenExtensions
implementation.

7.1.1.3 The Controlling Terminal
If a session leader without a controlling terminal opens a terminal device file not already associated with
a session without specifying the O_NOCTTY option, then this terminal becomes the controlling terminal
for the session leader. This is how a controlling terminal is acquired.

7.1.1.5 Input Processing and Reading Data
The OpenExtensions implementation imposes the limit {MAX_INPUT} on the number of bytes that may be
stored in the input queue.

{MAX_INPUT} cannot be exceeded.

7.1.1.6 Canonical Mode Input Processing
{MAX_CANON} is defined for terminals.

{MAX_CANON} cannot be exceeded.

7.1.1.7 Noncanonical Mode Input Processing
The OpenExtensions implementation does not provide noncanonical mode input processing. Any attempt
to put a terminal in noncanonical mode is ignored.

7.1.1.8 Writing Data and Output Processing
Data written to a terminal is buffered. Therefore, when a write() completes, the data has not
necessarily been presented to the user.

7.1.1.9 Special Characters
No multibyte special sequences are supported.

7.1.1.10 Modem Disconnect
A terminal connection does not depend on the state of the modem status lines (the terminal is assumed
to be connected to the system locally).

POSIX.1 Section 7

© Copyright IBM Corp. 1993, 2022 27



7.1.2 Parameters That Can Be Set

7.1.2.2 Input Modes
A break condition does not exist.

Parity errors cannot occur. Therefore, the settings of PARMRK, IGNPAR, and INPCK have no effect.
Attempts to change them from their default values are ignored.

Since input is in EBCDIC and requires all 8 bits, ISTRIP is inappropriate and attempts to set it are ignored.

Since MAX_INPUT cannot be exceeded, the setting of IXOFF has no effect. Attempts to set IXOFF are
ignored. STOP and START characters are never sent as a result of buffer conditions.

Flags ICRNL and IGNBRK are always set. Attempts to change them from their default values are ignored.

The initial c_iflag setting after open() is defined as:
ICRNL

Map carriage return to newline on input
IGNBRK

Ignore break condition
IXON

Enable start/stop output control

7.1.2.3 Output Modes
The initial c_oflag setting for the OPOST flag is On after open(). When the OPOST flag is set in c_flag, tab
expansion is performed; enough blank characters are inserted to reach the next multiple of 8 bytes on a
line.

7.1.2.4 Control Modes
A program can request the changing of any flag, but attempts to change them from their default values
are ignored.

Flags CREAD, CSIZE, and CLOCAL are always set.

The initial c_cflag setting after open() is defined to be:
CREAD

Enable receiver
CSIZE

Set to CS8 for 8 bits per byte
CLOCAL

Ignore modem status lines

7.1.2.5 Local Modes
A program can request the changing of any flag, but changes to IEXTEN and ICANON are ignored.
Attempts to change them from their default values are ignored.

The initial c_lflag setting after open() is defined to be:
ECHO

Enable echo
ICANON

Canonical input processing
ISIG

Enable signals

POSIX.1 Section 7

28  z/VM: 7.3 OpenExtensions POSIX Conformance Document



7.1.2.6 Special Control Characters
The number of special control characters in array c_cc (NCCS) is 11. Table 10 on page 29 shows the
initial values of these characters.

Table 10. Initial Values for Special Control Characters

Control Character Control Sequence
(See Note)

Hexadecimal Value EBCDIC character

VEOF ¢D 00 None

VEOL ¢J 15 NL

VERASE ¢H 16 BS

VINTR ¢C 03 ETX

VKILL ¢U 3D NAK

VMIN None 00 None

VQUIT ¢V 32 SYN

VSTART None 00 None

VSTOP None 00 None

VSUSP ¢Z 3F SUB

VTIME None 00 None

Note: The control sequence is a character sequence that must be entered from the terminal to cause the
special control character to be generated. The prefix character (¢) can be set by the user.

The ¢ is not passed to the user; it merely tells the terminal driver to treat the following character as a
control character. Thus, for instance, typing ¢D results in an EBCDIC EOT character (X'37') to be passed
to the user.

7.1.3 Baud Rate Functions
Functions: cfgetispeed(), cfgetospeed(), cfsetispeed(), and cfsetospeed()

7.1.3.2 Description
See “7.1.3.4 Errors” on page 29 for a description of processing when an unsupported baud rate is
specified.

All POSIX-defined baud rates are accepted by tcsetattr(), but they have no effect on the terminal
connection. A subsequent tcgetattr() returns the baud rates set by an earlier tcsetattr().

7.1.3.4 Errors
If an unsupported baud rate is specified for the cfsetispeed() or cfsetospeed() functions, a return
of -1 is generated and errno is set to [EINVAL].

7.2 General Terminal Interface Control Functions

7.2.1 Get and Set State
Functions: tcgetattr(), tcsetattr()

POSIX.1 Section 7

Section 7. Device- and Class-Specific Functions  29



7.2.1.2 Description
The tcsetattr() function does not support the TCDRAIN action. If it is specified, the tcsetattr()
function returns -1 with errno set to [EINVAL].

7.2.2 Line Control Functions
Functions: tcsendbreak(), tcdrain(), tcflush(), and tcflow()

7.2.2.2 Description
The tcsendbreak() function does not generate a break condition. Unless issued under circumstances
requiring a SIGTTOU signal, the function is successful without taking any action.

The tcdrain() function is not supported. It returns -1 with errno set to [EINVAL].

POSIX.1 Section 7

30  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 8. Language-Specific Services for the C
Programming Language

8.1 Referenced C Language Routines

8.1.1 Extensions to Time Functions
In the OpenExtensions implementation, TZ environment variables of the form

:characters

are not supported.

TZ environment variables with the expanded format described in section 8.1.1 are supported. These TZ
environment variables have the form

stdoffset[dst[offset][,start[/time], end[/time]]]

If parsing of the TZ environment variable fails, time zone values specified by the C proprietary LC_TOD
locale category are used to establish default values. See z/OS: XL C/C++ Programming Guide (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf) for
a description of the LC_TOD category.

8.1.2 Extensions to setlocale() Function
Function: setlocale()

8.1.2.2 Description
For the setlocale() function, the default values for the required categories and those categories
specific to the OpenExtensions implementation are defined in Table 11 on page 31.

Table 11. Default Values for Required and OpenExtensions-Specific Categories

Category Default Value

LC_CTYPE "C"

LC_COLLATE "C"

LC_TIME "C"

LC_NUMERIC "C"

LC_MONETARY "C"

LC_MESSAGES "C"

LC_TOD "C"

See z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf) for:

• A description of LC_TOD category
• Information on the contents of the string that is returned when the locale name is an explicit string
• Information on the contents of the string that is returned when the pointer to the locale name is null

POSIX.1 Section 8

© Copyright IBM Corp. 1993, 2022 31

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf


The following locale values are recognized by setlocale(): “C”, “POSIX”, “FRAN”,
“GERM”, “ITAL”, “SPAI”, “S370”, “UK”, and “USA”. These locales are described in
z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

If:

1. The LC_ALL environment variable is not specified or is set to the empty string,
2. The environment variable corresponding to the category named on the setlocale() call is not

specified or is set to the empty string, and
3. The LANG environment variable is not set or is set to the empty string,

then setlocale() defaults to the "C" locale.

8.2 C Language Input/Output Functions

8.2.1 Map a Stream Pointer to a File Descriptor
Function: fileno()

8.2.1.4 Errors
If the stream-pointer argument is not valid or refers to a CMS native record file, the fileno() function
returns -1, and sets errno to [EBADF].

8.2.2 Open a Stream on a File Descriptor
Function: fdopen()

8.2.2.2 Description
The type argument can have a b as the second or third character to indicate binary. This b is ignored.

8.2.2.4 Errors
If the first character of the type argument is not r, w, or a, the fdopen() function returns a NULL stream
pointer and sets errno to [EINVAL].

If the file descriptor argument is not a valid open file descriptor, the fdopen() function returns a NULL
stream pointer and sets errno to [EBADF].

8.2.3 Interactions of Other FILE-Type C Functions
When applications obey all the rules specified in POSIX.1 section 8.2.3, input is always seen exactly once.

8.2.3.10 ftell()
If the stream is opened in append mode, the result of ftell() on that stream is the current file position.

8.3 Other C Language Functions

8.3.2 Set Time Zone
Function: tzset()

POSIX.1 Section 8

32  z/VM: 7.3 OpenExtensions POSIX Conformance Document

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf


8.3.2.2 Description
If TZ is absent from the environment or cannot be parsed, the time zone values specified by the C
proprietary locale category, LC_TOD, are used to establish default values.

POSIX.1 Section 8

Section 8. Language-Specific Services for the C Programming Language  33



POSIX.1 Section 8

34  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 9. System Databases

9.1 System Databases
The system default for the numerical user ID field is 4,294,967,295 (X'FFFFFFFF').

The user name field is the lowercased z/VM user ID.

The system default for the numerical group ID field is 4,294,967,295 (X'FFFFFFFF').

The system default for the initial user program field is the program /bin/sh. This is the default shell.

If the initial working directory field is null, the initial working directory is the root directory: /.

No other implementation-defined fields in the user or group databases are supported.

The system databases can be kept in the CP directory or an External Security Manager (ESM).

9.2 Database Access

9.2.1 Group Database Access
Functions: getgrgid() and getgrnam()

9.2.1.2 Description
To be authorized to obtain a group database entry either:

• An ESM must grant the requestor authority to read the entry, or
• An ESM must not be installed or must defer authorization to CP, and

– The caller's effective UID must be 0, or
– The caller's real or effective GID must match the GID of the designated group, or
– The caller must be a member of the specified group, or
– The caller must have the attribute POSIXOPT QUERYDB ALLOW, either through a statement in its CP

directory entry or through a setting, specified or defaulted, in the system configuration file, which is
not overridden in the directory entry.

9.2.1.3 Returns
In the OpenExtensions implementation, the return values for the getgrgid() and getgrnam()
functions point to data that may be overwritten by each call.

9.2.1.4 Errors
For the getgrgid() and getgrnam() functions, the following error conditions are detected:
[EINVAL]

If the group name specified was less than 1 or greater than 8 characters long
[ECMSERR]

Unforeseen CMS error, such as insufficient storage
[ECPERR]

CP or ESM error

POSIX.1 Section 9

© Copyright IBM Corp. 1993, 2022 35



9.2.2 User Database Access
Functions: getpwuid() and getpwnam()

9.2.2.2 Description
To be authorized to obtain a user database entry either:

• An ESM must grant the requestor authority to read the entry, or
• An ESM must not be installed or must defer authorization to CP, and

– The caller's effective UID must be 0, or
– The caller's real or effective UID must match the UID in the entry, or
– The caller must have the attribute POSIXOPT QUERYDB ALLOW, either through a statement in its CP

directory entry or through a setting, specified or defaulted, in the system configuration file, which is
not overridden in the directory entry.

