
z/VM
7.3

OpenExtensions Commands Reference

IBM

SC24-6297-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
549.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-08-31
© Copyright International Business Machines Corporation 1993, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Conventions Used in This Document.. xiii

Escape Character Notation.. xiii
Case-Sensitivity..xiii
Typography...xiii

Syntax, Message, and Response Conventions..xiv
Where to Find More Information...xvi

Links to Other Documents and Websites... xvii

How to Send Your Comments to IBM..xix

Summary of Changes for z/VM: OpenExtensions Commands Reference................ xxi
SC24-6297-73, z/VM 7.3 (September 2022)...xxi
SC24-6297-01, z/VM 7.2 (September 2020)...xxi
SC24-6297-00, z/VM 7.1 (September 2018)...xxi

Chapter 1. OpenExtensions Shell Commands..1
Reading the Command Descriptions... 1

Format Section... 1
Description Section.. 3
Options Section.. 3
Examples Section... 3
Environment Variables Section.. 3
Localization Section..4
Files Section..4
Usage Notes Section...5
Exit Values Section... 5
Limits Section... 5
Portability Section.. 5
Related Commands.. 5

Default File Permissions.. 5
alias — Display or create a command alias... 6
ar — Create or maintain library archives..9
awk — Process programs written in the awk language...13
basename — Return the nondirectory components of a path name..28
bc — Use the arbitrary-precision arithmetic calculation language...29
bg — Move a job to the background...44
break — Exit from a for, select, while, or until loop in a shell script... 45
c89/cxx — Compile C/C++ source code and create an executable file.. 46
cat — Concatenate and display a text file... 54
cd — Change the working directory... 56
chgrp — Change the group owner of a file or directory...59
chmod — Change the mode of a file or directory.. 61
chown — Change the owner or group of a file or directory... 64

 iii

cksum — Calculate and write checksums and byte counts.. 66
cmp — Compare two files.. 68
cms — Enter a CMS command from the shell... 70
cmsfile — Redirect contents of standard input... 71
: (colon) — Do nothing, successfully..73
comm — Show and select or reject lines common to two files.. 74
command — Run a simple command.. 76
compress — Use Lempel-Ziv compression..78
continue — Skip to the next iteration of a loop in a shell script..81
cp — Copy a file.. 82
cpio -- Copy in/out file archives...85
cut — Cut out selected fields from each line of a file.. 89
date — Display the date and time..91
dd — Convert and copy a file..95
diff — Compare two text files and show the differences.. 99
dirname — Return the directory components of a path name... 104
. (dot) — Run a shell file in the current environment.. 106
echo — Write arguments to standard output.. 107
ed — Use the ed line-oriented text editor... 109
env — Display environments, or set an environment for a process..117
eval — Construct a command by concatenating arguments.. 119
exec — Run a command and open, close, or copy the file descriptors.. 120
exit — Return to the parent process from which the shell was called or to CMS121
export — Set the export attributes for variables, or show currently exported variables.......................122
expr — Evaluate arguments as an expression...123
false — Return a nonzero exit code... 126
fc, history, r -- Process a command history list...127
fg — Bring a job into the foreground..130
find — Find a file meeting specified criteria.. 131
fold — Break lines into shorter lines..136
getconf — Get configuration values...138
getopts — Parse utility options..142
grep — Search a file for a specified pattern.. 144
head — Display the first part of a file...147
iconv — Convert characters from one code set to another...149
id — Return the user identity... 151
jobs — Return the status of jobs in the current session... 153
join — Join two sorted, textual relational databases..155
kill — End a process or job, or send it a signal.. 157
let — Evaluate an arithmetic expression... 160
lex — Generate a program for lexical tasks...162
ln — Create a link to a file.. 165
locale — Get locale-specific information.. 168
logger — Log messages..170
logname — Return a user's login name...172
lp — Send a file to a printer..173
ls — List file and directory names and attributes..175
mailx — Send or receive electronic mail... 180
make — Maintain program-generated and interdependent files... 198
mkdir — Make a directory.. 215
mkfifo — Make a FIFO special file... 217
mknod — Make a FIFO or character special file..219
mount — See the OPENVM MOUNT command... 221
mv — Rename or move a file or directory..222
newgrp — Change to a new group... 225
nm — Display symbol table of object, library, or executable files.. 227
nohup — Start a process that is immune to hang-ups..230
od -- Dump a file in a specified format..232

iv

paste — Merge corresponding or subsequent lines of a file...236
pathchk — Check a path name.. 238
pax -- Interchange portable archives... 239
pr — Format a file in paginated form and send it to standard output...245
print — Return arguments from the shell.. 249
printf — Write formatted output.. 251
ps — Return the status of a process..254
pwd — Return the working directory name...259
read — Read a line from standard input..260
readonly — Mark a variable as read-only.. 262
return — Return from a shell function or . (dot) script..263
rm — Remove a directory entry... 264
rmdir — Remove a directory.. 266
sed — Start the sed noninteractive stream editor.. 268
set — Set or unset command options and positional parameters... 273
sh — Invoke a shell.. 277
shift — Shift positional parameters... 298
showexp — See the OPENVM SHOWMMOUNT command..299
sleep — Suspend execution of a process for an interval of time..300
sort — Start the sort-merge utility...301
strip — Remove unnecessary information from an executable file..307
stty — Set or display terminal options...308
su — Change the user ID associated with a session...314
tail — Display the last part of a file.. 316
tar -- Manipulate the tar archive files to copy or back up a file..318
tee — Duplicate the output stream... 321
test or [] — Test for a condition...323
time — Display processor and elapsed times for a command..327
times — Get process and child process times.. 329
touch — Change the file access and modification times.. 330
tr — Translate characters...333
trap — Intercept abnormal conditions and interrupts.. 335
true — Return a value of 0... 338
tty — Return the user's terminal name..339
type — Tell how the shell interprets a name... 340
typeset — Assign attributes and values to variables.. 341
umask — Set or return the file mode creation mask...343
unalias — Remove alias definitions... 345
uname — Display the name of the current operating system...346
uncompress — Undo Lempel-Ziv compression...348
uniq — Report or filter out repeated lines in a file.. 350
unset — Unset values and attributes of variables and functions... 352
wait — Wait for a child process to end.. 353
wc — Count newlines, words, and bytes... 354
whence — Tell how the shell interprets a command name.. 356
xargs — Construct an argument list and run a command... 357
yacc — Use the yacc compiler... 361
zcat — Uncompress and display data..365

Chapter 2. OPENVM CMS Commands..367
Understanding Byte File System (BFS) Path Name Syntax.. 368
Understanding Network File System (NFS) Path Name Syntax... 374
OPENVM CREATE DIRECTORY.. 376
OPENVM CREATE EXTLINK... 377
OPENVM CREATE LINK..383
OPENVM CREATE SYMLINK.. 385
OPENVM DEBUG..387

 v

OPENVM ERASE...391
OPENVM FORMAT..392
OPENVM GETBFS...393
OPENVM LISTFILE... 398
OPENVM MOUNT... 407
OPENVM OWNER... 416
OPENVM PARCHIVE.. 418
OPENVM PATHDEF CREATE.. 421
OPENVM PATHDEF DELETE...422
OPENVM PATHDEF QUERY..423
OPENVM PERMIT...424
OPENVM PUTBFS...427
OPENVM QUERY DEBUG... 431
OPENVM QUERY DIRECTORY..432
OPENVM QUERY FORK.. 434
OPENVM QUERY LINK... 435
OPENVM QUERY MASK..438
OPENVM QUERY MOUNT...440
OPENVM RENAME... 444
OPENVM RUN...446
OPENVM SET DIRECTORY... 449
OPENVM SET FORK... 452
OPENVM SET MASK...453
OPENVM SHELL... 456
OPENVM SHOWMOUNT...458
OPENVM UNMOUNT.. 461

Appendix A. OpenExtensions Command Summary..463
Shell Command Summary...463

General Use.. 463
Controlling Your Environment..463
Managing Directories... 464
Managing Files..465
Printing Files...466
Computing and Managing Logic...466
Controlling Processes.. 467
Writing Shell Scripts... 467
Developing or Porting Application Programs.. 467
Communicating with the System or Other Users.. 468
Working with Archives..468

Shell and CMS Commands that Work with Directories and Files... 468

Appendix B. Regular Expressions (regexp)..471

Appendix C. Localization..477

Appendix D. OpenExtensions Shell and Utilities Messages.................................. 479

Appendix E. Common Error Messages When Using BFS Files............................... 545

Notices..549
Programming Interface Information...550
Trademarks.. 550
Terms and Conditions for Product Documentation.. 550
IBM Online Privacy Statement.. 551
Acknowledgments... 551

vi

Bibliography.. 553
Where to Get z/VM Information.. 553
z/VM Base Library..553
z/VM Facilities and Features... 554
Prerequisite Products.. 556
Related Products... 556
Additional Publications..557

Index.. 559

 vii

viii

Figures

1. BFS environment with the OPENVM LISTFILE SUBDirectory option specified.......................................403

2. Setting the BFS path name root using OPENVM MOUNT...413

3. Mounting another BFS file space..414

4. Sample BFS directory hierarchy... 450

 ix

x

Tables

1. Examples of Syntax Diagram Conventions...xiv

2. Locales Supplied by OpenExtensions... 4

3. Escape Sequences in awk Literal Strings... 15

4. The Order of Operations for awk...16

5. ASCII Header Format for a cpio File... 87

6. Binary Header Format for a cpio File.. 87

7. Internal Table Sizes...163

8. Reference Notations... 183

9. Shell Operators... 286

10. Built-in Variables...293

11. Signals Supported by OpenExtensions.. 335

12. open() Request Access Modes and ANSI-C fopen() Access Modes.. 380

13. CMS and Shell Command Equivalents... 468

14. Regular Expression Features..474

15. Common Error Messages while using BFS Files.. 545

 xi

xii

About This Document

This document describes the IBM z/VM OpenExtensions shell commands and utilities. These commands
and utilities provide z/VM users with application development tools and an interactive shell interface
based on open systems standards. Using the OpenExtensions shell, you can enter shell commands, write
shell scripts, and work with OpenExtensions byte file system (BFS) files.

This document also describes a subset of CMS commands known as OPENVM commands that you can
use to obtain OpenExtensions services.

Intended Audience
This information is for anyone who plans to develop OpenExtensions applications and needs detailed
reference information about OpenExtensions shell commands and utilities and CMS OPENVM commands.

Conventions Used in This Document
The following conventions are used in this document.

Escape Character Notation
When you see the following notation:

enter <EscChar-C>

it should be interpreted as:

type the EscChar, which by default is the ¢ (cent sign) and then type the C character.
Press ENTER after typing these characters.

Note: To change the escape character to something other than the cent sign, see the BPX1TSX service in
z/VM: OpenExtensions Callable Services Reference.

Case-Sensitivity
The OpenExtensions shell commands and CMS OPENVM commands are case-sensitive and distinguish
characters as either uppercase or lowercase. Therefore, FILE1 is not the same as file1.

Typography
The following typographic conventions are used:

Style Use

BOLD Bold uppercase is used for all command names (OPENVM SHELL) except the shell
commands, statements (CLINKNAME), and references to a key that you would
press (ENTER).

bold Bold lowercase is used for shell commands (make).

variable Lowercase italics is used to indicate a variable.

VARIABLE Uppercase italics is used to indicate a shell environment variable.

example font Example font is used to indicate file specifications (.profile, XEDIT PROFILE),
directory names (/usr/lib/nls/charmap), and verbatim user input.

© Copyright IBM Corp. 1993, 2022 xiii

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xiv.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

xiv About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

About This Document xv

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
For information about using the OpenExtensions shell and setting up OpenExtensions facilities on z/VM,
see the z/VM: OpenExtensions User's Guide.

For a list of other z/VM publications, see the “Bibliography” on page 553.

xvi About This Document

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

About This Document xvii

xviii z/VM: 7.3 OpenExtensions Commands Reference

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1993, 2022 xix

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xx z/VM: 7.3 OpenExtensions Commands Reference

Summary of Changes for z/VM: OpenExtensions Commands
Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6297-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6297-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6297-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1993, 2022 xxi

xxii z/VM: 7.3 OpenExtensions Commands Reference

Chapter 1. OpenExtensions Shell Commands

This chapter is an introduction to the OpenExtensions shell command descriptions.

Note: Although the POSIX standard distinguishes between a command and a utility, this book uses the
term command for both.

Reading the Command Descriptions
Each shell command appears in alphabetic order.

The description for each command is divided into several sections, which are explained in the following
paragraphs. Some of these sections apply only to a few command descriptions. Also, some command
descriptions include special sections that are not explained here.

Format Section
The Format section provides a quick summary of the command’s format, or syntax. The syntax was
chosen to conform to general UNIX® usage. For example, here is the format of the ls command:

 ls [–AabCcdFfgiLlmnopqRrstuWx1][pathname ...]

The format takes the form of a command line as you might type it into the system; it shows what you can
type in and the order in which you should do it. The parts enclosed in square brackets are optional; you
can omit them if you choose. Parts outside the square brackets must be present for the command to be
correct.

The format begins with the name of the command itself. Command names always appear in bold font.

After the command name comes a list of options, if there are any. A typical OpenExtensions shell
command option consists of a dash (–) followed by a single character, usually an uppercase or lowercase
letter. For example, you might have –A or –a.

Note: The case of letters is important; for example, in the format of ls, –a and –A are different options,
with different effects.

If you are going to specify several options for the same command, you can put all the option characters
after the same dash. Or you can put each option after its own dash. Or you can rearrange the order of
options. For example,

ls -A -a
ls -Aa
ls -a -A
ls -aA

are all equivalent.

The format line shows options in bold font. In the description of ls, all options are shown in one long
string after the single dash. But another common option form is:

-x value

where –x is a dash followed by a character, and value provides extra information for using that option. For
example, here are the formats of the sort command, which takes unsorted input and sorts it:

sort [–cmu]
[–o outfile]
[–t char]
[–y[n]]
[–zn]
[–bdfiMnr]
[-k startpos[,endpos]] ...
[file ...]

© Copyright IBM Corp. 1993, 2022 1

sort [–cmu]
[–o outfile]
[–tchar]
[–yn]
[–zn]
[–bdfiMnr]
[+startposition[–endposition]] ...
[file ...]

You can see that there are two possibilities here; you would need to choose which of the two versions of
sort met your requirements. In either possibility, however, we have the option:

–o outfile

This option tells the sort command where to save its sorted output. The form of the option is –o, followed
by a space, followed by outfile. In a command format, anything appearing in italic font is a placeholder
for information that you are expected to supply. Sometimes after the format, the kind of information
expected in place of the placeholder is explained. In our sort example, outfile stands for the name of a
file where you want sort to store its output. For example, if you wanted to store the output in the file
sorted.dat, you would specify:

sort -o sorted.dat

(followed by the rest of the command).

The format for sort also contains an option of the form:

–tchar

This is similar to the option form we were just discussing, except that there is no space between the –t
and char. As before, char in italics is a placeholder; in this case, it stands for any single character. If you
want to use the –t option for sort, you just type –t followed immediately by another character, as in:

sort -t:

In this case, we use a colon (:) in the position of the placeholder char.

The end of the sort format is:

[file ...]

This means a list of one or more file names; the ellipsis (...) stands for repetitions of whatever
immediately precedes it. Because there are square brackets around the previous list, you can omit the list
if you like.

The format of ls ended in:

[pathname ...]

As you might guess, this means that an ls command can end with an optional list of one or more path
names. What's the difference between this and our sort example? A path name (specified with pathname)
can be the name of either a file or a directory; a file name (specified with file) is always the name of a file.

The order of items on the command line is important. When you type a command line, you should specify
its parts in the order they appear in the command format. The exceptions to this are options marked with
a dash (–); they do not have to be given in the exact order shown in the format. However, all the – options
must appear in the correct area of the command line. For example, you can specify:

ls -l -t myfiles
ls -t -l myfiles

but you will not get correct results if you specify:

ls myfiles -l -t ***incorrect***

2 z/VM: 7.3 OpenExtensions Commands Reference

or:

ls -l myfiles -t ***incorrect***

and so on. If you enter the last example, for instance, ls interprets –t as the path name of a file or
directory, and the command will try to list the characteristics of that item.

As a special notation, most OpenExtensions shell commands let you specify two dashes (––) to separate
the options from the nonoption arguments; –– means: "There are no more options." Thus, if you really
have a directory named –t, you could specify:

ls –– –t

to list the contents of that directory.

Description Section
The Description section describes what the command does. For a particularly complex command, this
section may be divided into a large number of subsections, each dealing with a particular aspect of the
command.

The Description section often mentions the standard input (stdin) and the standard output (stdout). The
standard input is usually the workstation keyboard; the standard output is usually the display screen. The
process of redirection can change this. Redirection is explained in the z/VM: OpenExtensions User's Guide.

The shell differentiates between hex, octal, and decimal as follows:

• Any number that starts with 0x is hex.
• Any number that starts with 0 is octal.
• Any number that does not start with 0x or 0 is decimal.

Inside the Description section, the names of files and directories are presented in bold font. The names of
environment variables are also presented in BOLD font, capitalized.

Options Section
The Options section describes each of the options used by the command.

Examples Section
The Examples section is present in many command descriptions, giving examples of how the
OpenExtensions shell can be used. This book tries to give a mix of simple examples that show how
the commands work on an elementary level and more complex examples that show how the commands
can perform complicated tasks.

Before you try to run any of the examples in this book, you need to know that the OpenExtensions
shell uses the EBCDIC Latin1/Open System Interconnection Code Page 01047. Characters entered on a
workstation keyboard and passed to the shell by VM do not have the same hexadecimal encoding as the
code page the shell uses. You may need to customize your keyboard so that those characters have the
encoding the shell uses. See the z/VM: OpenExtensions User's Guide for more information about code
page conversion, about using a keyboard with customized characters, and for a copy of code page 01047.

Environment Variables Section
The Environment Variables section lists the environment variables that affect the command, if any, and
describes the purposes that those variables serve. For example, the ls command description lists two
environment variables— COLUMNS and TZ—and informs you that COLUMNS is the terminal width and that
TZ contains information about the local time zone.

Chapter 1. OpenExtensions Shell Commands 3

Localization Section
The Localization section describes how the locale-related environment variables affect the behavior
of the command. These environment variables allow you to access locale information, including
alternate character sets; alternate numeric, monetary, and date and time formats; and foreign language
translations of common messages. Locales make it easier for users around the world to use the shell and
utilities.

The OpenExtensions Shell and Utilities supports the IBM-supplied locales listed in Table 2 on page 4.
User-generated locales using code page 1047 are also supported.

Table 2. Locales Supplied by OpenExtensions

Country Language Locale Name

Belgium Dutch Nl_BE.IBM-1047

Belgium French Fr_BE.IBM-1047

Canada French Fr_CA.IBM-1047

Denmark Danish Da_DK.IBM-1047

Finland Finnish Fi_FI.IBM-1047

France French Fr_FR.IBM-1047

Germany German De_DE.IBM-1047

Iceland Icelandic Is_IS.IBM-1047

Italy Italian It_IT.IBM-1047

Japan English En_JP.IBM-1027

Japan Japanese Ja_JP.IBM-939

Japan Japanese Ja_JP.IBM-1027

Netherlands Dutch Nl_NL.IBM-1047

Norway Norwegian No_NO.IBM-1047

Portugal Portuguese Pt_PT.IBM-1047

Spain Spanish Es_ES.IBM-1047

Sweden Swedish Sv_SE.IBM-1047

Switzerland French Fr_CH.IBM-1047

Switzerland German De_CH.IBM-1047

United Kingdom English En_GB.IBM-1047

United States English En_US.IBM-1047

For more information on locales, see XL C/C++ for z/VM: User's Guide.

Files Section
The Files section of the command lists any supplementary files (files not specified on the command line)
that are referenced. Such files usually provide information the command needs; the command accesses
these files during its operation. If the files cannot be found, the command issues a message to this effect.

Files documented in this section may be temporary files, output files, databases, configuration files, and
so on.

The C/C++ runtime library supports a file naming convention of // (the file name can begin with exactly
two slashes). However, the OpenExtensions Shell and Utilities does not support this convention. Do not
use this convention (//) unless it is specifically indicated (as in the description for the c89 command). The
OpenExtensions Shell and Utilities does support the POSIX file naming convention, where the file name
can be selected from a set of character values that excludes the slash and the null character.

4 z/VM: 7.3 OpenExtensions Commands Reference

The OpenExtensions Shell and Utilities supports the concept of the fully qualified file system root. This
allows you to operate on and reference files that reside in file systems that are not part of your file system
hierarchy. For a full description of the fully qualified file system root concept, refer to “Understanding Byte
File System (BFS) Path Name Syntax” on page 368.

Usage Notes Section
The Usage Notes section gives additional notes for those using the shell. The purpose of this section is to
provide important information that the reader should not overlook.

Exit Values Section
The Exit Values section presents the error messages that the shell may display, along with a description of
what caused the message and a possible action you can take to avoid getting that message. Occasionally,
this section refers you to another command description for more information on an error message.

This section also contains information about the exit status returned by the command. You can test this
status to determine the result of the operation that the command was asked to perform.

Limits Section
The Limits section lists any restrictions on the operation of the shell. Some limits are implicit rather than
explicit and may be lower than the explicitly stated limit.

Portability Section
The Portability section includes two types of information:

• Availability of a version of the command on existing UNIX systems (System V, BSD).
• Compatibility with industry standards—for example, the POSIX.2 Draft Standard or the X/Open

Portability Guide, Issue 4 (XPG4).

Related Commands
The Related Commands section refers to other command descriptions that may contain information
relevant to the command description you have just read. For example, consider the head command; by
default, head displays the first 10 lines of each file given on the command line. Its Related Commands
section refers you to tail, the command that displays the last 10 lines of a file.

Default File Permissions
When a shell command creates a new file (other than character special files), the default permission
settings assigned to the file are read and write for the owner, and read for group and other. The
exceptions to this rule are:
c89/cxx

Read, write, and execute for owner, group, and other
ln

Read, write, and execute for owner, group, and other (for ln -s)
cp

The permissions of the file that was copied.
These default permissions are subject to filtering by the umask in effect.

POSIX Conformance: The OpenExtensions shell is based on the KornShell that originated on a UNIX
system. As implemented in OpenExtensions, this shell conforms to POSIX standard 1003.2-1992.

Chapter 1. OpenExtensions Shell Commands 5

alias — Display or create a command alias

alias [–x] [name[=value] ...]
alias –t [name ...]

Purpose
When the first word of a shell command line is not a shell keyword, alias causes the shell to check for
the word in the list of currently defined aliases. If it finds a match, the shell replaces the alias with its
associated string value. The result is a new command line that might begin with a shell function name, a
built-in command, an external command, or another alias.

When the shell performs alias substitution, it checks to see if the associated string value (specified by
value) ends with a blank. If so, the shell also checks the next word of the command line for aliases. The
shell then checks the new command line for aliases and expands them, following these same rules. This
process continues until there are no aliases left on the command or recursion occurs in the expansion of
aliases.

Calling alias without parameters displays all the currently defined aliases and their associated values.
Values appear with appropriate quoting so that they are suitable for reinput to the shell.

Calling alias with parameters of the form name=value creates an alias for each function name you specify
as name with the given string you specify as value.

If you are defining an alias where value contains a backslash character, you must precede it with another
backslash. The shell interprets the backslash as the escape character when it performs the expansion.
If you use double quotation marks to enclose value, you must precede each of the two backslashes with
an additional backslash, because the shell escapes characters—that is, the shell does not interpret the
character as it normally does—both when assigning the alias and again when expanding it.

To avoid using four backslashes to represent a single backslash, use single quotation marks rather than
double quotation marks to enclose value, because the shell does not escape characters enclosed in single
quotation marks during assignment. As a result, the shell escapes characters in single quotation marks
only when expanding the alias.

Calling alias with name without any value assignment displays the function name (name) and its
associated string value (value) with appropriate quoting.

Options
alias supports the following options:
–t

Makes each name on the command line a tracked alias. Unlike regular aliases, tracked aliases do
not shorten typing or provide command synonyms. Instead, the set of tracked aliases help shell
performance by acting as a lookaside list or cache for commands that otherwise would be searched
for on the search path ($PATH). Each entry in this cache maps a tracked alias to the path name of its
corresponding executable file.

When you establish tracked alias name, the shell resolves name (it finds out where its executable file
is according to the search rule specified by $PATH) and sets up a mapping between name and the
path name of its executable file.

When you run a command that is a tracked alias, the shell does not search $PATH to find it. Instead, it
determines the path name through lookup in the list of tracked aliases.

Running alias –t without any specified names displays all currently defined tracked aliases with
appropriate quoting.

alias

6 z/VM: 7.3 OpenExtensions Commands Reference

When you enter the command set –h, each subsequent command you use in the shell automatically
becomes a tracked alias.

–x
Marks each alias name on the command line for export. If you specify –x without any names on the
command line, alias displays all exported aliases. Only exported aliases are passed to a shell that
runs a shell script.

There are several aliases built into the shell:

alias functions="typeset –f"
alias hash="alias –t"
alias history="fc –l"
alias integer="typeset –i"
alias nohup="nohup"
alias r="fc –s"
alias stop="kill -STOP"
alias suspend="stop \$\$"

You can change or remove any of these aliases.

Examples

The command:

alias ls="ls -C"

defines ls as an alias. From this point onward, when you issue an ls command, it produces multicolumn
output by default.

Localization
alias uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Usage Notes
1. This command is built into the shell.
2. Instead of using the –x option, you should define nonexported aliases in the sh command's ENV

variable.

Exit Values
Possible exit values are:
0

Successful completion
1

Failure because an alias could not be set
2

Failure because of an incorrect command-line option

If you define alias to determine the values of a set of names, the exit value is the number of those names
that are not currently defined as aliases.

alias

Chapter 1. OpenExtensions Shell Commands 7

Portability
UNIX KornShell, POSIX.2

alias is a built-in shell command.

The –t and –x options are extensions to the POSIX standard.

Related Commands
cd, fc, let, nohup, set, sh, typeset, unalias

alias

8 z/VM: 7.3 OpenExtensions Commands Reference

ar — Create or maintain library archives

ar –d[–Ilv] [–F format] archive member...
ar –m[–abIilsv] [posname] [–F format] archive member ...
ar –p[–Ilsv] [–F format] archive member...
ar –q[–clsv] [–F format] archive member ...
ar –r[abcIilsuv] [–F format] [posname] archive member ...
ar –t[Ilsv] [–F format] archive[member...]
ar –u[–abcIklsv] [–F format] [posname] archive member ...
ar –x[–CIlsTv] [–F format] archive [member...] ...

Purpose
ar maintains archive libraries. The archive library is a collection of files, usually object files. Using ar, you
can perform various operations on archive libraries, such as creating a new library, adding members to an
existing library, deleting members from a library, extracting members from a library, and printing a table of
contents for a library.

A library member is an arbitrary file. Normally, these files are object files or side files, suitable for use by
a linkage editor. If any members of a library are object files, ar creates and maintains an external symbol
index for link-editing.

Member names in an archive are only the final component of any path name. When creating a new library
member (member) as given on the command line, ar uses the full path name given. When storing the
member name in the library, or comparing a member name, ar uses only the final component.

Options
The format shows the seven main functions of ar, which are defined as follows:
–d

Deletes each named member from the archive and regenerates the symbol table.
–m

Moves the named archive member in the archive. The new position is specified by –a, –b, i, or
posname. If a location is not specified, the member is moved to the end of the archive.

–p
Displays each member specified to the standard output (stdout). If you did not specify any members,
ar displays all members.

–q
Quickly appends the specified file to the archive. With this option, ar does not check to see if file is
already a member of the archive.

–r
Replaces or adds file to archive. If archive does not exist, ar creates it and prints a message. When ar
replaces an existing member, the archive order is not changed. If file is not replacing a member, it is
added to the end of the archive unless –a, –b, or –i is used. This option regenerates the symbol table.

–t
Displays a table of contents that lists members, or every member if member is not specified. ar prints
a message for each member it doesn't find. By default, ar prints the member name for all selected
members. With the verbose (–v) option, ar prints more information for all selected members.

–x
Extracts each specified member from the archive and copies it to a file. If member is specified as a full
path name, it is copied to that path name. If no member is specified, all members are extracted. The
archive remains unchanged.

ar

Chapter 1. OpenExtensions Shell Commands 9

The following options change the behavior of the main functions:
–a

Places file in the archive after the member specified by posname. If no member is named, file is added
to the end of the archive.

–b
Places file in the archive before the member specified by posname. If no member is named, file is
placed at the beginning of the archive.

–C
Prevents ar from overwriting existing files with extracted files. This option is used only with extraction
(–x).

–c
Suppresses the message normally printed when ar creates a new archive file. You can use this only in
conjunction with the –r and –q options.

–F format
Specifies the format of the archive library. On OpenExtensions, this is ignored.

–I
Ignores the case of letters when searching the archive for specified member names. Normally, the
case is significant.

–i
Inserts file into the archive before the member specified by posname. If posname isn't specified, ar
inserts file at the beginning of the archive. This option is the same as –b.

–l
This option is ignored. It requests that temporary files generated by ar be put in the directory rather
than in the default temporary file directory. It is provided for backward compatibility with other
versions of ar. See the FILES section for more details about temporary files.

–s
Regenerates the external symbol table regardless of whether the command modifies the archive.

–T
When used with –x, allows extraction of members with names longer than the file system supports.
Normally this is an error, and ar does not extract the file. Most file systems truncate the file name to
the appropriate length.

–u
Replaces the archive member only if the member file's modification time is more recent than the
archive member time. –u implies –r, so it is not necessary to specify –r also (–ru and –u are exactly
equivalent).

–v
Gives verbose output. With –d, –q, –r, and –x, this option prints the command letter and the member
name affected before performing each operation. With –t, ar prints more information about archive
members using a format similar to ls –l. With –p, ar writes the name of the member to stdout,
before displaying the contents of the file.

Operands
archive

Specifies the path name of the archive file.
member

Specifies the path name of the file that is to be acted upon (placed, deleted, searched for, and so on)
in the archive library.

Environment Variables
ar uses the following variable:

ar

10 z/VM: 7.3 OpenExtensions Commands Reference

TMPDIR
The path name of the directory being used for temporary files. If it is not set, OpenExtensions uses /
tmp.

Localization
ar uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Files
The ar command creates temporary files in the working directory and in the directory named by the
TMPDIR environment variable. These files are intermediate versions of the archive file being created or
updated. Consequently, they normally are the same size as the archive file being manipulated.

Usage Notes
ar may be used to store multiple versions of the same object file within one archive library. This is useful
if you are providing an archive library which may be used to resolve references from code compiled with
various compiler options. These options cause differences in the object files which must be matched with
the archive library member attributes. Attributes for ar are: AMODE and XPLINK.

ar will store the attribute information for every entry in the symbol table. The linkage editor will use the
attribute information to resolve external references with the appropriate archive library member. Because
archive library member names are only the final component of the path name, these member names must
be unique for the different object file versions.

Within the external symbol table, all symbols for a given member are kept together. Symbols of more
recently added or modified members are located before symbols of older (not as recently modified)
members in the archive. The modification time of an archive member determines its relative age.

Side files (normally those created with link-editing a DLL) can be made members of an archive file. When
the linkage editor processes such an archive file, it will normally read in all such side files so that archives
can be used for resolving symbol references in DLLs. For more information about resolving external
references, see z/OS MVS Program Management: User's Guide and Reference.

You will want to establish a naming convention for the object files, and change your build procedures
to generate the correct names. For example, if your archive contains 3 versions of myfuncs.o, you could
generate names:

myfuncs.o AMODE(31), non-XPLINK
myfuncsX.o AMODE(31), XPLINK
myfuncs64.o AMODE(64) (AMODE(64) always forces XPLINK)

Your make file might generate commands such as these:

c89 -c myfuncs.c
c89 -Wc,xplink -o myfuncsX.o -c myfuncs.c
c89 -Wc,LP64 -o myfuncs64.o -c myfuncs.c
ar -ruv libmyfuncs.a myfuncs.o myfuncsX.o myfuncs64.o

To display the attributes of the symbols within a object file or an archive library of object files, use nm —
Display symbol table of object, library, or executable files.

ar

Chapter 1. OpenExtensions Shell Commands 11

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Inability to create the extracted file
• An error writing to the extracted file
• The requested module not found on appending
• An error opening the module on appending
• An incorrect module on appending
• Inability to access the module on appending
• A module not found on table or extraction

2
Incorrect command-line arguments or options

Portability
POSIX.2, X/Open Portability Guide, UNIX systems

For backward compatibility, you can omit the dash (–) preceding the options if the options appear only as
the first argument after the command name.

The following options are XPG extensions to the POSIX standard: –a, –b, –C, –i, –l, –m, –q, –s, and –T.

The –F and the –I options are an extension to the POSIX and XPG standards.

Examples

1. To add a member fioacc.o to the archive file /u/turner/bin/cliserpgm.a, specify:

ar -rc /u/turner/bin/cliserpgm.a fioacc.o

2. To display the members of the archive file /u/turner/bin/cliserpgm.a, specify:

ar -tv /u/turner/bin/cliserpgm.a

3. To delete the member repgen.o from the archive file /u/turner/bin/cliserpgm.a and regenerate the
external symbol table for the archive, specify:

ar -ds /u/turner/bin/cliserpgm.a repgen.o

Related Commands
c89, cxx, make, nm

ar

12 z/VM: 7.3 OpenExtensions Commands Reference

awk — Process programs written in the awk language

awk [–F ere] [–f prog] [–v var=value ...] [program] [var=value ...] [file ...]

Purpose
awk is a file-processing language that is well suited to data manipulation and retrieval of information from
text files. If you are unfamiliar with the language, you may find it helpful to read the awk information in
z/VM: OpenExtensions User's Guide before reading the following material.

An awk program consists of any number of user-defined functions and rules of the form:

pattern {action}

There are two ways to specify the awk program:

• Directly on the command line. In this case, program is a single command-line argument, usually
enclosed in single quotation marks (') to prevent the shell from attempting to expand it.

• By using the –f prog option.

You can specify program directly on the command line only if you do not use any –f prog arguments.

Options
awk recognizes the following options:
–F ere

Is an extended regular expression to use as the field separator.
–f prog

Runs the awk program contained in the file prog. When more than one –f option appears on the
command line, the resulting program is a concatenation of all programs you specify.

–v var=value
Assigns value to var before running the program.

Files that you specify on the command line with the file argument provide the input data for awk to
manipulate. If you specify no files or you specify a dash (–) as a file, awk reads data from standard input.

You can initialize variables on the command line using:

var=value

You can intersperse such initializations with the names of input files on the command line. awk processes
initializations and input files in the order they appear on the command line. For example, the command:

awk -f progfile a=1 f1 f2 a=2 f3

sets a to 1 before reading input from f1 and sets a to 2 before reading input from f3.

Variable initializations that appear before the first file on the command line are performed immediately
after the BEGIN action. Initializations appearing after the last file are performed immediately before the
END action. For more information on BEGIN and END, see “Patterns” on page 21.

The –v option lets you assign a value to a variable before the awk program begins execution (that is,
before the BEGIN action). For example, in:

awk -v v1=10 -f prog datafile

awk

Chapter 1. OpenExtensions Shell Commands 13

awk assigns the variable v1 its value before the BEGIN action of the program (but after default
assignments made to such built-in variables as FS and OFMT; these built-in variables have special
meaning to awk, as described later).

awk divides input into records. By default, newline characters separate records; however, you can specify
a different record separator if you want. For more information, see the description of the RS variable
(“Input” on page 17).

One at a time, and in order, awk compares each input record with the pattern of every rule in the program.
When a pattern matches, awk performs the action part of the rule on that input record. Patterns and
actions often refer to separate fields within a record. By default, white space (usually blanks, newlines,
or horizontal tab characters) separates fields; however, you can specify a different field separator string
using the –F ere option (see “Input” on page 17).

You can omit the pattern or action part of an awk rule (but not both). If you omit pattern, awk performs
the action on every input record (that is, every record matches). If you omit action, awk writes every
record matching the pattern to the standard output.

awk considers everything after a # in a program line to be a comment. For example:

This is a comment

To continue program lines on the next line, add a backslash (\) to the end of the line. Statement lines
ending with a comma (,), double or-bars (||), or double ampersands (&&) continue automatically on the
next line.

Variables and Expressions
There are three types of variables in awk: identifiers, fields, and array elements.

An identifier is a sequence of letters, digits, and underscores beginning with a letter or an underscore.
These characters must be from the POSIX portable character set. (Data can come from other character
sets.)

For a description of fields, see “Input” on page 17.

Arrays are associative collections of values called the elements of the array. Constructs of the form:

identifier[subscript]

where subscript has the form expr or expr,expr,…, refer to array elements. Each such expr can have any
string value. For multiple expr subscripts, awk concatenates the string values of all expr arguments with a
separate character SUBSEP between each. The initial value of SUBSEP is set to \042 (code page 01047
field separator).

We sometimes refer to fields and identifiers as scalar variables to distinguish them from arrays.

You do not declare awk variables, and you do not need to initialize them. The value of an uninitialized
variable is the empty string in a string context and the number 0 in a numeric context.

Expressions consist of constants, variables, functions, regular expressions, and subscript-in-array
conditions (described Subscript in Array) combined with operators. Each variable and expression has
a string value and a corresponding numeric value; awk uses the value appropriate to the context.

When converting a numeric value to its corresponding string value, awk performs the equivalent of a
call to the sprintf() function (see “Built-In String Functions” on page 19) where the one and only expr
argument is the numeric value and the fmt argument is either %d (if the numeric value is an integer) or the
value of the variable CONVFMT (if the numeric value is not an integer). The default value of CONVFMT is
%.6g. If you use a string in a numeric context, and awk cannot interpret the contents of the string as a
number, it treats the value of the string as zero.

Numeric constants are sequences of decimal digits.

String constants are quoted, as in "a literal string". Literal strings can contain the following
escape sequences:

awk

14 z/VM: 7.3 OpenExtensions Commands Reference

Table 3. Escape Sequences in awk Literal Strings

Escape Sequence Character

\a Audible bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal value ooo

\xdd Hexadecimal value dd

\/ Slash

\" Quote

\c Any other character c

awk supports full regular expressions. (See Appendix B, “Regular Expressions (regexp),” on page 471 for
more information.) When awk reads a program, it compiles characters enclosed in slash characters (/) as
regular expressions. In addition, when literal strings and variables appear on the right side of a ~ or "!~"
operator, or as certain arguments to built-in matching and substitution functions, awk interprets them as
dynamic regular expressions.

Note: When you use literal strings as regular expressions, you need extra backslashes to escape regular
expression metacharacters, because the backslash is also the literal string escape character.

For example the regular expression:

/e\.g\./

when written as a string is:

"e\\.g\\."

Subscript in Array: awk defines the subscript-in-array condition as:

index in array

where index looks like expr or (expr,...,expr). This condition evaluates to 1 if the string value of index is a
subscript of array, and to 0 otherwise. This is a way to determine if an array element exists. When the
element does not exist, the subscript-in-array condition does not create it.

Symbol Table
You can access the symbol table through the built-in array SYMTAB. SYMTAB[expr] is equivalent to the
variable named by the evaluation of expr. For example, SYMTAB["var"] is a synonym for the variable var.

Environment
An awk program can determine its initial environment by examining the ENVIRON array. If the
environment consists of entries of the form name=value, then ENVIRON[name] has string value "value".
For example, the following program is equivalent to the default output of env:

BEGIN {
 for (i in ENVIRON)
 printf("%s=%s\n", i, ENVIRON[i])

awk

Chapter 1. OpenExtensions Shell Commands 15

 exit
 }

Operators
awk follows the usual precedence order of arithmetic operations, unless overridden with parentheses; a
table giving the order of operations appears later in this section.

The unary operators are +, -, ++, and --, where you can use the ++ and -- operators as either postfix or
prefix operators, as in C. The binary arithmetic operators are +, -, *, /, %, and ^.

The conditional operator

expr ? expr1 : expr2

evaluates to the expr1 if the value of expr is nonzero, and to expr2 otherwise.

If two expressions are not separated by an operator, awk concatenates their string values.

The tilde operator (~) yields 1 (true) if the regular expression on the right side matches the string on the
left side. The operator !~ yields 1 when the right side has no match on the left. To illustrate:

$2 ~ /[0-9]/

selects any line where the second field contains at least one digit. awk interprets any string or variable on
the right side of ~ or !~ as a dynamic regular expression.

The relational operators are <, <=, >, >=, ==, and !=. When both operands in a comparison are numeric,
awk compares their values numerically; otherwise, it compares them as strings. An operand is numeric if
it is an integer or floating-point number, if it is a field or ARGV element that looks like a number, or if it is a
variable created by a command-line assignment that looks like a number.

The Boolean operators are || (or), && (and), and ! (not). awk uses short-circuit evaluation when
evaluating expressions. With an && expression, if the first operator is false, the entire expression is false
and it is not necessary to evaluate the second operator. With an || expression, a similar situation exists if
the first operator is true.

You can assign values to a variable with:

var = expr

If op is a binary arithmetic operator, var op= expr is equivalent to var = var op expr, except that var is
evaluated only once.

See Table 4 on page 16 for the precedence rules of the operators.

Table 4. The Order of Operations for awk

Operators Order of Operations

(A) Grouping

$i V[a] Field, array element

V++ V--
++V --V

Increment, decrement

A^B Exponentiation

+A -A !A Unary plus, unary minus, logical NOT

A*B A/B A%B Multiplication, division, remainder

A+B A-B Addition, subtraction

A B String concatenation

awk

16 z/VM: 7.3 OpenExtensions Commands Reference

Table 4. The Order of Operations for awk (continued)

Operators Order of Operations

A<B A>B A<=B A>=B
A!=B A=.=B

Comparisons

A ~B A! ~B Regular expression matching

A in V Array membership

A && B Logical AND

A || B Logical OR

A ? B : C Conditional expression

V=B V+=B V-=B V*=B
V/=B V%=B V^=B

Assignment

Note:

1. A, B, and C are any expression.
2. i is any expression yielding an integer.
3. V is any variable.

Command-Line Arguments
awk sets the built-in variable ARGC to the number of command-line arguments. The built-in array ARGV
has elements subscripted with digits from zero to ARGC-1, giving command-line arguments in the order
they appeared on the command line.

The ARGC count and the ARGV vector do not include command-line options (beginning with -) or the
program file (following –f). They do include the name of the command itself, initialization statements of
the form var=value, and the names of input data files.

awk actually creates ARGC and ARGV before doing anything else. It then "walks through" ARGV,
processing the arguments. If an element of ARGV is an empty string, awk skips it. If it contains an
equals sign (=), awk interprets it as a variable assignment. If it is a minus sign (-), awk immediately reads
input from the standard input until it encounters the end of the file. Otherwise, awk treats the argument
as a file name and reads input from that file until it reaches the end of the file.

Note: awk runs the program by "walking through" ARGV in this way; thus, if the program changes ARGV,
awk can read different files and make different assignments.

Input
awk divides input into records. A record separator character separates each record from the next. The
value of the built-in variable RS gives the current record separator character; by default, it begins as the
newline (\n). If you assign a different character to RS, awk uses that as the record separator character
from that point on.

awk divides records into fields. A field separator string, given by the value of the built-in variable FS,
separates each field from the next. You can set a specific separator string by assigning a value to FS, or by
specifying the –F ere option on the command line. You can assign a regular expression to FS. For example:

FS = "[,:$]"

says that commas, colons, or dollar signs can separate fields. As a special case, assigning FS a string
containing only a blank character sets the field separator to white space. In this case, awk considers
any sequence of contiguous space or tab characters a single field separator. This is the default for FS.

awk

Chapter 1. OpenExtensions Shell Commands 17

However, if you assign FS a string containing any other character, that character designates the start of a
new field. For example, if we set FS=\t (the tab character),

texta \t textb \t \t \t textc

contains five fields, two of which contain only blanks. With the default setting, this record only contains
three fields, since awk considers the sequence of multiple blanks and tabs a single separator.

The following list of built-in variables provides various pieces of information about input:

NF Number of fields in the current record
NR Number of records read so far
FILENAME Name of file containing current record
FNR Number of records read from current file

Field specifiers have the form $n, where n runs from 1 through NF. Such a field specifier refers to the nth
field of the current input record. $0 (zero) refers to the entire current input record.

The getline function can read a value for a variable or $0 from the current input, from a file, or from a
pipe. The result of getline is an integer indicating whether the read operation was successful. A value of
1 indicates success; 0 indicates that the end of the file was encountered; and -1 indicates that an error
occurred. Possible forms for getline are:
getline

Reads next input record into $0 and splits the record into fields. NF, NR, and FNR are set
appropriately.

getline var
Reads the next input record into the variable var. awk does not split the record into fields (which
means that the current $n values do not change), but sets NR and FNR appropriately.

getline <expr
Interprets the string value of expr to be a file name. awk reads the next record from that file into $0,
splits it into fields, and sets NF appropriately. If the file is not open, awk opens it. The file remains
open until you close it with a close function.

getline var <expr
Interprets the string value of expr to be a file name, and reads the next record from that file into the
variable var, but does not split it into fields.

expr | getline
Interprets the string value of expr as a command line to be run. awk pipes output from this command
into getline, and reads it into $0, splits it into fields, and sets NF appropriately. See “System Function”
on page 21 for additional details.

expr | getline var
Runs the string value of expr as a command and pipes the output of the command into getline. The
result is similar to getline var <expr.

You can have only a limited number of files and pipes open at one time. You can close files and pipes
during execution using the close(expr) function. The expr argument must be one that came before | or
after < in getline, or after > or >> in print or printf.

For a description of print and printf, see “Output” on page 22. If the function successfully closes the
pipe, it returns zero. By closing files and pipes that you no longer need, you can use any number of files
and pipes in the course of running an awk program.

Built-In Arithmetic Functions
atan2(expr1, expr2)

Returns the arctangent of expr1/expr2 in the range of -π through π.
exp(expr), log(expr), sqrt(expr)

Returns the exponential, natural logarithm, and square root of the numeric value of expr. If you omit
(expr), these functions use $0 instead.

awk

18 z/VM: 7.3 OpenExtensions Commands Reference

int(expr)
Returns the integer part of the numeric value of expr. If you omit (expr), the function returns the
integer part of $0.

rand()
Returns a random floating-point number in the range 0 through 1.

sin(expr), cos(expr)
Returns the sine and cosine of the numeric value of expr (interpreted as an angle in radians).

srand(expr)
Sets the seed of the rand function to the integer value of expr. If you omit (expr), awk uses the time of
day as a default seed.

Built-In String Functions
len = length (expr)

Returns the number of characters in the string value of expr. If you omit (expr), the function uses $0
instead. The parentheses around expr are optional.

n = split(string, array, regexp)
Splits the string into fields. regexp is a regular expression giving the field separator string for the
purposes of this operation. This function assigns the separate fields, in order, to the elements of array;
subscripts for array begin at 1. awk discards all other elements of array. split returns the number of
fields into which it divided string (which is also the maximum subscript for array). regexp divides the
record in the same way that the FS field separator string does. If you omit regexp in the call to split, it
uses the current value of FS.

str = substr(string, offset, len)
Returns the substring of string that begins in position offset and is at most len characters long. The
first character of the string has an offset of 1. If you omit len, substr returns the rest of string.

pos = index(string, str)
Returns the position of the first occurrence of str in string. The count is in characters. If index does not
find str in string, it returns 0.

pos = match(string, regexp)
Searches string for the first substring matching the regular expression regexp, and returns an integer
giving the position of this substring counting from 1. If it finds no such substring, match returns zero.
This function also sets the built-in variable RSTART to pos and the built-in variable RLENGTH to the
length of the matched string. If it does not find a match, match sets RESTART to 0, and RLENGTH to
-1. You can enclose regexp in slashes or specify it as a string.

n = sub(regexp, repl, string)
Searches string for the first substring matching the regular expression regexp, and replaces the
substring with the string repl. awk replaces any ampersand (&) in repl with the substring of string
which matches regexp. You can suppress this special behavior by preceding the ampersand with
a backslash. If you omit string, sub uses the current record instead. sub returns the number of
substrings replaced (which is 1 if it found a match, and 0 otherwise).

n = gsub(regexp, repl, string)
Works the same way as sub, except that gsub replaces all matching substrings (global substitution).
The return value is the number of substitutions performed.

str = sprintf(fmt, expr, expr…)
Formats the expression list expr, expr, … using specifications from the string fmt, and then returns the
formatted string. The fmt string consists of conversion specifications that convert and add the next
expr to the string, and ordinary characters that sprintf simply adds to the string. These conversion
specifications are similar to those used by the ANSI C standard.

Conversion specifications have the form

 %[-][0][x][.y]c

where

awk

Chapter 1. OpenExtensions Shell Commands 19

-
Left-justifies the field; default is right justification.

0
(Leading zero) prints numbers with leading zero.

x
Is the minimum field width.

y
Is the precision.

c
Is the conversion character.

In a string, the precision is the maximum number of characters to be printed from the string; in a number,
the precision is the number of digits to be printed to the right of the decimal point in a floating-point value.
If x or y is * (asterisk), the minimum field width or precision is the value of the next expr in the call to
sprintf.

The conversion character c is one of following:
d

Decimal integer
i

Decimal integer
o

Unsigned octal integer
x,X

Unsigned hexadecimal integer
u

Unsigned decimal integer
f,F

Floating point
e,E

Floating point (scientific notation)
g,G

The shorter of e and f (suppresses nonsignificant zeros)
c

Single character of an integer value; first character of string
s

String
The lowercase x specifies alphabetic hex digits in lowercase, whereas the uppercase X specifies
alphabetic hex digits in uppercase. The other uppercase-lowercase pairs work similarly.
n = ord(expr)

Returns the integer value of first character in the string value of expr. This is useful in conjunction with
%c in sprintf.

str = tolower(expr)
Converts all letters in the string value of expr into lowercase, and returns the result. If you omit expr,
tolower uses $0 instead. This function uses the value of the locale or the LC_CTYPE environment
variable.

str = toupper(expr)
Converts all letters in the string value of expr into uppercase, and returns the result. If you omit expr,
toupper uses $0 instead. This function uses the value of the locale or the LX_CTYPE environment
variable.

awk

20 z/VM: 7.3 OpenExtensions Commands Reference

System Function
status = system(expr)

Runs the string value of expr as a command. For example, system("tail " $1) calls the tail command,
using the string value of $1 as the file that tail examines. The standard command interpreter runs the
command as discussed in “Portability Section” on page 5 and the exit status returned depends on that
command interpreter.

User-Defined Functions
You can define your own functions using the form:

function name(parameter-list) {
 statements
}

A function definition can appear in the place of a pattern {action} rule. The parameter-list argument
contains any number of normal (scalar) and array variables separated by commas. When you call a
function, awk passes scalar arguments by value, and array arguments by reference. The names specified
in parameter-list are local to the function; all other names used in the function are global. You can define
local variables by adding them to the end of the parameter list as long as no call to the function uses
these extra parameters.

A function returns to its caller either when it runs the final statement in the function, or when it reaches an
explicit return statement. The return value, if any, is specified in the return statement (see “Actions” on
page 21).

Patterns
A pattern is a regular expression, a special pattern, a pattern range, or any arithmetic expression.

BEGIN is a special pattern used to label actions that awk performs before reading any input records. END
is a special pattern used to label actions that awk performs after reading all input records.

You can give a pattern range as:

pattern1,pattern2

This matches all lines from one that matches pattern1 to one that matches pattern2, inclusive.

If you omit a pattern, or if the numeric value of the pattern is nonzero (true), awk runs the resulting action
for the line.

Actions
An action is a series of statements ended by semicolons, newlines, or closing braces. A condition is any
expression; awk considers a nonzero value true, and a zero value false. A statement is one of the following
or any series of statements enclosed in braces:

expression statement, e.g. assignment
expression

if statement
if (condition)
 statement
[else
 statement]

while loop
while (condition)
 statement

do-while loop
do

awk

Chapter 1. OpenExtensions Shell Commands 21

 statement
while (condition)

for loop
for (expression1; condition; expression2)
 statement

The for statement is equivalent to:

expression1
while (condition) {
 statement
 expression2
}

The for statement can also have the form:

for (i in array)
 statement

awk runs the statement (specified with the statement argument) once for each element in array; on each
repetition, the variable i contains the name of a subscript of array, running through all the subscripts in an
arbitrary order. If array is multidimensional (has multiple subscripts), i is expressed as a single string with
the SUBSEP character separating the subscripts.

The statement break exits a for or a while loop immediately. continue stops the current iteration of a for
or while loop and begins the next iteration (if there is one). next ends any processing for the current input
record and immediately starts processing the next input record. Processing for the next record begins
with the first appropriate rule. exit[(expr)] immediately goes to the END action if it exists; if there is no
END action, or if awk is already running the END action, the awk program ends. awk sets the exit status
of the program to the numeric value of expr. If you omit (expr), the exit status is 0. return [expr] returns
from the execution of a function.

If you specify an expr, the function returns the value of the expression as its result; otherwise, the
function result is undefined. delete array[i] deletes element i from the given array. print expr, expr, … is
described in “Output” on page 22. printf fmt, expr, expr, … is also described in “Output” on page 22.

Output
The print statement prints its arguments with only simple formatting. If it has no arguments, it prints the
entire current input record. awk adds the output record separator ORS to the end of the output that each
print statement produces; when commas separate arguments in the print statement, the output field
separator OFS separates the corresponding output values. ORS and OFS are built-in variables, whose
values you can change by assigning them strings. The default output record separator is a newline, and
the default output field separator is a space.

The variable OFMT gives the format of floating-point numbers output by print. By default, the value is
%.6g; you can change this by assigning OFMT a different string value. OFMT applies only to floating-point
numbers (ones with fractional parts).

The printf statement formats its arguments using the fmt argument. Formatting is the same as for the
built-in function sprintf. Unlike print, printf does not add output separators automatically. This gives the
program more precise control of the output.

The print and printf statements write to the standard output. You can redirect output to a file or pipe.

If you add >expr to a print or printf statement, awk treats the string value of expr as a file name, and
writes output to that file. Similarly, if you add >>expr, awk sends output to the current contents of the file.
The distinction between > and >> is important only for the first print to the file expr. Subsequent outputs
to an already open file append to what is there already.

You cannot use such ambiguous statements as:

print a > b c

awk

22 z/VM: 7.3 OpenExtensions Commands Reference

Use parentheses to resolve the ambiguity.

If you add |expr to a print or printf statement, awk treats the string value of expr as an executable
command and runs it with the output from the statement piped as input into the command.

As mentioned earlier, you can have only a limited number of files and pipes open at any time. To avoid
going over the limit, use the close function to close files and pipes when you no longer need them.

print and printf are also available as functions with the same calling sequence, but no redirection.

Examples

1. The following example:

awk '{print NR ":" $0}' input1

outputs the contents of the file input1 with line numbers added before to each line.
2. The following is an example using var=value on the command line:

awk '{print NR SEP $0}' SEP=":" input1

awk can also read the program script from a file as in the command line:

awk -f addline.awk input1

which produces the same output when the file addline.awk contains:

{print NR ":" $0}

3. The following program appends all input lines starting with January to the file jan (which may or
may not exist already), and all lines starting with February or March to the file febmar:

/^January/ {print >> "jan"}
/^February|^March/ {print >> "febmar"}

4. This program prints the total and average for the last column of each input line:

 {s += $NF}
END {print "sum is", s, "average is", s/NR}

5. The next program interchanges the first and second fields of input lines:

{
 tmp = $1
 $1 = $2
 $2 = tmp
 print
}

6. The following inserts line numbers so that output lines are left-aligned:

{printf "%–6d: %s\n", NR, $0}

7. The following prints input records in reverse order (assuming sufficient memory):

{
 a[NR] = $0 # index using record number
}
END {
 for (i = NR; i>0; --i)
 print a[i]
}

8. The following program determines the number of lines starting with the same first field:

{
 ++a[$1] # array indexed using the first field
}
END { # note output will be in undefined order

awk

Chapter 1. OpenExtensions Shell Commands 23

 for (i in a)
 print a[i], "lines start with", i
}

You can use the following program to determine the number of lines in each input file:

{
 ++a[FILENAME]
}
END {
 for (file in a)
 if (a[file] == 1)
 print file, "has 1 line"
 else
 print file, "has", a[file], "lines"
}

9. The following program illustrates how you can use a two-dimensional array in awk. Assume the first
field of each input record contains a product number, the second field contains a month number,
and the third field contains a quantity (bought, sold, or whatever). The program generates a table of
products versus month.

BEGIN {NUMPROD = 5}
{
 array[$1,$2] += $3
}
END {
 print "\t Jan\t Feb\tMarch\tApril\t May\t" \
 "June\tJuly\t Aug\tSept\t Oct\t Nov\t Dec"
 for (prod = 1; prod <= NUMPROD; prod++) {
 printf "%-7s", "prod#" prod
 for (month = 1; month <= 12; month++){
 printf "\t%5d", array[prod,month]
 }
 printf "\n"
 }
}

10. As the following program reads in each line of input, it reports whether the line matches a
predetermined value:

function randint() {
 return (int((rand()+1)*10))
}
BEGIN {
 prize[randint(),randint()] = "$100";
 prize[randint(),randint()] = "$10";
 prize[1,1] = "the booby prize"
 }
{
 if (($1,$2) in prize)
 printf "You have won %s!\n", prize[$1,$2]
}

11. The following example prints lines, the first and last fields of which are the same, reversing the order
of the fields:

$1==$NF {
 for (i = NF; i > 0; --i)
 printf "%s", $i (i>1 ? OFS : ORS)
}

12. The following program prints the input files from the command line. The infiles function first empties
the passed array and then fills the array. The extra parameter i of infiles is a local variable.

function infiles(f,i) {
 for (i in f)
 delete f[i]
 for (i = 1; i < ARGC; i++)
 if (index(ARGV[i],"=") == 0)
 f[i] = ARGV[i]
}
BEGIN {
 infiles(a)
 for (i in a)

awk

24 z/VM: 7.3 OpenExtensions Commands Reference

 print a[i]
 exit
 }

13. Here is the standard recursive factorial function:

function fact(num) {
 if (num <= 1)
 return 1
 else
 return num * fact(num - 1)
}
{ print $0 " factorial is " fact($0) }

14. The following program illustrates the use of getline with a pipe. Here, getline sets the current record
from the output of the wc command. The program prints the number of words in each input file.

function words(file, string) {
 string = "wc " fn
 string | getline
 close(string)
 return ($2)
}
BEGIN {
 for (i=1; i<ARGC; i++) {
 fn = ARGV[i]
 printf "There are %d words in %s.",
 words(fn), fn
 }
}

Environment Variables
PATH

Contains a list of directories that awk searches when looking for commands run by system(expr), or
input and output pipes.

Any other environment variable can be accessed by the awk program itself.

Localization
awk uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES
• LC_NUMERIC

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Any of the following errors:

• Parser internal stack overflow
• Syntax error
• Function redefined

awk

Chapter 1. OpenExtensions Shell Commands 25

• Internal execution tree error
• Insufficient memory for string storage
• Unbalanced parenthesis or brace
• Missing script file
• Missing field separator
• Missing variable assignment
• Unknown option
• Incorrect character in input
• Newline in regular expression
• Newline in string
• EOF in regular expression
• EOF in string
• Cannot open script file
• Inadmissible use of reserved keyword
• Attempt to redefine built-in function
• Cannot open input file
• Error on print
• Error on printf
• Getline in END action was not redirected
• Too many open I/O streams
• Error on I/O stream
• Insufficient arguments to printf or sprintf()
• Array cannot be used as a scalar
• Variable cannot be used as a function
• Too many fields
• Record too long
• Division (/ or %) by zero
• Syntax error
• Cannot assign to a function
• Value required in assignment
• Return outside of a function
• Can delete only array element or array
• Scalar cannot be used as array
• SYMTAB must have exactly one index
• Impossible function call
• Function call nesting level exceeded
• Wrong number of arguments to function
• Regular expression error
• Second parameter to "split" must be an array
• sprintf string longer than allowed number of characters
• No open file name
• Function requires an array
• Is not a function

awk

26 z/VM: 7.3 OpenExtensions Commands Reference

• Failed to match
• Incorrect collation element
• Trailing \ in pattern
• Newline found before end of pattern
• More than 9 \(\) pairs
• Number in [0–9] incorrect
• [] imbalance or syntax error
• () or \(\) imbalance
• { } or \{ \} imbalance
• Incorrect endpoint in range
• Out of memory
• Incorrect repetition
• Incorrect character class type
• Internal error
• Unknown regex error

When an awk program ends because of a call to exit(), the exit status is the value passed to exit().

Limits
Most constructions in this implementation of awk are dynamic, limited only by memory restrictions of the
system.

The maximum record size is guaranteed to be at least LINE_MAX as returned by getconf. The maximum
field size is guaranteed to be LINE_MAX, also.

The parser stack depth is limited to 150 levels. Attempting to process extremely complicated programs
may result in an overflow of this stack, causing an error.

Input must be text files.

Portability
POSIX.2 X/Open Portability Guide, UNIX systems

The ord function is an extension to traditional implementations of awk. The toupper and tolower
functions and the ENVIRON array are in POSIX and the UNIX System V Release 4 version of awk. This
version is a superset of New AWK, as described in The AWK Programming Language by Aho, Weinberger,
and Kernighan.

The standard command interpreter that the system function uses and that awk uses to run pipelines for
getline, print, and printf is system-dependent. On OpenExtensions, this interpreter is always /bin/sh.

Related Commands
ed, sed, regexp (see Appendix B, “Regular Expressions (regexp),” on page 471).

awk

Chapter 1. OpenExtensions Shell Commands 27

basename — Return the nondirectory components of a path name

basename name [suffix]

Purpose

The basename command strips off the leading part of a path name, leaving only the final component of
the name, which is assumed to be the file name. To accomplish this, basename first checks to see if name
consists of nothing but slash (/) characters. If so, basename replaces name with a single slash and the
process is complete. If not, basename removes trailing slashes. If slashes still remain, basename strips
off all leading characters up to and including the final slash. Finally, if you specify suffix and the remaining
portion of name contains a suffix that matches suffix, basename removes that suffix.

Examples

The command:

basename src/dos/printf.c .c

produces:

printf

Localization
basename uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Unknown command-line option
• Incorrect number of arguments

Portability
POSIX.2, X/Open Portability Guide, UNIX systems

Related Commands
dirname

basename

28 z/VM: 7.3 OpenExtensions Commands Reference

bc — Use the arbitrary-precision arithmetic calculation language

bc [–i] [–l] [file ...]

Purpose

bc is a programming language that can perform arithmetic calculations to arbitrary precision. You can use
it interactively, by entering instructions from the terminal. It can also run programs taken from files.

The file arguments you specify on the command line should be text files containing bc instructions. bc
runs the instructions from those files, in the order that they appear on the command line, and then runs
instructions from the standard input. bc ends when it runs a quit instruction or reaches the end of the file
on standard input.

bc is a simple but complete programming language with a syntax reminiscent of the C programming
language. This version of bc is a superset of the standard language available on most systems. It has a
number of additional features intended to make the language more flexible and useful. Features unique to
this implementation are noted.

Input consists of a series of instructions that assign values to variables or make calculations. It is also
possible to define subprograms called functions, which perform a sequence of instructions to calculate a
single value.

bc displays the result of any line that calculates a value, but does not assign it to a variable. For example,
the instruction:

2+2

displays:

4

By default, bc displays the result of any evaluated instruction followed by a newline. bc also saves the last
value displayed in a special variable . (dot), so that you can use it in subsequent calculations.

Options
bc recognizes the following options.
–i

Puts bc into interactive mode with a displayed prompt. In this mode, bc displays a prompt, which
is ":"—waiting for input. In addition, it handles errors somewhat differently. Normally, when bc
encounters an error while processing a file, the interpreter displays the error message and exits.
In interactive mode, the interpreter displays the message and returns to the prompt mode to allow
debugging.

–l
Loads a library of standard mathematical functions before processing any other input. This library also
sets the scale to 20. For a description of the functions in the –l library, see “Built-In Functions” on
page 39.

Numbers
Numbers consist of an optional minus (-) sign or an optional plus (+) sign followed by a sequence of zero
or more digits, followed by an optional decimal point (.), followed by a sequence of zero or more digits.
Valid digits are 0 through 9, and the hexadecimal digits A through F. The uppercase letters represent the

bc

Chapter 1. OpenExtensions Shell Commands 29

values from 10 through 15. There must be at least one digit, either before or after the decimal point. If
not, bc interprets the decimal point as the special variable . (mentioned earlier).

A number can be arbitrarily long and can contain spaces. Here are some valid numbers with an input base
of 10:

0 0. .0 -3.14159 +09. -12 1 000 000

Here are some valid numbers with an input base of 16 (ibase=16):

0 FF FF.3 -10.444 A1

See “Bases” on page 31 for more information.

A final point is that you cannot break up numbers with commas; you can write 1000000 or 1 000 000,
but 1,000,000 results in an error message.

Identifiers
Identifiers can include sequences containing any number of letters, digits, or the underscore (_) character
but must start with a lowercase letter. Spaces are not allowed in identifiers.

In the POSIX locale, valid identifiers can include sequences containing any number of letters, digits, or the
underscore (_) character but must start with a lowercase letter, as defined by the current locale.

For other locales, the character map for that locale determines which characters are valid in an identifier.
If you want identifiers to be portable between locales, use characters from the POSIX character set. The
use of identifiers longer than one character is an extension of this implementation. Identifiers are used as
names for variables, functions, or arrays:

• A variable holds a single numeric value. You can declare variables that are local to a function using the
auto statement (see “Functions” on page 37). All other variables are global and you can use them
inside any function or outside all functions. You do not need to declare global variables. bc creates
variables as it requires them, with an initial value of zero. (Remember that there is also the special
variable . [dot], which contains the result of the last calculation.)

• A function is a sequence of instructions that calculates a single value. A list of zero or more values
enclosed in parentheses always follow a function name, as in my_func(3.14159). See “Functions” on
page 37.

• An array is a list of values. Values in the list are called elements of the array. These elements are
numbered, beginning at zero. We call such a number a subscript, or index, of the array. Subscripts
always appear in square brackets after the array. For example, a[0] refers to element zero in the array
a. The first element of the array always has the subscript 0. If a subscript value is a floating-point
number, the fractional part is discarded to make the subscript into an integer. For example, the following
expressions all refer to the same element:

a[3] a[3.2] a[3.999]

The maximum number of elements in a bc array is in the range from 0 to {BC_DIM_MAX}-1 inclusive.
Unlike with many languages, you don't need to declare the size of an array. Elements are created
dynamically as required, with an initial value of zero.

Since parentheses always follow function names and square brackets always follow array names, bc
can distinguish between all three types of names—variable names, function names, and array names.
Therefore, you can have variables, functions, and arrays with the same name. For example, foo may be a
variable whereas foo() is a function and foo[] is an array.

Built-In Variables
bc has a number of built-in variables that are used to control various aspects of the interpreter. These are
described in the following sections.

bc

30 z/VM: 7.3 OpenExtensions Commands Reference

Scale
The scale value is the number of digits to be retained after the decimal point in arithmetic operations. For
example, if the scale is 3, each calculation retains at least three digits after the decimal point. This means
that:

5 / 3

has the value:

1.666

If –l is specified, the scale is set to 20; otherwise, the default scale is zero.

The variable scale holds the current scale value. To change scales, assign a new value to scale, as in:

scale = 5

Since scale is just a regular bc variable, it can be used in the full range of bc expressions.

The number of decimal places in the result of a calculation is affected not only by the scale, but also by
the number of decimal places in the operands of the calculation. This is discussed in detail in “Arithmetic
Operations” on page 32.

There is also a function scale, which can determine the scale of any expression. For example,
scale(1.1234) returns the result 4, which is the scale of the number 1.1234. The result of the scale
function is always an integer (that is, it has the scale of 0).

The maximum value for scale is given by the configuration variable {BC_SCALE_MAX} and the minimum
value is 0.

Bases
bc lets you specify numbers in different bases—for example, octal (base 8) or hexadecimal (base 16). You
can input numbers in one base and output them in a different base, simplifying the job of converting from
one base to another. bc does this using the built-in variables ibase and obase.

ibase is the base for input numbers. It has an initial value of 10 (normal decimal numbers). To use a
different base for inputting numbers, assign an integer to ibase, as in:

ibase = 8

This means that all future input numbers are to be in base 8 (octal). The largest valid input base is 16, and
the smallest valid input base is 2. There is no mechanism provided to represent digits larger than 15, so
bases larger than 16 are essentially useless. When the base is greater than 10, use the uppercase letters
as digits. For example, base 16 uses the digits 0 through 9, and A through F. The digits are allowed in any
number, regardless of the setting of ibase but are largely meaningless if the base is smaller than the digit.
The one case where this is useful is in resetting the input base to 10. The constant A always has the value
10 no matter what ibase is set to, so to reset the input base to 10, type:

ibase = A

obase is the base in which numbers are output. It has an initial value of 10 (normal decimal numbers). To
change output bases, assign an appropriate integer to obase.

If the output base is 16 or less, bc displays numbers with normal digits and hexadecimal digits (if
needed). The output base can also be greater than 16, in which case each digit is printed as a decimal
value and digits are separated by a single space. For example, if obase is 1000, the decimal number
123 456 789 is printed as:

123 456 789

Here, the digits are decimal values from 0 through 999. As a result, all output values are broken up into
one or more chunks with three digits per chunk. Using output bases that are large powers of 10, you can

bc

Chapter 1. OpenExtensions Shell Commands 31

arrange your output in columns; for example, many users find that 100 000 makes a good output base,
because numbers are grouped into chunks of five digits each.

Long numbers are output with a maximum of 70 characters per line. If a number is longer than this, bc
puts a backslash (\) at the end of the line, indicating that the number is continued on the next line.

Internal calculations are performed in decimal, regardless of the input and output bases. Therefore the
number of places after the decimal point are dictated by the scale when numbers are expressed in
decimal form.

The maximum value for obase is given by the configuration variable {BC_BASE_MAX}.

Arithmetic Operations
bc provides a large number of arithmetic operations. Following standard arithmetic conventions, some
operations are calculated before others. For example, multiplications take place before additions unless
you use parentheses to group operations. Operations that take place first are said to have a higher
precedence than operations that take place later.

Operations also have an associativity. The associativity dictates the order of evaluation when you have
a sequence of operations with equal precedence. Some operations are evaluated left to right, whereas
others are evaluated right to left. The following list shows the operators of bc from highest precedence to
lowest.

bc Operator Associativity

() Left to right

Unary ++ -- Not applicable

Unary - ! Not applicable

^ Right to left

* / % Left to right

+ - Left to right

= ^= *= /= %= += Right to left

== <= >= != < > None

&& Left to right

|| Left to right

Note: bc’s order of precedence is not the same as C’s. In C, the assignment operators have the lowest
precedence.

The following list describes what each operation does. In the descriptions, A and B can be numbers,
variables, array elements, or other expressions. V must be either a variable or an array element.
(A)

Indicates that this expression—A—should be evaluated before any other operations are performed on
it.

-A
Is the negation of the expression.

!A
Is the logical complement of the expression. If A evaluates to zero, !A evaluates to 1. If A is not
zero, !A evaluates to zero. This operator is unique to this version of bc.

++V
Adds 1 to the value of V. The result of the expression is the new value of V.

--V
Subtracts 1 from the value of V. The result of the expression is the new value of V.

bc

32 z/VM: 7.3 OpenExtensions Commands Reference

V++
Adds 1 to the value of V, but the result of the expression is the old value of V.

V--
Subtracts 1 from the value of V, but the result of the expression is the old value of V.

A ^ B
Calculates A to the power B. B must be an integer. The scale of the result of A^B is:

min(scale(A) * abs(B), max(scale, scale(A)))

where min calculates the minimum of a set of numbers and max calculates the maximum.
A * B

Calculates A multiplied by B. The scale of the result is:

min(scale(A) + scale(B), max(scale, scale(A), scale(B)))

A / B
Calculates A divided by B. The scale of the result is the value of scale.

A % B
Calculates the remainder from the division of A by B. This is calculated in two steps. First, bc
calculates A/B to the current scale. It then obtains the remainder through the formula:

A - (A / B) * B

calculated to the scale:

max(scale + scale(B), scale(A))

A + B
Adds A plus B. The scale of the result is the maximum of the two scales of the operands.

A-B
Calculates A minus B. The scale of the result is the maximum of the two scales of the operands.

The next group of operators are all assignment operators. They assign values to objects. An assignment
operation has a value: the value that is being assigned. Therefore, you can write such operations as
a=1+(b=2). In this operation, the value of the assignment in parentheses is 2 because that is the value
assigned to b. Therefore, the value 3 is assigned to a. The possible assignment operators are:
V = B

Assigns the value of B to V.
V ^= B

Is equivalent to V=V^B.
V *= B

Is equivalent to V=V*B.
V /= B

Is equivalent to V=V/B.
V %= B

Is equivalent to V=V%B.
V += B

Is equivalent to V=V+B.
V -= B

Is equivalent to V=V-B.

The following expressions are called relations, and their values can be either true (1) or false (0). This
version of bc lets you use the relational operators in any expression, not just in the conditional parts of if,
while, or for statements. These operators work exactly like their equivalents in the C language. The result
of a relation is 0 if the relation is false and 1 if the relation is true.

bc

Chapter 1. OpenExtensions Shell Commands 33

A == B
Is true if and only if A equals B.

A <= B
Is true if and only if A is less than or equal to B.

A >= B
Is true if and only if A is greater than or equal to B.

A != B
Is true if and only if A is not equal to B.

A < B
Is true if and only if A is less than B.

A > B
Is true if and only if A is greater than B.

A && B
Is true if and only if A is true (nonzero) and B is true. If A is not true, the expression B is never
evaluated.

A || B
Is true if A is true or B is true. If A is true, the expression B is never evaluated.

Comments and White Space
A comment has the form:

 /* Any string */

Comments can extend over more than one line of text. When bc sees /* at the start of a comment, it
discards everything up to */. The only effect a comment has is to indicate the end of a token. As an
extension, this version of bc also provides an additional comment convention using the # character. All
text from the # to the end of the line is treated as a single blank, as in:

2+2 # this is a comment

bc is free format. You can freely insert blanks or horizontal tab characters to improve the readability of
the code. Instructions are assumed to end at the end of the line. If you have an instruction that is so long
you need to continue it on a new line, put a backslash (\) as the very last character of the first line and
continue on the second, as in:

a = 2\
 + 3

The \ indicates that the instruction continues on the next line, so this is equivalent to:

a = 2 + 3

Instructions
A bc instruction can be an expression that performs a calculation, an assignment, a function definition, or
a statement. If an instruction is not an assignment, bc displays the result of the instruction when it has
completed the calculation. For example, if you enter:

3.14 * 23

bc displays the result of the calculation. However, with:

a = 3.14 * 23

bc does not display anything, because the expression is an assignment. If you do want to display the
value of an assignment expression, simply place the expression in parentheses.

bc

34 z/VM: 7.3 OpenExtensions Commands Reference

The following list shows the instruction forms recognized by bc:
expression

Calculates the value of the expression.
"string"

Is a string constant. When bc sees a statement of this form, it displays the contents of the string. For
example:

"Hello world!"

tells bc to display Hello world! A newline character is not output after the string. This makes it
possible to do things like:

foo = 15
"The value of foo is "; foo

With these instructions, bc displays

The value of foo is 15

statement ; statement ...
Is a sequence of statements on the same line. In bc, a semicolon (;) and a newline are equivalent.
They both indicate the end of a statement. bc runs these statements in order from left to right.

{statement}
Is a brace-bracketed statement. Braces are used to group sequences of statements together, as in:

{
 statement
 statement
 ...
}

Braces can group a series of statements that are split over several lines. Braces are usually used with
control statements like if and while.

break
Can be used only inside a while or for loop. break ends the loop.

for (initexp ; relation ; endexp) statement
Is equivalent to:

initexp
while (relation) {
 statement
 endexp
}

where initexp and endexp are expressions and relation is a relation. For example:

a = 0
for (i = 1; i <= 10; ++i) a += i

is equivalent to the while example given earlier.

Note: All three items inside the parentheses must be specified. Unlike C, bc does not let you omit any
of these expressions.

if (relation) statement
Tests whether the given relation is true. If so, bc runs the statement; otherwise, bc skips over the
statement and goes to the next instruction. For example:

if ((a%2) == 0) "a is even"

displays a is even if a has an even value.

bc

Chapter 1. OpenExtensions Shell Commands 35

if (relation) statement1 else statement2
Is similar to the simple if statement. It runs statement1 if relation is true and otherwise runs
statement2. It may be used as follows:

if ((a%2) == 0) "a is even" else "a is odd"

Note: There is no statement separator between "a is even" and the else keyword. This differs from the
C language.

Here is another example:

if (a<10) {
 "a "
 "is "; "less than 10 "
 a
} else {
 "a is"
 " greater than 10 "
 a
}

Note: The braces must be on the same line as the if and the else keywords. This is because a new line or
a semicolon right after (relation) indicates that the body of the statement is null. One common source of
errors in bc programs is typing the statement body portion of an if statement on a separate line. If –i is
used, the interpreter displays a warning when if statements with null bodies are encountered.

while (relation) statement
Repeatedly runs the given statement while relation is true. For example:

i = 1
a = 0
while (i <= 10) {
 a += i
 ++i
}

adds the integers from 1 through 10 and stores the result in a.

If relation is not true when bc encounters the while loop, bc does not run statement at all.

print expression , expression ...
Displays the results of the argument expressions. Normally, bc displays the value of each expression
or string it encounters. This makes it difficult to format your output in programs. For this reason, the
OpenExtensions shell version of bc has a print statement to give you more control over how things
are displayed. print lets you display several numbers on the same line with strings. This statement
displays all its arguments on a single line. A single space is displayed between adjacent numbers (but
not between numbers and strings). A print statement with no arguments displays a newline. If the last
argument is null, subsequent output continues on the same line. Here are some examples of how to
use print:

/* basic print statement */
print "The square of ", 2, "is ", 2*2
The square of 2 is 4

/* inserts a space between adjacent numbers */
print 1,2,3
1 2 3

/* note - no spaces */
print 1,"",2,"",3
123

/* just print a blank line */
print

bc

36 z/VM: 7.3 OpenExtensions Commands Reference

/* two statements with output on same line */
print 1,2,3, ; print 4, 5, 6
1 2 3 4 5 6

quit
Ends bc. In other implementations of bc, the interpreter exits as soon as it reads this token. This
version of bc treats quit as a real statement, so you can use it in loops, functions, and so on.

sh ...
Lets you send a line to the system command interpreter for execution, as in:

sh ls –al

This command passes everything from the first nonblank character until the end of the line to the
command interpreter for execution.

void expression
Throws away, or "voids," the result of the evaluation of expression instead of displaying it. This
instruction is useful when using ++ and -- operators, or when you want to use a function but don't
want to use the return value for anything. For example:

void foo++

increments foo but does not display the result. The void statement is unique to this version of bc.

Several other types of statements are relevant only in function definitions. These are described in the next
section.

Functions
A function is a subprogram to calculate a result based on argument values. For example, the following
function converts a temperature given in Fahrenheit into the equivalent temperature in Celsius:

define f_to_c(f) {
 return ((f-32) * 5 / 9)
}

This defines a function named f_to_c() that takes a single argument called f. The body of the function
is enclosed in brace brackets. The opening brace must be on the same line as the define keyword. The
function body consists of a sequence of statements to calculate the result of the function. An expression
of the form:

return (expression)

returns the value of expression as the result of the function. The parentheses around the expression are
optional.

To activate the subprogram you use a function call. This has the form:

name(expression,expression,...)

where name is the name of the function, and the expressions are argument values for the function. You
can use function call anywhere you might use any other expression. The value of the function call is the
value that the function returns. For example, with the function f_to_c(), described earlier, f_to_c(41) has
the value 5 (since 41 Fahrenheit is equivalent to 5 Celsius).

The general form of a function definition is:

define name(parameter,parameter,...) {
 auto local, local, ...
 statement
 statement
 ...
}

bc

Chapter 1. OpenExtensions Shell Commands 37

Each parameter on the first line can be a variable name or an array name. Array names are indicated by
putting square brackets after them. For example, if cmpvec is a function that compares two vectors, the
function definition might start with:

define cmpvec(a[],b[]) {

Parameters do not conflict with arrays or variables of the same name. For example, you can have a
parameter named a inside a function, and a variable named a outside, and the two are considered entirely
separate entities. Assigning a value to the variable does not change the parameter and vice versa. All
parameters are passed by value. This means that a copy is made of the argument value and is assigned to
the formal parameter. This also applies to arrays. If you pass an array to a function, a copy is made of the
whole array, so any changes made to the array parameter do not affect the original array.

A function may not need any arguments. In this case, the define line does not have any parameters inside
the parentheses, as in:

define f() {

The auto statement declares a sequence of local variables. When a variable or array name appears in an
auto statement, the current values of those items are saved and the items are initialized to zero. For the
duration of the function, the items have their new values. When the function ends, the old values of the
items are restored.

However, bc uses dynamic scoping rules, unlike C which uses lexical scoping rules. See “Usage Notes” on
page 41 for more details.

For example:

define addarr(a[],l) {
 auto i, s
 for (i=0; i < l; ++i) s += a[i]
 return (s)
}

is a function that adds the elements in an array. The argument l stands for the number of elements in the
array. The function uses two local names: a variable named i and a variable named s. These variables are
"local" to the function addarr and are unrelated to objects of the same name outside the function (or in
other functions). Objects that are named in an auto statement are called autos. Autos are initialized to 0
each time the function is called. Thus, the sum s is set to zero each time this function is called. You can
also have local arrays, which are specified by placing square brackets after the array name in the auto
statement.

define func_with_local_array() {
 auto local_array[];
 for(i=0; i<100; i++) local_array[i] = i*2
}

This example defines a local array called local_array. Local arrays start out with no elements in them.

If a function refers to an object that is not a parameter and not declared auto, the object is assumed to
be external. External objects may be referred to by other functions or by statements that are outside of
functions. For example:

define sum_c(a[],b[],l) {
 auto i
 for (i=0; i < l; ++i) c[i] = a[i] + b[i]
}

refers to an external array named c, which is the element-by-element sum of two other arrays. If c did not
exist prior to calling sum_c, it is created dynamically. After the program has called sum_c, statements in
the program or in functions can refer to array c.

Functions usually require a return statement. This has the form:

return (expression)

bc

38 z/VM: 7.3 OpenExtensions Commands Reference

The argument expression is evaluated and used as the result of the function. The expression must have a
single numeric value; it cannot be an array.

A return statement ends a function, even if there are more statements left in the function. For example:

define abs(i) {
 if (i < 0) return (-i)
 return (i)
}

is a function that returns the absolute value of its argument. If i is less than zero, the function takes the
first return; otherwise, it takes the second.

A function can also end by running the last statement in the function. If so, the result of the function is
zero. The function sum_c is an example of a function that does not have a return statement. The function
does not need a return statement, because its work is to calculate the external array c, not to calculate a
single value. Finally, if you want to return from a function, but not return a value you can use return() or
simply return. If there are no parameters to the return statement, a default value of zero is returned.

Built-In Functions
bc has a number of built-in functions that perform various operations. These functions are similar to
user-defined functions. You do not have to define them yourself, however; they are already set up for you.
These functions are:
length(expression)

Calculates the total number of decimal digits in expression. This includes digits both before and after
the decimal point. The result of length() is an integer. For example, length(123.456) returns 6.

scale(expression)
Returns the scale of expression. For example, scale(123.456) returns 3. The result of scale() is always
an integer. Subtracting the scale of a number from the length of a number lets you determine the
number of digits before the decimal point.

sqrt(expression)
Calculates the square root of the value of expression. The result is truncated in the least significant
decimal place (not rounded). The scale of the result is the scale of expression, or the value of scale(),
whichever is larger.

You can use the following functions if –l is specified on the command line. If it is not, the function names
are not recognized. There are two names for each function: a full name, and a single character name for
compatibility with POSIX.2. The full names are the same as the equivalent functions in the standard C
math library.
arctan(expression) or a(expression)

Calculates the arctangent of expression, returning an angle in radians. This function can also be called
as atan(expression).

bessel(integer,expression) or j(integer,expression)
Calculates the Bessel function of expression, with order integer. This function can also be called as
jn(integer,expression).

cos(expression) or c(expression)
Calculates the cosine of expression, where expression is an angle in radians.

exp(expression) or e(expression)
Calculates the exponential of expression (that is, the value e to the power of expression).

ln(expression) or l(expression)
Calculates the natural logarithm of expression. This function can also be called as log(expression).

sin(expression) or s(expression)
Calculates the sine of expression, where expression is an angle in radians.

bc

Chapter 1. OpenExtensions Shell Commands 39

Examples

1. Here is a simple function to calculate the sales tax on a purchase. The amount of the purchase is given
by purchase, and the amount of the sales tax (in per cent) is given by tax.

define sales_tax(purchase,tax) {
 auto old_scale
 scale = 2
 tax = purchase*(tax/100)
 scale = old_scale
 return (tax)
}

For example:

sales_tax(23.99,6)

calculates 6% tax on a purchase of $23.99. The function temporarily sets the scale value to 2 so
that the monetary figures have two figures after the decimal point. Remember that bc truncates
calculations instead of rounding, so some accuracy may be lost. It is better to use one more digit than
needed and perform the rounding at the end. The round2 function, shown later in this section, rounds
a number to two decimal places.

2. Division resets the scale of a number to the value of scale. You can use this to extract the integer
portion of a number, as follows:

define integer_part(x) {
 # a local to save the value of scale
 auto old_scale
 # save the old scale, and set scale to 0
 old_scale = scale; scale=0
 # divide by 1 to truncate the number
 x /= 1
 # restore the old scale
 scale=old_scale
 return (x)
}

3. Here is a function you can define to return the fractional part of a number:

define fractional_part(x) {return (x - integer_part(x))}

4. The following function lets you set the scale of number to a given number of decimal places:

define set_scale(x, s)
 { auto os
 os = scale
 scale = s
 x /= 1
 scale = os
 return (x) }

You can now use set_scale() in a function that rounds a number to two decimal places:

define round2(num) {
 auto temp;
 if(scale(num) < 2) return (set_scale(num, 2))
 temp = (num - set_scale(num, 2)) * 1000
 if(temp > 5) num += 0.01
 return (set_scale(num,2))
}

This is a very useful function if you want to work with monetary values. For example, you can now
rewrite sales_tax() to use round2():

define sales_tax(purchase,tax) {
 auto old_scale
 scale = 2
 tax = round2(purchase*(tax/100))
 scale = old_scale
 return (tax)
}

bc

40 z/VM: 7.3 OpenExtensions Commands Reference

5. Here is a function that recursively calculates the factorial of its argument:

define fact (x) {
 if(x < 1) return 1
 return (x*fact(x-1))
}

You can also write the factorial function iteratively:

define fact (x) {
 auto result
 result = 1
 while(x>1) result *= x--
 return (result)
}

With either version, fact(6) returns 720.
6. Here is another recursive function, that calculates the nth element of the Fibonacci sequence:

define fib(n) {
 if(n < 3) {
 return (1)
 } else {
 return (fib(n-1)+fib(n-2))
 }
}

Usage Notes
1. Unlike the C language, which uses lexical scoping rules, bc uses dynamic scoping, which is most easily

explained with an example:

a=10
define f1() {
 auto a;
 a = 13;
 return (f2())
}
define f2() {
 return (a)
}
f1()
13
f2()
10

If f1() is called, bc prints the number 13, instead of the number 10. This is because f1() hides away
the old (global) value of a and then sets it to 13. When f2() refers to a, it sees the variable dynamically
created by f1() and so prints 13. When f1() returns, it restores the old value of a. When f2() is called
directly, instead of through f1(), it sees the global value for a and prints 10. The corresponding C code
prints 10 in both cases.

2. Numbers are stored as strings in the program and converted into numbers each time they are used.
This is important because the value of a "constant" number may change depending on the setting of
the ibase variable. For example, suppose the following instructions are given to bc:

define ten() {
 return (10)
}
ten()
10
ibase=16
ten()
16

In this example, when the base is set to 10, ten() returns the decimal value 10. However, when
the input base is changed to 16, the function returns the decimal value 16. This can be a source of
confusing errors in bc programs.

bc

Chapter 1. OpenExtensions Shell Commands 41

3. The library of functions loaded using the –l option is stored in the file /usr/lib/lib.b under your
root directory.

Files
/usr/lib/lib.b

File containing the library of functions loaded with –l

Localization
bc uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following errors:

• Break statement found outside loop
• Parser stack overflow
• Syntax error
• End of file in comment
• End of file in string
• Numerical constant is too long
• String is too long
• Unknown option
• Empty evaluation stack
• Cannot pass scalar to array
• Cannot pass array to scalar
• Incorrect array index
• Built-in variable cannot be used as a parameter or auto variable
• name is not a function
• Incorrect value for built-in variable
• Shell command failed to run
• Division by 0
• Incorrect value for exponentiation operator
• Attempt to take square root of negative number
• Out of memory

bc

42 z/VM: 7.3 OpenExtensions Commands Reference

Limits
The parser stack depth is limited to 150 levels. Attempting to process extremely complicated programs
may result in an overflow of this stack, causing an error.

Portability
POSIX.2, UNIX systems

The following are extensions to the POSIX standard:

• The –i option
• The &&and || operators
• The if ... else ... statement
• identifiers of more than one character or containing characters outside the POSIX character set
• The print statement
• The sh statement
• The optional parentheses in the return statement

bc

Chapter 1. OpenExtensions Shell Commands 43

bg — Move a job to the background

bg [job...]

Purpose

bg runs one or more jobs in the background. The job IDs given on the command line identify these jobs,
which should all be ones that are currently stopped. If you do not specify any job IDs, bg uses the most
recently stopped job.

bg works only if job control is enabled; see the –m option of set for more information. Job control is
enabled by default in the OpenExtensions Shell.

Localization
bg uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
>0

Failure because a job argument is incorrect or there is no current job.

If an error occurs, bg exits and does not place the job in the background.

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Commands
fg, jobs, set

bg

44 z/VM: 7.3 OpenExtensions Commands Reference

break — Exit from a for, select, while, or until loop in a shell script

break [number]

Purpose

break exits from a for, select, while, or until loop in a shell script. If number is given, break exits from the
given number of enclosing loops. The default value of number is 1.

Usage Notes
This is a special built-in command of the shell.

Exit Values
break always exits with an exit status of 0.