The getpwnam() service is not sensitive to the case of the user name specified on input. This means that a
user name of DANIEL is considered the same as a user name of daniel. However the user name returned
in the database entry is always in lower case.

The getgrname() service is not sensitive to the case of the group name.

9.2.2.3 Returns
For the getpwuid() and getpwnam() functions, the return values point to data that may be overwritten
on each call.

9.2.2.4 Errors
In the OpenExtensions implementation, the getpwuid() and getpwnam() functions detect the
following error conditions:
[EINVAL]

If the user name specified was less than 1 or greater than 8 characters long
[ECMSERR]

Unforeseen CMS error, such as insufficient storage
[ECPERR]

CP or ESM error

POSIX.1 Section 9

36  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 10. Data Interchange Format

10.1 Archive/Interchange File Format
An archive being introduced into an OpenExtensions implementation from an external medium is first
copied intact into a file in the OpenExtensions file system using the CMS command OPENVM PARCHIVE. It
is then read using the format-reading pax utility of OpenExtensions.

An archive being exported from an OpenExtensions implementation to an external medium is first created
in the byte file system (BFS) with the format-creating pax utility of OpenExtensions. It is then copied to
the external medium with the OPENVM PARCHIVE command.

See z/VM: OpenExtensions Commands Reference for a description of the pax utility and the OPENVM
PARCHIVE command and the interfaces to them.

10.1.1 Extended tar Format
The OpenExtensions implementation supports the use of characters outside the portable file name
character set in names for files, users, or groups. For interchange purposes, such characters are mapped
to ISO 8859-1. Any characters in a name to be archived that are not in the ISO 8859-1 character set are
converted to underscore when stored in an extended tar archive.

If a file name found in an archive contains characters outside the ISO 8859-1 character set, such
characters are converted to underscore before being put into the file system. No names can result from
this conversion that are incorrect in the hierarchical file system.

If a file to be archived has the filemode bit S_ISVTX set, the TSVTX bit is set in the archive and vice versa.

10.1.2 Extended cpio Format

10.1.2.1 cpio Header
For character special files, c_rdev contains a leading-zero-filled octal representation of the 18-bit binary
number formed by concatenating the low-order 9 bits of the devmajor field (in the high-order 9 bits of
c_rdev) and the low-order 9 bits of the devminor field (in the low-order 9 bits of c_rdev). This can result
in ambiguity if character devices are archived whose devmajor or devminor numbers contain more than 9
bits of significance. The OpenExtensions implementation supports 16-bit values in these fields.

The OpenExtensions implementation does not support block special files.

10.1.2.2 cpio Filename
In the OpenExtensions implementations, if a file name found in an archive contains characters outside
the ISO 8859-1 character set, such characters are converted to underscore before being put into the file
system. No names can result from this conversion that are incorrect in the byte file system.

10.1.2.5 cpio Values
In the OpenExtensions implementation, other than those file types defined in Table 10-3 of the IEEE Std
1003.1-1990 standard, the following file type is supported in cpio archives: symbolic links. The typeflag
for a symbolic link in cpio archives is C_ISLNK.

If a file to be archived has the filemode bit S_ISVTX set, the C_ISVTX bit is set in the archive and vice
versa.

POSIX.1 Section 10

© Copyright IBM Corp. 1993, 2022 37



10.1.3 Multiple Volumes
In the OpenExtensions implementation, the pax utility of OpenExtensions determines which file to read
or write for the next volume of a multivolume archive by prompting to stdout and reading the reply from
stdin.

POSIX.1 Section 10

38  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Part 2. POSIX.2 Conformance Document

© Copyright IBM Corp. 1993, 2022 39



40  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 1. General

1.3 Conformance

1.3.1 Implementation Conformance
The following sections describe the behavior of OpenExtensions in situations that the POSIX.2 standard
defines as implementation-defined.

1.3.1.1 Requirements
The POSIX.2 standard states:
(3)

The system may provide additional or enhanced utilities, functions, or facilities not required by
this standard. Nonstandard extensions should be identified as such in the system documentation.
Nonstandard extensions, when used, may change the behavior of utilities, functions, or facilities
defined by this standard. In such cases, the implementation's conformance document (see 2.2.1.3)
shall define an execution environment (i.e., shall provide general operating instructions) in which
an application can be run with the behavior specified by this standard. In no case shall such an
environment require modification of a Strictly Conforming POSIX.2 Application.

The xargs utility has a known problem, and currently, there is no execution environment that can
circumvent it. The xargs utility of OpenExtensions conforms to XPG4, and as such, supports the "-e"
option, which means that xargs supports the default logical EOF string of "_" which is an extension of
POSIX.2 and may change the behavior of conforming applications that use xargs.

1.3.1.2 Documentation
OpenExtensions conforms to the IEEE Std 1003.2-1992 and ISO/IEC DIS 9945-2:1992, hereafter
referred to as POSIX.2 in this document. This report is published to satisfy the requirement of the
POSIX.2 standard for a conformance document, as outlined in section 1.3.1.2 Documentation of the
POSIX.2 standard.

This document has the same structure as the POSIX.2 standard. It lists all section numbers and titles
as they appear in the POSIX.2 standard and in the same order. (It omits empty sections.) It also uses
typographical conventions similar to those used in the POSIX.2 standard. This document supplements,
but does not replace, the POSIX.2 standard.

OpenExtensions POSIX.2 support resides on a system that conforms to IEEE Std 1003.1-1990 and
ISO/IEC 9945-1:1990(E), referred to as POSIX.1 in this document, except that the OpenExtensions
implementation of the fork() function does not meet all POSIX.1 specifications.

POSIX.2 Section 1

© Copyright IBM Corp. 1993, 2022 41



POSIX.2 Section 1

42  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 2. Terminology and General Requirements

2.2 Definitions

2.2.2 General Terms

2.2.2.8 appropriate privileges
The POSIX.2 standard states that "the means for associating privileges to a process is implementation
defined."

The POSIX.2 standard refers several times to "appropriate privileges," a concept taken from POSIX.1 (see
POSIX.1 section 2.3, General Terms, which defines this concept).

• 3.5.3 Variables: See section 3.5.3 of this document.
• 4.7.2 Description {of chmod}: See POSIX.1 section 5.6.4.2 Description {of chmod()}.
• 4.30.2 Description {of id}: See POSIX.1 section 2.2.2.4.

2.2.2.27 byte
The POSIX.2 standard states that "a byte is composed of a contiguous sequence of bits, the number of
which is implementation defined."

OpenExtensions uses bytes composed of 8 bits.

2.2.2.61 extended security controls
The POSIX.2 standard states, "the access control … and privilege … mechanisms have been defined to
allow implementation-defined extended security controls."

OpenExtensions allows an external security mananger to define alternate or additional file access
controls.

2.2.2.65 file
The POSIX.2 standard states that "other types of files may be defined by the implementation."

The OpenExtensions implementation also defines the symbolic link file type, the external link file type,
and the socket file type.

2.2.2.68 file group class
The POSIX.2 standard states that "other members of the class may be implementation defined."

The OpenExtensions implementation defines no other members of the class.

2.2.2.93 job control
The POSIX.2 standard states, "POSIX.1-conforming implementations may optionally support job control
facilities."

The OpenExtensions implementation supports job control.

POSIX.2 Section 2

© Copyright IBM Corp. 1993, 2022 43



2.2.2.120 parent process ID
The POSIX.2 standard states that "after the creator's lifetime has ended, the parent process ID is the
process ID of an implementation-defined system process."

The OpenExtensions implementation makes the parent process the Init process, which is process ID 1.

2.2.2.121 pathname
The POSIX.2 standard states that "a pathname that begins with two successive slashes may be
interpreted in an implementation-defined manner, although more than two leading slashes shall be
treated as a single slash."

See POSIX.1 section 2.2.2.57.

2.2.2.141 read-only file system
The POSIX.2 standard states that a read-only file system is "a file system that has implementation-
defined characteristics restricting modifications."

The OpenExtensions implementation supports read-only file systems, and read-only file systems
cannot be modified.

2.2.2.189 variable assignment [assignment]
The sh utility of OpenExtensions supports subscripted variable assignment using the syntax
name[expr]=value. For more information, see the entry for sh in z/VM: OpenExtensions User's Guide
and z/VM: OpenExtensions Commands Reference.

2.4 Character Set
The POSIX.2 standard states, "use of a locking-shift encoding with any of the standard utilities or the
optional C-language functions (Annex B) that describe character (versus byte) or text-file manipulation is
implementation-defined."

In the OpenExtensions implementation, only single-byte characters are supported. Multibyte
characters, and thus locking shift encodings, are not currently supported.

2.4.1 Character Set Description File
The POSIX.2 standard states that "it is implementation defined whether or not users or applications can
provide additional character set description files."

Because OpenExtensions does not define the symbolic constant {POSIX2_LOCALEDEF}, this section
is not applicable.

The POSIX.2 standard states that "implementations supporting other byte sizes (other than 8-bit) may
allow constants to represent values larger than those that can be represented in 8-bit bytes, and to
allow additional digits in constants. … The manner in which constants are represented in the character is
implementation defined."

Current implementations of OpenExtensions support only 8-bit bytes.

2.5 Locale
The OpenExtensions implementation supports any locale that uses the IBM-1047, IBM-1027, or
IBM-939 character set.

POSIX.2 Section 2

44  z/VM: 7.3 OpenExtensions POSIX Conformance Document



2.6 Environment Variables
The POSIX.2 standard states that, for each of the following environment variables, "additional semantics
of this variable, if any, are implementation defined."

LANG
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

In the OpenExtensions implementation, there are no additional semantics for locale environment
variables.

The POSIX.2 standard states that "if PATH is unset or is set to null, the path search is implementation
defined."

OpenExtensions searches the /bin directory.

The POSIX.2 standard states that "if the LANG variable is not set or is set to the empty string, the
implementation-defined default locale shall be used."

In the OpenExtensions implementation, the POSIX Locale with the name "C" is the default locale.

The POSIX.2 standard states that "if LANG (or any of the LC_* environment variables) contains one of a
set of implementation-defined values, the standard utilities shall behave in accordance with the rules in a
corresponding implementation-defined locale description for the associated category."

No OpenExtensions implementation-defined values are supported.

2.9 Dependencies on Other Standards

2.9.1 Features Inherited from POSIX.1

2.9.1.4 File Read, Write, and Creation
The POSIX.2 standard states that "for other file types, the effect is implementation defined."

In the OpenExtensions implementation, symbolic links can be created only with the symlink callable
service (BPX1SYM) and be read by the readlink callable service (BPX1RDL). They are deleted or
renamed the same as files are.

2.9.1.5 File Removal
The POSIX.2 standard states that "when a directory that is the root directory or current working directory
of any process is removed, the effect is implementation defined."

See POSIX.1 section 5.5.2.2, Description (in "Remove a Directory").

2.11 Utility Description Defaults

2.11.5 External Influences

2.11.5.2 Input Files
The POSIX.2 standard states that "implementations shall define … those utilities that are limited by
constraints other than file system space, available memory, and other limits specifically cited by this

POSIX.2 Section 2

Section 2. Terminology and General Requirements  45



standard, and identify what the constraint is, and indicate a way of estimating when the constraint would
be reached."

Utilities that use regular expressions and the regcomp() and regexec() functions (for example, ed,
sed, and awk) use a preallocated backtrack stack to improve performance. This stack is sufficiently
large that any pattern matched against a string of {LINE_MAX} characters or less should not cause it to
overflow. For larger strings, it is possible to construct a regular expression that would cause possible
backtracking decisions to overflow this stack.
The join utility supports up to 256 input fields, and a maximum of 512 output fields can be specified
in the "-o" argument list.
The ed utility can only edit a file that has less than 500␠000 lines, and has a limit of {LINE_MAX}
characters in the global command string and in the remembered regular expression string.
The awk utility limits each input record to a length of 20␠000 characters, limits the number of fields in
a record to 4000, only allows up to 32 occurrences of the "-f" option, and limits the recursion level to
3000.
The sed utility provides a pattern space buffer of size (5 × {LINE_MAX}) with a limit of 8192
characters.

2.13 Configuration Values

2.13.1 Symbolic Limits
The POSIX.2 standard describes, in Table 2-17, the minimum values for utility limits (such as
POSIX2_BC_DIM_MAX, the "maximum number of elements permitted in any array by the bc utility")
and states that "implementations may provide more liberal, or less restrictive, values than shown in Table
2-17. These possibly more liberal values are accessible using the symbols in Table 2-18."

Table 12. POSIX.2 Standard 2.13.1: Table 2-18: Symbolic Utility Limits

Symbolic Limit Description Min.
Value

OpenExtensions Value

{BC_BASE_MAX} The largest obase value allowed by the
bc utility.

99 {SHRT_MAX} 32␠767

{BC_DIM_MAX} The maximum number of elements
permitted in an array by the bc utility.

2048 {SHRT_MAX} 32␠767

{BC_SCALE_MAX} The largest scale value allowed by the
bc utility.

99 {SHRT_MAX} 32␠767

{BC_STRING_MAX} The maximum length of a string
constant accepted by the bc utility.

1000 2048

{COLL_WEIGHTS_MAX} The maximum number of weights that
can be assigned to an entry of the
LC_COLLATE order keyword in the
locale definition file.

2 2

{EXPR_NEST_MAX} The largest number of expressions
that can be nested within parentheses
by the expr utility. Because
OpenExtensions implements expr
using the yacc utility, this value is the
depth of the yacc stack.

32 32

{LINE_MAX} The maximum length, in bytes, of a
utility's input line for processing text
files.

2048 2048

POSIX.2 Section 2

46  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Table 12. POSIX.2 Standard 2.13.1: Table 2-18: Symbolic Utility Limits (continued)

Symbolic Limit Description Min.
Value

OpenExtensions Value

{RE_DUP_MAX} The largest number of repeated
occurrences of a regular expression
permitted when using the interval
notation \{m,n\}. The OpenExtensions
implementation is unlimited (within
underlying system memory resources).

255 255

Table 12 on page 46, based on Table 2-18 in the POSIX.2 standard, describes the corresponding
symbolic limits, the minimum values dictated by the POSIX.2 standard, and the values provided by
OpenExtensions. These values are retrieved by means of the getconf utility, described in section 4.26 of
the POSIX.2 standard.

2.13.2 Symbolic Constants for Portability Specifications
The POSIX.2 standard states that "Table 2-19 lists symbols that can be used by the application to
determine which optional facilities are present on the implementation. … Each shall be defined on
the system with a value of 1 if the corresponding option is supported; otherwise, the symbol shall be
undefined."

Table 13. POSIX.2 Standard 2.13.2: Table 2-19: Optional Facility Configuration Values

Symbolic Limit Description OpenExtensions Value

{POSIX2_C_BIND} The C Language development facilities in Annex A
support the C language Bindings Option (see POSIX.2
Annex B).

1

{POSIX2_C_DEV} The system supports the C Language Development
Utilities Option (see POSIX.2 Annex A).

1

{POSIX2_FORT_DEV} The system supports the FORTRAN Development
Utilities Option (see POSIX.2 Annex C).

Undefined

{POSIX2_FORT_RUN} The system supports the FORTRAN Runtime Utilities
Option (see POSIX.2 Annex C).

Undefined

{POSIX2_LOCALEDEF} The system supports the creation of locales, as
described in POSIX.2 section 4.35.

Undefined

{POSIX2_SW_DEV} The system supports the Software Development
Utilities Option (see POSIX.2 section 6).

1

{POSIX2_UPE} The system supports the User Portability Utilities
Option (see POSIX.2 section 5).

1

2.14 Terminal Characteristics
The POSIX.2 standard states that the implementation shall document which terminal type it supports and
which of these features and utilities are not supported by each terminal. This implementation-defined list
of terminals:

• Shall include at least one terminal type that is capable of supporting all of the standard utilities and all
of their features, if the {POSIX2_CHAR_TERM} option is provided.

• May group terminals in terms of families or equivalences to other documented terminal types.
• Need not consist of an exhaustive list of terminal modes when the implementer considers that some

terminal types are used too infrequently to be listed.

POSIX.2 Section 2

Section 2. Terminology and General Requirements  47



The OpenExtensions implementation supports the TTY terminal type running in canonical mode.

POSIX.2 Section 2

48  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 3. Shell Command Language

3.5 Parameters and Variables

3.5.3 Variables
The POSIX.2 standard states under the variable PS1, "for users who have specific additional
implementation-defined privileges … the default may be another, implementation-defined, value."

If a user's effective user ID has the value of 0, the default value of PS1 changes from "$ " to "# "

3.6 Word Expansions
The POSIX.2 standard states that "if an unquoted $ is followed by a character that is either not numeric,
the name of one of the special parameters (see 3.5.2), a valid first character of a variable name, a left
curly brace ({), or a left parenthesis, the result is unspecified."

The sh utility of OpenExtensions allows arithmetic substitution with the syntax "$[arithmetic
expression]." This sequence is replaced with the value of arithmetic expression. For more information,
see the entry for sh in z/VM: OpenExtensions Commands Reference and the discussion in z/VM:
OpenExtensions User's Guide.

3.7 Redirection
The POSIX.2 standard states that for file descriptors (the decimal numbers [starting with zero] that
represent open files), "it is implementation defined what the largest value can be."

In the OpenExtensions implementation, the largest file descriptor value is 1023.

POSIX.2 Section 3

© Copyright IBM Corp. 1993, 2022 49



POSIX.2 Section 3

50  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 4. Execution Environment Utilities

4.1 awk — Pattern Scanning and Processing Language

4.1.7 Extended Description

4.1.7.6 Actions

4.1.7.6.2 Functions

4.1.7.6.2.3 Input/Output and General Functions

The POSIX.2 standard states that "the limit on the number of open expression arguments [to the close
function] is implementation defined."

In the OpenExtensions implementation, the default value is 64.

4.1.7.8 awk Lexical Conventions
The POSIX.2 standard states (in the \ddd entry of Table 4-2): "If the size of a byte on the system is greater
than nine bits, the valid escape sequence used to represent a byte is implementation defined."

The awk utility of OpenExtensions does not currently support byte sizes that are different from 8 bits.

4.2 basename — Return Nondirectory Portion of Pathname

4.2.2 Description
The POSIX.2 standard states that "if string is //, it is implementation defined whether steps (2) through (5)
are skipped or processed."

The basename utility of OpenExtensions takes no special action when string is //.

4.5 cd — Change Working Directory

4.5.2 Description
The POSIX.2 standard states that "if HOME is empty or is undefined, the default behavior is
implementation defined."

The cd utility of OpenExtensions issues an error message stating that HOME is unset.

4.5.4 Operands
The POSIX.2 standard states that "if directory is –, the results are implementation defined."

The cd utility of OpenExtensions changes directory to the contents of $OLDPWD.

4.7 chmod — Change File Modes

POSIX.2 Section 4

© Copyright IBM Corp. 1993, 2022 51



4.7.2 Description
The POSIX.2 standard states that "it is implementation defined whether and how the chmod utility affects
any alternate or additional file access control mechanism … being used for the specified file."

OpenExtensions defines no alternate or additional file access control mechanisms.

4.7.7 Extended Description
The POSIX.2 standard states that “when using the symbolic mode form on a regular file, it is
implementation defined whether or not:
(1)

Requests to set the set-user-ID-on-execution or set-group-ID-on-execution bit when all execute bits
are currently clear and none are being set are ignored,

(2)
Requests to clear all execute bits also clear the set-user-ID-on-execution and set-group-ID-on-
execution bits, or

(3)
Requests to clear the set-user-ID-on-execution or set-group-ID-on-execution bits when all execute
bits are currently clear are ignored.”

OpenExtensions does not ignore requests [as in (1) and (3)] or clear bits [as in (2)].

The POSIX.2 standard states that "when using the symbolic mode form on other file types [other than
a regular file], it is implementation defined whether or not requests to set or clear the set-user-ID-on-
execution or set-group-ID-on-execution bits are honored."

OpenExtensions does not ignore requests [as in (1) and (3)] or clear bits [as in (2)].

The POSIX.2 standard states that "for each bit set in the octal number, the corresponding file permission
bit … shall be set; all other file permission bits shall be cleared … For other file types [other than regular],
it is implementation defined whether or not requests to set or clear the set-user-ID-on-execution or
set-group-ID-on-execution bits are honored."

OpenExtensions does not ignore the settings of the S_ISUID or S_ISGID bits.

4.13 cp — Copy Files

4.13.2 Description
The POSIX.2 standard states in (2)(c) that for each source_file of type directory, "if dest_file exists and it is
a file type not specified by POSIX.1 {8}, the behavior is implementation defined."

If the destination file type is a symbolic link, and the link points to a directory, then the contents of the
source directory will be copied into the directory pointed to by the symbolic link.

The POSIX.2 standard states in step (4)(a) that "if the -r option was specified, the behavior is
implementation defined."