Portability
POSIX.2, X/Open Portability Guide.

break is a special built-in shell command.

Related Commands
continue, sh

break

Chapter 1. OpenExtensions Shell Commands 45

c89/cxx — Compile C/C++ source code and create an executable
file

c89/cxx [-cEgOsV]
 [-D name[=value]]... [-U name]...
 [-W phase,option[,option]...]...
 [-o outfile]
 [-I directory]... [-L directory]...
 [file.c]... [file.a]...
 [file.o]...[file.x]...
 [-l libname]...

Purpose

The c89 and cxx commands compile and build C/C++ programs. They are the OpenExtensions interface
to the IBM C/C++ compilers:

• c89 can invoke the IBM XL C/C++ for z/VM compiler, the IBM C/C++ for z/VM compiler, or the IBM C for
VM/ESA compiler. See usage note “1” on page 50.

• cxx invokes the IBM XL C/C++ for z/VM compiler or the IBM C/C++ for z/VM compiler (whichever is
installed).

When you issue c89/cxx, the utility passes information about the application program and the compiler
options to the compiler for processing. First, c89/cxx performs the compilation phase (including
preprocessing) by compiling all operands of the file.c form. The result of each compile step is a file.o
file. If all compilations are successful, or if only file.o and no file.c files are specified, c89/cxx proceeds to
the module build phase:

• c89 by default invokes the Program Management binder. However, the C prelinker can be invoked by
specifying the -W b,p option.

• cxx always invokes the Program Management binder.

In the module build phase, c89/cxx combines all file.o files from the compilation phase along with any
file.o and file.x operands that were specified. Any file.a and -l libname operands that were specified are
also used.

The output of the module build phase is an executable file. For c89/cxx to produce an executable file, you
must specify at least one operand of the file.c or file.o form (or corresponding CMS native record file), or at
least one operand of the file.a form.

c89/cxx can be invoked from the shell as a utility or from CMS as a CMS command.

For more information on how to manage your C source code, see z/VM: OpenExtensions Advanced
Application Programming Tools.

Options
c89/cxx recognizes the following options.
-c

Specifies that only compilations be done. If the source file is a BFS file, the object file is written to the
working directory. If the source file is a CMS record file, the object file is written to the A-disk with the
name file TEXT.

-D name[=value]
Defines a C/C++ macro for use in compilation. If only name is provided, a value of 1 is used for the
macro it specifies. For information about macros that c89/cxx automatically defines, see usage note
“6” on page 50. Also, for related information, see usage note “10” on page 51.

c89/cxx

46 z/VM: 7.3 OpenExtensions Commands Reference

-E
Specifies that C/C++ source produced by the compiler preprocessor phase be copied to stdout.
Compilation into object and link-edit are not done. If c89/cxx is invoked from CMS and the original
C/C++ source resides in the byte file system, then the generated C/C++ source is placed in the
directory in which the original C/C++ source resides. If c89/cxx is invoked from CMS and the original
C/C++ source resides on an accessed file mode, then the generated C/C++ source is placed on the
user's A-disk.

-g
Specifies that compilation is to produce an object file that includes symbolic information, which is
required for source-level debugging.

-I directory
Specifies the directories to be used during compilation in searching for include files (also called
header files).

Absolute path names specified on #include directives are searched exactly as specified. The
directories specified using the -I option or from the usual places are not searched.

If absolute path names are not specified on #include directives, then the search order is as follows:

• Include files enclosed in double quotation marks (") are first searched for in the directory of the
file containing the #include directive. Include files enclosed in angle-brackets (< >) skip this initial
search.

• The include files are then searched for in all directories specified by the -I option, in the order
specified.

• Finally, the include files are searched for in the usual places. (See usage note “5” on page 50 for a
description of the usual places.)

CMS files can explicitly be specified on #include directives. You can indicate this by specifying a
leading double slash (//). For example, to include the include file DEF H that is on a CMS minidisk,
code your C/C++ source as follows:

#include <//def.h>

CMS include files are handled according to C/C++ compiler conversion rules (see usage note “5” on
page 50). When specifying an #include directive with a leading double slash, the file search follows
the CMS access search order. This means that when you explicitly specify a CMS file, any directory
names specified on the -I option are ignored.

-L directory
Specifies the directories to be used to search for archive libraries specified by the -l operand. The
directories are searched in the order specified, followed by the usual places. You cannot specify a
CMS file as an archive library directory.

For information on specifying C370LIB libraries, see the description of the -l libname operand. Also
see usage note “7” on page 51 for a description of the usual places.

-O
Specifies that compilation be done with the C/C++ compiler level 1 optimization and selective inlining
techniques. The defaults are no optimization and no inlining. If you compile and build your C/C++
program using the -O option, you cannot take advantage of source-level debugging.

In addition to using optimization techniques, you may want to control writable strings by using the
#pragma strings (readonly) directive.

-o outfile
Specifies where c89/cxx is to write the executable file. The file a.out is the default when the source
file is a BFS file, and is written to the working directory. If the source file is a CMS record file, the
default is to write the executable file to the A-disk with the name file MODULE.

Also see usage note “4” on page 50 for related information.

c89/cxx

Chapter 1. OpenExtensions Shell Commands 47

-s
Specifies that compilation produces a file.o file that does not include symbolic information. This is the
default behavior for c89/cxx.

-U name
Undefines a C/C++ macro specified with name. This option affects only macros defined by the
-D option, including those automatically specified by c89/cxx. For information about macros that
c89/cxx automatically defines, see usage note “6” on page 50. Also, for related information, see
usage note “10” on page 51.

-V
This verbose option produces and directs output to stdout as compiler listings and (for c89 only)
prelinker listings. Error output continues to be directed to stderr. If c89/cxx is invoked from CMS, and
if the source resides in a byte file system directory, then the output is placed in the directory where
the source was found. If c89/cxx is invoked from CMS, and if the source resides on an accessed file
mode, then the output is placed on the user's A-disk.

-W phase,option[,option]...
Specifies options to be passed to the compile or module build phases of c89/cxx. Phase 0 or c
specifies the compile phase, and phase b specifies the module build phase.

• When using c89 to invoke the IBM XL C/C++ for z/VM compiler or the IBM C/C++ for z/VM compiler,
or when using cxx, the module build phase always uses the Program Management binder. To pass
options to the binder, the first module build phase option must be b.

• When using c89 to invoke the IBM C for VM/ESA compiler, the module build phase includes
prelinker processing, the loading of the resulting CMS TEXT file using the CMS LOAD command,
and the creation of the module file by the CMS GENMOD command.

To pass options to the prelinker, the first module build phase option must be p. For example, to write
the prelink map to stdout, specify:

c89 -W b,p,map file.c

To pass options to the LOAD command, the first module build phase option must be l.

To pass options to the GENMOD command, the first module build phase option must be g.

To use the Program Management binder (instead of the prelinker, LOAD, and GENMOD) and pass
options to it, the first module build phase option must be b. For example:

c89 -W b,b,NOTERM file.c

You cannot use -W to override the compiler options that correspond to c89/cxx options, with the
exception of the listing options (corresponding to -V) and inlining options (corresponding to -O).

For the prelinker, c89 uses the following options, all of which can be overridden using the -W option
with the exception of OE.

DUP NONCAL
OE NOMAP
NER NOUPCASE
NOMEMORY NOLIB

For the CMS LOAD command, c89 uses the default options except for RLDSAVE, NOAUTO, and
NOMAP.

For the CMS GENMOD command, c89 uses the default options except for NOMAP.

For the Program Management binder (CMS BIND command), c89/cxx uses the default options except
for CASE MIXED.

Notes:

1. Most compiler and prelinker options have a positive and negative form. The negative form is
the positive with a NO added before (as in XREF and NOXREF). The same is true for LOAD and
GENMOD.

c89/cxx

48 z/VM: 7.3 OpenExtensions Commands Reference

2. The IBM XL C/C++ for z/VM compiler is described in XL C/C++ for z/VM: User's Guide. The IBM
C/C++ for z/VM compiler is described in C/C++ for z/VM: User's Guide, SC09-7625-00. The IBM C
for VM/ESA compiler is described in C for VM/ESA: User's Guide, SC09-2152-00.

3. The Program Management binder is described in z/VM: Program Management Binder for CMS.
4. The prelinker is described in z/VM: Language Environment® User's Guide.
5. The CMS module build process is described in z/VM: CMS Application Development Guide.

Operands
c89/cxx recognizes the following operands:

Note: You can specify a CMS record file system file identifier by preceding the file name with a double
slash (//).

file.c
Specifies the name of a C/C++ source file to be compiled. The form for a C source file is file.c; the
form for a C++ source file is file.cpp or file.cxx. You can specify a CMS file, but it must have a file
type of C, CPP, or CXX.

The object file is written in the working directory and is named file.o. If a CMS native record file name
is specified, the object file is named file MODULE A. See usage note “4” on page 50 for related
information.

file.a
Specifies the name of an archive file, as produced by the ar command, to be used during the module
build phase.

file.o
Specifies the name of a C/C++ object file, produced by c89/cxx, to be used in the module build phase.
You can specify a CMS file, but it must have a file type of TEXT.

file.x
Specifies the name of a definition side-deck produced during the c89 link-editing phase when creating
a Dynamic Link Library (DLL). You can specify a CMS file, but it must have a file type of EXP. For
additional information, see usage note “12” on page 51.

-l libname
Specifies the name of an archive library. c89/cxx searches for the file liblibname.a in the directories
specified on the -L option and then in the usual places. The first occurrence of the archive library is
used. For a description of the usual places, see usage note “7” on page 51.

You can specify a CMS file, but it must have a file type of TXTLIB. libname is used directly without
prefixing it with lib. If only //libname is specified, the file type txtlib is assumed. The CMS native
record file specified must be a C370LIB object library. For more information about the Object Library
Utility, see XL C/C++ for z/VM: User's Guide.

Files
libc.a

C/C++ function library (see usage note “7” on page 51).
libm.a

C/C++ math function library (see usage note “7” on page 51).
libl.a

lex function library.
liby.a

yacc function library.
/usr/include

The usual place to search for include files (see usage note “5” on page 50).
/lib

The usual place to search for library functions (see usage note “7” on page 51).

c89/cxx

Chapter 1. OpenExtensions Shell Commands 49

/usr/lib
The usual place to search for library functions (see usage note “7” on page 51).

Usage Notes
1. By default, the c89 command invokes the IBM XL C/C++ for z/VM compiler or the IBM C/C++ for z/VM

compiler (whichever is installed) to compile C or C++ source. If you had previously set c89 to invoke
the IBM C for VM/ESA compiler and want to change to the IBM XL C/C++ for z/VM compiler or the
IBM C/C++ for z/VM compiler, you can issue the following command to specify the C/C++ compiler
module (CBXFINIT) on the _CNAME environment variable:

globalv select cenv setlp_cname cbxfinit

To use the IBM C for VM/ESA compiler, you can specify the C compiler module (CBC310) by issuing
the following command:

globalv select cenv setlp_cname cbc310

The cxx command always invokes CBXFINIT MODULE and does not look at the _CNAME environment
variable.

2. To be able to specify an operand that begins with a dash (-), before specifying any other operands
that do not, you must use the double dash (--) end-of-options delimiter. This also applies to the
specification of the -l operand.

3. When invoking c89/cxx from the shell, any option-arguments or operands specified that contain
characters with special meaning to the shell must be escaped. For example, some -W option-
arguments contain parentheses.

To escape these special characters, either enclose the option-argument or operand in double
quotation marks, or precede each character with a backslash.

4. Some c89/cxx behavior applies only to files (and not to CMS native record files).

• The -o option does not allow a file of the form file.c to be specified.
• If the compilation is not successful, the corresponding file.o file is always removed.

5. Minidisks and SFS directories in the CMS file system search order are used as the usual place to
resolve compiler include files during compilation. Searching here for include files is automatic.

Because the include files are CMS files, the C/C++ compiler uses conversion rules to transform the
#include preprocessor directive specification into a CMS file name. This transformation strips any
directory name on the #include directive, and then takes the first 8 or less characters up to the first
dot (.).

Therefore, if an application programmer specifies an #include directive with a relative path name
having the same file name as a system include file (CMS file) and the user include file cannot be
found, the system include file is found instead.

For consistency with other implementations, c89/cxx searches the directory /usr/include as the
usual place, just prior to searching the CMS minidisks or SFS directories.

6. c89/cxx automatically defines the following POSIX feature test macros:

errno=(*__errno())
_OPEN_DEFAULT=1
__OPEN_VM=1

c89/cxx adds the macro definition only after processing the c89/cxx command string. You can
override the macro by specifying -D or -U options for it on the c89/cxx command string.

The __OPEN_VM macro is used internally in the compiler and does not change any of the standard
feature macros. The _OPEN_DEFAULT macro defines the level of POSIX feature test macros used in
FEATURES H.

c89/cxx

50 z/VM: 7.3 OpenExtensions Commands Reference

7. The usual place for the -L option search is the /lib directory followed by the /usr/lib directory.
For consistency with other implementations, the archive libraries libc.a and libm.a exist as files in
the /usr/lib directory. However, the library functions are not contained in them. Instead, CMS files
installed with Language Environment® are used as the usual place to resolve library functions in the
final step of the link-editing phase.

8. Because archive library files are searched when their names are encountered, the placement of -l
operands and file.a operands is significant. You may have to specify a library multiple times on the
c89/cxx command string, if subsequent specification of file.o files requires that additional symbols
be resolved from that library.

9. Normally, options and operands are processed in the order read (from left to right). Where there are
conflicts, the last specification is used (such as with -g and -s). However, some c89/cxx options will
override others, regardless of the order in which they are specified. The option priorities, in order of
highest to lowest, are as follows:
-E

Overrides -O and -V, -c, -g and -s.
-g

Overrides -O and and -s.
-s

Overrides -g (the last one specified is honored).
-O -V, -c

All are honored if not overridden.
10. For options that have option-arguments, the meaning of multiple specifications of the options is as

follows:
-D

All specifications are used. If the same name is specified on more than one -D option, only the
first definition is used.

-U
All specifications are used. The name is not defined, regardless of the position of this option
relative to any -D option specifying the same name.

-I
All specifications are used. If the same directory is specified on more than one -I option, the
directory is searched only the first time.

-L
All specifications are used. If the same directory is specified on more than one -L option, the
directory is searched only the first time.

-W
All specifications are used. All options specified for a phase are passed to it, as if they were
concatenated together in the order specified.

-o
The output file used will be the one specified on the last -o option.

11. The C/C++ runtime library supports a file naming convention of // (the file name can begin with
exactly two slashes). c89/cxx indicates that the file naming convention of // can be used.

However, OpenExtensions does not support this convention. Do not use this convention (//) unless it
is specifically indicated (as here in c89/cxx). OpenExtensions does support the POSIX file naming
convention where the file name can be selected from the set of character values excluding the slash
and the null character.

12. A file.x definition side-deck contains link-editing phase IMPORT control statements naming symbols
that are exported by a DLL. The definition side-deck is subsequently used during the link-editing
phase of an application that is to use the DLL.

c89/cxx

Chapter 1. OpenExtensions Shell Commands 51

To create a definition side-deck, you must specify the dll option as a linkage editor option during
the c89 link-editing phase when creating the DLL. Also, you must use either the C compiler option
exportall or the C compiler directive #pragma export. For example:

c89 -o outdll -W c,expo,dll -W b,p,dll file.c

The definition side-deck is written to the working directory and is named [var][outdll.x/var].
If a file identifier of //outdll is specified, the definition side-deck is named //outdll.EXP. If the
output file specified already has a suffix, that suffix is replaced.

To subsequently use file.x definition side-decks, specify them along with any other file.o object files
specified for the c89 link-editing phase. For example:

c89 -omyappl myappl.o outdll.x

To run an application that is link-edited with a definition side-deck, the DLL that was created along
with the definition side-deck must be made available. When the DLL resides in the BFS, it must be in
either the working directory or a directory named on the LIBPATH environment variable. Otherwise, it
must be a file residing on a minidisk or SFS directory accessed in the current CMS search order.

For more information about DLLs, see the z/VM: CMS Application Development Guide.

Localization
c89/cxx uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
0

Successful completion.
1

Failure due to incorrect specification of the arguments passed to c89/cxx.
2

Failure processing archive libraries:

• Archive library was not in any of the library directories specified.
• Archive library was incorrectly specified, or was not specified, following the -l operand.

3
Compilation, prelink, or build step was unsuccessful.

4
Error when preparing to call the compiler, prelinker, or module build commands for one of the
following reasons:

• The file or CMS native record file name specified is incorrect.
• The file or CMS native record file name cannot be opened.

5
Dynamic allocation error, when preparing to call the compiler, prelinker, or module build commands
due to an error being detected in the allocation information.

6
Error copying the file from a temporary CMS file to a BFS file.

c89/cxx

52 z/VM: 7.3 OpenExtensions Commands Reference

8
Error creating a temporary input CMS file for the compiler, prelinker, or module build commands.

Portability
POSIX.2.

The -V option is an extension of the POSIX standard.

Related Commands
ar, lex, make, strip, yacc

c89/cxx

Chapter 1. OpenExtensions Shell Commands 53

cat — Concatenate and display a text file

cat [–su] [–v [et]] [file ...]

Purpose

cat displays and concatenates files. It copies each file argument to the standard output (stdout). If you
specify no files or specify a dash (–) as a file name, cat reads the standard input (stdin).

Options
cat recognizes the following options:
–e

Displays a $ character at the end of each line. This option works only if you also specify –v.
–s

Does not produce an error message if cat cannot find or read a specified file.
–t

Displays tabs as ^I. This option works only if you also specify –v.
–u

Does not buffer output.
–v

Displays all characters including those that are unprintable characters. If the character is unprintable,
one of the following three representations is used:

• M–X is used for character X if the significant bit is set.
• ^X is used for the control character X (for example, ^A for CTRL-A).
• \xxx represents a character with the octal value xxx.

The \xxx form is used if neither of the other representations can be used.

Localization
cat uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• An incorrect command-line argument.
• Inability to open the input file.

cat

54 z/VM: 7.3 OpenExtensions Commands Reference

• End of the file detected on the standard output.
• The input file is the same as the output file.

2
An incorrect command-line argument.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –e, –s, –t, and –v options are extensions of the POSIX standard.

Related Commands
cp, mv

cat

Chapter 1. OpenExtensions Shell Commands 55

cd — Change the working directory

cd [directory]
cd old new
cd –

Purpose

The command cd directory changes the working directory of the current shell execution environment
(see sh) to directory. If you specify directory as an absolute path name, beginning with /, this is the target
directory. cd assumes the target directory to be the name just as you specified it. If you specify directory
as a relative path name, cd assumes it to be relative to the current working directory.

Two special symbols are also supported:
. (dot)

Represents the current directory
.. (dot dot)

Represents the parent of the current directory.

If the variable CDPATH is defined in the shell, the built-in cd command searches for a relative path name
in each of the directories defined in CDPATH. If cd finds the directory outside the working directory, it
displays the new working directory.

Use colons to separate directories in CDPATH. In CDPATH, a null string represents the working directory.
For example, if the value of CDPATH begins with a separator character, cd searches the working directory
first; if it ends with a separator character, cd searches the working directory last.

In the shell, the command cd - is a special case that changes the current working directory to the
previous working directory by exchanging the values of the variables PWD and OLDPWD.

Note: Repeating this command toggles the current working directory between the current and the
previous working directory.

Calling cd without arguments sets the working directory to the value of the HOME environment variable, if
the variable exists. If there is no HOME variable, cd does not change the working directory.

The form cd old new is an extension to traditional implementations of sh. The shell keeps the name of the
working directory in the variable PWD. The cd command scans the current value of PWD and replaces the
first occurrence of the string old with the string new. The shell displays the resulting value of PWD, and it
becomes the new working directory.

If either directory is a symbolic link to another directory, the behavior depends on the setting of the shell's
–o logical option. See “set — Set or unset command options and positional parameters” on page 273 for
more information.

Environment Variables
CDPATH

Contains a list of directories for cd to search in when directory is a relative path name.
HOME

Contains the name of your home directory. This is used when you do not specify directory on the
command line.

OLDPWD
Contains the path name of the previous working directory. This is used by cd –.

cd

56 z/VM: 7.3 OpenExtensions Commands Reference

PWD
Contains the path name of the current working directory. This is set by cd after changing to that
directory.

Localization
cd uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• No HOME directory
• No previous directory
• A search for directory failed
• An old-to-new substitution failed

2
An incorrect command-line option

Messages and Return Codes
Possible error messages include:
dir bad directory

cd could not locate the target directory. This does not change the working directory.
Restricted

You are using the restricted version of the shell (for example, by specifying the –r option for sh). The
restricted shell does not allow the cd command.

No HOME directory
You have not assigned a value to the HOME environment variable. Thus, when you run cd in order to
return to your home directory, cd cannot determine what your home directory is.

No previous directory
You tried the command cd – to return to your previous directory; but there is no record of your
previous directory.

Pattern old not found in dir
You tried a command of the form cd old new. However, the name of the working directory dir does not
contain any string matching the regular expression old.

Portability
POSIX.2, X/Open Portability Guide.

All UNIX systems feature the first form of the command.

In the OpenExtensions shell implementation of this command, all forms are built into the shell.

cd

Chapter 1. OpenExtensions Shell Commands 57

The cd old new form of the command is an extension of the POSIX standard.

Related Commands
set, sh

cd

58 z/VM: 7.3 OpenExtensions Commands Reference

chgrp — Change the group owner of a file or directory

chgrp [–fR] group pathname ...

Purpose

chgrp sets the group ID to group for the files and directories named by the pathname arguments. group
can be a group name, from a group database, or it can be a numeric group ID (GID).

Note: chgrp can be used only by the file owner or a superuser. The file owner must have the new group as
his or her group or one of the supplementary groups.

Options
chgrp accepts two options:
–f

Does not issue an error message if chgrp cannot change the group ID. In this case, chgrp always
returns a status of 0.

–R
If a pathname on the command line is the name of a directory, chgrp changes the group ID of all files
and subdirectories in that directory. If chgrp cannot change some file or subdirectory in the directory,
it continues to try to change the other files and subdirectories in the directory, but exits with a nonzero
status.

Localization
chgrp uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

You specified –f, or chgrp successfully changed the group ownership of all the specified files and
directories.

1
Failure due to any of the following:

• Inability to access a specified file.
• Inability to change the group of a specified file.
• An irrecoverable error was encountered when you specified the –R option.

2
Failure due to any of the following:

• The command line contained an unknown option or too few arguments.
• chgrp did not recognize the specified group.

chgrp

Chapter 1. OpenExtensions Shell Commands 59

Portability
POSIX.2, UNIX systems.

The –f option is an extension of the POSIX standard.

Related Commands
chmod, chown

chgrp

60 z/VM: 7.3 OpenExtensions Commands Reference

chmod — Change the mode of a file or directory

chmod [–fR] mode pathname ...

Purpose

chmod changes the access permissions, or modes, of the specified file or directory. Modes determine who
can read, write, or search a directory.

Note: chmod can be used only by the file owner or a superuser.

Options
chmod accepts two options:
–f

Does not issue error messages concerning file access permissions, even if chmod encounters such
errors.

–R
If you specify a directory as a path name on the command, chmod changes the access permissions of
all files and subdirectories under that directory.

You can specify the mode value on the command line in either symbolic form or as an octal value.

The symbolic form of the mode argument has the form:

[who] op permission [op permission ...]

The who value is any combination of the following:
u

Sets all owner (user or individual) permissions.
g

Sets all group permissions.
o

Sets all other permissions.
a

Sets all permissions (owner, group, and other); this is the default. If a who value is not specified, the
default is a and the file creation mask is applied.

The op part of a symbolic mode is an operator that tells chmod to turn the permissions on or off. The
possible values are:
+

Turns on a permission.
-

Turns off a permission.
=

Turns on the specified permissions and turns off all others (owner, group, or other) for the specified
who.

The permission part of a symbolic mode is any combination of the following:
r

Read permission. If this is off, you cannot read the file.

chmod

Chapter 1. OpenExtensions Shell Commands 61

x
Execute permission for a file. If this is off, you cannot run the file. Search permission for a directory. If
this is off, you cannot search the directory.

X
Search permission for a directory; or execute permission for a file only when the current mode has at
least one of the execute bits set.

Notes:

1. When using the –R option, you can turn on search permission for all directories without changing
the execute permission for all regular files.

2. Using X on chmod is not displayed as X on ls. A file cannot choose between x and X as the
execute permission. X is determined at the time of the chmod.

w
Write permission. If this is off, you cannot write to the file.

s
If in owner permissions section, the set-user-ID bit is on; if in group permissions section, the set-
group-ID bit is on.

t
This represents the sticky bit. The sticky bit can be set, but OpenExtensions will take no action based
on its setting.

You can specify multiple symbolic names if you separate them with commas. For example, you can
specify the same who when you have multiple groups, which are processed left to right:

chmod a=,u=rwx

Absolute modes are octal numbers specifying the complete list of attributes for the files; you specify
attributes by ORing together these bits.

4000 Set-user-ID bit
2000 Set-group-ID bit
1000 Sticky bit
0400 Owner read
0200 Owner write
0100 Owner execute/search (or list directory)
0040 Group read
0020 Group write
0010 Group execute/search
0004 Other read
0002 Other write
0001 Other execute/search

Examples

chmod -w orgcht

removes write permission from orgcht.

chmod a=rwx aprsal

turns on read, write, and execute permissions, and turns off the set-user-ID bit, set-group-ID bit, and
sticky-bit attributes. This is equivalent to chmod 0777 aprsal.

Localization
chmod uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE

chmod

62 z/VM: 7.3 OpenExtensions Commands Reference

• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Usage Notes
For a mounted external link, the actual access permission set is the combination of the permission set for
the linked object and the permission set for the link itself. If you are changing the access permissions for
an external link, you may have to change both of these permission sets. Specifying the chmod command
with the name of the external link changes only the permissions for the link. To change permissions for
the linked object, specify the name of the external link with a closing slash (/) or specify its fully qualified
pathname.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Inability to access a specified file
• Inability to change the modes on a specified file
• Inability to read the directory containing the item to change
• An irrecoverable error was encountered when using the –R option

2
Failure due to any of the following:

• Missing or incorrect mode argument
• Too few arguments

Messages and Return Codes
Possible error messages include:
irrecoverable error during -R option

The –R option was specified, but some file or directory in the directory structure was inaccessible.
This may happen because of permissions.

read directory name
Read permissions are not on the specified directory.

Portability
POSIX.2, X/Open Portability Guide.

The –f option and the t permission are extensions of the POSIX standard.

Related Commands
ls, umask

chmod

Chapter 1. OpenExtensions Shell Commands 63

chown — Change the owner or group of a file or directory

chown [–fR] owner[:group] pathname ...

Purpose

chown sets the user ID (UID) to owner for the files and directories named by pathname arguments. owner
can be a user name from the user profile, or it can be a numeric user ID.

If you include a group name—that is, if you specify owner followed immediately by a colon (:) and then
group with no intervening spaces, such as owner:group—chown also sets the group ID to group for the
files and directories named.

Note: chown can be used only by a superuser.

Options
chown accepts the following options:
–f

Does not issue an error message if chown cannot change the owner. In this case, chown always
returns a status of zero. Other errors may cause a nonzero return status.

–R
If pathname on the command line is the name of a directory, chown changes all the files and
subdirectories in that directory to belong to the specified owner (and group, if :group is specified). If
chown cannot change some file or subdirectory in the directory, it continues to try to change the other
files and subdirectories in the directory, but exits with a nonzero status.

Localization
chown uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Usage Notes
For a mounted external link, both the linked object and the link itself have an owner and group ID.
However, true ownership of the external link rests with the linked object. Specifying the chown command
with the name of the external link changes only the owner or group ID of the link. To change the owner or
group ID of the linked object, specify the name of the external link with a closing slash (/) or specify its
fully qualified pathname.

Exit Values
Possible exit status values are:
0

You specified –f, or chown successfully changed the ownership of all the specified files and
directories.

chown

64 z/VM: 7.3 OpenExtensions Commands Reference

1
Failure due to any of the following:

• Inability to access a specified file.
• Inability to change the owner of a specified file.
• Inability to read the directory containing the directory entry of the file.
• An irrecoverable error was encountered when using the –R option.

2
Failure due to any of the following:

• The command line contained an incorrect option.
• The command line had too few arguments.
• An owner was specified with a user ID that the system did not recognize.

Portability
POSIX.2, UNIX systems. The –f option is an extension of the POSIX standard.

Related Commands
chgrp, chmod

chown

Chapter 1. OpenExtensions Shell Commands 65

cksum — Calculate and write checksums and byte counts

cksum [–ciprt] [file ...]

Purpose
cksum calculates and displays a checksum for each input file. A checksum is an error-checking technique
used by many programs as a quick way to compare files that have been moved from one location to
another to ensure that no data has been lost. It also displays the number of 8-bit bytes in each file.

If you do not specify any files on the command line, or if you specify – as the file name, cksum reads the
standard input.

The output has the form:

checksum bytecount filename

Options
cksum can calculate checksums in a variety of ways. The default is compatible with the POSIX.2
standard. You can specify other algorithms with the following options. The POSIX standard does not
recognize these algorithms; the OpenExtensions shell provides them for compatibility with the UNIX sum
command.
–c

Uses a standard 16-bit cyclic redundancy check (CRC-16).
–i

Uses the CCITT standard cyclic redundancy check (CRC-CCITT). Data communication network
protocols often use a cyclic redundancy check to ensure proper transmission. This algorithm is more
likely to produce a different sum for inputs—the only difference is byte order.

–p
Uses the POSIX.2 checksum algorithm. This is the default.

–r
enables the use of an alternate checksum algorithm that has the advantage of being sensitive to byte
order.

–t
Produces a line containing the total number of bytes of data read as well as the checksum of the
concatenation of the input files.

Localization
cksum uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:

cksum

66 z/VM: 7.3 OpenExtensions Commands Reference

0
Successful completion

1
Failure due to any of the following:

• Inability to open input file
• An error reading the input file

2
Unknown command-line option

Portability
POSIX.2, X/Open Portability Guide.

All the listed options are extensions of the POSIX standard.

Related Commands
cmp, diff, ls, wc

cksum

Chapter 1. OpenExtensions Shell Commands 67

cmp — Compare two files

cmp [–blsx] file1 file2 [seek1[seek2]]

Purpose
cmp compares two files. If either file name is –, cmp reads the standard input for that file. By default,
cmp begins the comparison with the first byte of each file. If you specify seek1 and/or seek2, cmp uses
it as a byte offset into file1 or file2 (respectively), and comparison begins at that offset instead of at the
beginning of the files. The comparison continues (1 byte at a time) until a difference is found, at which
point the comparison ends and cmp displays the byte and line number where the difference occurred.
cmp numbers bytes and lines beginning with 1.

Options
cmp supports the following options:
–b

Compares single blocks at a time. Normally, cmp reads large buffers of data into memory for
comparison.

–l
Causes the comparison and display to continue to the end; however, cmp attempts no
resynchronization. cmp displays the byte number (in decimal) and the differing bytes (in octal) for
each difference found.

–s
Suppresses output and returns a nonzero status if the files are not identical.

–x
Displays the differing bytes shown by the –l option in hex; normally cmp displays them in octal.

Localization
cmp uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

The files were identical.
1

The files were not identical.
2

Failure because of an error opening or reading an input file.

Messages and Return Codes
Possible error messages include:

cmp

68 z/VM: 7.3 OpenExtensions Commands Reference

EOF on filename
cmp reached the end of the file on the specified file before reaching the end of the file on the other
file.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –b and –x options and the seek pointers are extensions of the POSIX standard.

Related Commands
comm, diff, uniq

cmp

Chapter 1. OpenExtensions Shell Commands 69

cms — Enter a CMS command from the shell

cms cms_command_string

Purpose
The cms built-in command allows any CP or CMS command to be executed from the shell environment.
Abbreviations, synonyms and EXECs are respected. The CMS line-mode output of the command is written
to standard output, while any full screen interactions performed by the command will interact directly
with the user's console. The CP line-mode output is written to the virtual machine console.

The cms_command_string is the CMS command, including any operands or options, following the syntax
of the command. CMS command syntax includes the characters ‘*’, ‘)’ and ‘(’. Therefore, these characters
must be enclosed in single or double quotation marks to prevent the shell from interpreting them. The
cms_command_string is limited to 238 characters in length. Any characters that are included in the
cms_command_string past the first 238 characters are ignored.

Note: OpenExtensions C or C++ applications that reside on minidisks or in CMS shared file system
directories cannot be executed directly with the cms built-in command. You must create an external link
by using the OPENVM CREATE EXTLINK command to point to the application program. Then use the BFS
path name of the application program to invoke it.

Exit Values
Possible exit status values are:
0

Successful completion
≠0

Failure due to a problem encountered by the command or the CMS command processor. The returned
value is the return code from the command.

Portability
cms is a built-in shell command.

cms

70 z/VM: 7.3 OpenExtensions Commands Reference

cmsfile — Redirect contents of standard input

cmsfile[–a][–f infile]outfile

Purpose
cmsfile is a shell pipe stage to redirect the standard input stream to an externally linked CMSDATA file.
cmsfile can also be used as a shell command by specifying the —f option. This command is designed to
serve as a substitute for the ">" and ">>" redirection functions, which do not support external links.

Options
cmsfile supports the following options:
–a

Appends the input data to the CMS data file outfile.
–f

Specifies a filepath, infile, to be read as input in place of the shell's standard input stream (STDIN).
cmsfile is used as a stand-alone shell command when this argument is used.

Examples

1. The pipes;

cat a.b > cmsfile ofile
cat a.b >> cmsfile ofile
cat > cmsfile ofile

are examples of invalid pipe because they use incorrect redirection operators.
2. The pipes;

tar -c * | compress | cmsfile ofile.tar
cat a.b | cmsfile ofile

are examples of pipes correctly using the last pipe stage to redirect the standard input stream to the
external link.

3. Use the OPENVM CREATE EXTL command to create external cmsdata links. Use the option string on
the cmsdata version of OPENVM CREATE EXTL to specify the format that the output file on CMS will
have. For example:

OPENVM CREATE EXTL ofile.tar CMSDATA OFILE TAR A,&&B

Localization
cmsfile uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

cmsfile

Chapter 1. OpenExtensions Shell Commands 71

Usage Notes
1. The output file, outfile, must be an externally linked CMSDATA file. If the file does not exist it will be

created. If the file already exists then, using the -a argument will cause the input file/stream to be
appended as a new record at the end of the file. Otherwise, the existing file will be removed prior to
writing the first character of the input file/stream.

2. The -f argument cannot be used to redirect the standard input, standard output, or standard error
streams.

3. cmsfile cannot be used as the target of redirection using the redirection operators ">", ">>", "<>", ">|",
">&", or ">&-".

4. Using cmsfile as a stand-alone command has performance advantages over using cmsfile as a pipe
stage, when copying a file to CMS. The command cmsfile —f a.b cms.output eliminates a great deal of
the I/O and processor time required to execute the equivalent shell pipe cat a.b | cmsfile cms.output.

5. The ls command is called by cmsfile during processing. Therefore, ls messages may appear during
cmsfile processing. These messages normally appear when the output external link is missing.

6. The format of the CMS file created is determined by options specified on the OPENVM CREATE EXTL
command used to define the external link between BFS and CMS.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• Inability to open the input file
• The input file is the same as the output file
• The output file is not an externally linked cmsdata file
• Inability to open the output file

2
An incorrect command-line argument.

Messages and Return Codes
Possible error messages include:
Cannot allocate buffer

There is not enough memory to allow cmsfile to set up one or more internal buffers.
External link name was not found

The file, ofile, does not exist, or is not an externally linked cmsdata file.
Pipe() failed

The C pipe() function failed while initializing an unnamed pipe between the cmsfile and the ls
commands.

Cannot determine PATH_MAX
cmsfile could not determine the value of the system PATH_MAX environment variable.

The file referred to is an external link
An error has occurred while opening the output file. This is probably due to an error in the access
mode or one or more keyword parameters in the OPENVM CREATE EXTLINK command used to link
the output file, ofile, to it's CMS file.

Portability
None; this is a z/VM specific command/utility.

cmsfile

72 z/VM: 7.3 OpenExtensions Commands Reference

: (colon) — Do nothing, successfully

: [argument ...]

Purpose
The : (colon) command is used when a command is needed, as in the then condition of an if command,
but nothing is to be done by the command. This command simply yields an exit status of zero (success).
This can be useful, for example, when you are evaluating shell expressions for their side effects.

Examples

: ${VAR:="default value"}

sets VAR to a default value if and only if it is not already set.

Usage Notes
This command is built into the shell.

Exit Values
Since this command always succeeds, the only possible exit status is:
0

Successful completion.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
sh, true

: (colon)

Chapter 1. OpenExtensions Shell Commands 73

comm — Show and select or reject lines common to two files

comm [–123] file1 file2

Purpose
comm locates identical lines within files sorted in the same collating sequence, and produces three
columns; the first contains lines found only in the first file, the second lines only in the second file, and the
third lines that are in both files.

Options
–1

Suppresses lines that appear only in file1
–2

Suppresses lines that appear only in file2
–3

Suppresses lines that appear both in file1 and file2

The options suppress individual columns. Thus, to list only the lines common to both files, use:

comm -12

To find lines unique to one file or the other, use:

comm -3

Observe that comm -123 displays nothing.

Localization
comm uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because of an error opening or reading an input file
2

Failure that generated a usage message, such as naming only one input file.
Incorrect command-line options are reported but do not affect the exit status value.

comm

74 z/VM: 7.3 OpenExtensions Commands Reference

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
cmp, diff, sort, uniq

comm

Chapter 1. OpenExtensions Shell Commands 75

command — Run a simple command

command [–p] command-name[argument...]
command [–V|–v] command-name

Purpose
command causes the shell to suppress its function lookup and execute the given command name and
arguments as though they made up a standard command line. In most cases, if command-name is not
the name of a function, the results are the same as omitting command. If, however, command-name is a
special built-in utility (see sh), some unique properties of special built-ins do not apply:

• A syntax error in the utility does not cause the shell running the utility to abort.
• Variable assignments specified with the special built-in utility do not remain in effect after the shell has

run the utility.

Options
command supports the following options:
–p

Searches for command-name using the default system variable PATH.
–v

Writes a string indicating the path name or command that the shell uses to invoke command-name.
–V

Writes a string indicating how the shell interprets command-name. If command-name is a utility,
regular built-in utility, or an implementation-provided function found using the PATH variable, the
string identifies it as such and includes the absolute path name. If command-name is an alias,
function, special built-in utility, or reserved word, the string identifies it as such and includes its
definition if it is an alias.

Examples

Typically, you use command when you have a command that may have the same name as a function. For
example, here is a definition of a cd function that not only switches to a new directory, but also uses ls to
list the contents of that directory:

function cd {
 command cd $1
 ls
}

Inside the function, we use command to get at the real cd. If we didn't do this, the cd function would call
itself in an infinite recursion.

Environment Variables
PATH

Contains a list of directories for command to use when searching for command-name except as
described under the –p option.

Localization
command uses the following localization environment variables:

• LANG

command

76 z/VM: 7.3 OpenExtensions Commands Reference

• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
If you specified –v, possible exit status values are:
0

Successful completion.
1

command could not find command-name, or an error occurred.
2

Failure due to incorrect command-line argument.

If you did not specify –v, possible exit status values are:
126

command found command-name, but failed to invoke it.
127

An error occurred in the command utility or it could not find command-name.

Otherwise, the exit status of command is the exit status of command-name.

Portability
POSIX.2.

Related Commands
sh

command

Chapter 1. OpenExtensions Shell Commands 77

compress — Use Lempel-Ziv compression

compress [–DdfVv] [–b bits] [file...]
compress [–cDdfVv] [–b bits] [file]

Purpose

compress uses the Lempel-Ziv compression techniques to compress data in a file or from the standard
input. Each file in the input file list is replaced by the compressed form. The compressed file has the same
name as the input file but with a .Z suffix. For example, the command compress myfile.abc replaces
the file named myfile.abc with the compressed form named myfile.abc.Z. If you do not specify any input
files, compress reads data from the standard input and writes the compressed result to the standard
output.

If the .Z file already exists and you did not specify the -f option, compress issues an error message and
ends without replacing the file.

compress uses the modified Lempel-Ziv algorithm. It first replaces common substrings in the file by 9-bit
codes starting at 257. After it reaches code 512, compress begins with 10-bit codes, and continues to
use more bits until it reaches the limit set by the –b option. After attaining the limit, compress periodically
checks the compression ratio. If the ratio is increasing, compress continues to use the existing code
dictionary. However, if the compression ratio decreases, compress discards the table of substrings and
rebuilds it from scratch. This allows the algorithm to compensate for certain files, such as archives, where
individual components have different information content profiles.

This implementation of compress is limited to a maximum of 16-bit compression.

Options
compress accepts the following options:
–b

Limits the maximum number of bits of compression to the value bits. This value may be an integer
from 9 to 16. The default is 16.

–c
Writes the output to the standard output. When you use this option, you can specify only one file on
the command line.

–D
Allows an extra degree of compression to be done for files such as sorted dictionaries where
subsequent lines normally have many characters in common with the preceding line.

–d
Uncompresses input files instead of compressing them. This works by overlaying the compress
program with the uncompress program. Uncompressing files this way is slower than using
uncompress directly.

–f
Forces compression even if the resulting file is larger or the output file already exists. When you do not
specify this option, files which will be larger after compression are not compressed. compress does
not print an error message if this happens.

–V
Prints the version number of compress.

compress

78 z/VM: 7.3 OpenExtensions Commands Reference

–v
Prints statistics giving the amount of compression achieved. Statistics give the name of each
file compressed and the compression ratio, expressed as a percentage. If the file resulting from
compression is larger than the original, the compression ratio is negative.

Localization
compress uses the following localization environment variables:

• PATH

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• Missing or unsupported number of bits after –b option
• Failed to execute uncompress
• Dictionary option - same count of string exceeded
• Cannot use stat function to get file status information
• Input file not a regular file
• Input file has other links
• Inability to find a file
• Inability to open an input file for reading
• Inability to create or open an output file
• Read error occurred on an input file
• Write error occurred on an output file
• Incorrect command-line option
• No space left on target device
• Insufficient memory to hold the data to be compressed or compression tables

2
Failure due to the following:

• One or more files were not compressed because the compressed version was larger than the
original

Messages and Return Codes
Possible error messages include:
compress: Option –b argument missing

You have specified –b but did not specify the bits argument that must follow.
Bits must be between 9 and 16

The –b bits option was specified but the bits argument was not an integer between 9 and 16.
tempfile already exists; name

The temporary file used for compression output already exists. The file must be erased before
compress can be used.

name already exists; not overwritten
The output file name already exists. Specify the –f option to force compress to overwrite the file.

compress

Chapter 1. OpenExtensions Shell Commands 79

name not a regular file: unchanged
name does not refer to a byte file system file. It refers to a directory, socket, pipeline, device, or the
standard I/O.

compress: (-D) same count exceeded - aborting
The maximum count of 255 successive identical characters has been exceeded. The compression has
been aborted.

cannot allocate buffer
There is insufficient memory to create one or more internal buffers used for compression.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
uncompress, zcat

compress

80 z/VM: 7.3 OpenExtensions Commands Reference

continue — Skip to the next iteration of a loop in a shell script

continue [n]

Purpose
continue skips to the next iteration of an enclosing for, select, until, or while loop in a shell script. If a
number n is given, execution continues at the loop control of the nth enclosing loop. The default value of n
is 1.

Usage Notes
This command is built into the shell.

Exit Values
Possible exit values are:
0

Successful completion
1

The value of n given was not an unsigned decimal greater than 0.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
break, sh

continue

Chapter 1. OpenExtensions Shell Commands 81

cp — Copy a file

cp [–fimp] file1 file2
cp [–fimp] file ... directory
cp –R [–fimp] source... directory
cp –r [–fimp] source... directory

Purpose
cp copies files to a target named by the last argument on its command line. If the target is an existing file,
cp overwrites it; if it does not exist, cp creates it. If the target file already exists and does not have write
permission, cp denies access and continues with the next copy.

If you specify more than two path names, the last path name (that is, the target) must be a directory. If
the target is a directory, cp copies the sources into that directory with names given by the final component
of the source path name.

Options
cp accepts the following options:
–f

Attempts to replace files that do not have write permission.
–i

Asks you if you want to overwrite an existing file, whether or not the file is read-only.
–m

Sets the modification and access time of each destination file to that of the corresponding source file.
Normally, cp sets the modification time of the destination file to the present.

–p
Preserves the modification and access times (as the –m option does); in addition, it preserves file
mode, owner, and group owner, if possible.

–R
"Clones" the source trees. cp copies all the files and subdirectories specified by source... into
directory, making careful arrangements to duplicate special files (FIFO, character special).

–r
"Clones" the source trees, but makes no allowances for special files (FIFO, character special).
Consequently, cp attempts to read from a device rather than duplicate the special file. This is similar
to, but less useful than, the preferred –R.

Localization
cp uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

cp

82 z/VM: 7.3 OpenExtensions Commands Reference

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• An argument had a trailing slash (/) but was not a directory.
• Inability to find a file.
• Inability to open an input file for reading.
• Inability to create or open an output file.
• A read error occurred on an input file.
• A write error occurred on an output file.
• The input and output files were the same file.
• An irrecoverable error when using –r or –R.
• Possible irrecoverable –r or –R errors include:

– Inability to access a file.
– Inability to change permissions on a target file.
– Inability to read a directory.
– Inability to create a directory.
– A target that is not a directory.
– Source and destination directories are the same.

2
Failure due to any of the following:

• An incorrect command-line option.
• Too few arguments on the command line.
• A target that should be a directory but isn't.
• No space left on target device.
• Insufficient memory to hold the data to be copied.
• Inability to create a directory to hold a target file.

Messages and Return Codes
Possible error messages include:
cannot allocate target string

cp has no space to hold the name of the target file. Try to release some memory to give cp more
space.

name is a directory (not copied)
You did not specify –r or –R, but one of the names you asked to copy was the name of a directory.

target name?
You are attempting to copy a file with the –i option, but there is already a file with the target name. If
you have specified –f, you can write over the existing file by typing y and pressing <Enter>. If you do
not want to write over the existing file, type n and press <Enter>. If you did not specify –f and the file
is read-only, you are not given the opportunity to overwrite it.

source name and target name are identical
The source and the target are actually the same file (for example, because of links). In this case, cp
does nothing.

cp

Chapter 1. OpenExtensions Shell Commands 83

unreadable directory name
cp cannot read the specified directory—for example, because you do not have appropriate permission.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –f and –m options are extensions of the POSIX standard.

Related Commands
cat, cpio, mv, rm, ln

cp

84 z/VM: 7.3 OpenExtensions Commands Reference

cpio -- Copy in/out file archives

cpio –o [–aBcvyz] [–C blocksize] [–O file] [–V volpat]
cpio –i [–BbcdfmrsStuvqyz] [–C blocksize] [–I file] [–V volpat] [pattern …]
cpio –p [–aBdlmruv] directory

Purpose
cpio reads and writes files called cpio archives. A cpio archive is a concatenation of files and directories
preceded by a header giving the file name and other file system information. With cpio, you can create
a new archive, extract contents of an existing archive, list archive contents, and copy files from one
directory to another.

Options
Every call to cpio must specify one and only one of the following selector options:
–i

Reads an existing archive (created with the –o option) from the standard input. Unless you specify the
–t option, cpio extracts all files matching one or more of the given pattern arguments from the archive.
Patterns are the same as those used by file name generation (see sh). When you do not specify a
pattern argument, the default pattern * is used; as a result, cpio extracts all files.

–o
Writes a new archive to the standard output, using the list of files read from the standard input. Such a
list might be produced by the ls or find commands. For example:

ls . | cpio -o >arch

uses ls to list the files of the working directory and then pipes this list as input to cpio. The resulting
archive contains the contents of all the files, and is written to arch.

–p
Is shorthand for:

cpio -o | (cd directory; cpio -i)

where cpio -i is performed in the given directory. You can use this option to copy entire file trees.

Consult the syntax lines to determine which of the following additional options can be applied with a
particular selector option:
–a

Resets the access time (of each file accessed for copying to the archive) to what it was before the
copy took place.

–B
Uses buffers of 5120 bytes for input and output rather than the default 512-byte buffers.

–b
causes 16-bit words to be swapped within each longword and bytes to be swapped within each 16-bit
word of each extracted file. This facilitates the transfer of information between different processor
architectures. This is equivalent to specifying both the –s and –S options.

–C blocksize
Sets the buffer size to a specified blocksize, rather than the default 512-byte buffers.

–c
Reads and writes header information in ASCII form. Normally, cpio writes the header information in a
compact binary format. This option produces an archive more amenable to transfer through nonbinary

cpio

Chapter 1. OpenExtensions Shell Commands 85

streams (such as some data communication links) and is highly recommended for those moving data
between different processors.

–d
Forces the creation of necessary intermediate directories when they do not already exist.

–f
Inverts the sense of pattern matching. More precisely, cpio extracts a file from the archive if and only
if it does not match any of the pattern arguments.

–I file
Causes input to be read from the specified file, rather than from stdin.

–l
Gives permission to create a link to a file rather than making a separate copy.

–m
Resets the modification time of an output file to the modification time of the source file. Normally,
when cpio copies data into a file, it sets the modification time of the file to the time at which the file is
written.

–O file
Causes output to be written to the specified file, rather than to stdout.

–q
Assumes all created files are text. This means that any \r (carriage return) characters are stripped,
and only the \n (newlines) are retained.

It is not advisable to use the -q option for converting text to a system-independent format, since that
would require all files to be read twice.

–r
Provides an interactive mechanism for selecting and renaming particular files. For each file processed,
cpio displays the name before copying it to its new location. At this point, you can type in a new name
for the file. If you enter an empty line, the file is skipped.

–S
For portability reasons, swaps pairs of 16-bit words within longwords (a 32-bit or 64-bit word) only
when extracting files. This option does not affect the headers.

–s
For portability reasons, swaps pairs of bytes within each 16-bit word only when extracting files. –s
does not affect the headers.

–t
Prevents files extraction, producing instead a table of file names contained in the archive. See the
description of the –v option.

–u
Copies an archive file to a target file even if the target is newer than the archive. Normally, cpio does
not copy the file.

–V volpat
Provides automatic multivolume support. cpio writes output to files, the names of which are
formatted using volpat. The current volume number replaces any occurrence of # in volpat. When
you invoke cpio with this option, it asks for the first number in the archive set, and waits for you to
type the number and a carriage return before its precedes with the operation. cpio issues the same
sort of message when a write error or read error occurs on the archive; the reasoning is that this kind
of error means that cpio has reached the end of the volume and should go on to a new one.

–v
Provides more verbose information than usual. cpio prints the names of files as it extracts them from
or adds them to archives. When you specify both –v and –t, cpio prints a table of files in a format
similar to that produced by the ls –l command.

–y
When used with –V, does not ask for a volume number to begin with, but does ask if it gets a read or
write error.

cpio

86 z/VM: 7.3 OpenExtensions Commands Reference

–z
Performs Lempel-Ziv compression. Output is always a 16-bit compression. On input, any compression
up to 16-bit is acceptable.

File Formats
A cpio archive consists of the concatenation of one or more member files. Each member file contains a
header (as described later in this command description) optionally followed by file contents (as indicated
in the header). The end of the archive is indicated by another header describing an (empty) file named
TRAILER!!!.

There are two types of cpio archives, differing only in the style of the header. By default, cpio writes
archives with binary headers.

The information in ASCII archive headers is stored in fixed-width, octal (base 8) numbers, zero-padded on
the left. Table 5 on page 87 gives the order and field width for the information in the ASCII header:

Table 5. ASCII Header Format for a cpio File

Width Field Name Meaning

6 magic Magic number "070707"

6 dev Device where file resides

6 ino I-number of file

6 mode File mode

6 uid Owner user ID (UID)

6 gid Owner group ID (GID)

6 nlink Number of links to the file

6 rdev Device major or minor for a special file

11 mtime Modification time of the file

6 namesize Length of the file name

11 filesize Length of the file to follow

Most of this information is compatible with that returned by the UNIX stat function. After this information,
namesize bytes of the path name is stored. namesize includes the null byte of the end of the path name.
After this, filesize bytes of the file contents are recorded.

Binary headers contain the same information in 2-byte (short) and 4-byte (long) integers as shown in
Table 6 on page 87.

Table 6. Binary Header Format for a cpio File

Bytes Field Name Meaning

2 magic Magic number "070707"

2 dev Device where file resides

2 ino I-number of file

2 mode File mode

2 uid Owner user ID (UID)

2 gid Owner group ID (GID)

2 nlink Number of links to the file

2 rdev Device major or minor for a special file

cpio

Chapter 1. OpenExtensions Shell Commands 87

Table 6. Binary Header Format for a cpio File (continued)

Bytes Field Name Meaning

4 mtime Modification time of the file

2 namesize Length of the file name

2 reserved Two bytes of reserved space

4 filesize Length of the file to follow

After this information comes the file name (with namesize rounded up to the nearest 2-byte boundary).
Then the file contents appear as in the ASCII archive. The byte ordering of the 2- and 4-byte integers in
the binary format is machine-dependent, and thus portability of this format is not easily guaranteed.

Compressed cpio archives are exactly equivalent to the corresponding archive being passed to a 16-bit
compress utility.

Usage Notes
1. The byte and word swapping done by the –b, –S, and –s options is effective only for the file data

written. With or without the –c option, header information is always written in a machine-invariant
format.

2. The cpio utility is scheduled to be withdrawn from XPG; for standards compatibility, you should use
pax.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• An incorrect option
• Incorrect command-line arguments
• Out of memory
• Compression error
• Failure on extraction
• Failure on creation

Portability
X/Open Portability Guide, non-Berkeley UNIX systems after Version 7.

The –q, –V, –y, and –z options are specific to the OpenExtensions shell.

Related Commands
cp, dd, find, ls, mv, pax, tar

cpio

88 z/VM: 7.3 OpenExtensions Commands Reference

cut — Cut out selected fields from each line of a file

cut –b list [–n] [file...]
cut –c list [file...]
cut –f list [–d char] [–s] [file...]

Purpose
cut reads input from files, each specified with the file argument, and selectively copies sections of the
input lines to the standard output. If you do not specify any file, or you specify a file named –, cut reads
from standard input.

Options
cut accepts the following options:
–b list

Invokes byte position mode. After this comes a list of the byte positions you want to display. This
list may contain multiple byte positions, separated by commas (,) or blanks or ranges of positions
separated by dashes (–). Since the list must be a single argument, shell quoting is necessary if you use
blanks. You can combine these to allow selection of any byte positions of the input.

–c list
Invokes character-position mode. After this comes a list of character positions to retain in the output.
This list can contain many character positions, separated by commas (,) or blanks or ranges of
positions separated by a dash (–). Since the list must be a single argument, shell quoting is necessary
if you use blanks. You can combine these to allow selection of any character positions of the input.

–d char
Specifies char as the character that separates fields in the input data; by default, this is the horizontal
tab.

–f list
Invokes field delimiter mode. After this comes a list of the fields you want to display. You specify
ranges of fields and multiple field numbers in the same way you specify ranges of character positions
and multiple character positions in –c mode.

–n
Does not split characters. If the low byte in a selected range is not the first byte of a character, cut
extends the range downward to include the entire character; if the high byte in a selected range is
not the last byte of a character, cut limits the range to include only the last entire character before
the high byte selected. If –n is selected, cut does not list ranges that do not encompass an entire
character, and these ranges do not cause an error.

–s
Does not display lines that do not contain a field separator character. Normally, cut displays lines that
do not contain a field separator character in their entirety.

Examples

cd /bin
ls –al | cut –c 42–48,54–66

prints a directory listing containing file creation dates and file names of files in the working directory.

Localization
cut uses the following localization environment variables:

cut

Chapter 1. OpenExtensions Shell Commands 89

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Cannot open the input file
• Out of memory

2
Failure due to any of the following:

• An incorrect command-line argument
• You did not specify any of –b, –c, or –f
• You omitted the list argument
• Badly formed list argument

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Commands
paste, uname

cut

90 z/VM: 7.3 OpenExtensions Commands Reference

date — Display the date and time

date [–cu] [+format]

Purpose
date displays the operating system's idea of the current date and time.

The following example shows the default format of the date:

Wed Feb 26 14:01:43 EST 1986

Options
date accepts the following options:
–c

Displays the date and displays the time according to Greenwich Mean Time (Coordinated Universal
Time) using CUT as the time zone name.

–u
Displays the date and displays the time according to Greenwich Mean Time (Coordinated Universal
Time) using GMT as the time zone name.

If the argument to date begins with a + character, date uses format to display the date. date writes all
characters in format, with the exception of the % and the character that immediately follows it, directly to
the standard output. After date exhausts the format string, it outputs a newline character. The % character
introduces a special format field similar to the printf() function in the C library. date recognizes the
following field descriptors:
%A

The full weekday name (for example, Sunday).
%a

The three-letter abbreviation for the weekday (for example, Sun).
%B

The full month name (for example, February).
%b

The three-letter abbreviation for the month name (for example, Feb).
%C

The first two digits of the year (00 to 99).
%c

The local representation of the date and time (see %D and %T).
%D

The date in the form mm/dd/yy.
%d

The two-digit day of the month as a number (01 to 31).
%e

The day of the month in a two-character, right-justified, blank-filled field.
%H

The two-digit hour (00 to 23).
%h

The three-letter abbreviation for the month (for example, Feb). The %h is a synonym for %b.

date

Chapter 1. OpenExtensions Shell Commands 91

%I
The hour in the 12-hour clock representation (01 to 12).

%j
The numeric day of the year (001 to 366).

%M
The minute (00 to 59).

%m
The month number (01 to 12).

%n
The newline character.

%p
The local equivalent of a.m. or p.m.

%r
The time in a.m.–p.m. notation (11:53:29 a.m.).

%S
The seconds (00 to 61). There is an allowance for two leap seconds.

%T
The time (14:53:29).

%t
A tab character.

%U
The week number in the year, with Sunday being the first day of the week (00 to 53).

%W
The week number in the year, with Monday being the first day of the week (00 to 53).

%w
The weekday number, with Sunday being 0.

%X
The local time representation (see %T).

%x
The local date representation (see %D).

%Y
The year.

%y
The two-digit year.

%Z
The time zone name (for example, EDT).

%%
A percent-sign character.

The date command also supports the following modified field descriptors to indicate a different format as
specified by the locale indicated by LC_TIME. If the current locale does not support a modified descriptor,
date uses the unmodified field descriptor value.
%EC

The name of the base year (period) in the current locale's alternate representation.
%Ec

The current locale's alternate date and time representation.
%Ex

The current locale's alternate date representation.
%EY

The full alternate year representation.

date

92 z/VM: 7.3 OpenExtensions Commands Reference

%Ey
The offset from %EC (year only) in the current locale's alternate representation.

%Od
The day of the month using the current locale's alternate numeric symbols.

%Oe
The day of the month using the current locale's alternate numeric symbols.

%OH
The hour (24-hour clock) using the current locale's alternate numeric symbols.

%OI
The hour (12-hour clock) using the current locale's alternate numeric symbols.

%OM
The minutes using the current locale's alternate numeric symbols.

%Om
The month using the current locale's alternate numeric symbols.

%OS
The seconds using the current locale's alternate numeric symbols.

%OU
The week number of the year (0–53) (with Sunday as the first day of the week) using the current
locale's alternate numeric symbols.

%OW
The week number of the year (0–53) (with Monday as the first day of the week) using the current
locale's alternate numeric symbols.

%Ow
The weekday as a number using the current locale's alternate numeric symbols (Sunday=0).

%Oy
The year (offset from %C) using the current locale's alternate numeric symbols.

Examples

The command:

date '+%a %b %e %T %Z %Y'

produces the date in the default format—as shown at the start of this command description.

Environment Variables
TZ

Gives the time zone for date to use when displaying the times. This is ignored if you specify either the
–c or the –u option. See TZ in the sh command environment variable list.

Localization
date uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

date

Chapter 1. OpenExtensions Shell Commands 93

Exit Values
Possible exit status values are:
0

Successful completion.
>0

Failure due to any of the following:

• An incorrect command line option.
• Too many arguments on the command line.
• A bad date conversion.
• A formatted date that was too long.
• You do not have permission to set the date.

Messages and Return Codes
Possible error messages include:
Bad format character x

A character following "%" in the format string was not in the list of field descriptors.
No permission to set date

The system has denied you the right to set the date.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –c option is an extension of the POSIX standard.

Related Commands
touch

date

94 z/VM: 7.3 OpenExtensions Commands Reference

dd — Convert and copy a file

dd [bs=size] [cbs=size] [conv=conversion] [count=n] [ibs=size] [if=file]
 [imsg=string] [iseek=n] [obs=size] [of=file] [omsg=string]
 [seek=n] [skip=n]

Purpose
dd reads and writes data by blocks. It is frequently used for such devices as tapes that have
discrete block sizes, or for fast multisector reads from disks. dd performs conversions to accommodate
nonprogrammable terminals, which require deblocking, conversion to and from EBCDIC, and fixed-length
records.

dd processes the input data as follows:

1. dd reads an input block.
2. If this input block is smaller than the specified input block size, dd pads it to the specified size with

null bytes. When you also specify a block or unblock conversion, dd uses spaces instead of null bytes.
3. If you specified bs=s and requested no conversion other than sync or noerror, dd writes the padded (if

necessary) input block to the output as a single block and omits the remaining steps.
4. If you specified the swab conversion, dd swaps each pair of input bytes. If there is an odd number of

input bytes, dd does not attempt to swap the last byte.
5. dd performs all remaining conversions on the input data independently of the input block boundaries.

A fixed-length input or output record may span these boundaries.
6. dd gathers the converted data into output blocks of the specified size. When dd reaches the end of the

input, it writes the remaining output as a block (without padding if conv=sync is not specified). As a
result, the final output block may be shorter than the output block size.

Options
bs=size

Sets both input and output block sizes to size bytes. You can suffix this decimal number with w, b, k,
or x number, to multiply it by 2, 512, 1024, or number, respectively. You can also specify size as two
decimal numbers (with or without suffixes) separated by x to indicate the product of the two values.
Processing is faster when ibs and obs are equal, since this avoids buffer copying. The default block
size is 1B. bs=size supersedes any settings of ibs=size or obs=size.

If you specify bs=size and you request no other conversions than noerror, notrunc, or sync, dd writes
the data from each input block as a separate output block; if the input data is less than a full block and
you did not request sync conversion, the output block is the same size as the input block.

cbs=size
sets the size of the conversion buffer used by various conv options.

conv=conversion[, conversion, ...]

Note: To copy a file and convert between code page 01047 (used in the OpenExtensions shell) and
ASCII, use the CMS COPYFILE command, not the dd command. The ascii, ebcdic, and ibm conversion
options are provided for compatibility purposes only.

conversion can be any one of the following:
ascii

Converts EBCDIC input to ASCII for output. This is 8-bit extended US ASCII. dd copies cbs bytes
at a time to the conversion buffer, maps them to ASCII, strips trailing blanks, adds a newline, and
copies this line to the output buffer.

dd

Chapter 1. OpenExtensions Shell Commands 95

block
Converts variable-length records to fixed-length records. dd treats the input data as a sequence
of variable-length records (each terminated by a newline or an EOF character) independent of
the block boundaries. dd converts each input record by first removing any newline characters
and then padding (with spaces) or truncating the record to the size of the conversion buffer. dd
reports the number of truncated records on the standard error. You must specify cbs=size with
this conversion.

convfile
Uses convfile as a translation table if it is not one of the conversion formats listed here and it is
the name of a file of exactly 256 bytes.

You can perform multiple conversions at the same time by separating arguments to conv with
commas; however, some conversions are mutually exclusive (for example, ucase and lcase).

Note: When you specify one or more of the character set conversions (ascii, ebcdic, ibm, or
convfile), dd assumes that all characters are singlebyte characters, regardless of the locale.

ebcdic
Converts ASCII input to EBCDIC for output. dd copies a line of ASCII to the conversion buffer,
discards the newline, pads it out with trailing blanks to cbs bytes, maps it to EBCDIC, and copies it
to the output buffer.

ibm
Like ebcdic, converts ASCII to EBCDIC; however, ibm ignores the top (eighth) bit.

lcase
Converts uppercase input to lowercase.

noerror
Ignores errors on input.

notrunc
Does not truncate the output file. dd preserves blocks in the output file that it does not explicitly
write to.

swab
Swaps the order of every pair of input bytes. If the current input record has an odd number of
bytes, this conversion does not attempt to swap the last byte of the record.

sync
Specifies that dd is to pad any input block shorter than ibs to that size with NUL bytes before
conversion and output. If you also specified block or unblock, dd uses spaces instead of null bytes
for padding.

ucase
Converts lowercase input to uppercase.

unblock
Converts fixed-length records to variable-length records by reading a number of bytes equal to the
size of the conversion buffer, deleting all trailing spaces, and appending a newline character. You
must specify cbs=size with this conversion.

count=n
Copies only n input blocks to the output.

ibs=size
Sets the input block size in bytes. You specify it in the same way as with the bs option.

if=file
Reads input data from file. If you don't specify this option, dd reads data from the standard input.

imsg=string
Displays string when all data has been read from the current volume, replacing all occurrences of %d
in string with the number of the next volume to be read. dd then reads and discards a line from the
controlling terminal.

dd

96 z/VM: 7.3 OpenExtensions Commands Reference

iseek=n
seeks to the nth block of the input file. The distinction between this and the skip option is that
iseek does not read the discarded data. There are some devices, however, such as tape drives and
communication lines, on which seeking is not possible, so only skip is appropriate.

obs=size
Sets the output block size in bytes. You specify it in the same way as the bs value. The size of the
destination should be a multiple of the value chosen for size. For example, if you choose obs=10K, the
destination's size should be a multiple of 10K.

of=file
Writes output data to file. If you don't specify this option, dd writes data to the standard output. dd
truncates the output file before writing to it, unless you specified the seek=n operand. If you specify
seek=n, but do not specify conv=notrunc, dd preserves only those blocks in the output file over which
it seeks. If the size of the seek plus the size of the input file is less than the size of the output file, this
can result in a shortened output file.

omsg=string
Displays string when dd runs out of room while writing to the current volume. Any occurrences of %d
in string are replaced with the number of the next volume to be written. dd then reads and discards a
line from the controlling terminal.

seek=n
Initially seeks to the nth block of the output file.

skip=n
Reads and discards the first n blocks of input.

Examples

Entering:

dd if=in of=out conv=ascii cbs=80 ibs=6400 obs=512

converts 80-byte fixed-length EBCDIC card images in 6400-byte input blocks to variable-length ASCII
lines, 512 bytes to the output block.

Localization
dd uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• I/O errors on read/write
• Incorrect command-line option

2
Failure resulting in a usage message such as:

dd

Chapter 1. OpenExtensions Shell Commands 97

• An option that should contain = does not
• Unknown or incorrect command-line option

Messages and Return Codes
Possible error messages include:
badly formed number number

A value specified as a number (for example, a block size) does not have the form of a number as
recognized by dd. For example, you may have followed the number with a letter that dd does not
recognize as a block-size unit (w, b, k).

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The conv=ascii, conv=ebcdic, conv=ibm, conv=convfile, iseek, imsg, and omsg options plus the w suffix
described in the bs= option are all extensions of the POSIX standard.

Related Commands
cp, cpio, mv, tr

dd

98 z/VM: 7.3 OpenExtensions Commands Reference

diff — Compare two text files and show the differences

diff [-befHhimnrsw] [-C n] [-c[n]] [-Difname] path1 path2

Purpose
The diff command attempts to determine the minimal set of changes needed to convert a file whose
name is specified by the path1 argument into the file specified by the path2 argument.

If either (but only one) file name is –, diff uses a copy of the standard input for that file. If exactly one
of path1 or path2 is a directory, diff uses a file in that directory with the same name as the other file
name. If both are directories, diff compares files with the same file names under the two directories;
however, it does not compare files in subdirectories unless you specify the –r option. When comparing
two directories, diff does not compare character special files, or FIFO special files with any other files.

By default, output consists of descriptions of the changes in a style like that of the ed text editor. A
line indicating the type of change is given. The three types are a (append), d (delete), and c (change).
The output is symmetric: A delete in path1 is the counterpart of an append in path2. diff prefixes each
operation with a line number (or range) in path1 and suffixes each with a line number (or range) in path2.
After the line giving the type of change, diff displays the deleted or added lines, prefixing lines from path1
with < and lines from path2 with >.

Options
Options that control the output or style of file comparison are:
–b

Ignores trailing blanks and tabs and considers adjacent groups of blanks and tabs elsewhere in input
lines to be equivalent.

–C n
Is equivalent to -cn.

–c[n]
Shows n lines of context before and after each change. The default value for n is 3. diff marks lines
removed from path1 with –, lines added to path2 with +, and lines changed in both files with !.

–Difname
Displays output that is the appropriate input to the C preprocessor to generate the contents of path2
when ifname is defined, and the contents of path1 when ifname is not defined.

–e
writes out a script of commands for the ed text editor, which converts path1 to path2. diff sends the
output to the standard output.

–f
Writes a script similar to the one produced under –e to standard output, but does not adjust the line
numbers to reflect earlier editing changes; instead, they correspond to the line numbers in path1.

–H
Uses the half-hearted (–h) algorithm only if the normal algorithm runs out of system resources.

–h
Uses a fast, half-hearted algorithm instead of the normal diff algorithm. This algorithm can handle
arbitrarily large files; however, it is not particularly good at finding a minimal set of differences in files
with many differences.

–i
Ignores the case of letters when doing the comparison.

diff

Chapter 1. OpenExtensions Shell Commands 99

–m
Produces the contents of path2 with extra formatter request lines interspersed to show which lines
were added (those with vertical bars in the right margin) and deleted (indicated by a * in the right
margin).

–n
Is accepted for compatibility, but performs no function.

–r
Compares corresponding files under the directories, and recursively compares corresponding files
under corresponding subdirectories under the directories. You can use this option when you specify
two directory names on the command line.

–s
Compares two directories, file by file, and prints messages for identical files between the two
directories.

–w
Ignores white space when making the comparison.

Examples

The following example illustrates the effect of the –c option on the output of the diff command. The
following two files, price1 and price2, are compared with and without the use of the –c option.

The contents of price1 are as follows:

Company X Price List:
$ 0.39 -- Package of Groat Clusters
$ 5.00 -- Candy Apple Sampler Pack
$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child's Riding Hood (Red)
$ 35.00 -- Genuine Placebos
$ 45.00 -- Case of Simulated Soy Bean Oil
$ 75.88 -- No-Name Contact Lenses
$ 99.99 -- Kiddie Destructo-Bot
$125.00 -- Emperor's New Clothes

The contents of price2 are as follows:

Company X Price List:
$ 0.39 -- Package of Groat Clusters
$ 5.49 -- Candy Apple Sampler Pack
$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
$ 17.00 -- Simulated Naugahyde cleaner
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child's Riding Hood (Red)
$ 35.00 -- Genuine Placebos
$ 45.00 -- Case of Simulated Soy Bean Oil
$ 75.88 -- No-Name Contact Lenses
$ 99.99 -- Kiddie Destructo-Bot

The command:

 diff price1 price2

results in the following output:

4c4
< $ 5.00 -- Candy Apple Sampler Pack
--->
 $ 5.49 -- Candy Apple Sampler Pack
6a7
> $ 17.00 -- Simulated Naugahyde cleaner
14d14
< $125.00 -- Emperor's New Clothes

diff

100 z/VM: 7.3 OpenExtensions Commands Reference

The addition of the –c option, as in:

diff -c price1 price2

results in the following output:

*** price1 Wed Mar 04 10:08:40 1993
--- price2 Wed Mar 04 10:09:10 1993

*** 1,9 ****
Company X Price List:

 $ 0.39 -- Package of Groat Clusters
! $ 5.00 -- Candy Apple Sampler Pack
 $ 12.00 -- Box of Crunchy Frog Chocolates
 $ 15.99 -- Instant Rain (Just Add Water)
 $ 20.00 -- Asparagus Firmness Meter
 $ 25.00 -- Package of Seeds for 35 Herbs
 $ 30.00 -- Child's Riding Hood (Red)
--- 1,10 ----
 Company X Price List:

 $ 0.39 -- Package of Groat Clusters
! $ 5.49 -- Candy Apple Sampler Pack
 $ 12.00 -- Box of Crunchy Frog Chocolates
 $ 15.99 -- Instant Rain (Just Add Water)
+ $ 17.00 -- Simulated Naugahyde cleaner
 $ 20.00 -- Asparagus Firmness Meter
 $ 25.00 -- Package of Seeds for 35 Herbs
 $ 30.00 -- Child's Riding Hood (Red)

*** 11,14 ****
 $ 45.00 -- Case of Simulated Soy Bean Oil
 $ 75.88 -- No-Name Contact Lenses
 $ 99.99 -- Kiddie Destructo-Bot
- $125.00 -- Emperor's New Clothes
--- 12,14 ----

diff –c marks lines removed from price1 with –, lines added to price1 with + and lines changed in both
files with !. In the example, diff shows the default three lines of context around each changed line. One
line was changed in both files (marked with !), one line was added to price1 (marked with +), and one line
was removed from price1 (marked with –).

Note: If there are no marks to be shown in the corresponding lines of the file being compared, the lines
are not displayed. Lines 12 to 14 of price2 are suppressed for this reason.

Localization
diff uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

No differences between the files compared.
1

diff compared the files and found them to be different.

diff

Chapter 1. OpenExtensions Shell Commands 101

2
Failure due to any of the following:

• Incorrect command-line argument
• Inability to find one of the input files
• Out of memory
• Read error on one of the input files

4
At least one of the files is a binary file containing embedded NUL (\0) bytes or newlines that are more
than LINE_MAX bytes apart.

Messages and Return Codes
Possible error messages include:
Binary files filename and filename differ

The two specified files are binary files. diff has compared the two files and found that they are not
identical. With binary files, diff does not try to report the differences.

file filename: no such file or directory
The specified filename does not exist. filename was either typed explicitly, or generated by diff from
the directory of one file argument and the basename of the other.

Files file1 and file2 are identical
The –s option was specified and the two named files are identical.

Common subdirectories: name and name
This message appears when diff is comparing the contents of directories, but you have not specified
–r. When diff discovers two subdirectories with the same name, it reports that the directories exist,
but it does not try to compare the contents of the two directories.

Insufficient memory (try diff –h)
diff ran out of memory for generating the data structures used in the file differencing algorithm (see
“Limits” on page 102). The –h option of diff can handle any size file without running out of memory.

Internal error—cannot create temporary file
diff was unable to create a working file that it needed. Ensure that you either have a directory /tmp
or that the environment contains a variable TMPDIR, which names a directory where diff can store
temporary files. Also, ensure that there is sufficient file space in this directory.

Missing ifdef symbol after -D
You did not specify a conditional label on the command line after the –D option.

Only one file may be –
Of the two input files normally found on the command line of diff, only one can be the standard input.

Too many lines in filename
A file of more than the maximum number of lines (see “Limits” on page 102) was given to diff.

Limits
The longest input line is 1024 bytes. Except under –h, files are limited to INT_MAX lines. INT_MAX is
defined in limits.h.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –D, –f, –H, –h, –i, –m, –s, and –w options, and the n argument to the –c option, are extensions of the
POSIX standard.

diff

102 z/VM: 7.3 OpenExtensions Commands Reference

Related Commands
J. W. Hunt and M. D. McIlroy, "An Algorithm for Differential File Comparison", Computing Science Technical
Report 41 (Bell Telephone Laboratories).

cmp, comm

diff

Chapter 1. OpenExtensions Shell Commands 103

dirname — Return the directory components of a path name

dirname pathname

Purpose
dirname deletes the trailing part of a file name. The result is the path name of the directory that contains
the file. This is useful in shell scripts.

Note: dirname makes no attempt to validate the path name; for validation, use pathchk.

dirname follows these rules:

1. If pathname is //, return it.
2. Otherwise, if it is all slashes, return one slash.
3. Otherwise, remove all trailing slashes.
4. If there are no slashes remaining in pathname, return period (.).
5. Otherwise, remove trailing nonslash characters.
6. If the remaining string is //, return it.
7. Otherwise, remove any trailing slashes.
8. If the resulting string is empty, return period (.).
9. Otherwise, return the resulting string.

Examples

The command:

dirname src/lib/printf.c

produces:

src/lib

Localization
dirname uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
The only possible exit status value is:
0

Successful completion
1

Failed

dirname

104 z/VM: 7.3 OpenExtensions Commands Reference

2
Unknown command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
basename, pathchk

dirname

Chapter 1. OpenExtensions Shell Commands 105

. (dot) — Run a shell file in the current environment

. file [argument ...]

Purpose
. (dot) runs a shell script in the current environment and then returns. Normally, the shell runs a command
file in a subshell so that changes to the environment by such commands as cd, set, and trap are local to
the command file. The . (dot) command circumvents this feature.

If there are slashes in the file name, . (dot) looks for the named file. If there are no slashes . (dot) uses
the search PATH variable to find file. This may surprise some people when they use dot to run a file in the
working directory, but their search rules are not set up to look at the working directory. As a result, the
shell doesn't find the shell file. If you have this problem, you can use:

 . ./file

This indicates that the shell file you want to run is in the working directory. Also, the file need not be
executable, even if it is looked for on the PATH. If you specify an argument list argument ..., . (dot) sets the
positional parameters to this list before execution.

Environment Variables
PATH

Contains a list of directories that . (dot) searches when attempting to find file.

Usage Notes
This command is built into the shell.

Exit Values
Possible exit status values are:
1

The path search failed or file is unreadable
2

Failure because of an incorrect command-line option

Otherwise, the exit status is the exit status of the last command run from the script.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
cd, set, sh, trap

. (dot)

106 z/VM: 7.3 OpenExtensions Commands Reference

echo — Write arguments to standard output

echo argument...

Purpose
echo writes its arguments, specified with the argument argument, to standard output. echo accepts these
C-style escape sequences:
\a

Bell (accepted but has no effect)
\b

Backspace
\c

Removes any following characters, including \n and \r.
\f

Form feed
\n

Newline
\r

Carriage return
\t

Horizontal tab
\v

Vertical tab
\0num

The byte with the numeric value specified by the zero to three-digit octal num.
\\

Backslash
echo follows the final argument with a newline unless it finds \c in the arguments. Arguments are subject
to standard argument manipulation.

Examples

1. One important use of echo is to expand file names on the command line, as in:

echo *.[ch]

This displays the names of all files with names ending in .c or .h—typically C source and include
(header) files. echo displays the names on a single line. If there are no file names in the working
directory that end in .c or .h, echo simply displays the string *.[ch].

2. echo is also convenient for passing small amounts of input to a filter or a file:

echo 'this is\nreal handy' > testfile

Usage Notes
echo is provided as both an external utility and as a shell built-in.

echo

Chapter 1. OpenExtensions Shell Commands 107

Localization
echo uses the following localization environment variables:

• LANG
• LC_ALL
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
echo always returns the following exit status value:
0

Successful completion

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

The POSIX.2 standard does not include escape sequences, so a strictly conforming application cannot
use them. printf is suggested as a replacement.

Related Commands
sh

echo

108 z/VM: 7.3 OpenExtensions Commands Reference

ed — Use the ed line-oriented text editor

ed [–bsx] [–p prompt] [file]

Purpose
ed is a text editor that lets you manipulate text files interactively. ed reads the text of a file into memory
and stores it in an area called a buffer. Various subcommands let you edit the text in the buffer. Finally,
you can write the contents of the buffer back out to the file, thereby overwriting the old contents of the
file.

red is a restricted version of ed. It is intended to protect the novice user by disallowing the ! command
and the ability to access files found anywhere but the working directory.

Options
ed supports the following options:
–b

Lets you edit larger files by restricting the amount of memory dedicated to paging. This frequently
makes ed run slower.

–p prompt
Displays the given prompt string prompting you to input a subcommand. By default, ed does not
usually prompt for subcommand input. See the description of the P subcommand for more on
subcommand prompting (“Subcommands” on page 110).

–s
Puts ed into a quiet mode, in which e, E, r, and w, subcommands do not display file size counts; the q
and e subcommands do not check buffer modification; and ! is not displayed after calling the shell to
run a subcommand. This mode is particularly useful when you invoke ed from within a shell script.

–x
Runs an X subcommand to handle encrypted files properly. See the description of the X subcommand
for more details (“Subcommands” on page 110).

If the optional file argument is present on the command line, ed reads the specified file into the editor by
simulating an e file subcommand.

Addresses
You can prefix subcommands in ed with zero, one, or two addresses. These addresses let you refer to
single lines or ranges of lines in the buffer. You do not need to specify addresses for certain subcommands
that use default addresses. Consult the description for a particular subcommand. You can construct each
address out of the following components:
.

The single dot character represents the current line in the buffer. Many subcommands set the current
line; for example the e command sets it to the last line of the new file being edited.

$
This is a shorthand notation for the last line in the buffer.

n
The number n refers to the nth line in the buffer.

/regexp/
This searches for a line containing a string that matches the regular expression, regexp (for
information on regular expressions, see Appendix B, “Regular Expressions (regexp),” on page 471).
The search begins at the line immediately following the current line. It proceeds forward through the

ed

Chapter 1. OpenExtensions Shell Commands 109

buffer; if ed reaches the end of the buffer without finding a match, it wraps around to the first line of
the buffer and continues the search. If ed does not find a match, the search ends when it reaches the
original current line. If it does find a match, the address /regexp/ refers to the first matching line. If
you omit regexp, the last used regular expression becomes the object of the search. You can omit the
trailing /. Within regexp, \/ represents a literal slash and not the regexp delimiter.

?regexp?
This is similar to the previous address form, except that the search goes backward through the
buffer. If the search reaches the first line in the buffer without finding a match, ed wraps around and
continues searching backward from the last line in the buffer. If you omit regexp, the last used regular
expression becomes the object of the search. You can omit the trailing ?. Within regexp, \? represents
a literal question mark and not the regexp delimiter.

'/
The address is the line marked with the mark name l. The name l must be a lowercase letter set by the
k subcommand.

You can combine these basic addresses with numbers using the + and – operators, with the usual
interpretation. Missing left operands default to . (dot); missing right operands default to 1. Missing right
operands also have a cumulative effect; so an address of – – refers to the current line number less two.

You can specify address ranges in the following ways:
a1,a2

Specifies a range of addresses from address a1 to address a2, inclusive. If you omit a1 and a2 (that is,
the comma alone is specified), this is equivalent to the range 1,$.

a1;a2
Is similar to the previous form except that ed resets the current line after calculating the first address,
a1, so that the second address, a2, is relative to a1. If you omit a1 and a2 (that is, the semicolon
alone is specified), this is equivalent to .;$. If you specify only a1 and the command requires both a1
and a2, the command operates as though you specified a range of:

a1;. command

>
Is equivalent to .,.+22 (that is, page forward), except that it never attempts to address any line
beyond $.

<
Is equivalent to .–22,. (that is, page backward), except that it never addresses any line before line 1.

Subcommands
An ed command has the form [address] command.

All commands end with a newline; you must press <Enter>. Most commands allow only one command on
a line, although you can modify commands by appending the ln, n, and p commands.

Subcommands generally take a maximum of zero, one, or two addresses, depending upon the particular
subcommand. In the following descriptions, we show commands with their default addresses (that is, the
addresses used when you don't specify any addresses) in a form that shows the maximum number of
permitted addresses for the command. In any of the subcommands that take a file argument, file can be a
path name or:

!command-line

If you use the ! form, ed runs the given command line, reading its standard output or writing its standard
input, depending on whether the ed command does reading or writing.

ed accepts the following subcommands:
.a

Appends text after the specified line. Valid addresses range from 0 (text is placed after the last line of
the buffer, before the first line) to $ (text is placed after the last line of the buffer). ed reads lines of

ed

110 z/VM: 7.3 OpenExtensions Commands Reference

text from the workstation until a line consisting solely of an unescaped . (dot) is entered. ed sets the
current-line indicator to the last line appended.

.,.c
Changes the addressed range of lines by deleting the lines and then reading new text in the manner of
the a or i subcommands.

.,.d
Deletes the addressed range of lines. The line after the last line deleted becomes the new current line.
If you delete the last line of the buffer, ed sets the current line to the new last line. If no lines remain
in the buffer, it sets the current line to 0.

E[file]
Is similar to the e command, but ed gives no warning if you have changed the buffer.

e [file]
Replaces the contents of the current buffer with the contents of file. If you did not specify file, ed uses
the remembered file name, if any. In all cases, the e subcommand sets the remembered file name to
the file that it has just read into the buffer. ed displays a count of the bytes in the file unless it is in
quiet mode. If you have changed the current buffer since the last time its contents were written, ed
warns you if you try to run an e subcommand, and does not run the subcommand. If you enter the e
subcommand a second time, ed goes ahead and runs the command.

f [file]
Changes the remembered file name to file. ed displays the new remembered file name. If you do not
specify file, ed displays the current remembered file name.

1,$G/regexp/
Is similar to the g command except that when ed finds a line that matches regexp, it prints the line
and waits for you to type in the subcommand to be run. You cannot use the a, c, i, g, G, v, and V
subcommands. If you enter &, the G subcommand reruns the last subcommand you typed in. If you
just press <Enter>, G does not run any subcommand for that line.

1,$g/regexp/command
Performs command on all lines that contain strings matching the regular expression regexp. This
subcommand works in two passes. In the first pass, ed searches the given range of lines and marks all
those that contain strings matching the regular expression regexp. The second pass actually performs
command on those lines. You cannot use !, g, G, V, or v as command. command consists of one or
more ed subcommands, the first of which must appear on the same line as the g subcommand. All
lines of a multiline command list, except the last, must end with a backslash (\). If command is empty,
ed assumes it to be the p subcommand. If no lines match regexp, ed does not change the current
line number; otherwise, the current line number is the one set by the last subcommand in command.
Instead of the slash (/) to delimit regexp, you can use any character other than space or newline.

H
Tells ed to display more descriptive messages when errors occur. If ed is already printing descriptive
messages, H returns to terse error messages. Normally, ed indicates error messages by displaying a ?.
When you turn on descriptive error messages with this subcommand, ed also displays the descriptive
message for the most recent ? message.

h
Provides a brief explanation of the last error that occurred. This does not change the current line
number.

.i
Works similarly to the a subcommand, except that ed places the text before the addressed line. Valid
addresses range from line 1 to $ (the last line). ed sets the current line number to the last inserted
line.

.,.+1j
Joins a range of lines into one line. To be precise, the j command removes all newline characters from
the addressed range of lines, except for the last one. ed sets the current line number to the resulting
combined line.

ed

Chapter 1. OpenExtensions Shell Commands 111

.kl
Marks the addressed line with the mark name l, which is a single lowercase letter of the alphabet.
This lets you refer to a marked line with the construct 'l. This is called an absolute address, because it
always refers to the same line, regardless of changes to the buffer.

.,.l
Displays the addressed range of lines, representing nonprintable (control) characters in a visible
manner. ed sets the current line to the last line so displayed. You can append this subcommand to
most other commands, to check on the effect of those subcommands.

.,.ma
Moves the addressed lines to the point immediately following the line given by the address a. The
address a must not be in the range of addressed lines. If address a is 0, ed moves the lines to the
beginning of the buffer. The last line moved becomes the new current line.

.,.n
Displays the addressed lines in a way similar to the p command, but ed puts the line number and a tab
character at the beginning of each line. The last line displayed becomes the new current line. You can
append n to any subcommand (except for E, e, f, Q, r, w, or !) so that you can check on the effect that
the subcommands had.

P
Turns on subcommand prompting if it is not already on. If you specified the –p prompt option
on the ed command line, ed displays the prompt string whenever it is ready for you to type in
another subcommand. If you did not include the –p option, ed uses the * character as a prompt. If
subcommand prompting is currently turned on, issuing the P subcommand turns it off.

.,.p
Displays (prints) the addressed lines. The last line displayed becomes the new current line. You can
append p to most subcommands, so that you can check on the effect that the subcommands had.

You can append p to any subcommand (except for E, e, f, Q, r, w, or !) so that you can check on the
effect that the subcommands had.

Q
Quits unconditionally, without checking for buffer changes.

q
Causes the editor to exit. If you have made changes to the buffer since the last save and you try
to quit, ed issues a warning. Entering the q subcommand again lets you quit, regardless of unsaved
changes.

$r [file]
Reads the contents of the file into the buffer after the addressed line. If you do not specify file, ed
uses the remembered file name; if no remembered file name exists, file becomes the new remembered
name. The r subcommand displays the number of bytes read from file unless you specified the –s
option. The last line read from the file becomes the new current line. If file is replaced by !, the rest of
the line is considered a shell command line, the output of which is to be read.

.,.s/regexp/new/[flags]
Searches the specified range of lines for strings matching the regular expression regexp. Normally
the s subcommand replaces the first such matching string in each line with the string new. The s
subcommand sets the current line to the last line on which a substitution occurred. If ed makes no
such replacements, ed considers it an error.
flags can be one of the following:
n

Replaces the nth matching string in the line instead of the first one.
g

Replaces every matching string in each line, not just the first one.
l

Displays the new current line in the format of the l subcommand.

ed

112 z/VM: 7.3 OpenExtensions Commands Reference

n
Displays the new current line in the format of the n subcommand.

p
Displays the new current line in the format of the p subcommand.

You can use any single printable character other than space or newline instead of / to separate parts
of the subcommand provided that you use the same character to delimit all parts of the subcommand.
You can omit the trailing delimiter.
You can include a newline in the new string by putting a \ immediately in front of the newline. This is
a good way to split a line into two lines. If new consists only of the % character, s uses the new string
from the previous s command. If & appears anywhere in new, ed replaces it with the text matching the
regexp. If you want new to contain a literal ampersand, or percent sign, put a backslash (\) in front of
the & or % character.

.,.ta
Copies the addressed lines to the point after the line given by the address a. The address a must not
fall in the range of addressed lines. If address a is 0, ed copies the lines to the beginning of the buffer.
This sets the current line to the last line copied.

u
Rolls back the effect of the last subcommand that changed the buffer. For the purposes of u,
subcommands that change the buffer are: a, c, d, g, G, i, j, m, r, s, t, v, V, and (of course) u. This
means that typing u repeatedly switches the most recent change back and forth. This subcommand
sets the current line number to the value it had immediately before the subcommand being undone
started.