The cp utility of OpenExtensions defines the behavior of the -r option as being similar to the behavior
of the -R option except when copying special files. The -r option actually tries to read special files,
whereas -R re-creates them. For example, if the -R option is specified, and the source file is of type
FIFO, the destination is another file of type FIFO. If, instead, the -r option is specified, the destination
file will be a regular file, consisting of the contents of the FIFO.

The POSIX.2 standard states in step (4)(b)[2] that with the -R option, if the source_file is not of type FIFO,
"… the permissions, owner ID, and group ID of dest_file are implementation defined."

The cp utility of OpenExtensions sets the dest_file privileges to those of the source_file and the owner
ID and group ID to the current effective user and group IDs.

POSIX.2 Section 4

52  z/VM: 7.3 OpenExtensions POSIX Conformance Document



The POSIX.2 standard states that "if the implementation provides additional or alternate access control
mechanisms … their effect on copies of files is implementation defined."

The cp utility of OpenExtensions defines no alternate or additional file access control mechanisms.

4.13.3 Options
The POSIX.2 standard states that under the -p option "other, implementation-defined bits may be
duplicated as well."

The cp utility of OpenExtensions duplicates all of the bits of st_mode from the stat() function (as
described in POSIX.1 section 5.6.2, "Get File Status"). cp duplicates the "sticky bit". See “Modes and
the Sticky Bit” on page 73.

The POSIX.2 standard states that with the -r option, "the treatment of special files is implementation
defined."

With -r, cp attempts to open the special file, and copy its contents. For example, if the -R option is
specified, and the source file is of type FIFO, the destination is another file of type FIFO. If, instead, the
-r option is specified, the destination file will be a regular file, consisting of the contents of the FIFO.

4.18 dirname — Return Directory Portion of Pathname

4.18.2 Description
The POSIX.2 standard states that "if the remaining string is //, it is implementation defined whether steps
(7) and (8) are skipped or processed."

The dirname utility of OpenExtensions skips steps (7) and (8) when converting a string of // to a file
name; that is, dirname // converts to //.

4.19 echo — Write Arguments to Standard Output

4.19.4 Operands
The POSIX.2 standard states that "if the first operand is "-n" or if any of the operands contain a backslash
(\) character, the results are implementation defined."

• The echo utility of OpenExtensions takes no special action for "-n": the text is echoed directly.
• OpenExtensions supports the historical SVID functionality as an extension to the standard, which

includes the following escape sequences in the echo operands:
• \a

Write an <alert> character.
\b

Write a <backspace> character.
\c

Suppress the <newline> character that otherwise follows the final argument in the output, with
everything after \c in input being ignored.

\f
Write a <form-feed> character.

\n
Write a <newline> character.

\r
Write a <carriage-return> character.

\t
Write a <tab> character.

POSIX.2 Section 4

Section 4. Execution Environment Utilities  53



\v
Write a <vertical-tab> character.

\\
Write a backslash character.

\0num
Write an 8-bit value that is the 1-, 2-, or 3-digit octal number num.

\X
When X is not one of the preceding characters, the echo utility of OpenExtensions simply echoes it.

4.20 ed — Edit Text

4.20.7 Extended Description

4.20.7.3 ed Commands

4.20.7.3.13 List Command
The POSIX.2 standard states that "if the size of a byte on the system is greater than 9 bits, the format
used for nonprintable characters is implementation defined."

The ed utility of OpenExtensions does not currently support byte sizes that are different from 8 bits.

4.24 find — Find Files

4.24.4 Operands
The POSIX.2 standard states that for the -exec operand "if a utility_name or argument string contains the
two characters { }, but not just the two characters { }, it is implementation defined whether find replaces
those two characters with the current path name or uses the string without change."

The find utility of OpenExtensions uses the string without change.

4.33 ln — Link Files

4.33.2 Description
The POSIX.2 standard states that "if the last operand specifies an existing file of a type not specified by
POSIX.1 {8}, the behavior is implementation defined."

If the file type is not specified by POSIX.1 {8}, it is treated as a nondirectory file.

4.33.4 Operands
The POSIX.2 standard states that "whether a directory can be linked is implementation defined."

In the OpenExtensions implementation, directories cannot be linked.

4.34 locale — Get Locale-Specific Information

4.34.3 Options
The POSIX.2 standard states that under the -a option, "the manner in which the implementation
determines what other locales are available is implementation defined."

POSIX.2 Section 4

54  z/VM: 7.3 OpenExtensions POSIX Conformance Document



• locale -a searches the directory /usr/lib/nls/locale for any locale file names to list.

Note: The compiled locales reside in the SCEERUN LOADLIB.

4.34.4 Operands
The POSIX.2 standard states that "it is implementation defined whether any keyword values are written
for the categories LC_CTYPE and LC_COLLATE."

For LC_CTYPE, the locale utility of OpenExtensions displays the full CTYPE character classes and
mapping values. For LC_COLLATE, it does not write any values.

4.35 localedef — Define Locale Environment

4.35.2 Description
The POSIX.2 standard states "it is implementation defined whether users shall have the capability
to create new locales, in addition to those supplied by the implementation. If the symbolic constant
{POSIX2_LOCALEDEF} is defined, the system supports the creation of new locales."

Because OpenExtensions does not define the symbolic constant {POSIX2_LOCALEDEF}, this section is
not applicable.

The POSIX.2 standard states that "in addition [to the categories specified by the POSIX.2 standard] the
input may contain source for implementation-defined categories."

Because OpenExtensions does not define the symbolic constant {POSIX2_LOCALEDEF}, this section is
not applicable.

4.35.3 Options
The POSIX.2 standard states that "if the -f option is not present, an implementation-defined default
charmap file shall be used."

In the OpenExtensions implementation, if -f is not specified, the IBM-1047 charmap is used.

4.35.4 Operands
The POSIX.2 standard states that "if name does not contain any slash characters, the interpretation of the
name is implementation defined and the locale shall be public. This capability may be restricted to users
with appropriate privileges."

Because OpenExtensions does not define the symbolic constant {POSIX2_LOCALEDEF}, this section is
not applicable.

4.35.9 Consequences of Errors
The POSIX.2 standard states that "other implementation-defined conditions can also cause warnings."

Because OpenExtensions does not define the symbolic constant {POSIX2_LOCALEDEF}, this section is
not applicable.

4.36 logger — Log Messages

4.36.2 Description
The POSIX.2 standard states, "it is implementation defined whether messages written in locales other
than the POSIX Locale are effective."

POSIX.2 Section 4

Section 4. Execution Environment Utilities  55



Messages in logger are just treated as a sequence of bytes. If the output destination is stderr
(for example, if the -s option is specified by the user), no attempt is made to do any type of code
conversion, and the sequence of bytes are written unmodified.
Timestamps are always in the POSIX locale.

4.39 ls — List Directory Contents

4.39.3 Options
The POSIX.2 standard states that "entries beginning with a period (.) shall not be listed unless explicitly
referenced, the -a option is supplied, or an implementation-defined condition causes them to be listed."

The ls utility of OpenExtensions includes an -f option, which also lists entries beginning with a period
(.).

4.39.5 External Influences

4.39.5.3 Environment Variables
The POSIX.2 standard states that "if COLUMNS is not set or invalid, an implementation-defined number
of column positions shall be assumed, based on the implementation's knowledge of the output device."

The ls utility of OpenExtensions obtains the numbers of columns as described in “Window Size” on
page 73.

4.39.6 External Effects

4.39.6.1 Standard Output
The POSIX.2 standard states that "if the output is to a terminal, the format is implementation defined."

The ls utility of OpenExtensions uses a multicolumn format, as if the user specified -C.

The POSIX.2 standard states that "if the file is a character special or block special file, the size of the file
may be replaced with implementation-defined information associated with the device in question."

The ls utility of OpenExtensions replaces the file size with major and minor device numbers of the file
and displays them with the format "%u, %u".

The POSIX.2 standard states that "implementations may add other characters to this list [of entry type
characters] to represent other, implementation-defined, file types."

The ls utility of OpenExtensions also recognizes the entry types of x for "none of the above," l for
"symbolic links," E for "external links", and s for "socket files".

The POSIX.2 standard states that "implementations may add other characters to this list [of owner, group,
and other permissions] for the third character position."

The ls utility of OpenExtensions uses T and t to designate the "sticky bit" if it is set in the mode
returned by stat(). See “Modes and the Sticky Bit” on page 73.

4.40 mailx — Process Messages

4.40.4 Operands
The POSIX.2 standard states that "an implementation-defined way for a user with a login-name address
to retrieve the message shall be provided by the implementation."

POSIX.2 Section 4

56  z/VM: 7.3 OpenExtensions POSIX Conformance Document



The mail retrieval capabilities in the mailx utility of OpenExtensions are as described in that standard,
section 4.41, "mailx Interactive Message Processing System." For details, see the entry on mailx in
z/VM: OpenExtensions Commands Reference.

4.40.6 External Effects

4.40.6.3 Output Files
The POSIX.2 standard states that "when a message from the system mailbox or entered by the user is not
a text file, it is implementation defined how such a message is stored in files written by mailx."

The mailx utility of OpenExtensions does not directly support binary file transfer.

4.40.7 Extended Description

4.40.7.1 Internal Variables
The POSIX.2 standard states that if the crt variable "is set to null, the value used is implementation
defined."

If the crt variable is set to null, the mailx utility of OpenExtensions treats it the same as a setting of 0:
It pipes all messages through PAGER.

4.40.7.3 Command Escapes
The POSIX.2 standard states that, on terminals, the ~h command escape prompts for a Subject line and
the To, Cc, and Bcc lists and that "other implementation-defined headers may be presented for editing."

The mailx utility of OpenExtensions presents no additional headers for editing.

4.43 mv — Move Files

4.43.2 Description
The POSIX.2 standard states that "if any operand specifies an existing file of a type not specified by
POSIX.1 {8}, the behavior is implementation defined."

If the source file is of type directory, and the destination file type is not specified by POSIX.1, an error
is given.
The OpenExtensions implementation supports the symbolic-link file type. The behavior of mv is to refer
to the symbolic link file itself when validating the existence of the source file arguments and to refer to
the file to which the symbolic link points when validating and referring to the target argument.

4.45 od — Dump Files in Various Formats

4.45.7 Extended Description
The POSIX.2 standard states that "the default number of bytes transformed by output type specifiers d,
f, o, u, and x shall correspond to the various C-language types as follows. If the c89 compiler is present
on the system, these specifiers shall correspond to the sizes used by default in that compiler. Otherwise,
these sizes are implementation defined." The POSIX.2 standard expands on this with the explanation that
"for the type specifier characters d, o, u, and x, the default number of bytes shall correspond to the size
of the underlying implementation's basic integral data type," and "for the type specifier character f, the
default number of bytes shall correspond to the number of bytes in the underlying implementation's basic
double precision floating point data type."