1,$V/regexp/
Is similar to the G subcommand, except that this subcommand gives you the chance to edit only those
lines that do not match the given regular expression.

1,$v/regexp/commands
Is similar to the g (global) command, except that ed applies the given commands only to lines that do
not match the given regular expression.

1,$W [file]
Is similar to the w subcommand, except that this command appends data to the given file if the file
already exists.

1,$w [file]
Writes the addressed lines of the buffer to the named file. This does not change the current line.
If you do not provide file, ed uses the remembered file name; if there is no remembered file name,
file becomes the remembered name. If the output file does not exist, ed creates it. ed displays the
number of characters written unless you had specified the –s option.

X
Prompts you to enter an encryption key. All subsequent e, r, and w subcommands use this key to
decrypt or encrypt text read from or written to files. To turn encryption off, issue an X subcommand
and press <Return> in response to the prompt for an encryption key.

!command
Runs command as if you typed it to your chosen command interpreter. If command contains the
% character, ed replaces it with the current remembered file name. If you want a subcommand to
contain a literal %, put a backslash (\) in front of the character. As a special case, typing !! reruns the
previous command.

$=
Displays the line number of the addressed line. This does not change the current line.

.+1.,.+1
If you supply zero, one, or two addresses without an explicit subcommand, ed displays the addressed
lines in the mode of the last print subcommand: p, l, or n. This sets the current line number to the last
line displayed.

ed

Chapter 1. OpenExtensions Shell Commands 113

Environment Variables
COLUMNS

Contains the terminal width in columns. ed folds lines at that point. If it is not set, ed uses the
appropriate value from the TERMINFO database or if that is not available, it uses a default of 80.

HOME
Contains the path name of your home directory.

SHELL
Contains the full path name of the current shell.

TMPDIR
Is the path name of the directory being used for temporary files. If it is not set, the OpenExtensions
shell uses /tmp.

Files
/tmp/e*

This is the paging file. It holds a copy of the file being edited. You can change the directory for
temporary files using the environment variable TMPDIR.

ed.hup
ed writes the current buffer to this file when it receives a hangup signal.

Localization
ed uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure because of any of the following:

• Addressed line out of range.
• Only one file name is allowed.
• No space for the line table.
• Temporary file error.
• Badly constructed regular expression.
• No remembered regular expression.
• File read error.
• Out of memory.
• Unknown command.
• Command suffix not permitted.
• No match found for regular expression.
• Wrong number of addresses for the subcommand.

ed

114 z/VM: 7.3 OpenExtensions Commands Reference

• Not enough space after the subcommand.
• The name is too long.
• Badly formed name.
• Subcommand redirection is not permitted.
• Restricted shell.
• No remembered file name.
• The mark name must be lowercase.
• Undefined mark name.
• m and t subcommands require a destination address.
• The destination cannot straddle source in m and t.
• A subcommand not allowed inside g, v, G, or V.
• The x subcommand has become X (uppercase).
• The global command is too long.
• Write error (no disk space).

2
Usage error.

Messages and Return Codes
The error messages are issued only if h or H subcommands are used after ed outputs ?. Possible error
messages include:
Destination cannot straddle source in m and t

The range of lines being moved or copied by m or t cannot include the destination address.
Global command too long

There is a limit on the length of a global instruction (g or v). See “Limits” on page 116 for this limit.
'm' and 't' require destination address

You must follow the m or t subcommands with an address indicating where you want to move or copy
text. You omitted this address.

No remembered file name
You tried to run a subcommand that used a remembered file name (for example, you used w to write
without specifying an output file name). However, there is no remembered file name at present. Run
the subcommand again, but specify a file name this time.

Restricted shell
The command line invoked the restricted form of ed, but you tried an action that was not allowed in
the restricted editor (the ! subcommand).

Temporary file error
You ran out of space on disk or encountered other errors involving the page file stored in the
temporary file.

Warning: file not saved
You entered a subcommand to quit editing the current file, for example, q or e to edit a new file;
however, you have changed the file since the last time you saved it. ed is suggesting that you save
the file before you exit it; otherwise, your recent changes will be lost. To save the file, use the w
command. If you really do not want to save the recent changes, use q to quit or e to edit a new file.

?file
An error occurred during an attempt to open or create file. This is applicable to the e, r, and w
subcommands.

?
An unspecified error occurred. Use the h or H subcommand for more information. If the input to ed
comes from a script rather than from a workstation, ed exits when any error occurs.

ed

Chapter 1. OpenExtensions Shell Commands 115

Limits
ed allows a limit of 1024 bytes per line and 28,000 lines per file. It does not allow the NUL ('\0') character.
The maximum length of a global command is 256 characters, including newlines.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The addresses < and >, the –b and –x options, and the W and X subcommands are extensions of the
POSIX standard.

Related Commands
awk, diff, grep, sed, env, regexp (see Appendix B, “Regular Expressions (regexp),” on page 471)

ed

116 z/VM: 7.3 OpenExtensions Commands Reference

env — Display environments, or set an environment for a process

env [–i] [variable=value ...] [command argument ...]
env [–] [variable=value ...] [command argument ...]

Purpose
If you enter env with no arguments, it displays the environment that it received from its parent
(presumably the shell).

Arguments of the form variable=value let you add new variables or change the value of existing variables
of the environment.

If you specify command, env calls command with the arguments specified with the argument argument
that appears on the command line, passing the accumulated environment to this command. The
command is run directly as a program found in the search PATH, and is not interpreted by a shell.

Options
The env command recognizes the following two options, both of which have the same effect.
–i

Specifies that the environment inherited by env not be used.
–

Specifies that the environment inherited by env not be used.

Examples

Compare the output of the following two examples:

env foo=bar env
env -i foo=bar env

Environment Variables
PATH

Contains a list of directories to search when attempting to find command.

Localization
env uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.

env

Chapter 1. OpenExtensions Shell Commands 117

1
Failure due to any of the following:

• Not enough memory
• Name is too long

2
Incorrect command-line argument.

126
env found command but could not invoke it.

127
env was unable to find command.

Messages and Return Codes
Possible error messages include:
Too many environment variables

The maximum number of environment variables that can be specified in a single env command is 512.

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

printenv on Berkeley UNIX systems works like env.

Related Commands
sh

env

118 z/VM: 7.3 OpenExtensions Commands Reference

eval — Construct a command by concatenating arguments

eval [argument ...]

Purpose
The shell evaluates each argument as it would for any command. eval then concatenates the resulting
strings, separated by spaces, and evaluates and executes this string in the current shell environment.

Examples

The command:

for a in 1 2 3
do
 eval x$a=fred
done

sets variables x1, x2, and x3 to fred. Then:

echo $x1 $x2 $x3

produces:

fred fred fred

Usage Notes
This command is built into the shell.

Exit Values
The only possible exit status value is:
0

You specified no arguments or the specified arguments were empty strings.

Otherwise, the exit status of eval is the exit status of the command that eval runs.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
exec, sh

eval

Chapter 1. OpenExtensions Shell Commands 119

exec — Run a command and open, close, or copy the file
descriptors

exec [command_line]

Purpose
The command_line argument for exec specifies a command line for another command. exec runs this
command without creating a new process. Some people picture this action as overlaying the command
on top of the currently running shell. Thus, when the command exits, control returns to the parent of the
shell.

Input and output redirections are valid in command_line. You can change the input and output descriptors
of the shell by giving only input and output redirections in the command. For example:

exec 2>errors

redirects the standard error stream to errors in all subsequent commands ran by the shell.

If you do not specify command_line, exec simply returns a successful exit status.

Usage Notes
This is a special built-in command of the shell.

Exit Values
If you specify command_line, exec does not return to the shell. Instead, the shell exits with the exit status
of command_line or one of the following exit status values:
1–125

A redirection error occurred.
126

The command in command_line was found, but it was it was not an executable utility.
127

The given command_line could not be run because the command could not be found in the current
PATH environment.

If you did not specify command_line, exec returns with an exit value of zero.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
sh

exec

120 z/VM: 7.3 OpenExtensions Commands Reference

exit — Return to the parent process from which the shell was called
or to CMS

exit [expression]

Purpose
exit ends the shell.

The value of expression should be between 0 and 255. The EXIT trap is raised by the exit command,
unless exit is being or called from inside an EXIT trap.

If you have a shell background job running, you cannot exit from the shell until it completes.

Exit Values
exit returns the value of the arithmetic expression specified by the expression argument to the parent
process as the exit status of the shell. If you omit expression, exit returns the exit status of the last
command run.

Portability
exit is a special built-in shell command.

Related Commands
The exit() ANSI C function, the _exit callable service, and the _exit() POSIX C function are unrelated to the
exit shell command.

exit

Chapter 1. OpenExtensions Shell Commands 121

export — Set the export attributes for variables, or show currently
exported variables

export [name [=value] ...]
export –p

Purpose
export marks each variable name so that the current shell makes it automatically available to
the environment of all commands run from that shell. Exported variables are thus available in the
environment to all subsequent commands. Several commands (for example, cd and date) look at
environment variables for configuration or option information.

Variable assignments of the form name=value assign value to name as well as marking name for export.

Calling export without arguments lists, with appropriate quoting, the names and values of all variables
in the format Variable="value". If you reinput this format to another shell, variables are assigned
appropriately but not exported. The –p option lists variables in a format suitable for reinput to the shell
(see the description of the –p option).

Options
export recognizes the following option:
–p

Lists variables in the form:

export name="value"

suitable for reinput to the shell.

Usage Notes
This is a special built-in shell command.

Exit Values
Possible exit status values:
0

Successful completion
1

Failure due to incorrect command-line argument
2

Failure, usually due to incorrect an incorrect command-line argument, that results in a usage message

Portability
POXIS.2, X/Open Portability Guide.

Assigning a value to name, and the behavior given for calling export with arguments are extensions of the
POSIX standard.

Related Commands
cd, date, set, sh, typeset

export

122 z/VM: 7.3 OpenExtensions Commands Reference

expr — Evaluate arguments as an expression

expr expression

Purpose
The set of arguments passed to expr constitutes an expression to be evaluated. Each command argument
is a separate token of the expression. expr writes the result of the expression on the standard output. This
command is primarily intended for arithmetic and string manipulation on shell variables.

Operators explained together have equal precedence; otherwise, they are in increasing order of
precedence. expr stores an expression as a string and converts it to a number during the operation.
If the context requires a Boolean value, a numeric value of 0 (zero) or a null string ("") is false, and any
other value is true. Numbers have an optional leading sign, followed by either a hexadecimal, an octal, or a
decimal number. The shell differentiates between hex, octal, and decimal as follows:

• Any number that starts with 0x is hex.
• Any number that starts with 0 is octal.
• Any number that does not start with 0x or 0 is decimal.

Numbers are manipulated as long integers.
expr1 | expr2

Results in the value expr1 if expr1 is true; otherwise, it results in the value of expr2.
expr1 & expr2

Results in the value of expr1 if both expressions are true; otherwise, it results in 0.
expr1 <= expr2 | expr1 < expr2 | expr1 = expr2 | expr1 != expr2 | expr1 >= expr2 | expr1 > expr2

If both expr1 and expr2 are numeric, expr compares them as numbers; otherwise, it compares them
as strings. If the comparison is true, the expression results in 1; otherwise, it results in 0.

expr1 + expr2 | expr1 – expr2
Performs addition or subtraction on the two expressions. If either expression is not a number, expr
exits with an error.

expr1 * expr2 | expr1 / expr2 | expr1 % expr2
Performs multiplication, division, or modulus on the two expressions. If either expression is not a
number, expr exits with an error.

expr1 : re | match expr1 re
matches the regular expression re against expr1 treated as a string. The regular expression is the
same as that accepted by ed, except that the match is always anchored—that is, there is an implied
leading ^. Therefore, expr does not consider ^ to be a metacharacter. If the regular expression
contains \(...\), \) and it matches at least part of epr1, expr results in only that part; if there is
no match, expr results in 0. If the regular expression doesn't contain this construct, the result is
the number of characters matched. The function match performs the same operation as the colon
operator.

substr expr1 expr2 expr3
Results in the substring of expr1 starting at position expr2 (origin 1) for the length of expr3.

index expr1 expr2
Searches for any of the characters in expr2 in expr1 and results in the offset of any such character
(origin 1), or 0 if no such characters are found.

length expr1
Results in the length of expr1.

(expr)
Groups expressions.

expr

Chapter 1. OpenExtensions Shell Commands 123

Examples

fname=src/fn_abs.c
expr $fname : '.*_\(.*\)\.c'

returns abs.

a=ˋexpr $a + 1ˋ

adds 1 to the value of the shell variable a.

Localization
expr uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

The result of expression is true.
1

The result of expression is false.
2

Failure due to any of following:

• Not enough memory.
• Command line syntax error.
• Too few arguments on the command line.
• Incorrect regular expression.
• Regular expression is too complicated.
• Nonnumeric value found where a number was expected.

Messages and Return Codes
Possible error messages include:
internal tree error

Syntax errors or unusual expression complexity make it impossible for expr to evaluate an expression.
If an expression has syntax errors, correct them; if not, simplify the expression (perhaps by breaking it
into parts).

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

In the shell, let largely supersedes this command.

match, substr, length, and index are undocumented on all UNIX systems, though they do appear to exist
there. They are extensions of the POSIX standard.

expr

124 z/VM: 7.3 OpenExtensions Commands Reference

Related Commands
ed, let, sh, test, regexp (see Appendix B, “Regular Expressions (regexp),” on page 471)

expr

Chapter 1. OpenExtensions Shell Commands 125

false — Return a nonzero exit code

false [argument ...]

Purpose
The false command simply returns an exit status value of 1 (failure). This can be useful in shell scripts.

Usage Notes
This command is provided as both an external utility and a shell built-in.

Exit Values
false always returns an exit status value of 1.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
sh

false

126 z/VM: 7.3 OpenExtensions Commands Reference

fc, history, r -- Process a command history list

fc [–r] [–e editor] [first[last]]
fc –l [–nr] [first[last]]
fc –s [old=new] [specifier]

Purpose
fc displays, edits, and reenters commands that have been input to an interactive shell. fc stands for
"fix commands." If the variable HISTSIZE is not defined, 128 commands are accessible. The number of
commands that are accessible is determined by the HISTSIZE variable.

The shell stores these commands in a history file. When the HISTFILE environment variable is defined
as the name of a writable file, the shell uses this as the history file. Otherwise, the history file is
$HOME /.sh_history, if HOME is defined and the file is writable. If the HOME variable is not defined,
or the file is not writable, the shell attempts to create a temporary file for the history. If a temporary file
cannot be created, the shell does not keep a history file.

Note: A shell shares history (commands) with all shells that have the same history file. A login shell
truncates the history file if it is more than HISTSIZE lines long.

Normally, the shell does not keep a history of commands run from a profile file or the ENV file. By default,
however, it begins recording commands in the history file when it encounters a function definition in either
of these setup files. This means that the HISTSIZE and HISTFILE variables must be set up appropriately
before the first function definition. If you do not want the history file to begin at this time, use:

set -o nolog

For further information, see sh and set. Any variable assignment or redirection that appears on the fc
command line affects both the fc command itself and the commands that fc produces.

The first form of the fc syntax puts you into an editor with a range of commands to edit. When you leave
the editor, fc inputs the edited commands to the shell.

The first and last command in the range are specified with first and last. There are three ways to specify a
command.

• If the command specifier is an unsigned or positive number, fc edits the command with that number.
• If the command specifier is a negative number –n, fc edits the command that came n commands before

the current command.
• If the command specifier is a string, fc edits the most recent command beginning with that string.

The default value of last is first. If you specify neither first nor last, the default command range is the
previous command entered to the shell.

Options
fc recognizes the following options:
–e editor

Invokes editor to edit the commands. If you do not specify the –e option, fc assumes that the
environment variable FCEDIT, if defined, contains the name of the editor for fc to use. If FCEDIT is not
defined, fc invokes ed to edit the commands.

Note: ed is the only supported interactive editor.

–l
Simply displays the command list. This option does not edit or reenter the commands. If you omit
last with this option, fc displays all commands from the one indicated by first through to the previous

fc,history,r

Chapter 1. OpenExtensions Shell Commands 127

command entered. If you omit both first and last with this option, the default command range is the
16 most recently entered commands.

–n
Suppresses command numbers when displaying commands.

–r
Reverses the order of the commands in the command range.

–s
Reenters exactly one command without going through an editor. If a command specifier is given, fc
selects the command to reenter as described earlier; otherwise, fc uses the last command entered. To
perform a simple substitution on the command before reentry, use a parameter of the form old=new.
The string new replaces the first occurrence of string old. fc displays the (possibly modified) command
before reentering it.

Environment Variables
FCEDIT

Contains the default editor to be used if none is specified with the –e option.
HISTFILE

Contains the path name of the history file.
HISTSIZE

Gives the maximum number of previous commands that are accessible.

Files
/tmp

Used to store temporary files. You can use the TMPDIR environment variable to dictate a different
directory to store temporary files.

/.sh_history
This default history file is created.

Localization
fc uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

Usage Notes
This command is built into the shell. r is a built-in alias for fc –s. history is a built-in alias for fc –l.

Exit Values
Possible exit status values are:
0

If you specified –l, this indicates successful completion.
1

Failure due to any of the following:

• Missing history file
• Inability to find the desired line in the history file
• Inability to create temporary file

fc,history,r

128 z/VM: 7.3 OpenExtensions Commands Reference

2
An incorrect command-line option or argument

If fc runs one or more commands, the exit status of fc is the exit status of the last run command.

Messages and Return Codes
Possible error messages include:
Cannot create temporary file

fc must create a temporary file to do some operations, such as editing. It prints this message when it
cannot create its temporary file—for example, because the disk is full.

No command matches string
You asked to edit a command beginning with a particular string, but there was no such command in
the history file.

Portability
POSIX.2.

Related Commands
alias, ed, print, read, sh

fc,history,r

Chapter 1. OpenExtensions Shell Commands 129

fg — Bring a job into the foreground

fg [%job-identifier]

Purpose
fg restarts a suspended job or moves a job from the background to the foreground. To identify the job,
you give a job-identifier (preceded by %) as given by the jobs command.

If you do not specify job-identifier, fg uses the most recent job to be suspended (with the kill
command) or placed in the background (with the bg command).

On POSIX, fg is available only if you have enabled job control.

Localization
fg uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
>0

No current job

Messages and Return Codes
Possible error messages include:
Not a stopped job

Job was not stopped.

Portability
POSIX.2 User Portability Extension.

Related Commands
bg, jobs, kill, ps

fg

130 z/VM: 7.3 OpenExtensions Commands Reference

find — Find a file meeting specified criteria

find path ... expression

Purpose
find searches a given file hierarchy specified by path, finding files that match the criteria given by
expression. Each directory, file, or special file encountered in the hierarchy is "passed through" expression,
and if a match is found, then an action defined by expression occurs.

find builds expression from a set of primaries and operators. A primary does one of the following:

• Defines some trait to be matched, such as the audit mask of a file.
• Controls some other aspect of the behavior of find, such as how find traverses the file hierarchy or what
find does when a match occurs.

An operator modifies how find interprets a primary or set of primaries. For example, an operator might
invert the meaning of a primary, or an operator might be used to specify the logical OR of two primaries.
The juxtaposition of two primaries is an implied operator in a way that it implies a logical AND of two
primaries.

Operators
find recognizes the following operators:
–a

Used between primaries for a logical AND. You can omit this operator to get the same result, since
logical AND is assumed when no operator is used between two primaries.

–o
Used between primaries for a logical OR.

!
Precedes an expression in order to negate it.

You can group primaries and operators using parentheses. You must delimit all primaries, operators,
numbers, arguments, and parentheses with white space. Each number noted in the primary list is a
decimal number, optionally preceded by a plus or minus sign. If a number is given without a sign, find
tests for equality; a plus sign implies "greater than" or "older than," and a minus sign implies "less than" or
"newer than".

Primaries
find recognizes the following list of primaries for defining match criteria. Whenever number is used as a
primary argument, it is interpreted as a decimal integer that is optionally preceded by a plus (+) or minus
(-) sign as follows:
+number

More than number
 number

Exactly number
-number

Less than number.

Primary arguments:
–aaudit auditmask

The -aaudit primary is used to match the auditor audit bits. See –audit auditmask.

find

Chapter 1. OpenExtensions Shell Commands 131

–audit auditmask
The -audit primary is used to match the user audit bits. auditmask can be in octal or in symbolic form.
The mask can be preceded by a - character (as in the perm primary), but it is ignored. Symbolic mode
is an operation=condition list, separated by commas:

[rwx]=[sf]

where:
=sf

Success or failure on any of rwx
r=s

Success on read
r=s, x=sf

Success on read or exec, failure on exec
r, w=s

Incorrect
x

Incorrect

Note: Audit bits can be set by only the callable service BPX1CHA. See z/VM: OpenExtensions Callable
Services Reference for more information.

–atime number
Matches if someone has accessed the file in the past number 24-hour periods.

–ctime number
Matches if someone has changed the attributes of the file in the past number 24-hour periods.

–group name
Matches if the group owner is name. If name is not a valid group name, it is treated as a group ID.

–inum number
Matches if the file has inode number number.

–links number
Matches if there are number links to the file.

–mtime number
Matches if someone has modified the file in the past number 24-hour periods.

–nogroup
Matches if no defined group owns the file.

–nouser
Matches if no defined user owns the file.

–perm[-]mask
By default, matches if the permissions on the file are identical to the ones given in mask. You can
specify mask in octal or in symbolic mode (see chmod). If you use symbolic mode, find assumes that
you begin with no bits set in mask, and that the symbolic mode is a recipe for turning the bits you want
on and off. A leading minus sign (-) is special. It means that a file matches if at least all the bits in
mask are set. As a result, with symbolic mode, you cannot use a mask value that begins with a minus
sign (-).

If you use octal mode, find uses only the bottom 12 bits of mask. With an initial minus sign (-), find
again matches only if at least all the limits in mask are set in the file permissions lists.

–size number[c]
Matches if the size of the file is number blocks long, where a block is 512 bytes. If you include the
suffix c, the file size is number bytes.

–type c
Matches if the type of the file is the same as the type given by the character c. Possible values of the
character are:

find

132 z/VM: 7.3 OpenExtensions Commands Reference

b
— Block special

c
— Char-special

d
— Directory

f
— Regular file

l
— Symbolic link

n
— Network file

p
— FIFO (named pipe)

s
— Socket

–user name
Matches if the owner of the file is name. name can also be a user ID number.

find recognizes the following primaries that control the actions taken when a match occurs:
–cpio cpio-file

Writes the file found to the target file cpio-file in cpio format. This is equivalent to:

find ... | cpio -o >cpio-file

This primary matches if the command succeeds.
–exec command ;

Takes all arguments between –exec and the semicolon as a command line, replacing any argument
that is exactly {} (that is, the two brace characters) with the current file name. It then executes the
resulting command line, treating a return status of zero from this command as a successful match,
nonzero as failure. You must delimit the terminal semicolon with white space.

Note: The semicolon is a shell metacharacter. To use it in expression, you must quote it.

–name pattern
Compares the current file name with pattern. If there is no match, the expression fails. The pattern
uses the same syntax as file name generation (see sh). It matches as many trailing path name
components as specified in pattern.

–ncpio cpio-file
Writes the file found to the target file cpio-file in cpio –c format. This is equivalent to:

find ... | cpio -oc >cpio-file

This primary matches if the command succeeds.
–newer file

Compares the modification date of the found file with that of the file given. This matches if someone
has modified the found file more recently than file.

–none
Indicates that some action has been taken; thus find does not invoke the default –print action.

–ok command;
Is similar to –exec, but before find executes the command, it displays the command to confirm that
you want to go ahead. find executes the command line only if your input matches the expression for
"yes" (yes and no expressions are defined in LC_MESSAGES). If you type the expression for "no", the
primary does not match. You must delimit the terminal semicolon with white space.

Note: The semicolon is a shell metacharacter. To use it in expression, you must quote it.

find

Chapter 1. OpenExtensions Shell Commands 133

–print
Displays the current file name.

find recognizes the following primaries that control file hierarchy traversal:
–depth

Processes directories after their contents.
–follow

Follows symbolic and Mount External links.
–level number

Does not descend below number levels.
–prune

Stops searching deeper into the tree at this point. –prune has no effect if –depth is also specified.
–xdev

Does not cross device boundaries from the root of the tree search.

Examples

1. To find all files with a suffix of .c that have the audit mode set to rwx (read, write, execute), enter:

find / –name "*.c" –audit rwx=sf

2. To find all files with a suffix of .c and audit mode bits set to 777 (rwx), enter:

find / –name "*.c" –audit 777

Environment Variables
Path

Determines the location of the command specified with the –exec or –ok primaries.

Localization
find uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Not enough memory
• Missing option
• Incorrect character specified after –type
• Inability to get information on a file for –newer
• Incorrect permissions for –perm

find

134 z/VM: 7.3 OpenExtensions Commands Reference

• Inability to open a file for the –cpio option
• Unknown user or group name
• Inability to access the PATH variable
• Cannot run a command specified for –exec or –ok
• Syntax error
• Stack overflow caused by an expression that is too complex

2
Failure due to one of the following:

• Incorrect command-line option
• Not enough arguments on the command line
• Missing option
• Argument list that is not properly ended

Messages and Return Codes
Possible error messages include:
bad number specification in string

You specified an option that takes a numeric value (for example, –atime, –ctime) but did not specify a
valid number after the option.

cannot stat file name for -newer
You used a –newer option to compare one file with another; however, find could not obtain a
modification time for the specified file. Typically, this happens because the file does not exist or
you do not have appropriate permissions to obtain this information.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Most UNIX systems do not have a default action of –print; hence, they do not need the –none option.
The –a operator is undocumented on many UNIX systems. The –aaudit, –audit, –cpio, –follow, –level,
–ncpio, and –none primaries are extensions of the POSIX standard. The aaudit and audit options are
unique to the OpenExtensions shell.

Related Commands
chmod, cpio, sh

find

Chapter 1. OpenExtensions Shell Commands 135

fold — Break lines into shorter lines

fold [–bs] [–w width] [–width] [file...]

Purpose
fold reads the standard input, or each file, if you specify any. Each input line is broken into lines no longer
than width characters. If you do not specify width on the command line, the default line length is 80. The
output is sent to the standard output.

Options
fold recognizes the following options:
–b

Specifies width in bytes rather than in column positions; that is, fold does not interpret tab,
backspace, and carriage return characters.

–s
Breaks each line at the last blank within width column positions. If there is no blank that meets the
requirement, fold breaks the line normally.

–w width
Specifies a maximum line length of width characters.

–width
is identical in effect to –w width.

Localization
fold uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure because the input file could not be opened.
2

Invalid command-line option or a missing width argument.

Portability
POSIX.2, 4.2BSD

The –width option is an extension of the POSIX standard.

fold

136 z/VM: 7.3 OpenExtensions Commands Reference

Related Commands
pr

fold

Chapter 1. OpenExtensions Shell Commands 137

getconf — Get configuration values

getconf [–a] system_var
getconf [–a] path_var pathname

Purpose

getconf writes the value of a configuration variable to the standard output. You can specify the
configuration variable using one of the forms listed in the Format section. If you use the first form, getconf
writes the value of the variable system_var. If you use the second form, getconf writes the value of the
variable path_var for the path name given by pathname. The –a option prompts getconf to display all
current configuration variables, and their values, to standard output.

getconf writes numeric values in decimal format and nonnumeric values as simple strings. If the value is
undefined, getconf writes the string undefined to the standard output.

Options
getconf recognizes the following option:
–a

Writes out all the configuration variables for the current system, and their values, to standard output.
Path variables are written based on a path name of dot (.).

Configuration Variables
You can use the second form of getconf to find the value of the following POSIX.1-1990 standard
configuration variables for the specified path name:
LINK_MAX

Specifies the maximum number of links that this file can have.
MAX_CANON

Specifies the maximum number of bytes in the workstation's canonical input queue (before line
editing).

MAX_INPUT
Specifies the space available in the workstation's input queue.

NAME_MAX
Specifies the largest file name size.

PATH_MAX
Specifies the maximum number of bytes in a path name.

PIPE_BUF
Specifies the largest atomic write to a pipe.

_POSIX_CHOWN_RESTRICTED
Specifies the restrictions that apply to file ownership changes.

_POSIX_NO_TRUNC
If set, it is an error for any path name component to be longer than NAME_MAX bytes.

_POSIX_VDISABLE
Specifies that processes are allowed to disable ending special characters.

You can use the first form of getconf to find the value of the following POSIX.1-1990 standard
configuration variables:

getconf

138 z/VM: 7.3 OpenExtensions Commands Reference

ARG_MAX
Specifies the maximum length of arguments for running a program, including environment data.

CHILD_MAX
Specifies the maximum number of simultaneous processes allowed per real user.

CLK_TCK
Specifies the number of intervals per second in the machine clock.

NGROUPS_MAX
Specifies the number of simultaneous group IDs per process.

OPEN_MAX
Specifies the maximum number of open files at any time per process.

PATH
Specifies the standard PATH setting.

_CS_PATH
Specifies the standard PATH setting.

STREAM_MAX
Specifies the number of streams that one process can have open at one time.

TZNAME_MAX
Specifies the maximum number of bytes supported for the name of a time zone (not of the TZ
variable).

_POSIX_ARG_MAX
Specifies the minimum conforming value for ARG_MAX.

_POSIX_CHILD_MAX
Specifies the minimum conforming value for CHILD_MAX.

_POSIX_JOB_CONTROL
Specifies the POSIX job control supported.

_POSIX_LINK_MAX
Specifies the minimum conforming value for LINK_MAX.

_POSIX_MAX_CANON
Specifies the minimum conforming value for MAX_CANON.

_POSIX_MAX_INPUT
Specifies the minimum conforming value for MAX_INPUT.

_POSIX_NAME_MAX
Specifies the minimum conforming value for NAME_MAX.

_POSIX_NGROUPS_MAX
Specifies the minimum conforming value for NGROUPS_MAX.

_POSIX_OPEN_MAX
Specifies the minimum conforming value for OPEN_MAX.

_POSIX_PATH_MAX
Specifies the minimum conforming value for PATH_MAX.

_POSIX_PIPE_BUF
Specifies the minimum conforming value for PIPE_BUF.

_POSIX_SAVED_IDS
Specifies that processes have saved set-user-ID and saved set-group-ID bits set.

_POSIX_SSIZE_MAX
Specifies the value that can be stored in an object of type ssize_t.

_POSIX_STREAM_MAX
Specifies the minimum conforming value for STREAM_MAX.

_POSIX_TZNAME_MAX
Specifies the minimum conforming value for TZNAME_MAX.

getconf

Chapter 1. OpenExtensions Shell Commands 139

_POSIX_VERSION
Specifies the version of POSIX adhered to in this release.

You can use the first form of getconf to find the value of the POSIX.2 standard configuration variables:
BC_BASE_MAX

Specifies the maximum ibase and obase values for the bc command.
BC_DIM_MAX

Specifies the maximum number of elements permitted in a bc array.
BC_SCALE_MAX

Specifies the maximum scale size allowed in bc.
BC_STRING_MAX

Specifies the maximum number of characters in a string in bc.
COLL_WEIGHTS_MAX

Specifies the maximum number of weights assignable to an entry of the LC_COLLATE order keyword.
EXPR_NEST_MAX

Specifies the maximum number of expressions that you can nest inside parentheses in an expression
evaluated by expr.

LINE_MAX
Specifies the maximum number of bytes that a utility can accept as an input line (either from the
standard input or a text file) when the utility takes text files as input. This number includes the trailing
<newline>.

RE_DUP_MAX
Specifies the maximum number of repeated occurrences of a regular expression when using the
interval notation \{m,n\} (see Appendix B, “Regular Expressions (regexp),” on page 471).

POSIX2_C_BIND
Indicates if the system supports the C Language Bindings Option.

POSIX2_C_DEV
Indicates if the system supports the C Language Development Utilities Option.

POSIX2_FORT_DEV
Indicates if the system supports the FORTRAN Development Utilities Option.

POSIX2_FORT_RUN
Indicates if the system supports the FORTRAN Runtime Utilities Option.

POSIX2_LOCALEDEF
Indicates if the system supports the creation of locales.

POSIX2_SW_DEV
Indicates if the system supports the Software Development Utilities Option.

POSIX2_CHAR_TERM
Indicates if the system supports at least one terminal type capable of all operations necessary for the
User Portability Utilities Option. This parameter name is correct only on if POSIX2_UPE is on.

POSIX2_UPE
Indicates if the system supports the User Portability Utilities Option.

POSIX2_VERSION
Specifies the version of POSIX.2 adhered to in this release.

POSIX2_BC_BASE_MAX
Specifies the minimum conforming value for BC_BASE_MAX.

POSIX2_BC_DIM_MAX
Specifies the minimum conforming value for BC_DIM_MAX.

POSIX2_BC_SCALE_MAX
Specifies the minimum conforming value for BC_SCALE_MAX.

POSIX2_BC_STRING_MAX
Specifies the minimum conforming value for BC_STRING_MAX.

getconf

140 z/VM: 7.3 OpenExtensions Commands Reference

POSIX2_COLL_WEIGHTS_MAX
Specifies the minimum conforming value for EQUIV_CLASS_MAX.

POSIX2_EXPR_NEST_MAX
Specifies the minimum conforming value for EXPR_NEST_MAX.

POSIX2_LINE_MAX
Specifies the minimum conforming value for LINE_MAX.

POSIX2_RE_DUP_MAX
Specifies the minimum conforming value for RE_DUP_MAX.

This implementation of getconf also recognizes the following non-POSIX-conforming name:
_CS_SHELL

Specifies the default shell (command interpreter).

Examples

getconf OPEN_MAX
getconf NAME_MAX /dir

Localization
getconf uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Usage Notes
1. The –a option does not display values for MAX_CANON, MAX_INPUT, and POSIX_VDISABLE path

variables. This is because they are terminal file variables, and are not based on a path name of dot (.).
The second form of the getconf command should be used to display the values of these variables.

Exit Values
Possible exit status values are:
0

The specified parameter_name was valid and getconf displayed its value successfully.
>0

An error occurred.

Portability
POSIX.2.

_CS_SHELL is an extension of the POSIX standard. Some symbols are supported only on systems that
support POSIX.2.

Related Commands
bc, expr, sh, regexp (see Appendix B, “Regular Expressions (regexp),” on page 471)

getconf

Chapter 1. OpenExtensions Shell Commands 141

getopts — Parse utility options

getopts opstring name [arg ...]

Purpose
getopts obtains options and their arguments from a list of parameters that follows the standard POSIX.2
option syntax (that is, single letters preceded by a hyphen (—) and possibly followed by an argument
value). Typically, shell scripts use getopts to parse arguments passed to them. When you specify
arguments with the arg argument on the getopts command line, getopts parses those arguments instead
of the script command line (see set).

The opstring argument gives all the option letters that the script recognizes. For example, if the script
recognizes –a, –f, and –s, opstring is afs. If you want an option letter to be followed by an argument
value or group of values, put a colon after the letter, as in a:fs. This indicates that getopts expects the
–a option to have the form –a value. Normally one or more blanks separate value from the option letter;
however, getopts also handles values that follow the letter immediately, as in –avalue. opstring cannot
contain a question mark (?) character.

name on the getopts command line is the name of a shell variable. Each time you invoke getopts, it
obtains the next option from the positional parameters and places the option letter in the shell variable
name.

getopts places a question mark (?) in name if it finds an option that does not appear in opstring, or if an
option value is missing.

Each option on the script command line has a numeric index. The first option found has an index of 1, the
second has an index of 2, and so on. When getopts obtains an option from the script command line, it
stores the index of the script in the shell variable OPTIND.

When an option letter has a following argument (indicated with a : in opstring), getopts stores the
argument as a string in the shell variable OPTARG. If an option doesn't take an argument, or if getopts
expects an argument but doesn't find one, getopts unsets OPTARG.

When getopts reaches the end of the options, it exits with a status value of 1. It also sets name to the
character ? and sets OPTIND to the index of the first argument after the options. getopts recognizes the
end of the options by any of the following:

• Finding an argument that doesn't start with –
• Finding the special argument ––, marking the end of options
• Encountering an error (for example, an unrecognized option letter)

OPTIND and OPTARG are local to the shell script. If you want to export them, you must do so explicitly.
If the script invoking getopts sets OPTIND to 1, it can call getopts again with a new set of parameters,
either the current positional parameters or new arg values.

By default, getopts issues an error message if it finds an unrecognized option or some other error. If you
do not want such messages printed, specify a colon as the first character in opstring.

Examples

Following is an example of using getopts in a shell script:

Example illustrating use of getopts builtin. This
shell script would implement the paste command,
using getopts to process options, if the underlying
functionality was embedded in hypothetical utilities
hpaste and vpaste, which perform horizontal and
vertical pasting respectively.
#

getopts

142 z/VM: 7.3 OpenExtensions Commands Reference

paste=vpaste # default is vertical pasting
seplist=" " # default separator is tab

while getopts d:s o
do case "$o" in
 d) seplist="$OPTARG";;
 s) paste=hpaste;;
 [?]) print >&2 "Usage: $0 [-s] [-d seplist] file ..."
 exit 1;;
 esac
done
shift $OPTIND-1

perform actual paste command
$paste -d "$seplist" "$@"

Environment Variables
getopts uses the following environment variables:
OPTARG

Contains the value of the option argument found by getopts.
OPTIND

Contains the index of the next argument to be processed.

Localization
getopts uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Usage Notes
This command is a built-in shell command.

Exit Values
Possible exit status values are:
0

getopts found a script command line with the form of an option. This happens whether or not it
recognizes the option.

1
getopts reached the end of the options, or an error occurred.

2
Failure because of an incorrect command-line option.

Portability
On UNIX systems, getopts is built into both the KornShell and Bourne shell.

Related Commands
sh

getopts

Chapter 1. OpenExtensions Shell Commands 143

grep — Search a file for a specified pattern

grep [–bcEFilnqsvx] [–e pattern]... [–f patternfile]... [pattern] [file ...]

Purpose
grep –F searches files for one or more pattern arguments. It does not use regular expressions; instead, it
does direct string comparison to find matching lines of text in the input. grep uses standard string search
functions. The search stops after a null character is encountered. grep should not be used on lines that
contain embedded null characters.

grep –E works similarly, but uses extended regular expression matching. This is described in Appendix
B, “Regular Expressions (regexp),” on page 471. If you include special characters in patterns typed on
the command line, escape them by enclosing them in single quotation marks to prevent inadvertent
misinterpretation by the shell or command interpreter. To match a character that is special to grep –E, put
a backslash (\) in front of the character. It is usually simpler to use grep –F when you don't need special
pattern matching.

grep combines the functions of the UNIX commands egrep and fgrep. If you do not specify either –E or
–F, grep behaves like grep –E but matches basic regular expressions instead of extended ones.

You can specify a pattern to search for with either the –e or –f option. If you specify neither option, grep
takes the first nonoption argument as the pattern for which to search. If grep finds a line that matches a
pattern, it displays the entire line. If you specify multiple input files, the name of the current file precedes
each output line.

Options
grep accepts all of the following options:
–b

Precedes each matched line with its file block number.
–c

Displays only a count of the number of matched lines and not the lines themselves.
–E

Matches using extended regular expressions.
–e pattern

Specifies one or more patterns separated by newlines for which grep is to search.

You can indicate each pattern with a separate –e option character, or with newlines within pattern. For
example, the following two commands are equivalent:

grep –e pattern_one –e pattern_two file
grep –e 'pattern_one pattern_two' file

–F
Matches using fixed strings.

–f patternfile
Reads one or more patterns from patternfile. Patterns in patternfile are separated by newlines.

–i
Ignores the case of the strings being matched.

–l
Lists only the file names that contain the matching lines.

–n
Precedes each matched line with its fileline number.

grep

144 z/VM: 7.3 OpenExtensions Commands Reference

–q
Suppresses output and simply returns appropriate return code.

–s
Suppresses the display of any error messages for nonexistent or unreadable files.

–v
Complements the sense of the match—that is, displays all lines not matching a pattern.

–x
Requires a string to match an entire line.

Examples

To display every line mentioning an astrological element:

grep -E "earth|air|fire|water" astro.log

Localization
grep uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

The command found at least one match for pattern.
1

The command found no matches for pattern.
2

Failure due to any of the following:

• –e option was missing pattern.
• –f option was missing patternfile.
• Out of memory for input or to hold a pattern.
• patternfile could not be opened.
• Incorrect regular expression.
• Incorrect command-line option.
• The command line had too few arguments.
• The input file could not be opened.

If the program fails to open one input file, it tries to go on to look at any remaining input files, but it
returns 2 even if it succeeds in finding matches in other input files.

Messages and Return Codes
Possible error messages include:

grep

Chapter 1. OpenExtensions Shell Commands 145

input lines truncated—result questionable
One or more input lines were longer than grep could handle; the line has been truncated or split into
two lines, if possible. This message does not affect the exit status.

out of space for pattern string
grep did not have enough memory available to store the code needed to work with the given pattern
(regular expression). The usual cause is that the pattern is very complex. Make the pattern simpler, or
try to release memory so that grep has more space to work with.

Limits
The longest input record (line) is restricted by the system variable LINE_MAX. It is always at least 2048
bytes. Longer lines are treated as two or more records.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –b option is an extension of the POSIX standard.

Related Commands
ed, find, regexp (see Appendix B, “Regular Expressions (regexp),” on page 471)

grep

146 z/VM: 7.3 OpenExtensions Commands Reference

head — Display the first part of a file

head [–bcklmn num] [file ...]
head [–num] [file ...]

Purpose
By default, head displays the first 10 lines of each file given on the command line. If you do not specify
file, head reads the standard input.

Options
head recognizes the following options:
–b num

Displays the first num blocks (a block is 512 bytes) of each file.
–c num

Displays the first num bytes of each file.
–k num

Displays the first num kilobytes (1024 bytes) of each file.
–l num

Displays the first num lines of each file.
–m num

Displays the first num megabytes of each file.
–n num

Displays the first num lines of each file.
–num

Displays the first num lines of each file.

Localization
head uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Inability to open an input file
• Read error on the standard input
• Write error on the standard output

head

Chapter 1. OpenExtensions Shell Commands 147

2
Failure due to any of the following:

• Unknown command-line option
• Missing or incorrect num in an –n option

Messages and Return Codes
Possible error messages include:
Badly formed line or character count num

The value num, following a –b, –c, –k, –l, –m, or –n option, was not a valid number.

Portability
POSIX.2, X/Open Portability Guide.

This program originated with Berkeley Software Distribution (BSD) and is a frequent add-on to UNIX
systems.

The POSIX.2 standard includes only the –n num and –num options, though it considers the latter
obsolete.

Related Commands
cat, sed, tail

head

148 z/VM: 7.3 OpenExtensions Commands Reference

iconv — Convert characters from one code set to another

iconv [–sc] –f oldset –t newset [file ...]
iconv –l[–v]

Purpose
iconv converts characters in file (or from standard input if no file is specified) from one code page
set to another. The converted text is written to standard output. The code sets supported are system-
dependent; check the documentation for your system's iconv() function. See the C/C++ documentation
for more information about the code sets supported for this command.

If the input contains a character that is not valid in the source code set, iconv replaces it with the byte
0xff and continues, unless the –c option is specified.

If the input contains a character that is not valid in the destination code set, behavior depends on the
system's iconv() function.

Options
iconv recognizes the following options:
–c

Characters containing conversion errors are not written to the output. By default, characters not in the
source character set are converted to the value 0xff and written to the output.

–f oldset
Specifies the current code set of the input.

–l
Lists code sets in the internal table.

–s
Suppresses message that would be issued in the situation when exit value 2 is returned.

–t newset
Specifies the destination code set for the output.

–v
Specifies verbose output.

Localization
iconv uses the following localization environment variable:

• LC_CTYPE

See Appendix C, “Localization,” on page 477 for more information.

Examples

1. To convert the file words.txt from the IBM-1047 standard code set to the ISO 8859-1:1987 standard
code set and store it in converted:

iconv -f IBM-1047 -t ISO8859-1 words.txt > converted

Exit Values
Possible exit status values are:

iconv

Chapter 1. OpenExtensions Shell Commands 149

0
Successful completion.

1
Failure because of any of the following:

• Insufficient memory
• Inability to open the input file
• Incorrect or unknown option

2
Input contained a character sequence that is not permitted in the source code set.

Portability
X/Open Portability Guide 4.0.

–v is an extension to the POSIX.2 standard. The –c, –l, and –s options are extensions to the XPG
standard.

iconv

150 z/VM: 7.3 OpenExtensions Commands Reference

id — Return the user identity

id [user]
id –G [–n] [user]
id –g [–nr] [user]
id –u [–nr] [user]

Purpose
Entering id without arguments displays the user name and group affiliations of the invoking process that
enters the command. Specifying a user argument on the command line displays the same information for
the given user instead of the person invoking id. In this case, you require appropriate permissions.

The output has the format:

uid=runum(username) gid=rgnum(groupname)

where runum is the user's real user ID (UID) number, username is the user's real user name, rgnum is the
user's real group ID (GID) number, and groupname is the user's real group name.

A user's real and effective IDs may differ. In this case, there may be separate entries for effective user ID
(UID) with the format:

euid=eunum(euname)

where eunum is the effective user ID number and euname is the effective user name. An entry for
effective group ID has the format:

egid=egnum(egname)

where egnum is the effective group ID number and egname is the effective group name.

Options
id recognizes the following options:
–G

Displays all different group IDs (effective, real, and supplementary) as numbers separated by spaces.
–g

Displays only the effective group ID number.
–n

With –G, –g, or –u, displays the name rather than the number.
–r

With –g or –u, displays the real ID rather than the effective one.
–u

Displays only the effective user ID number.

Localization
id uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

id

Chapter 1. OpenExtensions Shell Commands 151

• LC_NUMERIC

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

You specified an incorrect user with the –u option.
2

Failure due to an incorrect command-line argument, or the wrong number of command-line
arguments.

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

Related Commands
logname

id

152 z/VM: 7.3 OpenExtensions Commands Reference

jobs — Return the status of jobs in the current session

jobs [–l|–p] [job-identifier...]

Purpose
jobs produces a list of the processes in the current session. Each such process is numbered for easy
identification by fg or kill, and is described by a line of information:

[job-identifier] default state shell_command

job-identifier
Is a decimal number that identifies the process for such commands as fg and kill (preface job-
identifier with % when used with these commands).

default
Identifies the process that would be the default for the fg and bg commands (that is, the most
recently suspended process). If default is a +, this process is the default job. If default is a –, this job
becomes the default when the current default job exits. There is at most one + job and one – job.

state
Shows a job as:
Running

If it is not suspended and has not exited
Done

If it exited successfully
Done(exit status)

If it exited with a non-zero exit status
Stopped (signal)

If it is suspended; signal is the signal that suspended the job
shell_command

Is the associated shell command that created the process.

Options
jobs recognizes the following options:
–l

Displays the process group ID of a job (before state).
–p

Displays the process IDs of all processes.

The –l and –p options are mutually exclusive.

Localization
jobs uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

jobs

Chapter 1. OpenExtensions Shell Commands 153

Exit Values
Possible exit status values are:
0

Successful completion.
2

Failure due to an incorrect command-line argument.

Portability
POSIX.2 User Portability Extension.

jobs

154 z/VM: 7.3 OpenExtensions Commands Reference

join — Join two sorted, textual relational databases

join [-a n] [-e string] [-o list] [-t c] [-v n] [-1 n] [-2 n] file1 file2
join [-a n] [-e string] [-j[n] m] [-o list] [-t c] file1 file2

Purpose
join joins two databases. It assumes that both file1 and file2 contain textual databases in which each
input line is a record and that the input records are sorted in ascending order on a particular join key field
(by default the first field in each file). If you specify – in place of file1 or file2, join uses the standard input
for that file. If you specify – – in place of both file1 and file2, the output is undefined.

Conceptually, join computes the Cartesian product of records from both files. By default, spaces or tabs
separate input fields and join discards any leading or trailing white space. (There can be no white-space-
delimited empty input fields.) It then generates output for those combined records in which the join key
field (the first field by default) matches in each file. The default output for join is the common join key
field, followed by all the other fields in file1, and then all the other fields in file2. The other fields from
each file appear in the same order they appeared in the original file. The default output field separator is a
space character.

Options
Options to join are as follows:
–a n

Produces an output line for lines that do not match in addition to one for a pair of records that does
match. If you specify n as one of 1 or 2, join produces unpaired records from only that file. If you
specify both –a 1 and –a 2, it produces unpaired records from both files.

–e string
Replaces an empty field with string on output.

–j[n] m
Uses field number m as the join key field. By default, the join key field is the first field in each input
line. As with the –a option, if n is present, this option specifies the key field just for that file; otherwise,
it specifies it for both files.

–o list
Specifies the fields to be generated. You can specify each element in list as either n.m, where n is a file
number (1 or 2) and m is a field number, or as 0 (zero), which represents the join field. You can specify
any number of output fields by separating them with blanks or commas. The POSIX-compatible
version of this command (first form in the syntax) requires multiple output fields to be specified as a
single argument; therefore, shell quoting may be necessary. join generates the fields in the order you
list them.

–t c
Sets the field separator to the character c. Each instance of c introduces a new field, making empty
fields possible.

–v n
Suppresses matching lines. If you specify n as one of 1 or 2, join produces unpaired records from only
that file. If you specify both –v 1 and –v 2, it produces unpaired records from both files. This does not
suppress any lines produced using the –a option.

–1 n
Uses the nth field of file1 as the join key field.

–2 n
Uses the nth field of file2 as the join key field.

join

Chapter 1. OpenExtensions Shell Commands 155

Localization
join uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Incorrect syntax
• The wrong number of command-line arguments
• Inability to open the input file
• Badly constructed output list
• Too many –o options on the command line

2
Failure due to an incorrect command-line argument

Messages and Return Codes
Most diagnostics deal with argument syntax and are self-explanatory. For example:
Badly constructed output list at list

Indicates that the list for a –o option did not have the proper syntax.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

POSIX considers the –j option to be obsolete.

Related Commands
awk, comm, cut, paste, sort

join

156 z/VM: 7.3 OpenExtensions Commands Reference

kill — End a process or job, or send it a signal

kill –l exit_status]
kill [–s signal_name] [pid...] [job-identifier...]
kill [–signal_name] [pid...] [job-identifier...]
kill [–signal_number] [pid...] [job-identifier...]

Purpose
kill ends a process by sending it a signal. The default signal is SIGTERM.

Options
You can specify the following options on the command line:
–l

Displays the names of all supported signals. If you specify exit_status, and it is the exit code of a
ended process, kill displays the ending signal of that process.

–s signal_name
sends the signal signal_name to the process instead of the SIGTERM signal. When using the kill
command, do not use the first three characters (SIG) of the signal_name. Enter the signal_name with
uppercase characters. For example, if you want to send the SIGABRT signal, enter:

kill -s ABRT pid

–signal_name
(Obsolete.) Same as –s signal_name.

–signal_number
(Obsolete.) A positive integer representing the signal to be used instead of SIGTERM as the sig
argument in the effective call to kill.

The relationship between the sig value and integer values is shown as follows:
signal_number

signal_name
0

 0
1

 SIGHUP
2

 SIGINT
3

 SIGQUIT
6

 SIGABRT
9

 SIGKILL
14

 SIGALRM
15

 SIGTERM
The effects of specifying any signal_number other than those listed in the table is undefined.

kill

Chapter 1. OpenExtensions Shell Commands 157

Operands
kill recognizes the following operands:
job-identifier

Is the job identifier reported by the shell when a process is started with &. It is one way to identify
a process. It is also reported by the jobs command. When using the job identifier with the kill
command, the job identifier must be prefaced with a percent (%) sign. For example, if the job identifier
is 2, the kill command would be entered as follows:

kill -s KILL %2

pid
Is the process ID that the shell reports when a process is started with &. You can also find it using the
ps command. The pid argument is a number that may be specified as octal, decimal, or hex. Decimal
process IDs are reported with default actions. kill supports negative values for pid.

If pid is negative but not -1, the signal is sent to all processes whose process group ID is equal to the
absolute value of pid. The negative pid is specified in this way:

 kill -s KILL -- -nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn to nnnnnnn).

 kill -s KILL -- -9812753

The format must include the -- - before the nn in order to specify the process group ID.

If pid is 0, the signal is sent to all processes in the process group of the invoker.

The process to be killed must belong to the current user, unless the current user is the superuser.

Localization
kill uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to one of the following:

• The job or process did not exist
• There was an error in command-line syntax

2
Failure due to one of the following:

• Two jobs or processes did not exist
• Incorrect command-line argument
• Incorrect signal

kill

158 z/VM: 7.3 OpenExtensions Commands Reference

>2
Tells the number of processes that could not be killed.

Messages and Return Codes
Possible error messages include:
job-identifier is not a job

You specified an incorrect ID.
signal_name is not a valid signal

You specified a noninteger signal for kill, or you specified a signal that is outside the range of valid
signal numbers.

Portability
POSIX.2, X/Open Portability Guide.

Related Commands
jobs, ps, sh

kill

Chapter 1. OpenExtensions Shell Commands 159

let — Evaluate an arithmetic expression

let expression ... ((expression))

Purpose
let evaluates each arithmetic expression from left to right, using long integer arithmetic with no checks for
overflow. No output is generated; the exit status is 0 if the last expression argument has a nonzero value,
and 1 otherwise.

The following two lines are equivalent: the second form avoids quoting and enhances readability. These
two forms are extensions to the POSIX standard. The ((expression)) form can be entered only if the shell
is running in korn mode; in other words, set -o korn has been entered.

let "expression"
((expression))

The POSIX version of this command is as follows:

$((expression))

Expressions consist of named variables, numeric constants, and operators. See “Arithmetic Substitution”
on page 286.

Examples

Examples of the three forms of the let command are as follows:

let a=7
echo $a

produces:

 7

echo $((a=7*9))

produces:

 63

set -o korn
((a=3*4))
echo $a

produces:

 12

Usage Notes
This command is built into the shell.

Exit Values
Possible exit status values are:

let

160 z/VM: 7.3 OpenExtensions Commands Reference

0
The last argument evaluated to a nonzero value.

1
The last argument evaluated to a zero value, or the expression contained a syntax error or tried to
divide by zero.

Portability
POSIX.2. The POSIX version of this command is $((expression)).

Related Commands
expr, sh, test

let

Chapter 1. OpenExtensions Shell Commands 161

lex — Generate a program for lexical tasks

lex [-achlntTv] [-o file.c] [-P proto] [-p prefix] [file.l ...]

Purpose

lex reads a description of a lexical syntax, in the form of regular expressions and actions, from file.l, or the
standard input if no file.l is provided or if the file is named –. It produces a set of tables that, together with
additional prototype code from /etc/yylex.c, constitute a lexical analyzer to scan those expressions. The
resulting recognizer is suitable for use with yacc. You can find detailed information regarding the use of
lex in z/VM: OpenExtensions Advanced Application Programming Tools.

For a description of the typedefs, constants, variables, macros, and functions in the table file, which can
be used to access the lexical analyzer's variables or to control its operations, see z/VM: OpenExtensions
Advanced Application Programming Tools.

Options
lex recognizes the following options:
–a

Generates 8-bit tables instead of 7-bit tables. On systems with 8-bit character sets (such as this one),
this option is always enabled.

–c
Generates C code. Because this is the default, this option is provided only for compatibility with other
implementations.

–h
Prints a brief list of the options and quits.

–l
Suppresses #line directives in the generated code.

–n
Suppresses the display of table sizes by the –v option. If you did not specify –v and there are no table
sizes specified in file.l, lex behaves as though you specified –n.

–o file.c
Writes the lexical analyzer (internal state tables) onto the named output file, instead of the default file
lex.yy.c.

–P proto
Uses the named code file, instead of the default prototype file /etc/yylex.c.

–p prefix
Uses the given prefix instead of the prefix yy in the generated code.

–T
Writes a description of the analyzer onto the file l.output.

–t
Writes the lexical analyzer onto standard output, instead of the file lex.yy.c.

–v
Displays the space used by the various internal tables. Normally lex displays these statistics on the
standard output, but if you also specified the –t option, it displays them on the standard error. If you
did not choose this option and file.l specifies table sizes, lex still displays these statistics unless
you specified the -n option.

lex

162 z/VM: 7.3 OpenExtensions Commands Reference

The LEX library contains a number of functions essential for use with lex. These functions are described
in z/VM: OpenExtensions Advanced Application Programming Tools. The actual library to use depends on
your system and compiler. For OpenExtensions programs, you should use -ll.

Some lex programs can cause one or more tables within lex to overflow. These tables are the NFA, DFA,
and move tables; lex displays an appropriate message if an overflow occurs. You can change table sizes
by inserting the appropriate line into the definition section of the lex input, with the number size giving the
number of entries to use. This is shown in Table 7 on page 163.

Table 7. Internal Table Sizes

Line Table Size Affected Default

%esize Number of NFA entries 1000

%nsize Number of DFA entries 500

%psize Number of move entries 2500

You can often reduce the NFA and DFA space to make room for more move entries.

Locale
A locale is the subset of a user's environment that depends on language and cultural conventions. A
locale defines such things as the definition of characters, and the collation sequence of those characters.
POSIX.2 defines a POSIX locale, which is essentially USASCII.

Since lex generates code that is then compiled before being executed, it is difficult for lex to act properly
on collation information. The POSIX.2 standard therefore does not require lex to accept any locales other
than the POSIX locale. lex accepts regular expressions in this locale only.

Files
l.output

Scanner machine description
lex.yy.c

Tables and action routines
/etc/yylex.c

The prototype lex scanner
/usr/lib/libl.a

lex function library

Localization
lex uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion

lex

Chapter 1. OpenExtensions Shell Commands 163

1
Failure because of any of the following:

• Inability to create an output file
• Inability to open the file
• Missing output file name after -o
• Missing prefix after -p
• No lex rules
• No memory for DFA moves
• Out of NFA state space
• Out of DFA move space
• Out of DFA state space
• Push-back buffer overflow
• Read error on file
• Table too large for machine
• Too many character classes
• Too many translations
• Unknown option
• Write error on file
• Incomplete %{ declaration
• Token buffer overflow

Limits
The parser stack depth is limited to 150 levels. Attempting to process extremely complicated syntaxes
may result in an overflow, causing an error.

Portability
POSIX.2, UNIX systems.

The –a, –h, –l, –o, –p, –P, and –T options are extensions of the POSIX standard.

Related Commands
yacc (see z/VM: OpenExtensions Advanced Application Programming Tools)

lex

164 z/VM: 7.3 OpenExtensions Commands Reference

ln — Create a link to a file

ln [–fiRrs] old new
ln [–fiRrs] old old ... dir

Purpose
ln creates a link to an existing file or set of files. A link is a new directory entry that refers to the same file.
This entry can be in the same directory that currently contains the file or in a different directory. The result
is that you get a new path name that refers to the file. You can access the file under the old path name or
the new one. Both path names are of equal importance. If you use rm to remove either name, the other
one still remains and the file contents are still available under that name. The contents of the file do not
disappear until you remove the last link.

A file can have any number of links to it. Thus you can establish any number of different path names for
any file.

In the first form given in the syntax, new becomes a new path name for the existing file old. In the second
form, ln creates entries for all the old files under the directory dir. For example:

ln yourdir/* mydir

creates links under mydir to all the files under yourdir. The files have the same names under mydir that
they had under yourdir. ln always assumes this directory form when the last operand on the command
line is the name of a directory. In this case, none of the old names can be a directory.

There could already be a file with the same name as the link you are trying to set up: a conflicting path
name. To deal with a conflicting path name, ln follows these steps:

• If you have specified –i, ln writes a prompt to standard error to ask if you want to get rid of the
conflicting path name. If you answer affirmatively, ln attempts to remove it.

• Otherwise, if you have specified –f, ln attempts to remove the existing file without a warning.
• Otherwise, ln prints a diagnostic message.
• ln gets to this point if it is going to get rid of the conflicting path name. It therefore attempts to get rid

of the conflicting path name in the same way that rm does. ln deletes the file associated with the path
name if this path name is the last link to the file. If ln can't get rid of the conflicting path name, it does
not attempt to establish the new link; it simply prints an error message on the standard error and goes
on to process any other files.

• If ln successfully gets rid of the conflicting path name, it then establishes the link.

Options
ln recognizes the following options:
–f

Gets rid of any conflicting path names without asking you for confirmation.
–i

Checks with you before getting rid of conflicting path names. You must not specify both –f and –i.
–R

Links files recursively. That is, you can link an entire hierarchy of subdirectories at once.
–r

Is identical to –R.
–s

Creates a symbolic link.

ln

Chapter 1. OpenExtensions Shell Commands 165

The locale settings for LC_COLLATE, LC_CTYPE, and LC_MESSAGES affect the program's interpretation of
what constitutes a "yes" answer when ln asks if you want to get rid of a conflicting path name.

Localization
ln uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

All requested links were established successfully.
1

Failure due to any of the following:

• An argument had a trailing / but was not the name of a directory.
• A file could not be found.
• An input file could not be opened for reading.
• An output file could not be created or opened for output.
• The new link file already exists.
• A link could not be established.
• A read error occurred on an input file.
• A write error occurred on an output file.
• The input and output files were the same file.
• Inability to access a file when using –r.
• Inability to read a directory when using –r.
• Inability to create a directory when using –r.
• A target is not a directory when using –r.
• Source and destination directory are the same when using –r.

2
Failure due to any of the following:

• Incorrect command-line option.
• Too few arguments on the command line.
• A target that should be a directory but isn't.
• No space left on target device.
• Out of memory to hold the data to be copied.
• Inability to create a directory to hold a target file.

Messages and Return Codes
Possible error messages include:

ln

166 z/VM: 7.3 OpenExtensions Commands Reference

link to target name failed
ln could not establish the link to the given file or directory. This may be because you do not have
appropriate permissions, or because the target did not exist.

source name and target name are identical
The source and the target are actually the same file (for example, because of links, on UNIX systems).
In this case, ln does nothing.

target directory name on different file system than source name
You cannot establish a normal link between files that are two different file systems.

target name must be a directory

cannot find file name

target file name already exists

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Only the –f option is part of the POSIX standard.

Related Commands
cp, locale, mv, rm

ln

Chapter 1. OpenExtensions Shell Commands 167

locale — Get locale-specific information

locale [–a|–m]
locale [–ck] name ...

Purpose
locale displays information about the current locale and all locales accessible to the current application.
locale searches directory /usr/lib/nls/locale for all the compiled locales.

Invoking locale with no options or operands displays the values of the LANG and LC_* environment
variables. If a LC_* variable is not set or is overridden by LC_ALL, locale displays its implied value in
double quotation marks.

The operand name can be a category name, keyword name, or the reserved name charmap. If it is
a category name, locale selects the given category and all keywords within it for output. If name is
a keyword name, locale selects the given keyword and its category for output. If name is charmap,
locale displays the name of the charmap used on the LOCALDEF utility when the locale was created. For
information about LOCALDEF, see XL C/C++ for z/VM: User's Guide.

Options
locale recognizes the following options:
–a

Displays information about all accessible locales including POSIX, the POSIX locale.
–c

Displays the names of selected categories.
–k

Displays the names of selected keywords. If you do not specify the –k option, locale displays the
values of selected keywords but not their names. With –k, strings are written in an unambiguous form
using the escape character from the current locale.

–m
Displays a list of all available charmaps.

Examples

In the following examples, let's assume that locale environment variables are set as follows:

LANG=locale_x
LC_COLLATE=locale_y

1. The command:

locale

produces the following output:

LANG=locale_x
LC_CTYPE="locale_x"
LC_COLLATE=locale_y
LC_TIME="locale_x"
LC_NUMERIC="locale_x"
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=

2. The command:

locale

168 z/VM: 7.3 OpenExtensions Commands Reference

LC_ALL=POSIX locale -ck decimal_point

produces:

LC_NUMERIC
decimal_point="."

3. The following command shows an application of locale to determine whether a user supplied response
is affirmative:

if printf "s%\n" "$response" | grep –Eq "$(locale yesexpr)"
then
 affirmative processing goes here
else
 nonaffirmative processing goes here
fi

Localization
locale uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

An error occurred.
2

A usage message was printed.

Portability
POSIX.2, UNIX system V.

Related Commands
LOCALDEF utility

locale

Chapter 1. OpenExtensions Shell Commands 169

logger — Log messages

logger [–IisTu] [–d dest] [–f filename] [–p priority] [–t tag] string...

Purpose
logger saves a message in the console log; the message consists of the string operand on the command
line. Some options of logger may be in effect by default; if they are on by default, they cannot be disabled.

The –u and –i options are in effect by default, so all messages from logger are prefixed by process ID and
user login user name.

If there is no message specified on the command line, the standard input is read; each line of standard
input is treated as a log message. If –f filename is specified, the file is read instead of the standard input.

Options
logger recognizes the following options:
–d destination

CMS uses the TELL command to transmit your log message to the place specified by destination. Any
single-token value suitable for use in a TELL command may be used for destination. If you do not
specify a destination, CMS uses TELL OP, sending your log message to the system operator.

Note: This option works on OpenExtensions; however, since it is system-specific, it may or may not
actually work on another system.

For more information on destination, see the TELL or NAMES command in z/VM: CMS Commands and
Utilities Reference.

–f filename
Reads log messages from the file filename rather than from the standard input.

–I
Adds the parent process ID (PPID) of logger to the message.

–i
Adds the process ID (PID) of logger to the message. This option is in effect by default, so all messages
from logger are prefixed by the PID.

–p priority
The priority is ignored on VM.

Note: This option works on OpenExtensions; however, since it is system-specific, it may or may not
actually work on another system.

–s
Overrides any destination options and causes logging to the standard error output.

–T
Adds a time stamp (%x %X format, per date) to the message. This time stamp is always in the POSIX
locale, no matter the locale of the message.

–t tag
Adds tag to the start of the message.

–u
Adds the login name of the controlling terminal to the message. This option is in effect by default, so
all messages from logger are prefixed by the login name.

logger

170 z/VM: 7.3 OpenExtensions Commands Reference

Localization
logger uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
>0

An error occurred.

Messages and Return Codes
Possible error messages include:
-f filename invalid if message given

Both a file name and message was specified; only one is allowed.
file filename: system error

The file specified by –f filename could not be opened.
Formatted log message too long -- limit LINE_MAX (number)

The log message specified was longer than the limit specified by LINE_MAX.
Unknown option option

You specified an incorrect option to logger.

Portability
POSIX.2.

All the options are extensions.

logger

Chapter 1. OpenExtensions Shell Commands 171

logname — Return a user's login name

logname

Purpose
logname returns the user ID of the person who enters the command. logname returns your login name,
which is your z/VM logon ID. It is displayed as all lowercase letters, regardless of how it was entered.

More precisely, it displays the current value of the LOGNAME environment variable; when you sign on, this
is automatically set to your login name.

Localization
logname uses the following localization environment variables:

• LANG
• LC_ALL
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

logname could not determine the login name.

Environment Variables
LOGNAME

Contains your user name.

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

Related Commands
env, id

logname

172 z/VM: 7.3 OpenExtensions Commands Reference

lp — Send a file to a printer

lp [–cmsw] [–d dest] [–n number] [–o printer-option] [–t title] [file...]

Purpose
lp prints one or more input files on a printer. If you do not specify any files on the command line, or if you
specify a file name of –, lp reads and prints the standard input. The files are printed in the same order
that they are specified on the command line.

Options
lp supports the following options.
–c

Immediately makes a copy of the files to be printed. This ensures that the version of the file that
exists when the print request is made is the version printed. On OpenExtensions, this option is always
in effect, whether it was specified or not.

–d dest
Specifies dest as the output device. –d takes precedence over the LPDEST environment variable,
which in turn takes precedence over the PRINTER environment variable.

The dest is a comma-separated list of three items, destination, class, and forms. These items are
defined as follows:
destination

This item can take one of these forms:
node.user

The print file is sent to this user at this node.
user

The print file is sent to this user on your node.
nick

The print file is sent to the user defined by the nickname nick in your NAMES file.
class

The class to which your virtual printer should be spooled
forms

The forms for which your virtual printer should be spooled.

–m
This option is not implemented.

–n number
Prints number copies of each input file (the default is 1 copy).

–o printer-option
This option is not implemented.

–s
This option is not implemented.

–t
This option is not implemented.

–w
This option is not implemented.

lp

Chapter 1. OpenExtensions Shell Commands 173

Environment Variables
LPDEST

Names the output device. This variable takes precedence over PRINTER.
PRINTER

Names the output device if LPDEST is not defined.

Examples

1. The following sends a previously formatted file to a VM printer:

lp filename

You can specify more than one file name with the command.
2. Either of the following prints the file temp.prt using the default printer destination and specifying class
c (where c is the locally designated class for confidential information):

lp -d ,c temp.prt

lp -d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you must still include the
comma.

Localization
lp uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
>0

An error occurred.

Portability
POSIX.2, X/Open Portability Guide.

lp

174 z/VM: 7.3 OpenExtensions Commands Reference

ls — List file and directory names and attributes

ls [–AabCcDdFfgiLlmnopqRrstuWx1] [pathname ...]

Purpose
ls lists files and directories. If pathname is a file, ls displays information on the file according to the
requested options. If it is a directory, ls displays information on the files and subdirectories therein. You
can get information on a directory itself using the –d option.

If you do not specify any options, ls displays only the file names. When ls sends output to a pipe or a file,
it writes one name per line; when it sends output to the terminal, it uses the –C (multicolumn) format.

Options
ls displays at least the file name; you can request more information with the following options:
–A

Lists all entries including those starting with periods (.).
–a

Lists all entries including those starting with a period (.).
–b

Displays nonprintable characters as octal bytes with the form \ooo.
–C

Puts output into columns, sorted vertically; this is the default output format to the terminal.
–c

Uses the time of the last change of the file's attributes for sorting (–t) or displaying (–l).
–D

Displays requested information about directories only.
–d

Does not display the contents of named directories, but information on the directories themselves.
–F

Puts a / after each directory name, a * after every executable file, a | after every FIFO file, a @ after
every symbolic link, and a = after every socket. It also puts an & character after an external link name.

–f
Forces the pathname argument to be a directory; turns off sorting. ls gives the ordered list of file
names in a directory file. The directory file is read and the file names are listed in the same order as
they are returned. The contents of a directory file are shown.

–g
Does not display group ID numbers.

–i
Displays file serial (inode) numbers along with file names.

–L
Follows symbolic links. Symbolic links are automatically followed unless the –g –l, –n, or –o option
is specified. The –L option forces symbolic links to be followed even when these other options are
specified.

–l
Displays permissions, links, owner, group, size, time, name; see “Long Output Format” on page 176.

–m
Displays names in a single line, with commas separating names.

ls

Chapter 1. OpenExtensions Shell Commands 175

–n
Displays user ID and group ID numbers.

–o
Displays only the user ID of the owner.

–p
Puts / after directory names.

–q
Displays nonprintable characters as ?.

–R
Lists subdirectories recursively.

–r
Sorts in reverse of usual order; you can combine this with other options that sort the list.

–s
Displays size in blocks, after the file serial (inode) number, but before other information.

–t
Sorts by time. By default, this option sorts the output by the modification times of files. You can
change this with the –c and –u options.

–u
Uses the last access time for sorting (–t) or displaying (–l).

–W
Displays the audit bits of the file.

–x
Puts output into sorted columns, with output going across the rows.

–1
Forces output to be one entry per line.

Notes:

1. When you specify options that are mutually exclusive (for example, –c and –u), the option that appears
last on the command line is used.

2. The owning user and group values are user and group names, with these exceptions:

• There is not a user in the CP directory who currently has the UID that is the owning UID for the file.
• The user entering this command does not have authorization to query user database information for

other users.

In either of these cases the values displayed will be the UID and GID.

Long Output Format
The output from ls –l summarizes all the most important information about the file on a single line. If
the specified pathname is a directory, ls displays information on every file in that directory (one file per
line). It precedes this list with a status line that indicates the total number of file system blocks occupied
by files in the directory (in 512-byte chunks). Here is a sample of the output along with an explanation:

total 11
drwxr-xr-x 3 root sys1 0 Mar 12 19:32 tmp
drwxrwxrwx 4 root sys1 0 Mar 12 19:32 usr
drwxr-xr-x 2 root sys1 0 Mar 12 19:32 bin
-rwxr--r-- 1 root sys1 572 Mar 12 19:32 foo
-rwxr--r-- 1 root sys1 640 Mar 12 19:33 abc

The first character identifies the file type:
-

Regular file

ls

176 z/VM: 7.3 OpenExtensions Commands Reference

b
Block special file

c
Character special file

d
Directory

E
External link

l
Symbolic link

p
FIFO

s
Socket file

The next 9 characters are in three groups of 3; they describe the permissions on the file. The first group
of 3 describes owner permissions; the second describes group permissions; the third describes other (or
"world") permissions. Characters that may appear are:
r

Permission to read the file
w

Permission to write on the file
x

Permission to execute the file or permission to search the directory.
The following characters appear only in the execute permission (x) position of the output.
S

Same as s, except that the execute bit is off.
s

If in owner permissions section, the set-user-ID bit is on; if in group permissions section, the set-
group-ID bit is on. The execute bit is also on.

T
Same as t, except that the execute bit is off.

t
The sticky bit is on. The execute bit is also on.

You can set permissions with the chmod command.

After the permissions are displayed, ls displays the following (using the preceding example), in order:

• The number of links to the file.
• The name of the owner of the file or directory.
• The name of the group that owns the file or directory.
• The size of the file, expressed in bytes.
• For a file, the date and time the file was last changed; for a directory, when it was created. The –c and

–u options can change which time value is used. If the date is more than 6 months old or if the date is in
the future, the year is shown instead of the time.

• The name of the file or directory.

If ls –W is issued, an additional 6 characters, in two groups of 3, follow the original 10 characters.
The first group of 3 describes the user-requested audit information; the second group describes auditor-
requested audit information.

total 11
drwxr-xr-x fff--- 3 root sys1 0 Mar 12 19:32 tmp

ls

Chapter 1. OpenExtensions Shell Commands 177

drwxrwxrwx fff--- 4 root sys1 0 Mar 12 19:32 usr
drwxr-xr-x fff--- 2 root sys1 0 Mar 12 19:32 bin
-rwxr--r-- fff--- 1 root sys1 572 Mar 12 19:32 foo
-rwxr--r-- fff--- 1 root sys1 640 Mar 12 19:33 abc

Note: Audit bits can be set only by the callable service BPX1CHA. See z/VM: OpenExtensions Callable
Services Reference for more information.

Environment Variables
COLUMNS

Contains the terminal width in columns. ls uses this value to determine the number of output
columns to write using the –C option.

TZ
Contains the time zone to be used when displaying date and time strings.

Localization
ls uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Usage Notes
For a mounted external link, the output for options –g –l, –n, –o, and –W provides information about
the link itself, not the linked object. In the output from the –l, option, the fully qualified pathname of the
external link target is displayed following the name of the external link (the name of the file or directory).
To get information on the target of the external link, you must reissue the command with one of the
following changes:

• Include the –L option
• Include a closing slash (/) following the name of the external link
• Specify the fully qualified pathname of the external link

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Out of memory
• Inability to find a file's information
• Too many directories
• File or directory not found
• Specified on the command line

2
Incorrect command-line option

ls

178 z/VM: 7.3 OpenExtensions Commands Reference

Messages and Return Codes
Possible error messages include:
File or directory name is not found

The requested file or directory does not exist.
Cannot allocate memory for sorting

To sort its output, ls needs to allocate memory; this message says that there was not enough
memory for the sorting operation.

Too many directory entries in dir
This message appears only when ls runs out of dynamically allocated memory.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –A, –b, –f, –g, –L, –m, –n, –o, –p, –s, –W, and –x options are extensions of the POSIX standard.

ls

Chapter 1. OpenExtensions Shell Commands 179

mailx — Send or receive electronic mail

mailx [–efHiNn] [–u user] [filename]
mailx [–FinU] [–h number] [–r address] [–s subject] user ...

Purpose
mailx helps you read electronic mail messages. It can also send messages to users on your system, but it
has no built-in facilities for sending messages to other systems.

The command line:

mailx [options] user user user ...

sends a mail message to the given users. If you do not specify any users on the command line, mailx lets
you read incoming mail (interactively); however, see the environment variable ('sendmail').

This description of mailx is divided into several sections:

• Options
• General overview
• Command-mode subcommands
• Input-mode subcommands
• Startup files
• Example
• Environment variables
• Files
• Exit values
• Portability
• Related Information

If you are unfamiliar with electronic mail systems, first read "General Overview" and come back to the
"Options" section when you have a grasp of how mailx works.

The mailx utility invokes another program, /usr/lib/tsmail, to transmit mail to other users, and tsmail
is a set-user-ID program. If your VM user ID is not authorized to run set-user-ID programs, then you
cannot use mailx to send mail to other users, but other mailx functions will still work. Authorizations for
set-user-ID programs are controlled in the CP directory and in CP's configuration file, SYSTEM CONFIG.
For more information about set-user-ID authorization, see z/VM: CP Planning and Administration.

Options
You can use the following options when reading messages:
–e

Checks to see if you have any messages waiting to be read. With this option, nothing is displayed. If
you have waiting messages, mailx exits with a successful status return; otherwise, mailx exits with a
failure return.

–f filename
Looks for messages in the specified file instead of in your current mailbox. If you do not specify
filename, mailx reads messages from $HOME/mbox.

–H
Displays only the header summary of a message.

mailx

180 z/VM: 7.3 OpenExtensions Commands Reference

–N
Does not display the header summary of messages.

–u user
Looks for messages in the system mailbox of the specified user. This works only if you have read
permission on the user's system mailbox.

You can use the following options only when sending messages:
–F

Records your message in a file with the same name as the first user specified on the command line.
This option overrides the record variable, if it has been set. See “Environment Variables” on page
192 for more on the record variable.

–h number
Indicates how many "hops" a message has already made from one machine to another (in a network
of machines). This option is not intended for most users; network mail software uses the option to
prevent infinite loops (the same message cycling through a sequence of machines without ever getting
to its intended destination).

–r address
Passes the given address to network mail software. If this option is present, it disables all input mode
commands. Again, this option is not intended for most users.

–s subject
Uses the given subject string in the Subject heading line of the message. If the subject contains
spaces or tab characters, the string should be enclosed in double quotation marks or single quotation
marks. If you specify this option on the command line, mailx does not prompt you to enter a subject
line when you type in the text of the message.

–U
Converts the address from UNIX-to-UNIX Copy Program (UUCP) style to Internet Protocol standards.
This option overrides the effect of the conv environment variable.

This option is not supported with OpenExtensions.

You can use the following options for both sending and reading messages:
–i

Ignores interrupts (for example, from pressing <Break> or <Ctrl-c>). Also see the description of the
ignore environment variable in “Environment Variables” on page 192.

–n
Does not initialize your mailx session from the system’s /etc/mailx.rc file. For more information
about this file, see “Startup Files” on page 191.

General Overview
We will begin by describing the default behavior of mailx.

The simplest command to send a message is:

mailx address address address ...

where each address names someone who is to receive the message. The simplest kind of address is the
login name of someone else who uses your OpenExtensions shell.

You can also send messages as input to commands. To do this, use an address that consists of an "pipe
symbol" (|) followed by a command line that invokes the appropriate command; enclose this whole
address in single quotation marks. For example:

mailx robin '|cat>save'

mails a message to robin and also copies the message into a file called save.

After you type in the command to send a message, mailx asks you to enter the subject of the message (a
brief description of what the message is about), and then lets you type in the text of the message. Your

mailx

Chapter 1. OpenExtensions Shell Commands 181

message can consist of any number of lines, and may include blank lines. When you finish entering the
message, type a line consisting only of a tilde (~), followed by a period (.); then press <Enter>. This tells
mailx that the message is ready to be sent.

mailx puts the completed message into a file called the recipient's system mailbox. The message stays in
the system mailbox until the recipient asks to read the message. At that point, the message is obtained
from the system mailbox and displayed on the recipient's workstation. The message is then saved in the
recipient's personal mailbox. Since this is usually a file named mbox in the recipient's home directory, we
use the name mbox to represent the personal mailbox and mailbox for a system mailbox.

The simplest way to read incoming messages is to type the command mailx (with no addresses on the
command line). This starts an interactive session in which mailx lets you read your mail and perform other
operations. For example, you can display new messages, delete old ones, reply to messages, or forward
them to someone else, and so on. When you are performing operations in this way, you are in command
mode. When you are typing in the text of a message, you are in input mode.

A message consists of a sequence of header lines followed by the body of the message. The header lines
tell who sent the message, the time and date that the message was sent, the subject of the message, and
so on. mailx automatically creates header lines. Some of the common header lines are:
Cc: name name ...

Stands for "carbon copies". This indicates that copies of this message are to be sent to the specified
recipients. The names of these recipients appear in the header lines of everyone receiving the
message.

Bcc: name name ...
Stands for "blind carbon copies." This is similar to Cc:, but the names of people receiving carbon
copies do not appear in the header lines of the message. Recipients do not know that these people
received a copy of the message.

Subject: text
Gives the subject of the message.

To: name name ...
Gives the names of people who were sent the message directly.

All messages are in one of the following states:
deleted

You used a delete, dp, or dt command to delete the message, or you saved it using a Save or
save command and the variable keepsave was not set. When mailx quits, messages in this state are
deleted.

new
The message is in the system mailbox and you have not yet read it or otherwise changed its state.
When mailx quits, messages in this state are kept in your system mailbox.

preserved
You used a preserve command on the message. When mailx quits, messages in this state are kept in
their current locations.

read
You used one of the following commands on the message:

~F copy Print type

~f mbox print undelete

~M next top

~m pipe Type

or you used delete, dp, or dt on the preceding message and the autoprint environment variable was
set. When mailx quits and you are in your system mailbox, read messages are kept in your personal
mailbox—unless the variable hold is set, in which case, read messages are kept in your system

mailx

182 z/VM: 7.3 OpenExtensions Commands Reference

mailbox. If you are in your personal or a secondary mailbox when mailx quits, read messages are kept
in their current location.

unread
You have run more than one mailx session with the message in the system mailbox and you have
not read it or otherwise changed its state. When mailx quits, messages in this state are kept in your
system mailbox.

Command-Mode Subcommands
The standard format of a command-mode subcommand is:

[subcommand][refs][arguments]

If no subcommand is specified, p[rint] is assumed.

The refs argument indicates the messages to which you want to apply the subcommand. mailx numbers
incoming messages sequentially as they are received. The easiest way to refer to a message is to give its
number. For example, the subcommand:

p 3

displays message number 3. At any point in a mailx session, there is one message that is considered the
current message. This is the message you most recently did something with (for example, the one you
most recently read). If you omit the refs argument in a subcommand that uses refs, the subcommand
works with the current message.

You can also use special notations as the refs value, as shown in Table 8 on page 183.

Table 8. Reference Notations

refs Meaning

n Message number n

n-m Messages n through m

. The current message

^ The first undeleted message (or first deleted message for undelete)

$ The last message

* All messages

+ Next message

- Previous message

‘user’ All messages from user

/string All messages with string in the subject line (the case of characters in string is
ignored)

:d All deleted messages

:n All new messages

:o All old messages

:r All messages that have already been read

:u All unread messages

Several refs arguments may be specified for the same subcommand, separated by spaces. For example:

p alice lewis

displays all messages from alice plus all messages from lewis.

mailx

Chapter 1. OpenExtensions Shell Commands 183

The arguments allowed at the end of a command-mode subcommand depend on the subcommand
itself. If a subcommand allows a file name as an argument, you can use the usual file name generation
characters in the file name (see sh).

The following list shows the subcommands recognized in command mode. In every subcommand name,
some characters are enclosed in square brackets. These characters are optional. For example, the [p]rint
command may be given as print or p.
?

Displays a summary of command-mode subcommands
=

Displays the current message number
a[lias] [alias [name ...]]

Sets up an address alias. If you enter a subcommand to send mail to the given alias, the messages are
actually sent to the given list of names. For example, you might enter the subcommand:

alias joe jsmith

From this point onward, you can address messages to joe and they are sent to jsmith. You may also
set up an alias for several people, as in:

alias choir soprano alto tenor bass

After you have done this, you can send messages to choir and they are sent to the names that follow
choir in the command. Entering the alias subcommand without any arguments displays a list of the
currently defined aliases.

Note: Aliases entered interactively remain in effect only until the end of the current interactive
session.

To make an alias permanent, include the alias subcommand in your startup file. See “Startup Files” on
page 191. See also group.

alt[ernates] name
Lists a set of alternate names for your own login name. This is useful for people who login under
several different names. When you reply to a message, mailx usually sends your reply to the author
of the message and all the recipients as well; however, it does not send the message to any of your
alternate login names. You don't have to worry about sending mail to yourself.

Specifying alternates without names displays your list of currently defined alternate names.

cd directory
Makes directory your new working directory. If no directory is specified, cd goes to your HOME
directory.

ch[dir] directory
Is the same as cd.

c[opy] [filename]
Copies the current message into the specified file. If the file does not already exist, it is created. If no
filename is specified, your mbox file is used.

This operation does not mark the message as "saved"; if it was previously unread, it is still regarded as
an unread message. Thus the original message remains in your system mailbox. See also save.

c[opy] refs filename
Copies the messages referred to by refs into the given file. The filename must be specified. If the file
does not already exist, it is created. As with the previous form of copy, the messages are not marked
as "saved".

C[opy] [refs]
Is similar to the copy command, except that the messages referred to are saved in a file the name of
which is derived from the author of the first message referred to. The name of the file is the author's
name, stripped of any network addressing. If the folder environment variable is set, the file is saved

mailx

184 z/VM: 7.3 OpenExtensions Commands Reference

to the specified directory. The copied messages are not marked as "saved". If refs is not specified, the
current message is copied.

d[elete] [refs]
Deletes the specified messages from your system mailbox. If refs is not specified, the current
message is deleted. After a delete operation, the current message is set to the message after the
last message deleted. Deleted messages are not thrown away until you end your session with the
current mailbox (see quit and file). Until then, they can be undeleted (see undelete).

di[scard] [header...]
Does not display the given header fields when displaying a message. For example:

discard References

tells mailx not to display the References line at the beginning of any mail message. These header
lines are retained when the message is saved; they are just not shown when the message is displayed.
See also ignore and retain.

dp [refs]
Deletes the specified messages and then displays the message after the last message deleted.

dt [refs]
Is the same as the dp subcommand.

ec[ho] string ...
Echoes the given strings (like the echo subcommand).

e[dit] [refs]
Lets you edit the messages specified by refs. The messages are stored in a temporary file and an
editor is invoked to let you edit the file. The default editor is ed, but you can change this using the
EDITOR environment variable (see “Environment Variables” on page 192).

ex[it]
Quits mailx without changing the system mailbox. Contrast this with quit.

fi[le] [filename]
Quits the system mailbox (as if a q[uit] subcommand were run) and then reads in the specified file as
the new mailbox to examine. If no filename is specified, the default is your current mailbox.

Several special strings can be used in place of filename:
%

Your system mailbox
%user

The system mailbox for user
#

The previous file
&

Your mbox (personal mailbox)
+file

The named file in the folder directory

fold[er] [filename]
Is the same as the file subcommand.

folders
Displays the names of the files in the directory given by the folder variable; see “Environment
Variables” on page 192.

F[ollowup] [refs]
Replies to the first message given in refs; mailx sends this reply to the authors of every message given
in refs. The Subject line is taken from the first message in refs. Your reply is automatically saved in a
file which derives its name from the author of the message to which you are replying.

mailx

Chapter 1. OpenExtensions Shell Commands 185

To create your reply, mailx puts you into input mode, where you can use all of the input mode
commands.

fo[llowup] [ref]
Replies to the specified message; if no message ref is given, you reply to the current message. Your
reply is automatically saved in a file which derives its name from the author of the message to which
you are replying. This overrides the record environment variable if record is set; see “Environment
Variables” on page 192.

To create your reply, mailx puts you into input mode, where you can use all of the input mode
commands.

f[rom] [refs]
Displays the header summary for the specified messages. If refs is not given, the current message is
used.

g[roup] [alias [name ...]]
Is the same as the alias command.

h[eaders] [ref]
Displays the headers of a screenful of messages surrounding the message given by ref. The number of
lines in a screen is given by the screen environment variable.See screen.

hel[p]
Displays a summary of the command-mode subcommands.

ho[ld] [refs]
Retains the specified messages in your system mailbox. For example, you might decide to hold
a message if you read it, but decide not to act upon it immediately. If refs is not specified, the
current message is held. If any of the specified messages have been marked as deleted, the hold
subcommand overrides that and still retains the messages. Subsequent delete, dp, and dt commands
during the same mailx session can delete files marked for retention. See also preserve, and the
environment variables hold and keepsave.

i[f] code mailx_subcommands [el[se] mailx_subcommands] [en[dif]]
Is primarily intended for use in startup files; see “Startup Files” on page 191 for information. The code
must be the character r or s. If it is r, the first set of mailx subcommands are executed if mailx is in
receive mode, and the second set if mailx is in send mode. If code is s, the opposite is true. The else
part is optional.

ig[nore] [header ...]
Is the same as the discard subcommand.

l[ist]
Displays the names of all command-mode subcommands.

m[ail] address ...
Sends a message to the specified recipients. mailx goes into input mode to let you enter the text of
the message.

mb[ox] [refs]
Indicates that the given messages are to be saved in your mbox (personal mailbox) when mailx quits
normally (that is, through the quit command as opposed to exit).

n[ext] [refs]
Goes to the next message in the mailbox that appears in the list of refs. For example:

n user

goes to the next message from the specified user.
pi[pe] [[refs] command]

Pipes the messages given by refs through the specified shell command. These messages are
considered read. If refs is not specified, the current message is used. If no command is specified,
mailx uses the command specified by the cmd environment variable; see “Environment Variables” on
page 192. If the page environment variable has a value, a form feed character is sent into the pipe
after every message.

mailx

186 z/VM: 7.3 OpenExtensions Commands Reference

The subcommand | [refs] [command] is equivalent to pipe.

pre[serve] [refs]
Is the same as the hold subcommand.

P[rint] [refs]
Displays the specified messages on the screen. If refs is not specified, the current message is
displayed. All header fields are displayed; the discard and ignore subcommands do not affect Print.

p[rint] [refs]
Displays the specified messages on the screen. If refs is not specified, the current message is
displayed. Header fields specified by discard and ignore subcommands are not displayed. If the
crt variable is set to an integer, messages with more lines than that integer are "paginated" using
the command specified by the PAGER variable. For more information, see “Environment Variables” on
page 192.

q[uit]
Ends a mailx session. This is the usual method to leave mailx. Messages that have been read but
not saved or deleted are stored in your mbox (personal mailbox). Messages that are still unread are
retained in your system mailbox. Messages that have been deleted or explicitly saved in other files are
discarded. Typing the end-of-file character has the same effect.

R[eply] [refs]
Sends a reply to the authors of each of the messages specified by refs. If refs is not specified, the
current message is used. The Subject line of the reply message is taken from the first message in
refs. If the record environment variable is set to a file name, your reply message is appended to the
end of that file.

Normally, you use Reply if you just want to send your reply to the author of a message, and reply if
you want to send your reply to the author and all recipients. If set, the flipr environment variable
reverses the meanings of the R and r commands. See “Environment Variables” on page 192.

r[eply] [ref]
Sends a reply to the author of a specific message, and all other recipients of the message. If ref is not
specified, mailx replies to the current message. If the record environment variable is set to a file
name, your reply message is appended to the end of that file.

R[espond] [refs]
Is the same as the Reply subcommand.

r[espond] [ref]
Is the same as the reply subcommand.

ret[ain] [header ...]
Is the opposite of the discard subcommand. It tells mailx to display the given header fields when
displaying a message. The comparison of header fields is not case sensitive. You can use retain
to override existing discard and ignore commands. If you do not specify any header fields, retain
displays a list of currently retained header fields.

S[ave] [refs]
Saves the specified messages in a file the name of which is taken from the author of the first message
(the file name is the author's name, without any attached network addressing). If the folder variable
is set, the file is saved to the specified directory.

s[ave] [refs][filename]
Saves the specified messages in the given file. If refs is not given, the current message is saved. The
file is created if it doesn't already exist. If you do not specify filename, mailx saves the messages in
mbox (your personal mailbox). A message that has been saved with save is normally deleted from
mailbox when mailx ends (see quit); but see the variables hold and keepsave.

se[t] name
Defines a variable with the given name and assigns it a null value. If you omit name, set displays a list
of all defined variables and their values.

mailx

Chapter 1. OpenExtensions Shell Commands 187

se[t] name=value
Defines a variable with the given name and assigns it the given value, which may be a string or a
number.

se[t] noname
Is the same as the unset name subcommand.

sh[ell]
Invokes the shell given by the SHELL environment variable.

si[ze] [refs]
Displays the size in bytes of each of the specified messages. If no refs are specified, the current
message is used.

so[urce] file
Reads the specified text file, executes its contents as command-mode subcommands, and then
returns to read more commands from the original source.

to[p] [refs]
Displays the first few lines of each of the specified messages. If refs is not specified, the current
message is used. If the toplines variable has a numeric value, that many lines are displayed from
each message; otherwise, five lines are displayed from each message.

tou[ch] [refs]
"Touches" the specified messages, making them appear to have been read. This means that when
you quit mailx, the messages are saved in your mbox (personal mailbox) if they are not deleted or
explicitly saved in another file. If refs is not specified, the current message is touched.

T[ype] [refs]
Is the same as the Print subcommand.

t[ype] [refs]
Is the same as the print command.

una[lias] [alias[name ...]]
Deletes specified alias names.

u[ndelete] [refs]
Restores previously deleted messages. When messages are deleted, they are not discarded
immediately; they are just marked for deletion and are actually deleted when mailx ends. Until
mailx ends, you can use undelete to restore the specified messages. You cannot undelete messages
deleted in previous sessions. If you do not specify refs, this command restores the first deleted (but
not yet undeleted) message following the current message; if no such message exists, it restores
the last deleted (but not yet undeleted) message preceding the current message. If the autoprint
variable is set, the last restored message is displayed. This is the only subcommand that lets you give
a ref to a message that has been deleted.

U[nread] [refs]
Marks the specified messages as unread.

uns[et] name ...
Discards the specified variables.

ve[rsion]
Displays version information about mailx.

v[isual] [refs]
Edits the specified messages with a screen editor. If refs is not specified, the current message is
edited. The messages are saved in a temporary file and the screen editor is invoked to edit that file.
The editor used is given by the VISUAL variable; see “Environment Variables” on page 192.

w[rite] [refs] filename
Writes the specified messages into the given file. If refs is not specified, the current message is
written. write is the same as save, except that it does not write out the header lines and the blank line
at the end of the message.

x[it]
Is the same as the exit command.

mailx

188 z/VM: 7.3 OpenExtensions Commands Reference

z+
Scrolls the header display forward one screenful.

z–
Scrolls the header display backward one screenful.

! command
Executes the given shell command. For example:

!ls

lists all files in the current directory. The shell that will be used to run the command is given by the
SHELL environment variable; see “Environment Variables” on page 192.

#comment
Specifies that mailx should ignore everything from the # to the end of the line. This is useful for
putting comments into startup files.

?
Is the same as the help command (it displays a summary of the command-mode subcommands).

Input-Mode Subcommands
You can use input-mode subcommands when entering the text of a message. You must type mode
subcommands at the beginning of an input line; you cannot type them in the middle of a line. By default,
each input-mode subcommand begins with the tilde (~) character, called the escape character. You can
use the escape environment variable to change the escape character, but in the documentation that
follows, we always use tilde.
~.

Marks the end of input in a mail message.
~?

Displays a summary of the input-mode subcommands.
~A

Inserts the autograph string at this point in the message. This autograph string is given by the Sign
environment variable.

~a
Is similar to ~A, except that it uses the variable sign.

~b name ...
Adds the specified names to the blind carbon copy list.

~c name ...
Adds the specified names to the carbon copy list.

~d
Reads in the dead.letter file; see the description of DEAD in “Environment Variables” on page 192.

~e
Invokes an editor on the message that you have composed. The EDITOR variable determines the
editor that is invoked.

^F [refs]
"Forwards" the given messages. The text of the messages is inserted at this point in the message
you are composing. The message headers are also inserted with all header fields regardless of the
discard, ignore, and retain subcommands. This is valid only when you entered mailx in command
mode and then went into input mode to compose a message.

~f [refs]
Is similar to ~F except that the header fields included are determined by the discard, ignore, and
retain subcommands.

~h
Prompts you to enter the following header lines:

mailx

Chapter 1. OpenExtensions Shell Commands 189

Subject Cc Bcc To

For some of these, mailx displays an initial value for the header. You can edit this initial value as if you
had just typed it in yourself, using backspaces and line deletes.

~i name
Inserts the value of the named variable followed by a newline at this point in the message.

~M [refs]
Inserts the text of the specified messages at this point in the message. If refs is not specified, the
current message is used. Messages inserted in this way have each line prefixed with the value of
the indentprefix variable. The message headers are also inserted with all header fields included
regardless of the discard, ignore, and retain subcommands. This is valid only when you entered
mailx in command mode and then went into input mode to reply to a message.

~m
Is similar to ~M, except that the header fields are determined by the discard, ignore, and retain
subcommands.

~p
Displays the message being composed.

~q
Quits input mode as if you had interrupted the message. If you have already composed part of
a message, the partial message is saved in the dead.letter file; see the description of the DEAD
environment variable for more information (see “Environment Variables” on page 192).

~r filename
Reads in the contents of the specified file and adds that text at this point in the message.

~s text
Sets the Subject line to the given text.

~t address address ...
Adds the given addresses to the To: list (people who will receive the message).

~v
Invokes a screen (visual) editor on the message that you have composed. The VISUAL variable
determines the editor that is invoked.

~w file
Writes the current text of your message to the specified file. The header lines for the message are not
written.

~x
Quits in the same way as ~q, except that the message is not saved in the dead.letter file.

~< filename
Is the same as the ~r command.

~< !command
Runs the given shell command and adds the standard output of that command at this point in the
message. For example, your message might contain:

 My program is giving me this odd output:
 ~< !prog
 What do you think is causing it?

~: mail_command
Runs the given command-mode mail_command. This is valid only when you entered mailx in
command mode and then went into input mode to compose a message.

~_ mail_command
Is the same as the ~: command.

mailx

190 z/VM: 7.3 OpenExtensions Commands Reference

~! command
Runs the given shell command. For example, you can use:

 ~! ls
to get a list of files in the working directory.
The shell that is invoked to run the command is given by the
SHELL environment variable; see
“Environment Variables” on page 192.
If the bang variable is set, mailx
replaces each unescaped exclamation mark
(!) in command with the command run
by the previous command or ~! command escape.

~.
Marks the end of input in a mail message.

~| command
Pipes the current message through the specified shell command. If the command ends with a
successful exit status, the output of the command replaces the text of the current message. ~| uses
the shell given by the SHELL environment variable to run command.

Startup Files
When you run mailx in command mode, mailx does the following:

• Sets all variables to their default values. mailx processes command-line options, using them to override
any corresponding default values.

• Imports appropriate external environment variables, using them to override any corresponding default
values.

• Reads commands from the system startup file, /etc/mailx.rc. This sets up variable values and
definitions that should be common to all users. If you do not want mailx to read the system startup file,
use the –n option on the mailx command line.

• After reading and processing the system startup file, mailx does the same with a "personal startup
file." The default name of the personal startup file is $HOME/.mailrc. You can override the name of
the personal startup file by setting the MAILRC environment variable to the path name of the personal
startup file that you prefer mailx to use.

Startup files typically set up display options and define aliases. However, any command is valid in a
startup file except for the following:

Copy
edit
followup
Followup
hold
mail
preserve
reply
Reply
respond
Respond
shell
visual
!

If a line in a startup file contains an error or an incorrect command, the rest of the startup file is ignored.
mailx ignores blank lines in a startup file.

mailx

Chapter 1. OpenExtensions Shell Commands 191

Examples

The following example composes and sends a message to several users. Items shown in italics are output
by mailx itself.

mailx jean
Subject:
Greetings
This is just a short note to say hello.
 ~c juan john johann
 ~.

On the first line, the message is just addressed to jean. The ~c line adds more people who will receive
copies of the message.

Environment Variables
A large number of variables are used to control the behavior of mailx. These environment variables are
divided into two classes: those that always come from the external environment, and those that may be
set up in either the external environment or within a mailx session.

The following variables always come from the external environment; they can be changed inside a mailx
session, except where marked.
HOME

Gives the name of your home directory. This cannot be changed inside mailx.
LOGNAME

Gives your login name.
MAIL

Gives the path name of the user's mailbox file for purposes of incoming mail notification.
MAILDIR

Gives the name of the directory where system mailboxes are stored. If this is not set, the default
is /usr/mail. The actual name of a user's system mailbox is derived in a system-dependent way by
combining MAILDIR and the user's login name. For mailx to work properly, the MAILDIR directory
must exist.

MAILRC
Gives the name of your startup file. This cannot be changed inside mailx. By default, MAILRC has the
value $HOME/.mailrc. For more on startup files, see “Startup Files” on page 191.

The HOME and LOGNAME variables must be set before you enter mailx; otherwise, mailx does not work
properly. These variables are set automatically for you if you enter the shell using the CMS OPENVM
SHELL command. If you do not log in, you must set the variables in some other way, using the commands:

export LOGNAME=name
export HOME=directory

The remaining variables can be set in the external environment or in the course of a mailx session. You
can set or change the value of a variable with the set subcommand; you can discard a variable with the
unset subcommand. You may find it convenient to create a startup file that sets these variables according
to your preferences; this eliminates the need to set variables each time you enter mailx.

Many of the following variables represent on-off options. If you set the variable itself (to any value), the
option is turned on. To turn the option off, you can unset the variable, or set a variable consisting of no
followed by the name of the original variable. For example, setting autoprint turns the autoprint option
on, and setting noautoprint turns it off.
allnet

Assumes that network addresses with the same login component refer to the same person. Network
addresses typically consist of several components, giving information that lets a mail server identify a

mailx

192 z/VM: 7.3 OpenExtensions Commands Reference

machine on the network, a route to that machine, and the login name of a user on that machine. mailx
assumes that the login name is the last component. For example:

print name

displays all messages that originated from the same login name, regardless of the rest of the network
address. The default is noallnet, where different addresses are assumed to be different users, even
if the login name components are the same.

append
Appends messages to the end of the mbox file (your personal mailbox) upon termination. The default
is noappend; messages are placed at the beginning of the mbox file instead of the end.

ask
Prompts you for a Subject: line when composing a message (if you have not already specified one
with the –s option). This option is on by default; to turn it off, set noask. ask is the same as asksub.
noask is the same as noasksub.

askbcc
Prompts you for a Bcc: list when composing a message. The default is noaskbcc; you are not
prompted.

askcc
Prompts you for a Cc: list when composing a message. The default is noaskcc; you are not
prompted.

asksub
Prompts you for a Subject: line when composing a message (if you have not already specified one
with the –s option). This option is turned on by default; to turn it off, set noasksub. asksub is the
same as ask. noasksub is the same as noask.

autoprint
Automatically displays the last message deleted with the delete subcommand or the last message
undeleted with undelete. The default is noautoprint; you are not shown messages that you delete
or undelete.

bang
Records shell commands run inside the mailx session (for example, through the ~! input-mode
command). Then, if you issue a shell command and the shell command contains a ! character,
mailx replaces that character with the command line for the previous shell command. The default is
nobang, in which case a ! in a shell command line is not treated specially.

cmd
Should contain a command, possibly with options. This specifies a default command line to be used
for the command-mode pipe subcommand. For example:

set cmd="cat"

pipes messages through cat when the pipe subcommand is invoked.
crt

Contains an integer number. If a message has more than this number of lines, the message is piped
through the command given by the PAGER variable, whenever the message is displayed. crt is not
set; the default is nocrt.

DEAD
Contains the name of a file that can be used as the dead.letter file. Partial messages are saved in this
file if an interrupt or error occurs during creation of the message or delivery. By default, the name of
this file is $HOME/dead.letter.

dot
Accepts a line consisting only of a dot (.) to indicate the end of a message in input mode. Thus . is
equivalent to ~.. The default is nodot. If ignoreeof is set, mailx ignores a setting of nodot; the
period is the only way to end input mode.

mailx

Chapter 1. OpenExtensions Shell Commands 193

EDITOR
Gives a command, possibly with options, that is run when using the command mode edit or the input
mode ~e. The default is ed (see ed).

escape
Gives the character used to begin input-mode subcommands. The default is the tilde (~). If this
variable is set to null, mailx disables command escaping.

flipr
Reverses the meanings of the R and r subcommands. The default is noflipr. See also Replyall.

folder
Contains the name of a directory. This lets you specify a standard directory for saving mail files.
Whenever you specify a file name for a mailx command, putting a plus sign (+) in front of the name
specifies that the file is to be accessed in the folder directory.

If the value of folder begins with a slash, it is taken as an absolute path name; otherwise, mailx
assumes that the directory is directly under your HOME directory. folder has no default value. If you
want to use + in file names that appear on the mailx command line itself (as opposed to commands in
a mailx session), you must make folder an exported shell environment variable.

header
Displays a summary of message headers at the beginning of a mailx command-mode session. This is
the default.

hold
Keeps all messages in your system mailbox instead of saving them in your personal mbox. The default
is nohold.

ignore
Ignores interrupts received while composing a message. The default is noignore.

ignoreeof
Ignores end-of-file markers found while entering a message. The message can be ended by "." or ~.
on a line by itself. The default is noignoreeof.

indent
Contains a string that mailx uses as a prefix to each line in messages that ~m and ~M insert. The
default is one tab character.

indentprefix
As with indent, contains a string that mailx uses as a prefix to each line in messages that ~m and ~M
insert. The default is one tab character. If both indent and indentprefix are set, indentprefix
takes precedence.

keep
Does not remove your system mailbox if the mailbox contains no messages. The mailbox is truncated
to zero length—that is, it is merely emptied, although it still exists. If the default nokeep is in effect,
empty mailboxes are removed.

keepsave
Keeps messages in your system mailbox even if they have been saved in other files. The default,
nokeepsave, deletes messages from the system mailbox if they have been saved elsewhere.

LISTER
Contains a command, possibly with options. mailx invokes this command when displaying the
contents of the folder directory for the folders subcommand. If this variable is null or unset, mailx
uses ls. By default, this variable is unset.

MAILRC
Is the location of personal startup file. See “Startup Files” on page 191.

MAILSERV
Identifies the mail server being used for remote mail.

mailx

194 z/VM: 7.3 OpenExtensions Commands Reference

MBOX
Gives the name of your mbox (personal mailbox) file. Messages that have been read but not saved
elsewhere are saved here when you run quit (but not when you run exit). The default is $HOME/
mbox.

metoo
When replying to a message with your login name in the recipient list, sends a reply to all other
recipients, the author, and you. If nometoo is set, you are not to be sent the reply. The default is
nometoo.

onehop
Attempts to send replies directly to the recipients instead of going through the original author's
machine. When you reply to a message, your reply is sent to the author and to all recipients of the
message. On a network, mailx normally specifies the recipient addresses so that all the replies go to
the original author's machine first, and then on to the other recipients.

outfolder
Causes files used to record outgoing messages (see the description of record) to be located in the
directory given by folder unless folder contains an absolute path name.

The default is nooutfolder.

page
Tells the pipe subcommand to insert a form-feed character after each message that it sends through
the pipe. The default is nopage.

PAGER
Contains a command, possibly including options. mailx sends display output through this command if
the output is longer than the screen length given by screen. The default value is cat (see cat).

prompt
Contains a string that mailx displays to prompt for output in command mode. The default is a
question mark followed by a space (?).

quiet
Does not display the opening message and version number when mailx begins a session. The default
is noquiet.

record
Contains a file name where every message you send is to be recorded. If record is not an absolute
path name and the outfolder variable has not been set, the file is located in the HOME directory. If
the outfolder variable is set, the file is located in your folder directory. The default is norecord.

Replyall
Reverses the senses of the reply and Reply subcommands (so that reply replies only to the author of
a message, and Reply replies to the author and all other recipients). See also flipr.

save
Saves messages in your dead.letter file if they are interrupted while being composed. The name
of your dead.letter file is given by the DEAD variable. Setting nosave disables this automatic save
feature. The default is save.

screen
Gives the number of headers that are to be displayed by the headers and z subcommands.

sendmail
Contains a command, possibly with options, that mailx invokes to send mail. The default is mail. It
can be any command that takes addresses on the command line and message contents on standard
input.

sendwait
When sending a message through a network, mailx waits for the mail server to finish before returning
to your session. Normally, it just submits the message to the server and then returns immediately. The
default is nosendwait.

mailx

Chapter 1. OpenExtensions Shell Commands 195

SHELL
Contains a command, possibly with options. mailx assumes that this command is a command
interpreter. mailx invokes this command interpreter whenever it is asked to run a system command
(for example, through the ! command-mode command). The default is sh (see sh).

showto
When displaying a header summary, displays the recipient's name instead of the author's for
messages where you are the author. The default is noshowto.

sign
Contains a string that is inserted into a message when you use the input mode ~a subcommand.
mailx interprets \n and \t in this string as the newline and tab characters, respectively. The default is
nosign.

Sign
Contains a string that is inserted into a message when you use the input mode ~A subcommand. The
default is noSign.

TERM
Contains the name of the terminal type. If screen is not set, TERM individually determines the
number of lines in a screenful of headers.

toplines
Gives the number of header lines that the top subcommand is to display. The default is 5.

VISUAL
Contains a command, possibly with options, that mailx invokes when using the command-mode
visual subcommand or the input mode ~v subcommand.

Files
/etc/mailx.rc

Systemwide startup file.
$MAILRC

Personal startup file. By default, MAILRC has the value $HOME/.mailrc.
$HOME/mbox

Default location to save read messages. You can choose a different file by assigning the file name to
the environment variable MBOX.

$MAILDIR
Directory containing system mailboxes. By default, this is /usr/mail. The system programmer must
create the MAILDIR directory if it does not already exist.

$HOME/dead.letter
Default location to save partial letters.

Localization
mailx uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:

mailx

196 z/VM: 7.3 OpenExtensions Commands Reference

0
Successful sending. (However, this does not guarantee that the mail was successfully received). 0 is
also returned if –e is specified and there is no new mail. 0 is returned if there is new or unread mail. 1
means that there is no new or unread mail.

1
Returned if –e is specified and there is new mail. Also returned to indicate failure because of any of
the following:

• There is no mail to read.
• Inability to create temporary file name or temporary file.
• Receipt of user interrupt while message was being composed.
• Inability to determine the user's identity.

2
Failure due to any of the following:

• Missing number after –h
• Missing address after –r
• Missing subject after –s
• Missing user after –u
• Incorrect command-line option
• Use of interactive options when not using command interactively

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

UNIX System V has a compatible mailx utility, whereas Berkeley Software Distribution (BSD) has a similar
utility, known as Mail.

The –F, –r, and –U options; the Copy, echo, followup, Followup, Save, Unread, and version commands;
and the allnet, conv, MAILSERV, onehop, replyall, sendmail, and sendwait variables are
extensions of the POSIX standard.

Related Commands
echo, ed, sh

mailx

Chapter 1. OpenExtensions Shell Commands 197

make — Maintain program-generated and interdependent files

make [–EeinpqrstuVvx] [–k|–S] [–c dir] [–f file] ...
 [macro definition ...] [–D macro definition ...] [target ...]

Purpose
make helps you manage projects containing a set of interdependent files, such as a program with many
source and object files, or a document built from source files, macro files, and so on. make keeps all such
files up to date with one another. If one file changes, make updates all the other files that depend on the
changed file.

Options
–c dir

Attempts to change into the specified directory when make starts up. If make can't change to the
directory, an error message is printed. This is useful for recursive makefiles when building in a
different directory.

–D macro definition
Define macro on the command line before reading any makefile. Use the same form as a normal macro
definition (macro=string). If you use this option, make assigns the value to the macro before reading
the makefile; any definition of the same macro contained in the makefile supersedes this definition.

Note: make uses any macros defined in this way before reading any makefile, including the startup
file. This allows you to define a startup file by providing a value for MAKESTARTUP on the command
line:

make -D MAKESTARTUP=$HOME/project/startup.mk

–E
Suppresses reading of the environment. If neither –E nor –e is specified, make reads the environment
before reading the makefile.

–e
Reads the environment after reading the makefile. If neither –E nor –e are specified, make reads the
environment before reading the makefile, except for the SHELL environment variable, which you must
explicitly export. This option does not affect the value of MAKEFLAGS.

–f file
Uses file as the source for the makefile description. make ignores the makefiles specified as
prerequisites to the .MAKEFILES target. You can use more than one –f option. If you specify file
as a dash (—), make reads from standard input.

–i
Tells make to ignore all errors and continue making other targets. This is equivalent to the .IGNORE
attribute or macro.

–k
Makes all independent targets, even if an error occurs. Specifying –k tells make to ignore the error
and continue to make as much as possible. make does not attempt to update anything that depends
on the target that was being made when the error occurred.

–n
Prints out the commands that make would run to update the chosen targets, but does not actually run
the commands. However, a command line (associated with the target), with a plus-sign prefix shall be
executed. If make finds the string $(MAKE) in a recipe line, it expands it, adds –n to the MAKEFLAGS,
and then runs the recipe line. This allows you to see what recursive calls to make do. This feature is

make

198 z/VM: 7.3 OpenExtensions Commands Reference

disabled inside group recipes. The output correctly shows line breaks in recipes that are divided into
several lines of text using the \<newline> sequence.

–p
Prints the digested makefile, including macro and target definitions. This display has a human-
readable form that is useful for debugging, but cannot be used as input to make.

–q
Checks whether the target is up to date. If it is up to date, make exits with a status of 0; otherwise,
it exits with a status of 1 (typically interpreted as an error by other software). When you specify –q,
make does not run any commands unless they have a plus sign (+) prefix.

–r
Does not read the default rules from /etc/startup.mk.

–S
Ends make if an error occurs during operations to bring a target up to date (opposite of –k). This is the
default.

–s
Tells make to do all its work silently. make displays neither the commands it runs nor warning
messages. This is equivalent to the .SILENT attribute or macro.

–t
Touches the targets to mark them as up to date, but does not actually run commands to change the
targets unless the target has a plus sign (+) prefix. make does not touch targets that are already up
to date or targets that have prerequisites but do not have recipes. make displays a message for each
target file, indicating the file name and the fact that it was touched.

–u
Forces an unconditional update: make behaves as if all the prerequisites of the given target are out of
date.

–V
Prints the version number of make and a list of built-in rules.

–v
Causes make to display a detailed account of its progress. This includes what files it reads, the
definition and redefinition of each macro, metarule and suffix rule searches, and other information.

–x
Exports all macro definitions to the environment. This happens just before make begins making
targets (but after it has read the entire makefile).

Targets
A target is normally a file that you want to ensure is up to date with the files on which it is dependent (the
prerequisites). make updates all targets that are specified on the command line. If you do not specify any
target, make updates the targets in the first rule of the makefile. A target is out of date if it is older than
any of its prerequisites (based on modification times) or if it does not exist.

To update a target, make first recursively ensures that all the target's prerequisites are up to date,
processing them in the order in which they appear in the rule. If the target itself is out of date, make then
runs the recipe associated with the target. If the target has no associated recipe, make considers it up to
date.

make also supports another form of targets, known as special targets, described in “Special Targets” on
page 207.

Macros
Macro definitions can appear on the command line or in makefiles. The user must specify the –D option to
override define macros used in command line prerequisites. Macro definitions on the command line may
not have any white space between the macro name and the = character.

Macro definitions may take several forms.

make

Chapter 1. OpenExtensions Shell Commands 199

macro = string

is the usual form. If string contains macro references, make does not expand them when the macro is
defined, but when the macro is actually used.

macro := string

expands macros inside string before creating macro.

macro += string

adds string to the previous value of macro.

You can use any amount of white space on both sides of macro operators. make defines the name macro
to have the value string and replaces it with that value whenever it is used as $(macro) or ${macro}
within the makefile. It is possible to specify a $(macro_name) or ${macro_name} macro expansion,
where macro_name contains more $(...) or ${...} macro expansions itself.

Normally, make does not include white space at the beginning and end of string in the definition of macro;
however, it never strips white space from macros imported from the environment.

If you want to include white space in a macro definition specified on the make command line, you must
enclose the definition in quotes.

make resolves macro definitions in the following order:

1. Macro definitions in the built-in inference rules
2. Contents of the environment
3. Macro definitions in the makefiles (in the order they appear)
4. Macro definitions on the command line

Definitions for macros in the prerequisite portion of a dependency line cannot be replaced by macro
definitions from the command line. Prerequisite macros are expanded as they are read, but command line
macro definitions are not applied to macros in the makefile until the entire file has been read. Therefore,
with the exception of macros in the prerequisite of a dependency line, if a macro is already defined when
make encounters a new definition for it, the new definition replaces the old one. For example, a macro
definition for name on the command line overrides a definition for name in the makefile.

make supports macro expansions of the form:

$(macro_name:modifier_list:modifier_list:...)

Possible modifiers are:
^"string"

Prefix tokens
+"string"

Suffix tokens
b

File portion of all path names, without suffix
d

Directory portion of all path names
f

File portion of all path names, including suffix
l

All characters mapped to lowercase
s/pat/string/

Simple pattern substitution
suffix=string

Suffix replacement

make

200 z/VM: 7.3 OpenExtensions Commands Reference

t"separator"
Tokenization

u
All characters mapped to uppercase

For example, with:

test = D1/D2/d3/a.out f.out d1/k.out

we have:

$(test:d) → D1/D2/d3 . d1
$(test:b) → a f k
$(test:f) → a.out f.out k.out
${test:db} → D1/D2/d3/a f d1/k
${test:s/out/in} → D1/D2/d3/a.in f.in d1/k.in
$(test:f:t"+") → a.out+f.out+k.out
$(test:t"+") → D1/D2/d3/a.out+f.out+d1/k.out
$(test:u) → D1/D2/D3/A.OUT F.OUT D1/K.OUT
$(test:l) → d1/d2/d3/a.out f.out d1/k.out
$(test:^"/rd/") → /rd/D1/D2/d3/a.out /rd/f.out /rd/d1/k.out
$(test:+".Z") → D1/D2/d3/a.out.Z f.out.Z d1/k.out.Z

Runtime macros can take on different values for each target.
$@

The full target name. When building a normal target, this macro evaluates to the full name of the
target. When building a library, it expands to the name of the archive library. For example, if the target
is:

mylib(member)

$@ expands to:

mylib.

$%
The full target name. When building a normal target, this macro evaluates to the full name of the
target. When building a library, it expands to the name of the archive member. For example, if the
target is:

mylib(member)

$% expands to:

member

$&
The list of all prerequisites.

$?
The list of all prerequisites that are newer than the target.

$^
The list of all prerequisites taken from the list specified on the rule line of the recipe where the $^
appears.

$<
Same as $^.

$>
The name of the library if the current target is a library member.

$*
The target name with no suffix ($(%:db)) or the value of the stem in a meta-rule.

make

Chapter 1. OpenExtensions Shell Commands 201

The constructs $$@, $$%, $$>, and $$* can appear in a prerequisite list as dynamic prerequisites. $$@
stands for the target currently being made. For example:

fred : $$@.c
fred : fred.c

are equivalent. The construct can be modified, as in:

fred.o : $$(@:b).c

The runtime macros can be modified by the letters D and F to indicate only the directory portion of the
target name or only the file portion of the target name. (The working directory is represented by a dot.) If
define.h is the only prerequisite that is newer than the target, the macros $?D and $?F expand to dot (.)
and to define.h.

If you are building a library, $$% stands for the name of the archive member being made. If you are
building a normal target, $$% stands for the name of the target currently being made.

$$* stands for the name of the current target being made, but with no suffix.

If you are building a library, $$> stands for the name of the archive library being made. If you are not
building a library, $$> is not valid.

Comments
Comments begin with the pound (#) character and extend to the end of the line. make discards all
comment text.

Makefile Contents
Inside makefiles, you can split long lines over several lines of text. To do this, put a backslash (\) at the
very end of the line. You can use this technique to extend comments as well as recipe lines and macro
definitions, for example.

If a rule or macro definition must contain a # character, use \#; otherwise, make mistakes the # for the
beginning of a comment. Also, $$ stands for $.

File names that contain a colon must always be enclosed in quotes, as in:

"a:target" : "a:prereq"

Rules
The general format of a rule is:

targets [attributes] ruleop [prerequisites] [;recipe]
{<tab> recipe}

where the items enclosed in square brackets are optional. (This is just a documentation convention; you
do not actually enter the square brackets.) The parts of the rule are described as follows:
targets

One or more target names.
attributes

A list, possibly empty, of attributes to apply to the list of targets.
ruleop

A separator string that separates the target names from the prerequisite names and may also affect
the processing of the specified targets.

prerequisites
A list of zero or more names on which the specified targets depend.

make

202 z/VM: 7.3 OpenExtensions Commands Reference

recipe
May follow on the same line as the prerequisites, separated from them by a semicolon. A recipe is a
group of commands following a target, which specifies how to make that target. If a recipe is present,
make takes it as the first in the list of recipe lines defining how to make the named targets. Additional
recipe lines can follow the first line of the rule. Each such recipe line must begin with a tab character.

The possible rule operators are listed as follows:
targets : prereqs

Is a simple rule definition. You can specify only one set of rules for making a target, except within
metarules. In metarules, you can specify more than one recipe for making the target. If a target has
more than one associated metarule, make uses the first metarule that matches.

targets :! prereqs
Executes the recipe for the associated targets once for each recently changed prerequisite. Ordinarily,
make runs the recipe only once, for all out-of-date prerequisites at the same time.

targets :^ prereqs
Inserts the specified prerequisites before any other prerequisites already associated with the
specified targets.

targets :– prereqs
Clears the previous list of prerequisites before adding the new prerequisites.

targets :: prereqs
Is used for multiple rules applying to the same targets. Each rule can specify a different set of
prerequisites with a different recipe for updating the target. If a target is out of date with respect to
any of its prerequisites, make remakes the target using all the recipe lines associated with the rules
that mention those prerequisites.

targets :| prereqs
Is used in metarules. It tells make to treat each metadependency as an independent rule. For
example:

%.o :| %.c rcs/%.c /srcarc/rcs/%.c
 recipe...

is equivalent to:

%.o : rcs/%.c
 recipe...
%.o : /srcarc/rcs/%.c
 recipe...

You can follow the first line of a rule with any number of recipe lines. Each of these must begin with a tab
character. The method of entering tab characters using XEDIT is discussed in z/VM: OpenExtensions User's
Guide.

You can follow the tab with –, @, + or all three. – indicates that make is to ignore nonzero exit values
when it runs this recipe line. @ indicates that make is not to display the recipe line before running it. + tells
make to always run this line, even when –n, –p, or –t is specified. This is particularly useful when calling
make recursively. If the recursive make line is preceded by a +:

make -n

runs the recursive make but puts the n in the MAKEFLAGS variable. This allows you to see what
the subsidiary makes do. You can use a target that has prerequisites but no recipes to add the given
prerequisites to that target's list of prerequisites.

Group recipes begin with [in the first non-white-space position of a line, and end with] in the first
non-white-space position of a line. Recipe lines in a group recipe need not have a leading tab. make
executes a group recipe by feeding it as a single unit to a shell. If you immediately follow the [at the
beginning of a group recipe with one of –, @ or +, they apply to the entire group in the same way that they
apply to single recipe lines.

make

Chapter 1. OpenExtensions Shell Commands 203

Inference Rules
With inference rules you can specify general rules for building files rather than creating a specific rule for
each target.

make provides two forms of inference rules: suffix rules and metarules. It provides suffix rules for
compatibility with older makefiles. Metarules are a more general technique than suffix rules for specifying
make's default behavior. They provide a superset of the utility of suffix rules.

make uses the inference rules to infer how it can bring a target up to date. A list of inference rules
defines the commands to be run. The default startup.mk file contains a set of inference rules for the most
common targets. You can specify additional rules in the makefile.

When make finds no explicit target rule to update a target, it checks the inference rules. If make finds
an applicable inference rule with an out-of-date prerequisite, it runs that rule's recipe. (See also “Special
Targets” on page 207 which describes the .DEFAULT special target).

Suffix Rules
make treats targets that begin with a period and contain no slashes or percent signs as suffix rules. If
there is only one period in the target, it is a single suffix inference rule. Targets with two periods are
double-suffix inference rules. Suffix rules do not have prerequisites but do have commands associated
with them.

When make finds no explicit rule to update a target, it checks the suffix of the target (.s1) to be built
against the suffix rules. make examines a prerequisite based on the basename of the target with the
second suffix (.s2) appended, and if the target is out of date with respect to this prerequisite, make runs
the recipe for that inference rule.

Metarules take precedence over suffix rules.

If the target to be built does not contain a suffix and there is no rule for the target, make checks the
single suffix inference rules. The single suffix inference rules define how to build a target if make finds a
rule with one of the single suffixes appended. A rule with one suffix .s2 defines how to build target from
target.s2. make treats the other suffix (.s1) as null.

For a suffix rule to work, the component suffixes must appear in the prerequisite list of the .SUFFIXES
special target. You can turn off suffix rules by placing the following in your makefile:

 .SUFFIXES:

This clears the prerequisites of the .SUFFIXES target, which prevents suffix rules from being enacted.
The order that the suffixes appear in the .SUFFIXES rule determines the order in which make checks the
suffix rules.

The following steps describe the search algorithm for suffix rules:

1. Extract the suffix from the target.
2. Is it in the .SUFFIXES list? If not, quit the search.
3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target suffix.
4. If there is a match, extract the base name of the file, add on the second suffix, and determine if the

resulting file exists. If the resulting file does not exist, keep searching the double suffix rules.

If the resulting file does exist, use the recipe for this rule.
5. If a successful match is not made, the inference has failed.
6. If the target did not have a suffix, check the single suffix rules in the order that the suffixes are

specified in the .SUFFIXES target.
7. For each single suffix rule, add the suffix to the target name and determine if the resulting file name

exists.

make

204 z/VM: 7.3 OpenExtensions Commands Reference

8. If the file name exists, execute the recipe associated with that suffix rule. If the file name doesn't exist,
continue trying the rest of the single suffix rules. If a successful match is not made, the inference has
failed.

make also provides a special feature in the suffix rule mechanism for archive library handling. If you
specify a suffix rule of the form:

 :a.suff:
 recipe

the rule matches any target having the LIBRARYM attribute set, regardless of what the actual suffix was.
For example, if your makefile contains the rules:

 .SUFFIXES: .a .o
 :a.o :
 echo adding $< to library $@

then if mem.o exists:

 make "mylib(mem.o)"

causes:

 adding mem.o to library mylib

to be printed.

Metarules
Metarules have one target with a single percent symbol that matches an arbitrary string called the stem;
A%B matches any string that starts with prefix A and ends with suffix B. A or B or both may be null. The %
in a dependency stands for the stem.

The inference rule to update a target matching pattern p1%s1, where p1 and s1 are prefix and suffix
strings of the target, having a prerequisite p2%s2, where % is the stem from the target, is specified as a
rule:

p1%s1 : p2%s2 ; recipe....

Either the prefix or suffix string may be empty.

With the internal macros you can specify general inference rules. If the target is out of date with respect
to this prerequisite, make runs that inference rule's recipe.

Transitive Closure
Metarules provide a mechanism that allows several metarules to chain together to eventually create the
target.

This is called transitive closure. For example, if you have metarules:

%.o : %.c
 ... rule body...

and:

%.c : %.y
 ... rule body ...

When you specify:

make file.o

make uses the first metarule to look for file.c. If it can't find an explicit rule to build file.c, it again looks
through the metarules and finds the rule that tells it to look for file.y.

make

Chapter 1. OpenExtensions Shell Commands 205

make allows each metarule to be applied only once when performing transitive closure to avoid a
situation where it loops forever. (For example, if you have the rule:

% : %.c
 ... rule body ...

the command:

make file

causes make to look for file.c. If the metarules were not restricted and file.c did not exist, then make
would look for file.c.c, and then file.c.c.c, and so on. Because each metarule is applied only once, this
can't happen.)

Transitive closure is computed once for each metarule head the first time the pattern matches a target.
When transitive closure is computed, all the computed rules are added to the rule set for that metarule
head. For example, if you have the rules:

% : %.o
 recipe 1...
%.o : %c
 recipe 2...

and you are making file, this target matches successfully against % causing transitive closure to be
computed for %. As a result of this computation, a new rule is created:

% : %.c
 recipe 2...
 recipe from .REMOVE target for %.o, if not .PRECIOUS
 recipe 1...

which is executed if file.o doesn't exist. When the computation for the rule head has been done, it is
marked as transitive closure computed. Since all possible new rules have been added to the rule set the
first time the computation is done, it is not necessary to do it again: Nothing new is added. The term
transitive closure is adapted from the mathematical set theory.

Note: In set theory, if you have a set composed of pairs (a,b) and (b,c), then the set would be transitively
closed if (a,c) is also in the set.

The best way to understand how this works is to experiment with little make files with the –v flag
specified. This shows you in detail what rules are being searched, when transitive closure is calculated,
and what rules are added.

Attributes
make defines several target attributes. Attributes can be assigned to a single target, a group of targets, or
to all targets in the makefile. Attributes affect what make does when it needs to update a target. You can
associate attributes with targets by specifying a rule of the form:

attribute_list : targets

This assigns the attributes in attribute_list to the given targets. If you do not specify any targets, the
attributes apply to every target in the makefile. You can also put attributes inside a normal rule, as in:

targets attribute_list : prerequisites

The recognized attributes are:
.EPILOG

Insert shell epilogue code when running a group recipe associated with any target having this
attribute set.

.IGNORE
Ignore an error when trying to make any target with this attribute set.

make

206 z/VM: 7.3 OpenExtensions Commands Reference

.LIBRARY
Target is a library.

.LIBRARYM
Target is a library member (cannot be set by the user).

.PRECIOUS
Do not remove this target under any circumstances. Any automatically inferred prerequisite inherits
this attribute.

.PROLOG
Insert shell prolog code when running a group recipe associated with any target having this attribute
set.

.SETDIR
Change the working directory to a specified directory when making associated targets. The syntax of
this attribute is .SETDIR=path, where path is the path name of desired working directory. If path
contains any : characters, the entire attribute string must be quoted, not just the path name.

.SILENT
Do not echo the recipe lines when making any target with this attribute set, and do not issue any
warnings.

.SYMBOL
Target is an entry point into a module in a library (it cannot be set by the user). This attribute is used
only when searching a library for a target. Targets of the form lib((entry)) have this attribute set
automatically.

You can specify any attribute except .LIBRARYM and .SYMBOL. You can use any attribute with any target,
including special targets.

Special Targets
Special targets are called targets because they appear in the target position of rules; however, they are
really keywords, not targets. The rules they appear in are really directives that control the behavior of
make.

The special target must be the only target in a special rule; you cannot list other normal or special targets.

Some special targets are affected by some attributes. Any special target can be given any attribute, but
often the combination is meaningless and the attribute has no effect.
.BRACEEXPAND

This target may have no prerequisites and no recipes associated with it. If set, the target enables
the outdated brace expansion feature used in older versions of make. Older makes would expand a
construct of the following form, beginning with each token in the token list:

 string1{token_list}string2

Older makes would append string1 to the front of each token in the list, and string2 to the end of
each token in the list. A more productive means for achieving the same result with modern versions of
make relies on macro expansion with prefix and suffix modifiers:

 $ (TOKEN_BASE:¬"prefix:+"suffix")

The double quotation marks are required. Brace expansion is an outdated feature available in past
versions of make.

.DEFAULT
This target has no prerequisites, but it does have a recipe. If make can apply no other rule to produce
a target, it uses this rule if it has been defined.

.ERROR
make runs the recipe associated with this target whenever it detects an error condition.

make

Chapter 1. OpenExtensions Shell Commands 207

.EXPORT
All prerequisites associated with this target that correspond to macro names are exported to the
environment at the point in the makefile at which this target appears.

.GROUPEPILOG
make adds the recipe associated with this target after any group recipe for a target that has
the .EPILOG attribute.

.GROUPPROLOG
make adds the recipe associated with this target after any group recipe for a target that has
the .PROLOG attribute.

.IMPORT
make searches in the environment for prerequisite names specified for this target and defines them
as macros with their value taken from the environment. If the prerequisite .EVERYTHING is given,
make reads in the entire environment (see –e and –E options).

.INCLUDE
make parses another makefile just as if it had been located at the point of the .INCLUDE in the
current makefile. The list of prerequisites gives the list of makefiles to read.

.INCLUDEDIRS
The list of prerequisites specified for this target defines the set of directories to search when including
a makefile.

.MAKEFILES
The list of prerequisites is the set of files to try to read as the user makefile. These files are made in
the order they are specified (from left to right) until one is found to be up to date. This is the file that is
used.

.POSIX
make processes the makefile as specified in the POSIX.2 draft standard. This target may have no
prerequisite and no recipes associated with it. This special target must appear before the first non-
comment line in the makefile. If this special target is present, the following facilities are disabled:

• All recipe lines are run by the shell, one shell per line, regardless of the setting of SHELLMETAS.
• Metarule inferencing is disabled.
• Conditionals are disabled.
• Dynamic prerequisites are disabled.
• Group recipes are disabled.
• Disables brace expansion (set with the .BRACEEXPAND special target).
• make does not check for the string $ (MAKE) when run with the –n options specified.

.REMOVE
make uses the recipe of this target to remove any intermediate files that it creates if an error is
encountered before the final target is created. This does not remove files marked .PRECIOUS or files
that existed before make began execution.

.SOURCE
The prerequisite list of this target defines a set of directories to check when trying to locate a target
file name.

.SOURCE.x
Same as .SOURCE, except that make searches the .SOURCE.x list first when trying to locate a file
matching a target with a name that ends in the suffix .x.

.SUFFIXES
The prerequisite list of this target defines a set of suffixes to use when trying to infer a prerequisite for
making a target.

A name of the form library(member) indicates a member of a library. The library portion is a target with
the .LIBRARY attribute, and the member portion is a prerequisite of the library target.

make

208 z/VM: 7.3 OpenExtensions Commands Reference

A name of the form library((entry)) indicates the library module that contains the given entry point. Once
again, the library portion is a target with the .LIBRARY attribute. make regards the library member that
contains the entry point entry as a prerequisite of the library target.

Control Macros
make defines a number of control macros that control make's behavior. When there are several ways of
doing the same thing, control macros are usually the best. A control macro that has the same function as
a special target or attribute also has the same name.

Macros that are said to be defined internally are automatically created by make and can be used with the
usual $(name) construct. For example, $(PWD) can be used to obtain the current directory name.

Recognized control macros are:
DIRSEPSTR

Contains the characters used to separate parts in a path name and can be set by the user. make uses
the first character in this string to build path names when necessary.

.EPILOG
If assigned a non-null value, the .EPILOG attribute is given to every target.

GROUPFLAGS
Specifies option flags to pass to GROUPSHELL when make invokes it to run a group recipe.

GROUPSHELL
Gives the path name of the command interpreter (shell) that make calls to process group recipes.

GROUPSUFFIX
Specifies a string for make to use as a suffix when creating group recipe files to be run by the
command interpreter.

.IGNORE
If this is assigned a non-null value, make assigns the .IGNORE attribute to every target.

INCDEPTH
This is the current depth of makefile inclusion. It is set internally.

MAKE
This is set by the startup file and can be changed by the user. The standard startup file defines it as:

$(MAKECMD) $(MFLAGS)

The MAKE macro is not used by make itself, but the string $(MAKE) is recognized when using the –n
option for single-line recipes.

MAKECMD
This is the name with which make was invoked.

MAKEDIR
This is the full path name of the initial directory in which make began execution.

MAKEFLAGS
The MAKEFLAGS macro contains all the options (flags) and macros specified in the MAKEFLAGS
environment variable plus all of the options and macros specified on the command line, with the
following exceptions. Specifying –c, –f, or –p in the environment variable results in an error, and these
same options specified on the command line do not appear in the MAKEFLAGS macro. Options in
the MAKEFLAGS environment variable may have optional leading dashes and spaces separating the
options. These are stripped out when the MAKEFLAGS macro is constructed.

Note: make always reads the MAKEFLAGS environment variable before reading the makefile. The –E
and –e options do not affect this.

MAKESTARTUP
This has the default value:

$(ROOTDIR)/etc/startup.mk

make

Chapter 1. OpenExtensions Shell Commands 209

To change where make looks for its startup file, you can set the environment variable MAKESTARTUP
before running make. Since make processes command-line macros after reading the startup file,
setting this macro on the command line does not have the desired effect.

MFLAGS
This is the same as MAKEFLAGS, except that it includes the leading switch character.

NULL
This is permanently defined to be the NULL string.

.PRECIOUS
If this is assigned a non-null value, make assigns the .PRECIOUS attribute to every target.

.PROLOG
If this is assigned a non-null value, make assigns the .PROLOG attribute to every target.

PWD
This is the full path name of the working directory in which make is executing.

SHELL
Specifies the full path name of the command interpreter that make calls to process single-line
recipes, when necessary. make passes recipe lines to this shell only if they contain one or more of the
characters given in SHELLMETAS; otherwise, it runs them directly. By default, the value of the SHELL
environment variable does not affect the value of this macro; however, you can use the .IMPORT
special target to assign the environment variable's value to this macro. You can also use the EXPORT
special target to assign this macro's value to the SHELL environment variable.

SHELLFLAGS
Specifies option flags to pass to the shell when invoking it to run a single-line recipe.

SHELLMETAS
Specifies a list of metacharacters that can appear in single recipe lines. If make finds any
metacharacter, it invokes the recipe using the shell specified by SHELL; otherwise, it runs the recipe
without the shell.

.SILENT
If this is assigned a non-null value, make assigns the .SILENT attribute to every target.

Making Libraries
A library is a file containing a collection of object files. To make a library, you specify it as a target with
the .LIBRARY attribute and list its prerequisites. The prerequisites should be the object members that
are to go into the library. When make makes the library target, it assigns the .LIBRARYM attribute to the
prerequisites. This tells the file search mechanism to look for the member in the library if it cannot find an
appropriate object file.

make tries to handle the old library construct format in a sensible way. When it finds lib(member), it
declares the lib portion as a target with the .LIBRARY attribute and the member portion as a prerequisite
of the lib target. To make the library properly, old makefile scripts using this format must name the
lib as a target and must try to bring it up to date. The same thing happens for any target of the form
lib((entry)). These targets have an additional feature in that the entry target has the .SYMBOL attribute set
automatically.

Conditionals
You specify the conditional expression as follows:

.IF expression

... if text ...

.ELSE

... else text ...

.END

or:

make

210 z/VM: 7.3 OpenExtensions Commands Reference

.IF expression

... if text ...

.ELSIF expression2

... elsif text ...

.ELSE

... else text ...

.END

The .ELSE or .ELSIF portion is optional, and you can nest the conditionals (that is, the text may contain
another conditional). The .IF, .ELSE, .ELSIF, and .END conditionals must start in the first column of
the line. expression or expression2 can have one of three forms:

string

is true if the given string is non-NULL,

string == string

is true if the two strings are equal, and:

string != string

is true if the two strings are not equal. Typically, one or both strings contain macros, which make expands
before making comparisons. make also discards white space at the start and end of the text portion
before the comparison. This means that a macro that expands to nothing but white space is considered a
NULL value for the purpose of the comparison. If a macro expression needs to be compared with a NULL
string, compare it to the value of the macro $(NULL).

The text enclosed in the conditional construct must have the same format that it would have outside the
conditional. In particular, make assumes that anything that starts with a tab inside the conditional is a
recipe line. This means that you cannot use tabs to indent text inside the conditional (except, of course,
for recipe lines, which always begin with tabs).

Files
/etc/startup.mk

The default startup file containing default rules.

Environment Variables
MAKEFLAGS

Contains a series of make options that are used as the default options for any make command. You
can specify the options with or without leading minus signs (-) and blanks between them. It can also
include macro definitions of the form usually found on the command line.

MAKESTARTUP
Contains the path name of the make stamp file. By default, make uses the file /etc/startup.mk as its
startup file. To use a different file, set this environment variable before running make.

SHELL
Contains a name of a command interpreter. To assign this value to the SHELL control macro, use
the .IMPORT special target. You can also use the .EXPORT special target to assign the value of the
SHELL macro to the environment variable.

Localization
make uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

make

Chapter 1. OpenExtensions Shell Commands 211

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Returned if you specified –q and file is not up to date
2

Failure due to any of the following:

• Unknown command-line option
• Missing argument to option, such as no file name for –f.

126
Recipe command was not executable.

127
Recipe command was not found.

255
Failure because of any of the following:

• Macro cannot be redefined
• Macro variables not assigned with :=
• Special target cannot be a prerequisite
• No file name for –f
• Too many makefiles specified
• Configuration file not found
• No makefile present
• Missing .END for .IF
• No target
• Inability to return to directory
• Too many open files
• Open failed
• File not found
• Closing file in slot
• Inability to change directory
• No more memory
• Line too long
• Circular macro detected
• Unterminated pattern string
• Unterminated replacement string
• Token separator string not quoted
• Unterminated separator string
• Expansion too long
• Suffix too long
• Unmatched quote
• .IF .ELSEEND nesting too deep

make

212 z/VM: 7.3 OpenExtensions Commands Reference

• .ELSE without .IF
• Unmatched .END
• Inference rules resulting in circular dependency
• No macro name
• Write error on temp file
• Target not found, and cannot be made
• Inability to make NAME
• <+ diversion unterminated
• <+ diversion cannot be nested
• <+ missing before +>
• Incomplete rule recipe group detected
• Inability to mix single and group recipe lines
• Unmatched] found
• Macro or rule definition expected but not found
• Name too long
• Inability to determine working directory
• Only one NAME attribute allowed in rule line
• Multiple targets not allowed in % rules
• Special target must appear alone
• Duplicate entry in target list
• Syntax error in % rule, missing % target
• Duplicate entry in prerequisite list
• Missing targets or attributes in rule
• Multiply defined recipe for target
• Empty recipe for special target
• Imported macro NAME not found in environment
• No .INCLUDE file(s) specified
• Include file NAME, not found
• NAME ignored on special target
• Attributes possibly ignored
• Inability to find member defining SYMBOL((NAME))
• Incorrect library format
• Inability to touch library member
• SHELL macro not defined
• Too many arguments
• Inability to export NAME
• Inability to open file
• Circular dependency detected
• Inability to stat /
• Inability to stat .
• Inability to open ..
• Read error in ..
• Metarule too long: "rule"

make

Chapter 1. OpenExtensions Shell Commands 213

Limits
No single makefile script line can be longer than 8192 characters. In some environments the length of an
argument string is restricted.

Usage Notes
When the .SETDIR special target is used, make checks the file attributes of targets and prerequisites on
every pass through a rule. This can significantly increase the number of system accesses.

Portability
POSIX.2, UNIX systems.

The following features of make are enhancements to POSIX.2:

• The options: –cdir, –E, –u, –V, –v, and –x.
• The –n option has enhanced functionality not covered by the standard; for more information, see the –n

option and the POSIX special target for make.
• The runtime macros: $&, $^, $>.
• The dynamic prerequisites: $$%, $$>, $$*, $$@.
• All macro expansions.
• Macro assignments of the following form:

macroname := stringassigned
macroname += stringassigned

• Brace expansion.
• Backslash continuation.
• The quoting mechanism, as in the following example:

 "a:target" : "a:prerequisite"

• All rule operators except the colon (:).
• Conditionals.
• Metarules.
• All make attributes except .IGNORE, .PRECIOUS, .SILENT (referred to in POSIX.2 as special targets).
• All make special targets except .DEFAULT, .POSIX, .SUFFIXES (referred to in POSIX.2 as special

targets).
• All make macros except SHELL (referred to in POSIX.2 as control macros).

For More Information
S. I. Feldman, "Make—Program for Maintaining Computer Programs," Software—Practice and Experience 9
(no. 4, April 1979):225–65 [Bell Labs, Murray Hill, NJ]

make

214 z/VM: 7.3 OpenExtensions Commands Reference

mkdir — Make a directory

mkdir [–p] [–m mode] directory ...

Purpose
The mkdir command creates a new directory for each named directory argument. The default mode for a
directory created by the mkdir command is 755:

owner = rwx
group = r-x
other = r-x

mkdir supports the following options:
–m mode

Lets you specify permissions for the directories. The mode argument can have the same value as the
mode for chmod; see chmod for more details.

–p
Creates intermediate directory components that don't already exist. For example, if one of the
directory arguments is dir/subdir/subsub and subdir doesn't already exist, mkdir creates it.

Localization
mkdir uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Missing mode after –m
• Incorrect mode
• Incorrect command-line option
• Missing directory name
• Inability to create the directory

Messages and Return Codes
Possible error messages include:
Path not found

The preceding structure (parent directory) of the named directory does not exist.

mkdir

Chapter 1. OpenExtensions Shell Commands 215

Access denied
The requested directory already exists or is otherwise inaccessible.

Cannot create directory
Some other error occurred during creation of the directory.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
rm, rmdir

mkdir

216 z/VM: 7.3 OpenExtensions Commands Reference

mkfifo — Make a FIFO special file

mkfifo [–p] [–m mode] file ...

Purpose
mkfifo creates one or more FIFO special files with the given names.

Options
mkfifo recognizes the following options:
–m mode

Lets you specify file permissions for the files. The mode argument can have the same value as the
mode argument for chmod; see chmod for more details.

–p
Creates intermediate directory components that don't already exist. For example, if one of the file
arguments is dir/subdir/file and subdir doesn't exist already, this option creates it. Directories are
created with the mode u+rwx, which means read, write, and search permissions to the owner.

Localization
mkfifo uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• A missing mode after –m
• An incorrect mode
• An incorrect command-line option
• A missing file name
• Inability to create the desired file

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –p option is an extension of the POSIX standard.

mkfifo

Chapter 1. OpenExtensions Shell Commands 217

Related Commands
chmod, create, mkdir, mknod

mkfifo

218 z/VM: 7.3 OpenExtensions Commands Reference

mknod — Make a FIFO or character special file

mknod pathname c major minor
mknod pathname p

Purpose
mknod creates a special file with the given path name.

Options
c

Indicates character special files (for example, printers and other devices).
major minor

Gives the major and minor device types.

The high-order 16 bits of device_identifier hold the device major number. The device major number
corresponds to a device driver supporting a class of devices—for example, interactive terminals.
The low-order 16 bits of device_identifier hold the device minor number. The device minor number
corresponds to a specific device within the class of devices referred to by the device major number.

The device major numbers currently defined for use by OpenExtensions services are:

3 /dev/tty
4 /dev/null

For device major numbers 3 and 4, the device minor number is ignored.

Device types can be either octal or decimal numbers. The shell differentiates between octal and
decimal as follows:

• Any number that starts with 0 is octal.
• Any number that starts with 0x is hex.
• Any number that does not start with 0x or 0 is decimal.

p
Creates a FIFO special file (that is, a named pipe).

Note: mknod can be used only by a superuser.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Inability to create the desired file
• Incorrect major or minor number

2
Failure for any of the following:

• Too few command-line arguments
• A missing major or minor device number

mknod

Chapter 1. OpenExtensions Shell Commands 219

Portability
UNIX systems. Within POSIX, mknod has been superseded by mkfifo for pipes. The POSIX family of
standards have not yet designed an alternative to mknod for special files.

Related Commands
mkfifo

mknod

220 z/VM: 7.3 OpenExtensions Commands Reference

mount — See the OPENVM MOUNT command
The mount shell command is not available. Use the OPENVM MOUNT command in place of the mount
command. See “OPENVM MOUNT” on page 407.

mount

Chapter 1. OpenExtensions Shell Commands 221

mv — Rename or move a file or directory

mv [–fi] file1 file2
mv [–fi] file ... directory
mv [–Rrfi] directory1 directory2

Purpose
mv renames files or moves them to a different directory. If you specify multiple files, the target (that is,
the last path name on the command line) must be a directory. mv moves the files into that directory and
gives them names that match the final components of the source path names. When you specify a single
source file and the target is not a directory, mv moves the source to the new name, by a simple rename if
possible.

If a destination file exists for which you do not have write permission, mv prompts with the name of the
existing file. If you answer y or yes, it deletes the destination and then moves the source.

Note: mv can be used only by the file owner or a superuser. Any users can move a file; those users must
be a member of group (that group must have write permission). The permission for other is write.

Options
mv accepts the following options:
–f

Does not ask if you want to overwrite an existing destination without write permission; it automatically
behaves as if you answered yes. If you specify both –f and –i, mv uses the option that appears last on
the command line.

–i
Asks you if you want to overwrite an existing file whether or not the file is read-only. If you specify
both –f and –i, mv uses the option that appears last on the command line.

–R
Moves a directory and all its contents (files, subdirectories, files in subdirectories, and so on). For
example:

mv -R dir1 dir2

moves the entire contents of dir1 to dir2/dir1. mv creates any directories that it needs.
–r

Is identical to –R.

Localization
mv uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

mv

222 z/VM: 7.3 OpenExtensions Commands Reference

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• The argument had a trailing / but was not a directory
• Inability to find file
• Inability to open input file for reading
• Inability to create or open output file for output
• Read error on an input file
• Write error on an output file
• Input and output files identical
• Inability to unlink input file
• Inability to rename input file
• Irrecoverable error when using the –r option, such as:

– Inability to access a file
– Inability to read a directory
– Inability to remove a directory
– Inability to create a directory
– A target that is not a directory
– Source and destination directories identical

2
Failure due to any of the following:

• Incorrect command-line option
• Too few arguments on the command line
• A target that should be a directory but isn't
• No space left on target device
• Out of memory to hold the data to be copied
• Inability to create a directory to hold a target file

Messages and Return Codes
Possible error messages include:
cannot allocate target string

mv has no space to hold the name of the target file. Try to free some memory to give mv more space.
filename?

You are attempting to move a file, but there is already an existing file with that target name. If you
really want to write over the existing file, type y and press <Enter>. If you do not want to write over
the existing file, type n and press <Enter>.

Note: This message is a prompt that appears only when the –i option is used.

source name and target name are identical
The source and the target are actually the same file (for example, because of links). In this case, mv
does nothing.

mv

Chapter 1. OpenExtensions Shell Commands 223

unreadable directory name
mv cannot read the specified directory—for example, because you do not have appropriate
permissions.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –R and –r options are extensions of the POSIX standard.

Related Commands
cp, cpio, rm

mv

224 z/VM: 7.3 OpenExtensions Commands Reference

newgrp — Change to a new group

newgrp [–l] [group]
newgrp [–] [group]

Purpose

newgrp lets you change to a new group. You stay logged in and your working directory does not change,
but access permissions are calculated according to your new real and effective group IDs. If an error
occurs, it may force you to exit the shell and start the shell again.

newgrp does not change the value of exported shell variables, and all others are either set to their default
or are unset.

If you did not specify any arguments on the command line, newgrp changes to the default group specified
for your user ID in the system user database. It also sets the list of supplementary groups to that set in
the group database of the system.

If you specify a group, newgrp changes your real and effective group ID to that group. If a group has a
password, and you are specified as a member of that group in the system group database, you do not
require a password; otherwise, you are prompted for a password. If the group has no password, you are
permitted to change to that group only if you are a member of that group, as specified in the system group
database.

If the supplementary group list also contains the new effective group ID, newgrp changes the effective
group ID. If the supplementary group list does not contain the new effective group ID, newgrp adds it to
the list (if there is room).

Options
–l

Starts the new shell session as a login session. This implies that it can run any shell profile code.
–

Is the obsolescent version of –l.

Localization
newgrp uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
If newgrp succeeds, its exit status is that of the shell. Otherwise, the exit status is:
>0

Failure because newgrp was unable to obtain the proper user or group information or because it was
unable to run the shell, and it will end the current shell.

newgrp

Chapter 1. OpenExtensions Shell Commands 225

Portability
POSIX.2, UNIX systems.

Related Commands
export, fc, sh

newgrp

226 z/VM: 7.3 OpenExtensions Commands Reference

nm — Display symbol table of object, library, or executable files

nm [–AaefgnoPprsuv] [–t format] file ...

Purpose
nm displays the symbol table associated with an object, archive library of objects, or executable files.

Note: nm does not recognize the format of CMS created modules or execs.

By default, nm lists the symbols in the file in alphabetical order by name and provides the following
information on each:

• File or object name (if you specified –A)
• Symbol name
• Symbol type. Not all of these symbol types are available on all systems. For instance, not all systems

support the ability to determine different segment information.
A

Absolute symbol, global
a

Absolute symbol, local
B

Uninitialized data (bss), global
b

Uninitialized data (bss), local
D

Initialized data (bbs), global
d

Initialized data (bbs), local
F

Filename
l

Line number entry (see the –a option)
N

No defined type, global. This is an unspecified type, compared to the undefined type U.
n

No defined type, local. This is an unspecified type, compared to the undefined type U.
S

Section symbol, global
s

Section symbol, local
T

Text symbol, global
t

Text symbol, local (static)
U

Undefined symbol
• Symbol value
• Symbol size, if applicable

nm

Chapter 1. OpenExtensions Shell Commands 227

Options
The format shows the main functions of nm, which are defined as follows:
–A

Prefixes each line with the filename or archive member.
–a

Displays all symbols, including line number entries on systems that support them.
–e

Displays only global (external) and static symbols.
–f

Displays full output. This is the default because output is not suppressed.
–g

Displays only global symbols.
–n

Is equivalent to –v.
–o

Displays output in octal (same as –t o).
–p

Displays output in a portable POSIX-compliant format, with blanks separating the output fields.

• If you specified –A and file is not a library, the format is:

file: name type value size.

• If you specified –A and file is a library, the format is:

file [object_file] : name type value size

where object_file is the object file in the library that contains the symbol being described.
• If you did not specify –A, the format is:

name type value size

• If you did not specify the –t option, nm displays value and size in hexadecimal.
• If you did not specify –A and the command line contains more than one file, or file is a library, nm

displays a line preceding the list of symbols for each specified file or each object file in a specified
library. If file is a library, this line has the following format:

file[object_file]:

If file is not a library, the format is:

file:

–p
Does not sort output.

–r
Reverses sort order.

–s
Includes symbol size for each symbol.

–t format
Defines the numeric value formatting base. The format is one of d, o, or x, for decimal, octal, or
hexadecimal, respectively. If this option is not used, numbers are displayed in decimal.

–u
Displays only undefined symbols.

nm

228 z/VM: 7.3 OpenExtensions Commands Reference

–v
Sorts output by value.

–x
Displays information in hexadecimal (same as –t x).

Localization
nm uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLECT
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

Exit Values
Possible exit status values are:

0
Successful completion

1
Failure due to any of the following:

• Invalid command-line option
• Missing filename
• Unknown symbol table type
• Invalid library file
• End-of-file found in library
• Bad record in the library
• Out of memory

If a file does not contain a symbol table, nm displays a warning and goes to the next file, but this is not
considered an error.

Portability
The –a, –e, –f, –n, –o, –p, –r, –s, and –x options are not part of the POSIX standard.

Related Commands
ar, strip

nm

Chapter 1. OpenExtensions Shell Commands 229

nohup — Start a process that is immune to hang-ups

nohup command-line

Purpose
nohup invokes a utility program using the given command-line. The utility runs normally; however, it
ignores the SIGHUP signal.

If the standard output is a terminal, nohup appends the utility's output to a file named nohup.out in
the working directory. This file is created if it doesn't already exist; if it can't be created in the working
directory, it is created in your home directory.

If the standard error stream is a terminal, nohup redirects the utility's error output to the same file as the
standard output.

nohup simply runs a program from an executable file. command-line cannot contain such special shell
constructs as compound commands or pipelines; however, you can use nohup to invoke a version of the
shell to run such a command line, as in:

nohup sh -c 'command'

where command can contain such constructs.

Environment Variables
HOME

Contains the user's home directory
PATH

Determines the search path that nohup uses when locating the command specified in command-line.

Localization
nohup uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
1

Incorrect argument to nohup.
126

nohup found the utility program but could not invoke it.
127

An error occurred, or nohup could not find the utility program.

Otherwise, the exit status is the exit status of the utility program that is invoked.

nohup

230 z/VM: 7.3 OpenExtensions Commands Reference

Portability
POSIX.2, UNIX systems.

Related Commands
exec, sh

nohup

Chapter 1. OpenExtensions Shell Commands 231

od -- Dump a file in a specified format

od [–v] [–A addr_fmt] [–j num [bkm]] [–N num] [–t type_string] [file …]
od [–bcDdhOoSsXx] [file] [[+]offset[.][b]]

Purpose
od (octal dump) dumps a file to the standard output in a format specified by command-line options. The
default format is octal words. You can use combinations of options to generate multiple formats with the
requested representation of each byte vertically aligned. The file seek address (in octal) precedes each
line of new data.

od recognizes two syntaxes. The first one is the POSIX-conforming form. If you choose the first form, od
displays files from the list file one at a time. If no file appears on the command line, od reads the standard
input.

Options
The first form of od accepts the following options:
–A addr_fmt

Specifies the format that od uses to display the address field. addr_fmt can be d (decimal), o (octal), x
(hexadecimal), or n (do not display address). The default is –A o.

–j num
Skips num bytes from the beginning of the file. If you precede num with 0X or 0x, od interprets it as
hexadecimal. If you precede it with 0, od interprets it as octal; otherwise, od assumes it is decimal.
You can also append b, k, or m to num to indicate 512-byte blocks, kilobytes, or megabytes instead of
bytes.

–N num
Processes a maximum of num bytes.

–t type_string
Specifies the output format. type_string can contain the following format characters:
a

Named characters from the ISO 646 character set (similar to the -c option).
c

Characters. od displays nonprintable characters as backslash sequences.
d

Signed decimal. A one-digit number may follow d telling od how many bytes to use. This must
correspond to the size of a char, a short, an int, or a long. The default size is the size of an int. A
symbolic size character can follow d, rather than the number of bytes. These have the following
meaning:
C

Corresponds to number of bytes in a char
S

Corresponds to number of bytes in a short int
I

Corresponds to the number of bytes in an int
L

Corresponds to the number of bytes in a long int

od

232 z/VM: 7.3 OpenExtensions Commands Reference

f
Floating point. A one-digit number can follow f, telling od how many bytes to use. This must
correspond to the size of a float, double, or long double. The default size is the size of a double.
A symbolic size character can follow f, rather than the number of bytes. These have the following
meaning:
F

Corresponds to size of float
D

Corresponds to size of double
L

Corresponds to size of long double
o

Octal. A one-digit number can follow o, telling od how many bytes to use. This must correspond
to the size of a char, a short, an int, or a long. The default size is the size of an int. A symbolic size
character can follow o, rather than the number of bytes. These have the following meaning:
C

Corresponds to number of bytes in a char
S

Corresponds to number of bytes in a short int
I

Corresponds to the number of bytes in an int
L

Corresponds to the number of bytes in a long int
u

Unsigned decimal. A one-digit number can follow u, telling od how many bytes to use. This must
correspond to the size of a char, a short, an int, or a long. The default size is the size of an int. A
symbolic size character can follow u, rather than the number of bytes. These have the following
meaning:
C

Corresponds to number of bytes in a char
S

Corresponds to number of bytes in a short int
I

Corresponds to the number of bytes in an int
L

Corresponds to the number of bytes in a long int
x

Hexadecimal. A one-digit number can follow x, telling od how many bytes to use. This must
correspond to the size of a char, a short, an int, or a long. The default size is the size of an int. A
symbolic size character can follow x, rather than the number of bytes. These have the following
meaning:
C

Corresponds to number of bytes in a char
S

Corresponds to number of bytes in a short int
I

Corresponds to the number of bytes in an int
L

Corresponds to the number of bytes in a long int
Multiple format characters can appear in one type_string and multiple –t options can appear on the
command line. If there is no –t option, the default is –t o2.

od

Chapter 1. OpenExtensions Shell Commands 233

–v
Displays all lines. Normally, od does not display multiple lines that differ only in the address. It
displays the first line with a single * under it to show that any subsequent lines are the same.

The second form of the syntax is the historical (Berkeley Software Distribution) implementation of the
command. If you use this form, you can specify only a single input file. If you do not give a file argument,
od reads the standard input. You can supply an offset, but you must precede it with a plus sign (+) to
distinguish it from a file name if no file is given. Giving an offset causes a seek to a position in the file
where output begins. If the offset ends in a period (.), od considers it to be decimal; otherwise, od
considers it octal. If you follow the offset with a b, od multiplies it by the block size of 512 bytes. The
format of the offset determines the format of the address; that is, if it is interpreted as decimal, the
addresses are displayed in decimal.

Note: The od command does not work on a file whose file name starts with either a digit or a plus (+) sign,
unless the –A, –N, –j, or –t options are used.

The second form of od accepts the following options:
–b

Bytes in octal
–c

Bytes in ASCII
–D

Unsigned decimal longs (4 bytes)
–d

Unsigned decimal words (2 bytes)
–h

Bytes in hexadecimal
–O

Unsigned octal longs
–o

Unsigned octal words
–S

Signed decimal longs
–s

Signed decimal words
–X

Unsigned hexadecimal longs
–x

Unsigned hexadecimal words

Localization
od uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_NUMERIC

See Appendix C, “Localization,” on page 477 for more information.

od

234 z/VM: 7.3 OpenExtensions Commands Reference

Exit Values
0

Successful completion
1

Failure due to any of the following:

• Inability to open the input file
• Badly formed offset
• Seek or read error on the input file

2
Failure due to any of the following:

• Incorrect command-line argument
• The wrong number of command-line arguments
• Incorrect format character
• Incorrect size modifier for format character

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The options to operate on longs (–OSXD) and the hex byte (–h) are extensions to the POSIX standard.

Related Commands
dd

od

Chapter 1. OpenExtensions Shell Commands 235

paste — Merge corresponding or subsequent lines of a file

paste [–s] [–d list] file ...

Purpose
paste concatenates lines of all the specified input files onto the standard output. If you specify – (dash)
instead of a file, paste uses the standard input. Normally, an output line consists of the corresponding
lines from all the input files. paste replaces the newline character at the end of each input line (except the
one from the last file on the command line) with a tab character, or characters specified by the –d option.

Options
–d list

Specifies a list of characters to be used one at a time instead of the tab character to replace the
newline at the end of input lines. paste uses list circularly; when it exhausts the characters in list, it
returns to the first character in the list. If you also specify the –s option, paste returns to the first
character of list after processing each file. Otherwise, it returns to the first character after each line of
output. list can contain any of the following standard C escapes such as \n, \t, \r, \b, \\, and \0,
where \0 indicates that no separator is to be used.

–s
Concatenates all lines from each input file together on the single output line. If the –s option is not
specified and the end of the file is detected on any (but not all) of the input files, paste behaves as
though empty lines have been read from those files.

Examples

The command:

ls | paste –s –d'\t\t\n' –

displays the output of ls in three tab separated columns.

If file A contains:

a
b
c

and file X contains:

x
y
z

then the command:

paste A X

produces:

a x
b y
c z

and the command:

paste –s A X

paste

236 z/VM: 7.3 OpenExtensions Commands Reference

produces:

a b c
x y z

Localization
paste uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Missing input files
• Too many files specified
• Inability to open a file

2
Unknown command-line option

Messages and Return Codes
Possible error messages include:
Too many files at name

You specified more files than paste can handle. The name given in the error message is the name
of the first file that paste could not open. The number of files that paste can open depends on the
number of files that other processes have open.

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

Related Commands
cut

paste

Chapter 1. OpenExtensions Shell Commands 237

pathchk — Check a path name

pathchk [-p] pathname...

Purpose
pathchk checks one or more path names (specified by pathname) for validity and portability (based on
the underlying file system). A path name is valid if you can use it to create or access a file without causing
a syntax error. A path name is portable if the file system does not truncate the name when it tries to use
it. pathchk writes an error message indicating the error detected and the erroneous path name if any path
name:

• Is longer than PATH_MAX bytes
• Contains a component longer than NAME_MAX bytes
• Contains any component in a directory that is not searchable
• Contains any character in any component that is not valid

Options
–p

instead of using the previous criteria, writes an error message if pathname:

• Is longer than _POSIX_PATH_MAX bytes
• Contains any component longer than _POSIX_NAME_MAX bytes
• Contains any character in any component that is not in the portable file name character set

Localization
pathchk uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

All path names passed the check.
1

An error occurred.
2

Unknown command-line option.

Portability
POSIX.2.

pathchk

238 z/VM: 7.3 OpenExtensions Commands Reference

pax -- Interchange portable archives

pax [-cdnqvz] [-f archive] [-s substitute] … [pattern …]
pax -r [-cdiknuvz] [-f archive] [-o options …] [-p string …]
[-s substitute …] [-V volpat] [pattern …]
pax -w [-diLqtuvXz] [-b blocksize] [[-a] [-f archive]] [-o options …]
[-s substitute …] [-V volpat] [-x format] [pathname …]
pax -r -w [-diklLnquvX] [-p string …]
[-s substitute …] [pathname …] directory

Purpose
pax reads and writes archive files. An archive file concatenates the contents of files and directories, and
can also record such information as file modification dates, owner names, and so on. You can therefore
use a single archive file to transfer a directory structure from one machine to another, or to back up or
restore groups of files and directories.

A file stored inside an archive is called a component file; similarly, a directory stored inside an archive is
called a component directory. Together, component files and directories make up the components of the
archive file.

You can specify the name of the archive file with the –f archive option. If you do not specify –f with either
–r or –w, the –r option assumes the archive file is the standard input and the –w option assumes it is the
standard output.

There are four possible formats for the pax command line:

• If you do not specify –r or –w, you are in list mode. In this mode, pax uses the standard output
to display the table of contents of an existing archive file. pax displays information only on those
component files whose names match one of the patterns given on the command line; these are
described in “Patterns” on page 240.

• If you specify –r but not –w, you are in read mode. In this mode, pax reads an archive file as input
and extracts selected components from the archive. By default, pax selects the components using
patterns given on the command line. If the archive contains several components with the same name,
pax extracts each of them with later components overwriting files created by earlier components with
the same name.

pax stores extracted components in the working directory. Extracted directories become subdirectories
of the working directory. Ownership and permissions of the extracted files are discussed under the –p
option.

• If you specify –w but not –r, you are in write mode. In this mode, pax writes out an archive file that
contains the specified pathnames as components. If a pathname is a directory, the archive file contains
all the files and subdirectories in that directory. If you do not specify any pathname, pax reads the
standard input to get a list of path names to select; the input should give one path name per line.

• If you specify both –r and –w, you are in copy mode. In this mode, pax reads the specified pathnames
and copies them to the specified directory. In this case, the given directory must already exist and
you must be able to write to that directory. If a pathname is a directory, pax copies all the files and
subdirectories in that directory as well as the directory itself. If you do not specify any pathname, pax
reads the standard input to get a list of path names to copy; the input should give one path name per
line.

pax can read input archives in cpio and tar format. It can also write these formats; see the –x option.

Attention: On OpenExtensions, you need appropriate privileges to create character special files. If
a non-superuser tries to restore character special files, pax cannot create them.

pax

Chapter 1. OpenExtensions Shell Commands 239

Patterns
Command-line patterns are similar to the wildcard constructs explained in sh. For example, the pattern
* stands for any string of characters excluding slash characters. pax does not match the slash. A pattern
such as *.c therefore selects all files with the suffix .c in the top-level directory of the archive. For
example, it will not select any archive members with a path name containing a /.

If you do not specify any patterns on a command line that accepts patterns, all archive members are
selected. As a special case, the pattern * alone will select all archive members.

File Names
Although pax uses the locales defined by the various localization variables when doing substitutions and
file name matching, file names are always written to the archive using the ISO/IEC 8859-1 character set.

Options
The following options can appear on pax command lines. Some of them are appropriate to only some
forms of the command, as shown in the syntax list.
–a

Appends specified files or directories to the end of the contents of an existing archive. If the archive
does not already exist, pax creates it.

–b blocksize
Specifies the block size in an output operation. Each output operation writes blocksize bytes, where
blocksize is an integer appropriate to the output device. If b follows the blocksize number, the block
size is the given number of 512-byte blocks. If k follows the blocksize number, the block size is the
given number of 1024-byte blocks. The default blocksize is 10k for tar archives, 5k for cpio archives.
The block size must be at least 512 bytes for reading.

–c
Selects all those files that do not match any of the patterns given on the command line; this is the
opposite of the usual behavior.

–d
Does not traverse directories. A pattern matching a directory extracts only the directory itself. When
creating an archive, a directory name stores only the directory itself.

–f archive
Lets you specify the name of the archive file instead of using the standard input for list mode, read
mode (–r operations), and the standard output for write mode (–w). archive can also be a device
name.

–i
Lets you rename files as pax works. With extractions, pax displays the name of the component it
is about to extract and gives you the chance to specify a name for the extracted file. With write
operations, pax displays the name of the file or directory it is about to record in the archive, and
lets you specify a different name to be assigned to the component. If you enter . as the name, pax
processes the file or directory with no change to the name. If you just press <Enter>, pax skips the file
(doesn't extract or archive it). pax ends if you enter end-of-file.

If you also specify –s, pax makes the given substitution before displaying the name of the component.

–k
Prevents the overwriting of existing files.

–L
Follows symbolic or external links. When you specify this option, pax copies the file to which a
symbolic or external link points to the archive. Normally, only the symbolic link is copied.

–l
Is applicable only when you are in copy mode—that is, when you are using the –rw format to copy files
to another directory. If you specify –l, pax creates links to the original files whenever possible, rather
than copying them.

pax

240 z/VM: 7.3 OpenExtensions Commands Reference

–n
Treats the pattern arguments as ordinary path names. You can use this option only when you specify
–r but not –w. pax extracts only the first component with a given path name, even if the archive
contains several components with the same name. pax checks the given path names against the
archive before applying any renaming from the –i, or –s options. pax writes an error message for each
specified file that cannot be found in the archive.

–o options
Provides information for modifying the algorithm for writing and extracting files that the file format
specified with –x uses.

pax supports one option to –o. It converts data from one code set to another while reading or writing
an archive. This option has the format:

–o keyword=value[,keyword=value]…

where keyword is either to or from and value is the name of a code set. The current valid values for
code set names are:
ISO8859-1

ISO Latin-1
IBM-1047

Latin 1/Open System Interconnection code page 01047, used in the OpenExtensions shell.

Specifying an unknown keyword results in a warning message from pax.

You can omit either the to or from keyword. If you omit to, pax assumes that you want to write (or
read) a portable archive tape and will convert the data to ISO/IEC 8859-1. If you omit from, pax
assumes that you are converting from the system-specific local code set.

If your input contains a character that is not valid in the source code set, pax displays a warning and
continues, leaving the character untranslated. If the source code set contains a character that is not in
the destination code set, pax converts the character to an underscore (_).

Note: If you do not specify –o, no code set conversion is done. When making code set conversions,
pax assumes that all files are text files, since only text files are portable.

–p string
Specifies file characteristic options.

The string can consist of any combination of the following specification characters:
a

Does not preserve file access times
e

Preserves the user ID, group ID, file mode, access time, and modification times
m

Does not preserve file modification times
o

Preserves the user ID and group ID
p

Preserves the file mode.

If a character in string duplicates or conflicts with another character in string, the one occurring last
takes precedence. By default, pax restores modification time only.

–q
For input mode only, pax assumes that all created files are text files and extracts them to the local
text file format. On systems with fixed length records, this might mean padding with blanks to the
record length.

On UNIX and POSIX-compliant systems, pax removes all carriage return characters (\r) and retains
only the newline characters (\n).

pax

Chapter 1. OpenExtensions Shell Commands 241

It might be desirable to have this option work when creating output to convert text to a system-
independent format. However, due to the format of an archive file, this would (unacceptably) require
all files to be read twice.

–r
Reads an archive file from standard input.

–s substitute
Modifies path names using a substitution command substitute. This is similar to the substitution
command of the ed text editor. The full option has the form:

-s /bregexp/string/[gp]

where bregexp is a basic regular expression (see Appendix B, “Regular Expressions (regexp),” on page
471) and string is a string that pax is to insert in place of matches for the regular expression. string
can contain an ampersand & (standing for the string matching bregexp), or \1, \2, and so on (with the
meanings defined in regexp), for subexpression matching.

Normally, –s replaces only the first match for bregexp. A g following the string replaces all matches in
the line.

A p following the string prints all successful substitutions on the standard error stream. pax displays a
substitution in the format:

oldname >> newname

In this form of the command, the slash (/) is used as the character separating parts of substitute; you
can use any non-null character instead.

There may be more than one –s option on the command line. In this case, pax tries the substitutions
in the order given. pax stops trying to make these substitutions as soon as it makes its first successful
substitution. If the null string replaces a file name, pax ignores that file name on both input and
output.

–t
After reading files being archived, pax resets the access time to that prior to pax's access.

–u
Compares component dates to dates of existing files with the same name. When extracting
components with –r (read mode), pax extracts a file only if its modification date is more recent
than the modification date on an existing file of the same name. In other words, it doesn't overwrite an
existing file if the existing file is newer than the one in the archive.

Similarly, when copying files with –rw (copy mode), pax does not overwrite an existing file if the
existing file is newer than the one being copied.

In a command that uses –w but not –r (write mode), –u checks to see if the file being added has the
same name as a file already in the archive. If so, and if the file being added is newer than the one in
the archive, pax leaves the old file in the archive and appends the new one at the end. In this case, –u
automatically implies –a, which means that pax adds new files to the end of the archive.

–V volpat
Provides automatic multivolume support. pax writes output to files the names of which are formatted
with volpat. It replaces any occurrence of # in volpat with the current volume number. When you
invoke pax with this option, it asks for the first number in the archive set, and waits for you to type
the number and a carriage return before proceeding with the operation. pax issues the same sort of
message when a write error or read error occurs on the archive; the reasoning is that this kind of error
means that pax has reached the end of the volume and is to go on to a new one. An interrupt at this
point ends pax.

–v
Lists path names on the standard error stream just before beginning to process the files or directories,
but after any –i, or –s options have had their effect. In list mode (neither –r nor –w is specified), pax

pax

242 z/VM: 7.3 OpenExtensions Commands Reference

displays a "verbose" table of contents; this verbose format shows information about the components
in the same format used by the ls command with the –l option.

–w
Writes files to the standard output in the specified archive format.

–X
Writes out only those files that are on the same device as their parent directory.

–x format
Specifies a format for an output archive. The format argument can be:
cpio

Standing for the ASCII format used by the cpio command; see “cpio -- Copy in/out file archives”
on page 85.

cpiob
Standing for the binary format used by cpio.

tar
Standing for the old format of tar files; see “tar -- Manipulate the tar archive files to copy or back
up a file” on page 318.

ustar
Standing for the (new) USTAR format used by the tar command.

The default format is ustar.

–z
Performs Lempel-Ziv compression. Output is always a 16-bit compression. On input, any compression
up to 16-bit is acceptable.

Output
When the –v option is used in list mode, pax produces a verbose table of contents for the archive. The
output has the format of the ls command with the –l option, with the addition of the notation:

pathname == linkname

which indicates that linkname is a hard link for pathname. See ls –l for an explanation of the format.

Examples

1. The following creates an archive file from all the files in the working directory:

pax -w . >/dir/archive

2. The following extracts all the components of an archive file and puts them into the working directory:

pax -r * </dir/archive

3. The following converts an archive file from one character set to another:

pax -wf testpgm.pax -o from=CP1047,to=IS646 /tmp/posix/testpgm

This command backs up the /tmp/posix/testpgm directory, which is in the character set CP1047, into
an archive file that is targeted to an ASCII character set (IS646). CP1047 is the code page used in the
OpenExtensions shell.

The –o option is very useful for transferring text data between systems that use different code pages.

Localization
pax uses the following localization environment variables:

• LANG

pax

Chapter 1. OpenExtensions Shell Commands 243

• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Incorrect option
• Incorrect command-line arguments
• Out of memory
• Compression error
• Failure on extraction
• Failure on creation

If pax cannot extract a particular file when reading, or find a particular file when writing, it generates an
error message and continues to process other files but returns a status of 1. If any other sort of error
occurs, pax ends immediately without attempting further processing.

If you see the following message after a write operation:

If you want to go on, type device/file name when ready

it indicates that your directory or device containing the archive file is full. To continue, enter the name of a
new directory; to end pax, type <Ctrl-C>.

If you see that message after a read operation, it means that pax could not find the archive file you
specified, or that it was damaged. In this case, type <Ctrl-C> to end the operation and then restart pax
with the correct archive name.

Portability
POSIX.2.

The –L, –q, –V, and –z options are extensions of the POSIX standard.

Related Commands
cpio, ls, tar

pax

244 z/VM: 7.3 OpenExtensions Commands Reference

pr — Format a file in paginated form and send it to standard output

pr [-adFfmprtW] [-c n] [-e[char][gap]]
 [-H header-fmt] [-h header] [-i[char][gap]] [-l n] [-n[char][n]]
 [-o n] [-s[char]] [-w n] [+n] [-n] [file ...]

Purpose
pr prints the specified files on the standard output in a paginated form. If you do not specify any files
or if you specify a file name of –, pr reads the standard input. By default, pr formats the given files into
single-column 66-line pages. Each page has a five-line header. The first line contains the file's path name,
the date it was last modified, and the current page number; the other lines are blank (this is the default). A
five-line trailer consists of blank lines.

If you specify multiple columns, pr places its output in columns of equal width separated by at least one
space, truncating each line to fit in its column. Input lines can be ordered down the columns or across the
page on output; or different columns can each represent different files.

Options
pr recognizes the following options:
+n

Starts printing with the nth page of each file; that is, skips the first n–1 pages. The default for n is 1.
–n

Prints n columns of output. When you specify this option, pr behaves as though you had also specified
the –e and –i options. When you specify both this option and –t, pr uses the minimum number of lines
possible to display the output. Do not specify this option with the –m option.

–a
Orders input lines across the page on output, instead of down. You should use this option only with
–n.

–c n
Displays n columns of output. When you specify this option, pr behaves as though you had also
specified the -e and -i options. When you specify both this option and -t, pr uses the minimum
number of lines possible to display the output. Do not specify this option with -m.

–d
Produces double-spaced output.

–e[char][gap]
Expands each occurrence of the input tab character to a string of spaces so that the following
character has the next column position which is a positive multiple of gap, plus 1. If you do not specify
gap, or if it is zero, pr assumes that gap has the value of 8. If you specify the nondigit character char,
pr treats it as the input tab character. Otherwise, pr uses the standard tab character.

–F
Uses form feeds to separate pages. pr normally separates pages by sending a series of <newline>
characters to fill the length of a page.

–f
Uses form feeds to separate pages. When output is to a terminal, pr waits for you to press ENTER
two times before displaying the text. pr normally separates pages by sending a series of <newline>
characters to fill the length of a page.

–H header_fmt
Lets you customize your header line by specifying a format with the string header_fmt. pr recognizes
the following special formatting commands:

pr

Chapter 1. OpenExtensions Shell Commands 245

%c
Date and time

%F
Current file name, or header string given by –h

%P
Page number

%L
Line number

%D
Date

%T
Time

%u
Current user name

The default header format is equivalent to the option:

-H "%c %F Page %P"

–h header
Uses the header string instead of the file name on each succeeding page header.

–i[char][gap]
Replaces white space with tabs on output. char, if given, is the output tab character. The default is the
tab character. pr sets tabs every gap positions; the default for gap is 8. If this tab character differs
from the input tab character and the actual data contains this tab character, the result is liable to be
quite a mess.

–l n
Sets the number of lines per page of output. The default is 66. The actual number of lines printed per
page is this number less 5 for the header and 5 for the trailer. If n is less than 10 (the number of lines
needed for the header and the trailer), pr displays neither the header nor the trailer.

–m
Prints each file in its own column down the page. This overrides the –a option, forcing the –n option
to be the number of files given. When you also specify the –n option, it gives line numbers for the first
column only.

–n[char][n]
Numbers the lines of each file. Each number takes up n positions; the default for n is 5. The character
char separates the number from the line; this defaults to the tab character. If char is the same as
the input tab character, pr follows the number with the spaces needed to get to the next tab stop.
pr may in turn replace these spaces with the output tab character if you specified the –i option. For
multicolumn output, pr adds line numbers to each column. The –m option gives the line number for
the first column only.

–o n
Offsets each line of output by n character positions.

–p
Pauses before the beginning of each page if output is to a terminal device. pr waits for you to press
ENTER two times.

–r
Suppresses error messages due to failures when opening files.

–s[char]
Prints each column at its correct length. The character char separates columns. The default value for
char is the tab character. This character is never replaced by the output tab character. Normally pr
pads each column with spaces or truncates it to the exact column width. Unless the –w option is also
used, –s resets the page width to 512 column positions.

pr

246 z/VM: 7.3 OpenExtensions Commands Reference

–t
Does not print the headers and trailers, and quits after the last line of the file—it does not display any
extra lines.