POSIX.2 Section 4

Section 4. Execution Environment Utilities  57



• As specified by the POSIX.2 standard, the od utility of OpenExtensions bases the default number of
bytes transformed by the specifiers d, o, u, and x on the C-language type int. It also supports char,
short, and long types.

For the "c89 compiler," the number of bytes corresponding to the these C-language types are as follows:

– char: 1 byte
– short: 2 bytes
– int: 4 bytes
– long: 4 bytes

The od utility of OpenExtensions bases the number of bytes that the f specifier transforms on the
C-language type double. It also supports float and long double types for the number of bytes in this
identifier.

For the "c89 compiler," the number of bytes corresponding to the various C-language types are as
follows:

– float: 4 bytes
– double: 8 bytes
– long double: 16 bytes

The POSIX.2 standard states that "for these specifier characters [d, o, u, and x], the implementation shall
support values of the optional number of bytes to be converted corresponding to the number of bytes in
the C-language types char, short, int, and long. The byte order used when interpreting numeric values is
implementation defined, but shall correspond to the order in which a constant of the corresponding type
is stored in memory on the system."

OpenExtensions treats the first byte as the most significant byte, the second byte as the next most
significant, and so on.

The POSIX.2 standard states that "if the size of a byte on the system is greater than 9 bits, the format
used for nonprintable characters is implementation defined."

The od utility of OpenExtensions uses a byte size of 8 bits, so this is not relevant.

The POSIX.2 standard states that "when either the -j skip or -N count option is specified along with the
c type specifier, and this results in an attempt to start or finish in the middle of a multibyte character, the
result is implementation defined."

If the -j option is used and depending if the starting byte is not the first byte of a character, the
od utility of OpenExtensions will result in a misinterpretation of that and subsequent characters.
This misinterpretation will continue until od encounters a <newline>, at which point it is once again
synchronized with the first byte of a multibyte character.
If od -N is being used to process a mulitbyte character when it encounters the last byte, which is not
the last byte of a character, od displays ??? rather than this character.

4.48 pax — Portable Archive Interchange

4.48.2 Description
The POSIX.2 standard states that "if the destination directory is a file of a type not defined by POSIX.1 {8},
the results are implementation defined."

In this situation, the pax utility of OpenExtensions issues a diagnostic message.

The POSIX.2 standard states that "the default output archive format shall be implementation defined."

The pax utility of OpenExtensions uses the extended tar format, as described in POSIX.1 section
10.1.1, "Extended tar Format."

POSIX.2 Section 4

58  z/VM: 7.3 OpenExtensions POSIX Conformance Document



The POSIX.2 standard states that "the pax utility shall determine, in an implementation-defined manner,
what file to read or write as the next file."

• Upon encountering one of the following:

– End-of-file condition
– Error on reading file
– Error on writing file
– Partial write on writing file

the pax utility of OpenExtensions either uses the file pattern given as an argument to the -V option and
waits for the user to press the <Enter> key after exchanging media; or it prompts the user for a new
device name.

4.48.3 Options
The POSIX.2 standard states that with the -a option, "it is implementation defined which devices on the
system support appending."

The pax utility of OpenExtensions supports append on all regular files.

The POSIX.2 standard states that for the -p option, "the string shall consist of the specification characters
a, e, m, o, and p and/or other, implementation-defined characters."

The pax utility of OpenExtensions supports no additional characters.

The POSIX.2 standard states that under the -p option, the specification character e shall "preserve
the user ID, group ID, file mode bits ... access time, modification time, and any other, implementation-
defined, file characteristics."

The pax utility of OpenExtensions supports no additional file characteristics.

The POSIX.2 standard states that under the -p option, the specification character p shall "preserve the
file mode bits. Other, implementation-defined file-mode attributes may be preserved."

The pax utility of OpenExtensions also preserves the "sticky bit". See “Modes and the Sticky Bit” on
page 73.

The POSIX.2 standard states that under the -x option, "implementation-defined formats shall specify a
default block size as well as any other block sizes supported for character special archive files."

The pax utility of OpenExtensions supports two implementation-defined formats: tar format and
cpiob format. The default block sizes for the tar and cpiob formats are the same as for ustar and
cpio formats, respectively.

4.48.5 External Influences

4.48.5.2 Input Files
The POSIX.2 standard states that "the input file ... shall be a file formatted according to one of the
specifications in POSIX.1 {8} 10.1, or some other, implementation-defined, format."

The pax utility of OpenExtensions supports both of the file formats specified in POSIX.1 (that is,
extended tar format and extended cpio format). In addition, it supports a binary format cpio (select
-x cpiob option), a tar format (select -x tar option), and compressed versions of both formats
(select -z option in addition to -x). Compressed format files are identical to files upon which the
compress utility has been used.

4.48.6 External Effects

POSIX.2 Section 4

Section 4. Execution Environment Utilities  59



4.48.6.1 Standard Output
The POSIX.2 standard states that "if the -w option is specified and neither the -f nor the -r options
are specified, the standard output shall be the archive formatted according to one of the specifications in
POSIX.1 {8} 10.1, or some other implementation-defined format."

The pax utility of OpenExtensions uses the extended tar format in this case.

4.48.6.3 Output Files
The POSIX.2 standard states that "if the -w option is specified, and neither the -f nor -r are specified,
the standard output shall be the archive formatted according to one of the specifications in POSIX.1 {8}
10.1, or some other implementation-defined format."

The pax utility of OpenExtensions uses the extended tar format in this case.

4.55 sed — Stream Editor

4.55.7 Extended Description

4.55.7.3 Editing Commands
The POSIX.2 standard states that under the l command, "if the size of a byte on the system is greater
than 9 bits, the format used for nonprintable characters is implementation defined."

The sed utility of OpenExtensions uses a byte size of 8 bits, so this is not relevant.

4.56 sh — Shell, the Standard Command Language Interpreter
The POSIX.2 standard states that under the variable PS1, "for users who have specific additional
implementation-defined privileges (see 2.2.2.8), the default may be another implementation-defined,
value."

If a user's effective user ID has the value zero (0), then the default value of PS1 changes from "$ " to
"# ".

4.59 stty — Set the Options for a Terminal

4.59.2 Description
The POSIX.2 standard states that "without options or operands specified, it shall report the settings of
certain characteristics, usually those that differ from implementation-defined defaults."

Refer to “7.1.2 Parameters That Can Be Set” on page 28 in the POSIX.1 part of this document for the
modes that are on by default.

4.59.4 Operands

4.59.4.6 Combination Modes
The POSIX.2 standard states under the definition of the sane mode: "Reset all modes to some reasonable,
unspecified, values."

The following modes are those that are set on reset: opost, isig, echo, echok and echoe.
For special control characters that can be set or reset, see Table 10 on page 29.

POSIX.2 Section 4

60  z/VM: 7.3 OpenExtensions POSIX Conformance Document



4.62 test — Evaluate Expression

4.62.4 Operands
• The test utility of OpenExtensions provides the following additional primaries:
-a

True if both expression1 and expression2 are true.
-o

True if either expression1 and expression2 is true.
( )

Parentheses allow primaries to be grouped as single expressions, for use with the -a and -o
primaries.

-k
True if the "sticky bit" is on (see “Modes and the Sticky Bit” on page 73).

-nt
True if file1 is newer than file2.

-ot
True if file1 is older than file2.

-ef
True if file1 has the same device and inode as file2; that is, they are the same file.

-L
True if file is a symbolic link.

-h
True if file is a hard link.

See z/VM: OpenExtensions Commands Reference for details.

OpenExtensions test provides no additional operators.

4.63 touch — Change File Access and Modification Times

4.63.3 Options
The POSIX.2 standard states that "the range of valid times past the Epoch is implementation defined."

In the OpenExtensions implementation, this item depends on the size of a time_t structure, which is 4
bytes.

4.64 tr — Translate Characters

4.64.7 Extended Description
The POSIX.2 standard states that when using the \octal convention to specify characters or collating
elements, "if the size of a byte on a system is greater than 9 bits, the valid escape sequence used to
represent a byte is implementation defined."

The tr utility of OpenExtensions uses a byte size of 8 bits, so this is not relevant.

4.68 uname — Return System Name

POSIX.2 Section 4

Section 4. Execution Environment Utilities  61



4.68.2 Description
The POSIX.2 standard states that "when options are specified, symbols representing one or more system
characteristics shall be written to the standard output. The format and contents of the symbols are
implementation defined."

The uname utility of OpenExtensions supports the five fields described in the POSIX.1 standard,
section 4.4.1.2, "Description" [of uname()], and displays the requested fields in the order in which the
POSIX.1 standard describes them. For more information, refer to “4.4.1 Get System Name” on page 15
in the POSIX.1 part of this document.

4.68.6 External Effects

4.68.6.1 Standard Output
The POSIX.2 standard states that "additional implementation-defined symbols may be written."

The uname utility of OpenExtensions writes no additional symbols.

POSIX.2 Section 4

62  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 5. User Portability Utilities Option

5.12 fc — Process Command History List

5.12.2 Description
The POSIX.2 standard states that "when the number reaches an implementation-defined upper limit,
which shall be no smaller than the value in HISTSIZE or 32␠767 (whichever is greater), the shell may
wrap the numbers starting the next command with a lower number (usually 1)."

The upper limit is the maximum positive value of an integer, which is 2␠147␠483␠647.

5.12.5 External Influences

5.12.5.3 Environment Variables
The POSIX.2 standard states that, regarding the HISTFILE variable, "an implementation may choose to
access this variable only when initializing the history file; this initialization shall occur when fc or sh first
attempts to retrieve entries from, or add entries to, the file, as the result of commands issued by the
user, the file named by the ENV variable, or implementation-defined system startup files. Therefore, it is
implementation defined whether changes made to HISTFILE after the history file has been initialized are
effective."

The HISTFILE environment variable is examined only when the history file is opened for the first time.

The POSIX.2 standard states that "implementations may choose to disable the history list mechanism for
users with appropriate privileges who do not set HISTFILE; the specific circumstances under which this
will occur are implementation defined."

There are no circumstances under which OpenExtensions disables the history list mechanisms.

The POSIX.2 standard states that, regarding the HISTSIZE variable, "an implementation may choose to
access this variable only when initializing the history file, as described under HISTFILE. Therefore, it is
implementation defined whether changes made to HISTSIZE after the history file has been initialized are
effective."

The HISTSIZE environment variable is examined only when the history file is opened for the first time.

5.19 newgrp — Change to a New Group
The POSIX.2 standard states that, On systems where the supplementary group list also contains the new
effective group ID, or where the previous effective group ID was actually in the supplementary group list:

• If the supplementary group list also contains the new effective group ID, newgrp changes the effective
group ID.