–W
Folds lines at the column width when you do not specify the –s option; pr treats each separate part of
the line as a separate line.

–w n
Sets the width of the page to n column positions. If you do not specify this option, the default page
width is 72 (if you did not specify –s option) or 512 (if you did specify –s). This page width does not
normally apply to single-column output; however, single-column output with the –W option does use
this width.

Files
/dev/tty

For prompting.

Environment Variables
TZ

Contains the local time zone. pr uses this value when displaying times in header lines.

Localization
pr uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Insufficient memory
• Insufficient line width
• Write error on the standard output

2
Syntax error or unknown command-line option

Messages and Return Codes
Possible error messages include:
Missing header

You specified –h or –H but did not supply a header or header_fmt string.

pr

Chapter 1. OpenExtensions Shell Commands 247

Width is insufficient
The line is not wide enough to hold the given number of columns with the given column width; or a
column is not wide enough to hold the minimum amount of data.

Portability
POSIX.2, X/Open Portability Guide.

The –c, –H, –p, and –W options are extensions of the POSIX standard.

Related Commands
cat, fold

pr

248 z/VM: 7.3 OpenExtensions Commands Reference

print — Return arguments from the shell

print [–npRrs] [–u[descriptor]] [argument ...]

Purpose
Calling print without options or with only the – option displays each argument to the standard output
using the same escape conventions as echo. In this case, print and echo work the same way; see echo.

The options accepted by print increase its utility beyond that of echo.
–n

Does not automatically add a new line to the end of the output.
–p

Sends output to a coprocess.
–R

Is similar to –r, except that print treats all subsequent options (except –n) as arguments rather than
as options.

–r
Ignores escape conventions.

–s
Appends the output to the command history file rather than sending it to standard output.

–u[descriptor]
Redirects the output to the file corresponding to the single digit file descriptor. The default file
descriptor is 1.

Usage Notes
This command is built into the shell.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Incorrect descriptor specified with –u
• Nonexistent coprocess

2
Failure due to an incorrect command-line option

Messages and Return Codes
Possible error messages include:
Cannot print on file descriptor ...

You tried to print on a file descriptor that was not opened for writing.
History not available

You specified the –s option to write into a history file, but you are not now using a history file.

print

Chapter 1. OpenExtensions Shell Commands 249

Portability
POSIX.2.

Related Commands
echo, fc, read, sh

print

250 z/VM: 7.3 OpenExtensions Commands Reference

printf — Write formatted output

printf format [argument ...]

Purpose
printf writes the argument operands to standard output, formatted according to the format operand.

format is a format string composed of conversion specifications that convert and add the next argument to
the output. format can contain backslash-escape sequences. These conversions are similar to those used
by the ANSI C standard. Conversion specifications have the form:

%[flag][width][precision][char]

where flag is one of the following:
-

Left-justifies the field; default is right justification.
+

Always prefixes a signed value with a sign (+ or -).
space

Reserves a character position at the start of the string for the minus sign (for negative numbers) or a
space (for positive numbers). If both space and - appear as flags, the space flag is ignored.

#
Prefixes octal values with 0 and hexadecimal values with 0x or 0X. For floating-point values, this
causes the decimal point always to be displayed even if no characters follow it.

0
Pads numeric values with leading zeros. If both 0 and - appear as flags, the 0 flag is ignored.

width is the minimum field width of the output field. If the converted value is shorter than the minimum
width, printf pads it with spaces or zeros.

In a string, precision is the maximum number of bytes to be printed from the string; in a number, the
precision is the number of digits to be printed to right of the decimal point in a floating-point value. width
or precision can be specified as *, in which case the value is read from the next argument, which must be
an integer. For example:

printf "%*.*d\n" 20 10 200

is equivalent to:

printf "%20.10d\n" 200

The conversion character char is one of the following:
d

Decimal integer.
i

Decimal integer.
o

Unsigned octal integer.
x,X

Unsigned hexadecimal integer.
u

Unsigned decimal integer.

printf

Chapter 1. OpenExtensions Shell Commands 251

f,F
Floating point.

e,E
Floating point (scientific notation).

g,G
The shorter of e and f (suppresses insignificant zeros).

c
Single character of an integer value; the first character of a string.

s
String.

b
A string that may contain a backslash-escape sequence. Valid escape sequences are those described
in “echo — Write arguments to standard output” on page 107.
\0ddd

Where ddd is 0-to-3-digit octal number
\xdd

Where dd is a 0-to-2-digit hexadecimal number
\c

Indicates the first character of a string; number arguments are treated as strings.

When there are more arguments than positions in format, the format string is applied again to the
remaining arguments. When there are fewer arguments than there are positions in the format string,
printf fills the remaining positions with null strings (character fields) or zeros (numeric fields).

Localization
printf uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_NUMERIC

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
>0

The number of failures due to any of the following:

• Missing format specifications
• Arguments supplied for a format string that does not accept them (that is, that has no %s)
• Incorrect integer argument
• Incorrect floating-point argument

Portability
POSIX.2, UNIX system V.

printf

252 z/VM: 7.3 OpenExtensions Commands Reference

The %F format and the handling of * as a width or precision argument are extensions of the POSIX
standard.

Related Commands
echo, print

printf

Chapter 1. OpenExtensions Shell Commands 253

ps — Return the status of a process

ps [–Aacdefjln] [–G idlist] [–g grouplist] [–n name]
[–o format] ...
[–p proclist] [–s idlist] [–t termlist] [–U|u uidlist]

Purpose
ps displays information about processes, provided that you have appropriate privileges to obtain
information about the requested processes.

ps accepts several options. When a description says that ps lists "all processes", it means all the
processes in your virtual machine, provided that you have appropriate privileges.

Options
–A

Displays information on all accessible processes. You cannot specify both –a and –A.
–a

Displays information on all processes associated with terminals. You cannot specify both –a and –A.
–c

Displays more detailed information about processes for the –f and –l options. –c is accepted but not
currently implemented.

–d
Displays information for all processes except group leaders.

–e
Displays information on all accessible processes.

–f
Displays information as if the user specified:

–o ruser=UID,pid,ppid,stime,tty=TTY,atime,args

–G idlist
Displays information on processes with group ID numbers in idlist. Separate the numbers in idlist with
either blanks or commas.

–g grouplist
Displays information on processes with real group ID numbers in grouplist. Separate numbers in
grouplist with either blanks or commas.

–j
Displays information as if the user specified:

–o pid,sid,pgid=PGRP,tty=TTY,atime,args

–l
Displays information as if the user had specified:

–o state,ruid=UID,pid,ppid,nice,vsz=SZ,tty=TTY,atime,comm=COMD

–o format
Displays information according to the given format specifications. For further information, see “Format
Specifications” on page 255.

–n name
Specifies the name of the executable file containing the kernel symbol table.

ps

254 z/VM: 7.3 OpenExtensions Commands Reference

–p proclist
Displays information for processes with process ID numbers in proclist. Separate numbers in proclist
with commas.

–s idlist
Displays information for processes with session ID numbers in idlist. Separate the numbers in idlist
with commas.

–t termlist
Displays information for processes with terminals in termlist. You denote terminals in termlist with
either the file name of the device (for example, tty04), or if the file name begins with tty. For
example, tty04 and 04 both denote the same terminal. Terminals in termlist are separated by either
blanks or commas.

–U userlist
Displays information for processes with user IDs in userlist. Items in userlist can be user ID numbers
or login names, and are separated by commas.

Note: A user can only view processes in their own virtual machine.

–u userlist
Displays information for processes with user IDs in userlist. Items in userlist can be user ID numbers
or login names, and are separated by commas.

Format Specifications
The format specified with –o is a list of names separated with blanks or commas. At the beginning of the
output display, ps displays column headings to tell you what you are seeing. For example, if you specify
ruser (indicating that you want to see real user names), ps normally puts the heading RUSER at the top
of the column that shows real user names.

If you do not specify the –o option, ps displays the information as though you had specified:

-o pid,tty=TTY,time,comm

The following list shows the names that ps recognizes. At the end of each description, we put the default
column heading inside square brackets.
args

Displays the command that is running, with all its arguments. [COMMAND]
comm

Displays the name of the command that is running. This string is padded on the right if necessary.
[COMMAND]

etime
Displays the amount of real time that has elapsed since the process began running. ps shows the time
in the form:

[[dd-]hh:]mm:ss

where dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss is the
number of seconds. [ELAPSED]

group
Displays the effective group ID of the process, as a group name if possible and as a decimal group ID if
not. [GROUP]

nice
Displays the nice value (urgency) of the process as a decimal value. [NI]

pcpu
Displays a percentage value giving the ratio of processor time used to processor time available.
[%CPU]

pgid
Displays the process group ID as a decimal value. [PGID]

ps

Chapter 1. OpenExtensions Shell Commands 255

pid
Displays the process ID as a decimal value. Decimal pids are reported with default actions. [XPID]

ppid
Displays the parent process ID as a decimal value. [PPID]

rgroup
Displays the real group ID of the process, as a group name if possible and as a decimal group ID if not.
[RGROUP]

ruser
Displays the real user ID of the process, as a user name if possible and as a decimal user ID
otherwise. [RUSER]

time
Displays the amount of processor time that the process has used since it began running. ps displays
this time in form similar to that used by etime. [TIME]

tty
Displays the name of the controlling terminal (if any). [TT]

user
Displays the effective user ID of the process, as a user name if possible and as a decimal user ID
otherwise. [USER]

vsz
Displays the amount of (virtual) memory that the process is using, as a decimal number of kilobytes.
[VSZ]

xpgid
Displays the process group ID as a hexadecimal value. [XPGID]

xpid
Displays the process ID as a hexadecimal value. [XPID]

xppid
Displays the parent process ID as a hexadecimal value. [XPPID]

The following names are extensions to ps:
addr

Displays the address of the process. [ADDR]
atime

Displays the abbreviated processor time of the process. [TIME]
flags

Displays the process flags. [F]
gid

Displays the effective group ID of the process. [EGID]
pri

Displays the process priority. [PRI]
rgid

Displays the real group ID of the process. [GID]
ruid

Displays the real user ID of the process. [UID]
sid

Displays the session ID of the process. [SID]
state

Displays the process state. [STATE] Various values can be printed in this field:
K

Kernel wait (for example, pause or sigsuspend).
R

Running (not kernel wait).

ps

256 z/VM: 7.3 OpenExtensions Commands Reference

Both of these values will be prefixed with M to denote the fact that the processes are potentially
multithreaded.

stime
Displays the start time of the process. [STIME]

uid
Displays the effective user ID of the process. [EUID]

wchan
Displays the channel upon which the process is waiting. [WCHAN]

If you want to specify your own column heading instead of using the defaults, put:

=heading

after the name in the format list. For example:

ps -o args,ruser=WHO

displays the command and the real user name. The heading for the command column is the default
COMMAND, but the heading for the user name column is WHO. If you specify = with no heading, ps displays
that column without a heading. If all columns have no heading, ps displays no heading line.

Environment Variables
ps uses the following environment variable:
COLUMNS

Contains the maximum number of columns to display on one line.

Localization
ps uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_TIME

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to the inability to open the process table
2

Failure due to any of the following:

• Unknown command-line option
• Missing format string after –o
• Missing lists after other options
• Too many arguments on the command line

ps

Chapter 1. OpenExtensions Shell Commands 257

Portability
POSIX.2.

The –c, –d, –e, –f, –g, –j, –l, –n, –s, and –u options are extensions of the POSIX standard.

Related Commands
jobs, kill

ps

258 z/VM: 7.3 OpenExtensions Commands Reference

pwd — Return the working directory name

pwd

Purpose
pwd displays the absolute path name of the working directory to standard output.

If the current working directory is a symbolic link to another directory, the path name displayed depends
upon the setting of the shell's logical flag. See set for more information.

Usage Notes
pwd is a built-in utility.

Localization
pwd uses the following localization environment variables:

• LANG
• LC_ALL
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Inability to determine the working directory

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
sh

pwd

Chapter 1. OpenExtensions Shell Commands 259

read — Read a line from standard input

read [–prs] [–u[d]] [variable?prompt] [variable ...]

Purpose
When you call read without options, it reads one line from the standard input, breaks the line into fields,
and assigns the fields to each variable in order.

To determine where to break the line into fields, read uses the built-in variable IFS (which stands for
internal field separator). Encountering any of the characters in IFS means the end of one field and the
beginning of the next. The default value of IFS is blank, tab, and newline.

In general, a single IFS character marks the end of one field and the beginning of the next. For example,
if IFS is colon (:), read considers the input a::b to have three fields: a, an empty field, and b. However,
if IFS contains blanks, tabs or escaped newlines, read considers a sequence of multiple blanks, tabs, or
escaped newlines to be a single field separator. For example, "a b" has two fields, even though there
are several blanks between the a and b.

The nth variable in the command line is assigned the nth field. If there are more input fields than there are
variables, the last variable is assigned all the unassigned fields. If there are more variables than fields, the
extra variables are assigned the null string ("").

The environment variable REPLY is assigned the input when no variables are given. The exit status of read
is 0, unless it encounters the end of the file.

Options
–p

Receives input from a coprocess.
–r

Treats input as raw data, ignoring escape conventions. For example, read –r does not interpret a final
backslash (\) as a line continuation character, but as part of the input.

–s
Adds input to the command history file as well as to the variables specified with variable.

–u[d]
Reads input from the single-digit file descriptor d, rather than from the standard input. The default file
descriptor is 0.

When the first variable parameter has the form:

variable?prompt

it defines a prompt for input. If the shell is interactive, read sends the prompt to the file descriptor d if it is
open for write and is a terminal device. The default file descriptor for the prompt is 2.

Examples

IFS=':'
while read name junk junk1 junk2 junk3
do
 echo $name
done </etc/samples/comics.lst

provides a list of comic names from the sample comics.lst file.

read

260 z/VM: 7.3 OpenExtensions Commands Reference

Environment Variables
The following environment variables affect read:
IFS

Contains a string of characters to be used as internal field separators.
PS2

Contains the prompt string that an interactive shell uses when it reads a line ending with a backslash
and you did not specify the –r option, or if a here-document is not terminated after you enter a
newline.

REPLY
Contains the input (including separators) if you did not specify any variables. The ability of omitting
the variable from the command and using the environment variable REPLY is an extension.

Usage Notes
This command is built into the shell.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• End-of-file on input
• Incorrect variable
• Incorrect descriptor specified after –u
• Missing coprocess

2
Incorrect command-line argument

Messages and Return Codes
Cannot read on file descriptor ...

You tried to read a file descriptor that was not opened for reading.

Portability
POSIX.2, X/Open Portability Guide.

read is a built-in shell command.

The –p, –s, and –u options are extensions of the POSIX standard.

Related Commands
continue, fc, print, sh

read

Chapter 1. OpenExtensions Shell Commands 261

readonly — Mark a variable as read-only

readonly [–p] [name[=value] ...]

Purpose
readonly prevents subsequent changes in the value of any of the name arguments. Parameters of the
form:

name=value

assign value to name as well as marking name read-only. If readonly is called without arguments, it lists,
with appropriate quoting, the names you have set as read-only in the following format:

Variable="value"

Options
–p

Displays export name=value pairs that, when read by a shell, ensures the read-only status and values
of variables. The shell formats the output so it is suitable for reentry to the shell as commands that
achieve the same attribute-setting results.

Usage Notes
This is a special built-in command of the shell.

Exit Values
Possible exit status values include:
0

Successful completion
2

Failure due to incorrect command-line argument

Portability
POSIX.2, X/Open Portability Guide.

readonly is a special built-in shell command.

The behavior given for calling readonly with no arguments is an extension of the POSIX standard.

Related Commands
alias, sh, typeset

readonly

262 z/VM: 7.3 OpenExtensions Commands Reference

return — Return from a shell function or . (dot) script

return [expression]

Purpose
return returns from a shell function or . (dot) script. The exit status is the value of expression. The default
value of expression is the exit status of the last command run.

Usage Notes
This command is built into the shell.

Exit Values
The current function or script returns the value of expression. If no expression is given, the exit status is
the exit status of the last command run.

Portability
POSIX.2, X/Open Portability Guide.

return is a special built-in shell command.

Related Commands
exit, sh

return

Chapter 1. OpenExtensions Shell Commands 263

rm — Remove a directory entry

rm [–fiRr] file ...

Purpose
rm removes each specified file argument (provided that it is a valid path name). If you specify either .
or . . as the final component of the path name for a file, rm displays an error message and moves onto
the next file. If a file does not have write permission set, rm asks you if you are sure you want to delete
the file; type the yes expression defined in LC_MESSAGES (the English expression is typically y or yes) if
you really want it deleted.

Note: rm can be used only by the file owner or a superuser.

Options
–f

Deletes read-only files immediately without asking for confirmation. When you specify this option and
a file does not exist, rm does not display an error message and does not modify the exit status. If you
specify both –f and –i, rm uses the option that appears last on the command line.

–i
Prompts you for confirmation before deleting each file. If you specify both –f and –i, rm uses the
option that appears last on the command line.

–R
Recursively removes the entire directory structure if file is a directory.

–r
Is equivalent to –R.

Localization
rm uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Inability to remove a file
• Attempt to remove directory without specifying –r or –R
• Inability to find file information when using –r or –R
• Inability to read directory when using –r or –R

rm

264 z/VM: 7.3 OpenExtensions Commands Reference

2
Failure due to any of the following:

• Incorrect command-line option
• No file was specified

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
cp, mv, rmdir

rm

Chapter 1. OpenExtensions Shell Commands 265

rmdir — Remove a directory

rmdir [–p] directory ...

Purpose
The rmdir command removes each requested directory. Each directory must be empty for rmdir to be
successful.

Options
–p

Removes all intermediate components. For example:

rmdir -p abc/def/ghi

is equivalent to:

rmdir abc/def/ghi
rmdir abc/def
rmdir abc

Localization
rmdir uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because directory is not a directory, or because it still contains files or subdirectories
2

Failure because of an incorrect command-line option, or no directory names specified

Messages and Return Codes
Possible error messages include:
Nonempty directory

Files or other directories are found under the directory to be removed. Use rm –r to remove the
directory.

No such directory
The requested directory does not exist or is otherwise inaccessible.

Current directory illegal
You should use cd to change to another directory before removing the current directory.

rmdir

266 z/VM: 7.3 OpenExtensions Commands Reference

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
mkdir, rm

rmdir

Chapter 1. OpenExtensions Shell Commands 267

sed — Start the sed noninteractive stream editor

sed [–En] [script] [file ...]
sed [–En] [–e script] ... [–f scriptfile] ... [file ...]

Purpose
The sed command applies a set of editing subcommands contained in script to each argument input file. If
you did not specify file, sed reads the standard input.

sed reads each input line into a special area known as the pattern buffer. Certain subcommands [gGhHx]
use a second area called the hold buffer. By default, after each pass through the script, sed writes the
final contents of the pattern buffer to the standard output.

Options
sed recognizes the following options:
–E

Uses extended regular expressions. Normally, sed uses basic regular expressions. See Appendix B,
“Regular Expressions (regexp),” on page 471 for more information.

–e script
Adds the argument script to the end of the script.

–f scriptfile
Adds the subcommands in the file scriptfile (one subcommand per line) to the script.

–n
Suppresses all output except that generated by explicit subcommands in the sed script [acilnpPr]

If you need only one script argument, you can omit the –e and use the first form of the command.

sed subcommands are similar to those of the interactive text editor ed, except that sed subcommands
necessarily view the input text as a stream rather than as a directly addressable file. Script subcommands
can begin with zero, one, or two addresses, as in ed. Zero-address subcommands refer to every input line.
One-address subcommands select only those lines matching that address. Two-address subcommands
select those input line ranges starting with a match on the first address up to an input line matching the
second address, inclusive. Permissible addressing constructions are:
n

The number n matches only the nth input line.
$

This address matches the last input line.
/regexp/

This address selects an input line matching the specified regular expression regexp. If you do not
want to use slash (/) characters around the regular expression, use a different character but put a
backslash (\) before the first one. For example, if you want to use % to enclose the regular expression,
write \%regexp%.

Subcommands
Each line of a script contains up to two addresses, a single-letter subcommand, possible subcommand
modifiers, and an ending newline. The newline is optional in script strings entered on the command line.

The following sed subcommand summary shows the subcommands with the maximum number of
legitimate addresses. A subcommand can be given fewer than the number of addresses specified, but
not more.

sed

268 z/VM: 7.3 OpenExtensions Commands Reference

aa\
Appends subsequent text lines from the script to the standard output. sed writes the text after
completing all other script operations for that line and before reading the next record. Text lines are
ended by the first line that does not end with a backslash (\). sed does not treat the \ characters on
the end of lines as part of the text.

a,bb [label]
Branches to :label. If you omit label, sed branches to the end of the script.

a,bc\
Changes the addressed lines by deleting the contents of the pattern buffer (input line) and sending
subsequent text (similar to the a command) to the standard output. When you specify two addresses,
sed delays text output until the final line in the range of addresses; otherwise, the behavior would
surprise many users. The rest of the script is skipped for each addressed line except the last.

a,bd
Deletes the contents of the pattern buffer (input line) and restarts the script with the next input line.

a,bD
Deletes the pattern buffer only up to and including the first newline. Then it restarts the script from
the beginning and applies it to the text left in the pattern buffer.

a,bg
Grabs a copy of the text in the hold buffer and places it in the pattern buffer, overwriting the original
contents.

a,bG
Grabs a copy of the text in the hold buffer and appends it to the end of the pattern buffer after
appending a newline.

a,bh
Holds a copy of the text in the pattern buffer by placing it in the hold buffer, overwriting its original
contents.

a,bH
Holds a copy of the text in the pattern buffer by appending it to the end of the hold buffer after
appending a newline.

ai\
Inserts text. This subcommand is similar to the a subcommand, except that its text is output
immediately.

a,bl
Lists the pattern buffer (input line) to the standard output so that nonprintable characters are visible.
This subcommand works analogously to the l subcommand in ed. sed folds long lines to suit the
output device, indicating the point of folding with a backslash (\).

a,bn
Prints the pattern space on standard output if the default printing of the pattern space is not
suppressed (because of the -n option). The next line of input is then read, and the processing of
the line continues from the location of the n command in the script.

a,bN
Appends the next line of input to the end of the pattern buffer, using a new line to separate the
appended material from the original. The current line number changes.

a,bp
Prints the text in the pattern buffer to the standard output. The –n option does not disable this form of
output. If you do not use –n, the pattern buffer is printed twice.

a,bP
Operates like the p subcommand, except that it prints the text in the pattern buffer only up to and
including the first newline character.

aq
Quits sed, skipping the rest of the script and reading no more input lines.

sed

Chapter 1. OpenExtensions Shell Commands 269

ar file
Reads text from file and writes it to the standard output before reading the next input line. The timing
of this operation is the same as for the a subcommand. If file does not exist or cannot be read, sed
treats it as an empty file.

a,bs/reg/sub/[gpn][w file]
Substitutes the new text string sub for text matching the regular expression, reg. Normally, the s
subcommand replaces only the first such matching string in each input line. You can use any single
printable character other than space or newline instead of the slash (/) to delimit reg and sub. The
delimiter itself may appear as a literal character in reg or sub if you precede it with a backslash (\). You
can omit the trailing delimiter.

If an ampersand (&) appears in sub, sed replaces it with reg. A \n in reg matches an embedded
newline in the pattern buffer (resulting,for example, from an N subcommand). The subcommand can
be followed by a combination of the following:
n

Substitutes only the nth occurrence of regexp.
g

Forces all occurrences (rather than the default first occurrence) of regexp to be replaced.
p

Executes the print (p) subcommand only if a successful substitution occurs.
w file

Writes the contents of the pattern buffer to the end of file, if a substitution occurs.

a,bt [label]
Branches to the indicated label if a successful substitution has occurred since either reading the last
input line or running the last t subcommand. If you do not specify label, sed branches to the end of
the script.

a,bw file
Writes the text in the pattern buffer to the end of file.

a,bx
Exchanges the text in the hold buffer with that in the pattern buffer.

a,by/set1/set2/
Transliterates any input character occurring in set1 to the corresponding element of set2. The sets
must be the same length. You can use any character other than backslash or newline instead of the
slash to delimit the strings.

a,b{
Groups all commands until the next matching } subcommand, so that sed runs the entire group only if
the { subcommand is selected by its address(es).

: label
Designates a label, which can be the destination of a b or t subcommand.

a,b!cmd
Runs the specified cmd only if the addresses do not select the ! subcommand.

#
Treats the script line as a comment unless it is the first line in the script. Including the first line in a
script as #n is equivalent to specifying –n on the command line. An empty script line is also treated as
a comment.

a=
Writes the decimal value of the current line number to the standard output.

Examples

Here is a filter to switch desserts in a menu:

sed 's/cake\(ic\)*/cookies/g'

sed

270 z/VM: 7.3 OpenExtensions Commands Reference

Environment Variables
COLUMNS

Contains the width of the screen in columns. If set, sed uses this value to fold long lines on output.
Otherwise, sed uses a default screen width of 80.

Localization
sed uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because of any of the following:

• Missing script
• Too many script arguments
• Too few arguments
• Unknown option
• Inability to open script file
• No noncomment subcommand
• Label not found in script
• Unknown subcommand
• Nesting ! subcommand not permitted
• No \ at end of subcommand
• End-of-file in subcommand
• No label in subcommand
• Badly formed file name
• Inability to open file
• Insufficient memory to compile subcommand
• Bad regular expression delimiter
• No remembered regular expression
• Regular expression error
• Insufficient memory for buffers
• y subcommand not followed by a printable character as separator
• The strings not the same length
• Nonmatching { and } subcommands
• Garbage after command
• Too many addresses for command

sed

Chapter 1. OpenExtensions Shell Commands 271

• Newline or end-of-file found in pattern
• Input line too long
• Pattern space overflow during G subcommand
• Hold space overflow during H subcommand
• Inability to chain subcommand

Messages and Return Codes
The error messages are output only if h or H subcommands are used after sed outputs ?. Possible error
messages include:
badly formed file name for command command

The given subcommand required a file name, but its operand did not have the syntax of a file name.
Cannot nest ! command

A ! subcommand cannot contain a ! subcommand of its own.
subcommand command needs a label

The specified subcommand required a label, but you did not supply one.
must have at least one (noncomment) command

The input to sed must contain at least one active subcommand (that is, a subcommand that is not a
comment).

no remembered regular expression
You issued a subcommand that tried to use a remembered regular expression—for example, s//abc.
However, there is no remembered regular expression yet. To correct this, change the subcommand to
use an explicit regular expression.

Limits
sed allows a limit of 1024 bytes per line and 28 000 lines per file. It does not allow the NUL character. The
maximum length of a global command is 256 characters, including newlines.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –E option is an extension of the POSIX standard and is unique to this version of sed.

Related Commands
awk, diff, ed, grep, regexp (see Appendix B, “Regular Expressions (regexp),” on page 471)

sed

272 z/VM: 7.3 OpenExtensions Commands Reference

set — Set or unset command options and positional parameters

set [+|-abCefhiKkLmnpstuvx–] [+|-o[flag]] [+|-A name][parameter ...]

Purpose
Calling set without arguments displays the names and values of all environment variables, sorted by
name, in the following format:

Variable="value"

The quoting allows the output to be reinput to the shell using the built-in command eval. Arguments of
the form –option set each shell flag specified as an option. Similarly, arguments of the form +option turn
off each of the shell flags specified as an option. (Contrary to what you might expect, – means on, and +
means off.)

Note: You can set the positional parameters, and all the shell flags except –s, on the shell command line
at invocation.

Options
–a

Sets all subsequently defined variables for export.
–b

Notifies you when background jobs finish running.
–C

Prevents the output redirection operator > from overwriting an existing file. Use the alternate operator
>| to force an overwrite.

–e
Tells a noninteractive shell to execute the ERR trap and then exit. This flag is disabled when reading
profiles.

–f
Disables file name generation.

–h
Makes all commands use tracked aliases.

–i
Makes the shell interactive.

–K
Tells the shell to use KornShell-compatible behavior in any case where the POSIX.2 behavior is
different from the behavior specified by the KornShell.

–k
Allows assignment parameters anywhere on the command line and still includes them in the
environment of the command.

–L
Makes the shell a login shell. Setting this flag is effective only at shell invocation.

–m
Runs each background job in a separate process group and reports on each as they complete.

–n
Tells a noninteractive shell to read commands but not run them.

set

Chapter 1. OpenExtensions Shell Commands 273

–o flag
Sets a shell flag. If you do not specify flag, this option lists all shell flags that are currently set. flag can
be one of the following:
allexport

Is the same as the –a option.
errexit

Is the same as the –e option.
bgnice

Runs background jobs at a lower priority.
emacs

Specifies emacs style in-line editor for command entry. This is accepted, but has no effect.
gmacs

Specifies gmacs style in-line editor for command entry. This is accepted, but has no effect.
ignoreeof

Tells the shell not to exit at the end of the file.
interactive

Is the same as the –i option.
jdebug

Starts tracing the internal shell operation for debugging the shell.
keyword

Is the same as the –k option.
korn

This is the same as the –K option.
logical

Specifies that cd, pwd and the PWD variable use logical path names in directories with symbolic
links. If this flag is not set, these built-ins and PWD use physical directory path names. For
example, assume /usr/spool is a symbolic link to /var/spool, and that it is your current directory.
If logical is not set, PWD has the value /var/spool, and cd. . changes the current directory to /var.
If logical is set, PWD has the value /usr/spool and cd. . changes the current directory to /usr.

login
Is the same as the –L option of sh.

markdirs
Adds a trailing slash (/) to file name-generated directories.

monitor
Is the same as the –m option.

noclobber
Is the same as the –C option.

noexec
Is the same as the –n option.

noglob
Is the same as the –f option.

nolog
Does not record function definitions in the history file.

notify
Is the same as the –b option.

nounset
Is the same as the –u option.

privileged
Is the same as the –p option.

set

274 z/VM: 7.3 OpenExtensions Commands Reference

trackall
Is the same as the –h option.

verbose
Is the same as the –v option.

vi
Specifies vi style in-line editor for command entry. This is accepted, but has no effect.

xtrace
Is the same as the –x option.

–p
Resets the PATH variable to the default value, disables processing of $HOME/.profile, and ignores the
value of the ENV variable.

–s
Sorts the positional parameters.

–t
Exits after reading and running one command.

–u
Tells the shell to issue an error message if an unset parameter is used in a substitution.

–v
Prints shell input lines as they are read.

–x
Prints commands and their arguments as they run.

Other options:
–

Turns off the –v and –x options. Also, parameters that follow this option do not set shell flags, but are
assigned to positional parameters (see sh).

––
Specifies that parameters following this option do not set shell flags, but are assigned to positional
parameters.

+A name
Assigns the parameter list to the elements of name, starting at name[0].

–A name
Unsets name and then assigns the parameter list to the elements of name starting at name[0].

Usage Notes
This command is built into the shell.

Environment Variables
PATH

Contains a list of directories that constitute the search path for executable utilities.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to an incorrect command-line argument
2

Failure resulting in a usage message, usually due to a missing argument

set

Chapter 1. OpenExtensions Shell Commands 275

Portability
POSIX.2, X/Open Portability Guide. Several shell flags are extensions of the POSIX standard: bgnice,
ignoreeof, keyword, markdirs, monitor, noglob, nolog, privileged, and trackall are extensions of the
POSIX standard, along with the shell flags ±A, ±h, ±k, ±p, ±s, and ±t.

Related Commands
alias, eval, export, sh, trap, typeset

set

276 z/VM: 7.3 OpenExtensions Commands Reference

sh — Invoke a shell

[r]sh [-abCefhiKkLmnprtuvx] [-o option] [cmd_file [argument...]]
[r]sh -c cmdstring [-abCefhiKkLmnprtuvx] [-o option] [cmd_name [argument...]]
[r]sh -s [-abCefhikLmnprtuvx] [-o option] [argument...]

Purpose
sh contains the following subsections:

• Options and invocation
• Command syntax
• Command execution
• Quoting
• Directory substitution
• Parameter substitution
• Arithmetic substitution
• Command substitution
• File descriptors and redirection
• File name generation
• Variables
• Shell execution environments
• Built-in commands

Subsections dealing with substitution and interpretation of input appear in the order in which the shell
performs those substitutions and interpretations.

Much of what the shell can do is provided through such built-in commands as cd and alias.

Invocation Options
The OpenExtensions shell, based on the KornShell, is upward-compatible with the Bourne shell.

Normally you invoke the shell with OPENVM SHELL. You can also invoke the shell by typing an explicit
sh command. Some people find it useful to copy the sh file into a file named rsh. If you invoke the shell
under the name rsh, the shell operates in restricted mode. This mode is described in connection with –r.

If you invoke the shell with a name that begins with the – character, it is a login shell. (You can also get a
login shell if you invoke the shell with the –L option.) A login shell begins by running the file /etc/profile.
It then runs $HOME/.profile using the . command (see dot). If $HOME is not set, the shell searches the
working directory for:

.profile

and runs this file with the . command if it exists. You do not get an error message if any of these files
cannot be found.

You can use these profile files to customize your session with sh. For example, your profile files can set
options, create aliases, or define functions and variables.

If there is at least one argument on the sh command line, sh takes the first argument as the name of
a shell script to run. (The exception to this is when –s is used.) Any additional arguments are assigned
to the positional parameters; usually, these serve as arguments to the shell script. See “Parameter

sh

Chapter 1. OpenExtensions Shell Commands 277

Substitution” on page 283 for information about positional parameters, and see set for information about
changing these parameters.

If sh finds the ENV environment variable set when it begins running (after profile processing), sh runs the
file named by the expansion of the value of this variable (see “Variables” on page 290).

Command Options
The shell accepts the following options on the command line:
–c cmdstring

Runs cmdstring as if it were an input line to the shell and then exits. This is used by programs (for
example, editors) that call the shell for a single command. sh assigns arguments after cmdstring to the
positional parameters. If you specify cmd_name, special parameter 0 is set to this string for use when
running the commands in cmdstring.

–i
Invokes an interactive shell, as opposed to running a script. With –i, the shell catches and ignores
interrupts. Without –i, an interrupt ends the shell. For shells that read from the terminal, –i is the
default.

–K
Specifies KornShell-compatible behavior where the POSIX.2 behavior is different from the behavior
specified by the KornShell. Without -K, the shell defaults to POSIX.2 behavior.

–L
Makes the shell a login shell, as described earlier.

–r
Invokes a restricted shell. (As noted earlier, you can also invoke a restricted shell by using the name
rsh). In a restricted shell, you cannot do the following: use the cd command; change the values
of the variables ENV, PATH, or SHELL; use > or >> to redirect output; or specify command names
containing /. These restrictions do not apply during execution of your profile files.

–s
Reads commands from standard input and assigns all arguments to the positional parameters.
Normally, if there is at least one argument to the shell, the first such argument is the name of a
file to run.

If you do not give either the –c or –s option, but you do specify cmd_file, the shell takes it as the name of
a file that contains commands to be run. Special parameter 0 is set to this name.

In addition to these options, you can use any valid option to the set command (including –o option) as a
command-line option to sh. See set for details.

Command Syntax

The shell implements a sophisticated programming language that gives you complete control over the
execution and combination of individual commands. When the shell scans its input, it always treats the
following characters specially:

* ; & () < > | ' \ "
space tab newline

If you want to use any of these characters inside an actual argument, you must quote the argument (so
that the shell doesn't use the special meanings of the characters). See “Quoting” on page 282 for more
information.

A simple command is a list of arguments separated by characters in the IFS environment variable (the
default value of IFS has blank, tabs, and newlines).

When a word is preceded by an unescaped pound sign (#), the remainder of the line is treated as a
comment, and the shell discards input up to but not including the next newline. When a command starts
with a defined alias, sh replaces the alias with its definition (see alias).

sh

278 z/VM: 7.3 OpenExtensions Commands Reference

A reserved-word command starts with a reserved word (for example, if, while, or for). Reserved-word
commands provide flow of control operations for the shell. These are described in “Reserved-Word
Commands” on page 280.

A command can be any of the following:
command:

simple command
reserved-word command
(command)
command | command
command && command
command || command
command & command
command &
command |&
command ; command
command ;
command<newline>

The following is the order of precedence of the preceding operators. The highest priority operators are
listed first, and operators on the same line have equal priority.

()
|
&& ||
& |& ; <newline>

The meaning of these operations is as follows:
(command)

Runs command in a subshell. The current shell invokes a second shell, and this second shell actually
runs command. In this way, command runs in a completely separate execution environment; it can
change working directories, change variables, open files, and so on without affecting the first shell.
The subshell's environment begins as a copy of the current environment, so the value of the ENV
environment variable is not run when a subshell starts.

|
Creates a pipe between the two commands that the | operator connects. The standard output of the
first command becomes the standard input of the second command. A series of commands connected
by pipes is called a pipeline. The exit status is that of the last command in the pipeline.

&&
Is the logical AND operator. The shell runs the second command if and only if the first command
returns a true (zero) exit status.

||
This is the logical OR operator. The shell runs the second command if and only if the first command
returns a false (nonzero) exit status.

&
Runs the command that precedes it asynchronously. The shell just starts the command running and
then immediately goes on take new input, before the command finishes execution. On systems where
asynchronous execution is not possible, this operation is effectively equivalent to ;.

|&
Runs the command that precedes it as a co-process. The command runs asynchronously, as with
the & operator, but the command's standard input and standard output are connected to the shell
by pipes. The shell sends input to command 's standard input with the print –p command, and
reads from command's standard output with the read –p command. The command should not
buffer its output. Because of this and other limitations, co-processes should be designed to be used
as co-processes. On systems where asynchronous execution is not possible, co-processes are not
supported.

sh

Chapter 1. OpenExtensions Shell Commands 279

;
Is the sequential execution operator. The second command is run only after the first command has
completed.

newline
The unescaped newline is equivalent to the ; operator.

Reserved-Word Commands
The shell contains a rich set of reserved-word commands, which provide flow of control and let you create
compound commands. In the following list, a command can also be a sequence of commands separated
by newlines. Square brackets ([]) indicate optional portions of commands, and are never part of the
command syntax.
! command

The exclamation point is the logical NOT operator. When command returns false (nonzero), ! returns
true (zero). When command returns true (zero), ! returns false (nonzero).

{ command;}
Enclosing a command in braces is similar to the (command) construct, except that the shell runs the
command in the same environment rather than under a subshell. { and } are simply reserved words
to the shell. To make it possible for the shell to recognize these symbols, you must put a blank or
newline after the {, and a semicolon or newline before the }.

case word in | [(][pattern[|pattern] ...)command ;;] ... | [(][pattern[| pattern] ...)command ;;] ... | esac
The case statement is similar to the switch statement of the C programming language or the case
statement of Pascal. If the given word matches any one of the patterns separated by "or" bar (|)
characters, sh runs the corresponding command. The patterns should follow the rules given in “File
Name Generation” on page 289, except that the period (.) and slash (/) are not treated specially.
Patterns are matched in the order they are given, so more inclusive patterns should be mentioned
later. You must use the double semicolon (;;) to delimit command and introduce the next pattern.

for variable [in word ...] | do command | done
The for statement sets variable to each word argument in turn, and runs the set of commands once
for each setting of variable. If you omit the in word part, sh sets variable to each positional parameter.
You can divert the flow of control within the loop with the break or continue statements.

function variable { | command | } | variable() { | command | }
Any one of these forms defines a function named variable, the body of which consists of the sequence
of commands. You invoke a function just like any other command; when you actually call the function,
sh saves the current positional parameters. The function's command-line arguments then replaces
these parameters until the function finishes. sh also saves the current ERR and EXIT traps and any
flags manipulated with the set command; these are restored when the function finishes. The function
ends either by falling off the end of the code of the function body, or by reaching a return statement.
If the function uses typeset to declare any variables in the function body, the variables are local to the
function.

if command | then command | [elif command | then command] ... | [else command] | fi
In the if statement, if the first (leftmost) command succeeds (returns a zero exit status), sh runs the
command following then. Otherwise, sh runs the command (if any) following the elif (which is short
for "else if"); if that succeeds, sh runs the command following the next then. If neither case succeeds,
sh runs the command following the else (if any).

select variable [in word ...] | do commands | done
The select statement can handle menulike interactions with the user. Its syntax is like the for
statement. Each word is printed on the standard error file, one per line, with an accompanying
number. If you omit the “in word ...” part, sh uses the positional parameters. sh then displays the
value of the variable PS3 to prompt the user to enter a numerical reply. If the reply is an empty line,
sh displays the menu again; otherwise, sh assigns the input line to the variable REPLY, sets variable
to the word selected, and then runs the commands. sh does this over and over until the loop is ended
by an interrupt, an end-of-file, or an explicit break statement in the commands.

sh

280 z/VM: 7.3 OpenExtensions Commands Reference

until command1 | do command2 | done
The until statement runs command1 and tests its exit status for success (zero) or failure (nonzero).
If command1 succeeds, the loop ends; otherwise, sh runs command2 and then goes back to run and
test command1 again. break and continue commands in the commands can affect the operation of
the loop.

while command1 | do command2 | done
The while statement works similarly to the until statement. However, the loop ends whenever
command1 is unsuccessful (nonzero exit status).

Shell reserved words are recognized only when they are the unquoted first token of a command. This lets
you pass these reserved words as arguments to commands run from the shell. The full list of reserved
words is:

! elif if

{ else select

} esac then

case fi time

do for until

done function while

Command Execution
Before running a simple command, the shell processes the command line, performing expansion,
assignments, and redirection.

First, sh examines the command line and divides it into a series of tokens, which are either operators
or words. An operator is either a control operator (described in “Command Syntax” on page 278) or a
redirection operator (described in “File Descriptors and Redirection” on page 288). A word is any token
that is not an operator.

Next, the shell expands words in the following order:

1. sh performs directory substitution (see “Directory Substitution” on page 283).
2. sh performs parameter substitution, command substitution, or arithmetic substitution, as appropriate,

in the order that the words appear on the command line, expanding each word to a field (see the
appropriate sections).

3. sh scans each field produced in step “2” on page 281 for unquoted characters from the IFS
environment variable and further subdivides this field into one or more new fields.

4. sh expands any aliases to their definitions (see “alias — Display or create a command alias” on page 6).
5. sh performs path name expansion on each unquoted field from step “3” on page 281 (see “File Name

Generation” on page 289).
6. sh removes all quote mechanisms (\, ', and ") that were present in the original word unless they have

themselves been quoted (see “Quoting” on page 282).

The shell considers the first field of the expanded result to be a command.

The expanded simple command can contain variable assignments and redirections. Variable assignments
affect the current execution environment. After expansion, the shell handles all redirection constructs,
and the command, if one was found, it performs the redirection in a subshell environment (see “Shell
Execution Environments” on page 290).

When a simple command contains a command name, variable assignments in the command affect only
the execution of that command.

After the shell has expanded all appropriate arguments in a simple command, but before it performs
file name generation, it examines the command name (if the command has one). sh checks the names
against currently defined aliases (see alias) and functions (see function under “Command Syntax” on

sh

Chapter 1. OpenExtensions Shell Commands 281

page 278), and finally against the set of built-in commands: commands that the shell can run directly
without searching for program files. Built-in commands are described in “Built-In Commands” on page
291.

If the command name is not a function or a built-in command, the shell looks for a program file or script
file that contains an executable version of that command. The OpenExtensions shell uses the following
procedure to locate the program file:

• If the command name typed to the shell has slash (/) characters in its name, the command is taken to
be a full path name (absolute or relative). The shell tries to execute the contents of that file.

• Otherwise, the shell performs a path search. To do this, the shell obtains the value of the PATH
environment variable. The value should be a list of directory names. sh searches under each directory
for a file, the name of which matches the command name. sh runs the first matching file found.

Command names can be marked as tracked aliases. The first time you run a command with a tracked
alias, the shell does a normal PATH search. If the search is successful, the shell remembers the file that
it finds. The next time you run a command with the same name, sh immediately runs the file found on
the last PATH search; there is no new search. This speeds up the time that it takes the shell to find the
appropriate file.

The set –h command tells the shell that all commands should be treated as tracked aliases. See alias and
set for more information.

Quoting
To let you override the special meaning of certain words or special characters, the shell provides several
quoting mechanisms. In general, you can turn off the special meaning of any character by putting a
backslash (\) in front of the character. This is called escaping the character.

For example, you can tell the shell to disregard the special meaning of the newline character by putting a
backslash at the very end of a line. The shell ignores the escaped newline, and joins the next line of input
to the end of the current line. In this way, you can enter long lines in a convenient and readable fashion.

Escaping characters by putting a backslash in front of them is the most direct way of telling the shell to
disregard special meanings. However, it can be awkward and confusing if you have several characters to
escape.

As an alternative, you can put arguments in various types of quotes. Different quotation mark characters
have different "strengths." The single quotation mark characters are the strongest. When you enclose a
command-line argument in single quotation mark characters, the shell disregards the special meanings of
everything inside the single quotation marks. For example:

 echo '*'

displays just the * character.

Double quotation mark characters are weaker. Inside double quotation marks, the shell performs
command substitutions of the form:

$(command)

or:

command

(See “Command Substitution” on page 287.) The shell does not perform such substitutions when they
appear inside single quotation marks. In addition, the shell performs parameter substitutions of the form:

$parameter

when they are inside double quotation marks but not when they're inside single quotation marks (see
“Parameter Substitution” on page 283). You can use the backslash to escape another character when

sh

282 z/VM: 7.3 OpenExtensions Commands Reference

they appear inside double quotation marks, but inside single quotation marks the shell ignores this
special meaning.

The shell treats internal field separator characters (that is, characters in the value of the IFS variable)
literally inside quoted arguments, whether they're quoted with double quotation marks or single
quotation marks. This means that a quoted argument is considered a single entity, even if it contains
IFS characters.

Quoting can override the special meanings of reserved words and aliases. For example, in:

"time" program

the quotes around time tell the shell not to interpret time as a shell reserved word. Instead, sh does a
normal command search for a command named time.

You must always quote the following characters if you want sh to interpret them literally:

| & ; < > () $ ' " ˋ \
<space> <tab> <newline>

The following characters need to be quoted in certain contexts if they are to be interpreted literally:

* ? [# % = ~

Directory Substitution
When a word begins with an unquoted tilde (~), sh tries to perform directory substitution on the word. sh
obtains all characters from the tilde (~) to the first slash (/) and uses this as a user name. sh looks for this
name in the user profile, the file that contains information on all the system's users. If sh finds a matching
name, it replaces ~name with the name of the user's home directory, as given in the matching POSIX user
database.

For example, if you specify a file name as:

 ~jsmith/file
sh would look up jsmith's home
directory and put that directory name in place
of the ~jsmith
construct.

If you specify a ~ without an accompanying name, sh replaces the ~ with the current value of your HOME
variable (see “Environment Variables” on page 292). For example:

echo ~
displays the name of your home directory. Similarly, sh replaces
the construct ~+ with the value of the PWD variable (the name of the
your working directory), and replaces the tilde hyphen (~–) with the
value of OLDPWD (the name of your previous working directory). In variable
assignments, tilde expansion is also performed after colons (:).

Parameter Substitution

The shell uses three types of parameters: positional parameters, special parameters, and variables. A
positional parameter is represented with either a single digit (except 0) or one or more digits in curly
braces. For example, 7 and {15} are both valid representations of positional parameters. Positional
parameters are assigned values from the command line when you invoke sh.

A special parameter is represented with one of the following characters:

* @ # ? ! - $ 0

The values to which special parameters expand are listed in the following paragraphs.

sh

Chapter 1. OpenExtensions Shell Commands 283

Variables are named parameters. For details on naming and declaring variables, see “Variables” on page
290.

The simplest way to use a parameter in a command line is to enter a dollar sign ($) followed by the name
of the parameter. For example, if you enter the command:

echo $x

sh replaces $x with the value of the parameter x and then displays the results (because echo displays its
arguments). Other ways to expand parameters are shown in the following paragraphs.

The following parameters are built in to the shell:
$1, $2, ... $9

Expands to the d positional parameter (where d is the single digit following the $). If there is no such
parameter, $d expands to a null string.

$0
Expands to the name of the shell, the shell script, or a value assigned when you invoked the shell.

$#
Expands to the number of positional parameters.

$@
Expands to the complete list of positional parameters. If $@ is quoted, the result is separate
arguments, each quoted. This means that:

"$@"

is equivalent to:

"$1" "$2" ...

$*
Expands to the complete list of positional parameters. If $* is quoted, the result is concatenated into
a single argument, with parameters separated by the first character of the value of IFS (“Variables” on
page 290). For example, if the first character of IFS is a blank, then:

"$*"

is equivalent to:

"$1 $2 ..."

$–
Expands to all options that are in effect from previous calls to the set command and from options on
the sh command line.

$?
Expands to the exit status of the last command run.

$$
Expands to the current process number of the original parent shell.

$!
Expands to the process number of the last asynchronous command.

These constructs are called parameters of the shell. They include the positional parameters, but are not
restricted to the positional parameters.

We have already mentioned that you can expand a parameter by putting a $ in front of the parameter
name. More sophisticated ways to expand parameters are:
${parameter}

Expands any parameter.

sh

284 z/VM: 7.3 OpenExtensions Commands Reference

${number}
Expands to the positional parameter with the given number. (Remember that if you just enter $d to
refer to the dth positional parameter, d can only be a single digit; with brace brackets, number can be
greater than 9.) Since braces mark the beginning and end of the name, you can have a letter or digit
immediately following the expression.

${variable[arithmetic expression]}
Expands to the value of an element in an array named variable. The arithmetic expression gives the
subscript of the array. (See “Arithmetic Substitution” on page 286.)

${variable[*]}
Expands to all the elements in the array variable, separated by the first character of the value of $IFS

${variable[@]}
When unquoted, is the same as ${variable[*]}. When quoted as "${variable[@]}," it expands to all the
elements in the array variable, with each element quoted individually.

${#parameter}
Expands to the number of characters in the value of the given parameter.

${#*}, ${#@}
Expands to the number of positional parameters.

${#variable[*]}
Expands to the number of elements in the array named variable. Elements that do not have assigned
values do not count. For example, if you only assign values to elements 0 and 4, the number of
elements is 2. Elements 1 through 3 do not count.

${parameter:–word}
Expands to the value of parameter if it is defined and has a nonempty value; otherwise, it expands
word. This means that you can use word as a default value if the parameter isn't defined.

${parameter–word}
Is similar to the preceding construct, except that the parameter is expanded if defined, even if the
value is empty.

${variable:=word}
Expands word with parameter expansion and assigns the result to variable, provided that variable is
not defined or has an empty value. The result is the expansion of variable, whether or not word was
expanded.

${variable=word}
Is similar to the preceding construct, except that the variable must be undefined (it cannot just be
null) for word to be expanded.

${parameter:?word}
Expands to the value of parameter provided that it is defined and non-empty. If parameter isn't
defined or is null, sh expands and displays word as a message. If word is empty, sh displays a default
message. After a noninteractive shell has displayed a message, it ends.

${parameter?word}
Is similar to the preceding construct, except that sh displays word only if parameter is undefined.

${parameter:+word}
Expands to word, provided that parameter is defined and nonempty.

${parameter+word}
Expands to word, provided that parameter is defined.

${parameter#pattern}
Attempts to match pattern against the value of the specified parameter. The pattern is the same as a
case pattern. sh searches for the shortest prefix of the value of parameter that matches pattern. If sh
finds no match, the previous construct expands to the value of parameter; otherwise, the portion of
the value that matched pattern is deleted from the expansion.

${parameter##pattern}
Is similar to the preceding construct, except that sh deletes the longest part that matches pattern if it
finds such a match.

sh

Chapter 1. OpenExtensions Shell Commands 285

${parameter%pattern}
Searches for the shortest suffix of the value of parameter matching pattern and deletes the matching
string from the expansion.

${parameter%%pattern}
Is similar to the preceding construct, except that sh deletes the longest part that matches pattern if it
finds such a match.

Arithmetic Substitution
Arithmetic substitution is available with the syntax:

$((arithmetic expression))

or:

$[arithmetic expression]

This sequence is replaced with the value of arithmetic expression. Arithmetic expressions consist of
expanded variables, numeric constants, and operators. Numeric constants have the form:

[base#]number

where the optional base is a decimal integer between 2 and 36 inclusive, and number is any nonnegative
number in the given base. The default base is 10. Undefined variables evaluate to zero.

The operators are listed in decreasing order of precedence in Table 9 on page 286. Operators sharing a
heading have the same precedence. Evaluation within a precedence group is from left to right, except for
the assignment operator, which evaluates from right to left.

Table 9. Shell Operators

Category Function

Unary Operators

- Unary minus

! Logical negation

+ ~ Identity, bitwise negation

Multiplicative Operators

* / % Multiplication, division, remainder

Additive Operators

+ - Addition, subtraction

Bitwise Shift Operators

<< >> Bitwise shift right, bitwise shift left

Relational Operators

< > Less than, greater than

<= >= Less than or equal, greater than or equal

= = != Equal to, not equal to

Bitwise AND Operator

& AND

Bitwise Exclusive OR Operator

sh

286 z/VM: 7.3 OpenExtensions Commands Reference

Table 9. Shell Operators (continued)

Category Function

^ Exclusive OR

Bitwise Inclusive OR Operator

| Inclusive OR

Logical AND Operator

&& Logical AND

Logical OR Operator

|| Logical OR

Conditional Operator

? : If-else

Assignment Operator

= *= /= %=
+= -= <<=
>>= &= ^= |=

Assignment

Arithmetic expressions can be used without the enclosing $((and)) in assignment to an integer variable
(see typeset) as an argument to the following built-in commands:

break exit return

continue let shift

and when used as arguments in test numeric comparisons (–eq, –ge, –gt, –le, –lt, and -ne) (see test).

Command Substitution

In command substitution, sh uses the expansion of the standard output of one command in the command
line for a second command. There are two syntaxes.

The first syntax (called backquoting) surrounds a command with grave accents ˋ, as in:

ls -l ˋcat listˋ

To process this command line, sh first runs the cat command and collects its standard output. The shell
then breaks this output into arguments and puts the result into the command line of the ls command. The
previous command therefore lists the attributes of all files, the names of which are contained in the file
list.

This syntax is easy to type, but is not useful if you want to put one command substitution inside another
(nesting command substitutions). A more useful syntax is:

$(command)

as in:

ed $(grep -f -l function $(find . -name '*.c'))

This command uses find to search the current directory and its subdirectories to find all files, the
names of which end in .c. It then uses grep –f to search each such file for those that contain the string
function. Finally, it calls ed to edit each such file.

sh

Chapter 1. OpenExtensions Shell Commands 287

There is a historical inconsistency in the backquoting syntax. A backslash (\) within a backquoted
command is interpreted differently depending on its context. Backslashes are interpreted literally unless
they precede a dollar sign ($), grave accent (ˋ), or another backslash (\). In these cases, the leading
backslash becomes an escape character to force the literal interpretation of the $, ˋ, or \. Consequently,
the command:

echo '\$x'

issued at system level produces the output:

\$x

whereas the same command nested in a backquoted syntax:

echo ˋecho '\$x'ˋ

produces the output:

$x

We recommend the $(command) syntax for command substitutions.

sh performs command substitutions as if a new copy of the shell is invoked to run the command. This
affects the behavior of $- (standing for the list of options passed to the shell). If a command substitution
contains $-, the expansion of $- does not include the –i option, since the command is being run by a
noninteractive shell.

File Descriptors and Redirection

The shell sometimes refers to files using file descriptors. A file descriptor is a number in the range 0 to
9. It may have any number of digits. For example, the file descriptors 001 and 01 are identical to file
descriptor 1. Various operations (for example, exec) can associate a file descriptor with a particular file.

Some file descriptors are set up at the time the shell starts up. These are the standard input/output
streams:

• Standard input (file descriptor 0)
• Standard output (file descriptor 1)
• Standard error (file descriptor 2)

Commands running under the shell can use these descriptors and streams too. When a command runs
under the shell, the streams are normally associated with your terminal. However, you can redirect these
file descriptors to associate them with other files (so that I/O on the stream takes place on the associated
file instead of your terminal). In fact, the shell lets you redirect the I/O streams associated with file
descriptors 0 through 9, using the following command-line constructs.
number<file

Uses file for input on the file descriptor, the number of which is number. If you omit number, as in <file,
the default is 0; this redirects the standard input.

number>file
Uses file for output on the file descriptor, the number of which is number. If you omit number, as in
>file, the default is 1; this redirects the standard output. The shell creates the file if it doesn't already
exist. The redirection fails if the file already exists and noclobber is set (see set).

number>|file
Is similar to number>file but if file already exists, the output written to the file overwrites its current
contents.

number< >file
Uses file for input and output with the file descriptor, the number of which is number. This is most
useful when the file is another terminal or modem line. If you omit number, as in < >file, the default

sh

288 z/VM: 7.3 OpenExtensions Commands Reference

number is zero; this redirects the standard input. Output written to the file overwrites the current
contents of the file (if any). The shell creates the file if it doesn't already exist.

number>>name
Is similar to number > file, except that output is appended to the current contents of the file (if any).

number<<[-]name
Lets you specify input to a command from your terminal (or from the body of a shell script). This
notation is known as a here-document. The shell reads from the standard input and feeds that as input
to file descriptor number until it finds a line that exactly matches the given name. If you omit number,
the default is the standard input. For example, to process the command:

cat <<abc >out

the shell reads input from the terminal until you enter a line that consists of the word abc. This input
is passed as the standard input to the cat command, which then copies the text to the file out.
If any character of name is quoted or escaped, sh does not perform substitutions on the input;
instead, it performs variable and command substitutions, respecting the usual quoting and escape
conventions. If you put - before name, sh deletes all leading tabs in the here-document.

number1<&number2
Makes the input file descriptor number1 a duplicate of file descriptor number2. If you omit number1,
the default is the standard input (file descriptor 0). For example, <&4 makes the standard input a
duplicate of file descriptor 4. In this case, entering input on 4 has the same effect as entering input on
the standard input.

number1>&number2
Makes the output file descriptor number2 a duplicate of file descriptor number2. If you omit number2,
the default is the standard output (file descriptor 1). For example, >&2 makes the standard output a
duplicate of file descriptor 2 (the standard error). In this case, writing output on the standard output
has the same effect as writing output on the standard error.

number<&-
Closes input descriptor number. If you omit number, it closes the standard input.

number>&-
Closes output descriptor number. If you omit number, it closes the standard output.

Normally, redirection applies only to the command where the redirection construct appears; however, see
exec.

The order of redirection specifications is significant, since an earlier redirection can affect a later one.
However, these specifications can be freely intermixed with other command arguments. Since the shell
takes care of the redirection, the redirection constructs are not passed to the command itself.

Note: The shell performs the implicit redirections needed for pipelines before performing any explicit
redirections.

File Name Generation

The characters * ? [are called glob characters, or wildcard characters. If an unquoted argument
contains one or more glob characters, the shell processes the argument for file name generation. The glob
characters are part of glob patterns, which represent file and directory names. These patterns are similar
to regular expressions, but differ in syntax, since they are intended to match file names and words (not
arbitrary strings). The special constructions that may appear in glob patterns are:
?

Matches exactly one character of a file name, except for the separator character / and a . at
the beginning of a file name. ? only matches an actual file name character and does not match
nonexistent characters at the end of the file name. ? is analogous to the metacharacter . in regular
expressions.

sh

Chapter 1. OpenExtensions Shell Commands 289

*
Matches zero or more characters in a file name, subject to the same restrictions as ?. * is analogous to
the regular expression .*.

[chars]
Defines a class of characters; the glob pattern matches any single character in the class. A class
can contain a range of characters by writing the first character in the range, a dash -, and the last
character. For example, [A-Za-z], in the POSIX locale, stands for all the uppercase and lowercase
letters. If you want a literal - character in the class, put it as the first or last character inside the
brackets. If the first character inside the brackets is an exclamation mark (!), the pattern matches any
single character that is not in the class.

Some sample patterns are:
[!a-f]*.c

Matches all .c files beginning with something other than the letters from a through f.
/???/?.?

Matches all files that are under the root directory in a directory with a three-letter name, and that have
a basename containing one character followed by a . followed by another single character.

/.[chyl]
Matches all .c, .h, .y, and .l files in a subdirectory of the working directory.

~mks/*.ksh
Matches all shell scripts in the home directory of user mks (see “Directory Substitution” on page 283
for the use of ~).

If no files match the pattern, sh leaves the argument untouched. If the set option –f or “–o noglob” is in
effect, the shell does not perform file name generation.

Variables

The shell maintains variables and can expand them where they are used in command lines; see
“Parameter Substitution” on page 283 for details.

A variable name must begin with an uppercase or lowercase letter or an underscore (_). Subsequent
characters in the name, if any, can be uppercase or lowercase letters, underscores, or digits 0 through 9.
You can assign a value to a variable with:

variable=value

You can implicitly declare a variable as an array by using a subscript expression when assigning a value, as
in:

variable[arithmetic expression]=value

You can use a subscripted array variable anywhere that the shell allows an ordinary variable. See
“Arithmetic Substitution” on page 286 for the syntax of an arithmetic expression. Also see typeset,
export, and readonly for details about the attributes of shell variables, and how shell variables can be
exported to child processes.

For a list of variables that the shell either sets or understands, see “Environment Variables” on page 292.

Shell Execution Environments
A shell execution environment is the set of conditions affecting most commands run within the shell. It
consists of:

• Open files
• The working directory (see cd)
• The file creation mask (see umask)

sh

290 z/VM: 7.3 OpenExtensions Commands Reference

• The traps currently set (see trap)
• The shell parameters (see set and export)
• The shell functions currently defined (see “Command Execution” on page 281)
• Options (see set)

A subshell environment starts as a duplicate of the shell environment, except that traps caught by the
shell are set to default values in the subshell. Since the subshell environment starts as a duplicate, the
value of the ENV environment variable is not run. Changes made to a subshell environment do not affect
the shell environment.

Command substitutions, commands within parentheses "(command)," and commands to be run
asynchronously ("command&")—all run in subshell environments. Each command in a pipeline
"command|command" runs in a subshell environment.

Shell utilities also run in a separate environment that does not affect the shell environment, except
for certain built-in utilities (for example, cd and umask) that explicitly alter the shell environment. The
environment of a shell utility is set up by the shell to include the following:

• Open files, subject to redirection.
• Working directory (see cd).
• File creation mask (see umask).
• Traps; traps caught by the shell are set to default values and traps ignored by the shell are ignored by

the utility.
• Variables defined inside the shell and having the export attribute.

Built-In Commands
This section lists the commands that are built into the shell. Such commands are built into the shell to
increase performance of shell scripts or to access the shell's internal data structures and variables. These
internal commands are designed to have semantics indistinguishable from external commands.

: exec newgrp times

. exit print trap

alias export pwd type

bg false read typeset

break fc readonly umask

cd fg return unalias

command getopts set unset

continue jobs shift wait

echo kill test whence

eval let time

POSIX.2 recognizes a subset of these commands as special built-ins. Syntax errors in special built-in
commands cause a noninteractive shell to exit with the exit status set by the command. The special
built-in utilities are:

: eval readonly trap

. exec return typeset

break exit set unset

continue export shift

sh

Chapter 1. OpenExtensions Shell Commands 291

As well as built-in commands, the shell has a set of predefined aliases:

functions integer stop

hash nohup suspend

history r

See alias for details.

Examples

Software distributed over computer networks such as Usenet is often distributed in a form known as a
shell archive. In essence, a shell archive is a shell script containing the data of one or more files, plus
commands to reconstruct the data files and check that the data was sent correctly. The following shows a
sample shell archive:

This is a shell archive.
It contains the one file "frag.ksh"
To extract contents, type
sh file
#
if [-f frag.ksh]
then echo frag.ksh exists: will not overwrite
else
 echo extracting frag.ksh
 sed 's/^X//' >frag.ksh <<_EOF_
X# This is frag.ksh
X# Not very interesting, really.
Xecho frag.ksh here!
EOF
 if ["ˋsum frag.ksh|awk '{print $1}'ˋ" != 52575]
 then echo frag.ksh damaged in transit
 fi
fi

The following is a simple script to produce as much of the Fibonacci sequence as can be calculated in
integers:

Print out Fibonacci sequence; start sequence
with first two positional parameters:
default 1 1
typeset –i x=${1:–1} y=${2:–1} z
while [x –gt 0] # until overflow
do
 echo $x
 let z=y+x x=y y=z
done

The following implements the basename utility as a shell function:

basename utility as shell function
function basename {
 case $# in
 1) ;;
 2) eval set \${1%$2} ;;
 *) echo Usage: $0 pathname '[suffix]'
 return 1 ;;
 esac
 echo ${1##*/}
 return 0
}

Environment Variables
Table 10 on page 293 lists the environment variables and their purposes.

sh

292 z/VM: 7.3 OpenExtensions Commands Reference

Table 10. Built-in Variables

Variable Purpose

_ (Underscore) For every command that is run as a child of the shell, sh sets
this variable to the full path name of the executable file and passes this
value through the environment to that child process. When processing the
MAILPATH variable, this variable holds the value of the corresponding mail
file.

~ (Tilde) expands to value of the HOME directory.

CDPATH Contains a list of directories for the cd command to search. Directory names
are separated with colons. CDPATH works like the PATH variable.

COLUMNS Used by several commands to define the width of the terminal output device.

EDITOR Specifies the default editor (either ed or sed). This variable is usually set in
your .profile.

ENV sh performs parameter substitution on this value and uses the result as the
name of an initialization file, or login script. This file is run with the . (dot)
command; see the dot command. This variable is usually set in your .profile.

FCEDIT Contains the name of the default editor for the fc command. If this variable is
not set, the default is the ed command.

HISTFILE Contains the path name of a file to be used as the history file. When the shell
starts, the value of this variable overrides the default history file.

HISTSIZE Contains the maximum number of commands that the shell keeps in the
history file. If this variable contains a valid number when the shell starts, it
overrides the default of 127.

HOME Contains your home directory. This is also the default directory for the cd
command. The HOME variable is set automatically from the Initial Working
Directory field of the POSIX user database (CP directory or External Security
Manager) when the user logs in.

IFS Contains a series of characters to be used as internal field separator
characters. Any of these characters may separate arguments in unquoted
command substitutions such as ˋcommandˋ or $(command), or in parameter
substitutions. In addition, the shell uses these characters to separate values
put into variables with the read command. Finally, the first character in the
value of IFS separates the positional parameters in $* expansion. By default,
IFS contains space, tab, and newline.

LANG Contains the default locale value.

LC_ALL Indicates the locale to be used to override any values for locale categories
specified by LANG or any of the LC_ variables, such as LC_COLLATE,
LC_CTYPE, and LC_MESSAGES, which a user can set and interrogate.

LINENO Contains the number of the line currently being run by a shell script.

LINES Used by several commands to define the number of lines on the terminal
output device.

LOGNAME Contains the user login name. If a variable called LOGNAME exists in the
CENV group of GLOBALV variables, LOGNAME is automatically set to this value.
If LOGNAME does not exist in the CENV group, the LOGNAME environment
variable is set to the user login name.

sh

Chapter 1. OpenExtensions Shell Commands 293

Table 10. Built-in Variables (continued)

Variable Purpose

MAIL Contains the path name of your system mailbox. If the MAILPATH variable
is not set, the OpenExtensions shell tells you when new mail arrives in this
file. The shell assumes that new mail has arrived if the file modification time
changes.

MBOX Contains the path name of your personal mailbox, usually $HOME/mbox,
used to store messages that have been read from your system mailbox. This
variable is usually set in your .profile.

MAILCHECK Contains the number of seconds of elapsed time that must pass before the
system checks for mail; the default value is 600 seconds. When using the
MAIL or MAILPATH variables, the OpenExtensions shell checks for mail before
issuing a prompt.

MAILPATH Contains a list of mailbox files. This overrides the MAIL variable. The
mailbox list is separated by colons. If any name is followed by ?message or
%message, sh displays the message if the corresponding file has changed. sh
performs parameter and command substitution on message, and the variable
_ (temporarily) expands to the name of the mailbox file. If no ?message or %
message is present, the default message is you have mail in $_.

OLDPWD Contains the name of the directory you were previously working in. The cd
command sets this variable.

PATH Contains a list of directories that the system searches to find executable
commands. Directories in this list are separated with colons. sh searches each
directory in the order specified in the list until it finds a matching executable. If
you want the shell to search the working directory, put a null string in the list of
directories (for example, to tell the shell to search the working directory first,
start the list with a colon or semicolon).

PID Contains the decimal value of the process ID of the parent of the shell. See ps.

PS1 Contains the primary prompt string used when the shell is interactive. The
default value is a dollar sign followed by a space ($). The shell expands
parameters before the prompt is printed. A single exclamation mark (!) in
the prompt string is replaced by the command number from the history list;
see the fc command. For a real exclamation mark in the prompt, use !!. This
variable is usually set in your .profile.

PS2 Contains the secondary prompt, or continuation prompt, used when
completing the input of such things as reserved-word commands, quoted
strings, and here documents. The default value of this variable is a greater
than sign followed by a space (>).

PS3 Contains the prompt string used in connection with the select reserved word.
The default value is a number sign followed by a question mark and a space
(#?).

PS4 Contains the prefix for traced commands with set -x. The default value is a
plus sign followed by a space (+).

PWD Contains the name of the working directory. When the shell starts, the working
directory name is assigned to PWD unless the variable already has a value.

RANDOM Returns a random integer. Setting this variable sets a new seed for the random
number generator.

sh

294 z/VM: 7.3 OpenExtensions Commands Reference

Table 10. Built-in Variables (continued)

Variable Purpose

SECONDS Contains elapsed time. The value of this variable grows by 1 for each elapsed
second of real time. Any value assigned to this variable sets the SECONDS
counter to that value; initially the shell sets the value to 0.

SHELL Contains the full path name of the current shell. It is not set by the shell, but is
used by various other commands to invoke the shell. This is set automatically
by the OPENVM SHELL command.

TMOUT Contains the number of seconds before user input times out. If user input has
not been received within this length of time, the shell ends.

TZ Contains the system time zone value used for displaying date and time. This is
set automatically from /etc/profile when the user logs in.

Files
/.sh_history

The default history storage file.
.profile

The user profile for login shell.
/etc/profile

The systemwide profile for login shells.
/tmp/sh*

Temporary files for here-documents, command substitution, history reexecution, and so on. The
default directory /tmp can be overridden by setting the shell variable TMPDIR to the name of some
other directory.

Localization
sh uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• The shell was invoked with an incorrect option.
• The shell was invoked to run a shell script and the command.
• A command syntax error.
• A redirection error.
• A variable expansion error.

sh

Chapter 1. OpenExtensions Shell Commands 295

Otherwise, the exit status of the shell defaults to the exit status of the last command run by the shell. This
default can be overridden by explicit use of the exit or return commands. The exit status of a pipeline is
the exit status of the last command in the pipeline.

Messages and Return Codes
Ambiguous redirection

A redirection construct expanded to more than one path name.
Argument too long

Any single argument to a command is limited in length (see “Limits” on page 297). Command and
parameter substitution may exceed this limit.

Cannot restore privileged state
This message occurs only when the implementation of POSIX does not support the saved IDs option
(_POSIX_SAVED_IDS). The message is generated if you tried to use a saved ID feature to return to a
privileged state.

File file already exists
You are attempting to redirect output into an existing file, but you have turned on the noclobber
option (“set — Set or unset command options and positional parameters” on page 273). If you really
want to redirect output into an existing file, use the construct >|filename, or turn off the option with:

set +o noclobber

File descriptor number already redirected
You attempted to redirect a file descriptor that was already being redirected in the same command.
You can redirect a file descriptor only once.

Hangup
The shell received a hangup signal. This signal typically arises when a communication line is
disconnected—for example, when a phone connection is cut off.

In base#number: base must be in [2,36]
In a number of the form base#number, the value of the base was larger than 36 or less than 2. The
only valid range for bases is from 2 through 36.

Invalid subscript
A shell array was indexed with a subscript that was outside the defined bounds.

Illegal instruction
The shell received an illegal instruction signal. This signal typically occurs when a process tries to
execute something that is not a valid machine instruction recognized by the hardware.

Misplaced subscript array name
The subscript for an array was missing or incorrect.

name is not an identifier
You attempted to use a nonalphanumeric name.

name: readonly variable
The given name is a read-only variable, and cannot be removed or changed (see readonly).

name: no expansion of unset variable
The shell is operating with set –u, and you used an unset variable in a substitution. For more
information, see “set — Set or unset command options and positional parameters” on page 273.

No file descriptor available for redirection
When a file descriptor is redirected, the old value is remembered by the shell by a duplication to yet
another file descriptor. The total number of file descriptors is limited by the system; hence, the shell
may run out, even though your command appears to be using far fewer than the maximum number of
descriptors.

Nested aliases
You have more than nine levels of aliases. For example:

alias a1=a2 a2=a3 a3=a4 ... a10=command

sh

296 z/VM: 7.3 OpenExtensions Commands Reference

causes this error.
Pipe for coprocess

The shell cannot create a pipe for a coprocess. This may mean that your session or the system as a
whole has already set up its maximum number of pipes.

...: restricted
If the shell has been invoked as a restricted shell, certain things are disallowed—for example, the cd
command, setting PATH, and output redirection.

Temporary file error using here document
sh tried to create a temporary file holding the contents of a <<word here-document. However, the
temporary file could not be created. This may indicate a lack of space on the disk where temporary
files are created.

Word after ... expanded to more than one argument
In a context where only one argument was expected, a construct expanded to more than one
argument.

Limits
The size of the command argument and the exported variables passed between the shell and the utilities
it runs is dependent on the operating system.

A single command line is restricted to 2024 bytes.

The maximum length of an executable file name, including subdirectories and extensions, is dependent
on the operating system.

Portability
POSIX.2, X/Open Portability Guide.

The construct $[arithmetic expression] is an extension of the POSIX standard.

Related Commands
alias, break, cd, continue, dot, echo, eval, exec, exit, export, fc, getopts, let, print, ps, pwd, read,
readonly, return, set, shift, test, time, trap, true, typeset, unalias, unset, whence

sh

Chapter 1. OpenExtensions Shell Commands 297

shift — Shift positional parameters

shift [expression]

Purpose
shift renames the positional parameters so that i+nth positional parameter becomes the ith positional
parameter, where n is the value of the given arithmetic expression. If you omit expression, the default
value is 1. The value of expression must be between zero and the number of positional parameters ($#),
inclusive.

Usage Notes
This command is built into the shell.

Examples

The commands:

set a b c d
shift 2
echo $*

produce:

c d

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because the expression had a negative value or was greater than the number of positional
parameters.

hledi messages. Possible error messages include:
bad shift count expr

You specified an expression that did not evaluate to a number in the range from 0 to the number of
remaining positional parameters.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Allowing an expression, rather than just a number, is an extension found in the OpenExtensions shell (a
KornShell).

Related Commands
set, sh

shift

298 z/VM: 7.3 OpenExtensions Commands Reference

showexp — See the OPENVM SHOWMMOUNT command
The showexp shell command is not available. Use the OPENVM SHOWMOUNT command in place of the
showexp command. See “OPENVM SHOWMOUNT” on page 458.

showexp

Chapter 1. OpenExtensions Shell Commands 299

sleep — Suspend execution of a process for an interval of time

sleep seconds

Purpose
The sleep command continues running until the specified number of seconds has elapsed. sleep can
delay execution of a program or produce periodic execution in conjunction with shell commands.

The seconds argument can be either a number of seconds, or a more general time description of the form
nhnmns, with the nh, nm, and the ns being optional.

Examples

sleep 20h10m

sleeps for 20 hours and 10 minutes (or 72600 seconds).

Localization
sleep uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
2

Failure because you specified no seconds value or because seconds is an incorrect argument (for
example, incorrect format).

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
date

sleep

300 z/VM: 7.3 OpenExtensions Commands Reference

sort — Start the sort-merge utility

sort [-cmu] [-o outfile] [-t char] [–y[n]] [–zn] [–bdfiMnr]
 [-k startpos[,endpos]] ... [file ...]
sort [-cmu] [-o outfile] [–t char] [–yn] [–zn] [–bdfiMnr]
 [+startposition [-endposition]] ... [file ...]

Purpose
The sort command implements a full sort-and-merge utility. sort operates on input files containing
records that are separated by the newline character. The following options select particular operations:
–c

Checks input files to ensure that they are correctly ordered according to the key position and sort
ordering options specified, but does not modify or output the files. This option affects only the exit
code.

–m
Merges files into one sorted output stream. This option assumes that each input file is correctly
ordered according to the other options specified on the command line; you can check this with the –c
option.

–u
Ensures that output records are unique. If two or more input records have equal sort keys, sort writes
only the first record to the output. When you use –u with –c, sort prints a diagnostic message if the
input records have any duplicates.

When you do not specify either the –c or the –m option, sort sorts the concatenation of all input files and
produces the output on standard output.

Options
Options that control the operation of sort are:
–o outfile

Writes output to the file outfile. By default, sort writes output to the standard output. The output
file can be one of the input files. In this case, sort makes a copy of the data to allow the (potential)
overwriting of the input file.

–t char
Indicates that the character char separates input fields. When you do not specify the –t option, sort
assumes that any number of white-space (blank or tab) characters separate fields.

–y[n]
Restricts the amount of memory available for sorting to n KB of memory (where a KB of memory
is 1024 bytes). If n is missing, sort chooses a reasonable maximum amount of memory for sorting,
dependent on the system configuration. sort needs at least enough memory to hold five records
simultaneously. If you try to request less, sort automatically takes enough. When the input files
overflow the amount of memory available, sort automatically does a polyphase merge (external
sorting) algorithm, which is, of necessity, much slower than internal sorting. When you use –u with
–c, sort prints a diagnostic message if the input records have any duplicates. Using the –y option may
therefore improve sorting performance substantially for medium to large input files.

–zn
Indicates that the longest input record (including the newline character) is n bytes in length. By
default, record length is limited to LINE_MAX.

The following options control the way in which sort does comparisons between records in order to
determine the order in which the records are placed on the output. The ordering options apply globally

sort

Chapter 1. OpenExtensions Shell Commands 301

to all sorting keys except those keys for which you individually specify the ordering option. For more on
sorting keys, see “Sorting Keys” on page 302.
–b

Skips, for comparison purposes, any leading white space (blank or tab) in any field (or key
specification).

–d
Uses dictionary ordering. With this option, sort examines only blanks, uppercase and lowercase
letters, and numbers when making comparisons.

–f
Converts lowercase letters to uppercase for comparison purposes.

–i
Ignores, for comparison purposes, nonprintable characters.

–k [startpos [endpos]].
Specifies a sorting key. For more information, see “Sorting Keys” on page 302.

–M
Assumes that the field contains a month name for comparison purposes. Any leading white space is
ignored. If the field starts with the first three letters of a month name in uppercase or lowercase, the
comparisons are in month-in-year order. Anything that is not a recognizable month name compares
less than JAN.

–n
Assumes that the field contains an initial numeric value. sort sorts first by numeric value and then by
the remaining text in the field according to options.

Numeric fields can contain leading optional blanks or optional minus (-) signs. sort does not recognize
the plus (+) sign.

This option treats a field which contains no digits as if it had a value of zero.

–r
Reverses the order of all comparisons so that sort writes output from largest to smallest rather than
smallest to largest.

Sorting Keys
By default, sort examines entire input records to determine ordering. By specifying sorting keys on the
command line, you can tell sort to restrict its attention to one or more parts of each record.

You can indicate the start of a sorting key with:

-k m[.n][options]

where m and the optional n are positive integers. You can choose options from the set bdfiMnr (described
previously) to specify the way in which sort does comparisons for that sorting key. Ordering options set
for a key override global ordering options. If you do not specify any options for the key, the global ordering
options are used.

The number m specifies which field in the input record contains the start of the sorting key. The character
given with the –t option separates input fields; if this option is not specified, spaces or tabs separate the
fields. The number n specifies which character in the mth field marks the start of the sorting key; if you do
not specify n, the sorting key starts at the first character of the mth field.

You can also specify an ending position for a key, with:

-k m[.n][options],
p[.q][options]

sort

302 z/VM: 7.3 OpenExtensions Commands Reference

where p and q are positive integers, indicating that the sort key ends with the qth character of the pth
field. If you do not specify q or if you specify a value of 0 for q, the sorting key ends at the last character of
the pth field. For example:

-k 2.3,4.6

defines a sorting key that extends from the third character of the second field to the sixth character of the
fourth field.

sort also supports a historical method of defining the sorting key. Using this method, you indicate the start
of the sorting key with:

+m[.n][options]

which is equivalent to:

–k m+1[.n+1][options]

You can also indicate the end of a sorting key with:

–p[.q][options]

which when preceded with +m[.n] is equivalent to:

–k m+1[.n+1],p.0[options]

if q is specified and is zero, or

–k m+1[.n+1],p+1[.q+1][options]

Otherwise, for example:

+1.2 -3.5

defines a sorting key with a starting position that sort finds by skipping the first field and two characters
of the next field, and an ending position that sort finds by skipping the first three fields and then the first
five characters of the next field. In other words, the sorting key extends from the third character of the
second field to the sixth character of the fourth field. This is the same key as defined under the –k option,
described earlier.

With either syntax, if the end of a sorting key is unspecified or is not a valid position after the beginning
key position, the sorting key extends to the end of the input record.

You can specify multiple sort key positions by using several –k options or several + and – options. In
this case, sort uses the second sorting key only for records where the first sorting keys are equal, the
third sorting key only when the first two are equal, and so on. If all key positions compare equal, sort
determines ordering by using the entire record.

When you specify the –u option to determine the uniqueness of output records, sort looks only at the
sorting keys, not the whole record. (Of course, if you specify no sorting keys, sort considers the whole
record to be the sorting key.)

Examples

1. To sort an input file having lines consisting of the day of the month, white space, and the month, as in:

30 December
23 MAY
25 June
10 June

use the command:

sort -k 2M -k 1n

sort

Chapter 1. OpenExtensions Shell Commands 303

2. To merge two dictionaries, with one word per line:

sort –m –dfi dict1 dict2 >newdict

Environment Variables
TMPDIR

Contains the path name of the directory to be used for temporary files.

Files
/tmp/stm*

Temporary files used for merging and –o option. You can specify a different directory for temporary
files using the TMPDIR environment variable.

Localization
sort uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES
• LC_NUMERIC
• LC_TIME

The –M option works only if LC_TIME identifies a locale that contains the same month names as the
POSIX locale.

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion. Also returned if –c is specified and the file is in correctly sorted order.
1

Returned if you specified –c and the file is not correctly sorted. Also returned to indicate a nonunique
record if you specified –cu.

2
Failure due to any of the following:

• Missing key description after –k
• More than one –o option
• Missing file name after –o
• Missing character after –t
• More than one character after –t
• Missing number with –y or –z
• endposition given before a startposition
• Badly formed sort key
• Incorrect command-line option
• Too many key field positions specified

sort

304 z/VM: 7.3 OpenExtensions Commands Reference

• Insufficient memory
• Inability to open the output file
• Inability to open the input file
• Error in writing to the output file
• Inability to create a temporary file or temporary file name

Messages and Return Codes
Possible error messages include:
Badly formed sort key position x

The key position was not specified correctly. Check the format and try again.
File filename is binary

sort has determined that filename is binary because it found a NULL (' ') character in a line.
Missing key definition after -k

You specified –k, but did not specify a key definition after the –k.
Nonunique key in record ...

With the –c and –u options, a nonunique record was found.
Not ordered properly at ...

With the –c option, an incorrect ordering was discovered.
Line too long: limit nn — truncated

Any input lines that are longer than the default number of bytes (LINE_MAX) or the number specified
with the –z option are truncated.

No newline at end of file
Any file not ending in a newline character has one added.

Insufficient memory for ...
This error normally occurs when you specify very large numbers for –y or –z and there is not enough
memory available for sort to satisfy the request.

Write error (no space) on output
Some error occurred in writing the standard output. Barring write-protected media and the like, this
normally occurs when there is insufficient disk space to hold all of the intermediate data.

Temporary file error (no space) for ...
Insufficient space was available for a temporary file. Make sure that you have a directory named /tmp,
and that this directory has space to create files. You can change the directory for temporary files using
the ROOTDIR and TMPDIR environment variables.

Tempfile error on ...
The named temporary (intermediate) file could not be created. Make sure that you have a directory
named /tmp, and that this directory has space to create files. You can change the directory for
temporary files using the TMPDIR environment variable.

Tempnam() error
sort could not generate a name for a temporary working file. This should almost never happen.

Too many key field positions specified
This implementation of sort has a limit of 64 key field positions.

Portability
POSIX.2.

Available on all UNIX systems, with only UNIX System V.2 or later having the full utility described here.

The –M, –y, and –z options are extensions of the POSIX standard.

sort

Chapter 1. OpenExtensions Shell Commands 305

Related Commands
awk, comm, cut, join, uniq

The sortgen awk script is a useful way to handle complex sorting tasks. It originally appeared in The AWK
Programming Language, by Aho, Weinberger, and Kernighan. The POSIX standard regards the historical
syntax for defining sorting keys as obsolete. Therefore, you should use only the –k option in the future.

sort

306 z/VM: 7.3 OpenExtensions Commands Reference

strip — Remove unnecessary information from an executable file

strip file ...

Purpose
strip removes any data from an executable file with a view to conserving disk space for production (that
is, already debugged) programs. This program does not modify the contents of any executable binary file.
The strip command does not affect the contents of a file compiled under VM.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• file could not be opened
• An error occurred while reading file
• file is not an executable file
• file is executable, but appears corrupted

2
No file was specified on the command line

Messages and Return Codes
Possible error messages include:
file name: system error

The named executable file does not exist or is unreadable.
Cannot create temporary file

A temporary file cannot be created.
Output error (no space) on file

There is insufficient disk space to hold a temporary copy of the executable file. For implementation
reasons, strip makes a copy of each file being stripped.

File name: not in executable format
This is a warning that file name will not be modified.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

strip

Chapter 1. OpenExtensions Shell Commands 307

stty — Set or display terminal options

stty [–ag] [operand]

Purpose
stty sets or reports the terminal I/O characteristics for the standard input device. stty, entered without
options or operands, reports only the terminal I/O characteristics that differ from the defaults. stty,
entered with operands enables, disables, or selects the full range of terminal I/O characteristics.

Options
This command recognizes the following options:
–a

Displays all of the terminal I/O characteristics.
–g

Displays all of the terminal I/O characteristics in a format that can be used as input to the stty
command.

The –a option gives you a clear readable description, whereas the –g option provides the ability to save
and restore the terminal I/O characteristics.

stty entered with operands enables, disables, or selects the full range of terminal I/O characteristics.

Control Mode Operands
The valid operands for setting control modes are:
parenb

Enable parity generation and detection.
–parenb

Disable parity generation and detection.
parodd

Select odd parity.
–parodd

Select even parity.
cs5

Select character size CS5.
cs6

Select character size CS6.
cs7

Select character size CS7.
cs8

Select character size CS8.
number

Set the input and output baud rates to number. A number of zero hangs up the modem line.
ispeed number

Set the input baud rate to number. A number of zero sets the input baud rate to the same value as the
output baud rate.

ospeed number
Set the output baud rate to number. A number of zero hangs up the modem line.

stty

308 z/VM: 7.3 OpenExtensions Commands Reference

hupcl
Hang up the modem line on the last close.

–hupcl
Do not hang up the modem line on the last close.

hup
Hang up the modem line on the last close.

–hup
Do not hang up the modem line on the last close.

cstopb
Use two stop bits per character.

–cstopb
Use one stop bit per character.

cread
Enable the receiver.

–cread
Disable the receiver.

clocal
Assume a line without modem control.

–clocal
Assume a line with modem control.

Input Mode Operands
The valid operands for setting input modes are:
ignbrk

Ignore break on input.
–ignbrk

Do not ignore break on input.
brkint

Signal INTR on break.
–brkint

Do not signal INTR on break.
ignpar

Ignore parity errors.
–ignpar

Do not ignore parity errors.
parmrk

Mark parity errors.
–parmrk

Do not mark parity errors.
inpck

Enable input parity checking.
–inpck

Disable input parity checking.
istrip

Strip input characters to seven bits.
–istrip

Do not strip input characters to seven bits.
inlcr

Map newline to carriage return on input.

stty

Chapter 1. OpenExtensions Shell Commands 309

–inlcr
Do not map newline to carriage return on input.

igncr
Ignore carriage return on input.

–igncr
Do not ignore carriage return on input.

icrnl
Map carriage return to newline on input.

–icrnl
Do not map carriage return to newline on input.

ixon
Enable START/STOP output control.

–ixon
Disable START/STOP output control.

ixoff
Ask the system to send START/STOP characters to regulate the size of the input queue.

–ixoff
Ask the system not to send START/STOP characters to regulate the size of the input queue.

Output Mode Operands
The valid operands for setting output modes are:
onlcr

Converts newline characters to newline-carriage return sequences.
–onlcr

Newline characters are displayed as newlines only.
opost

Postprocess output.
–opost

Do not postprocess output. Ignore all other output modes.

Local Mode Operands
The valid operands for setting local modes are:
isig

Enable character checking against the special control characters INTR, QUIT and SUSP.
–isig

Disable character checking against the special control characters INTR, QUIT and SUSP.
icanon

Enable canonical input mode (ERASE and KILL processing).
–icanon

Disable canonical input mode (ERASE and KILL processing).
iexten

Enable any custom special control characters.
–iexten

Disable any custom special control characters.
echo

Echo every character typed.
–echo

Do not echo every character typed.

stty

310 z/VM: 7.3 OpenExtensions Commands Reference

echoe
Enable the ERASE character to visibly erase the latest character.

–echoe
Do not enable the ERASE character to visibly erase the latest character.

echok
Echo newline after a KILL character.

–echok
Do not echo newline after a KILL character.

echonl
Echo newline (even when echo is disabled).

–echonl
Do not echo newline when echo is disabled.

noflsh
Disable flush after INTR, QUIT, and SUSP.

–noflsh
Enable flush after INTR, QUIT, and SUSP.

tostop
Send the SIGTOU signal for background output.

–tostop
Do not send the SIGTOU signal for background output.