• If the supplementary group list does not contain the new effective group ID, newgrp adds it to the list (if
there is room).

The newgrp utility of OpenExtensions implements this behavior.

5.23 ps — Report Process Status

POSIX.2 Section 5

© Copyright IBM Corp. 1993, 2022 63



5.23.2 Description
The POSIX.2 standard states that "when the -o option is not specified, information about processes
selected shall be written in an implementation-defined manner."

• In the OpenExtensions implementation, the default formats are:

For ps:   PID   TTY   TIME  COMMAND

For ps -f:   UID   PID   PPID   STIME  TTY   TIME  COMMAND

For ps -j:   PID   SID   PGRP   TTY    TIME  COMMAND

For ps -l:   STATE UID   PID    PPID   NI SZ TTY TIME COMMAND

5.23.3 Options
The POSIX.2 standard states that with the -t option, "terminal identifiers shall be given in an
implementation-defined format."

The format implemented by OpenExtensions uses the terminal (tty) device name—for example /dev/
tty. This is the same format returned by the tty command. Using the tty name without /dev/ is also
acceptable.

5.23.6 External Effects

5.23.6.1 Standard Output
The POSIX.2 standard states that "when the -o option is not specified, the standard output format is
implementation defined."

See section “5.23.2 Description” on page 64.

The POSIX.2 standard states that the args format specifier may have its value truncated "to the field
width; it is implementation defined whether any further truncation occurs."

The ps utility of OpenExtensions truncates the value of the args format specifier at 40 bytes.

The POSIX.2 standard states that "any implementation-defined variables shall specify in the conformance
document if the field may contain <blank>s, as well as for the default header."

In the ps utility of OpenExtensions, no implementation-defined variable allows its field or its default
header to contain blanks.

POSIX.2 Section 5

64  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Section 6. Software Development Utilities Option

6.2 make — Maintain, Update, and Regenerate Groups of Programs

6.2.7. Extended Description

6.2.7.1 Makefile Syntax
The POSIX.2 standard states that "if neither ./makefile nor ./Makefile are found, other implementation-
defined path names may also be tried."

The make utility of OpenExtensions permits you to specify alternative path names with
the .MAKEFILES target.

6.2.7.2 Makefile Execution
The POSIX.2 standard states that "the macros from the command line to make shall be added to make's
environment. Other implementation-defined variables may also be added to the environment."

• The make utility of OpenExtensions adds the following variables to the environment:

.EPILOG MAKEFLAGS

.IGNORE MAKESTARTUP

.PRECIOUS MFLAGS

.PROLOG NULL

.SETDIR OS

.SILENT OSRELEASE

DIRSEPSTR OSVERSION

GROUPFLAGS PWD

GROUPSHELL SHELL

GROUPSUFFIX SHELLMETAS

INCDEPTH SHELLFLAGS

MAKECMD SWITCHAR

MAKEDIR

The POSIX.2 standard states that "if the MAKEFLAGS variable is not set ... it shall be created by make,
and shall contain all options specified on the command line except for the -f and -p options. It may also
contain implementation-defined options."

In the make utility of OpenExtensions, MAKEFLAGS can also contain the -E, -e, -V, -v, and -x
options.

6.2.7.3 Target Rules
The POSIX.2 standard states that "the interpretation of targets containing the characters "%" and " is
implementation defined."

The make utility of OpenExtensions treats targets containing "%" as metarules (rules for defining
rules) unless the user specifies the .POSIX special target, in which case, it ignores metarules.

POSIX.2 Section 6

© Copyright IBM Corp. 1993, 2022 65



OpenExtensions make uses the " character in pairs for quoting, that is, it treats special characters
contained within a " pair as though they had no special meaning.

6.2.7.4 Macros
The POSIX.2 standard states that "other effects of defining SHELL in the makefile or on the command line
are implementation defined."

If the user specifies the .POSIX special target, SHELL has no special effect. If the user does not
specify .POSIX and defines SHELL as a macro in the makefile, make uses the shell specified by SHELL
but does not change the value of the SHELL environment variable in the environment passed to child
processes unless the user specified the -x option. If the user does not specify .POSIX and includes
SHELL=shell_path on the command line, make uses shell_path as its shell and also assigns it as the
value of the SHELL environment variable in the environment passed to child processes.

POSIX.2 Section 6

66  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Annex A. C Language Development Utilities Option

A.1 c89 — Compile Standard C Programs

A.1.2 Description
The POSIX.2 standard states that "it is unspecified whether the linking occurs entirely within the
operation of c89; some systems may produce objects that are not fully resolved until the file is executed."

Objects are fully resolved by c89. However, instructions providing dynamic linkage to library functions
are bound to the objects, rather than to the actual library functions.

The POSIX.2 standard states that "if the -c option is not specified, it is unspecified whether such .o files
are created or deleted for the file.o operands."

file.o files are always created. They are deleted only if the corresponding compilation fails (even if only
one file.c operand is specified).

A.1.3 Options
The POSIX.2 standard states that for the -g option "the nature of this information is unspecified, and may
be modified by implementation-defined interactions with other options."

Symbolic information produced by the -g option is equivalent to the information produced by the C
compiler options TEST(ALL) and GONUMBER.
The symbolic information produced by the -g option is not affected by any other option. However, if
the -E option is specified, -g is ignored. Also, when both the -g and -s options are specified, the one
specified last is honored.

The POSIX.2 standard states that for the -s option, "when both the -g and -s options are present, the
action taken is unspecified."

When both the -g and -s options are specified, the one specified last is honored.

The POSIX.2 standard states that for the -o option, "if the -o option is present with -c or -E, the result is
unspecified."

If the -c or -E option is also specified, validation of the form of the -o option-argument is still
performed, but the output file is not otherwise used.

The POSIX.2 standard states that for the -D option, "additional implementation-defined names may be
provided by the compiler."

• The following macros are automatically specified, but may be overridden by -D or -U options specifying
the same names.

errno=(*__errno())
_OPEN_DEFAULT
_OPEN_VM

The POSIX.2 standard states that for the -L option, "if a directory specified by a -L option contains files
named libc.a, libm.a, libl.a, or liby.a, the results are unspecified."

The operand values -l c, -l m, -l l, and -l y will be recognized and used when searching -L option
directories. However, the usual places (which are represented as CMS native record files rather than
regular files) will still be used for any symbols left unresolved. Usurped library functions will never
affect the behavior of other library functions (you cannot expect that one library function will use
another library function).

POSIX.2 Annex A

© Copyright IBM Corp. 1993, 2022 67



The POSIX.2 standard states that for the -O option, "the nature of optimization is unspecified."

The c89 defaults for optimization are the C compiler options OPTIMIZE(0) and
NOINLINE(AUTO,REPORT,250,1000).
The c89 -O option results in C compiler options OPTIMIZE(1) and
INLINE(NOAUTO,NOREPORT,250,1000).
The C OPTIMIZE option is always set according to the corresponding c89 option. The C INLINE option
may be overridden using the c89 -W option.
The optimization techniques used are fully described in the chapter on optimization in
z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

A.1.4 Operands
The POSIX.2 standard states that for the file.a operand, "implementations may recognize
implementation-defined suffixes other than .a as denoting object file libraries."

By default, no file suffixes other than .a are recognized as object file libraries; however, you can
override the default by exporting an environment variable recognized by c89.

The POSIX.2 standard states that for the file.o operand, "implementations may recognize
implementation-defined suffixes other than .o as denoting object files."

By default, no file suffixes other than .o are recognized as object files, but CMS native record files can
be specified.

The POSIX.2 standard states that for path name operands, "the processing of other files is
implementation defined."

By default, no file operand suffixes other than those stated in the POSIX.2 standard are recognized. As
previously stated, CMS native record files are also recognized; they are specified with a leading double
slash (//).

The POSIX.2 standard states that for the -l library operand (the letter ell), "implementations may
recognize implementation-defined suffixes other than .a as denoting libraries."

By default, no file suffixes other than .a are recognized as libraries; however, CMS record files can be
specified and must be C Object Libraries that are CMS TXTLIBs.

A.1.5 External Influences

A.1.5.2 Input Files
The POSIX.2 standard states that for input files, "implementations may supply additional utilities that
produce files in these formats. Additional input file formats are implementation defined."

The user creates C source (text) files (using an editor).
The c89 command produces object files.
The ar command produces archive files (also called archive libraries).
The C370LIB utility produces C Object Libraries.
The CMS TXTLIB command creates TXTLIBs.
No additional utilities or input file formats are defined.

A.1.6 External Effects

POSIX.2 Annex A

68  z/VM: 7.3 OpenExtensions POSIX Conformance Document

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf


A.1.6.1 Standard Output
The POSIX.2 standard states that for standard output, if more than one file operand ending in .c (or
possibly other unspecified suffixes) is given, for each such file:

"%s:\n",<file>

may be written.

By default, no file suffixes other than .c are recognized; however, CMS record files can be specified.

The POSIX.2 standard states that for standard output messages, "these messages, if written, shall
precede the processing of each input file; they shall not be written to the standard output if they are
written to the standard error, as described in A.1.6.2."

c89 writes a message to stderr preceding the compilation of each file, when more than one file is
being compiled.

A.1.6.2 Standard Error
The POSIX.2 standard states that for standard error, if more than one file operand ending in .c (or possibly
other unspecified suffixes) is given, for each such file:

"%s:\n",<file>

may be written to allow identification of the diagnostic and warning messages with the appropriate input
file.

By default, no file suffixes other than .c are recognized; however, CMS record files can be specified.

The POSIX.2 standard states that for standard error messages, "these messages, if written, shall precede
the processing of each input file; they shall not be written to the standard error if they are written to the
standard output, as described in A.1.6.1."

c89 writes a message to stderr preceding the compilation of each file, when more than one file is
being compiled.

The POSIX.2 standard states that for standard error, "this utility may produce warning messages about
certain conditions that do not warrant returning an error (nonzero) exit value."

c89 allows for a return code of greater than zero (0) from the compiler and prelinker. The maximum
result allowed is four (4), which corresponds to a warning message. A result of zero (0) may also
produce informational messages.

A.1.6.3 Output Files
The POSIX.2 standard states that for output files, "object files or executable files or both are produced in
unspecified formats."

Object files are produced according to the rules of the C compiler. For more information, see
z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).
Executable files are produced according to the rules of the CMS module generation process. For more
information, see z/VM: CMS Commands and Utilities Reference.

A.1.7 Extended Description

A.1.7.1 Standard Libraries
The POSIX.2 standard states that for the C functions standard library operand, -l c "if the status {of
getconf} is nonzero, it is unspecified whether these functions are available."

getconf _POSIX_VERSION returns a zero status: All POSIX.1 functions are available.

POSIX.2 Annex A

Annex A. C Language Development Utilities Option  69

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf


getconf _POSIX2_C_BIND returns a nonzero status: Not all POSIX.2 C Language Bindings
(functions) are available.

The POSIX.2 standard states that for the math functions standard library operand -l m, "an
implementation may search this library in the absence of this operand."

The library containing the math functions is always searched, even if not specified.

The POSIX.2 standard states that for standard libraries, "it is unspecified whether the libraries libc.a,
libm.a, libl.a, and liby.a exist as regular files."

All the standard libraries specified exist as regular files. However, libc.a and libm.a are empty and
CMS record files are used to resolve those library functions.

The POSIX.2 standard states that for the library operand, "the implementation may accept as -l
operands names of objects that do not exist as regular files."

c89 accepts as -l operands only the names of libraries that exist as a regular files.

A.1.7.2 External Symbols
The POSIX.2 standard states that for external symbol support, "the C compiler and link editor shall
support the significance of external symbols up to a length of at least 31 bytes; the action taken upon
encountering symbols exceeding the implementation-defined maximum symbol length is unspecified."

The C compiler determines how any external symbols exceeding the implementation maximum are
handled. The maximum supported value is 255 characters. A duplicate symbol error results if there is
a collision beyond the implementation maximum, and a nonzero exit value results.

The POSIX.2 standard states that for external symbol support, "the compiler and link editor shall support
a minimum of 511 external symbols per source or object file, and a minimum of 4095 external symbols
total. A diagnostic message shall be written to the standard output if the implementation-defined limit is
exceeded; other actions are unspecified."

The c89 command supports a maximum of at least 65␠535 symbols, both for each source or object
file, and also for the total number of symbols of an executable file. The actual limit is dependent on
the amount of storage available to the compiler and linkage editor (prelinker and CMS module build
process), and so may be less. If the limit is exceeded, an appropriate error message is written to the
standard error, and a nonzero exit value results.

A.2 lex — Generate Programs for Lexical Tasks

A.2.6 External Effects

A.2.6.1 Standard Output
The POSIX.2 standard states that if the -t option is not specified:

• "Implementation-defined information, error, and warning messages concerning the contents of lex
source code input shall be written to either the standard output or standard error."

The lex utility of OpenExtensions writes all information, error, and warning messages to the standard
error.

• "If the -v option is specified and the -n option is not specified, lex statistics shall also be written to
either the standard output or standard error, in an implementation-defined format."

OpenExtensions writes lex statistics to the standard error.

POSIX.2 Annex A

70  z/VM: 7.3 OpenExtensions POSIX Conformance Document



A.2.6.2 Standard Error
The POSIX.2 standard states that "if the -t option is specified, implementation-defined informational,
error, and warning messages concerning the contents of lex source code input shall be written to the
standard error."

The lex utility of OpenExtensions writes all information, error, and warning messages to the standard
error.

The POSIX.2 standard states that if the -t option is not specified:

• "Implementation-defined information, error, and warning messages concerning the contents of lex
source code input shall be written to either the standard output or standard error."

The lex utility of OpenExtensions writes all information, error, and warning messages to the standard
error.

• "If the -v option is specified and the -n option is not specified, lex statistics shall also be written to
either the standard output or standard error, in an implementation-defined format."

OpenExtensions writes the lex statistics to the standard error.

A.2.7 Extended Description
The POSIX.2 standard states that "as explained in A.2.7.1, the type can be explicitly selected using the
%array or %pointer declarations, but the default is implementation defined."

By default, the lex utility of OpenExtensions behaves as if the user had explicitly selected the %array
declaration.

A.2.7.1 Definitions
The POSIX.2 standard states that "the default type of yytext is implementation defined."

In the lex utility of OpenExtensions the default type of yytext is char[].

The POSIX.2 standard states that (for Table A-1 — lex Table Size Declarations in the standard) "the exact
meaning of these table size numbers is implementation defined. The implementation shall document how
these numbers affect the lex utility and how they are related to any output that may be generated by the
implementation should space limitations be encountered during the execution of lex."

• Only three of the table size numbers represent actual fixed limits (%e, %n, %p). Only the amount of
system memory limits the rest (%a, %k, %o). Depending on the system configuration and the available
resources, limits may affect what input lex can successfully compile.

If OpenExtensions encounters space limitations, it can use the lex statistics (which show the number
of elements used and the maximum size of the table for each of %e, %n and %p) to identify the table
that has reached its maximum size (for example, the number of elements equals the maximum size of
the table in the statistics). For more details, see the entry for lex in z/VM: OpenExtensions Commands
Reference.

A.2.7.4 Regular Expressions
The POSIX.2 standard states that for the escape sequence digits, "if the size of a byte on the system is
greater than 9 bits, the valid escape sequence used to represent a byte is implementation-defined."

The lex utility of OpenExtensions uses a byte size of 8 bits, so this is not relevant.

A.3 yacc — Yet Another Compiler Compiler

A.3.6 External Effects

POSIX.2 Annex A

Annex A. C Language Development Utilities Option  71



A.3.6.3 Output Files

A.3.6.3.3 Description File
The POSIX.2 standard states that "limits for internal tables (see A.3.7.9) also shall be reported, in an
implementation-defined manner."

The only limitation on table sizes in the yacc utility of OpenExtensions is system memory (see section
A.3.7.9 in this document). The -v option reports memory usage in the statistics file y.output.

A.3.7 Extended Description

A.3.7.9 Limits
The POSIX.2 standard states that (for Table A-3 — yacc Internal Limits) "the exact meaning of these
[minimum maximum] values is implementation defined. The implementation shall define the relationship
between these values and between them and any error messages that the implementation may generate
should it run out of space for any internal structure."

In OpenExtensions, all the internal tables for yacc are dynamically allocated. The only limitation is the
system memory; if that is exceeded, the message "Out of memory at <size> bytes" is produced. For
more information, see z/VM: OpenExtensions Advanced Application Programming Tools.

POSIX.2 Annex A

72  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Global Issues

The following topics discuss certain global issues, to which entries on specific implementation-defined
features can point.

Window Size
To accommodate a wide range of architectures and implementations, OpenExtensions uses an extension
to the POSIX.1 interface to get the system's notion of the number of lines and columns in the current
"window."

OpenExtensions obtains the number of lines and columns from the environment variables LINES and
COLUMNS. If these variables are not set, OpenExtensions uses a "window" size of 24 lines by 80
columns.

Modes and the Sticky Bit
Historically, UNIX® systems have supported a variable S_ISVTX, which designated the presence or
absence of the so-called "sticky bit". When the “sticky bit” is turned on, the system keeps a process
in swap space. However, OpenExtensions does not support this function of the "sticky bit".

Global Issues

© Copyright IBM Corp. 1993, 2022 73



Global Issues

74  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY  10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1993, 2022 75



Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe is either a registered trademark or a trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

76  z/VM: 7.3 OpenExtensions POSIX Conformance Document

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml


Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices  77

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies


78  z/VM: 7.3 OpenExtensions POSIX Conformance Document



Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1993, 2022 79

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm


• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

80  z/VM: 7.3 OpenExtensions POSIX Conformance Document



• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography  81

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm


• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

82  z/VM: 7.3 OpenExtensions POSIX Conformance Document

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf


XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Additional Publications
XL C/C++ for z/VM: User's Guide, SC09-7625
, SC09-4765

Bibliography  83



84  z/VM: 7.3 OpenExtensions POSIX Conformance Document





IBM®

Product Number: 5741-A09

Printed in USA

GC24-6298-73


	Contents
	Tables
	About This Document
	Intended Audience
	Conventions Used in This Document
	Where to Find More Information
	Links to Other Documents and Websites


	How to Send Your Comments to IBM
	Summary of Changes for z/VM: OpenExtensions POSIX Conformance Document
	GC24-6298-73, z/VM 7.3 (September 2022)
	GC24-6298-01, z/VM 7.2 (September 2020)
	GC24-6298-00, z/VM 7.1 (September 2018)

	Part 1. POSIX.1 Conformance Document
	Section 1. General
	1.3 Conformance
	1.3.1 Implementation Conformance
	1.3.1.1 Requirements
	1.3.1.2 Documentation

	1.3.3 Language-Dependent Services for the C Programming Language
	1.3.3.2 C Standard Language-Dependent System Support



	Section 2. Terminology and General Requirements
	2.2 Definitions
	2.2.2 General Terms
	2.2.2.4 appropriate privileges
	2.2.2.9 character special file
	2.2.2.27 file
	2.2.2.46 login
	2.2.2.55 parent process ID
	2.2.2.57 pathname
	2.2.2.69 read-only file system
	2.2.2.83 supplementary group ID


	2.3 General Concepts
	2.3.1 extended security controls
	2.3.2 file access permissions

	2.4 Error Numbers
	2.5 Primitive System Data Types
	2.6 Environment Description
	2.8 Numerical Limits
	2.8.3 Run-Time Increasable Values
	2.8.4 Run-Time Invariant Values
	2.8.5 Pathname Variable Values

	2.9 Symbolic Constants
	2.9.3 Compile-Time Symbolic Constants for Portability Specifications
	2.9.4 Execution-Time Constants for Portability Specifications


	Section 3. Process Primitives
	3.1 Process Creation and Execution
	3.1.1 Process Creation
	3.1.1.2 Description
	3.1.1.4 Errors
	3.1.1.5 Cross-References

	3.1.2 Execute a File
	3.1.2.2 Description
	3.1.2.4 Errors


	3.2 Process Termination
	3.2.1 Wait for Process Termination
	3.2.1.2 Description

	3.2.2 Terminate a Process
	3.2.2.2 Description


	3.3 Signals
	3.3.1 Signal Concepts
	3.3.1.1 Signal Names
	3.3.1.2 Signal Generation and Delivery

	3.3.2 Send a Signal to a Process
	3.3.2.2 Description

	3.3.3 Manipulate Signal Sets
	3.3.3.4 Errors

	3.3.4 Examine and Change Signal Action
	3.3.4.2 Description

	3.3.6 Examine Pending Signals
	3.3.6.4 Errors


	3.4 Timer Operations
	3.4.3 Delay Process Execution
	3.4.3.2 Description



	Section 4. Process Environment
	4.2 User Identification
	4.2.3 Get Supplementary Group IDs
	4.2.3.4 Errors

	4.2.4 Get User Name
	4.2.4.3 Returns
	4.2.4.4 Errors


	4.4 System Identification
	4.4.1 Get System Name
	4.4.1.2 Description


	4.6 Environment Variables
	4.6.1 Environment Access
	4.6.1.4 Errors


	4.7 Terminal Identification
	4.7.1 Generate Terminal Pathname
	4.7.1.4 Errors

	4.7.2 Determine Terminal Device Name
	4.7.2.4 Errors


	4.8 Configurable System Variables
	4.8.1 Get Configurable System Variables
	4.8.1.2 Description
	4.8.1.5 Special Symbol {CLK_TCK}