Control Character Operands
The valid operands for assigning special control characters are:
min number

Set min to number.
time number

Set time to number.
eof string

Set end of file character to char.
eol char

Set end of line character to char.
erase char

Set ERASE character to char.
intr char

Set INTR character to char.
kill char

Set KILL character to char.
quit char

Set QUIT character to char.
susp char

Set SUSP character to char.
start char

Set START character to char.
stop char

Set STOP character to char.
pfx char

Set control sequence escape character to char.
rpfx

Return control sequence escape character to default (¢).

stty

Chapter 1. OpenExtensions Shell Commands 311

Combination Mode Operands
The valid operands for setting combination modes are:
saved-settings

Set the terminal I/O characteristics to the saved settings produced by the –g option.
evenp

Enable parenb and cs7; disable parodd.
parity

Enable parenb and cs7; disable parodd.
oddp

Enable parenb, cs7 and parodd.
–parity

Disable parenb and set cs8.
–evenp

Disable parenb and set cs8.
–oddp

Disable parenb and set cs8.
nl

Enable icrnl.
–nl

Disable icrnl; unset inlcr and igncr
ek

Reset ERASE and KILL characters to system defaults.
sane

Reset all modes to reasonable values.

Localization
stty uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because of any of the following:

Note: In the following exit status values, the word termios refers to the terminal's I/O settings as
defined in termios.h.

• Error setting termios attributes
• Unknown mode
• Missing number after option
• Argument out of range
• Bad number after option

stty

312 z/VM: 7.3 OpenExtensions Commands Reference

• Internal error
• Error reading termios attributes
• Missing character after option
• Badly formed argument option character
• Missing speed after ispeed or ospeed
• Bad speed argument

Portability
POSIX.2, UNIX system V.

stty

Chapter 1. OpenExtensions Shell Commands 313

su — Change the user ID associated with a session

su

Purpose
The su command starts a new shell and lets you operate in it with the privileges of a superuser.

The su command changes your authorization to that of the superuser. The superuser environment is built
and then a new session is initiated for the superuser. The new superuser session is run as a subshell of
the shell issuing the su command. The session that is initiated will be started as a login shell.

The functions performed by su are as follows:

• Changes the user ID to that of the superuser. After verifying that the user is authorized, the user ID is
changed to the superuser's user ID.

• Sets up the shell environment for the superuser. The superuser's environment is set up to be as
similar as possible to the environment of the shell issuing the su command. Information is obtained
from the user database. Values not found in the user database (the CP directory or External Security
Manager) are defaulted. If the value for the initial program (shell) is not available, a default value
of /bin/sh is used.

• Executes the superuser shell. Initialization of a login shell to run under the existing shell, as a subshell
takes place. This subshell will be a child process of the shell issuing the su command. If the su
command is run from a restricted shell (such as a shell that was started with the –r option), you will exit
from the restricted shell and leave the protection of the trusted environment.

To restore the previous session, enter exit or press <EscChar-D>. This action ends the subshell initiated
by the su command and returns you to the previous shell, user ID, and environment. See z/VM:
OpenExtensions User's Guide for more information on exiting the shell environment.

Usage Notes
To use this command, the BFS server must have CP authority to change POSIX user IDs. The CP directory
entry for the BFS server must contain the line, POSIXOPT SETIDS ALLOW. If the server does not have
this authority, then issuing this command will result in a system abend with CMS abend code ADE.

Exit Values
Possible exit status values are:
0

The command completed successfully
1

User is not authorized to obtain superuser authority
2

Failure due to any of the following:

• Unable to execute the shell
• No entry found for this user in the user database
• Unable to set up the superuser environment.

3
Failure due to any of the following:

• Incorrect command syntax
• Unable to open the message catalog

su

314 z/VM: 7.3 OpenExtensions Commands Reference

Messages and Return Codes
Possible error messages include:
User not authorized to obtain superuser authority

The user ID issuing the su command does not have the proper authorization to obtain superuser
authority. Contact the system programmer.

Unable to set up the user environment. Processing terminates.
The environment variables required by the shell have not been set set up. Processing terminates.
Contact the system programmer.

Unable to execute the shell.
The initial program (shell) was not run. Verify that the initial program (shell) exists on this system and
that the user has permission to execute it.

Limits
By default, a user must be a superuser or a member of group ID 0 and have permission to execute
set-id files to use the su command. See z/VM: CP Planning and Administration for more information about
permission to execute set-id files.

Portability
None. This command is an extension that comes with OpenExtensions services.

Related Commands
sh, OPENVM SHELL

su

Chapter 1. OpenExtensions Shell Commands 315

tail — Display the last part of a file

tail [–f] [–bcklmn [±]number] [file]
tail [–f] [±number[bcklmn]] [file]

Purpose
Calling tail without options displays the last ten lines of file. This is useful for seeing the most recent
entries in log files and any file where new information is added on the end.

Note: The tail command is used with text files. To make a binary file input to the tail command, use the –c
option. If a binary file is input without the –c option being specified, the entire file is sent to the screen.

Options
+|-number

Is either of the following:
+number

Skips to line number and then displays the rest of the file. For example, +100 prints from line 100
to the end of the file.

–number
Prints number lines from the end of the file. For example, -20 prints the last 20 lines in the file.

You can precede or follow both +number and –number with one of the following letters to indicate the
unit to be used:
b

Blocks
c

Bytes
k

Kilobytes
l or n

Lines
m

Megabytes

The default unit is lines.

–f
Monitors a file as it grows. Every 2 seconds, tail wakes up and prints any new data at the end of the
file. This option is ignored if tail read from the standard input, and standard input is a pipe.

Localization
tail uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

tail

316 z/VM: 7.3 OpenExtensions Commands Reference

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Insufficient memory
• Write error on the standard output
• Badly formed line or character count
• Missing number after an option
• Error reopening a file descriptor

2
Failure due to an unknown command-line option

Messages and Return Codes
Possible error messages include:
Badly formed line/character count string

In an option of the form –n number or –number, the number was not a valid number.
Reopening file descriptor number

–f was used to follow a file as it grew. tail closed the file associated with the given file descriptor
number and then tried to open it 2 seconds later. At this point, tail found it could not reopen the file
for reading, and therefore could not follow the file any longer.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The POSIX standard does not include the use of b, k, or m as either options or suffixes. -l is an extension
of the traditional implementation of tail.

Related Commands
cat, head

tail

Chapter 1. OpenExtensions Shell Commands 317

tar -- Manipulate the tar archive files to copy or back up a file

tar –c[#sbfvwlzU] [–V volpat] [tarfile] [blocksize] [–C pathname] [file …]
tar –r[#sbfvwlU] [–V volpat] [tarfile] [blocksize] [file …:]
tar –t[#sbfvzU] [–V volpat] [tarfile] [blocksize] [–C pathname] [file …]
tar –u[#sbfvwlU] [–V volpat] [tarfile] [blocksize] [file …:]
tar –x[#sbfvwpmozU] [–V volpat] [tarfile] [blocksize] [file …]

Purpose
tar manipulates archives. An archive is a single file that contains the complete contents of a set of other
files; an archive preserves the directory hierarchy that contained the original files, in a manner similar to
cpio. The name tar was derived from Tape ARchiver; however, you can use archives with any medium.

This version of the tar utility writes and reads the original tar format from UNIX systems as well as the
USTAR format defined by the POSIX (IEEE P1003.1) standards group.

Options
The five forms of the command shown in the syntax represent the main functions of tar as follows:
–c

Creates an archive. This command writes each named file into a newly created archive. Directories
recursively include all components. Under the USTAR (–U) option, tar records directories and other
special files in the tape archive; otherwise, it ignores such files. If – appears in place of any file name,
tar reads the standard input for a list of files one per line. This allows other commands to generate
lists of files for tar to archive.

–r
Writes the named files to the end of the archive. It is possible to have more than one copy of a file in
a tape archive using this method. To use this form of the command with a tape, it must be possible to
backspace the tape.

Note: You cannot specify both the -u option and the -z option at the same time.

–t
Displays a table of contents. This displays the names of all the files in the archive, one per line. If you
specify one or more files on the command line, tar prints only those file names. Under the verbose
(–v) option, more information about each tape archive member is printed, in a format similar to that
produced by ls –l.

–u
Writes the named files to the end of the archive only if it is not in the archive already or if it has been
modified since being written to the archive. It is possible to have more than one copy of a file in a
tape archive using this method. To use this form of the command with a tape, it must be possible to
backspace the tape.

Note: You cannot specify both the -u option and the -z option at the same time.

–x
Extracts files from an archive. tar extracts each named file to a file of the same name. If you did not
specify any files on the command line, all files in the archive are extracted. This extraction restores all
file system attributes as controlled by other options.

You must specify one of the preceding basic options as the first character of an option string. You can
add other characters to the option string. Unlike with other commands, you must give options as a single
string; for example, you might specify –tv, but you cannot separate them, as in "-t -v." You can omit the
leading dash – if you want. Other possible options in the option string are:

tar

318 z/VM: 7.3 OpenExtensions Commands Reference

b
Sets the number of 512-byte blocks used for tape archive read/write operations to blocksize. The
blocksize argument must be specified, and blocksize can be specified only when b is in the option
string. When reading from the tape archive, tar automatically determines the blocking factor by trying
to read the largest permitted blocking factor and using the actual number read to be the blocksize. For
UNIX compatibility, the largest valid block size is 20 blocks; in USTAR mode, it is 60 blocks.

–C pathname
Is an unusual option because it is specified in the middle of your file list. When tar encounters a –C
pathname option while archiving files, it changes the working directory (for tar only) to pathname and
treats all following entries in your file list (including another –C) as being relative to pathname.

f
You must specify f. The f option uses the file tapefile for the tape archive rather than using the default.
The tapefile argument must be specified, and tapefile can be specified only when f is in the option
string. The tapefile argument must precede the blocksize argument if both are present. If tapefile is
the character –, the standard input is used for reading archives, and the standard output is used for
writing archives.

#s
#s is not supported on OpenExtensions. The default archive file name used by tar is /dev/mt/0m. This
option is the least general way to override this default. For a more general method, see the f option.
The file name generated by this option has the form /dev/mt/#s. The # can be any digit between 0
and 7, inclusive, to select the tape unit. The density selector s can be l (low), m (medium), or h (high).

l
Complains if all links are not resolved when adding files to the tape archive.

m
Does not restore a file's modification time stamp when extracting it from an archive. The default
behavior is to restore the time stamp from information contained in the archive.

o
When writing files to an archive, does not record owner and modes of directories in the archive. If this
is specified when extracting from an existing tar archive, tar does not restore any owner and group
information in the archive. The default is to record this information when creating a tar archive, and to
restore it when extracting from the archive.

p tar archive
When extracting, restores the three high-order file permission bits, exactly as in the archive. They
indicate the set-user-ID, set-group-ID, and sticky bit. To use p on UNIX systems, you must have
appropriate privileges; tar restores the modes restored exactly as in the archive and ignores the
UMASK.

U
When creating a new tape archive with the –c option, forces tar to use the USTAR format. The default
format used when creating a new archive is the original UNIX tar format. When you do not specify
–c, tar can deduce whether the tape archive is in USTAR format by reading it, so you can use U to
suppress a warning about USTAR format.

v
Displays each file name, along with the appropriate action key letter as it processes the archive. With
the –t form of the command, this option gives more detail about each archive member being listed.

-V volpat
Provides automatic multivolume support. tar writes output to files—the names of which are formatted
with volpat. Any occurrence of # in volpat is replaced by the current volume number. When you
invoke tar with this option, it prompts for the first number in the archive set, and wait for you to type
the number and a carriage return before proceeding with the operation. tar issues the same sort of
message when a write error or read error occurs on the archive; this kind of error means that tar has
reached the end of the volume and should go on to a new one.

tar

Chapter 1. OpenExtensions Shell Commands 319

w
Is used to confirm each operation, such as replacing or extracting. tar displays the operation and the
file involved. You can then confirm whether you want the operation to take place. Typing in an answer
that begins with "y" tells tar to do the operation; anything else tells tar to go on to the next operation.

z
Reads or writes, or both reads and writes, the tape archive by first passing through a compression
algorithm compatible with that of compress.

Note: You cannot specify the –r or the –u option with the –z option at the same time.

Examples

1. The following command takes a directory and places it in an archive in compressed format:

tar -cvzf archive directory

2. To identify all files that have been changed in the last week (7 days), and to archive them to the /tmp/
posix/testpgm file, enter:

find /tmp/posix/testpgm -type f -mtime -7 | tar -cvf testpgm.tar -

-type -f tells find to select only files. This avoids duplicate input to tar.

Exit Values
Possible exit status values:
0

Successful completion.
1

Failure due to any of the following:

• Incorrect option
• Incorrect command-line arguments
• Out of memory
• Compression error
• Failure on extraction
• Failure on creation

Limits
Path names in the tape archive are normally restricted to a maximum length of 100 bytes. However, in
USTAR mode, path names can be up to 255 bytes long.

Portability
4.2BSD (Berkeley Software Distribution).

The –U option is an extension to provide POSIX USTAR format compatibility. The –p option is an common
extension on BSD UNIX systems that is not available on UNIX system V systems.

Related Commands
cpio, pax

tar

320 z/VM: 7.3 OpenExtensions Commands Reference

tee — Duplicate the output stream

tee [–ai] [file ...]

Purpose
The tee command clones an output stream. It copies the standard input to each output file as well as to
the standard output.

Options
–a

Appends to (rather than overwrites) each output file.
–i

Ignores interrupt signals, making it suitable for use as a background process.

Examples

The following command runs the program prog and pipes the program's standard output into tee:

prog | tee file

As a result, tee writes the output to both the standard output and the specified file.

Localization
tee uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Out of memory when allocating I/O buffers
• I/O error reading or writing to a file
• Error creating an output file
• Error opening an output file for appending

2
Failure due to incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

tee

Chapter 1. OpenExtensions Shell Commands 321

Related Commands
cat

tee

322 z/VM: 7.3 OpenExtensions Commands Reference

test or [] — Test for a condition

test expression [expression]

Purpose
The test command checks for various properties of files, strings, and integers. It produces no output
(except error messages) but returns the result of the test as the exit status.

The command line is a Boolean expression. The simplest expression is a string that is true if the string
is nonempty (that is, has nonzero length). More complex expressions are composed of operators and
operands, each of which is a separate argument (that is, surrounded by white space). The operators imply
the number and type of their operands. The operators taking a file operand evaluate as false (without
error) if the file does not exist.

Options
–b file

True if the file is a block special file
–c file

True if the file is a character special file
–d file

True if the file is a directory
–e file

True if the file exists
–f file

True if the file is an ordinary file
–g file

True if the set-group-ID attribute of the file is on
–h file

True if the file is a hard link
–k file

True if the "sticky" bit is on file is on
–L file

True if file is a symbolic link
–n string

True if the length of string is greater than zero
–p file

True if the file is a FIFO (named pipe)
–r file

True if the file is readable
–s file

True if the size of the file is nonzero
–t fd

True if the numeric file descriptor fd is open and associated with a terminal
–u file

True if the set-user-ID attribute of the file is on
–w file

True if the file is writable

test

Chapter 1. OpenExtensions Shell Commands 323

–x file
True if the file is executable

–z string
True if the length of the string is zero

string
True if string is not a null string

string1 = string2
True if string1 and string2 are identical

string != string
True if string1 and string2 are not identical

number1 –eq number2
True if number1 and number2 are equal

Within the OpenExtensions shell, either number can be an arbitrary shell arithmetic expression; the
same applies for the other five numerical comparisons that follow. Both number1 and number2 must be
integers.

number1 –ge number2
True if number1 is greater than or equal to number2

number1 –gt number2
True if number1 is greater than number2

number1 –le number2
True if number1 is less than or equal to number2

number1 –lt number2
True if number1 is less than number2

number1 –ne number2
True if number1 is not equal to number2

file1 –nt file2
True if file1 is newer than file2

file1 –ot file2
True if file1 is older than file2

file1 –ef file2
True if file1 has the same device and inode number as file2

expr1 –a expr2
Logical AND; true if both expr1 and expr2 are true

expr1 –o expr2
Logical OR; true if either expr1 and expr2 is true

! expr
Logical negation; true if expr is false

(expr)
Binding; true if expr is true

The precedence of the operators in descending order is: unary operators, comparison operators, logical
AND, logical OR.

The second form of the test command:

[expression]

is synonymous with the first.

test

324 z/VM: 7.3 OpenExtensions Commands Reference

Usage Notes
test is built into the shell and is also implemented as a separate utility. test can compare variables;
however, if the variable is null, the expression may be incorrect for test. For example:

NULL=
test $NULL = "so"

does not work, because the OpenExtensions shell expands this to:

test = "so"

which is not a valid expression for test. A way to get around this is to add some value to the beginning of
both strings, as in:

test x$NULL = x"so"

Failure to quote variable expansions is a common mistake. For example:

test $NULL != string

If NULL is undefined or empty, this results in:

test != string

which is not a valid test expression. This problem can be fixed by enclosing $NULL in quotes.

Note: These two examples perform basically the same function; that is, they protect the command
against a variable having a possible null value.

Examples

The following command reports on whether the first positional parameter contains a directory or a file:

if [-f $1]
then
 echo $1 is a file
elif [-d $1]
then
 echo $1 is a directory
else
 echo $1 neither file nor directory
fi

This example illustrates the use of test, and is not intended to be an efficient method.

Exit Values
Possible exit status values are:
0

The expression was true.
1

The expression was false.
2

The expression was badly formed.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –k, –L, –nt, –ot, –ef, –a, and –o operators plus the use of parentheses to group operators together
are all extensions of the POSIX standard.

test

Chapter 1. OpenExtensions Shell Commands 325

Related Commands
expr, find, let, ls, sh

test

326 z/VM: 7.3 OpenExtensions Commands Reference

time — Display processor and elapsed times for a command

time [–p] command-line

Purpose
time runs the command given as its argument and produces a breakdown of total time to run (real), total
time spent in the user program (user), and total time spent in system processor overhead (sys).

Times given are statistical, based on where execution is at a clock tick.

Options
–p

Guarantees that the historical format of the time command is output.

Usage Notes
time is a built-in shell command.

Environment Variables
time uses the following environment variable:
PATH

Determines the search path that time uses to locate the command specified in command-line.

Exit Values
Possible exit status values are:
0

Successful completion
1

An error occurred in the time utility.
2

Failure due to an invalid command-line option.
2

Invalid command-line argument.
126

time found command but was unable to invoke it.
127

time was unable to find command.

Localization
time uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES
• LC_NUMERIC

time

Chapter 1. OpenExtensions Shell Commands 327

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
time returns the exit status returned by command-line.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
sh

time

328 z/VM: 7.3 OpenExtensions Commands Reference

times — Get process and child process times

times [–p]

Purpose
times displays user and system times accumulated by the shell and commands run as children of the
shell.

Options
times recognizes the following option:
–p

Formats the output in seconds without units. For example, 1 minute and 3.47 seconds is displayed as:

63.47

Times are displayed in minutes and seconds. User time is processor time spent in user programs.
System time is processor time spent in the operating system on behalf of the user process. The output
layout is:

shell user time shell system time
child user time child system time

Usage Notes
times is a built-in shell command.

Exit Values
Possible exit status values are:
0

Successful completion
2

Failure that resulted in a usage message, usually due to an incorrect command-line option

Portability
X/Open Portability Guide.

Related Commands
sh, time

times

Chapter 1. OpenExtensions Shell Commands 329

touch — Change the file access and modification times

touch [–acm] [–f agefile] [–r agefile] [–t time] file ...
touch [–acm] time file ...

Purpose
The touch command changes certain dates for each file argument. By default, touch sets both the date
of last file modification and the date of last file access to the current time. This is useful for maintaining
correct release times for software and is particularly useful in conjunction with the make command.

Options
–a

Sets only the access time.
–c

Does not create any file that does not already exist. Normally, touch creates such files.
–m

Sets only the modification time.

If you do not specify –a or –m, touch behaves as though you specified both.

To tell touch to use a time other than the current, use one of the following options:
–f agefile

Is an obsolete version of the –r option.
–r agefile

Sets the access and modification times (as indicated by the other options) to those kept for agefile.
–t time

specifies a particular time using this format: [[[[cc]yy]mm]dd]hhmm [.ss]

where:

• cc is the first two digits of the year (optional)
• yy is the last two digits of the year (optional)
• mm is the number of the month (01—12) (optional)
• dd is the day of the month (optional)
• hh is the hour in 24-hour format (required)
• mm is the minutes (required)
• ss is the seconds (optional)

An obsolete (but still supported) version of this command lets you omit the –t, but the format is:

[[mm]dd]hhmm[.ss]

or:

mmddhhmmyy[.ss]

Examples

1. To set the modification time of newfile to the present, enter:

touch newfile

touch

330 z/VM: 7.3 OpenExtensions Commands Reference

2. To set the modification time of oldfile to 13:05 on July 3, 1994, enter:

touch -t 9407031305 oldfile

3. To set the modification time of newfile to that of oldfile, enter:

touch -r oldfile newfile

Environment Variables
TZ

Contains the time zone that touch is to use when interpreting times.

Localization
touch uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Inability to access the desired file
• Too early a date was specified
• Inability to create a file
• Inability to change a file's times

2
Failure that resulted in a usage message, including:

• Unknown command-line option
• Only one of –t, –f, or –r is allowed
• –r was missing the agefile
• –t was missing its argument
• Incorrect date string

Messages and Return Codes
Possible error messages include:
Age file inaccessible

Indicates that time could not be found for the file given with the –f or –r option either because that file
does not exist or because the requesting user is not granted the appropriate permission for the file.

Missing age file argument
You specified –f or –r, but did not give a file name after it.

touch

Chapter 1. OpenExtensions Shell Commands 331

Years earlier than year incorrect
Your system recognizes dates only back to the given year. touch does not accept dates before that
time.

Bad date conversion

Only one –r, –f, or –t flag allowed

Missing the date or time argument

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
cp, date

touch

332 z/VM: 7.3 OpenExtensions Commands Reference

tr — Translate characters

tr [–cs] string1 string2
tr –s [–c] string1
tr –d [–c] string1
tr –ds [–c] string1 string2

Purpose
tr copies data read from the standard input to the standard output, substituting or deleting characters
as specified by the options and string1 and string2. string1 and string2 are considered to be sets
of characters. In its simplest form, tr translates each character in string1 into the character at the
corresponding position in string2.

Note: tr works on a character basis, not on a collation element basis. Thus, for example, a range that
includes the multicharacter collation element ch in regular expressions, does not include it here.

Options
–c

Complements the set of characters specified by string1. This means that tr constructs a new set of
characters, consisting of all the characters not found in string1 and uses this new set in place of
string1.

–d
Deletes input characters found in string1 from the output. This string is in ascending order.

–s
tr checks for sequences of a string1 character repeated several consecutive times. When this
happens, tr replaces the sequence of repeated characters with one occurrence of the corresponding
character from string2; if string2 is not specified, the sequence is replaced with one occurrence of the
repeated character itself. For example:,

tr -s abc xyz

translates the input string aaaabccccb into the output string of xyzy.

If you specify both the –d and –s options, you must specify both string1 and string2. In this case,
string1 contains the characters to be deleted, whereas string2 contains characters that are to have
multiple consecutive appearances replaced with one appearance of the character itself. For example:

tr -ds a b

translates the input string abbbaaacbb into the output string bcb.

The actions of the –s option take place after all other deletions and translations.

You can use the following conventions to represent elements of string1 and string2:
character

Any character not described by the conventions that follow represents itself.
\ooo

An octal representation of a character with a specific coded value. It can consist of one, two, or three
octal digits.

\character
The \ (backslash) character is used as an escape to remove the special meaning of characters. It also
introduces escape sequences for nonprinting characters, in the manner of C character constants: \b,
\f, \n, \r, \t, and \v.

tr

Chapter 1. OpenExtensions Shell Commands 333

c1–c2
This represents all characters between characters c1 and c2 (in the current locale's collating
sequence) including the end values. For example, 'a–z' represents all the lowercase letters in the
POSIX locale, whereas 'A–Z' represents all that locale's uppercase letters. One way to convert
lowercase and uppercase is with the following filter:

tr 'a-z' 'A-Z'

This is not, however, the recommended method; use the [:class:] construct instead.
c*n

This represents n repeated occurrences of character c. (If n has a leading zero, tr assumes it is octal;
otherwise, it is assumed to be decimal.) You can omit the number for the last character in a subset.
This representation is valid only in string2.

[:class:]
This represents all characters that belong to the character class class in the locale indicated by
LC_CTYPE. When the class [:upper] or [:lower:] appears in string1 and the opposite class,
[:lower:] or [:upper:] appears in string2, tr uses the LC_CTYPE tolower or toupper mappings
in the same relative positions.

[=c=]
This represents all characters that belong to the same equivalence class as the character c in the
locale indicated by LC_COLLATE. Only international versions of the code support this format.

Examples

tr -cs "[:alpha:]" "\n*" <file1 >file2

creates a list of all words (strings of letters) found in file1 and puts it in file2.

Localization
tr uses the following localization environment variables:

• LANG
• LC_ALL
• LC_COLLATE
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because of unknown command line option, or too few arguments

Portability
POSIX.2, X/Open Portability Guide

tr is downward-compatible with both the UNIX Version 7 and System V variants of this command, but
with extensions (C escapes, handles ASCII NUL, internationalization).

tr

334 z/VM: 7.3 OpenExtensions Commands Reference

trap — Intercept abnormal conditions and interrupts

trap ['handler'] [event ...]

Purpose
trap intercepts certain kinds of exception conditions. Any signal may be intercepted by specifying an
event corresponding to the signal number.

If there are no arguments at all, trap prints a list of all the traps and their commands.

Operands
trap recognizes the following operands:

handler
is a command list. It is usually more than one word, and so you must quote it to appear as a single
argument. It is scanned when the trap function is initially invoked. When the trap condition is raised,
the shell scans the command list again and runs the commands. A missing argument or an argument
of - (dash) resets the default trap condition. A null argument ('') causes the trap condition to be
ignored.

event
is the condition to be intercepted.

With an event of ERR, trap invokes the handler upon any command having a nonzero exit status. The
exception to this is conditions in if, while, and until statements. This trap is not inherited within a
function.

With an event of 0 or EXIT, trap invokes the handler during exit from the shell. Within a function, it is
invoked during exit from the function.

Any other event corresponds to the name or number of a signal supported by OpenExtensions. These
signal names and numbers are listed in Table 11 on page 335. When using a signal name, enter the
name with uppercase characters and do not use the first three characters (SIG). For example, to use
signal name SIGALRM, enter only ALRM.

Table 11. Signals Supported by OpenExtensions

Signal
Name

Signal
Number

Description

SIGABND 18 Abend

SIGABRT 3 Abnormal termination

SIGALRM 14 Timeout

SIGCHLD 20 Child process terminated or stopped

SIGCONT 19 Continue if stopped

SIGFPE 8 Erroneous arithmetic operation, such as division
by zero or an operation resulting in overflow

SIGHUP 1 Hangup detected on controlling terminal

SIGILL 4 Detection of an incorrect hardware instruction

SIGINT 2 Interactive attention

SIGIO 23 Completion of input or output

trap

Chapter 1. OpenExtensions Shell Commands 335

Table 11. Signals Supported by OpenExtensions (continued)

Signal
Name

Signal
Number

Description

SIGKILL 9 Termination (cannot be caught or ignored)

SIGNULL 0 Null; no signal sent (cannot be caught or ignored)

SIGPIPE 13 Write on a pipe with no readers

SIGQUIT 24 Interactive termination

SIGSEGV 11 Detection of an incorrect memory reference

SIGSTOP 7 Stop (cannot be caught or ignored)

SIGTERM 15 Termination

SIGTSTP 25 Interactive stop

SIGTTIN 21 Read from a controlling terminal attempted by a
member of a background process group

SIGTTOU 22 Write from a controlling terminal attempted by a
member of a background process group

SIGUSR1 16 Reserved as application-defined signal 1

SIGUSR2 17 Reserved as application-defined signal 2

If a signal is being ignored when you enter the shell, the shell continues to ignore it without regard to
any traps.

Usage Notes
trap is a built-in shell command.

Examples

On error or exit, this example deletes a temporary file created during command execution.

trap 'rm –f /tmp/xyz$$; exit' ERR EXIT

When an interrupt signal is received, the example prompts whether to abort, and exits if the answer is y.

trap 'read REPLY?"ABORT??"
 case $REPLY in
 y) exit 1;;
 esac' 2

This example saves your shell history file (specified by the value you give the HISTFILE environment
variable) before timing you out, so you can restore it when you log on again.

trap 'cp $HISTFILE $HOME/old_hist.bak; exit' ALRM

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Incorrect signal name

trap

336 z/VM: 7.3 OpenExtensions Commands Reference

• Incorrect signal number

2
Incorrect command-line argument

Messages and Return Codes
Possible error messages include:
name not a valid trap name

You specified an unrecognized trap name. The usual cause of this error is a typing mistake on the
command line.

Portability
POSIX.2, X/Open Portability Guide.

Related Commands
sh

trap

Chapter 1. OpenExtensions Shell Commands 337

true — Return a value of 0

true [argument ...]

Purpose
The true command simply yields an exit status of zero (success). This can be surprisingly useful—for
example, when you are evaluating shell expressions for their side effects.

Usage Notes
This command is provided as both an external utility and a shell built-in command.

Exit Values
Since this command always succeeds, the only possible exit status is:
0

Successful completion

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
sh

true

338 z/VM: 7.3 OpenExtensions Commands Reference

tty — Return the user's terminal name

tty[–s]

Purpose
tty displays the file name of the terminal device associated with the standard input.

Options
–s

Does not display the name; the exit status of tty indicates whether the standard input is a terminal.

Localization
tty uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Standard input is a terminal.
1

Standard input is not a terminal.
2

Failure because of an unknown command-line option, or too many arguments.

Messages and Return Codes
Possible error messages include:
Not a tty

The standard input is not associated with a terminal.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The POSIX standard considers the –s option to be obsolete.

tty

Chapter 1. OpenExtensions Shell Commands 339

type — Tell how the shell interprets a name

type name ...

Purpose
type identifies the nature of one or more names. Names can be shell reserved words, aliases, shell
functions, built-in commands, or executable files. For executable files, the full path name is given.

Usage Notes
type is a built-in shell command.

Exit Values
Possible exit status values are:
0

Successful completion
2

Failure because of an incorrect command-line argument

Messages and Return Codes
Possible error messages include:
name is not found

type could not locate the specified name. Check that the name was specified properly and that you
have the appropriate permissions.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
alias, sh, whence

type

340 z/VM: 7.3 OpenExtensions Commands Reference

typeset — Assign attributes and values to variables

typeset ±f[tux] name name ...
typeset [±lprtuxH] [±iLRZ[number]] [variable[=value] ...]

Purpose
Invoking typeset with no options displays a list of all variables and their attributes. This list is sorted by
variable name and includes quoting so that it can be reinput to the shell with the built-in command eval.
When only arguments of the form +option are specified, typeset displays a list of the variables that have
all specified attributes set. When only arguments of the form –option are present, typeset displays a list
of all the variables having all the specified attributes set, and also displays their values.

When the f option is used, typeset applies to functions; otherwise, it applies to variables. For functions,
the only other applicable options are –t, –u and –x.

If the command line contains at least one variable, the attributes of each variable are changed. In this
case, parameters of the form –option turn on the associated attributes. Parameters of the form +option
turn off the associated attributes. (Notice that, contrary to what you might expect, - means on, and +
means off.) Parameters of the form variable=value turn on the associated attributes and also assign value
to variable.

When typeset is invoked inside a function, a new instance of each variable is created. After the function
ends, each variable is restored to the value and attributes it had before the function was called.

Options
–H

Performs POSIX-to-host-name file mapping.
–i[number]

Marks each variable as having an integer value, thus making arithmetic faster. If number is given and is
nonzero, the output base of each variable is number.

–l
Converts uppercase characters to lowercase in any value assigned to a variable. If the –u option is
currently turned on, this option turns it off.

–p
Writes output to the coprocess. This option is a no-op.

–r
Makes each variable read-only. See readonly.

–t
Tags each variable. Tags are user-defined, and have no meaning to the shell. For functions with the –f
option, this turns on the xtrace option. See set for a discussion of the xtrace option.

–u
Converts lowercase characters to uppercase in any value assigned to a variable. If the –l option is
currently turned on, this option turns it off.

When used with –f, –u indicates that the functions named in the command line are not yet defined.
The attributes specified by the typeset command are applied to the functions once they are defined.

–x
Sets each variable for automatic export. See export.

The last three options that follow justify, within a field, the values assigned to each variable. The width of
the field is number if it is defined and is nonzero; otherwise, the width is that of the first assignment made
to variable.

typeset

Chapter 1. OpenExtensions Shell Commands 341

–L[number]
Left-justifies the values assigned to each variable by first removing any leading blanks. Leading zeros
are also removed if the –Z option has been turned on. Then blanks are added on the end or the end of
the value is truncated as necessary. If the –R flag is currently turned on, this option turns it off.

–R[number]
Right-justifies the values assigned to each variable by adding leading blanks or by truncating the start
of the value as necessary. If the –L flag is currently turned on, this option turns it off.

–Z[number]
Right-justifies values assigned to each variable. If the first nonblank character of value is a digit,
leading zeros are used. See also the –L option.

Usage Notes
This is a built-in command of the shell.

Exit Values
Possible exit status values are:
0

Successful completion
2

Failure due to an incorrect command-line argument

If the command is used to display the values of variables, the exit status value is the number of names
that are incorrect.

Messages and Return Codes
Possible error messages include:
Base number not in [2,36]

You used the –i option to specify a base for an integer, but the base was not in the range 2 through 36.
All bases must be in this range.

name not a function
You tried to declare the given name as a function, but the name already referred to something that
was not a function (for example, a variable).

Portability
POSIX.2.

Related Commands
export, readonly, sh

typeset

342 z/VM: 7.3 OpenExtensions Commands Reference

umask — Set or return the file mode creation mask

umask [–S] [mode]

Purpose
umask sets the file-creation permission-code mask of the invoking process to the given mode. You can
specify the mode in any of the formats recognized by chmod; see “chmod — Change the mode of a file or
directory” on page 61 for more information.

The file-creation permission-code mask (often called the umask) specifies the restrictions on the
permissions for any file created by the process and plays a part in determining how permission bits
are changed.

When a program creates a file, it requests that the file have certain permissions. The umask is applied
to the requested permissions to determine the actual permissions that the file will have. The actual
permissions will be as follows:

• If a permission bit in the umask is on, the corresponding bit in the actual permissions will be off.
• If a permission bit in the umask is off, the corresponding bit in the actual permissions will be as the

program requested.

Therefore, the umask is used to "screen out" permissions that a program may request. The umask does
not affect other mode values, such as set-user-ID, set-group-ID, and the sticky bit.

If the bit is turned off in the umask, a process can set it on when it creates a file. This can be done
using a symbolic representation of the permissions as on the chmod command, or by specifying a
numeric umask directly. With the symbolic method, you specify the permissions you want to allow. This
is converted into the actual umask value, which conversely represents what will be screened out. If you
specify:

umask a=rx

You have explicitly set it so that all users have read and execute access. If you were to look at the mask, it
would be 0222. The write bit is set, because write is not allowed. If everyone were permitted rwx access,
the umask would be 0000. For example, if a command attempts to create new files with permissions of w
for all, and the umask was 0222 as above, the w permissions would not be set.

If you call umask without a mode argument, umask displays the current umask.

Options
–S

Displays the umask in a symbolic form:

u=perms,g=perms,o=perms

giving owner, group and other permissions. Permissions are specified as combinations of the letters r
(read), w (write), and x (execute).

Localization
umask uses the following localization environment variables:

• LANG
• LC_ALL

umask

Chapter 1. OpenExtensions Shell Commands 343

• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to an incorrect command-line argument, or incorrect mode

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
chmod

umask

344 z/VM: 7.3 OpenExtensions Commands Reference

unalias — Remove alias definitions

unalias name...
unalias –a

Purpose
unalias removes each alias name from the current shell execution environment.

Options
–a

Removes all aliases in the current shell execution environment.

Usage Notes
This command is built into the shell.

Localization
unalias uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
>1

There was an alias that could not be removed
2

Failure due to an incorrect command-line option or there were two aliases that could not be removed
>2

Tells the number of aliases that could not be removed

Portability
POSIX.2.

unalias is a built-in shell command.

Related Commands
alias, sh

unalias

Chapter 1. OpenExtensions Shell Commands 345

uname — Display the name of the current operating system

uname [–amnrsv]

Purpose
The uname command lets shell scripts and other programs determine configuration information about
the machine upon which the shell is running.

Options
The following options select the information to be displayed:
–a

All fields (equivalent to –mnrsv).
–m

The processor or machine type.
–n

The node name of this particular machine. The node name usually differentiates machines running at
a single location.

–r
The level of CMS in use, expressed as a string CMS_l_s_f, where:
l

The CMS level as returned by QUERY CMSLEVEL
s

The four-digit CMS service level as it appears in DMSLVLTB
f

The CMS level code returned by DMSQEFL in its output parameter cms_level.
–s

The name of the operating system. This is the default output, when no options are given.
–v

The level of CP in use, expressed as a string CP_l_s_f, where:
l

The V.R.M number that identifies the CP in use (for example, 2.1.0 identifies Version 2 Release
1.0), taken from the output of QUERY CPLEVEL

s
The four-digit CP service level as it appears in the output of QUERY CPLEVEL

f
The CP level code returned by DMSQEFL in its output parameter cp_level.

uname displays the selected information in the following order:

<system name> <nodename> <release> <version> <machine>

Examples

The following shell command changes the prompt to identify the node name of the system:

export PS1=" ˋuname -nˋ$ "

uname

346 z/VM: 7.3 OpenExtensions Commands Reference

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to inability to find the desired information
2

Failure due to a incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX system V.

Related Commands
sh

uname

Chapter 1. OpenExtensions Shell Commands 347

uncompress — Undo Lempel-Ziv compression

uncompress [–cDdfVv] [file]

Purpose

uncompress uses the Lempel-Ziv compression techniques to uncompress data in a file or from the
standard input.

When the file argument is specified, uncompress searches for a file named file.Z. It replaces the input file
with the uncompressed file named file (without the .Z suffix). If this file already exists, uncompress will
not replace the file unless you specify the –f option.

If the file argument is not specified, the input data is read from the standard input and written to the
standard output.

Because the number of bits of compression is encoded in the compressed data, uncompress
automatically uses the correct number of bits to uncompress the data.

Options
uncompress accepts the following options:
–c

Writes uncompressed output to the standard output.
–D

Uses extra dictionary packing technique on uncompression. The file must have been compressed
using compress with the –D option.

–f
Forces the file to be uncompressed. uncompress does not print an error message if this happens.

–V
Prints the version number of uncompress.

–v
Prints the name of each file as it is uncompressed.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• Unknown command line option
• Inability to obtain information about an argument file
• File has more than one link
• File is not a regular file
• File is not in compressed format
• File was compressed using more than 16 bits
• Insufficient memory for the decompression table
• Compressed file is corrupt

uncompress

348 z/VM: 7.3 OpenExtensions Commands Reference

Messages and Return Codes
Possible error messages include:
uncompress: not in compressed format

The input file was not compressed by the compress command.
Cannot allocate buffer

There was not enough memory to allow uncompress to set up the decompression table or one of the
internal work buffers.

cannot stat file
uncompress could not obtain status information about the input or output file. Typically this happens
because the file does not exist or you do not have appropriate permissions to obtain this information.

name has n other links: unchanged
The file named cannot be replaced while it has links pointing to it.

name not a regular file: unchanged
name does not refer to a byte file system file. It refers to a directory, socket, pipeline, device, or the
standard I/O.

uncompress: file name: Incorrect format for –D option
The file was not originally compressed using the –D option, so you should not use the option on the
uncompress command.

name already exists; not overwritten
The –f option should be used to force overwriting of the output file.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
compress, zcat

uncompress

Chapter 1. OpenExtensions Shell Commands 349

uniq — Report or filter out repeated lines in a file

uniq [-c|-d|-u] [-f number1] [-s number2] [input_file [output_file]]
uniq [-cdu] [-number] [+number] [input_file [output_file]]

Purpose
uniq manipulates lines that occur more than once in a file. The file must be sorted, since uniq only
compares adjacent lines. When you invoke this command with no options, it writes only one copy of each
line in input_file to output_file. If you do not specify input_file or you specify –, uniq reads the standard
input.

If you do not specify output_file, uniq uses the standard output.

Options
–c

Precedes each output line with the number of times that line occurred in the input.
–d

Displays only lines that are repeated (one copy of each line).
–f number1

Ignores the first number1 fields when comparing lines. Blanks separate fields in the input.
–s number2

Ignores the first number2 characters when comparing lines. If you specify both –s and –f, uniq
ignores the first number2 characters after the first number1 fields.

–u
Displays only those lines that are not repeated.

You can choose only one of the –c, –d, or –u options.
–number

Equivalent to –f number (obsolescent).
+number

Equivalent to –s number (obsolescent).

Examples

1. The command:

uniq

is a filter which prints one copy of each different line in its sorted input.
2. The command:

uniq -f 2 -s 1

compares lines starting with the second character of the third field.
3. The command:

uniq -d

prints one instance of each repeated line in the input (and omits all unique lines).

uniq

350 z/VM: 7.3 OpenExtensions Commands Reference

Localization
uniq uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to any of the following:

• Incorrect command-line option
• Missing number after –f
• Missing or incorrect number after –s
• Inability to open the input or output file

Messages and Return Codes
Possible error messages include:
Missing character skip count

You specified –s but did not supply a number after the –s.
Missing number of fields to skip

You specified –f but did not supply a number after the –f.
Field skip not a number in string

In a -number or +number construct, number was not a valid number. This could arise because of a
typographical error in entering a – option.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
comm, sort

uniq

Chapter 1. OpenExtensions Shell Commands 351

unset — Unset values and attributes of variables and functions

unset name...
unset –fv name...

Purpose
Calling unset with no options removes the value and attributes of each variable name.

Options
–f

Removes the value and attributes of each function name.
–v

Is equivalent to calling unset with no options.

unset cannot remove names that have been set read-only.

Usage Notes
unset is a built-in shell command.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure due to an incorrect command-line option
2

Failure due to an incorrect command-line argument

Otherwise, unset returns the number of specified names which are incorrect, not currently set, or read-
only.

Messages and Return Codes
Possible error messages include:
name readonly variable

The given name cannot be deleted because it has been marked read-only.

Portability
POSIX.2, X/Open Portability Guide.

Related Commands
sh, readonly

unset

352 z/VM: 7.3 OpenExtensions Commands Reference

wait — Wait for a child process to end

wait [pid|job-id ...]

Purpose
wait waits for one or more jobs or child processes to complete in the background. If you specify one or
more job-id arguments, wait waits for all processes in each job to end. If you specify pid, wait waits for
the child process with that process ID (PID) to end. If no child process has that process ID, wait returns
immediately.

If you specify neither a pid nor a job-id, wait waits for the process IDs known to the invoking shell to
complete.

Usage Notes
wait is a built-in shell command.

Localization
wait uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
If you specified a job-id that has terminated or is unknown by the invoking shell, an error message and
a return code of 127 is returned. If you specified a pid that has terminated or is unknown to the shell, a
return code of 127 is returned. If a signal ended the process abnormally, the exit status is a value greater
than 128 unique to that signal; otherwise, possible exit statuses are:
0

Successful completion.
1–126

An error occurred.
127

A specified pid or job-id has terminated or is unknown by the invoking shell.

Portability
POSIX.2, UNIX systems.

Related Commands
sleep

wait

Chapter 1. OpenExtensions Shell Commands 353

wc — Count newlines, words, and bytes

wc [–c|–m] [–w] [file ...]

Purpose
wc counts the number of <newline>s, words, characters, and bytes in text files. If you specify multiple
files, wc produces counts for each file, plus totals for all files.

Options
–c

Prints a byte count. You cannot specify this option with –m.
–l

Prints a <newline> count
–m

Prints a character count. You cannot specify this option with –c.
–w

Prints a word count

The order of options can dictate the order in which wc displays counts. For example, wc –cwl displays
the number of bytes, then the number of words, then the number of <newline>s. If you do not specify any
options, the default is wc –lwc (<newline>s, then words, then bytes).

A word is considered to be a character or characters delimited by white space.

Note: wc counts bytes, not characters.

Localization
wc uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because of an inability to open the input file
2

Failure because of an incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

wc

354 z/VM: 7.3 OpenExtensions Commands Reference

The way the order of options –c, –l and –w affects the order of display is an extension to traditional
implementations of wc.

Related Commands
awk, ed

wc

Chapter 1. OpenExtensions Shell Commands 355

whence — Tell how the shell interprets a command name

whence [–v] name ...

Purpose
whence tells how the shell would interpret each name if used as a command name. Shell keywords,
aliases, functions, built-in commands, and executable files are distinguished. For executable files, the full
path name is given.

Options
–v

Gives a more verbose report.

Usage Notes
whence is a built-in shell command.

Exit Values
Possible exit status values are:
0

Successful completion
1

Command name could not be found
2

Failure due to an incorrect command-line argument

Portability
POSIX.2.

Related Commands
command, sh

whence

356 z/VM: 7.3 OpenExtensions Commands Reference

xargs — Construct an argument list and run a command

xargs [-I placeholder] [-i[placeholder]] [-L number] [-l number]
 [-n [number]] [-ptx] [-E [eofstr]] [-e [eofstr]] [-s size]
 [command [argument ...]]

Purpose
The xargs command line typically contains the skeleton, or template, of another command. This template
looks like a normal command, except that it lacks some arguments. xargs adds arguments from the
standard input to complete the command, then runs the resulting command. If more input remains, it
repeats this process.

Options
xargs gets the needed arguments from the standard input. Different options tell how the standard input is
to be interpreted to obtain these arguments.
–I placeholder

With this option, xargs considers each full line in the standard input to be a single argument.
placeholder is a string that can appear multiple times in the command template. xargs strips the
input line of any leading white-space characters and inserts it in place of placeholder. For example,
with:

xargs -I {} mv dir1/{} dir2/{}

the standard input should consist of lines giving names of files that you want moved from dir1 to
dir2. xargs substitutes these names for the {} placeholder in each place that it appears in the
command template.

When xargs creates arguments for the template command, no single argument can be longer than
255 characters after the input has replaced the placeholders. The –x option is automatically in effect
if –I or –i is used.

–i[placeholder]
Behaves like –I, except that placeholder is optional. If you omit placeholder, it defaults to the string {}.
Thus, the previous example could be written as either of:

xargs -i mv dir1/{} dir2/{}
xargs -i{} mv dir1/{} dir2/{}

–L number
With this option, xargs reads number lines from the standard input and concatenates them into one
long string (with a blank separating each of the original lines). xargs then appends this string to the
command template and runs the resulting command. This process is repeated until xargs reaches
the end of the standard input; if there are fewer than number lines left in the file the last time the
command is run, xargs just uses what is there.

With this option, a line must contain at least one nonblank character; blank lines are skipped and do
not count toward the number of lines being added to the template. xargs considers a line to end at the
first newline character, unless the last character of the line is a blank or a tab; in this case, the current
line is considered to extend to the end of the next non-empty line.

If you omit the –L or –l option, the default number of lines read from standard input is 1. The –x
option is automatically in effect if –l is used.

–l number
Acts like the –L option, but the number argument is optional. number defaults to 1.

xargs

Chapter 1. OpenExtensions Shell Commands 357

–n number
In this case, xargs reads the given number of arguments from the standard input and puts them on
the end of the command template. For example:

xargs -n 2 diff

obtains two arguments from the standard input, appends them to the diff command, and then runs
the command. It repeats this process until the standard input runs out of arguments. When you use
this option, xargs considers arguments to be strings of characters separated from each other by
white-space characters (blanks, horizontal tabs, or newlines). Empty lines are always skipped (that
is, they don't count as arguments). If you want an input argument to contain blanks or horizontal
tabs, enclose it in double quotation marks or single quotation marks. If the argument contains a
double quotation mark character ("), you must enclose the argument in single quotation marks.
Conversely, if the argument contains a single quotation mark (') (or an apostrophe), you must enclose
the argument in double quotation marks. You can also put a backslash (\) in front of a character to tell
xargs to ignore any special meaning the character may have (for example, white-space characters, or
quotation marks).

xargs reads fewer than number arguments if:

• The accumulated command line length exceeds the size specified by the –s option (or {LINE_MAX}
if you did not specify –s)

• The last iteration has more than zero, but less than number arguments remaining

If you do not specify the –n option, the default number of arguments read from standard input is 1.

Typically, an xargs command uses exactly one of the options just described. If you specify more than
one, xargs uses the one that appears last on the command line. If the command has none of these
options, xargs keeps reading input until it fills up its internal buffer, concatenating arguments to the end
of the command template. When the buffer is full, xargs runs the resulting command, and then starts
constructing a new command. For example:

ls | xargs echo

prints the names of files in the working directory as one long line. When you invoke xargs this way, the
total length of all arguments must be less than the size specified by the –s option (see “Other Options” on
page 358).

If no command template appears on the command line, xargs uses echo by default. When xargs runs a
command, it uses your search rules to find the command; this means that you can run shell scripts as well
as normal programs.

The command you want to execute should be in your search $PATH.

xargs ends prematurely if it cannot run a constructed command or if an executed command returns a
nonzero status.

If an executed command is a shell program, it should explicitly contain an exit command to avoid
returning a nonzero by accident; see sh for details.

Other Options
You can use the following options with any of the three main options.
–E eofstr

Defines eofstr to represent end-of-file on the standard input. For example:

-E :::

tells xargs that ::: represents the end of the standard input, even if an input file continues afterward.
If there is no –E or –e option, a single underscore (_) marks the end of the input.

xargs

358 z/VM: 7.3 OpenExtensions Commands Reference

–e eofstr
Acts like –E but the eofstr argument is optional. If you specify –e without eofstr, there is no end-of-file
marker string, and _ is taken literally instead of as an end-of-file marker. xargs stops reading input
when it reaches the specified end-of-file marker or the true end of the file.

–p
Prompts you before each command. This turns on the –t option so that you see each constructed
command before it is run. Then xargs displays ?..., asking if you really want to run this command. If
you type a string beginning with y, xargs runs the command as displayed; otherwise, the command is
not run, and xargs constructs a new command.

–s size
Sets the maximum allowable size of an argument list to size characters (where size is an integer). The
value of size must be less than or equal to the system variable LINE_MAX; if you omit the –s option,
the default allowable size of an argument list is LINE_MAX. The length of the argument list is the
length of the entire constructed command; this includes the length of the command name, the length
of each argument, plus one blank for separating each item on the line.

–t
Writes each constructed command to the standard error just before running the command.

–x
Kills xargs if it creates a command that is longer than the size given by the –s option (or {LINE_MAX}
is –s was not specified). This option comes into effect automatically if you specify –i or –l.

Examples

The following displays file names in three columns:

ls | xargs -n 3 echo

Environment Variables
PATH

Contains a list of directories that constitute your search path.

Localization
xargs uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion of all commands.
1–125

Failure due to any of the following:

• xargs could not assemble a command line.
• One or more invocations of command returned a nonzero exit status.
• Some other error occurred.

xargs

Chapter 1. OpenExtensions Shell Commands 359

126
xargs found command but could not invoke it.

127
xargs could not find command.

Limits
The maximum length of a constructed command is LINE_MAX bytes.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –e, –E, –i, –I, –l, –L, and –p options are extensions of the POSIX standard.

Related Commands
echo, find, sh

xargs

360 z/VM: 7.3 OpenExtensions Commands Reference

yacc — Use the yacc compiler

yacc [–dhlmqstv] [–b file.prefix] [–o file.c] [–D file.h] [–p prefix]
 [–P yyparse.c] [–S statesfile] [–V stats] gram.y

Purpose
yacc converts a context-free LALR(1) grammar found in the input file gram.y into a set of tables that
together with additional C code constitute a parser to recognize that grammar. If you specify an input file
named -, yacc reads the grammar from the standard input. By default, yacc places the parsing tables and
associated C code into the file y.tab.c.

You can find detailed information on writing parsers using yacc in z/VM: OpenExtensions Advanced
Application Programming Tools.

Options
The following options modify the default operation of yacc:
–b file_prefix

Uses file_prefix instead of y as the prefix for all output file names. For example, yacc would name the
parsing table file_prefix.tab.c rather than y.tab.c.

–D file.h
Generates the file file.h, which contains the constant definition statements for token names. This
lets other modules of a multimodule program access these symbolic names. This is the same as –d,
except that the user specifies the include file name.

–d
Generates the file y.tab.h, which contains the constant definition statements for token names. This
lets other modules of a multimodule program access these symbolic names. This is the same as –D,
except that the user does not specify the header file name.

–h
Displays a brief list of the options and quits.

–l
Disables the generation of #line statements in the parser output file, which are used to produce
correct line numbers in compiler error messages from gram.y.

–m
Prints memory usage, timing, and table size statistics on the standard output.

–o file.c
Places the generated parser tables into file.c instead of the default y.tab.c.

–P yyparse.c
Indicates that the C parser template is found in the file yyparse.c. If you do not specify this option,
this parser template is located in /etc/yyparse.c.

–p prefix
By default, yacc prefixes all variables and defined parameters in the generated parser code with the
two letters yy (or YY). In order to have more than one yacc-generated parser in a single program,
each parser must have unique variable names. –p uses the string prefix to replace the yy prefix in
variable names. prefix should be entirely in lowercase because yacc uses an uppercase version of
the string to replace all YY variables. We recommend a short prefix (such as zz) because some C
compilers have name length restrictions for identifiers. You can also set this identifier with a %prefix
directive in the grammar file.

–q
Disables the printing of warning messages.

yacc

Chapter 1. OpenExtensions Shell Commands 361

–s
Writes a state description to the file states.out. This file is indexed by pointers in the table yyStates,
so that any state can be quickly read and displayed.

–S
Is similar to –s except that the state description is written to statesfile file.

–t
Enables debugging code in the generated parser. yacc does not normally compile this code because it
is under the control of the preprocessor symbol YYDEBUG.

This option is therefore equivalent to either setting YYDEBUG on the C compiler command line or
specifying #define YYDEBUG statement in the first section of the grammar.

–V stats
Writes a verbose description of the parsing tables and any possible conflicts to the file stats.

This is the same as -v except the user specifies the file name.

–v
writes a verbose description of the parsing tables and any possible conflicts to the file y.output.

Files
y.output

Default statistics file when you specify -v.
y.tab.c

Default file for the generated parser.
y.tab.h

Default header file when you specify –d.
/etc/yyparse.c

Default parser template.
states.out

Default state description file when you specify –s.

Localization
yacc uses the following localization environment variables:

• LANG
• LC_ALL
• LC_CTYPE
• LC_MESSAGES

See Appendix C, “Localization,” on page 477 for more information.

Exit Values
Possible exit status values are:
0

Successful completion
1

Failure because of any of the following:

• number rules never reduced
• Reduce-reduce conflict
• Shift-reduce conflict
• NAME should have been defined earlier

yacc

362 z/VM: 7.3 OpenExtensions Commands Reference

• \000 not permitted
• EOF encountered while processing %union
• EOF in string or character constant
• EOF inside comment
• Use of $number not permitted
• Nonterminal number, entry at number
• Action does not terminate
• Bad %start construction
• Bad syntax in %type
• Bad syntax on $<ident> clause
• Bad syntax on first rule
• Inability to find parser
• Inability to open input file
• Inability to open table file
• Inability to open temporary file
• Inability to open y.output
• Inability to place goto
• Inability to reopen action temporary file
• Default action causes potential type clash
• EOF before %}
• %prec syntax not permitted
• \nnn construction not permitted
• Comment not permitted
• Option not permitted
• Incorrect or missing ' or "
• Incorrect rule: missing semicolon, or |?
• Internal yacc error
• Incorrect escape, or incorrect reserved word
• Item too big
• More than number rules
• Must return a value, since LHS has a type
• Must specify type for name
• Must specify type of $number
• Newline in string.
• No space in action table
• Nonterminal symbol not permitted after %prec
• Nonterminal symbol never derives any token string
• Nonterminal symbol not defined
• Optimizer cannot open temporary file
• Out of space in optimizer
• Out of state space
• Redeclaration of precedence of symbol
• Redeclaration of type of symbol

yacc

Chapter 1. OpenExtensions Shell Commands 363

• Syntax error
• Token incorrect on LHS of grammar rule
• Too many characters in ID's and literals
• Too many look-ahead sets
• Too many nonterminals
• Too many states
• Too many terminals
• Type redeclaration of nonterminal symbol
• Type redeclaration of token symbol
• Unexpected EOF before %
• Unterminated < ... > clause
• Working set overflow
• yacc state or nolook error

Messages and Return Codes
Possible error messages include:
No input file

You did not specify a grammar file gram.y on the command line.
No parser produced

Analysis of the input grammar shows that it contains inaccessible or ungrounded nonterminal
symbols. Check the preceding report and revise the grammar.

Out of memory at size bytes
The specified grammar is too complex to process within the memory resources of the current
configuration.

Limits
yacc dynamically allocates all internal tables so that grammar size and complexity are limited only by
available memory.

Portability
POSIX.2, UNIX systems.

The –D, –h, –m, –p, –q, –S, –s, and –V options are extensions of the POSIX standard.

Related Commands
For additional information, see z/VM: OpenExtensions Advanced Application Programming Tools.

yacc

364 z/VM: 7.3 OpenExtensions Commands Reference

zcat — Uncompress and display data

zcat [–DVv] [file...]

Purpose

zcat takes one or more compressed data files as input and uncompresses them. The data files should be
compressed with the compress command. If no data files are specified on the command line, zcat reads
the standard input. You can also pass the standard input to zcat by specifying \- as one of the files on the
command line.

zcat uncompresses the data in all the input files and writes the result on the standard output. zcat
concatenates the data in the same way cat does.

zcat expects the names of all the compressed input files to end in .Z, even if a file name is specified
as input without the suffix. For example, if the command is zcat myfile.abc, zcat looks for
myfile.abc.Z.

zcat is equivalent to uncompress -c.

Options
zcat accepts the following options:
–D

Uncompresses files that were compressed using the dictionary option of compress.
–V

Prints the version number of uncompress that zcat calls.
–v

Prints the name of each file as it is uncompressed.

Exit Values
Possible exit status values are:
0

Successful completion.
1

Failure due to any of the following:

• Failure of uncompress command
• Unknown command line option
• File is not in compressed format
• File was compressed with a number of bits zcat cannot handle
• Insufficient memory for the decompression table
• Compressed file is corrupt

Messages and Return Codes
Possible error messages include:
zcat: not in compressed format

The input file was not compressed by the compress command.

zcat

Chapter 1. OpenExtensions Shell Commands 365

name not a regular file: unchanged
name does not refer to a byte file system file. It refers to a directory, socket, pipeline, device, or the
standard I/O.

zcat: file name: Incorrect format for -D option
The file was not originally compressed with the –D option, so you should not use that option on the
zcat command.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Commands
cat, compress, uncompress

zcat

366 z/VM: 7.3 OpenExtensions Commands Reference

Chapter 2. OPENVM CMS Commands

OPENVM commands may be used to manipulate data residing in the byte file system (BFS). These
commands accept a BFS path name as input. OPENVM commands allow a user to perform such tasks as
editing, erasing, renaming and changing permissions and ownerships of BFS files, directories, and other
BFS object types.

Before using any of the OPENVM CMS commands, the CMS SET RELPAGE command must be set to ON,
which is the default. If it has been set to OFF, you must issue the SET RELPAGE ON command to avoid
virtual storage management problems while using OPENVM CMS commands.

Note: Considering strict POSIX terminology refers to all objects as files, for the sake of clarity, the term
file will be used to refer to a BFS regular file.

The term object will be used in referring to all BFS data types (BFS regular files, directories, external links,
symbolic links, named pipes, and so on). Note that a path name does not uniquely identify a file. There
may be many links (or names) to a given file.

In addition to the BFS path name, a CMS short file name is associated with each unique file; this is a
system generated value (unique to each file within a BFS).

Some Shared File System commands that accept bfsid (filepoolid:filespaceid.) as input may be used by an
SFS administrator to operate on files within the BFS. These commands accept CMS short file name as the
file name and file type of a file within the BFS. BFS subdirectories, and other BFS objects other than BFS
regular files may not be operated on from these commands.

© Copyright IBM Corp. 1993, 2022 367

Understanding Byte File System (BFS) Path Name Syntax
All objects (files, directories, and so on) in the OpenExtensions byte file system (BFS) are identified
through path names. A path name identifies the object within the BFS hierarchy by specifying the
directories leading to the object.

A BFS path name can represent a file system accessed through the Network File System (NFS). The
NFS file system can be on a remote or local system, which can be VM or non-VM. The OPENVM MOUNT
command or the mount (BPX1MNT) callable service links an NFS file system to a BFS path name, enabling
it to be used on most commands and interfaces that accept BFS path names.

For simplicity in command syntax, the BFS path name identifier is usually shown as the variable,
pathname.

Format

1

'

"

2

/../VMBFS:  filepoolid : filespaceid /
3

/

pathname_component

/

1

'

"

Notes:
1 A single quotation mark or a double quotation mark is an optional delimiter. If specified to signify
the start of a path name, the identical delimiter also must be specified to signify the end of the path
name. (See usage note “7” on page 371.)
2 The minimum path name is a single slash (/).
3 The ending slash is required only if one or more path name components are also specified.

Parameters
/../VMBFS:filepoolid:filespaceid/

is a construct that identifies the byte file system. It is referred to as the fully qualified BFS root.
/../VMBFS:

is a keyword string that indicates this is an OpenExtensions byte file system. This string is not case
sensitive and must end with a colon (:).

filepoolid:
is the name of the file pool that contains the BFS data. The file pool name can be up to eight
characters long and is not case sensitive. The first character must be alphabetic, but the remaining
characters can be alphabetic or numeric. The name must be followed by a colon (:).

filespaceid/
is the name of the file space where the BFS resides. The file space ID can be up to eight characters
long and is not case sensitive. The name must be followed by a slash (/) if one or more path name
components are also specified.

pathname_component
is the name of an object in the BFS hierarchy. Each path name component can be 1-255 characters
in length. The slash character (/) and the null character (X'00') are not valid within a path name
component. Path name component names are case sensitive.

368 z/VM: 7.3 OpenExtensions Commands Reference

When multiple path name components are specified, they must be separated by slashes.

All path name components prior to the last one specified will be interpreted as directory names in the
hierarchy. The last path name component, when not followed by a slash, can be a directory or another
type of object. If the last path name component is followed by a slash, it will always be interpreted as
a directory.

/
when specified as a single character path name, indicates the root (top) directory of the currently
mounted byte file system. The root directory can be assigned by using the OPENVM MOUNT
command, or by the POSIXINFO FSROOT statement in your user directory entry.

//
when a path name starts with exactly two slashes, it is not considered to be a BFS name. This type of
path name is interpreted as a CMS record file system name by the functions that support redirection
to the CMS record file system. When such a name is given as a parameter to a command or function
that does not support redirection to the CMS record file system, the request will be rejected.

For example, the shell command:

$ c89 pgm.c -o //mymod.module.a

will create the file MYMOD MODULE A on your A-disk. The OPENVM command:

openvm get ./test/book/ch1.scr //chapter1.script.a

will fail with an error message indicating the file name is not valid.

Note: A path name must not start with two slashes when in the XEDIT environment.

Usage Notes
1. A byte file system can be enrolled in the same file pool as other byte file systems and SFS users.
2. In the OpenExtensions environment, all byte file systems are uniquely identified with the /../
vmbfs:filepoolid:filespaceid construct.

3. Path names can be specified in several ways:

• When the first character of the path name is not a slash, the path name is known as a relative
path name. The search for the BFS object starts at the working directory. To establish the working
directory, use the OPENVM SET DIRECTORY command or the chdir (BPX1CHD) callable service. To
find the value of the current working directory, use the OPENVM QUERY DIRECTORY command or
the getcwd (BPX1GCW) callable service.

• When /../vmbfs:filepoolid:filespaceid/ is specified at the start of a path name, it is
referred to as a fully qualified path name. The object is searched for in the byte file system, which
is defined as file space filespaceid in file pool filepoolid. The byte file system does not need to be
explicitly mounted.

• If the path name starts with a slash (but not /../vmbfs:filepoolid:filespaceid/), the path
name is known as an absolute path name. The search for the object starts from the root of the
currently mounted byte file system. The root directory can be established by using the OPENVM
MOUNT command or the mount (BPX1MNT) callable service, or by the POSIXINFO FSROOT
statement in your user directory entry. To find the value of the root directory, use the OPENVM
QUERY MOUNT command or the uname (BPX1UNA) callable service.

For more information on OpenExtensions callable services, see z/VM: OpenExtensions Callable
Services Reference. For more information on user directory statements, see z/VM: CP Planning and
Administration.

4. The entire path name must be in the range of 1-1023 characters. Individual path name components
cannot exceed 255 characters. All characters are valid within a path name, with the following
restrictions:

• The null character (X'00') is not permitted within a path name.

Chapter 2. OPENVM CMS Commands 369

• A slash (/) is interpreted as the delineator of a path name component.

For an application to be portable to the broadest set of environments, POSIX standards suggest that
the application restrict the maximum length of a BFS path name component to 14 characters and use
only the following characters:
A-Z

Uppercase alphabetic
a-z

Lowercase alphabetic
0-9

Numeric
.

Period
_

Underscore
-

Dash
5. Path name components are case sensitive. For example, Abc, abC, and ABC are valid unique

path name components. When a path name is entered on the CMS command line, it will not be
uppercased. However, a path name entered on the XEDIT command line will be uppercased when
SET CASE UPPER is in effect.

6. There are two BFS path name components that have special meaning during path name resolution.
These are:
.

The path name component consisting of a single dot character (.) refers to the directory specified
by the preceding path name component.

Some dot (.) examples:

a. If you specified a path name of:

/joes/recipes/./pie

It would be equivalent to:

/joes/recipes/pie

b. If you specified a path name of:

./joes

It would be equivalent to:

joes

. .
The path name component consisting of two dot characters (. .), known as dot-dot, refers to the
parent directory of its predecessor. As a special case, in the root directory, dot-dot refers to the
root directory itself. The construct /. ./vmbfs:filepoolid:filespaceid/ is the only exception.

Some dot-dot (. .) examples:

a. If you had previously set your working directory (using OPENVM SET DIRECTORY) to:

 /joes/recipes/

370 z/VM: 7.3 OpenExtensions Commands Reference

And you specified a relative path name of ../tools, this would be equivalent to specifying an
absolute path name of:

 /joes/tools

b. If you are working in /bin/util/src, and you want to go to /bin/util, you can enter:

openvm set directory ..

c. If you are working in /u/rexx/prog/src, and you want to refer to the file test in the
directory /u/rexx/appl/examples, you could use the following path name to refer to that
file:

 ../../appl/examples/test

7. Enclose a BFS path name within single quotation marks ('pathname') or double quotation marks
("pathname") if it contains any of the following characters. Results are unpredictable if a path name
or path name component contains any of these characters and it is not enclosed within quotation
marks.

Blank space
(

Left parenthesis
)

Right parenthesis
'

Single quotation mark
"

Double quotation mark
*

Asterisk
=

Equal sign

Notes:

a. If a path name includes a single quotation mark, specify the path name in one of these ways:

• Place double quotation marks around the path name.
• Place single quotation marks around the path name, but be sure to use two additional single

quotation marks to denote the single quotation mark that is part of the path name.
b. If a path name includes a double quotation mark, specify the path name in one of these ways:

• Place single quotation marks around the path name.
• Place double quotation marks around the path name, but be sure to use two additional double

quotation marks to denote the double quotation mark that is part of the path name.
c. All characters are taken literally; no symbolic substitution is done.

Some CMS environment examples:

a. To list files in a directory called my dir that is directly under your root directory, you must specify:

openvm listfile '/my dir'

Note that:

openvm listfile /a/b/c

is equivalent to:

Chapter 2. OPENVM CMS Commands 371

openvm listfile '/a/b/c'

b. To list the files in a directory called /a/b b'/c, you can enter the name in either of the following
ways:

openvm listfile '/a/b b''/c'
openvm listfile "/a/b b'/c"

c. To list the files in a directory called /a/b b"/c, you can enter the name in either of the following
ways:

openvm listfile "/a/b b""/c"
openvm listfile '/a/b b"/c'

Some XEDIT examples:

a. To XEDIT a file called my dir/my file that is directly under your root directory, you can specify:

xedit '/my dir/my file' (nametype bfs

The NAMETYPE BFS option was specified to distinguish the file being edited as a BFS file instead
of a CMS file.

Note that:

xedit /a/b/c

is equivalent to:

xedit '/a/b/c'

b. To edit a file called /a/b b'/c, you can enter the name in either of the following ways:

xedit '/a/b b''/c'
xedit "/a/b b'/c"

c. To edit a file called /a/b b"/c, you can enter the name in either of the following ways:

xedit "/a/b b""/c"
xedit '/a/b b"/c'

8. In the CMS environment, the OPENVM commands can be entered on a single line or on multiple lines.
To enter multiple lines, type OPENVM and press the Enter key. You will get a message prompting you
to enter more input lines. You must enter a null line to indicate the end of your command input. This
is particularly useful for entering long path names.

Leading and trailing blanks entered on an input line are preserved when multiple lines are put
together. A blank is needed after a keyword and its following operand.

This is an example of entering multiple lines:

openvm

(Press the Enter key)

DMSWOV2140R Enter operands: (enter a null line to
 indicate that you are finished)

listfile

(where LISTFILE is followed by a blank, and you press the Enter key)

'/A
/B

(where /B is followed by a blank)

372 z/VM: 7.3 OpenExtensions Commands Reference

/c' (header

(and press the Enter key twice to enter a null line)

This is equivalent to the one-line command:

openvm listfile '/A/B /c' (header

Because the path name /A/B /c contains a blank, it must be enclosed in quotation marks on input.
9. Multiple adjacent slashes (//) in a path name (except the special case when a path name starts

with exactly two slashes) are interpreted as a single slash by OPENVM commands. However, these
multiple slashes are included in the maximum path name length check.

10. Attention:

• You might need to change your terminal settings in order to specify a path name that contains
certain special characters. For example, you want to use the # character in a name, but the default
line end symbol is #. So you might have to change your logical line end symbol using the CP
TERMINAL LINEND command.

Use the QUERY LINEND and SET LINEND commands to find out and define your current line end
character for full-screen CMS.

• If you choose to enclose a path name containing blanks in double quotation marks ("), you might
need to use the CP TERMINAL ESCAPE command to change your logical escape symbol, because
the default value is a double quotation mark.

Use the CP QUERY TERMINAL command to display the special characters that are in effect for your
terminal.

Chapter 2. OPENVM CMS Commands 373

Understanding Network File System (NFS) Path Name Syntax
The Network File System (NFS) path name identifies a file system exported by a remote NFS server. While
NFS may be used to mount file systems on your local VM System, it is recommended that you use a BFS
path name instead.

Format
1

'

"

/../NFS:  foreign_host / directory_name

,serveroptions

1

'

"

Notes:
1 A single quotation mark or a double quotation mark is an optional delimiter. If specified to signify
the start of a path name, the identical delimiter must also be specified to signify the end of the path
name. (See usage note “2” on page 374.)

Parameters
/../NFS

is a keyword string that indicates the specified path name is a fully-qualified remote file system,
accessed by way of a Network File System server. The NFS keyword is not case sensitive.

: (colon)
is a separator that must be specified following the NFS keyword.

foreign_host
identifies the name of the foreign host. Specify foreign_host using an internet host name or a dotted-
decimal address. This name is not case sensitive.

/ (slash)
is a separator that must be specified following the foreign_host.

directory_name
identifies the file system or directory to be mounted. The format of directory_name is dependent upon
the operating system running at the site identified by foreign_host. This name may be case sensitive.

serveroptions
are NFS server MOUNT options, which depend upon the NFS server at foreign_host.

The delimiter between directory_name and serveroptions is defined by the remote host. Typically a
comma is used.

Unexpected results may occur if you provide any credentials (UID or GID) in serveroptions that differ
from credentials used by the NFS client. See the NETRC, USERID, and ANONYMOUS parameters of
“OPENVM MOUNT” on page 407 for information about how the NFS client determines which UNIX-
style credentials are used on the request. If those credentials are not consistent with what the NFS
server is using, you may have problems with operations such as file creation.

Usage Notes
1. The directory_name portion of the NFS path name is generally case sensitive. VM's minidisk file system

and Shared File System are exceptions to this rule.
2. Enclose an NFS path name within single quotation marks ('pathname') or double quotation marks

("pathname") if it contains any of the following characters.
Blank space

(
Left parenthesis

374 z/VM: 7.3 OpenExtensions Commands Reference

)
Right parenthesis

'
Single quotation mark

"
Double quotation mark

*
Asterisk

=
Equal sign

Notes:

a. If a path name includes a single quotation mark, specify the path name in one of these ways:

• Place double quotation marks around the path name.
• Place single quotation marks around the path name, but be sure to use two additional single

quotation marks to denote the single quotation mark that is part of the path name.
b. If a path name includes a double quotation mark, specify the path name in one of these ways:

• Place single quotation marks around the path name.
• Place double quotation marks around the path name, but be sure to use two double quotation

marks to denote the double quotation mark that is part of the path name.
c. All characters are taken literally; no symbolic substitution is done.

Chapter 2. OPENVM CMS Commands 375

OPENVM CREATE DIRECTORY

OPENVm CREate DIRectory pathname

Authorization
General User; Byte file system (BFS) permission checking applies to this command.

Purpose
The OPENVM CREATE DIRECTORY command will create a new, empty byte file system (BFS) directory.

Operands
pathname

Specifies the name of the directory. See “Understanding Byte File System (BFS) Path Name Syntax”
on page 368 for a description of the different forms of the BFS path name.

Usage Notes

1. Permissions assigned to the new directory are those in effect for the creation mask. For more
information, see “OPENVM SET MASK” on page 453.

Use OPENVM PERMIT to change permissions for an existing BFS file. For more information, see
“OPENVM PERMIT” on page 424.

2. The owner IDs of the new directory are set to the effective UID of the issuer and the GID of the
parent directory. Use OPENVM OWNER to change the settings after the directory is created. For more
information, see “OPENVM OWNER” on page 416.

3. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization
requirements imposed by the remote NFS server.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example

HELP MSG DMS111E

Number Text Return Code

DMS1311E Object already exists: pathname 28

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM CREATE DIRECTORY

376 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM CREATE EXTLINK

OPENVm CREate EXTlink pathname

CMSEXEC fname

ftype

fmode

1

CMSDATA string1

MOUNT string2

CODE ecode string3

string1

//  fname ftype

fmode

1

DD: ddname

, access_mode_keyword

, explicit_access_mode

,BLKSIZE=

,LRECL=

,RECFM=

,ASIS

Notes:
1 Only a space or a period is allowed as a separator between the parts of the CMS file ID.

Authorization
General User

Purpose
OPENVM CREATE EXTLINK creates a byte file system (BFS) object that is referred to as an external link.
Depending on the parameters used to create it, an external link can be used to:

• Reference data outside of the BFS (data residing on a CMS minidisk or SFS directory)
• Create an implicit mount point
• Contain data in an application defined format.

Operands
pathname

is the BFS path name of the external link being created. Refer to “Understanding Byte File System
(BFS) Path Name Syntax” on page 368 for a description of the different forms of the BFS path name.
pathname may not refer to a file in an NFS-mounted file system.

OPENVM CREATE EXTLINK

Chapter 2. OPENVM CMS Commands 377

CMSEXEC
indicates that the file to which the external link is being created is an executable file on a minidisk or
accessed SFS directory. The referenced executable file must have a file type of MODULE. This CMS file
will be executed when the external link is specified on the OPENVM RUN command.

fname
is the file name of the CMS file to be run.

ftype
is the file type of the CMS file to be run.

fmode
is the file mode of the CMS file to be run.

CMSDATA
indicates that the file to which the external link refers will be opened by the C Run Time Library (C
RTL) ANSI-C fopen() routine when the external link is opened.

string1
contains the parameter list to be associated with the ANSI-C fopen() C Run Time Library function.
This parameter list consists of a CMS file ID or a data definition name (DDNAME) and an access mode
variable. A CMS file ID must be preceded by exactly two slashes (//). A DDNAME must be preceded by
the keyword DD:. The total length of string1 must not exceed 1023 characters. For a more detailed
description of string1, see “CMSDATA Usage Notes” on page 379 and “Examples” on page 380.

Note: No verification of string1 occurs when the external link is created.

MOUNT
indicates the external link is a Mount External Link (MEL). When a MEL is encountered during path
name resolution, it is treated like a directory with a file system mounted on it; path name resolution
continues in the "mounted" BFS (that is, in the directory identified by string2).

Note: No verification of string2 occurs when the external link is created except that string2 may not be
a Network File System (NFS) path name.

string2
is the BFS path name (generally fully qualified) identifying the target directory of the MEL. string2 must
be between 1 and 1023 characters.

CODE
indicates the external link is in an application-defined format.

ecode
is an integer in the range of 100-200. The ecode represents an application-defined format of external
link.

string3
is between 1 and 1023 characters long. The format and content of string3 are defined by the
application.

Usage Notes
1. The string1, string2, and string3 parameters are specified after the keywords CMSDATA, MOUNT, and

CODE, respectively. In the case of CMSDATA and MOUNT, everything following the keyword on the
command line will be taken as part of the string parameter. In the case of CODE, everything following
the ecode integer will be taken as part of the string parameter.

In these string parameters, blanks do not have to be enclosed in quotes. Leading and trailing blanks
are preserved and will not be suppressed, but one blank is skipped to separate the tokens. For
example:

OPENVM CREATE EXTLINK /MYEXTLINK MOUNT /../VMBFS:BFS:SANDY/N
 (where /N is followed by two blanks)

This will place the following, including the extra blanks before and after the path name, into an
external link called /MYEXTLINK:

OPENVM CREATE EXTLINK

378 z/VM: 7.3 OpenExtensions Commands Reference

 /../VMBFS:BFS:SANDY/N

Everything after the keyword is included in the string, including quotes. For example:

OPENVM CREATE EXTLINK /MYEXTLINK MOUNT '/../VMBFS:BFS:SANDY/N'

This will place the following into an external link called /MYEXTLINK:

 '/../VMBFS:BFS:SANDY/N'

Note: Quotes are not needed to delimit a string containing blanks. All string parameters have a
maximum length of 1023.

2. Authorization to files from external links will be based on the permissions associated with the external
link according to POSIX requirements.

Additionally, traditional CP/CMS authorization rules are enforced for external links that refer to files
residing on minidisks or SFS directories.

3. There is no syntax verification done on the content of external links when they are created. The syntax
is verified by the individual functions that refer to the external link.

Mount External Link (MEL) Usage Notes
1. A MEL is not an actual mount point. Therefore, commands that act specifically on mount points

(OPENVM QUERY MOUNT and OPENVM UNMOUNT) are not valid for MELs. Use OPENVM LISTFILE and
OPENVM QUERY LINK to obtain information about existing MELs. Use OPENVM ERASE to delete a MEL.

2. You can create a MEL that in turn references other MELs. A maximum of eight levels of nesting is
supported.

3. The target of a MEL must be a directory. However, the target directory does not have to exist when the
MEL is created.

4. An attempt to reference multiple MELs with the same target directory will result in an error.

CMSDATA Usage Notes
1. string1 must consist of either a CMS file ID or a DDNAME, followed by an access mode variable. The

access mode variable must start with the access mode, which can be one of the following:
,access_mode_keyword

which can be either of the following:
,&&&

signifies that data to the file is read/written as text data. The read/write intent will be
determined at the time the file is opened.

,&&b
,&&B

signifies that data to the file is read/written as binary data. The read/write intent will be
determined at the time the file is opened.

,explicit_access_mode
as specified in Table 12 on page 380.

The access mode may be followed by one or more of the following keyword parameters:

BLKSIZE= (blksize=)
LRECL= (lrecl=)
RECFM= (recfm=)
ASIS (asis)

For more details on access modes and keyword parameters listed, see the "fopen()" command in XL
C/C++ for z/VM: Runtime Library Reference.

OPENVM CREATE EXTLINK

Chapter 2. OPENVM CMS Commands 379

2. The access mode to be used for the internal ANSI-C fopen() will be coded in the external link as &&& or
&&b (&&B is translated to &&b). The characters && will be replaced with the access mode specified on
the open() request according to Table 12 on page 380 (see example “1” on page 380.):

Table 12. open() Request Access Modes and ANSI-C fopen() Access Modes

Access mode on open()

Access mode on the ANSI-C fopen()

for text data for binary data

O_RDONLY r rb

O_WRONLY r+ r+b

O_RDWR r+ r+b

O_WRONLY + O_APPEND a ab

O_RDWRLY + O_APPEND a+ a+b

O_WRONLY + O_TRUNC w wb

O_RDWRLY + O_TRUNC w+ w+b

O_WRONLY + O_APPEND + O_TRUNC - -

O_RDWR + O_APPEND + O_TRUNC - -

Note: O_WRONLY is not strictly supported; it is mapped to O_RDWR. The O_CREAT, O_EXCL,
O_NOCTTY and O_NONBLOCK flags are ignored.

3. If the external link contains an explicit access mode, rather than &&& or &&b (or &&B), the access
mode specified on the open request will be overridden by the access mode coded in the external link.

4. External Link files that are opened in the parent will be marked as FD_CLOFRK. Such file descriptors
cannot be inherited to a child process; an attempt to do so explicitly will cause a spawn() failure.

The FD_CLOFRK flag cannot be reset or overridden by fcntl(); an attempt to do so will be ignored.
5. When referencing existing files in CMS format (as contrasted with OS format) with an external link, the

specification of RECFM and TYPE parameters are generally sufficient to process the file.

Note: If a RECFM parameter is not specified and the file is accessed exclusively in read mode, the
existing file attributes will be in effect. However, if the referenced file is written to with the external
link, fopen() defaults will apply. If you wish to retain existing file attributes on output, you must specify
"RECFM=*".

6. If the string1 parameter contains a DDNAME, a FILEDEF must be provided for that DDNAME before the
external link path name may be opened successfully. For more information, see z/VM: CMS Commands
and Utilities Reference.

7. Associating an external link with a DDNAME allows a BFS path name to reference files on any device
supported by the FILEDEF command, including tapes, spooling devices, and CMS, OS and VSAM files.

8. If a DDNAME is used to associate a path name with a file, "attribute options" associated with the
external link will override file attributes specified on the corresponding FILEDEF command. For more
information, see z/VM: CMS Commands and Utilities Reference.

9. Coding a DISP MOD in a FILEDEF statement associated with an external link will force all output to the
file that is to be appended to the existing file.

Examples

1. Let us assume you entered the command:

OPENVM CREATE EXTLINK /u/dpt37/payroll CMSDATA //PAYROLL.FILE.A,
&&&

If you later run a C program that has the following statements in it:

OPENVM CREATE EXTLINK

380 z/VM: 7.3 OpenExtensions Commands Reference

 fd = open("/u/dpt37/payroll",O_RDWR);
 read(fd,buffA,n);
 lseek(fd,offset,pos);
 write(fd,buffB,m);

The result would be as if you executed:

 FILE * stream;
 stream = fopen("//PAYROLL.FILE.A","r+ ");
 fread(buffA,1,n,stream);
 fseek(stream,offset,origin);
 fwrite(buffB,1,m,stream);

2. If you wish to create a path name called ‘abc’ within your current working directory to an executable
CMS module file named READING on any accessed minidisk or SFS directory, you could enter:

OPENVM CREATE EXTLINK abc CMSEXEC READING MODULE

3. If you wish to create a path name called ‘input’ within your current working directory to a file named
TEST SCORES on a minidisk to be accessed as A that will be used in read only mode, you could enter:

OPENVM CREATE EXTLINK input CMSDATA //TEST.SCORES.A, r

4. If you wish to create a path name called ‘forms’ in your root directory to a file that contains ASA
print-control characters, you could enter:

OPENVM CREATE EXTLINK /forms CMSDATA //DENTAL FORMS A,
r,recfm=A

5. Suppose you had an existing file MYIN FILE A with attributes

recfm=F, lrecl=100, and blksize=100

and you created an external link using the following:

OPENVM CREATE EXTLINK myextl CMSDATA //MYIN FILE A, w,recfm=*

If you wrote to ‘myextl’, the resultant file would have the same attributes.
6. Suppose another external link was created as:

OPENVM CREATE EXTLINK myext2 CMSDATA //MYIN FILE A,
w,recfm=*,blksize=300,lrecl=300

If you wrote to ‘myext2’, the resultant file would have the attributes:

recfm=F, lrecl=300, and blksize=300

7. If you wish to create an external link called "ddlink" under your current working directory, such that the
referenced file was established at execution time with a DDNAME of MYDATA, you could enter:

 OPENVM CREATE EXTLINK ddlink CMSDATA dd: MYDATA,r,recfm=FB

Prior to opening ddlink, you must provide a FILEDEF. For example, if you want to look at MY FILE A, you
must enter the FILEDEF command:

 FILEDEF MYDATA DISK MY FILE A

before opening ddlink.

OPENVM CREATE EXTLINK

Chapter 2. OPENVM CMS Commands 381

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS1026E The operation is not supported for an object in an NFS-mounted file
system.

28

DMS2112E Contents of the external link must be between 1 and 1023
characters

40

DMS2143E There is no external link data specified 24

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM CREATE EXTLINK

382 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM CREATE LINK

OPENVm CREate LINk pathname1 pathname2

Authorization
General User

Purpose
Use OPENVM CREATE LINK to create a new byte file system (BFS) path name to be used to reference
another file in the same BFS. The new name does not replace the old one, but provides an additional way
to refer to the file.

You cannot create a link to a directory.

Operands
pathname1

is the BFS path name of the file for which a link is to be created. For a description of the different
forms of the BFS path name, see “Understanding Byte File System (BFS) Path Name Syntax” on page
368. Pathname1 may not refer to a file in an NFS-mounted file system.

Note: This request will fail with message DMS2115E when the object being linked has been mounted
to your BFS but physically resides on another BFS or in an NFS-mounted file system.

pathname2
is the BFS path name of the new link name being created to reference that file.

Usage Notes
1. OPENVM CREATE LINK allows you to create a link to another file in the same BFS.
2. The file being linked must exist.
3. Permissions and ownership of the link will be based on that of the file to which the link refers.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes or enter
HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS1311E Object already exists: pathname 28

DMS2113E Object does not exist: pathname 28

DMS2115E Objects are on different file systems 88

DMS2126E You may not link to a directory 88

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

OPENVM CREATE LINK

Chapter 2. OPENVM CMS Commands 383

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM CREATE LINK

384 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM CREATE SYMLINK

OPENVm CREate SYMlink pathname1 pathname2

Authorization
General User

Purpose
Use OPENVM CREATE SYMLINK to create a byte file system (BFS) path name to be used to reference an
object residing in a different BFS. This is known as a symbolic link. When creating a symbolic link, the
object for which you are creating a link need not exist.

Operands
pathname1

is the BFS path name of the file to which the symbolic link is to be created. For a description of the
different forms of the BFS path name, see “Understanding Byte File System (BFS) Path Name Syntax”
on page 368.

pathname2
is the new BFS path name being created to refer to the file.

Usage Notes
1. The file for which the link is being created may be deleted without affecting the existence of the

symbolic link.
2. File permissions, user IDs (UIDs), or group IDs (GIDs) associated with symbolic links entries are not

used. Authorization is based on the permissions or file authorizations of the associated files. However,
you need read permission to the directory containing the symbolic link to access a file through its
symbolic link.

3. You may create a symbolic link that in turn references another symbolic link. However, a maximum of
eight levels of nesting are allowed.

4. When path names refer to files in NFS-mounted file systems, you must meet the authorization
requirements imposed by the remote NFS servers.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS1311E Object already exists: pathname 28

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

OPENVM CREATE SYMLINK

Chapter 2. OPENVM CMS Commands 385

Reason Location

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM CREATE SYMLINK

386 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM DEBUG

OPENVm DEBUG
MSG

NOMSG

ALL

NOALL

DUMp

NODUMp

FILeio

NOFILeio

FLOw

NOFLOw

MOUnt

NOMOUnt

NFSRequest

NONFSRequest

OTHer

NOOTHer

RPCBuffers

NORPCBuffers

RPCLibrary

NORPCLibrary

1
(

WRAPsize 100

WRAPsize n

)

Notes:
1 If a keyword or a keyword-value pair is specified more than once, the last one is used.

Authorization
General User

Purpose
Use the OPENVM DEBUG command for further problem determination of OPENVM command error
messages and/or tracing for NFS and BFS Client events.

This command is to be used as directed by the systems administrator or support group that services your
z/VM installation.

Operands
One or more of the following keyword parameters may be specified:

OPENVM DEBUG

Chapter 2. OPENVM CMS Commands 387

MSG
enables tracing for BFS errors. In the case of the NFS client, BFS errors are traced.

It allows the secondary error message DMS2134E to be displayed in addition to the primary error
message from the OPENVM command that was entered within your virtual machine. Message
DMS2134E will display the return and reason codes, and it will include the routine name that
encountered the error. The MSG parameter also allows CMS Pipelines messages to be issued. It is the
default for the OPENVM DEBUG command if no other parameters are specified. If other parameters
are specified, MSG must also be specified to take effect.

NOMSG
causes the secondary error message DMS2134E and CMS Pipelines messages to be suppressed.

ALL
enables tracing for all NFS trace events; this indirectly turns on all tracing except DUMP, MSG, and
RPCBUFFERS.

NOALL
disables tracing for all NFS trace events excluding DUMP, MSG, and RPCBUFFERS.

DUMp
enables dumping on certain error paths.

NODUMp
disables dump.

FILeio
enables tracing for file I/O processing.

NOFILeio
disables tracing for file I/O processing.

FLOw
enables tracing for entering/exiting NFS functions.

The process ids and thread ids are also shown.

NOFLOw
disables tracing for entering/exiting NFS functions.

MOUnt
enables tracing for mount requests.

NOMOUnt
disables tracing for mount requests.

NFSRequest
enables tracing for requests from the NFS client and shows the responses from the NFS server (local
or remote host).

The NFS servers must support the Sun NFS V2 and/or V3 protocols. These NFS protocols are
described in RFCs 1094 and 1813, respectively.

NONFSRequest
disables tracing for requests/responses between the NFS client and NFS server.

OTHer
enables tracing for initialization, termination, and anything that does not fit under the categories of
dump, fileio, flow, mount, nfsrequest, rpcbuffers, or rpclibrary.

NOOTHer
disables tracing for other.

RPCBuffers
enables tracing for input and output buffers of the RPC requests.

NORPCBuffers
disables tracing for the RPC buffers.

RPCLibrary
enables tracing of the RPC Runtime library, VMRPC.

OPENVM DEBUG

388 z/VM: 7.3 OpenExtensions Commands Reference

NORPCLibrary
disables tracing for the RPC Runtime library, VMRPC.

Options
WRApsize n

specifies how many trace events to retain in the trace table.n is a positive integer value greater than
0. When the wrapsize n is exceeded, the oldest trace event is discarded to make room for the newest
arrival. The valid values are 1 through 99999999.

If wrapsize is not specified, the default is 100.

Usage Notes
1. If you specify OPENVM DEBUG MSG, message DMS2134E can be displayed as a secondary message

for the entire CMS session until you IPL CMS or turn the message off by entering OPENVM DEBUG
NOMSG.

2. During initialization (IPL), the following defaults are in effect:

• NOMSG
• WRAPSIZE 100

These values may be overridden when a user invokes the OPENVM DEBUG command with other
specified keywords.

3. The OPENVM DEBUG keywords are processed in the order specified. For example, if the first keyword
is MSG and is then followed by NOMSG, the first MSG is nullified. If a keyword from a keyword-pair is
specified more than once, the last one specified takes effect.

4. Previous settings set during a session are respected. If OPENVM DEBUG MSG was issued, followed
by OPENVM DEBUG FLOW, then both MSG and FLOW will be in effect. Note that IPLing will clear all
settings and reset initial default settings.

5. Use OPENVM QUERY DEBUG to view information on the current trace settings. See “OPENVM QUERY
DEBUG” on page 431 for more information.

6. With OPENVM DEBUG in effect, if an OPENVM command is issued from within a CMS Pipeline, the
output from OPENVM DEBUG might be included in the output stream of the Pipeline instead of
displayed on the console.

Example for OPENVM DEBUG MSG and OPENVM DEBUG NOMSG

If you enter:

openvm debug msg

Then you try to create a directory that already exists:

openvm create directory /test

You will receive these error messages:

DMSOVC1131E Directory '/test' already exists
DMSOVC2134E Return code 117 and reason code 56 (X'38')
 given on call to BPX1MKD
Ready(00028);

Secondary message DMS2134E is displayed, providing the return and reason codes from the BPX1MKD
routine. For more information on these codes, see z/VM: OpenExtensions Callable Services Reference.

If you enter:

openvm debug nomsg

OPENVM DEBUG

Chapter 2. OPENVM CMS Commands 389

This will turn off the secondary error message. Therefore, when you try again to create a directory that
already exists, only the primary error message and corresponding CMS return code is displayed:

openvm create directory /test
DMSOVC1131E Directory '/test' already exists
Ready(00028);

Example for NFS Tracing

If you enter:

openvm debug all

this will turn on tracing for FILEIO, FLOW, MOUNT, NFSREQUEST, OTHER, and RPCLIBRARY.

Here is a sample of the type of trace messages you will see if you now issue an OPENVM MOUNT
command to mount an NFS file space:

14:15:17.852757 DTCCMAIN.24 MAIN_RTN: Hostname is GDLVM7

14:15:17.855736 DTCCMAIN.26 MAIN_RTN: Got socket 3

14:15:17.856867 DTCCMAIN.F0 LFSQmsg : ---- Entry

14:15:17.860201 DTCCMAIN.F4 LFSQmsg : LFS Q open OK

14:15:17.862589 DTCCMAIN.F8 LFSQmsg : Init Q send OK.

14:15:17.863675 DTCCMAIN.F9 LFSQmsg : gl_NFSCinit set.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS3951E Invalid integer n for WRAPSIZE option 24

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM DEBUG

390 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM ERASE

OPENVm ERASE pathname

Authorization
General User; Byte file system (BFS) permission checking applies to this command.

Purpose
Use the OPENVM ERASE command to erase a byte file system (BFS) object.

Operands
pathname

is the BFS path name of the link, directory, or other BFS object to be deleted. For a description of the
different forms of the BFS path name, see “Understanding Byte File System (BFS) Path Name Syntax”
on page 368.

Usage Notes
1. File data will be deleted when the last link to a file is erased. However, if another process has the file

open when the last link is erased, the file is not deleted until the last process closes it.
2. When a symbolic or external link is deleted, the associated object is not modified.
3. Directories must be empty in order to be deleted.
4. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization

requirements imposed by the remote NFS server.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS1162E Directory is not empty: pathname 40

DMS1199E You cannot erase a top directory 88

DMS2121E Operation may not be performed on {the file system root|. or ..} 88

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM ERASE

Chapter 2. OPENVM CMS Commands 391

OPENVM FORMAT

OPENVm FORmat

number_entries

(
NOBuffer

BUFfer)

Authorization
General User

Purpose
Use the OPENVM FORMAT to display the trace table created by NFS Client events on the console.

The trace table contains information about the flow of requests between the NFS client and server.

This command is to be used as directed by the systems administrator or support group that services your
z/VM installation.

Operands
number_entries

indicates the number of entries to be displayed on the console.

If the number of entries are not specified, all the entries in the trace table will be displayed.

If you specify a number, the number specified will be displayed even if there are more entries in the
table.

The maximum number of entries that can be retained in the trace table are defined by the wrapsize.
See the usage notes for more information.

Options
BUFfer

writes buffer information to the console.
NOBuffer

does not write buffer information to the console. This is the default.

Usage Notes
1. Use the OPENVM QUERY DEBUG command to view information on the current wrapsize setting. See

the “OPENVM QUERY DEBUG” on page 431 for more information.
2. Trace table entries are written out from the oldest to the newest.

Messages and Return Codes
The reasons for these messages and their location are:

Reason Location

Errors in command syntax See the z/VM: CMS Commands and Utilities
Reference.

OPENVM FORMAT

392 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM GETBFS

OPENVm GETbfs pathname1 fileid

(
1

Options

)

fileid

fn ft
A

fm

dirid

pathname2

Options

NEWFile

REPlace

BFSLine NL
2

BFSLine lrecl

CRLF

CRNL

/string/

/hexstring/

NONE

MODule

NEWDate

OLDDate

NOTRAnslate

TRAnslate codepage1 TO codepage2

Notes:
1 You can enter Options in any order between the parentheses.
2 BFSLINE NL is the default unless the ft of fileid is MODULE, in which case MODULE is the default.

Authorization
General User;

Byte file system (BFS) permission checking applies to BFS objects used by this command.

Purpose

The OPENVM GETBFS command copies a byte file system (BFS) regular file into another BFS regular file,
an SFS directory, or onto a CMS minidisk.

Operands
pathname1

is the BFS path name of the file to be copied. For a description of the different forms of the BFS path
name, see “Understanding Byte File System (BFS) Path Name Syntax” on page 368.

OPENVM GETBFS

Chapter 2. OPENVM CMS Commands 393

fn ft A
fn ft fm
fn ft dirid

is the CMS file to be created or replaced.
pathname2

is the BFS path name of the file that is to be created or replaced.

Options
NEWFile

checks that an object with the same file ID as the output file does not already exist. If the object does
exist, an error message is displayed and the GETBFS command terminates. This option is the default
so that an existing file is not inadvertently destroyed.

REPlace
causes the output file to replace an existing file with the same file ID.

BFSLine
Use the BFSLINE option to tell CMS how to translate a BFS byte stream into records. This option is
ignored (has no effect) if the target is a BFS file. BFSLINE NL is the default unless the file type (ft) part
of the fileid is MODULE.

The BFSLINE option also determines the record format (RECFM) of the file if it is being copied to a SFS
or a minidisk.

If you specify anything other than BFSLINE lrecl, you can define an end-of-line character or characters
for use in interpreting lines in a BFS file. When a file is read, everything up to the end-of-line character
is interpreted as a line and presented as a ‘record’. The end-of-line character is removed from all lines
in the BFS file.
lrecl

indicates the file should be treated as a fixed file, with no interpretation of records based on
end-of-line characters. When BFSLINE lrecl is in effect, the file is presented as a fixed record
format (RECFM F) file with a logical record length (LRECL) equal to the lrecl value. No end-of-line
characters are removed from the file when it is read.

The last record will be padded with blanks if lrecl is greater than 1 and the last record does not
completely fill the last logical record.

NL
indicates that the new line character (X'15') should be used to delineate lines when reading a BFS
file.

CRLF
indicates that carriage return/line feed (X'0D25') should be used to delineate lines when reading a
BFS file.

CRNL
indicates that carriage return/new line (X'0D15') should be used to delineate lines when reading a
BFS file.

/string/
allows the user to specify a 1-2 character string that is used to delineate lines when reading a BFS
file. Blanks may not be included in string. X' or x' are not valid character strings.

/hexstring/
specifies a hexadecimal string of 2 or 4 characters that defines the value to be used for BFSLINE.
The hexstring must be in the format X'nnnn' or X'nn'. You must not specify any spaces in the string,
and there must be 2 or 4 hexadecimal characters in the string.

NONE
indicates that the file should be treated as a variable file with no interpretation of records based
on end-of-line characters. When BFSLINE NONE is in effect, the file is presented as a variable
record format (RECFM V) file. Except for the last record in the file, the logical record length is
65535, the maximum record length for a CMS variable file.

OPENVM GETBFS

394 z/VM: 7.3 OpenExtensions Commands Reference

MODule
Specifies that the BFS file is an executable file, such as a file created using c89, cxx, or OPENVM
PUTBFS with the MODULE option. The MODULE option must be specified on OPENVM PUTBFS (or in
effect by default) if the BFS file is executable in order for the resulting CMS file to be in the format of a
file created by the GENMOD or BIND command.

NEWDate
uses the current date and time for the date and time of the new file. This is the default.

OLDDate
uses the time of last data modification of the source file as the:

• Update date and time of the target CMS file, or
• The time of last data modification of the target BFS file.

If the target file is a BFS file and you attempt to use the OLDDATE option, but you are not the owner of
the target file or a superuser, a warning message will be issued and the current time will be used.

NOTRAnslate
Indicates that no code page translation should occur.

TRAnslate
Indicates that the characters in the file should be translated as part of the OPENVM GETBFS
operation. This option is ignored if the MODULE option is specified.
codepage1

Specifies the code page for the source file
TO codepage2

Specifies the code page for the target file.

Any code page is allowed that is supported by the CMS Pipelines XLATE stage. See the z/VM: CMS
Pipelines User's Guide and Reference.

If an end-of-line character is specified, it is not affected by code page translation. That is, code page
translation is done after the byte stream is changed into records.

Usage Notes
1. When the target file is a new BFS file and the source file has at least one of its execute permissions

on, the permissions for the new file are set to 'rwx r-x r-x'.

When the target file is a new BFS file and the source file does not have any execute permissions on,
the permissions are set to 'rw- r-- r--'.

Setting the mask can turn off additional permissions. See “OPENVM SET MASK” on page 453 for
more information. Use OPENVM PERMIT to change permissions after the file is created.

2. When a new BFS file is created, the owning UID established is the effective UID of the process that
issued the request. The group name is the GID of the parent directory. Use OPENVM OWNER to
change the defaults.

3. If the source or target of an OPENVM GETBFS is a BFS object, but it is not a BFS regular file, the
command will fail.

4. Use the /string/ or /hexstring/ option when you want to specify a different end-of-line character
than those specified above. For example, if your file uses X'0D' to indicate end-of-line, specify the
BFSLINE /X'0D'/.

When specifying a BFSLINE value for use on files containing DBCS characters, be careful to use a
value that will not conflict with DBCS characters. The hexadecimal code for a DBCS character must be
X'00', X'40', or in the range of X'41' to X'FE'.

5. If you are copying a BFS file to a CMS record file (SFS or minidisk), the records in your file may
not exceed the maximum CMS record length. For fixed record format (recfm) files created when the
BFSLINE lrecl option is used, the maximum record length is 231-1. For variable recfm files created
when any other BFSLINE option is used, the maximum record length is 65535.

OPENVM GETBFS

Chapter 2. OPENVM CMS Commands 395

6. If you are copying a BFS file to a CMS record file (SFS or minidisk) and you are not using BFSLINE
lrecl, an end-of-line character that is the first character in the file or two end-of-line characters in a
row will result in a record of a single blank.

7. You can use the OPENVM GETBFS command to write an SFS file if you have the proper SFS
authorization. When the file is to reside in a FILECONTROL directory, you can write the file using
a file mode letter even if you have the directory accessed in read-only status. If you wish the OPENVM
GETBFS command to respect the read-only status, use the SET RORESPECT ON command (see
z/VM: CMS Commands and Utilities Reference). When the file is to reside in a DIRCONTROL directory,
however, you must access the directory in read/write status.

8. OPENVM GETBFS to an existing BFS file will not change the permissions and ownership for the
existing file.

9. The NL and CRLF mnemonics translate into values defined by code page IBM-1047.
10. If fileid specifies a CMS record file (sfs or minidisk file), the file ID will be converted to upper case

during OPENVM GETBFS processing. However, if fileid specifies a BFS path name, a mixed case file ID
will be respected and will not be converted to uppercase.

11. When path names refer to files in NFS-mounted file systems, you must meet the authorization
requirements imposed by the remote NFS servers.

12. Use the TRANSLATE option carefully if the source or target files are in an NFS-mounted file system.
The NFS mount allows you to specify whether file data is translated. Do not tell CMS to translate data
a second time using the TRANSLATE option on OPENVM GETBFS.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS024E File already exists; specify REPLACE option for: {pathname2|fn ft fm|
fn ft dirid}

28

DMS037E Filemode fm is accessed as read/only 36

DMS069E Filemode fm not accessed 36

DMS173E Empty output file fn ft fm not created 40

DMS618E NUCEXT failed, return code rc 104

DMS639E Error in {PIPE|DMSCCE} routine, return code was rc 28

DMS1137E Object is locked; deadlock detected 70

DMS2041W You are not permitted to use the OLDDATE option 4

DMS2109E Object is a directory: pathname 40

DMS2125E Path name ends with a slash: pathname 40

DMS2128E Lines exceed the CMS maximum record length for: pathname1 40

DMS2538E File is not in MODULE format 32

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

OPENVM GETBFS

396 z/VM: 7.3 OpenExtensions Commands Reference

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in the Shared File System See "SFS and CRR Error Messages" in z/VM: CMS
Commands and Utilities Reference.

Errors in using a file See "File Error Messages" in z/VM: CMS Commands
and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM GETBFS

Chapter 2. OPENVM CMS Commands 397

OPENVM LISTFILE

OPENVm LIStfile

pathname

(
1

Options

)

Options

ATTRibutes

NAMes

OWNers

LOCal

UTC

NOSUBDirectory

SUBDirectory

2
OBJect

Header

NOHeader

STACK
FIFO

LIFO

FIFO

LIFO

Notes:
1 You can enter Options in any order between the parentheses.
2 OBJECT and NAMES are conflicting options if the path name is ‘/’.

Authorization
General User

Purpose

Use the OPENVM LISTFILE command to display information about files and other objects residing in the
byte file system (BFS) directory. If you do not specify any operands, OPENVM LISTFILE will list all objects
that are within the current working directory.

Operands
pathname

specifies the BFS path name of the BFS directory with contents you wish to see displayed. For a
description of the ways in which path name may be specified, see “Understanding Byte File System
(BFS) Path Name Syntax” on page 368.

Options
ATTRibutes

lists the following information about the specified files:

• Object type:

The object type will be displayed in OPENVM LISTFILE as a code. (See “Examples” on page 401 for
a description of object type codes and their meanings.)

• Date and time that file data was last updated
• Number of links to this file
• File size in bytes

OPENVM LISTFILE

398 z/VM: 7.3 OpenExtensions Commands Reference

• BFS path name component.

NAMes
When the NAMes option is specified, the following information is displayed:

• CMS file name will be an 8 character system generated value.
• CMS file type will be an 8 character system generated value.
• BFS ID
• Object type
• BFS path name will be in the range of 1 to 255 bytes long. The BFS path name displayed here will

not include the directory name used on invocation to OPENVM LISTFILE; it will represent a single
BFS path name component.

The CMS file name and file type together represent a system generated value that is unique within a
BFS to each file. Note that all links to a file will have the same CMS file name and file type. The CMS
file name and file type may be used as input to some CMS administrative commands accessing BFS
objects. The NAMes option is not valid when the OBJECT option is specified and the root directory (/)
is the path name specified.

OWNers
This option is useful if you need to determine the user ID (UID), group ID (GID), and permissions
associated with objects in the BFS. When the OWNers option is specified, the following information is
displayed:

• User ID of file owner
• Group name of files owner
• Permissions (rwx rwx rwx)
• Object type
• BFS path name.

LOCal
indicates that the Update-Tm field contained within the ATTRIBUTES option screen will be displayed
in Local Time. This is the default.

UTC
Universal Time, Coordinated (GMT - Greenwich mean time); indicates that the Update-Tm field
contained within the ATTRIBUTES option screen will be displayed in UTC. The Update-Dt (date) field
may be different from local time if UTC is specified.

NOSUBDirectory
indicates that file system objects contained within BFS subdirectories within the specified directory
will not be displayed. This is the default when the path name specified on the LISTFILE command is a
BFS directory.

SUBDirectory
indicates that the contents of subdirectories within the specified BFS directory will be displayed.

OBJect
indicates that the file system object specified in the path name parameter will be displayed. If the
object specified is not a directory, OBJect is the default.

Output Format Options

Header
includes column headings in the listing. HEADER is the default unless you specify STACK, FIFO, or
LIFO.

NOHeader
does not include column headings in the list. NOHEADER is the default if you specify STACK, FIFO, or
LIFO.

Output Disposition Options

OPENVM LISTFILE

Chapter 2. OPENVM CMS Commands 399

STACK
specifies that the information should be placed in the program stack (for use by an exec or other
program) instead of being displayed at the terminal. The information is stacked either FIFO (first in
first out) or LIFO (last in first out). The default is STACK FIFO.

Note: An entry will be truncated if the combined length of its fields are greater than 255 characters.
This is true for all CMS stack related options: namely STACK, LIFO and FIFO.

You can use CMS PIPELINES to manipulate the output of OPENVM LISTFILE (without any of the stack
options) to handle long path name components without potential truncation.

FIFO
specifies that the information should be placed in the program stack rather than displayed at
the terminal. The information is stacked FIFO. The options STACK, STACK FIFO, and FIFO are all
equivalent.

LIFO
specifies that the information should be placed in the program stack rather than displayed at the
terminal. The information is stacked LIFO. This option is equivalent to STACK LIFO.

Usage Notes
1. If you enter the OPENVM LISTFILE command with no operands, a list of all objects in your current

working directory is displayed at the terminal.
2. You may use the output of OPENVM LISTFILE as input to a CMS PIPELINE. For example:

 PIPE CMS OPENVM LISTFILE '/mydir' (noheader | > MYBYTEFS FILES A

will create a list of the files in your BFS 'mydir' directory and place the information listed in the
ATTRibutes screen into a file named MYBYTEFS FILES on your ‘A’ disk. The BFS path names will not
be subject to truncation.

3. If you want to enter OPENVM LISTFILE from an exec program, you should precede it with the EXEC
command; that is, specify:

exec OPENVM listfile

4. Path name components will be displayed with a single quotation mark around the name. If there are
any quotation marks within the name, they will be translated into two quotation marks. For example,
if you had two files named:

Aladdin
Aladdin's lamp

The display of the object name would look like this:

'Aladdin'
'Aladdin''s Lamp'

5. BFS path names will be displayed in mixed case.
6. File attributes for all links to the same file will be displayed as identical values.
7. When OPENVM LISTFILE is specified with the OWNERS option, data is returned about a user ID

name. If the same user ID number is defined for more than one z/VM user in the directory, data
is returned about one of the user ID names, but which one is unpredictable. If you need to have a
unique user ID name returned, you need to have a unique UID number defined for each z/VM user.

8. You must have search permission on all components of the BFS path name and read permission
to the directory specified in OPENVM LISTFILE. If the SUBDirectory option is specified, all
subdirectories to which you have read permission will be displayed.

9. BFSs that are mounted in your hierarchy are displayed by OPENVM LISTFILE in their logical position.

OPENVM LISTFILE

400 z/VM: 7.3 OpenExtensions Commands Reference

10. The STACK, LIFO, and FIFO options cause the requested information to be placed in the program
stack. If this information is to be stacked, the options relating to the display format (HEADER or
NOHEADER) should not be specified.

11. If the object is a Mount External Link, specifying the name of the external link without a closing slash
(/) gets information only about the link itself. To get information about the linked object, you must
enter the name of the external link with a closing slash or specify its fully qualified path name.

12. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization
requirements imposed by the remote NFS server.

Examples

Unless the STACK, LIFO, or FIFO option is specified, the requested information is displayed at the
terminal. Entering OPENVm LISTFILE with the ATTRibutes option displays the following information:

Directory ='bfsdname'
Update-Dt Update-Tm Type Links Bytes Pathname Component
mm/dd/yyyy hh:mm:ss t l b pname

where:

bfsdname
is the name of the BFS directory name specified on the OPENVM LISTFILE invocation.

mm/dd/yyyy
is the date (month/day/year) the file's data was last modified.

hh:mm:ss
is the time the file's data was last modified.

b
is the number of bytes contained in the file. A dash will be in this field unless the object displayed is a
BFS regular file.

t
refers to the object type. This will be one of the following:
B

Block special file
C

Character special file
D

Directory
E

External Link
F

BFS regular file
F*

BFS regular file that is in DFSMS/VM migrated status
L

Symbolic Link
P

FIFO
S

Socket.

When the object is an external link, there will be a secondary code displayed indicating the type of
external link associated with the file. It may be one of the following:

OPENVM LISTFILE

Chapter 2. OPENVM CMS Commands 401

1
CMSEXEC External Link

2
CMSDATA External Link

3
MOUNT External Link

nnn
CODE external link (where nnn is the user defined code ranging from 100 to 200).

When the object is a block or character special file, there will be a secondary code displayed
indicating the device major number associated with the file. It may be one of the following:
3

/dev/tty
4

/dev/null

l
is the number of links that are associated with this file. A dash will be displayed in this field unless the
object displayed is a BFS regular file.

pname
is the BFS path name component following the BFS directory name specified with OPENVM LISTFILE.
This will be 1-1023 characters in length. If the displayed object resides in the directory specified with
OPENVM LISTFILE, only the last object name component will be displayed. If the SUBDirectory option
has been specified on OPENVM LISTFILE and the displayed object resides in a BFS subdirectory of
the specified directory, all subdirectory names that follow under the specified directory name will be
displayed.

For example, your environment is set up as shown in Figure 1 on page 403.

OPENVM LISTFILE

402 z/VM: 7.3 OpenExtensions Commands Reference

Mount point = /
Type Stat Mounted
BFS R/W '/../VMBFS:FP1:BFSNAME/geographic/data'

Figure 1. BFS environment with the OPENVM LISTFILE SUBDirectory option specified

If you entered 'OPENVM LISTFILE / (SUBDIR' you might see the following output:

Directory = '/'
Update-Dt Update-Tm Type Links Bytes Path name component
02/02/1994 12:22:55 D - - 'US_cities_and_towns'
02/15/1994 14:32:35 F l 20956 'US_cities_and_towns/Baltimore_File'
02/15/1994 14:32:35 F l 2346 'US_cities_and_towns/Boston_File'
02/15/1994 14:32:35 F 2 10956 'US_cities_and_towns/Charlotte_File'
02/15/1994 14:32:35 F l 34556 'US_cities_and_towns/Raleigh_File'
02/02/1994 12:23:55 D - - 'International_data'

Note that the BFS path name is enclosed in single quotation marks. If a quotation mark appears
within the name, it will appear as two quotation marks.

If the NAMes option is specified, the information displayed is:

Directory ='bfsdname'
Filename Filetype Byte File System Type Path name component
 fn ft fsid t pname
 8 0 FP1:BFSNAME. D 'US_cities_and_towns'

where:

bfsdname
is the name of the BFS directory specified on the OPENVM LISTFILE invocation.

fn
is an eight character system generated value that along with ft uniquely identifies a file within a
BFS. This may be used as the file name input to some CMS administrative commands. This will be
displayed as a dash when the object is a named pipe or socket. This file name and file type are only
useful when the object is a BFS regular file.

OPENVM LISTFILE

Chapter 2. OPENVM CMS Commands 403

ft
is an eight character system generated value that along with fn uniquely identifies a file within a BFS.
This may be used as a file type input to CMS commands. This will be displayed as a dash when the
object is a named pipe or socket.

fsid
is the name of the byte file system, or NFS.

If the file is in an NFS mounted file system, NFS is displayed. Use the OPENVM QUERY MOUNT
command to display information about NFS mounted file systems.

If the file is in a byte file system, this is a character string in the form:

filepoolid : filespaceid

.

filepoolid
is the name of the file pool. If not specified, the default file pool that you set with the
SET FILEPOOL command is used (the system does not supply a default). You (or the system
administrator) can also set a default file pool in your user CP directory so you do not have to enter
the SET FILEPOOL command each time you log on. The file pool name can be up to 8 characters
long. The first character must be alphabetic, but the remaining characters can be alphabetic or
numeric. Lowercase is converted to uppercase.

: (colon)
is a separator that must be specified following the filepoolid when it is part of a byte file system
name.

filespaceid
is the name of the file space. It defaults first to the file space ID set with the SET FILESPACE
command, and then to the user ID calling the routine. The file space ID can be up to 8 characters
long.

. (period)
is a separator that must be specified following the filespaceid. If it is specified without the
filepoolid and filespaceid parameters, it means the top directory in the default file space in the
default file pool.

t
refers to the object type. This may be any of the types described with the ATTRibutes option.

pname
is the BFS path name of the displayed object.

One entry is displayed for each BFS object listed.

If the OWNers option is specified, the information displayed is:

Directory ='bfsdname'
User ID Group Name Permissions Type Path name component
 uid gid rwx rwx rwx t pname
user1000 CMSUSRS rwx r-x r-x D 'new_directory'

where:

bfsdname
is the name of the BFS directory specified on the OPENVM LISTFILE invocation.

uid
is a 1-8 character name that represents the effective UID for the owner of the file. For NFS files, the
UID will be displayed as a number. For BFS files, if the UID number cannot be mapped to a user ID
name, then a dash is returned.

OPENVM LISTFILE

404 z/VM: 7.3 OpenExtensions Commands Reference

gid
is a 1-8 character name that represents the effective GID for the group of the file. For NFS files, the
GID will be displayed as a number. For BFS files, if the GID number cannot be mapped to a group
name, then a dash is returned.

rwx rwx rwx
contains information used to determine if a process has read, write, or execute/search permissions to
a file. This is displayed in three groups: owner, group, and public. Each group consists of permissions
for read, write, and execute access to that file. This is displayed in the following format:

 rwx rwx rwx

The first string represents file permissions belonging to owner. The second represents file permissions
belonging to the group. The third represents file permissions belonging to all others (public). These
are positional fields. The following characters are used:
r

Indicates read permission
w

Indicates write permission
x

Indicates execute permission. If the displayed object is a directory, an ‘x’ indicates search
permission.

s or S
An executable file can have an additional attribute, which is displayed in the execute position (x).
This permission setting is used to allow a program temporary access to files that are not normally
accessible to other users. An s or S can appear in the execute position; this permission bit sets the
effective user ID or group ID of the user process executing a program to that of the file whenever
the file is run.
s

In the owner permissions section, this indicates that both the set-user-ID bit and execute
(search) permission are set.

In the group permissions section, this indicates that both the set-group-ID bit is set and
execute (search) permission are set.

S
In the owner permission section, this indicates that the set-user-ID bit is set, but the execute
(search) permission is not.

In the group permissions section, this indicates that the set-group-ID bit is set, but the
execute (search) permission is not.

-
Indicates that the user class (owner, group, or public) did not have the permission signified by this
position in the string to this particular file. A ‘-’ may appear in any position of the string.

Symbolic links do not have permissions associated with them. Thus, permissions for symbolic links
will appear as:

 --- --- ---

t
refers to the object type. This may be any of the types described with the ATTRibutes option.

pname
is the object name component of the BFS path name. This will be 1-1023 characters in length. This
will be enclosed in single quotation marks. If a quotation mark appears within the name, it will appear
as two quotation marks.

One entry is displayed for each BFS object listed.

OPENVM LISTFILE

Chapter 2. OPENVM CMS Commands 405

Messages and Return Codes
For information on a specific error message, refer to z/VM: CMS and REXX/VM Messages and Codes. You
can also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS003E Invalid option: NAMES 24

DMS065E option option specified twice 24

DMS066E option1 and option2 are conflicting options 24

DMS1187E Too many subdirectory levels in pathname 0

DMS1229E pathname is empty 28

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM LISTFILE

406 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM MOUNT

OPENVm MOUnt pathname1 /

pathname2

(
WRIte

REAd

STArt

NOStart

Local NFS Options

)

Local NFS Options
NETrc

NONETrc USErid username

ANOnymous

PASsword password

PROmpt

NOPROmpt

TRAnslate POSIX

TRAnslate trans_tablename

NOTRAnslate

LIST

NOLISt

ATTRCaching YES

ATTRCaching NO

ATTRMax 60

ATTRMax seconds

READAhead 1

READAhead blocks

RETry 3

RETry retries

RETry FORever

TCP

UDP

TIMeout 7

TIMeout timeout_value

VERsion 3

VERsion 2

LOCalport ANY

LOCalport portnum

Authorization
General User

Purpose
The OPENVM MOUNT command allows a byte file system (BFS) subdirectory tree, an entire BFS or a
Network File System (NFS) to be logically included as a component of a BFS at any place in the hierarchy.
In other words, it makes the files available for use in your virtual machine.

Use the OPENVM QUERY MOUNT command to display what is mounted in your hierarchy.

OPENVM MOUNT

Chapter 2. OPENVM CMS Commands 407

Operands
pathname1

is the fully qualified name of the BFS, BFS subdirectory name, or NFS file system to be mounted.
Because you are identifying a new physical BFS to be included in your logical hierarchy, you must use
the fully qualified form for the pathname1 operand. That is, you would specify:

/../VMBFS:filepool:filespaceid/

or

/../VMBFS:filepool:filespaceid/subdirname

or

/../NFS:foreign_host/directory_name/

See “Understanding Byte File System (BFS) Path Name Syntax” on page 368 for a description of
the different forms of the BFS path name, or see “Understanding Network File System (NFS) Path
Name Syntax” on page 374 for a description of the NFS path name. Because you cannot mount
a subdirectory in the file system where it resides, you must use the fully qualified form for the
pathname1 operand rather than using a shorter path name that picks up your root directory.

A mount of a NFS file system typically requires that the TCP/IP client minidisk TCPMAINT 592 be
accessed so that system files, such as the NFS MODULE and TCP/IP translation tables, are available.

/
indicates that the BFS or subdirectory tree is to be mounted as the root directory. An NFS file system
cannot be mounted as the root directory.

pathname2
is the location or the mount point where the new file system is to be mounted. The pathname2
must identify a directory or a Mount External Link (MEL). Because you are identifying an object in the
existing logical hierarchy, you must use the relative or absolute form of the path name; you cannot use
the fully qualified form.

Options
WRIte

mounts the file system or directory in read/write mode. WRITE is the default.
REAd

mounts the file system or directory in read mode.
STArt

Byte file system is initialized and system resources are allocated. STArt is the default.
NOStart

The specified file system is mounted when the file system is initialized. This will happen implicitly
when the file system is referenced at a later point. NOSTART has no effect when an NFS mount is
being performed.

NETrc
Use information in the NETRC DATA file as an alternative to specifying username and password. For
information on the NETRC DATA file, see z/VM: TCP/IP User's Guide.

NONETrc
Do not use information in the NETRC DATA file to supply username and password.

USErid username
provides a username for authentication at the remote host. The user ID and password should indicate
how you want to be known at the remote host.

USERID has no effect unless the mount is being performed for an NFS file system.

OPENVM MOUNT

408 z/VM: 7.3 OpenExtensions Commands Reference

Since USERID often represents a user ID on a non-VM system, it is not restricted to 8 characters like
VM user IDs. Also, username is not uppercased.

The NETRC DATA file provides an alternative for specifying the username and password parameters.
If these parameters are defined within this file for a specific foreign_host, you can omit them from an
OPENVM MOUNT command issued for that host.

The NFS Client uses the Sun PC-NFS protocol to authenticate the user ID information at the remote
host, and the remote host returns UID and GID values. Those values are passed to the NFS server on
subsequent requests in the UNIX-style credentials.

If no username is provided and the ANONYMOUS option is not used, the UID and GID passed to the
NFS server in the UNIX-style credentials are the values in effect for your VM user ID.

ANOnymous
indicates that you want the mount to be done anonymously. When you mount anonymously, CMS
bypasses the use of the Sun PC-NFS protocol to authenticate the user ID information at the remote
host. The UID and GID passed in the UNIX-style credentials to the NFS server are -2.

PASsword password
allows specification of a password on the command line.

Note: If password contains one or more blanks, the password must be specified using the NETRC
DATA file

PROmpt
If password is not provided by the PASSWORD parameter or by NETRC DATA, prompt the user to enter
the password on the user machine console. Display of the entered password is suppressed.

NOPROmpt
Do not issue a prompt for a missing password. Note that if a password is required but not provided by
other means such as the PASSWORD parameter or the NETRC DATA file, your attempts to access data
at the remote hose may fail, or may be done anonymously.

TRAnslate trans_tablename
Identifies the translation table to use when performing EBCDIC-ASCII data translation. CMS uses the
first file found in your CMS search order named trans_tablename TCPXLBIN. Trans_tablename files are
typically available on the the TCP/IP user disk, TCPMAINT 592.

If pathname1 specifies a foreign_host that is an AIX®® or OS/2 system, for example, you may want to
translate text file data so that it can be used from both platforms.

Some examples of tablename include "Translate UK" or "Translate 10471252".

TRANSLATE POSIX says that default VM BFS code page translations should be used when EBCDIC-
ASCII translation takes place. EBCDIC (IBM-1047) is translated to and from ASCII (ISO 8859-1). The
UNIX line terminator (lf - X'0A') is translated to the OpenExtensions VM line-end character (nl - X'15').

Trans_tablename may not be abbreviated.

NOTRAnslate
Do not translate file data.

LISt
LIST tells CMS that ASCII-EBCDIC translation should be done for data based on the value of the
file extension. The file extension is defined to be the last component of a path name, that is, the
characters following the last period in the path name. Up to eight characters are matched, and case is
ignored.

The file extension list is defined by VMFILETYPE definitions in the first TCPIP DATA file found in the
CMS search order. An error is returned if no TCPIP DATA file is found when the LIST keyword is used.
If no VMFILETYPE or VMFILETYPEDEFAULT definitions are found in the TCPIP DATA file, translation is
not done.

LIST is ignored when NOTRANSLATE is specified.

OPENVM MOUNT

Chapter 2. OPENVM CMS Commands 409

NOLISt
NOLIST tells CMS that ASCII-EBCDIC translation should be done for all file data.

NOLIST is ignored when NOTRANSLATE is specified.

ATTRCaching YES | NO
Specifies whether CMS should cache file and directory attributes. The default value is YES.

If ATTRCACHING NO is specified, READAHEAD 0 is set automatically.

ATTRMax seconds
Specifies the maximum lifetime of cached attributes in seconds. The valid range for seconds is 1–
9999.

This option is ignored when ATTRCACHING NO is specified.

READAhead blocks
Specifies the maximum number of 8KB blocks to read ahead. The valid range is 0 to 16, and the
default value is 1. The blocksize is 8192 (8KB).

Use the READAHEAD option with a value larger than 1 to improve performance when you are reading a
large file sequentially.

This option is ignored when ATTRCACHING NO is specified.

RETry retries
Retries identifies the number of times to resend NFS requests to the remote host before returning an
error. Retries may not exceed 9999.

If RETRY FOREVER is specified, CMS will continue attempts to resend a request until a response is
received, or the CMS user terminates the attempt by entering HX. The CMS user may also terminate
the attempt by ending the CMS session, logging off, IPLing, or issuing a SYSTEM RESET.

If not specified, RETRY 3 is the default.

TCP
Tells CMS that you want to use the TCP protocol to communicate with the remote host. If the NFS
server does not support TCP, CMS will revert to use UDP.

UDP
Tells CMS that you want to use the UDP protocol to communicate with the remote host.

TIMeout timeout_value
Identifies how long CMS should wait for a response before resending a request to the remote host or
returning an error.

Timeout_value value is specified in tenths of a second. The valid range for timeout_value is 1–9999.

If not specified, TIMEOUT 7 is the default.

VERsion n
Defines whether Version 3 (RFC 1813) or Version 2 (RFC 1094) of the NFS protocol should be used. If
VERsion is not specified, CMS negotiates with the remote host to determine what version to use.

LOCalport portnum
Identifies the local reserved (well-known) port number CMS should use if reserved ports are required
by the remote NFS server. For example, by default, some NFS server implementations on Linux®

require that the client use reserved ports. The actual range of reserved ports varies between systems.
Some NFS Servers will be satisfied with ports in the 1-1023 range, but others may require ports in
the 512-1023 range. Check with the Server administrator to determine a system's specific range.
Contact the TCP/IP administrator for your system to obtain reserved port numbers. The valid range for
portnum is 1-1020.

Note that the z/VM TCP/IP stack restricts all "well-known" ports (ports 1-1023) from general use on
a default basis. Thus, the default for the ASSORTEDPARMS statement is the RESTRICTLOWPORTS
operand. Use the FREELOWPORTS operand, or specific port reservations via the PORT statement, to
control authorization to use such ports.

OPENVM MOUNT

410 z/VM: 7.3 OpenExtensions Commands Reference

CMS will attempt to obtain four ports (portnum, portnum + 1, portnum + 2 and portnum + 3) to
improve the performance of communications between NFS client and server. If the additional ports
cannot be obtained, performance may be affected when reading or writing large files. Use the
NETSTAT command to display the reserved ports in use.

LOCalport ANY
Ephemeral port numbers are chosen to establish connections with the remote NFS server. If not
specified, LOCALPORT ANY is the default.

Usage Notes
1. The scope of the OPENVM MOUNT command is limited to the virtual machine in which the command

is entered. In other words, the logical BFS hierarchy created by entering one or more OPENVM
MOUNT commands is visible only to the processes that run in the virtual machine that issued the
command. Other virtual machines may have different hierarchies.

2. You may also mount your root directory by including the POSIXINFO FSROOT statement in your CP
directory entry.

3. You can use commands and programming interfaces that use path names without entering a MOUNT
if you use the fully qualified BFS path name format for pathname. (That is, use the format including
'/../VMBFS:filepoolid:filespaceid/'.)

4. After the OPENVM MOUNT command completes, the directory identified by pathname1 is inserted
into the logical hierarchy at the position identified by pathname2. From this point on, references to
pathname2 and its subdirectories refer to the subdirectories under pathname1, which is the mounted
directory.

5. If a file system is already mounted on pathname2, you cannot mount a new file system on the same
mount point without first unmounting the current file system.

6. OPENVM MOUNT (NOSTART can be used only for the ROOT. You may want to put this in your PROFILE
EXEC.

7. For OPENVM MOUNT (NOSTART, it is not necessary that the BFS or subdirectory be available when
the OPENVM MOUNT is entered. No permission checking or checking for existence is done until
objects are used.

8. An OPENVM MOUNT affects all processes in the virtual machine.
9. The establishment of a new root affects the resolution of current working directories that are set with

the OPENVM SET DIRECTORY command.

For example, if you entered these commands:

 OPENVM MOUNT /../VMBFS:VMSYS:ROOT/ /
 OPENVM SET DIRECTORY /My_department/Reports

When you referred to ‘file-a’, you would really be referring to

/../VMBFS:VMSYS:ROOT/My_department/Reports/file-a

If you then entered:

 OPENVM UNMOUNT /
 OPENVM MOUNT /../VMBFS:VMSYS:ROOT2/ /

When you referred to ‘file a’, you would be referring to

/../VMBFS:VMSYS:ROOT2/My_department/Reports/file-a

10. You can have up to ten concurrent mount points. They can be directories in different byte file spaces
or network file systems. You cannot have multiple subdirectories from the same byte file space
mounted concurrently.

11. The READ mode settings are enforced only within the virtual machine that issued the OPENVM
MOUNT command.

OPENVM MOUNT

Chapter 2. OPENVM CMS Commands 411

12. Your access to files and directories in the mounted file system is controlled by the NFS server at the
foreign_host specified as part of pathname1. The remote host typically authenticates the user ID and
password provided and allows access to data based on the UID and GID associated with that user ID
on the remote system. Alternatively, if no user ID is provided, the NFS server typically treats requests
as anonymous.

Some NFS servers may have different methods of protecting data. For example, VM's NFS server may
use a minidisk link password provided in the serveroptions portion of the mount string to make sure
that access to a CMS minidisk is allowed.

13. When a username and password are provided for an NFS mount, either through NETRC data or the
USERID and PASSWORD options, CMS sends the user ID information to the remote host using the Sun
PC-NFS protocol.

14. Use care when deciding whether or not to specify the TRANSLATE parameter. Specify it if the remote
host is a system that stores text data in ASCII format and you need the data in EBCDIC format. Data
is typically stored by S/390®® systems in EBCDIC format. The exception is Linux, which stores text
data in ASCII.

15. OPENVM MOUNT for an NFS file system sets the value of the _EDC_KEEP_EMSG variable in the CENV
group of GLOBALV to Y so that C will not set EMSG OFF.

Examples

First you need to set the root. The root can be set by the OPENVM MOUNT command. Enter:

OPENVM MOUNT /../VMBFS:VMSYS:ROOT/ /

The hierarchy might look something like Figure 2 on page 413.

OPENVM MOUNT

412 z/VM: 7.3 OpenExtensions Commands Reference

 /../VMBFS:VMSYS:ROOT/ /

Figure 2. Setting the BFS path name root using OPENVM MOUNT

If you want to mount another byte file space on subdirectory /A/B/C, enter:

OPENVM MOUNT /../VMBFS:VMSYS:ROOT2/ /A/B/C

If ROOT2 contained objects x, y and z, the hierarchy would look something like Figure 3 on page 414.

OPENVM MOUNT

Chapter 2. OPENVM CMS Commands 413

 /../VMBFS:VMSYS:ROOT/ /

Figure 3. Mounting another BFS file space

You can then refer to file Z, which is in a different byte file space, but is logically included in your BFS
hierarchy, as: /A/B/C/X/Z.

• Mounting an HFS directory on a z/OS®® system

OPENVM MOUNT /../nfs:mvs/hfs/u/user,binary /u/mvsdir (notranslate

• Mounting an AIX home directory

OPENVM MOUNT /../nfs:aix6000/home /u/aixdir

• Mounting a BFS directory on a remote z/VM system

OPENVM MOUNT /../nfs:vmsys/../VMBFS:FP:FS/u/userid,trans=no /u/newdir

OPENVM MOUNT

414 z/VM: 7.3 OpenExtensions Commands Reference

• Mounting an SFS directory on a remote z/VM system

OPENVM MOUNT /../nfs:vmsys/fp:fs.sub1,lines=nl,trans=no,nlvalue=15 /u/newdir

• Mounting a minidisk on a remote z/VM system

OPENVM MOUNT /../nfs:vmsys/userid.vdev,lines=nl,trans=no,nlvalue=15 /u/newdir

• Mounting an OS/2 directory.

OPENVM MOUNT /../nfs:os2_serv/d: /os2drive (translate posix nolist anonymous

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS002E File fn ft fm not found 28

DMS029E Invalid parameter pathname 24

DMS1018E Your username and password could not be authenticated. The PC-
NFS program at foreign_host returned rc

99

DMS1028E The address is already in use 55

DMS1029E Too many file systems mounted 55

DMS1153E File pool is unavailable or unknown 99

DMS1153E File space is unavailable or unknown 99

DMS2110E Object is not a directory: pathname 40

DMS2113E File system is not valid or not available 28

DMS2119E Path name is not fully qualified: pathname 28

DMS2123E File system {is already mounted|cannot be mounted at that mount
point because something is already mounted there}

40

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM MOUNT

Chapter 2. OPENVM CMS Commands 415

OPENVM OWNER

OPENVm OWNer pathname groupname

=

gid

=

userid

nickname

uid

Authorization
Byte File System (BFS) permission checking applies to this command.

Purpose
The OPENVM OWNER command changes the group or owner (or both) of a byte file system (BFS) object.

Operands
pathname

Specifies the name of the object. See “Understanding Byte File System (BFS) Path Name Syntax” on
page 368 for a description of the different forms of the BFS path name.

groupname
specifies the group name to whom you are changing ownership. You can specify the current group
name (or =) if there is to be no change. This will be translated to the corresponding group ID (GID) as
defined in the CP directory.

=
indicates that you do not wish to change the owning GID.

gid
specifies the GID to which you are changing ownership. You can specify the current GID (or =) if there
is to be no change.

=
indicates that you do not wish to change the owning UID. This is the default.

userid or nickname
specifies the user ID (UID) to whom you are changing ownership. This will be translated to the
corresponding UID as defined in the CP directory. If a nickname is used, it may not represent a list of
users (use the NAMES command to define nicknames).

uid
specifies the UID to which you are changing ownership. You can specify the current UID (or =) if there
is to be no change.

Usage Notes
1. OPENVM OWNER changes the owner GID, owner UID, or both of a BFS object. The owning GID can

be changed by the current owner or a superuser. The specified group name's GID value must be the
effective GID or a supplementary GID of the invoker. Only a superuser can change the owning UID of
an object.

2. The group name must evaluate to a valid entry in the group data base. The user ID must evaluate to a
valid CP directory entry.

3. If this command is entered specifying a symbolic link or an External Link of type MOUNT, the link name
is resolved to a file and the ownership of the file is changed.

OPENVM OWNER

416 z/VM: 7.3 OpenExtensions Commands Reference

4. If the path name refers to a BFS regular file, the set-user-ID-on-execution and set-group-ID-on-
execution permissions are automatically turned off when ownership is modified.

5. Use the OPENVM LISTFILE command with the option OWNERS to query (or determine) the group
name, user ID, and permissions associated with objects in the BFS.

6. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization
requirements imposed by the remote NFS server.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS149E {Userid userid|Groupname groupname} not valid 32

DMS637E Missing nodeid for the AT operand 24

DMS647E Userid not specified for nickname in userid NAMES file 32

DMS1209E Nickname nickname resolved to more than one user ID; the owner
can be set for only one user at a time

88

DMS2129E {UID|GID} not found for {Userid|Groupname} 32

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM OWNER

Chapter 2. OPENVM CMS Commands 417

OPENVM PARCHIVE

OPENVm PARchive DUMP

LOAD

archive_name

(OPTIONS

)

OPTIONS

1
TO

FRom

TAP1

TAP  n

vdev

Notes:
1 DUMP will only accept the TO option. LOAD will only accept the FROM option.

Authorization
General User

Purpose
Use the OPENVM PARCHIVE command to copy a portable archive to or from tape.

Operands
DUMP

copies archive to tape.
LOAD

copies archive from tape.
archive_name

the name of the existing archive.

Options
TAPn
vdev

specifies the device name (TAPn), or alternatively the virtual device number (vdev) of the tape device
on which the command is to operate. The following names and corresponding virtual device numbers
are valid. (See z/VM: CMS User's Guide for details on device names and virtual device numbers for tape
devices.) The default is TAP1.

Device Name Device Number

TAP0 180

TAP1 181

TAP2 182

TAP3 183

TAP4 184

TAP5 185

TAP6 186

OPENVM PARCHIVE

418 z/VM: 7.3 OpenExtensions Commands Reference

Device Name Device Number

TAP7 187

TAP8 288

TAP9 289

TAPA 28A

TAPB 28B

TAPC 28C

TAPD 28D

TAPE 28E

TAPF 28F

Usage Notes
1. An archive_file contains information that completely represents a set of other files, including their

names, contents, attributes, permission bits, positions in the directory hierarchy, and so on. You create
an archive file by using the tar, pax or cpio shell command. See “tar -- Manipulate the tar archive files
to copy or back up a file” on page 318, “cpio -- Copy in/out file archives” on page 85, and “paste —
Merge corresponding or subsequent lines of a file” on page 236.

2. For tape operations the OPENVM PARCHIVE command uses Phase Encoding (PE) format with a data
density of 1600 BPI, which is the most standard interchange format.

3. If OPENVM PARCHIVE cannot extract a particular file when reading or find a particular file when
writing, it generates an error message. If an I/O error occurs during tape operations, OPENVM
PARCHIVE ends immediately without further processing.

4. For error messages DMS110S and DMS111S, the problem is reflected in the return code:
RC=3

I/O error
RC=4

Device is not valid.
RC=5

Device does not exist.
RC=6

Volume is write protected.
RC=7

Manual rewind/unload of tape.
5. To end the OPENVM PARCHIVE LOAD command, you should enter ‘END’ or ‘end’ in response to

‘DMSPAI441R Enter VOLID information:’ message. Entering CANCEL in response to the ‘DMSPAI441R
Enter VOLID information:’ message will terminate the OPENVM PARCHIVE command abnormally.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example

HELP MSG DMS111E

Number Text Return Code

DMS027E Invalid device vdev 24

DMS043E TAPn (vdev) is file protected 36

OPENVM PARCHIVE

Chapter 2. OPENVM CMS Commands 419

Number Text Return Code

DMS110S Error reading TAPn(vdev) 100

DMS111S Error writing TAPn(vdev) 100

DMS113S TAPn (vdev) not attached 100

DMS115S Device name cannot write the format recording format 88

DMS431E TAPn (vdev) has been rewound and unloaded by operator. Requested
tape function may not have been executed.

4

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM PARCHIVE

420 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM PATHDEF CREATE

OPENVm PATHdef CREate ddname pathname

Authorization
General User

Purpose

The OPENVM PATHDEF CREATE command establishes path definitions for OS ddnames (data definition
names) that are to be opened by fopen() system calls.

Operands
ddname

specifies a 1- to 8-character simulated MVS ddname (data definition name) that represents the path
definition.

pathname
specifies a byte file system (BFS) path name. See “Understanding Byte File System (BFS) Path Name
Syntax” on page 368 for a description of the different forms of the BFS path name.

Usage Notes
When pathname refers to an object in an NFS-mounted file system, you must meet the authorization
requirements imposed by the remote NFS server.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

OPENVM PATHDEF CREATE

Chapter 2. OPENVM CMS Commands 421

OPENVM PATHDEF DELETE

OPENVm PATHdef DELete ddname

*

Authorization
General User

Purpose
The OPENVM PATHDEF DELETE command deletes path definitions for OS ddnames (data definition
names).

Operands
ddname

specifies a 1- to 8-character simulated MVS ddname that represents the path definition to be deleted.
*

causes paths for all active path and ddname associations to be deleted.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

OPENVM PATHDEF DELETE

422 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM PATHDEF QUERY

OPENVm PATHdef Query ddname

* (STACK

Authorization
General User

Purpose
The OPENVM PATHDEF QUERY command displays path definitions for OS ddnames (data definition
names).

Operands
ddname

specifies a 1- to 8-character simulated MVS™ ddname. When specified, the OPENVM PATHDEF QUERY
command returns the POSIX path associated with the ddname.

*
causes paths for all active path and ddname associations to be returned.

Options
STACK

causes the results of the QUERY command to be placed in the program stack instead of being
displayed at the terminal. These results are stacked LIFO (last in first out).

Usage Notes
1. The output of OPENVM PATHDEF QUERY is truncated to 255 characters if the STACK option is used.

Use CMS Pipelines for responses greater than 255 characters. For more information on CMS Pipelines,
see z/VM: CMS Pipelines User's Guide and Reference.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS2145I No user defined PATHDEFs in effect 4

DMS2146E No user-defined PATHDEFs in effect for ddname: ddname 4

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

OPENVM PATHDEF QUERY

Chapter 2. OPENVM CMS Commands 423

OPENVM PERMIT

OPENVm PERMit pathname mode_string

(REPlace

(
REPlace

ADD

REMove

)

Authorization
Byte file system (BFS) permission checking applies to this command.

Purpose
The OPENVM PERMIT command changes the permission bits used to control the owner access, group
access, and general access to a byte file system (BFS) object. It can also be used to set flags that allow
the user ID (UID) and group ID (GID) of an executable file to be set during execution.

Operands
pathname

Specifies the name of the file or directory. See “Understanding Byte File System (BFS) Path Name
Syntax” on page 368 for a description of the different forms of the BFS path name.

mode_string
mode_string is entered in the following format:

 rwx rwx rwx

and contains the information used to determine the permissions the user wants to change for the
owner, group and public. This is entered in three groups: owner, group and public. Each group consists
of permissions for read, write, and execute access to BFS objects. The owner and group strings also
contain permissions for the set-UID and set-GID. The first three characters apply to the owner, the
second three to the group, and the third three to public. Each group of characters is mapped as
follows:
r

in the first position indicates read permission is to be changed for the BFS object specified.
-

in the first position indicates read permission is to be

• turned off if the REPlace option was used for the BFS object specified.
• left as is if the ADD or REMove options were used for the BFS object specified.

w
in the second position indicates write permission is to be changed for the BFS object specified.

-
in the second position indicates write permission is to be

• turned off if the REPlace option was used for the BFS object specified.
• left as is if the ADD or REMove options were used for the BFS object specified.

x
in the third position indicates execute permission is to be changed if the BFS object specified is a
BFS file; search permission will be changed for a BFS directory.

OPENVM PERMIT

424 z/VM: 7.3 OpenExtensions Commands Reference

s or S
An executable file can have an additional attribute, which is indicated in the execute (third)
position. This permission setting is used to allow a program temporary access to files that are not
normally accessible to other users. This permission bit sets the effective user ID or group ID of
the user process executing a program to that of the file whenever the file is run. This permission is
valid only in the third position of the owner and group.
s

In the owner permissions section, indicates that the set-user-ID on execution bit and execute
(search) permission are to be set for the BFS file.

In the group permissions section, indicates that the set-group-ID on execution bit and execute
(search) permission are to be set for the BFS file.

S
In the owner permissions section, indicates that the set-user-ID on execution bit is set, but
the execute (search) permission is not.

In the group permissions section, indicates that the set-group-ID on execution bit is set, but
the execute (search) permission is not.

-
in the third position indicates execute/search permission is to be

• turned off if the REPlace option was used for the BFS object specified.
• left as is if the ADD or REMove options were used for the BFS object specified.

REPlace
The specified permissions will replace the existing permission. REPlace is the default.

ADD
The specified permissions will be added to the existing permission.

REMove
The specified permissions will be removed from the existing permission.

Usage Notes
1. The effective UID must match the owner UID of the object, or the issuer must have the appropriate

privileges.
2. By setting the set-UID-on-execution permission, when this file is run, the effective UID of the process

is set to the file owner's UID. The process then seems to be running under the UID of the file owner
instead of the UID of the actual invoker.

3. By setting the set-GID-on-execution permission, when this file is run, the effective GID of the caller is
set to the file owner's GID. The caller then seems to be running under the GID of the file instead of the
GID of the actual invoker.

Note: The set-GID-on-execution bit is cleared when the caller does not have the appropriate privileges
and the GID of the file owner does not match the effective GID (or one of the supplementary GIDs) of
the caller.

4. If this command is entered specifying a symbolic link or an External Link of type MOUNT, the link name
is resolved to a file and the permissions of the file are changed.

5. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization
requirements imposed by the remote NFS server.

Examples

1. The object names was created previously, and you want to add write permission to the group
associated with the names file and add read permission to public.

openvm list (own
Directory = '/'
User ID Group Name Permissions Type Path name component

OPENVM PERMIT

Chapter 2. OPENVM CMS Commands 425

user1000 CMSUSRS rwx r-x --x F 'names'
Ready;
openvm permit names --- -w- r-- (ADD
Ready;

OPENVM LISTFILE will now show:

openvm list (own
Directory = '/'
User ID Group Name Permissions Type Path name component
user1000 CMSUSRS rwx rwx r-x F 'names'
Ready;

2. If you enter:

openvm permit /names --- --- r-- (remove

Public read permission is removed from the /names file.
3. If you enter:

openvm permit /names r-x r-x r-x

The permission bits for the /names file are replaced with 'r-x r-x r-x'

OPENVM LISTFILE will now show:

openvm list (own
Directory = '/'
User ID Group Name Permissions Type Path name component
user1000 CMSUSRS r-x r-x r-x F 'names'
Ready;

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM PERMIT

426 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM PUTBFS

OPENVm PUTbfs Fileid pathname2

(Options

)

Fileid
fn ft *

fm

dirid

pathname1

Options

NEWFile

REPlace

BFSLine NL
1

BFSLine NONE

CRLF

CRNL

/string/

/hexstring/

MODule

NEWDate

OLDDate

NOTRAnslate

TRAnslate codepage1 TO codepage2

Notes:
1 BFSLINE NL is the default unless the ft of Fileid is MODULE, in which case MODULE is the default.

Authorization
Byte file system (BFS) permission checking applies to this command.

Purpose

Use the OPENVM PUTBFS command to copy data into a byte file system (BFS) regular file from another
BFS regular file, a file in a SFS directory, or a file on a CMS minidisk.

Operands
pathname1

is the BFS path name of the file to be copied. See “Understanding Byte File System (BFS) Path Name
Syntax” on page 368 for a description of the different forms of the BFS path name.

fn ft *
fn ft fm
fn ft dirid

is the SFS or minidisk file to be copied.

OPENVM PUTBFS

Chapter 2. OPENVM CMS Commands 427

pathname2
is the BFS path name of the file to be created or replaced.

Options
NEWFile

checks that an object with the same file ID as the output file does not already exist. If it does exist, an
error message is displayed and the OPENVM PUTBFS command terminates. This option is the default
so that an existing file is not inadvertently destroyed.

REPlace
causes the output file to replace an existing BFS regular file with the same path name.

BFSLine
Use the BFSLINE option to tell CMS how to translate records into a BFS byte stream. This option is
ignored (has no effect) if the source file is a BFS file.

BFSLINE NONE does not do any insertion of an end-of-line character.

If you specify anything other than BFSLINE NONE, you can define an end-of-line character or
characters to insert into the file.
NL

says that the new line character (X'15') should be inserted at the end of each record to delineate
lines. This is the default.

NONE
says that all records in the file should be concatenated into a byte stream with no end-of-line
characters inserted.

CRLF
says that carriage return/line feed (X'0D25') should be inserted at the end of each record to
delineate lines.

CRNL
says that carriage return/new line (X'0D15') should be inserted at the end of each record to
delineate lines.

/string/
allows the user to specify a 1-2 character string that is inserted at the end of each record to
delineate lines. Blanks may not be included in string, and it may not be X' or x'.

/hexstring/
specifies a hexadecimal string of 2 or 4 characters that defines the value to be used for BFSLINE.
The hexstring must be in the format X'nnnn' or X'nn'. You must not specify any spaces in the string,
and there must be 2 or 4 hexadecimal characters in the string.

BFSLINE NL is the default unless the ft for Fileid is MODULE.

MODule
specifies that the CMS file is in the format created by the GENMOD or BIND command. MODULE must
be specified (or in effect by default) if the CMS file is in this format in order for the resulting BFS file to
be executable. This option is ignored if the source file is a BFS file.

MODULE is the default if the file type of the CMS file is MODULE.

NEWDate
uses the current date and time for the date and time of the new file. This is the default.

OLDDate
uses:

• Time of last data modification (if the source file is a BFS file), or
• Date of last update (if the source file is a CMS file) as the time of last data modification of the target
file.

OPENVM PUTBFS

428 z/VM: 7.3 OpenExtensions Commands Reference

If you attempt to use the OLDDATE option and you are not a superuser or the owner of the target file, a
warning message will be issued and the current time will be used. If the source file is a CMS file that is
older than January 1, 1970, the date of last update used for the target BFS file will be January 1, 1970
with a time of last data modification of 00:00:00.

NOTRAnslate
Indicates that no code page translation should occur.

TRAnslate
Indicates that the characters in the file should be translated as part of the OPENVM PUTBFS
operation. This option is ignored if the MODULE option is specified.
codepage1

Specifies the code page for the source file.
TO codepage2

Specifies the code page for the target file.

Any code page is allowed that is supported by the CMS Pipelines XLATE stage. See z/VM: CMS
Pipelines User's Guide and Reference.

If an end-of-line character is specified, it is not affected by code page translation. That is, code page
translation takes place prior to the insertion of end-of-line characters that turn records into a byte
stream.

Usage Notes
1. Permission for a new BFS file are set to ‘rwx r-x r-x’ under either of these conditions:

• The source file is a BFS file and at least one of its execute permission bits is on.
• The source file is a CMS file and the MODULE option is used or is the default because the file type of

the source file is MODULE.

If neither of these conditions is true, the permissions are set to ‘rw- r-- r--’.

Setting the mask can turn off additional permissions. See “OPENVM SET MASK” on page 453. Use
OPENVM PERMIT to change permissions after the file is created.

2. An OPENVM PUTBFS (REPLACE to an existing BFS file will not change the permissions of the file.
3. When a new BFS file is created, the owning UID established is the effective UID of the process that

issued the request. The group name is the GID of the parent directory. Use OPENVM OWNER to
change either the owning user ID or group name.

4. If the source or target of an OPENVM PUTBFS is a BFS object, but it is not a BFS regular file, the
command will fail.

5. Use the /string/ or /hexstring/ option when you want to specify a different end-of-line character
than those listed above. For example, if you want to use X'0D' to indicate end-of-line, specify the
BFSLINE /X'0D'/ option.

When specifying a BFSLINE value for use on files containing DBCS characters, be careful to use a
value that will not conflict with DBCS characters. The hexadecimal code for a DBCS character must be
X'00', X'40', or in the range of X'41' to X'FE'.

6. The NL and CRLF mnemonics translate into values defined by code page IBM-1047.
7. Avoid copying modules generated with the MAP option of the GENMOD command, or non-relocatable

modules, into the byte file file system. The multitasking nature of POSIX could interfere with running
modules that have either of these characteristics. These types of modules rely on fixed resources:

• The module generated by the GENMOD MAP option relies on the loader tables as its fixed resource.
• The non-relocatable module relies on its fixed location in storage where the module must be

loaded.

Either of these fixed resources could be overwritten by another program.

OPENVM PUTBFS

Chapter 2. OPENVM CMS Commands 429

8. If Fileid specifies a CMS record file (sfs or minidisk file), the file ID will be converted to upper case
during OPENVM PUTBFS processing. However, if Fileid specifies a BFS path name, a mixed case file
ID will be respected and will not be converted to uppercase.

9. When path names refer to files in NFS-mounted file systems, you must meet the authorization
requirements imposed by the remote NFS servers.

10. Use the TRANSLATE option carefully if the source or target files are in an NFS-mounted file system.
The NFS mount allows you to specify whether file data is translated. Do not tell CMS to translate data
a second time using the TRANSLATE option on OPENVM PUTBFS.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS024E File already exists; specify REPLACE option for: pathname2 28

DMS069E Filemode fm not accessed 36

DMS132E File too large: pathname 88

DMS618E NUCEXT failed, return code rc 104

DMS639E Error in {PIPE|DMSCCE} routine, return code was rc 104

DMS1137E Object is locked; deadlock detected 70

DMS1184E File fn ft fm not found or you are not authorized for it 28

DMS2041W You are not permitted to use the OLDDATE option 4

DMS2109E Object is a directory: pathname 40

DMS2125E Path name ends with a slash: pathname 40

DMS2538E File is not in MODULE format 32

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in the Shared File System See "SFS and CRR Error Messages" in z/VM: CMS
Commands and Utilities Reference.

Errors in using a file See "File Error Messages" in z/VM: CMS Commands
and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM PUTBFS

430 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM QUERY DEBUG

OPENVm Query DEBUG

Authorization
General User

Purpose
The OPENVM QUERY DEBUG command displays information about settings set by the OPENVM DEBUG
command. This command is useful for problem diagnosis in the BFS and NFS client environments.

Responses
The response shows the settings for all debug tracing options. It also displays the WRAPSIZE value, which
shows the number of NFS Request trace events retained in the trace table.

Usage Notes
1. Use the OPENVM QUERY DEBUG command to display information about settings set with the OPENVM

DEBUG command. See “OPENVM DEBUG” on page 387 for more information.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM QUERY DEBUG

Chapter 2. OPENVM CMS Commands 431

OPENVM QUERY DIRECTORY

OPENVm Query DIRectory

(

STACK
FIFO

LIFO

FIFO

LIFO

)

Authorization
General User

Purpose
Use the OPENVM QUERY DIRECTORY command to display your current working directory.

Options
STACK

causes the results of the QUERY command to be placed in the program stack instead of being
displayed at the terminal. The information is stacked either FIFO (first in first out) or LIFO (last in first
out). The default order is FIFO.

FIFO
(first-in first-out) is the default option for STACK. FIFO causes the results of the QUERY command to
be placed in the program stack instead of being displayed at the terminal. The information is stacked
FIFO. The options STACK, STACK FIFO, and FIFO are all equivalent.

LIFO
(last-in first-out) causes the results of the QUERY command to be placed in the program stack rather
than being displayed at the terminal. The information is stacked LIFO. This option is equivalent to
STACK LIFO.

Responses
If no current working directory has been specifically established, you would see:

Directory = '/'

After entering OPENVM QUERY DIRECTORY, you might see:

Directory = '/childrens/animal facts/ '

Usage Notes
1. The display is bounded by quotes because it can contain blanks. If a quote is actually part of the path

name, it will be displayed as two quotes in a row.
2. The fully qualified byte file system (BFS) path name can be up to 1023 characters in length.
3. You can establish a current working directory using the OPENVM SET DIRECTORY command or by

specifying the POSIXINFO IWDIR statement in your CP directory entry.

OPENVM QUERY DIRECTORY

432 z/VM: 7.3 OpenExtensions Commands Reference

4. The output of OPENVM QUERY DIRECTORY will be truncated to 255 characters if any of the STACK
options are used and the response data exceeds 255 characters in length. Use CMS Pipelines for
responses greater than 255 characters.

5. Use the OPENVM QUERY MOUNT command to display your root.
6. If the working directory is an absolute path name, it must reside in the mounted logical hierarchy so it

can be resolved by OPENVM QUERY DIRECTORY. (This will also allow it to be displayed.)

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM QUERY DIRECTORY

Chapter 2. OPENVM CMS Commands 433

OPENVM QUERY FORK

OPENVm Query FORk

Authorization
General User

Purpose

Use the OPENVM QUERY FORK command to display the current setting for fork (BPX1FRK) processing.
Use “OPENVM SET FORK” on page 452 to set fork (BPX1FRK) processing. For information about the fork
(BPX1FRK) service, see z/VM: OpenExtensions Callable Services Reference.

Responses

FORK = ON

or

FORK = OFF

Where:
ON

indicates that fork (BPX1FRK) calls will be processed.
OFF

indicates that fork (BPX1FRK) calls will not be processed.

Messages and Return Codes
There are no error messages issued by this command. However, system messages may be issued. The
reasons for these messages and their location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

OPENVM QUERY FORK

434 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM QUERY LINK

OPENVm Query LINk pathname

(

STACK
FIFO

LIFO

FIFO

LIFO

)

Authorization
General User

Purpose
The OPENVM QUERY LINK command displays information associated with symbolic or external links in a
byte file system (BFS).

Operands
pathname

Specifies the name of the file or directory. See “Understanding Byte File System (BFS) Path Name
Syntax” on page 368 for a description of the different forms of the BFS path name.

Options
STACK

causes the results of the QUERY command to be placed in the program stack instead of being
displayed at the terminal. The information is stacked either FIFO (first in first out) or LIFO (last in first
out). The default order is FIFO.

FIFO
(first-in first-out) is the default option for STACK. FIFO causes the results of the QUERY command to
be placed in the program stack instead of being displayed at the terminal. The information is stacked
FIFO. The options STACK, STACK FIFO, and FIFO are all equivalent.

LIFO
(last-in first-out) causes the results of the QUERY command to be placed in the program stack rather
than being displayed at the terminal. The information is stacked LIFO. This option is equivalent to
STACK LIFO.

Responses
Results will be in the format:

Type ExtType Data
linktype elinktype linkdata

Where:

linktype
indicates what type of link is represented by pathname. It will have one of the following values:

OPENVM QUERY LINK

Chapter 2. OPENVM CMS Commands 435

SYMBOLIC
Indicates pathname represents a link to a BFS path name. When linktype is SYMBOLIC, linkdata
will be displayed as a BFS path name, delineated by single quotation marks.

EXTERNAL
Indicates the link references data that may reside outside a BFS. It can be used to reference a
CMS executable file, or a file residing in the record file system or in an application-defined format.

elinktype
Indicates the type of data stored as part of external link. It will be displayed as one of the following
values:
-

A dash will be displayed if linktype is SYMBOLIC.
CMSEXEC

Indicates the external link is to a CMS executable file. When the type is CMSEXEC, the
accompanying data is to be interpreted as a CMS file ID (in other words, file name, file type,
and file mode).

Note: The data will consist of whatever was entered when the external link was created.

If file type and file mode were not explicitly entered, they will not appear as part of the output.

CMSDATA
Indicates the external link refers to a file that will be opened by the C run time library ANSI-
fopen() routine when the external link is opened. When an elinktype of CMSDATA is displayed,
the accompanying linkdata will be the string1 information specified when the external link was
created. This is expected to be in the format of an fopen() parameter list.

MOUNT
Indicates the external link is an MEL (Mount External Link). When an elinktype of MOUNT is
displayed, the linkdata is the string2 specified in the OPENVM CREATE EXTLINK syntax when the
external link was created.

nnn
This may be a numeric value in the range of 100-200. This will be displayed if this is an application
defined format of an external link if the CODE keyword is used to create the external link. When
nnn is displayed, the format and contents of the accompanying linkdata will be as it was entered
in the string2 parameter when the external link was created. Its format and meaning is defined by
the application.

linkdata
Consists of the data stored with the external or symbolic link. The format and expected content of
linkdata is a function of linktype and elinktype as described above.

Usage Notes
1. The output of OPENVM QUERY LINK will be truncated to 255 characters if any of the STACK options

are used and the response data exceeds 255 characters in length.
2. Use the OPENVM QUERY LINK command to display information associated with symbolic or external

links. For information about links to BFS regular files, use OPENVM LISTFILE with the NAMES option.
3. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization

requirements imposed by the remote NFS server.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

OPENVM QUERY LINK

436 z/VM: 7.3 OpenExtensions Commands Reference

Number Text Return Code

DMS2117E Object is not a symbolic or external link: pathname 88

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM QUERY LINK

Chapter 2. OPENVM CMS Commands 437

OPENVM QUERY MASK

OPENVm Query MASk

(

STACK
FIFO

LIFO

FIFO

LIFO

)

Authorization
General User

Purpose

Use the OPENVM QUERY MASK command to display the file creation mask permission values in effect.
Use “OPENVM SET MASK” on page 453 to set the file creation mask.

Options
STACK

causes the results of the QUERY command to be placed in the program stack instead of being
displayed at the terminal. The information is stacked either FIFO (first in first out) or LIFO (last in first
out). The default order is FIFO.

FIFO
(first-in first-out) is the default option for STACK. FIFO causes the results of the QUERY command to
be placed in the program stack instead of being displayed at the terminal. The information is stacked
FIFO. The options STACK, STACK FIFO, and FIFO are all equivalent.

LIFO
(last-in first-out) causes the results of the QUERY command to be placed in the program stack rather
than being displayed at the terminal. The information is stacked LIFO. This option is equivalent to
STACK LIFO.

Responses
OPENVM QUERY MASK displays the value in the file creation mask for the owner, group, and public
in terms of read, write, and execute (search) access. Permissions are specified as combinations of the
letters r (read), w (write), and x(execute).

OWNER GROUP PUBLIC
 bbb bbb bbb

where b may be one of the following:
r

Indicates permission for the specified user class (owner, group, or public) and READ access mode
have been allowed by the OPENVM SET MASK command.

w
Indicates permission for the specified user class (owner, group, or public) and WRITE access mode
have been allowed by the OPENVM SET MASK command.

OPENVM QUERY MASK

438 z/VM: 7.3 OpenExtensions Commands Reference

x
Indicates permission for the specified user class (owner, group, or public) and EXECUTE access mode
have been allowed by the SET MASK command.

-
Indicates permission for the specified user class (owner, group or public) and that access mode (read,
write, or execute) are denied. For example, if all of the owner fields are marked with a dash (-), then
the owner will not have read, write, or execute permission to any newly created file.

Usage Notes
1. The file creation mask is used whenever a file or directory is created in the BFS by the current process.
2. Permissions marked as ‘-’ in the file creation mask will not be granted even if the program that creates

the file attempts to grant them. For example, if the output of OPENVM QUERY MASK is:

OWNER GROUP PUBLIC
 r-x r-- r--

this indicates that all permissions will be denied when a new file is created except read for group and
public, and read and execute for the owner. For more information, see "Handling Security for Your
Files" in z/VM: OpenExtensions User's Guide.

3. You can change the permissions of a particular file or directory by using the OPENVM PERMIT
command.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

OPENVM QUERY MASK

Chapter 2. OPENVM CMS Commands 439

OPENVM QUERY MOUNT

OPENVm Query MOUnt

(NODETails

(

STACK
FIFO

LIFO

FIFO

LIFO

NODETails

DETails)

Authorization
General User

Purpose

Use the OPENVM QUERY MOUNT command to display what is mounted in your hierarchy.

Options
STACK

causes the results of the QUERY command to be placed in the program stack instead of being
displayed at the terminal. The information is stacked either FIFO (first in first out) or LIFO (last in first
out). The default order is FIFO.

FIFO
(first-in first-out) is the default option for STACK. FIFO causes the results of the QUERY command to
be placed in the program stack instead of being displayed at the terminal. The information is stacked
FIFO. The options STACK, STACK FIFO, and FIFO are all equivalent.

LIFO
(last-in first-out) causes the results of the QUERY command to be placed in the program stack rather
than being displayed at the terminal. The information is stacked LIFO. This option is equivalent to
STACK LIFO.

DETails
includes detailed information for the mount point. The format and content of this information depends
upon the type of file system mounted.

DETAILS displays additional information only for Network File System (NFS) mounts. DETAILS
displays values for local NFS options and shows RPC and NFS request statistics.

NODETails
does not include detailed information for the mount point. This is the default.

Responses
The following is an example of the output if you have only your root mounted:

OPENVM QUERY MOUNT

440 z/VM: 7.3 OpenExtensions Commands Reference

Mount point = /
Type Stat Mounted
BFS R/W '/../VMBFS:VMSYS:ROOT/ /'

where:
Mount point

Is the location where data is mounted If the file system containing this location is not available, the
Mount point will be "UNKNOWN".

Type
Identifies what is mounted BFS indicates that a byte file system (BFS) or BFS subdirectory is
mounted.

Stat
Identifies how the file system or directory is mounted.
R/W -

Indicates that it is mounted in write mode.
R/O -

Indicates that it is mounted in read only mode.

Indicates that the file system or directory mounted is not available.
Mounted

Is the name of the BFS or BFS subdirectory, or NFS file system that is mounted.

If the Stat field is ***, indicating that the file system or directory is not available, then as much
information as possible is displayed.

You may have other things mounted in addition to your root. For example:

Mount point = /
Type Stat Mounted
BFS R/W '/../VMBFS:VMSYS:ROOT/ /'

Mount point = '/another directory'
Type Stat Mounted
BFS R/W '/../VMBFS:VMSYS:ROOT2/activity reports/1993'

If nothing is mounted, the following response is returned:

 Nothing is mounted

openvm q mount (details
Mount point = '/u/mvsdir'
Type Stat Mounted
NFS R/W '/../NFS:MVS/hfs/u/user'
UID 9999 GID 8888 Userid mvsuserid
Translate NOTRANSLATE NOLIST
Attrcach YES Attrmax 60 Protocol UDP Version 3
Readahd 1 Rsize 8192 Retry 3 Timeout 7
Wsize 8192
RPC 138 Null 0 Getattr 16 Setattr 0
Lookup 22 Read 37 Write 0 Create 0
Remove 0 Rename 0 Link 0 Readdir 8
Statfs 1 Mkdir 0 Rmdir 0 Symlink 0
Readlink 0 Access 38 Mknod 0 Readdir+ 8
Fsstat 0 Fsinfo 0 Pathconf 0 Commit 0

Mount point = '/u/aixdir'
Type Stat Mounted
NFS R/W '/../NFS:AIX6000/home'
UID 9999 GID 8888 Userid aixuserid
Translate POSIX LIST
Attrcach YES Attrmax 60 Protocol TCP Version 3
Readahd 1 Rsize 8192 Retry 3 Timeout 7
Wsize 8192
RPC 158 Null 0 Getattr 16 Setattr 0
Lookup 42 Read 37 Write 0 Create 0
Remove 0 Rename 0 Link 0 Readdir 8
Statfs 1 Mkdir 0 Rmdir 0 Symlink 0

OPENVM QUERY MOUNT

Chapter 2. OPENVM CMS Commands 441

Readlink 0 Access 38 Mknod 0 Readdir+ 8
Fsstat 0 Fsinfo 0 Pathconf 0 Commit 0

Mount point = '/os2drive'
Type Stat Mounted
NFS R/O '/../NFS:OS2_SERV/d:'
UID -2 GID -2 Userid ANONYMOUS
Translate POSIX NOLIST
Attrcach NO Attrmax 0 Protocol UDP Version 2
Readahd 0 Rsize 8192 Retry 3 Timeout 7
Wsize 8192
RPC 7 Null 0 Getattr 0 Setattr 0
Lookup 0 Read 0 Write 0 Create 0
Remove 0 Rename 0 Link 0 Readdir 0
Statfs 1 Mkdir 0 Rmdir 0 Symlink 0
Readlink 0 Access 4 Mknod 0 Readdir+ 2
Fsstat 0 Fsinfo 0 Pathconf 0 Commit 0

Mount point = '/'
Type Stat Mounted
BFS R/W '/../VMBFS:SERVBFS:MARYELLN/'
Ready;

Usage Notes
1. If nothing is mounted and the STACK, LIFO, or FIFO option was specified, the return code is set to 6,

indicating that no data was stacked.
2. The path names in the display are bounded by quotes because they can contain blanks. If a quote is

actually part of the path name, it will be displayed as two quotes in a row.
3. The output of OPENVM QUERY MOUNT will be truncated to 255 characters if any of the STACK options

are used and the response data exceeds 255 characters in length. Use CMS Pipelines for responses
greater than 255 characters.

4. When the DETAILS option is specified, the display includes information about how the NFS client is
known at the NFS server. This includes a username and UID and GID values.

• When username is specified on a Mount or picked up from the NETRC DATA file, the UID and GID
displayed are those returned by the NFS server in response to a Sun PC-NFS request. That UID and
GID are returned to the NFS server in the UNIX-style credentials on subsequent requests.

Up to nine characters of the username are displayed.
• ANONYMOUS indicates that the NFS Mount request was done anonymously from the NFS client's

point of view. That is, no Sun PC-NFS request was sent by the NFS client.

Note that the serveroptions provided with the NFS path name on the Mount request may include user
ID information, so that in the NFS server's view, the mount request is not anonymous.

In this case, UID –2 and GID–2 are passed to the NFS server in the UNIX-style credentials.
• When ********* is displayed, it indicates that neither username nor ANONYMOUS were used on

the NFS Mount request. The UID and GID passed to the NFS server in the UNIX-style credentials
are the values in effect for your VM user ID. The current effective UID and GID are displayed in the
command output.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

OPENVM QUERY MOUNT

442 z/VM: 7.3 OpenExtensions Commands Reference

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM QUERY MOUNT

Chapter 2. OPENVM CMS Commands 443

OPENVM RENAME

OPENVm REName old_pathname new_pathname

Authorization
General user; Byte file system (BFS) permission checking applies to this command.

Purpose
The OPENVM RENAME command renames or relocates a byte file system (BFS) object.

Operands
old_pathname

specifies the name of the object to be renamed. See “Understanding Byte File System (BFS) Path
Name Syntax” on page 368 for a description of the different forms of the BFS path name.

new_pathname
specifies the new name of the object.

Usage Notes
1. When renaming a file, if the new name specified points to an existing file, the old file will be deleted

(unlinked) and the file specified as old will be given the new path name.
2. When renaming a directory, if the new name refers to an existing directory, the existing directory must

be empty.
3. If the old_pathname points to a file, the new_pathname cannot point to a directory and vice versa. In

other words, you cannot replace a file with a directory or a directory with a file.
4. You must have write permission to the directory containing the old name and write permission to

the directory containing the new name. If they both are directories, the caller does not need write
permission to the object being renamed.

5. If old_pathname and new_pathname are links referring to the same file, no action is taken and the
command completes successfully.

6. You cannot specify a new path name that physically resides in a different byte file system than the old
path name. The path names (new and old) must be on the same byte file system.

7. For symbolic and external links, only the name of the link itself is changed; the contents are not
changed.

8. The OPENVM commands can be entered on a single line or on multiple lines. To enter multiple lines,
type OPENVM and press the enter key. You will get a message prompting you to enter more input lines.
You must enter a null line to indicate the end of your command input. This is particularly useful for
entering long path names.

9. When path names refer to files in NFS-mounted file systems, you must meet the authorization
requirements imposed by the remote NFS servers.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

OPENVM RENAME

444 z/VM: 7.3 OpenExtensions Commands Reference

Number Text Return Code

DMS1162E Directory is not empty: pathname 40

DMS2115E Objects are on different file systems 88

DMS2121E Operation may not be performed on {the file system root|. or ..} 88

DMS2124E Path name is part of the new name for pathname 40

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM RENAME

Chapter 2. OPENVM CMS Commands 445

OPENVM RUN

OPENVm RUN pathname

parm

Authorization
General user; byte file system (BFS) permission checking applies to this command. The user must have
execute permission for the file that is being invoked.

Purpose

The OPENVM RUN command starts an application that is an executable CMS module.

Operands
pathname

is the path name of the CMS module to be executed.
parm

are the parameters that the user wants to pass to the program. User parameters are tokenized
(delimited by blanks) unless they are enclosed in quotes. Each parameter is passed to the program as
a separate argument. Any number of parameters can be passed.

A user parameter may contain special characters, such as single quotation marks ('), double quotation
marks ("), blank spaces, and so on. However, you must follow the same rules that apply to these
special characters when used in a BFS path name. Specifying '' or "" passes a NULL string as a
parameter. See “Understanding Byte File System (BFS) Path Name Syntax” on page 368 for more
information.

Usage Notes
1. The user must have execute permission to the file to run the program.
2. OPENVM RUN attempts to locate an executable file in the BFS. If one is not found, OPENVM RUN

attempts to parse the path name into a CMS file ID and search for that file in the CMS record file
system (SFS or minidisk). Case sensitivity of the path name is respected, even when it is interpreted
as a CMS file ID.

For more information about how CMS searches for the path name, see the BPX1EXC routine in z/VM:
OpenExtensions Callable Services Reference.

To specify a CMS record file system file ID for the path name parameter, the entire file ID must be
enclosed in quotes if you specify a CMS file type and file mode because they are separated by blanks.

3. The OPENVM RUN command calls the BPX1SPN function, which creates a child process for running
the specified application. BPX1SPN then calls BPX1EXC to run the specified application. OPENVM
RUN waits for the child process to end. See z/VM: OpenExtensions Callable Services Reference for
more information on BPX1SPN and BPX1EXC, including restrictions and entry conditions.

4. The OPENVM RUN command queries the CENV group of GLOBALV to obtain a list of variables. These
variables are used to initialize the POSIX environment variable for the user program. If no LOGNAME
variable is found in the CENV group of GLOBALV, it is set to the user's POSIX login name. If no PATH
variable is found in the CENV group of GLOBALV, it is set to /bin:/usr/bin. The HOME environment
variable is set to the initial working directory field in the POSIX user database entry. If HOME is

OPENVM RUN

446 z/VM: 7.3 OpenExtensions Commands Reference

found in the CENV group of GLOBALV, it is overridden. The SHELL environment variable is set to the
initial user program field in the POSIX user database entry. If SHELL is found in the CENV group of
GLOBALV, it is overridden. Each variable string that is passed to the user program is terminated by a
NULL character (X'00'). The NULL character is included in the string length that is passed to the user
program.

5. The file name, which is the last path name component in the path specified for the command, is
passed to the user program as the first argument. Any user arguments that are specified on the
command are passed in the order entered, after the file name. All arguments have a NULL character
appended, and this NULL character is included in the argument string length that is passed to the
user program.

6. The OPENVM RUN command cannot be invoked while in DOS mode or subset mode.
7. The OPENVM RUN command opens the terminal as file descriptors 0, 1, and 2 if these are not already

in use. If the user program completes and returns with a status of 0, but an error is encountered
closing one of the files that were opened, the return code will reflect the close error.

8. The application that OPENVM RUN starts must be expecting BPX1EXC (exec()) style entry conditions.
For example, if you create an external link to a module that expects a tokenized or extended
parameter list, it cannot successfully use any of the parameters passed to it by OPENVM RUN, and it
may even generate a program check while trying to look at the parameter list.

9. A null string can be passed as a parameter to the invoked program by specifying two quotes in a row.
For example:

OPENVM RUN /bin/aprog parml '' parm3

10. When pathname refers to an object in an NFS-mounted file system, you must meet the authorization
requirements imposed by the remote NFS server.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; For example:

HELP MSG DMS111E

Number Text Return Code

DMS132S File pathname too large 104

DMS2105E Permission is denied 28

DMS2113E Object does not exist: pathname 28

DMS2117E Object is not {a BFS regular file|in the proper format to be an
executable file}: pathname

28

DMS2134E Return code retcode and reason code reascode [X'hexreascode']
given on call to routine routinename

104

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

For additional messages that may be generated, see the LOADMOD command in z/VM: CMS Commands
and Utilities Reference.

OPENVM RUN

Chapter 2. OPENVM CMS Commands 447

OPENVM RUN Return Codes
If the application is successfully started, the return code will be 0 if the exit status of the child process is
0 and OPENVM RUN did not encounter any other errors. However, if the exit status of the child process is
not 0, the OPENVM RUN return code will be 1000 plus the return code field of the exit status. This field
contains a value from 0 to 255. It is often the return code of the exiting process. If the return code is
1000, it is most likely because the application was terminated by a signal.

OPENVM RUN

448 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM SET DIRECTORY

OPENVm SET DIRectory pathname

Authorization
General User

Purpose
Use the OPENVM SET DIRECTORY command to set or change your working directory from the current
one to a new one. The current working directory is the starting point for path searches of path names not
beginning with a ‘/’.

Operands
pathname

is the byte file system (BFS) path name that is to be used as your new current working directory.

Note: This pathname may use the current working directory that is in effect prior to successful
completion of this command.

See “Understanding Byte File System (BFS) Path Name Syntax” on page 368 for a description of the
different forms of the BFS path name.

Usage Notes
1. Use the POSIXINFO FSROOT statement in your CP directory entry, or use the OPENVM MOUNT

command to establish your root.

You may use the POSIXINFO IWDIR statement in your CP directory entry to establish an initial working
directory.

For information about the z/VM CP directory entry, see z/VM: CP Planning and Administration.
2. OPENVM SET DIRECTORY sets the default working directory for the current process and for any new

process that is created until your virtual machine is IPL'ed or until another OPENVM SET DIRECTORY is
entered.

3. You may use any form of relative BFS path name when changing your working directory. For the
following examples, assume you have a BFS that included the directories displayed in Figure 4 on page
450 and you had entered:

 OPENVM MOUNT /../VMBFS:VMSYS:ROOT/TRAVEL /

to establish your root directory.

OPENVM SET DIRECTORY

Chapter 2. OPENVM CMS Commands 449

Figure 4. Sample BFS directory hierarchy

If you did not specifically designate a working directory, your current working directory would be the
same as your root directory (in this case, the '/../VMBFS:VMSYS:ROOT/TRAVEL' directory).

a. If you wished to set your working directory to the UK directory, you could do so by entering:

 OPENVM SET DIRECTORY EUROPE/UK

b. Suppose you then wanted to set set your working directory to EUROPE; you could do so by entering:

 OPENVM SET DIRECTORY '..'

c. From here, if you wanted to set your working directory to ITALY, you could do so by entering:

 OPENVM SET DIRECTORY ITALY

d. You could go from your ITALY directory to your FRANCE directory by entering:

 OPENVM SET DIRECTORY '../FRANCE'

4. The establishment of a new root (using the OPENVM MOUNT command) affects the resolution of the
current working directory.

For example, if you entered these commands:

 OPENVM MOUNT /../VMBFS:FILEPL8:BYTEFS/ /
 OPENVM SET DIRECTORY '/My_department/Reports'

When you referred to ‘file-a’, you would really be referring to:

 /../VMBFS:FILEPL8:BYTEFS/My_department/Reports/file-a

If you then entered:

 OPENVM MOUNT /../VMBFS:FILEPL8:DIFFBFS/ /

When you referred to ‘file-a’, you would be referring to:

OPENVM SET DIRECTORY

450 z/VM: 7.3 OpenExtensions Commands Reference

 /../VMBFS:FILEPL8:DIFFBFS/My_department/Reports/file-a

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM SET DIRECTORY

Chapter 2. OPENVM CMS Commands 451

OPENVM SET FORK

OPENVm SET FORk ON

OFF

Authorization
General User

Purpose

Use the OPENVM SET FORK command to indicate whether calls to the fork (BPX1FRK) callable service
should be processed. z/VM invokes fork (BPX1FRK) to handle fork() function calls in a C or C++ program
running on z/VM. Calls to fork (BPX1FRK) may also be coded directly in an assembler or REXX program.

The OpenExtensions implementation of the fork (BPX1FRK) service has some limitations not found in
other implementations. In certain situations, you may need to modify your application to accommodate
these limitations. To understand the OpenExtensions implementation of fork (BPX1FRK), see z/VM:
OpenExtensions Callable Services Reference. To avoid the limitations of fork (BPX1FRK), you should
consider modifying your application to use spawn (BPX1SPN). If you determine that the processing
provided by fork (BPX1FRK) is sufficient for your needs, you must use the OPENVM SET FORK command
to explicitly turn that processing ON before running your program.

Operands

ON
specifies that calls to the fork (BPX1FRK) service are to be processed.

OFF
specifies that calls to the fork (BPX1FRK) service are not to be processed.

Usage Notes
1. The initial (default) setting for fork (BPX1FRK) processing in a CMS session is OFF.
2. If fork (BPX1FRK) processing is set OFF, an indirect or direct call to the fork (BPX1FRK) service is not

processed, except to return a return value of -1 and a return code and reason code indicating that the
call is not supported.