	Section 5. Files and Directories
	5.1 Directories
	5.1.2 Directory Operations
	5.1.2.2 Description
	5.1.2.4 Errors


	5.2 Working Directory
	5.2.2 Get Working Directory Pathname
	5.2.2.2 Description
	5.2.2.3 Returns
	5.2.2.4 Errors


	5.3 General File Creation
	5.3.1 Open a File
	5.3.1.2 Description

	5.3.3 Set File Creation Mask
	5.3.3.2 Description
	5.3.3.3 Returns

	5.3.4 Link to a File
	5.3.4.2 Description


	5.4 Special File Creation
	5.4.1 Make a Directory
	5.4.1.2 Description

	5.4.2 Make a FIFO Special File
	5.4.2.2 Description


	5.5 File Removal
	5.5.1 Remove Directory Entries
	5.5.1.2 Description

	5.5.2 Remove a Directory
	5.5.2.2 Description
	5.5.2.4 Errors

	5.5.3 Rename a File
	5.5.3.2 Description
	5.5.3.4 Errors


	5.6 File Characteristics
	5.6.2 Get File Status
	5.6.2.2 Description

	5.6.3 Check File Accessibility
	5.6.3.2 Description
	5.6.3.4 Errors

	5.6.4 Change File Modes
	5.6.4.2 Description

	5.6.5 Change Owner and Group of a File
	5.6.5.2 Description
	5.6.5.4 Errors


	5.7 Configurable Pathname Variables
	5.7.1 Get Configurable Pathname Variables
	5.7.1.2 Description
	5.7.1.3 Returns
	5.7.1.4 Errors



	Section 6. Input and Output Primitives
	6.3 File Descriptor Deassignment
	6.3.1 Close a File
	6.3.1.2 Description
	6.3.1.4 Errors


	6.4 Input and Output
	6.4.1 Read from a File
	6.4.1.2 Description
	6.4.1.4 Errors

	6.4.2 Write to a File
	6.4.2.2 Description
	6.4.2.4 Errors


	6.5 Control Operations on Files
	6.5.2 File Control
	6.5.2.2 Description
	6.5.2.4 Errors

	6.5.3 Reposition Read/Write File Offset
	6.5.3.2 Description



	Section 7. Device- and Class-Specific Functions
	7.1 General Terminal Interface
	7.1.1 Interface Characteristics
	7.1.1.2 Process Groups
	7.1.1.3 The Controlling Terminal
	7.1.1.5 Input Processing and Reading Data
	7.1.1.6 Canonical Mode Input Processing
	7.1.1.7 Noncanonical Mode Input Processing
	7.1.1.8 Writing Data and Output Processing
	7.1.1.9 Special Characters
	7.1.1.10 Modem Disconnect

	7.1.2 Parameters That Can Be Set
	7.1.2.2 Input Modes
	7.1.2.3 Output Modes
	7.1.2.4 Control Modes
	7.1.2.5 Local Modes
	7.1.2.6 Special Control Characters

	7.1.3 Baud Rate Functions
	7.1.3.2 Description
	7.1.3.4 Errors


	7.2 General Terminal Interface Control Functions
	7.2.1 Get and Set State
	7.2.1.2 Description

	7.2.2 Line Control Functions
	7.2.2.2 Description



	Section 8. Language-Specific Services for the C Programming Language
	8.1 Referenced C Language Routines
	8.1.1 Extensions to Time Functions
	8.1.2 Extensions to setlocale() Function
	8.1.2.2 Description


	8.2 C Language Input/Output Functions
	8.2.1 Map a Stream Pointer to a File Descriptor
	8.2.1.4 Errors

	8.2.2 Open a Stream on a File Descriptor
	8.2.2.2 Description
	8.2.2.4 Errors

	8.2.3 Interactions of Other FILE-Type C Functions
	8.2.3.10 ftell()


	8.3 Other C Language Functions
	8.3.2 Set Time Zone
	8.3.2.2 Description



	Section 9. System Databases
	9.1 System Databases
	9.2 Database Access
	9.2.1 Group Database Access
	9.2.1.2 Description
	9.2.1.3 Returns
	9.2.1.4 Errors

	9.2.2 User Database Access
	9.2.2.2 Description
	9.2.2.3 Returns
	9.2.2.4 Errors



	Section 10. Data Interchange Format
	10.1 Archive/Interchange File Format
	10.1.1 Extended tar Format
	10.1.2 Extended cpio Format
	10.1.2.1 cpio Header
	10.1.2.2 cpio Filename
	10.1.2.5 cpio Values

	10.1.3 Multiple Volumes



	Part 2. POSIX.2 Conformance Document
	Section 1. General
	1.3 Conformance
	1.3.1 Implementation Conformance
	1.3.1.1 Requirements
	1.3.1.2 Documentation



	Section 2. Terminology and General Requirements
	2.2 Definitions
	2.2.2 General Terms
	2.2.2.8 appropriate privileges
	2.2.2.27 byte
	2.2.2.61 extended security controls
	2.2.2.65 file
	2.2.2.68 file group class
	2.2.2.93 job control
	2.2.2.120 parent process ID
	2.2.2.121 pathname
	2.2.2.141 read-only file system
	2.2.2.189 variable assignment [assignment]


	2.4 Character Set
	2.4.1 Character Set Description File

	2.5 Locale
	2.6 Environment Variables
	2.9 Dependencies on Other Standards
	2.9.1 Features Inherited from POSIX.1
	2.9.1.4 File Read, Write, and Creation
	2.9.1.5 File Removal


	2.11 Utility Description Defaults
	2.11.5 External Influences
	2.11.5.2 Input Files


	2.13 Configuration Values
	2.13.1 Symbolic Limits
	2.13.2 Symbolic Constants for Portability Specifications

	2.14 Terminal Characteristics

	Section 3. Shell Command Language
	3.5 Parameters and Variables
	3.5.3 Variables

	3.6 Word Expansions
	3.7 Redirection

	Section 4. Execution Environment Utilities
	4.1 awk — Pattern Scanning and Processing Language
	4.1.7 Extended Description
	4.1.7.6 Actions
	4.1.7.6.2 Functions
	4.1.7.6.2.3 Input/Output and General Functions


	4.1.7.8 awk Lexical Conventions


	4.2 basename — Return Nondirectory Portion of Pathname
	4.2.2 Description

	4.5 cd — Change Working Directory
	4.5.2 Description
	4.5.4 Operands

	4.7 chmod — Change File Modes
	4.7.2 Description
	4.7.7 Extended Description

	4.13 cp — Copy Files
	4.13.2 Description
	4.13.3 Options

	4.18 dirname — Return Directory Portion of Pathname
	4.18.2 Description

	4.19 echo — Write Arguments to Standard Output
	4.19.4 Operands

	4.20 ed — Edit Text
	4.20.7 Extended Description
	4.20.7.3 ed Commands
	4.20.7.3.13 List Command



	4.24 find — Find Files
	4.24.4 Operands

	4.33 ln — Link Files
	4.33.2 Description
	4.33.4 Operands

	4.34 locale — Get Locale-Specific Information
	4.34.3 Options
	4.34.4 Operands

	4.35 localedef — Define Locale Environment
	4.35.2 Description
	4.35.3 Options
	4.35.4 Operands
	4.35.9 Consequences of Errors

	4.36 logger — Log Messages
	4.36.2 Description

	4.39 ls — List Directory Contents
	4.39.3 Options
	4.39.5 External Influences
	4.39.5.3 Environment Variables

	4.39.6 External Effects
	4.39.6.1 Standard Output


	4.40 mailx — Process Messages
	4.40.4 Operands
	4.40.6 External Effects
	4.40.6.3 Output Files

	4.40.7 Extended Description
	4.40.7.1 Internal Variables
	4.40.7.3 Command Escapes


	4.43 mv — Move Files
	4.43.2 Description

	4.45 od — Dump Files in Various Formats
	4.45.7 Extended Description

	4.48 pax — Portable Archive Interchange
	4.48.2 Description
	4.48.3 Options
	4.48.5 External Influences
	4.48.5.2 Input Files

	4.48.6 External Effects
	4.48.6.1 Standard Output
	4.48.6.3 Output Files


	4.55 sed — Stream Editor
	4.55.7 Extended Description
	4.55.7.3 Editing Commands


	4.56 sh — Shell, the Standard Command Language Interpreter
	4.59 stty — Set the Options for a Terminal
	4.59.2 Description
	4.59.4 Operands
	4.59.4.6 Combination Modes


	4.62 test — Evaluate Expression
	4.62.4 Operands

	4.63 touch — Change File Access and Modification Times
	4.63.3 Options

	4.64 tr — Translate Characters
	4.64.7 Extended Description

	4.68 uname — Return System Name
	4.68.2 Description
	4.68.6 External Effects
	4.68.6.1 Standard Output



	Section 5. User Portability Utilities Option
	5.12 fc — Process Command History List
	5.12.2 Description
	5.12.5 External Influences
	5.12.5.3 Environment Variables


	5.19 newgrp — Change to a New Group
	5.23 ps — Report Process Status
	5.23.2 Description
	5.23.3 Options
	5.23.6 External Effects
	5.23.6.1 Standard Output



	Section 6. Software Development Utilities Option
	6.2 make — Maintain, Update, and Regenerate Groups of Programs
	6.2.7. Extended Description
	6.2.7.1 Makefile Syntax
	6.2.7.2 Makefile Execution
	6.2.7.3 Target Rules
	6.2.7.4 Macros



	Annex A. C Language Development Utilities Option
	A.1 c89 — Compile Standard C Programs
	A.1.2 Description
	A.1.3 Options
	A.1.4 Operands
	A.1.5 External Influences
	A.1.5.2 Input Files

	A.1.6 External Effects
	A.1.6.1 Standard Output
	A.1.6.2 Standard Error
	A.1.6.3 Output Files

	A.1.7 Extended Description
	A.1.7.1 Standard Libraries
	A.1.7.2 External Symbols


	A.2 lex — Generate Programs for Lexical Tasks
	A.2.6 External Effects
	A.2.6.1 Standard Output
	A.2.6.2 Standard Error

	A.2.7 Extended Description
	A.2.7.1 Definitions
	A.2.7.4 Regular Expressions


	A.3 yacc — Yet Another Compiler Compiler
	A.3.6 External Effects
	A.3.6.3 Output Files
	A.3.6.3.3 Description File


	A.3.7 Extended Description
	A.3.7.9 Limits



	Global Issues
	Window Size
	Modes and the Sticky Bit


	Notices
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Additional Publications