Messages and Return Codes
There are no error messages issued by this command. However, system messages may be issued. The
reasons for these messages and their location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

OPENVM SET FORK

452 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM SET MASK

OPENVm SET MASk
CLEAR

mode_string

RESET

Authorization
General User

Purpose

Use the OPENVM SET MASK command to change the file creation mask (often called the umask). The
file creation mask is used, along with the mode specified by an application, to determine the access
permissions (read, write, and execute) to any new file or directory created by an OPENVM or shell
command.

By specifying permissions with the OPENVM SET MASK command, you can control who will be denied
access to a file you create. You cannot guarantee that an application will allow a permission that you have
set with the OPENVM SET MASK command, but an application cannot grant a permission that you have
denied.

Operands
CLEAR

turns off all permissions (read, write, and execute) for all users (owner, group, and public) for any new
file being created. This is the default.

mode_string
is the set of permissions that you are granting for any new file being created. These permissions are
specified in the following format:

 rwx rwx rwx

From left to right, the first three characters apply to the owner, the second three characters to the
group, and the third three characters to public. Each group of characters is mapped as follows:
r

Indicates read permission is to be allowed if requested by an application creating a new file.
w

Indicates write permission is to be allowed if requested by an application creating a new file.
x

Indicates execute (search) permission is to be allowed if requested by an application creating a
new file.

-
Indicates that permission is to be denied. When in the first position (instead of r), this indicates
read permission is to be denied. When in the second position (instead of w), this indicates write
permission is to be denied. When in the third position (instead of x), this indicates execute
(search) permission is to be denied.

OPENVM SET MASK

Chapter 2. OPENVM CMS Commands 453

RESET
resets the file creation mask to the initial system default. In OpenExtensions this is:

 OWNER GROUP PUBLIC
 rwx r-x r-x

This setting denies write access to group and public.

Usage Notes
1. The mask set by OPENVM SET MASK controls permission to newly-created BFS objects. A permission

value specified for this command is granted for a file being created only if the corresponding mode is
specified by the application creating the file.

For example, if you wanted to deny execute access to users other than the file owner as a default when
creating new files in the BFS, you would specify:

OPENVM SET MASK rwx r-- r--

If an application subsequently issues mkdir() or open() with permissions specified as rwx rwx --x,
the actual permissions will be rwx r-- r--.

For more information, see "Handling Security for Your Files" in z/VM: OpenExtensions User's Guide.
2. If permissions are specified on the OPENVM SET MASK command, the corresponding bit will be turned

ON in the umask. All other bits in the umask are turned OFF.
3. The OPENVM SET MASK command sets the default file mode creation mask for the current process,

and for any new process that is created, until you IPL your virtual machine or another OPENVM SET
MASK command is entered.

4. If the OPENVM SET MASK command has not been entered, the system default permissions will be
given to newly created BFS objects unless a mode has been supplied that denies these permissions:

 OWNER GROUP PUBLIC
 rwx r-x r-x

5. You can clear the file creation mask (no permission will be granted by default) by entering:

OPENVM SET MASK

with no operands, or

OPENVM SET MASK CLEAR

6. You can reset the file creation mask to the system default by entering:

OPENVM SET MASK RESET

7. Use OPENVM QUERY MASK to determine the current value of the file creation mask.
8. Another example showing how the OPENVM SET MASK command can be used follows:

openvm set mask rwx r-x r-x
Ready;
openvm query mask
Owner Group Public
 rwx r-x r-x
Ready;
openvm create dir Z
Ready;
openvm list (own
Directory = '/'
User ID Group Name Permissions Type Path name component
user1000 CMSUSRS rwx r-x r-x D 'Z'
Ready;

OPENVM SET MASK

454 z/VM: 7.3 OpenExtensions Commands Reference

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM SET MASK

Chapter 2. OPENVM CMS Commands 455

OPENVM SHELL

OPENvm SHell

parm1

parm2
...

Authorization
General user; byte file system (BFS) permission checking applies to this command. The user must have
execute permission for the file that is invoked as the shell.

Purpose

Use the OPENVM SHELL command to start an OpenExtensions shell and enter the shell command
environment.

Operands
parm1, parm2, ...

are the parameters that the user wants to pass to the program. User parameters are tokenized
(delimited by blanks). Each parameter is passed to the program as a separate argument. Any number
of parameters can be passed.

A user parameter may contain special characters, such as single quotation marks ('), double quotation
marks ("), blank spaces, and so on. However, you must follow the same rules that apply to these
special characters when used in a BFS path name. Specifying '' or "" passes a NULL string as a
parameter. See “Understanding Byte File System (BFS) Path Name Syntax” on page 368 for more
information.

Usage Notes
1. The OPENVM SHELL command invokes the initial user program, as defined in the POSIX user database

entry as a login shell in POSIX compliant mode. If no initial user program is defined in the POSIX user
database entry, the default OpenExtensions shell, /bin/sh, will be invoked.

For information about the POSIX user database, see z/VM: CP Planning and Administration.
2. When the OPENVM SHELL command starts an OpenExtensions shell, it starts the shell with OPENVM

RUN. For more information, see “OPENVM RUN” on page 446.
3. OPENVM SHELL attempts to GLOBAL the LOADLIBs that are needed to run the shell. This list

of LOADLIBs is defined in the file /etc/openvmdefaults on lines that begin with the keyword
CLIBNAMES. The keyword CLIBNAMES must be in upper case, and lines in the file are delimited by
the newline character (X'15'). There may be multiple lines with the CLIBNAMES keyword, and multiple
LOADLIB names can be listed on a single line after the CLIBNAMES keyword. If OPENVM SHELL
cannot read the /etc/openvmdefaults file, or if no CLIBNAMES are defined, it uses SCEERUN as the
default loadlib.

Before trying to GLOBAL the LOADLIBs, OPENVM SHELL looks for each one on the currently
accessed file modes. If any of the LOADLIBs are not found, OPENVM SHELL looks in the /etc/
openvmdefaults file for lines that begin with the keyword CLINKNAME. The CLINKNAME keyword
must be in upper case, and the data that follows the keyword must be one of the following:

• A nickname defined in a CMS NAMES file by a :NICK tag

OPENVM SHELL

456 z/VM: 7.3 OpenExtensions Commands Reference

• A userid and owner_vdev pair that identifies the user ID of the owner of a minidisk and the virtual
device number as defined in the owner's user directory entry

• .DIR dirname.

OPENVM SHELL will issue VMLINK for each CLINKNAME line in the file.

OPENVM SHELL will issue the GLOBAL command only if any of the specified LOADLIBs are not already
GLOBALed. It appends the list of missing LOADLIBs to the list of LOADLIBs currently GLOBALed.
Before OPENVM SHELL completes, it restores the list of LOADLIBs that have been GLOBALed.

4. OPENVM SHELL sets the value of the _EDC_KEEP_EMSG variable in the CENV group of GLOBALV to Y
so that C will not set EMSG OFF.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See z/VM: CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

For additional messages that may be generated, see the LOADMOD command in z/VM: CMS Commands
and Utilities Reference.

For additional information on return codes, see “OPENVM RUN Return Codes” on page 448.

OPENVM SHELL

Chapter 2. OPENVM CMS Commands 457

OPENVM SHOWMOUNT

OPENVm SHOwmount

foreign_host

(

Export

Active

Directory

)

Authorization
General user

Purpose

Use the OPENVM SHOWMOUNT command to display information about mountable or mounted file
systems at foreign_host.

Operands
foreign_host

Identifies the host for which mount information is to be displayed. If not specified, the local host is the
default.

Options
Export

Displays foreign_host's export list and the list of clients allowed to mount each one. This is typically
the list of file systems that can be mounted. VM's NFS server allows mounting of file systems that are
not in the export list.

Active
Shows the list of file systems mounted at foreign_host and the foreign host name or IP address of the
client that requested the mount.

Directory
Shows the list of file systems mounted at foreign_host.

Responses
Following is sample output for the EXPORT option where the remote host is on a z/VM system. For a
z/VM NFS server, the display will always show everyone as the list of clients allowed to mount each
exported file system. (The NFS server for z/VM determines whether a mount is allowed based on whether
the user ID associated with the mount is authorized or permitted to use the file system. In the case of
a password-protected minidisk, the password provided on the mount determines whether the mount is
allowed.)

openvm showmount vmthere (export
/PC/Your/191/Disk
 (everyone)
/PC/Your/SFS/in/VMSYS1
 (everyone)
/PC/Your/SFS/in/VMSYS2
 (everyone)
/UNIX/Your/191/Disk
 (everyone)
/UNIX/Your/SFS/in/VMSYS1
 (everyone)

OPENVM SHOWMOUNT

458 z/VM: 7.3 OpenExtensions Commands Reference

/UNIX/Your/SFS/in/VMSYS2
 (everyone)
/BFS/FSROOT/IWDIR/in/VMSYS1
 (everyone)
/BFS/FSROOT/IWDIR/in/VMSYS2
 (everyone)
Ready;

The following is sample output for the EXPORT option where the remote host is on an AIX system. In
addition to the exported file system, the display includes a list of which clients are allowed to mount each
one. The names in the group list are implementation-specific.

openvm showmount aixthere (export
/home/books
 user1
 user2
/cd1
 (everyone)
/home/user1
 user1
Ready;

If the foreign_host does not have any file systems exported, the following response is returned:

No exported file systems for host foreign_host

openvm showmount vmthere (active
5.55.12.121/MARYSMIT.191
5.55.12.12//../VMBFS:VMSYS2:ROOT/
5.55.12.12/VMSYS1:JOHNSMIT.
5.55.12.12/VMSYS2:MARYSMIT.
Ready;

If the foreign_host does not have any file systems mounted, the following response is returned:

Nothing is mounted

An "*" will be displayed in the output if the foreign host returns a null hostname or file system name.

openvm showmount vmthere (directory
MARYSMIT.191
/../VMBFS:VMSYS2:ROOT/
VMSYS1:JOHNSMIT.
VMSYS2:MARYSMIT.
Ready;

If the foreign_host does not have an file systems mounted, the following response is returned:

Nothing is mounted

An "*" will be displayed in the output if the foreign_host returns a null file system name.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

Number Text Return Code

DMS002E File STANDARD TCXPXLBIN * not found 28

DMS065E option specified twice 24

DMS1060E MOUNT [DUMP | EXPORT] program is not available at foreign_host 99

OPENVM SHOWMOUNT

Chapter 2. OPENVM CMS Commands 459

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM SHOWMOUNT

460 z/VM: 7.3 OpenExtensions Commands Reference

OPENVM UNMOUNT

OPENVm UNMount /

pathname

Authorization
General User

Purpose

OPENVM UNMOUNT removes a file system from your hierarchy.

The file system to be removed may be a byte file system (BFS), BFS subdirectory, or Network File System
(NFS) previously mounted with OPENVM MOUNT. Use the OPENVM QUERY MOUNT command to display
what is mounted in your hierarchy.

Operands
pathname

is the BFS path name from which the BFS or BFS subdirectory tree is to be removed. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 368 for a description of the
different forms of the BFS path name.

pathname may also be an NFS file system name that was used on a mount request. See
“Understanding Network File System (NFS) Path Name Syntax” on page 374 for a description of
the NFS path name.

/
indicates that the root directory is to be unmounted.

Usage Notes
1. OPENVM UNMOUNT will unmount the file system and all file systems mounted on it. It will unmount

everything, even if there are open files.
2. An OPENVM UNMOUNT affects all processes in the virtual machine.
3. After an OPENVM UNMOUNT pathname operation, you will again be able to see the BFS subdirectory

tree that was overlaid by the original OPENVM MOUNT.
4. If you had entered an OPENVM SET DIRECTORY command to set your current working directory, it will

not be changed by OPENVM UNMOUNT. It will remain in effect until you IPL your virtual machine or
enter another OPENVM SET DIRECTORY command.

5. A mount is no longer in effect for your CMS virtual machine following a system reset, such as LOGOFF
or IPL. However, the foreign server may still consider the mount active. Use the NFS format of the path
name on OPENVM UNMOUNT to clean up mounts at a foreign server following a LOGOFF or IPL.

Messages and Return Codes
For information on a specific error message, see z/VM: CMS and REXX/VM Messages and Codes. You can
also enter HELP MSG and the message identifier; for example:

HELP MSG DMS111E

OPENVM UNMOUNT

Chapter 2. OPENVM CMS Commands 461

Number Text Return Code

DMS2110E Object is not a directory: pathname 40

DMS2113E File system is not mounted or not available 28

DMS2113E Object does not exist: pathname 28

DMS2118E Path name is not the root of a file system or path name is the root of
a file system but it is not mounted

40

DMS2127W Nothing is mounted 4

Additional system messages may be issued by this command. The reasons for these messages and their
location are:

Reason Location

Errors in command syntax See "Command Syntax Error Messages" in z/VM:
CMS Commands and Utilities Reference.

Errors in using the BFS See Appendix E, “Common Error Messages When
Using BFS Files,” on page 545

OPENVM UNMOUNT

462 z/VM: 7.3 OpenExtensions Commands Reference

Appendix A. OpenExtensions Command Summary

The following list presents OpenExtensions shell commands and utilities grouped by the task a user might
want to perform. Similar tasks are organized together. Commands that are OpenExtensions extensions to
POSIX.2 are indicated with an "OE".

Shell Command Summary

General Use
cms

Allow any CP or CMS command to be run from the shell.
command

Run a simple command
date

Display the date and time
echo

Write arguments to standard output
print

Return arguments from the shell
printf

Write formatted output
sh

Invoke a shell (command interpreter)

Note: Use OPENVM SHELL to invoke the OpenExtensions shell initially.

su
Start a new shell and change your authorization to superuser

time
Display processor and elapsed times for a command

whence
Tell how the shell interprets a command name

Controlling Your Environment
alias

Display or create a command alias
env

Display environments, or set an environment for a process
export

Set the export attributes for variables, or show currently exported variables
fc

Process a command history list
id

Return the user identity
locale

Get locale-specific information
logger

Log messages

Command Summary

© Copyright IBM Corp. 1993, 2022 463

logname
Return a user's login name

newgrp
Change to a new group

readonly
Mark a variable as read-only

return
Return from a shell function or . (dot) script

set
Set or unset command options and positional parameters

shift
Shift positional parameters

stty
Set or display terminal options

touch
Change the file access and modification times

tty
Return the user's terminal name

unalias
Remove alias definitions

uname
Display the name of the current operating system

unset
Unset values and attributes of variables and functions

Managing Directories
basename

Return the nondirectory components of a path name
cd

Change the working directory
dirname

Return the directory components of a path name
ls

List file and directory names and attributes
mkdir

Make a directory
mv

Rename or move a file or directory
pathchk

Check a path name
pwd

Return the working directory name
rm

Remove a directory entry
rmdir

Remove a directory

Command Summary

464 z/VM: 7.3 OpenExtensions Commands Reference

Managing Files
cat

Concatenate or display a text file
chgrp

Change the group owner of a file or directory
chmod

Change the mode of a group or directory
chown

Change the owner or group of a file or directory
cksum

Calculate and write checksums and byte counts
cmp

Compare two files
comm

Show and select or reject lines common to two files
compress

Compress data in a file or from the standard input
cp

Copy a file
cut

Cut out selected fields of each line of a file
dd

Convert and copy a file
diff

Compare two text files and show the differences
ed

Use the ed line-oriented text editor
find

Find a file meeting specified criteria
fold

Break lines into shorter lines
head

Display the first part of a file
iconv

Convert characters from one code set to another
join

Join two sorted, textual relational databases
ln

Create a link to a file
mkfifo

Make a FIFO special file
mknod OE

Make a FIFO or character special file
od

Dump a file in a specified format
paste

Merge corresponding or subsequent lines of a file
sed

Start the sed noninteractive stream editor

Command Summary

Appendix A. OpenExtensions Command Summary 465

sort
Start the sort-merge utility

tail
Display the last part of a file

tee
Duplicate the output stream

tr
Translate characters

umask
Set or return the file mode creation mask

uncompress
Uncompress data in a file or from the standard input

uniq
Report or filter out repeated lines in a file

wc
Count newlines, words, and bytes

zcat
Uncompress data in one or more files or from the standard input

Printing Files
lp

Send a file to a printer
pr

Format a file in paginated form and send it to standard output

Computing and Managing Logic
bc

Use the arbitrary-precision arithmetic calculation language
break

Exit from a for, while, or until loop in a shell script
colon or :

Do nothing, successfully
continue

Skip to the next iteration of a loop in a shell script
dot or .

Run a shell file in the current environment
eval

Construct a command by concatenating arguments
exec

Run a command and open, close, or copy the file descriptors
exit

Return to the parent process from which the shell was called or to CMS
expr

Evaluate arguments as an expression
false

Return a nonzero exit code
grep

Search a file for a specified pattern

Command Summary

466 z/VM: 7.3 OpenExtensions Commands Reference

let
Evaluate an arithmetic expression

test
Test for a condition

trap
Intercept abnormal conditions and interrupts

true
Return a value of 0

Controlling Processes
bg

Move a job to the background
fg

Bring a job into the foreground
jobs

Return the status of jobs in the current session
kill

End a process or job, or send it a signal
nohup

Start a process that is immune to hangups
ps

Return the status of a process
sleep

Suspend execution of a process for an interval of time
time

Display processor and elapsed times for a command
wait

Wait for a child process to end

Writing Shell Scripts
getconf

Get configuration values
getopts

Parse utility options
read

Read a line from standard input
type

Tell how the shell interprets a name
typeset

Assign attributes and values to variables
xargs

Construct an argument list and run a command

Developing or Porting Application Programs
ar

Create or maintain library archives
awk

Process programs written in the awk language

Command Summary

Appendix A. OpenExtensions Command Summary 467

c89/cxx
Compile C or C++ source code and create an executable file

lex
Generate a program for lexical tasks

make
Maintain program-generated and interdependent files

strip
Remove unnecessary information from an executable file

yacc
Use the yacc compiler

Communicating with the System or Other Users
mailx

Send or receive electronic mail

Working with Archives
cpio

Copy in/out file archives
pax

Interchange portable archives
tar

Manipulate the tar archive files to copy or back up a file

Shell and CMS Commands that Work with Directories and Files
You can use OPENVM commands to do certain tasks with the Byte File System. Some of these are tasks
that UNIX users traditionally perform while in the shell. Because these are CMS commands, you can
perform these Byte File System tasks whether or not you have the OpenExtensions Shell and Utilities
installed.

Table 13 on page 468 describes the OPENVM command and the equivalent shell command.

Table 13. CMS and Shell Command Equivalents

CMS Shell Function

OPENVM CREATE
DIRECTORY

mkdir Create a directory. The mkdir command has an option for
creating intermediate directories in a pathname.

OPENVM CREATE EXTLINK - Create a BFS pathname to be used to reference a file or
other data that resides outside of the BFS.

OPENVM CREATE LINK ln Link another name to a file (in addition to its original
name).

OPENVM CREATE SYMLINK ln Create a BFS pathname to be used to reference an object
residing in one BFS using a pathname in the same or
another BFS.

OPENVM ERASE rm Remove (erase, or delete) a file from a directory.

 rmdir Remove (erase, or delete) a directory that is empty of files.

OPENVM GETBFS cp Copy a file.

OPEMVM LISTFILE ls List the files in a directory.

Command Summary

468 z/VM: 7.3 OpenExtensions Commands Reference

Table 13. CMS and Shell Command Equivalents (continued)

CMS Shell Function

OPENVM MOUNT - Add a mountable BFS, or BFS sub-directory tree, or
Network File System (NFS), to the file hierarchy.

OPENVM OWNER chgrp Change the group owner of a file or directory. To use this
command, you must be a superuser or the owner of the file
or directory.

 chown Change the owner or group of a file or directory. To use this
command, you must be a superuser.

OPENVM PARCHIVE - Process archive tapes.

OPENVM PERMIT chmod Change access permission to a directory or file. To use
this command, you must have appropriate privileges—you
must have write authority, or be the file owner, or be a
superuser.

OPENVM PUTBFS cp Copy a file.

OPENVM QUERY LINK - Display information associated with symbolic or external
links.

OPENVM QUERY MASK umask Display the file creation mask values in effect.

OPENVM QUERY MOUNT - Display what is mounted in your hierarchy.

OPENVM RENAME mv Move a file from one directory to another directory, or
rename a file or directory.

OPENVM QUERY
DIRECTORY

pwd Display your working directory.

OPENVM RUN - Execute an application that is an executable CMS module.

OPENVM SET DIRECTORY cd Change a working directory.

OPENVM SET MASK umask Define the file creation mask to be used when creating a
BFS object.

OPENVM UNMOUNT - Remove a previously mounted BFS or BFS subdirectory
tree from your hierarchy.

XEDIT ed Create or edit text in a file.

Command Summary

Appendix A. OpenExtensions Command Summary 469

Command Summary

470 z/VM: 7.3 OpenExtensions Commands Reference

Appendix B. Regular Expressions (regexp)

Many OpenExtensions shell commands use a type of pattern known as a regular expression to select lines
from a file for processing. A regular expression is a formula for evaluating whether a given line of a file
should be selected. If some string within the line satisfies the formula given by the regular expression,
then the line is selected and processed, otherwise the line is skipped.

A regular expression is written in terms of literals that must be present -- such as a, b, or fish -- and
certain functions that can be performed on these literals, such as repeating them one or more times.
The functions are expressed by special characters, called metacharacters, that appear in the regular
expression. This appendix gives the rules for composing a regular expression and defines the sets of
recognized metacharacters and their meanings.

A regular expression is categorized as basic or extended according to the set of metacharacters it uses.
The shell commands expr and ed accept only basic regular expressions. The shell commands grep and
sed usually accept basic regular expressions, but will accept extended regular expressions if the -E option
is used. All other shell commands accept extended regular expressions.

The following variables are used in the definitions of the forms of regular expressions:
metachar

Any element of the set of metacharacters for a regular expression. There are two sets of
metacharacters, one set for basic regular expressions and one set for extended regular expressions.

The basic regular expression metacharacters are:

.
 ^
 $ [
 \ * \{ \} \(\)
. [$ [\ * \{ \} \(\)

The extended regular expression metacharacters are:

.
^
$ [
\ * +
? { } | ()

The utilities that use regular expressions interpret them according to the Latin 1/Open System
Interconnection Code Page 1047. See the appendix of z/VM: OpenExtensions User's Guide to ensure
your terminal or emulator is generating the correct code points for these characters.

char
Any character which is not an element of the metacharacter set for the type of regular expression
under consideration. For example, when we are discussing basic regular expressions, | is a char; when
we are discussing extended regular expressions, | is a metachar.

digit
Any of the characters 1, 2, 3, 4, 5, 6, 7, 8, or 9.

anychar
Any character.

Given these definitions, we can begin to build up a list of the acceptable forms of a regular expression. We
can say that a regular expression regexp takes these forms:
char

Matches one occurrence of char. For example, regular expression a specifies that any line containing
the string a should be selected.

regexp

© Copyright IBM Corp. 1993, 2022 471

.
Matches one occurrence of any character. For example, regular expression . specifies that any line
containing at least one character should be selected.

\anychar
Matches one occurrence of anychar. In other words, \ is an "escape" character that permits searching
for metacharacters. For example, regular expression \. specifies that any line containing . should be
selected, and regular expression \\ specifies that any line containing \ should be selected.

Note: \digit is a special case and is described later.

[bracket_expression]
A string enclosed in square brackets matches any one character in the string. 1 For example, regular
expression [abc] matches a, b, or c.

Within bracket_expression, certain characters have special meanings, as follows: 2

• If the first character of bracket_expression is either a dash (-) or a closing square bracket (]), then
it is interpreted literally rather than being given special meaning. For example, regular expression
[-abc] matches any line containing -, a, b, or c.

• Within bracket_expression you can specify a collation sequence by enclosing the name of the
collation sequence within square brackets and periods. For example, regular expression [[.ch.]]
matches the multicharacter collation sequence ch (if the current language supports that collation
sequence). Any single character is itself. Do not give a collation sequence that is not part of the
current locale.

• Within bracket_expression you can specify an equivalence class by enclosing a character or collation
sequence within square brackets and equal signs. For example, regular expression [[=a=]] matches
any character in the same equivalence class as a. This normally expands to all the variants of a in
the current locale; for example, a, \(a:, \(a', and so on. On some locales it might include both the
uppercase and lowercase of a given character. In the POSIX locale, this always expands to only the
character given.

• Within bracket_expression you can specify a character class expression by enclosing its name within
square brackets and colons. These constructs are used for internationalization and handle the
different collation sequences as required by POSIX. The following character class expressions are
supported:
[:alpha:]

Any alphabetic character.
[:lower:]

Any lowercase alphabetic character.
[:upper:]

Any uppercase alphabetic character.
[:digit:]

Any digit character.
[:alnum:]

Any alphanumeric character (alphabetic or digit).
[:space:]

Any white-space character (blank, horizontal tab, vertical tab).
[:graph:]

Any printable character, except the blank character.
[:print:]

Any printable character, including the blank character.

1 Bracket expressions are used not only in regular expressions, but also in pattern matching as performed by
the fnmatch() function (used in file name expansion).

2 \ does not serve as an escape character inside a bracket expression.

regexp

472 z/VM: 7.3 OpenExtensions Commands Reference

[:punct:]
Any printable character that is not white space or alphanumeric.

[:cntrl:]
Any nonprintable character.

For example, regular expression [[:lower:]] matches any lower case alphabetic character.
• Character ranges are specified by a dash (–) between two characters or collation sequences. This

indicates all character or collation sequences that collate between two characters or collation
sequences. It does not refer to the native character set. For example, in the POSIX locale, regular
expression [a-z] means all the lowercase alphabetics, even if they don't agree with the binary
machine ordering. However, since many other locales do not collate in this manner, use of ranges is
not recommended, and they are not used in strictly conforming POSIX.2 applications.

An end-point of a range may explicitly be a collation sequence; for example, regular expression
[[.ch.]-[.ll.]] is valid. However, equivalence classes or character classes are not: regular expression
[[=a=]-z] is not permitted.

• Once you have composed bracket_expression, you can invert its meaning by prefixing it with a
circumflex (^). 3 For example, regular expression [^abc] matches any line containing neither a, b,
nor c.

Practical, useful regular expressions are built by combining several smaller, simpler regular expressions
along with certain special operators. Recognizing the recursion inherent in this situation, we can add to
our list the following permitted forms for regexp:
concatenation of regexp_1 and regexp_2 with no intervening blank

When regular expressions regexp_1 and regexp_2 are concatenated, the line must match regexp_1
and regexp_2 in succession in order to be selected. For example, we can concatenate regular
expressions a and b to form regular expression ab; regular expression ab matches any line containing
the string ab.

^regexp
Specifies that the string matching regexp must appear at the beginning of the line. For example,
regular expression ^A matches the letter A at the beginning of a line. The ^ character is special only at
the beginning of a regular expression or after (or |.

regexp$
Specifies that the string matching regexp must appear at the end of the line. For example, regular
expression c$ matches line abc but does not match line cba.

regexp\{n\} (basic) or regexp{n} (extended)
A number enclosed in braces represents a number of repetitions of regexp. For example, regular
expression X{3} is equivalent to regular expression XXX, and both of these match string XXX.

regexp\{min,\} (basic) or regexp{min,} (extended)
When followed by a comma, a number enclosed in braces represents a minimum number of
repetitions of a regular expression. For example, regular expression X{3,} represents at least three
repetitions of regular expression X.

regexp\{min,max\} (basic) or regexp{min,max} (extended)
When a regular expression is followed by a pair of numbers in braces, the numbers represent a
minimum and maximum number of repetitions respectively. For example, regular expression X{3,7}
stands for three to seven repetitions of regular expression X.

regexp*
A regular expression regexp followed by * matches a string of zero or more strings that would match
regexp. For example, regular expression A* matches A, AA, AAA and so on. It also matches the null
string (zero occurrences of A).

regexp+ (extended only)
A regular expression regexp followed by + matches a string of one or more strings that would match
regexp. For example, regular expression a+ matches a, aa, and so on.

3 In fnmatch(), the complement character is the exclamation mark (!) rather than the circumflex.

regexp

Appendix B. Regular Expressions (regexp) 473

regexp? (extended only)
A regular expression regexp followed by ? matches a string of zero or one occurrences of strings that
would match regexp.

regexp_1|regexp_2 (extended only)
This regular expression matches a string that would match either regular expression regexp_1 or
regexp_2.

\(regexp\) (basic) or (regexp) (extended)
Parentheses let you group parts of regular expressions. This is useful for influencing the order of
evaluation of the regular expression, just as parentheses are used to influence the order of evaluation
of terms in a mathematical equation. For example, regular expression (ab){2} matches string abab,
but regular expression ab{2} matches string abb.

\digit
This pattern is equivalent to the string matching the digitth expression enclosed within parentheses
found at an earlier point in the regular expression. Parenthesized expressions are numbered by
counting (characters from the left.

Constructs of this form can be used in the replacement strings of substitution commands (for
example, the sub function of awk) to stand for constructs matched by parts of the regular expression.

Because a regular expression is a kind of mathematical formula for expressing a matching pattern, it's
important to keep in mind that the operators used in regular expressions -- that is, the metacharacters --
do have an order of precedence associated with them. The order of precedence for operators in regular
expressions is:

1. parenthetical groupings
2. bracket expressions
3. *
4. ?
5. +
6. brace expressions
7. concatenation
8. |

For example,

• ab+ = (a)(b+), not (ab)+
• abc* = (ab)(c*), not (abc)*
• abc|def+ = (abc)|((de)(f+))

Finally, the newline character at the end of each input line is never explicitly matched by any regular
expression or part thereof. In other words, you can't match a string that extends over multiple lines.

Summary: The commands that use basic and extended regular expressions are as follows:
Basic

ed, expr, grep, sed
Extended

awk, grep with -E option, sed with the -E option.

Table 14 on page 474 summarizes how regular expression features apply to shell commands.

Table 14. Regular Expression Features

Notation awk ed grep -E expr sed

. X X X X X

^ X X X X

regexp

474 z/VM: 7.3 OpenExtensions Commands Reference

Table 14. Regular Expression Features (continued)

Notation awk ed grep -E expr sed

$ X X X X X

[...] X X X X X

[::] X X X X X

re* X X X X X

re+ X X

re? X X

re|re X X

\d X X X X X

(...) X X

\(...\) X X X

\<

\>

\{ \} X X X

Examples: The following regular expressions are given as illustrations, along with descriptions of what
they match:
abc

Matches any line of text containing the three letters abc in that order.
a.c

Matches any line of text containing the letter a, followed by any character, followed by the letter c.
^.$

Matches any line containing exactly one character (the newline is not counted).
a(b*|c*)d

Matches any line of text containing a letter a, followed by either zero or more of the letter b or zero or
more of the letter c, followed by the letter d.

.* [a–z]+ .*
Matches any line containing a word, where a word is a sequence of lowercase alphabetic characters
delimited by at least one space on each side.

morty.*morty
Matches a line containing at least two occurrences of the string morty.

(morty).*\1
This regular expression is functionally equivalent to regular expression morty.*morty.

[[:space:][:alnum:]]
Matches any character that is either a white-space character or alphanumeric.

regexp

Appendix B. Regular Expressions (regexp) 475

regexp

476 z/VM: 7.3 OpenExtensions Commands Reference

Appendix C. Localization

Internationalization enables you to work in a cultural context that is comfortable for you through
locales, character sets, and a number of special environment variables. The process of adapting an
internationalized application or program, particular to a language or cultural milieu, is termed localization.

A locale is the subset of your environment that deals with language and cultural conventions. It is made
up of a number of categories, each of which is associated with an environment variable and controls a
specific aspect of the environment. The following list shows the categories and their spheres of influence:
LC_COLLATE

Collating (sorting) order.
LC_CTYPE

Character classification and case conversion.
LC_MESSAGES

Formats of informative and diagnostic messages and interactive responses.
LC_MONETARY

Monetary formatting.
LC_NUMERIC

Numeric, nonmonetary formatting.
LC_TIME

Date and time formats.

To give a locale control over a category, set the corresponding variable to the name of the locale. In
addition to the environment variables associated with the categories, there are two other variables which
are used in conjunction with localization, LANG and LC_ALL. All of these variables affect the performance
of the shell commands. The general effects apply to most commands, but certain commands such as
sort, with its dependence on LC_COLLATE, require special attention to be paid to one or more of the
variables; this manual discusses such cases in the Localization section of the command. The effects of
each environment variable is as follows:
LANG

Determines the international language value. Utilities and applications can use the information from
the given locale to provide error messages and instructions in that locale's language. If LC_ALL
variable is not defined, any undefined variable is treated as though it contained the value of LANG.

LC_ALL
Overrides the value of LANG and the values of any of the other variables starting with LC_.

LC_COLLATE
Identifies the locale that controls the collating (sorting) order of characters and determines the
behavior of ranges, equivalence classes, and multicharacter collating elements.

LC_CTYPE
Identifies the locale that defines character classes (for example, alpha, digit, blank) and their behavior
(for example, the mapping of lowercase letters to uppercase letters). This locale also determines the
interpretation of sequences of bytes as characters (such as singlebyte versus doublebyte characters).

LC_MESSAGES
Identifies the locale that controls the processing of affirmative and negative responses. This locale
also defines the language and cultural conventions used when writing messages.

LC_MONETARY
Determines the locale that controls monetary-related numeric formatting (for example, currency
symbol, decimal point character, and thousands separator).

LC_NUMERIC
Determines the locale that controls numeric formatting (for example, decimal point character and
thousands separator).

Localization

© Copyright IBM Corp. 1993, 2022 477

LC_TIME
Identifies the locale that determines the format of time and date strings.

Localization

478 z/VM: 7.3 OpenExtensions Commands Reference

Appendix D. OpenExtensions Shell and Utilities
Messages

GSU6001 Unknown option option

Explanation:
You specified an option that is not valid for this
command.

User response:
Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU6003 input file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6004 write error on standard output

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6007 insufficient memory for string
storage

Explanation:
There were not enough free system resources to use
for string storage.

User response:
Free up more system resources, or modify your
program to require less string storage.

GSU6013 Missing script file

Explanation:
You specified the –f option without providing the name
of a script file.

GSU6014 not enough available file
descriptors

Explanation:
There were less than four available file descriptors.

User response:
Free up more file descriptors.

GSU6016 invalid character char (hex hexnum

Explanation:
The invalid character char was encountered while
processing the input file.

User response:
Check the input file for invalid characters.

GSU6017 Newline in regular expression

Explanation:

A newline was encountered while reading a regular
expression.

User response:
Check for a missing / delimiter.

GSU6018 Newline in string

Explanation:
A newline was encountered while reading a string
constant.

User response:
Check for a missing " delimiter.

GSU6019 EOF in regular expression

Explanation:
The end-of-file character was encountered while
reading a regular expression.

User response:
Check for a missing / delimiter.

GSU6020 EOF in string

Explanation:
The end-of-file character was encountered while
reading a string constant

User response:
Check for a missing " delimiter.

GSU6022 inadmissible use of reserved
keyword

Explanation:
You tried to use a reserved keyword in an
unacceptable way (for example, as a function or
variable name).

User response:
Choose a different name for your function or variable.

GSU6023 attempt to redefine builtin
function

Explanation:
You tried to redefine one of the built-in awk functions.

User response:
Choose a name for your function that is not the name
of any built-in function. Refer to the description of the
awk command, “awk — Process programs written in
the awk language” on page 13, for lists of built-in
arithmetic and string functions.

GSU6039 string: not found

Explanation:

© Copyright IBM Corp. 1993, 2022 479

You specified a command-name that the shell was
unable to find.

User response:
Make sure that command-name is spelled properly
and that you have the appropriate permissions.

GSU6047 unredirected getline in END action

Explanation:
The default output stream has already been closed
when the end action is performed, so a getline
function must be redirected or it fails.

User response:
Redirect the getline function to read from a named
file.

GSU6048 too many open streams to
funcname onto filename

Explanation:
awk can only have a limited number of files open at
one time. There were too many open files.

User response:
Make sure that unused files are being closed properly,
or restructure your program to have fewer files open at
the same time.

GSU6049 insufficient arguments to printf or
sprintf

Explanation:
You did not specify enough arguments to match the
number required by the specified format string.

User response:
Check your format string and number of arguments.

GSU6052 Too many fields (LIMIT: number

Explanation:
awk read a record with more fields than it was able to
handle.

User response:
Edit the input file to decrease the number of fields in
the record.

GSU6053 Record too long (LIMIT: number
bytes)

Explanation:
awk read a record that was longer than the maximum
record size it can handle. On UNIX and POSIX-
compliant systems, the maximum record length is
20000 characters.

User response:
Edit the record so that it does not exceed the limit.

GSU6054 division (/ or %) by zero

Explanation:
An arithmetic operation using / or % resulted in an
attempt to divide by zero.

User response:
Modify your program so that division by zero does not
occur.

GSU6055 too deeply nested for in loop
(LIMIT: number

Explanation:
"For" loops can be nested only number levels deep.

User response:
Rewrite the program to use fewer levels of nesting.

GSU6058 lvalue required in assignment

Explanation:
You did not specify a variable or array element as the
left-hand side of an assignment expression.

User response:
Specify a valid variable or array element on the left-
hand side of the assignment operator.

GSU6059 return outside of a function

Explanation:
A return statement was encountered that was not part
of a function.

User response:
Use the return statement only inside a function
definition.

GSU6060 may delete only array element or
array

Explanation:
You tried to use the delete statement to delete a
scalar variable.

User response:
Use delete only to delete arrays and array element.

GSU6063 SYMTAB must have exactly one
index

Explanation:
You tried to reference the SYMTAB array using more
than one index.

User response:
Always reference SYMTAB with exactly one index.

GSU6065 impossible function call

GSU6069 regular expression error

Explanation:
An error occurred while processing a regular
expression.

User response:
Check the regular expression.

GSU6070 second parameter to "split" must
be an array

Explanation:

480 z/VM: 7.3 OpenExtensions Commands Reference

You invoked the split function but the second
parameter was not an array.

User response:
Ensure that split is invoked with an array as the
second parameter.

GSU6074 Unknown FP error

Explanation:
An unknown error occurred during a floating-point
operation.

User response:
Contact your system programmer.

GSU6075 Domain

Explanation:
A domain error occurred when executing a floating-
point operation. For example, taking the square root of
a negative number would cause this error.

User response:
Make sure that you are performing a valid
mathematical operation.

GSU6076 Singularity

Explanation:
The program executed a floating-point division that
resulted in an infinite value.

User response:
Make sure that you are performing mathematical
operations that produces finite results.

GSU6077 Overflow

Explanation:
The program executed an operation that resulted in a
number that is larger than awk can represent on this
platform.

User response:
Correct the program to use values that are supported
on this system or use bc.

GSU6078 Underflow

Explanation:
The program executed an operation that resulted in a
number that is smaller than awk can represent on this
platform.

User response:
Correct the program to use values that are supported
on this system or use bc.

GSU6079 Total loss of precision

Explanation:
The program executed a floating-point operation that
used an intermediate result that cannot be properly
generated on this platform.

User response:

Correct the program or use bc.

GSU6080 Partial loss of precision

Explanation:
The program executed a floating-point operation that
used in an intermediate result that cannot be properly
generated on this platform.

GSU6081 error in function funcname at arg

Explanation:
A math error occurred while performing the function
funcname on argument arg.

User response:
Make sure that you are passing a proper argument to
the function funcname.

GSU6084 Missing width after -w

Explanation:
You specified the –w option without providing the
width argument.

User response:
Provide the missing width.

GSU6088 Usage: basename filename
[suffix]

Explanation:
The basename command entered was not
syntactically correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6089 break statement found outside of
loop

Explanation:
bc encountered a break statement when it was not
performing a "for" or "while" loop.

User response:
Make sure that all "break" statements occur within
"for" or "while" loops.

GSU6090 warning: body of if/else statement
is empty

Explanation:
You did not supply any statements for the body of
an "if" or "if/else" construct. bc only generates this
message when you have specified –i option.

User response:
Make sure that this is what you intended.

GSU6092 empty stack (too few arguments ?)

Explanation:

Appendix D. OpenExtensions Shell and Utilities Messages 481

An error occurred while executing a function, probably
because the function was called with fewer arguments
than required.

User response:
Make sure that you call functions with the correct
number of arguments.

GSU6095 valid array index is 0 through num

Explanation:
You specified an array index that was not in the
range 0 to BC_DIM_MAX-1, where BC_DIM_MAX is a
configuration variable indicating the maximum number
of elements that a bc array may have.

User response:
Specify an array index in the indicated range.

GSU6099 shell command failed to execute

Explanation:
You specified the sh statement with command as its
argument and bc failed to run command.

User response:
Check the syntax of the specified command.

GSU6101 end of file in comment starting on
line num of filename

Explanation:
bc encountered the end-of-file character when reading
a comment which begins on line num of the file
filename.

User response:
Make sure that the file filename properly closes all
comments.

GSU6102 end of file in string starting on line
num of filename

Explanation:
bc encountered the end-of-file character when reading
a string that begins on line num of the file filename.

User response:
Make sure that the file filename contains a double
quotation mark (") at the end of the string.

GSU6103 warning: '=-' operator assumed

Explanation:
This version of bc permits the use of the old style
assignment operators like =- rather than -=. This can
be ambiguous since a=-2 can mean a =- 2 or a = -2. bc
has assumed that you meant to use the =- operator.

User response:
Use spaces to clarify the syntax of the expression.

GSU6104 numerical constant is too long

Explanation:

You specified a numerical constant that was longer
than the maximum permitted length, as defined by the
value of the configuration variable BC_STRING_MAX.

User response:
Specify a shorter numerical constant.

GSU6105 string is too long

Explanation:
You specified a string that was longer than the
maximum permitted length, as defined by the value
of the configuration variable BC_STRING_MAX.

User response:
Specify a shorter string.

GSU6107 Unknown option option

Explanation:
You specified an option that is not valid for this
command.

User response:
Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU6110 usage: bc [-i] [-l] [file ...]

Explanation:
The bc command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6112 command too long

Explanation:
You specified a command line to pass to the system
with the ! operator that was longer than 1000 bytes.

User response:
Use a shorter command line.

GSU6114 save: args

Explanation:
You tried to use the s or S operator when there was no
value on the stack.

User response:
Make sure that there is at least one value on the stack
before trying to use the s and S commands.

GSU6118 negative argument to of the stack
was negative. Q cannot take a
negative argument.

Explanation:
You tried to use the Q operator but the value on the
top of the stack was negative. Q cannot take a negative
argument.

482 z/VM: 7.3 OpenExtensions Commands Reference

User response:
Make sure that the stack has a positive number on top
when using the Q operator.

GSU6119 readstk?

Explanation:
You tried to pop too many values off the stack with the
Q operator.

User response:
Make sure that the top value on the stack is not greater
than the number of currently executing strings.

GSU6120 L?

Explanation:
You tried to pop a value off an empty stack variable
using the L operator.

User response:
Correct your program.

GSU6121 Q?

Explanation:
You specified a string argument to the Q command.
This is invalid. The Q command requires a numeric
argument.

User response:
Correct your program.

GSU6122 negative index

Explanation:
You tried to use a negative number as an array index.

User response:
Use a positive number as an array index.

GSU6123 index too big

Explanation:
You tried to use an array index that was greater than
2047.

User response:
Use an array index that is less than or equal to 2047.

GSU6124 cannot execute number

Explanation:
You tried to use the x operator to execute a string, but
the value on the top of the stack was a number.

User response:
Only use the x operator when there is a string on top of
the stack.

GSU6125 divide by 0

Explanation:
You tried to divide a number by 0.

User response:
Do not divide numbers by 0.

GSU6126 exponent must be an integer from
0 to max

Explanation:
You specified an exponent that was not an integer in
the range 0 SHRT_MAX-1.

User response:
Specify an exponent in the valid range.

GSU6130 sqrt of negative number

Explanation:
You tried to take the square root of a negative number.
The sqrt function must be used with positive numbers.

User response:
Use the sqrt function only with positive numbers.

GSU6131 stack too deep

Explanation:
You tried to put more values on the stack than it was
able to hold. The maximum size of the stack is limited
by the size of the maximum integer your system can
represent.

User response:
Check for uncontrolled recursion.

GSU6132 empty stack

Explanation:
You attempted an operation that required popping a
value from the stack, but the stack was empty.

User response:
Push a value onto the stack and try the operation
again.

GSU6133 out of memory

Explanation:
There were not enough free system resources to
allocate the required space.

User response:
Free up more resources and try again.

GSU6134 out of memory (fatal)

Explanation:
bc ran out of system resources but was unable to
recover sufficient storage to continue.

User response:
Free up more resources and try again. Pay particular
attention to large arrays.

GSU6140 string: command: external links
not supported by OS

Explanation:
You tried to extract a file specified as an external link
in the archive. External links are not supported on all
operating systems.

Appendix D. OpenExtensions Shell and Utilities Messages 483

User response:
Do not use external links on this system.

GSU6141 string external link to name1

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6142 External link name too long: Not
extracted

Explanation:
Couldn't allocate enough memory to hold the external
link's name.

User response:
Archive contains external name which is too large; no
action possible.

GSU6143 Symbolic or external link name too
long: Not extracted

Explanation:
Couldn't allocate enough memory to hold the symbolic
or external link's name.

User response:
Archive contains symbolic or external name which is
too large; no action possible.

GSU6144 external link filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6145 string: external link command: tar
format does not permit external
links to pathnames longer than
filename

GSU6146 external link to filename

GSU6147 string: command: is a socket file--
not dumped

Explanation:
You tried to dump a socket file filename when writing a
non-USTAR tar file.

User response:
Do not specify socket files to be included in tar
archives. If you want to archive socket files, use a
USTAR format archive.

GSU6155 insufficient memory

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6178 cat: input file filename is identical
with output

Explanation:

You specified filename as both an input and output file.
It is also possible that the output file was linked to
filename.

User response:
Use a file other than filename as the output file.

GSU6179 Usage: cat [-usvte] [file ...]

Explanation:
The cat command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6180 file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6181 string: fatal error during "-R"
option

Explanation:
You specified the –R option but some file or directory
in the directory structure was inaccessible.

User response:
Make sure that you have access to all files in the
directory structure.

GSU6184 string: file command: You are not a
member of the filename group

Explanation:
You tried to change the group ownership of filename
to group, but you are not a member of the specified
group.

User response:
Specify a group to which you belong.

GSU6185 string: group command: is
unknown

Explanation:
You specified a group name that could not be found in
the group database.

User response:
Specify a valid group name or use a valid numeric
group ID.

GSU6186 Usage: chgrp [-Rf] group file ...

Explanation:
The chgrp command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

484 z/VM: 7.3 OpenExtensions Commands Reference

GSU6187 Missing mode argument.

Explanation:
You did not specify an argument representing the new
access permissions.

User response:
Provide the missing argument.

GSU6188 stat file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6189 read directory pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6190 Usage: chmod [-fR] mode file ...

Explanation:
The chmod command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6191 string: user command: is unknown

Explanation:
You specified a user name that could not be found in
the user database.

User response:
Specify a valid user name or use a valid numeric user
ID.

GSU6192 Usage: chown [-Rf] user[:group]
file ...

Explanation:
The chown command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6196 string: not executable

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6199 [read error]

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6200 Usage: command: [-ciprt] [file ...]

Explanation:
The mv command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6205 string file1 differ: char file2 line
char_num

GSU6210 cannot determine PATH_MAX

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6213 cannot determine NAME_MAX

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6214 cannot allocate buffer

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6219 output file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6236 source name1 and target name2
are identical

GSU6237 no space on device for file filename

Explanation:
You tried to copy (or move) a file to filename on a
device that has no space for it.

User response:
Free up space on the target device or copy (or move)
the file to another device.

GSU6238 cannot unlink source file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6239 cannot unlink target file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6241 Unknown option option

Explanation:
You specified an option that is not valid for this
command.

User response:

Appendix D. OpenExtensions Shell and Utilities Messages 485

Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU6242 target pathname must be a
directory

Explanation:
You tried to copy (or move) two or more files but the
target indicated by name was not a directory.

User response:
When copying (or moving) two or more files, ensure
that the final name on the command line is a directory.

GSU6243 cannot allocate target string

Explanation:
There are not enough free system resources to hold
the name of the target file.

User response:
Free up more system resources.

GSU6244 cannot rename file1 to file1

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6245 link to target filename failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6246 cannot rmdir pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6247 stat error for filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6248 unreadable directory pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6249 recursive copy to directory
pathname

Explanation:
You tried to copy a directory to itself.

User response:
Choose a different pathname.

GSU6250 target pathname is not a directory

Explanation:
When recursively copying (or moving) multiple files
using the –r or –R option, the target must be a

directory. You specified a target pathname that is not a
directory.

User response:
Check spelling of target pathname.

GSU6251 cannot mkdir pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6254 "string" is a directory (not copied)

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6255 fifo filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6256 special file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6257 cannot allocate I/O buffer

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6258 cannot open file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6259 target file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6260 write error on file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6261 read error on file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6262 Usage: command: options file1
[file2 ...] target

Explanation:
The command command entered was not syntactically
correct.

User response:

486 z/VM: 7.3 OpenExtensions Commands Reference

The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6263 string: must run as setuid root

Explanation:
You must be logged in with the user ID of root to run
the specified command.

User response:
Log in as root or contact your system manager to run
this command.

GSU6319 temporary file

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6342 write error

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6349 cannot create temporary file

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6367 Usage: cut -b list [file ...] cut -c
list [file ...] cut -f list [-d char] [-s]
[file ...]

Explanation:
The cut command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6368 cut: bad list for -f, -b, or -c option
list

Explanation:
You specified a list for the –f, –b, or –c option that
contained non-numeric entries.

User response:
Specify a list that contains only numeric entries.

GSU6369 cut: badly formed range in list list

Explanation:
You specified a list that contained a range that was not
in the form: num1-num2

User response:
Reenter the command line using the proper syntax for
a range.

GSU6371 Missing character after -d

Explanation:

You specified the –d option, but did not provide a field
separator character as its argument.

User response:
Provide the missing field separator character.

GSU6372 Unknown option option

Explanation:
You specified an option that is not valid for this
command.

User response:
Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU6373 Must specify "-f", "-b" or "-c"
option

Explanation:
You did not specify any of the –f, –b, or –c options.

User response:
Specify one of the three options.

GSU6374 out of memory

Explanation:
There were not enough free system resources to
allocate as internal buffers.

User response:
Free up more system resources and try again.

GSU6375 cut: no fields specified in list list

Explanation:
cut did not recognize anything in list as indicating a
field.

User response:
Check the syntax of the list and reenter the command.

GSU6376 Bad range num1 in list

Explanation:
You specified a list containing the range num1-num2
where num2 was less than num1. Ranges must be
specified with the lower value first.

User response:
Reenter the command line, making sure to list the
lower value first when specifying the range.

GSU6378 date: no permission to set date

Explanation:
You do not have proper permissions for changing the
system date.

User response:
If you need the system date changed, talk to your
system programmer.

GSU6380 The option "string" does not
contain a "="

Appendix D. OpenExtensions Shell and Utilities Messages 487

Explanation:
You specified option without providing the required
equals sign (=).

User response:
Provide the missing equals sign.

GSU6381 dd: cbs=number given without
ascii/ebcdic/ibm/block/unblock
conversion

Explanation:
You specified the cbs=size option but did not specify a
conversion option that uses it.

User response:
Provide the missing conversion option.

GSU6382 dd: out of memory for buffers

Explanation:
dd was unable to allocate the system resources that it
needed for conversion buffers.

User response:
Free up more system resources.

GSU6383 string=string is an unknown option

Explanation:
You specified an option that is not valid for dd.

User response:
Check “dd — Convert and copy a file” on page 95 for a
list of options.

GSU6384 number+number records in
number+number records out

GSU6388 dd: unknown conversion "string"

Explanation:
You specified a conversion value following conv= that
dd did not recognize.

User response:
Check “dd — Convert and copy a file” on page 95 for a
list of options.

GSU6389 dd: badly formed number "string"

Explanation:
Make sure that num is a valid number. If it is also
followed by a letter to indicate the block size unit.
Then check the bs= option, “dd — Convert and copy a
file” on page 95, for a list of valid letters.

GSU6390 dd: absolute I/O must be in
number byte units

Explanation:
You tried to read from, or write to, a device that
requires block sizes to be in multiples of its sector size
(in this case, num bytes).

User response:

Specify a block size that is a multiple of the device's
sector size.

GSU6391 seek output

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6392 seek input

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6393 read error

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6394 Usage: dd [option=value] ...

Explanation:
The dd command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6404 directory pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6405 insufficient memory (try diff -h)

Explanation:
diff ran out of system resources when generating the
data structures used in the differencing algorithm (see
the LIMITS section of diff, “diff — Compare two text
files and show the differences” on page 99). diff -h
requires fewer system resources than diff.

GSU6406 cannot allocate name buffer

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6407 Missing number after option option

Explanation:
You specified option but did not specify a number
following it.

User response:
Specify a number following the option option.

GSU6408 Missing #ifdef symbol after -D

Explanation:
You did not specify a conditional label on the
command line after –D option.

488 z/VM: 7.3 OpenExtensions Commands Reference

GSU6409 only one file may be "-"

Explanation:
Only one of the two files being compared may be the
standard input.

User response:
Specify – (standard input) as, at most, one of the two
files to be compared.

GSU6411 internal error--cannot create
temporary file

Explanation:
diff was unable to create a working file that it needed.

User response:
Ensure that you either have a /tmp directory or that
the environment contains a variable TMPDIR which
names a directory where diff can store temporary
files. Also, ensure that you have sufficient permissions
on this directory to create a temporary file.

GSU6412 couldn't stat file system for
filesystem

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6417 too many lines in file filename

Explanation:
The file filename contained more than the value of the
INT_MAX. diff cannot handle a file that large.

GSU6429 Usage: dirname pathname

Explanation:
The dirname command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6432 Addressed line out of range

Explanation:
You specified an address for a command that
referenced a line that does not exist.

User response:
Modify the address given to correctly reference the
desired lines.

GSU6434 Only one file name is allowed.

Explanation:
You specified more than one file name on the
command line when you invoked ed.

GSU6437 File filename system_error

Explanation:

A system error indicating the cause is displayed with
this message.

GSU6438 Usage: ed [-p prompt] [-bsx] [file]
red [-p prompt] [-bsx] [file]

Explanation:
The ed command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6439 Temporary file error

Explanation:
An error occurred when accessing the paging file.
Check the description of ed, “ed — Use the ed line-
oriented text editor” on page 109.

User response:
See your system programmer.

GSU6440 Badly constructed regular
expression

Explanation:
You made an error in the syntax of a regular
expression.

User response:
Refer to Appendix B, “Regular Expressions (regexp),”
on page 471 and correct the error.

GSU6441 No remembered regular
expression

Explanation:
You tried to use &; to refer to a remembered regular
expression when there was no remembered regular
expression.

User response:
Issue the command again, but specify a regular
expression this time.

GSU6442 Missing trailing delimiter after
pattern.

Explanation:
You specified a pattern as part of a ed command but
did not delimit it.

User response:
Provide a trailing delimiter for the pattern.

GSU6446 Out of memory for lines

Explanation:
ed was unable to allocate system resources while
trying to insert or append lines to the buffer.

User response:
Split the file into small pieces.

Appendix D. OpenExtensions Shell and Utilities Messages 489

GSU6447 Unknown command

Explanation:
You entered a command that does not exist in ed.

User response:
Check the description of ed, “ed — Use the ed line-
oriented text editor” on page 109, for a list of valid
commands.

GSU6448 Illegal command suffix

Explanation:
You specified a command suffix for a command that
does not accept suffixes.

User response:
Check the description of ed, “ed — Use the ed line-
oriented text editor” on page 109, for a list of valid
commands and their syntaxes.

GSU6449 Warning: file not saved

GSU6450 No match found for regular
expression

Explanation:
The / command failed to find any matching lines.

User response:
Try a different regular expression.

GSU6451 Wrong number of addresses for
command

Explanation:
You specified the wrong number of addresses for the
command that you entered.

User response:
Check the description of ed, “ed — Use the ed line-
oriented text editor” on page 109, for a list of valid
commands and the number of addresses that you can
specify with each.

GSU6452 Need space after command

Explanation:
You did not separate a command from its file name
argument with a space.

User response:
Reenter the command with the required space.

GSU6453 Name too long

Explanation:
The file name specified on the ed command line was
too long.

User response:
Use a shorter file name.

GSU6454 Badly formed name

Explanation:

You specified an improperly formed or missing file
name with a command which requires a file name as
an argument (for example, e or f).

User response:
Correct or provide the file name.

GSU6455 Illegal command redirection

Explanation:
You tried to use the ! command redirection with the f
command.

User response:
Do not use the ! command redirection with the f
command.

GSU6456 Restricted shell

Explanation:
You invoked the restricted form of ed (red), but then
tried to use a command that is not allowed in the
restricted editor (the ! command).

User response:
See the ed command, “ed — Use the ed line-oriented
text editor” on page 109, for a discussion of the
differences between ed and red.

GSU6457 No remembered file name

Explanation:
You tried to execute a command that uses
a remembered file name when there was no
remembered file name.

User response:
Issue the command again, but specify a file name this
time.

GSU6458 Mark name must be lower case

Explanation:
You tried to use the k command to mark an addressed
line with a character other than a lowercase letter.

User response:
Use k to mark the line with a lowercase letter.

GSU6459 Undefined mark name

Explanation:
You tried to reference a mark name that you have not
assigned.

User response:
Use the k command to assign the mark name to a line,
or specify a previously assigned mark name.

GSU6460 'm' and 't' require destination
address

Explanation:
You issued an m or t command but did not provide a
destination address.

User response:

490 z/VM: 7.3 OpenExtensions Commands Reference

Provide a destination address with the m or t
command.

GSU6461 Destination cannot straddle source
in 'm' and 't'

Explanation:
You specified a range of lines to be moved or copied by
m or t that included the destination address.

User response:
Ensure that the specified range of lines for m or t does
not include the destination address.

GSU6462 command not allowed inside g, v,
G, or V

Explanation:
You specified a command that cannot be used with the
issued global command (g, v, G, or V).

User response:
Check the description of ed, “ed — Use the ed
line-oriented text editor” on page 109, for a list of
commands that cannot be used with the various global
commands

GSU6463 Incomplete regular expression.

Explanation:
You issued a g or G command but did not provide a
regular expression as an argument.

User response:
Provide a regular expression as an argument to the
command.

GSU6465 Global command too long

Explanation:
You specified a global instruction (g or v) that was
longer than 256 characters, including newlines.

User response:
Specify a global instruction that is less than 256
characters in length.

GSU6466 string: too many environment
variables

Explanation:
You specified more than 512 environment variables in
a single env command.

User response:
Do not specify more than 512 environment variables in
a single env command.

GSU6467 Usage: env [-i] [name=value ...]
[command argument ...] env
[-] [name=value ...] [command
argument ...]

Explanation:
The env command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6473 expr: internal tree error

Explanation:
You specified an expression that expr was unable
to evaluate, due to either syntax errors or unusual
complexity.

User response:
Correct the syntax errors, or simplify the expression
(perhaps by breaking it into parts).

GSU6476 Usage: expr expression

Explanation:
The expr command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6478 Only one f option allowed

Explanation:
You specified the given option more than once.

User response:
Specify the given option once only.

GSU6503 find: unable to allocate memory
for expression tree

Explanation:
find requires system resources to build an expression
tree. There were not enough free resources to do so.

User response:
Free up more system resources or specify a less
complex expression.

GSU6504 find: bad number specification in
string

Explanation:
You specified an option that takes a numeric value (for
example, –atime, –ctime), but you did not specify a
valid number after the option.

User response:
Ensure that options that take a numeric value are
followed by a valid number (only decimal digits,
preceded by an optional plus or minus sign).

GSU6505 find: -type character is invalid

Explanation:
You specified the –type primary but did not follow with
a valid character to represent the file type.

User response:

Appendix D. OpenExtensions Shell and Utilities Messages 491

Check the description of find, “find — Find a file
meeting specified criteria” on page 131, for a list of
valid characters for use with the –type primary.

GSU6506 find: non-terminated primary
argument list

Explanation:
You specified the –exec or –ok primary and did
not terminate the argument list following it with a
semicolon (;).

User response:
Terminate the argument list following –exec or –ok
with a semicolon.

GSU6507 find: must specify option after
primary

Explanation:
You specified –primary, but did not provide the
argument that it requires.

User response:
Specify a valid argument after –primary.

GSU6508 cannot stat file filename for
-newer

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6509 find: -cpio option not yet
supported

Explanation:
You specified the –cpio primary. At this time, find does
not support this primary.

User response:
Do not use the –cpio primary.

GSU6510 find: user name user is unknown

Explanation:
You specified the –user primary, but did not provide a
valid user name.

User response:
Provide a valid user name after the –user primary.

GSU6511 find: group name name is
unknown

Explanation:
You specified the –group primary but did not specify a
valid group name.

User response:
Specify a valid group name after the –group primary.

GSU6512 unable to access pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6513 error reading directory pathname

Explanation:
You tried to read the directory pathname. You do not
have read permissions on this directory.

User response:
If you need to access the directory pathname, see your
system manager about acquiring read permissions for
that directory. If you do not need to access it, no
corrective action is required.

GSU6515 cannot execute filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6516 Usage: find directory ... expression

Explanation:
The find command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6521 Usage: fold [-#] [-bs] [-w width]
[file ...]

Explanation:
The fold command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6527 no room for buffers

Explanation:
There were not enough free system resources for grep
to allocate the buffers that it requires.

User response:
Free up more system resources.

GSU6528 (standard input)

GSU6529 out of space for pattern "string"

Explanation:
grep did not have enough system resources available
to store the code needed to work with the given
pattern (regular expression). The usual cause is that
the pattern is very complex.

User response:
Make the pattern simpler, or free more system
resources.

GSU6535 Badly formed line/character count
num

492 z/VM: 7.3 OpenExtensions Commands Reference

Explanation:
The value num, following a –b, –c, –k, –l, –m, or –n
option was not a valid number.

User response:
Ensure that num is a valid number. For more
information on the find command, refer to “find — Find
a file meeting specified criteria” on page 131.

GSU6541 string: invalid user name:
command:

Explanation:
You specified a user name that was not found in the
user database.

User response:
Check that you spelled the user name correctly.

GSU6542 Usage: id [user] id -G [-n] [user] id
-g [-nr] [user] id -u [-nr] [user]

Explanation:
The id command entered was not syntactically correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6543 Usage: join [-a n | -v n] [-e s] [-1
m] [-2 m] [-o list] [-t c] file1 file2
join [-a n] [-e s] [-jn m] [-o list] [-t c]
file1 file2

Explanation:
The join command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6544 Bad file number specification in
string

Explanation:
You specified a file number that was not 1 or 2 with the
–j option.

User response:
Specify a file number of 1 or 2 when using the –j
option.

GSU6545 Badly constructed output list at
string

Explanation:
You specified an improperly constructed list of output
fields with the –o option.

User response:
Check the description of join, “join — Join two sorted,
textual relational databases” on page 155, for details
on constructing a list of output fields for the –o option.

GSU6546 Missing -e string

Explanation:
You specified the –e option without a string argument.

User response:
Provide the missing string.

GSU6547 Missing join field number

Explanation:
You specified the –j, –1, or –2 option without
specifying which field to use as the join field.

User response:
Provide the missing join field number.

GSU6548 Bad join field number

Explanation:
You specified a value to indicate the join field that was
not a valid number.

User response:
Make sure to use a valid number to indicate join the
field.

GSU6549 Missing character after -t

Explanation:
You specified the –t option without specifying a field
separator as an argument.

User response:
Provide the missing field separator.

GSU6550 Must specify -o with -e

Explanation:
You specified the –e option without also specifying the
–o option.

User response:
Always specify the –o option when using the –e option.

GSU6551 join: too many -o list elements

Explanation:
You specified more than 512 fields in the list of output
fields given as the argument to the –o option.

User response:
Specify no more than 512 output fields.

GSU6553 Out of dfa move space: increase
num from number

Explanation:
There were not enough move entries for lex to process
your input.

User response:
Increase move table size with the hexnum directive.

GSU6555 dfabuild: stack overflow

GSU6556 eclosure: list overflow

GSU6563 Error writing temp file filename

Appendix D. OpenExtensions Shell and Utilities Messages 493

Explanation:
An error occurred while trying to write the temporary
file filename.

User response:
Check the directory indicated by TMPDIR, or /tmp and
ensure that the directory is writable and has sufficient
space.

GSU6564 No lex rules

Explanation:
You specified lex input that did not contain any
translation rules, possibly due to empty or badly
formatted input.

User response:
Make sure that your input file is specified properly, and
that the contents are properly formatted.

GSU6565 Write error on filename

Explanation:
An error occurred while lex was writing the output file.

User response:
Check that space exists on the output device and that
you have appropriate permissions to write the file.

GSU6569 Out of NFA state space: increase
num from number

Explanation:
You did not reserve enough space for the NFA tables.

User response:
Use the number directive to increase the space for the
NFA tables.

GSU6570 Out of DFA state space: increase
num from number

Explanation:
You did not reserve enough space for the DFA tables.

User response:
Use the integer directive to increase the space for the
DFA tables.

GSU6571 Too many character classes (more
than num)

Explanation:
lex ran out of space for character classes.

User response:
Simplify your scanner input.

GSU6572 Too many translations (more than
num)

Explanation:
lex ran out of space for translation rules.

User response:
Simplify your scanner input.

GSU6573 Table for item too large for
machine (num bytes)

Explanation:
You tried to use the lex Malloc function to allocate
a block of memory that is larger than the hardware
segment size. This error occurs only on systems with
segment architecture.

User response:
Use Malloc to allocate a block of memory that is
smaller than the hardware segment size.

GSU6574 No more memory for item

Explanation:
There were not enough free system resources to
allocate to item. Your scanner input was too large or
too complicated, or you requested too much space for
a table.

User response:
Simplify your input expressions, or request less space
for tables.

GSU6579 Too many move num entries:
number

Explanation:
You did not reserve enough space for move tables.

User response:
Use the hexnum directive to increase the space for
move tables.

GSU6582 premature eof in prototype

Explanation:
lex encountered an end-of-file character in the
prototype file when it was not expecting it, probably
due to a badly formatted prototype file.

User response:
Ensure that the prototype file is not corrupted. If using
a private prototype file, ensure that it has the same
layout as the distributed version.

GSU6600 Cannot use character class or
equivalence class in range

Explanation:
You tried to use a character class or an equivalence
class (that is, [: :] or [= =]) in a character range within a
regular expression.

User response:
Rewrite the regular expression.

GSU6601 Poorly formed char sequence
string

Explanation:
You specified a [. .], [= =], or [: :] sequence improperly.

User response:
Specify the sequence correctly.

494 z/VM: 7.3 OpenExtensions Commands Reference

GSU6602 Unknown class class

Explanation:
You specified a regular expression containing a
character class [class:] that is not supported in the
POSIX locale.

User response:
Rewrite the regular expression.

GSU6603 Unknown collating element
col_element

Explanation:
You specified a regular expression containing a
collating element that is not supported by the POSIX
locale.

User response:
Rewrite the regular expression.

GSU6604 Multi-character collating element
col_element not supported

Explanation:
You specified a regular expression containing a
multicharacter collating element that is not supported
by the POSIX locale.

User response:
Rewrite the regular expression.

GSU6605 Collation in [= =] not supported
(yet)

Explanation:
You tried to use an equivalence class [=[.collation-
symbol.]=] within a regular expression. lex does not
support this construct.

User response:
Rewrite the regular expression.

GSU6606 badly formed equivalence class
equiv_class

Explanation:
You tried to use a multicharacter equivalence class in
a regular expression. lex does not support non-POSIX
locales.

User response:
Rewrite the regular expression.

GSU6614 string: Option command: argument
missing

Explanation:
You did not provide an argument for -option

User response:
Provide the missing argument.

GSU6630 compress not initialized

GSU6632 no space for compression tables

Explanation:
There were not enough free system resources to
allocate to compression tables.

User response:
Free up more resources.

GSU6633 compression not closed

GSU6634 compress: unknown error

Explanation:
An unknown compression error occurred.

User response:
Contact your system manager.

GSU6635 not initialized

GSU6636 not in compressed format

Explanation:
You specified a file to be uncompressed that was not in
compressed format.

User response:
Specify a compressed file.

GSU6637 compressed with num1 bits, can
only handle num2 bits

Explanation:
You specified a file to be uncompressed that was
compressed with num1 bits, but only a maximum of
num2 bits are supported.

User response:
Request a copy of the file compressed using num2 bit
compression.

GSU6638 no space for decompress tables

Explanation:
There were not enough free system resources to
allocate to the decompress tables.

User response:
Free up more resources.

GSU6639 compressed file is corrupt

Explanation:
You specified a compressed file that was damaged.

User response:
Get a new copy of file and try again.

GSU6640 not closed

GSU6641 unknown error

Explanation:
An unknown decompression error occurred.

User response:
Contact your system manager.

GSU6642 Insufficient memory

Explanation:

Appendix D. OpenExtensions Shell and Utilities Messages 495

There were not enough free system resources to
perform the specified operation.

User response:
Free up more resources.

GSU6643 getgroups failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6644 Unknown or missing operator in
symbolic mode modestring

Explanation:
When using the symbolic mode to indicate new
access permissions, you specified a string modestring
which was either missing an operator or contained an
unrecognized operator.

User response:
Make sure that all mode values in symbolic mode
contain one of the following operators: +, -, or =.

GSU6645 Octal mode may contain only
digits [0-7] in numstring

Explanation:
When using the octal mode to indicate new access
permissions, you specified a string numstring which
contained a character other than the digits 0 to 7.

User response:
Make sure that all mode values in octal mode are valid
octal numbers, containing only the digits 0 through 7.

GSU6647 failed to match

Explanation:
A match was found for the specified regular
expression.

User response:
No action is required.

GSU6648 invalid collation element

Explanation:
You specified a regular expression that contains an
invalid collating element.

User response:
Make sure that all collating elements in the regular
expression are valid in the locale indicated by
LC_COLLATE.

GSU6649 trailing \ in pattern

Explanation:
You specified a regular expression with a trailing \.

User response:
Remove the trailing \ or complete the escape
sequence.

GSU6650 newline found before end of
pattern

Explanation:
You specified a regular expression that contained a
newline before the end of the pattern.

User response:
Check the regular expression for a missing /.

GSU6652 number in \[0-9] invalid

Explanation:
You specified a number that was greater than the
number of matching subexpressions.

User response:
Specify a number that is less than or equal to the
number of matching subexpressions.

GSU6653 [] imbalance or syntax error

Explanation:
You specified a regular expression that contained a []
imbalance.

User response:
Make sure that all [and] characters appear in
matched pairs in the regular expression.

GSU6654 () or \(\) imbalance

Explanation:
You specified a regular expression that contained a ()
or \(\) imbalance.

User response:
Make sure that all (and) characters and all \(and
\) characters appear in matched pairs in the regular
expression.

GSU6655 { } or \{ \} imbalance

Explanation:
You specified a regular expression that contained a {}
or \{\} imbalance.

User response:
Make sure that all { and } characters and all \{ and
\} characters appear in matched pairs in the regular
expression.

GSU6656 invalid endpoint in range

Explanation:
You specified a regular expression that contained a
range expression with an invalid endpoint.

User response:
Specify a valid endpoint.

GSU6657 ?, *, or + not preceded by valid
regular expression + which was
not preceded by a valid regular
expression. the regular expression

496 z/VM: 7.3 OpenExtensions Commands Reference

is preceded by a valid regular
expression.

GSU6658 invalid character class type

Explanation:
You specified a regular expression that contained a
reference to an invalid character class.

User response:
Make sure that all character classes referenced in the
regular expression are valid in the locale indicated by
LC_CTYPE.

GSU6659 syntax error

Explanation:
You specified an invalid regular expression.

User response:
Correct the syntax of the regular expression.

GSU6660 contents of { } or \{ \} invalid

Explanation:
The contents of \{\} or {} in the specified regular
expression were invalid: not a number, too large a
number, more than two numbers, first number larger
than second.

User response:
Make sure that the contents of \{\} or {} are valid.

GSU6661 internal error

GSU6662 unknown regex error

Explanation:
The error code that was passed to regerror is not a
known error.

User response:
Check your program to verify that errcode was
retrieved from regexec or regcomp.

GSU6684 unknown command

GSU6700 Charmap information not
available.

Explanation:
For some reason, locale was unable to list the set of
available charmap files.

User response:
Contact your system programmer.

GSU6701 Unknown keyword name name

Explanation:
You specified a name that is not a keyword.

User response:
Specify a valid keyword name.

GSU6745 Insufficient memory

Explanation:

A system error indicating the cause is displayed with
this message.

GSU6751 Directory pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6762 console device dev

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6763 writing to console device dev

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6764 logname: cannot get login name

Explanation:
logname was unable to access the system .utmp file,
or the process was not a currently logged in user.

User response:
Check that the system utmp file is accessible.

GSU6768 !opening archive arch_name

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6769 string is not a valid archive

Explanation:
arch_name is not a valid archive. The recognized
formats are system specific.

User response:
Ensure that you specified the correct file.

GSU6770 !insufficient memory

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6771 !opening temporary archive
arch_name

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6773 !rename arch_name1 to
arch_name2

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6780 executable file filename

Explanation:

Appendix D. OpenExtensions Shell and Utilities Messages 497

A system error indicating the cause is displayed with
this message.

GSU6781 string: file command: Not an
executable file

Explanation:
You specified a file on the command line that is not an
executable file.

User response:
Specify an executable file.

GSU6782 Usage: strip exec_file ...

Explanation:
The strip command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6784 cannot allocate memory for sorting

Explanation:
There were not enough system resources available for
ls to sort its output.

User response:
Free up more system resources or use option and path
names on the command that will produce less output.

GSU6785 File or directory name is not found

Explanation:
You specified a pathname that does not exist.

User response:
Check to make sure that you did not omit or misspell
any components of pathname.

GSU6786 too many directory entries in dir

Explanation:
ls ran out of dynamically allocated system resources.

User response:
Free up more system resources.

GSU6788 Usage: ls [-
RaAd1CxmlnogrtucpFbqisfLDW]
[file ...]

Explanation:
The ls command entered was not syntactically correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6807 expression syntax error

Explanation:
You specified an expression argument that was not a
well-formed expression.

User response:
Check for unbalanced parentheses, missing quotes,
and undefined variables.

GSU6816 creating temporary file name

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6817 temporary file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6818 Missing number of hops after "-h"

Explanation:
You specified the –h option without an argument.

User response:
Provide the missing argument.

GSU6819 Missing address after "-r"

Explanation:
You specified the –r option without an address
argument.

User response:
Provide the missing address argument.

GSU6820 Missing subject after "-s"

Explanation:
You specified the –s option without providing a subject
string as an argument.

User response:
Provide the missing subject string.

GSU6821 Missing user after "-u"

Explanation:
You specified the –u option without a user name
argument.

User response:
Provide the missing user name.

GSU6822 Options applying only to
interactive use were given.

Explanation:
You specified the –e, –f, –H, –N, or –u options when
attempting to send mail. These options are only for use
when reading mail.

User response:
Check the description of mailx, “mailx — Send or
receive electronic mail” on page 180, for usable
options when sending mail.

GSU6826 variable storage

Explanation:

498 z/VM: 7.3 OpenExtensions Commands Reference

A system error indicating the cause is displayed with
this message.

GSU6827 string: read-only variable

Explanation:
You cannot change the values of some environment
variables, such as HOME and MAILRC, from within
mailx. You tried to change the value of such a variable.

User response:
Do not try to change the value of read-only variables.

GSU6828 string: no such variable

Explanation:
You tried to make use of a variable that does not exist.

User response:
Check to make sure that you have spelled the variable
name correctly or define the variable with a set
command.

GSU6829 building pathname pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6830 Misplaced shell meta-character

Explanation:
You provided an invalid file name pattern.

User response:
Ensure that the pattern given is correct.

GSU6831 Expansion memory allocation
failure

Explanation:
The system could not allocate sufficient system
resources to perform the requested operation.

User response:
Free up more resources.

GSU6832 Shell syntax error

Explanation:
You provided an invalid file name pattern.

User response:
Ensure that the pattern given is correct.

GSU6833 Ambiguous

Explanation:
You provided a file name pattern that expanded into
more than one file name.

User response:
Be more specific in naming the file you want.

GSU6834 alias storage

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6835 string: no such alias

Explanation:
You tried to unalias alias; however, no alias with this
name exists.

User response:
Make sure that you spelled alias correctly, or specify
an alias that does exist.

GSU6859 pipe through command failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6860 Missing file name

Explanation:
You issued a command which requires a file name
without providing one.

User response:
Specify a file name.

GSU6861 Missing pipe command

Explanation:
You specified the ~| command without providing a
shell command.

User response:
Provide the missing shell command.

GSU6865 mail to command command_name

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6866 mail to file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6868 remote from remote_term

GSU6869 No recipients specified

Explanation:
You tried to send a mail message without specifying
any recipients.

User response:
When sending mail, please specify recipients either
on the command line or on the carbon copy (or blind
carbon copy) list.

GSU6879 string: no matching "if" statement

Explanation:
You issued an else or endif command without a
corresponding if command.

User response:
Ensure that all else and endif commands are preceded
by an if command.

Appendix D. OpenExtensions Shell and Utilities Messages 499

GSU6880 EOF inside "if" statement

Explanation:
While processing an if command, mailx encountered
an end-of-file condition.

User response:
If the if command is in your start-up file, ensure that
you have included a corresponding endif command. If
you are entering the if in command mode, do not enter
the EOF character before issuing the endif command.

GSU6881 cannot lock file filename

Explanation:
mailx was unable to acquire exclusive access to a mail
folder.

User response:
Wait for a little while and try again.

GSU6882 rewriting filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6883 allocating message header

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6884 allocating message address

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6900 Invalid message number

Explanation:
You used a message number of 0 or one that is greater
than the number of messages in the mailbox.

User response:
Use a message number in the range from 1 to the
number of messages in the mailbox.

GSU6901 Inappropriate message

Explanation:
You tried to perform a command on an inappropriate
message. For example, you tried to undelete a
message that was not deleted or you tried to respond
to a deleted message.

User response:
Check the description of the command you are using
to ensure that you are using it correctly.

GSU6903 Referencing before first message

Explanation:
You used the - notation to try to reference the
message before the first one in the mailbox.

User response:
Do not use - when the current message is the first
message in the mailbox.

GSU6904 Referencing beyond last message

Explanation:
You used the + notation to try to reference the next
message when the current message was the last one
in the mailbox.

User response:
Do not use + when the current message is the last
message in the mailbox.

GSU6905 Non-numeric second argument

Explanation:
The second argument in a message list was not
numeric.

User response:
Ensure that, when specifying a range of messages as
arguments for a command, you indicate the first and
last message in the range with integers in the range 1
to the number of messages in the current mailbox.

GSU6906 No args expected

Explanation:
You specified arguments for a command that does not
take arguments.

User response:
Do not specify arguments for this command.

GSU6907 Only one arg allowed

Explanation:
You tried to use a command that takes only one
argument, but you specified either more or less than
one argument.

User response:
Specify only one argument for this command.

GSU6908 Variable "cmd" not set.

Explanation:
You tried to use the pipe command without specifying
a shell command to pipe the messages through and
the variable cmd was not set.

User response:
Either specify a shell command with pipe or set the
cmd to a default shell command to use with pipe when
no shell command is explicitly specified.

GSU6909 command command

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6911 No value set for "folder" variable

Explanation:

500 z/VM: 7.3 OpenExtensions Commands Reference

You have not provided a value for the mailx variable
folder.

User response:
Provide a value for the variable folder either in the
start-up file or in command mode.

GSU6912 No previous file.

Explanation:
You used # to represent the file name of the previous
file when there was no previous file.

User response:
Use a different file name indicator.

GSU6934 Cannot nest "if"s

Explanation:
You tried to nest one if command within another.

User response:
Do not nest if commands.

GSU6935 if: "s" or "r" are permissible
arguments

Explanation:
You used an argument other than r or s with the if
command.

User response:
Use only r or w as the argument for an if command.

GSU6939 Missing file after source command

Explanation:
You issued a source without specifying a file name.

User response:
Specify a file name with the source command.

GSU6940 command file cmdfile_name

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6941 Usage: unalias name ...

Explanation:
The unalias command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6942 Usage: unset variable ...

Explanation:
The unset command entered was not syntactically
correct.

User response:

The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6954 string: cannot find out who you are

Explanation:
The mailx command was unable to find your user ID.

User response:
Check with your system programmer.

GSU6956 copy buffer

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6974 Usage: mkdir [-m mode] [-p]
directory ...

Explanation:
The mkdir command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU6975 fifo file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6977 Missing major/minor device

Explanation:
You failed to specify the major or minor device type
argument for a character or block special file.

User response:
Provide the missing argument.

GSU6978 character special file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6979 block special file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU6980 Usage: mknod name p mknod
name [bc] major minor

Explanation:
The command command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

Appendix D. OpenExtensions Shell and Utilities Messages 501

GSU7001 su: The user database does not
contain an entry for this user.

User response:
Contact the system programmer.

GSU7002 su: Unable to execute the shell.

Explanation:
The initial program (shell) was not run. Verify that the
initial program (shell) exists on this system and that
the user has permission to execute it.

GSU7003 su: User not authorized to obtain
superuser authority.

Explanation:
The user ID issuing the su command does not have the
proper authorization to obtain superuser authority.

User response:
Contact the system programmer.

GSU7004 su: Unable to set up the
user environment. Processing
terminates

Explanation:
The environment variables required by the shell have
not been set up.

System action:
Processing terminates.

User response:
Contact the system programmer.

GSU7005 Usage: su

Explanation:
The su command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7033 string: unable to find your user
name

Explanation:
newgrp was unable to find your user name in the
system user database.

User response:
Contact your system programmer.

GSU7034 string: unknown group command:

Explanation:
You specified a groupname that was not in the system
group database.

User response:
Use the id command to get a list of all groups you may
access.

GSU7035 setgroups call failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7036 set group ID to groupname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7037 setuid

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7038 exec default shell shell

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7041 Usage: newgrp [-[l]] [group]

Explanation:
The newgrp command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7056 Usage: nohup command
[argument ...]

Explanation:
The nohup command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7057 Unknown format character
"character"

Explanation:
You specified an unrecognized format character as an
argument to the –t option.

User response:
Check the description of od, “od -- Dump a file in a
specified format” on page 232, for a list of valid format
characters.

GSU7058 Invalid size modifier for
"character" format

Explanation:
You specified an invalid size modifier for the char
format character.

User response:

502 z/VM: 7.3 OpenExtensions Commands Reference

Check the description of od, “od -- Dump a file in
a specified format” on page 232, for the valid size
modifiers for each format character.

GSU7059 Missing argument for "-character"
option

Explanation:
You specified the –opt option but did not follow it with
the expected argument.

User response:
Provide the expected argument. Check the description
of od, “od -- Dump a file in a specified format” on page
232, for a list of valid options and their arguments.

GSU7060 seek error on input

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7061 od: badly formed offset "string"

Explanation:
You specified an offset that was not a decimal or octal
value.

User response:
Specify a valid offset.

GSU7062 od: offset must be multiple of 512

Explanation:
You specified an offset value that was not a multiple of
512.

User response:
Specify an offset value that is a multiple of 512.

GSU7063 too many output formats,
(maximum number)

Explanation:
You specified too many output formats on the od
command line. The maximum number of output
formats is num.

User response:
Do not specify more than num output formats on the
od command line.

GSU7064 Usage: od [-v] [-A doxn] [-N #] [-j
#[bkm]] [-t acdfoux[#]] [file ...] od
[-bcdhosvxDOSX] [file] [[+]offset[.]
[b]]

Explanation:
The od command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7079 truncate file "string" to length
number failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7081 tempnam() error

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7082 tempfile error on "string"

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7105 Usage: paste [-d list] [-s] file ...

Explanation:
The paste command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7106 cannot determine OPEN_MAX

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7107 paste: must specify input files

Explanation:
You did not specify any input files.

User response:
Specify at least one input file.

GSU7108 paste: too many files at filename

Explanation:
You specified more files than paste can handle.
filename is the first file that paste was unable to open.
The number of files that paste can open depends on
the number of files that other processes have open.

User response:
Close files that other processes have open to increase
the number of files that paste can open.

GSU7128 Usage: pathchk [-p] pathname ...

Explanation:
The pathchk command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

Appendix D. OpenExtensions Shell and Utilities Messages 503

GSU7139 string: compress: command:

Explanation:
A problem occurred in the compression of the archive.

User response:
Check whether a file is not a regular file, has other
links, or if there is not enough space for compression
tables.

GSU7140 string: decompress: command:

Explanation:
Normally implies that the archive is corrupted.

User response:
Obtain a new copy of the archive file.

GSU7141 Unable to open terminal term

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7142 Existing file filename is newer

Explanation:
filename was not extracted from the archive because
an existing file with the same name was newer.

User response:
If you really want to extract filename, use the –u
option.

GSU7143 cannot create parent directory to
pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7144 cannot link name1 to name2

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7145 string: command: links not
supported by OS

Explanation:
The pax, tar, or cpio file being extracted contained
hard links, which are not supported by the operating
system. These files are not extracted.

User response:
Since this message appears only on systems with no
hard link support, there is no way to extract the file as
a hard link. One can manually make a copy of the file
referenced by the link.

GSU7146 string symbolic link to name1

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7147 string link to name1

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7148 cannot create file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7149 string: Invalid file name command:

GSU7150 ; converted to newname

GSU7151 I/O buffer allocation

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7152 string: -6 not supported

Explanation:
You specified the –6 option, which is not currently
implemented.

User response:
Do not use the –6 option.

GSU7153 string: Unknown option command:

Explanation:
You specified an option that is not valid for this
command.

User response:
Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU7154 Must specify one of -i, -o, or -p

Explanation:
When using cpio, you must specify one and only one of
the –i, –o, or –p options.

User response:
Specify one of the required options.

GSU7155 string: -r option disabled with -p

Explanation:
cpio cannot use the –r option (rename files) with –p
(pass, which copies files from one location to another
directory).

User response:
When using the –p option, do not also specify the –r
option.

GSU7156 Usage: cpio -o [aBcvz] [-yV
volmask] [-C blocksize] [-O file]
cpio -i [bBcdfmrsStuv6qz] [-yV
volmask] [-C blocksize] [-I file]

504 z/VM: 7.3 OpenExtensions Commands Reference

[patterns] cpio -p [Badlmruv]
directory

Explanation:
The cpio command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7158 string: bad magic number in
archive

Explanation:
Either the wrong file was passed, or the file has been
corrupted.

User response:
Check your archive file.

GSU7159 string: unsupported file mode
filename

Explanation:
When creating a cpio archive, the mode (file type) of
the specified file on the file system is not valid for
including in a cpio archive.

User response:
Check the file type of the named file, and correct
if possible. (The file type may be an extension to
POSIX, which is valid on the host operating System,
but shouldn't be included in a portable cpio archive.)

GSU7160 string: Unknown mode field
filename

Explanation:
The type of the file specified in the mode field of the
cpio archive is not supported by the operating system.

User response:
No action possible, as the file cannot exist on the host
system.

GSU7161 string: command: not found.

Explanation:
You specified the name of an archive member, but it
was not found in the archive.

User response:
Get a full table of contents of the archive to see if you
are using the correct name.

GSU7162 string: file filename Unable to
represent filename in ISO/IEC
8859 -- not saved

Explanation:
Characters in filename cannot be represented in the
character set used in tar archives.

User response:

Rename the specified file to contain only characters in
ISO/IEC 8859.

GSU7163 symbolic link filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7164 string: bad format in header

Explanation:
Either the wrong file was passed, or the file has been
corrupted.

User response:
Check your archive file.

GSU7165 string: archive file name command:
characters

Explanation:
The archive contained a path name that was longer
than that permitted on the local system.

User response:
Re-create the archive using a shorter relative path.

GSU7167 string: interactive EOF

Explanation:
When using the interactive rename option, an end-of-
file was encountered.

User response:
None.

GSU7169 string: cannot set access/modify
time on command:

GSU7170 string: cannot set mode

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7171 string: cannot set uid/gid

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7172 Warning: file filename character
hexnum

GSU7173 string: out of memory for link
tables

Explanation:
There were not enough free system resources to
create the needed link tables. When archiving files
with multiple links, each link must be remembered.

User response:
Archive in smaller pieces.

GSU7174 string: missing command: num to s

Explanation:

Appendix D. OpenExtensions Shell and Utilities Messages 505

Not all links to a given file were archived.

User response:
None.

GSU7175 Missing file characteristics after
"p"

Explanation:
You specified the –p option without providing an
argument that indicated the file characteristics to be
preserved.

User response:
Provide the missing argument.

GSU7176 Missing blocking factor after "b"

Explanation:
You specified the –b option without providing an
argument that indicated the size of an output block.

User response:
Provide the missing block size.

GSU7177 Missing filename after "f"

Explanation:
You specified the –f option without providing a file
name as an argument.

User response:
Provide the missing file name.

GSU7178 Missing substitution after "s"

Explanation:
You specified the –s option without providing a
substitution command as an argument.

User response:
Provide the missing substitution command.

GSU7179 Missing format after "x"

Explanation:
You specified the –x option without providing an
archive format as its argument.

User response:
Provide the missing archive format.

GSU7180 Missing volume pattern after "V"

Explanation:
You specified the –V option without providing a
volume pattern as an argument.

User response:
Provide the missing volume pattern.

GSU7181 Missing keyword list after "o"

Explanation:
You specified the –o option without providing a
keyword list as an argument.

User response:
Provide the missing keyword list.

GSU7182 Unable to convert from codeset
codeset1 to codeset codeset2

Explanation:
The host file name character set (codeset1) was
unable to map to and from the archive character set
(codeset2).

User response:
Correctly specify to and from keywords with the –o
option of pax.

GSU7183 string: cannot read archive from
terminal

Explanation:
You tried to extract or list an archive from a tty device.

User response:
Specify a non-tty file name to pax.

GSU7184 string: can't use -a or -u with
stdout

Explanation:
You specified the –a or –u option when sending output
to the standard output. These options can only be
used with archive files.

User response:
Make sure that you specify an archive file when using
the –a or –u options.

GSU7185 string: blocking factor must be at
least 512 for read operations

Explanation:
You specified a blocking factor of less than 512 bytes
and attempted to perform read operations.

User response:
Use the –b option to specify a block size of at least
512 bytes.

GSU7187 Usage: pax [-cdnv] [-f archive]
[-s replstr] [-Lz] [-V volpattern]
[pattern ...]

Explanation:
The pax command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7188 pax -r [-cdiknuv] [-f archive] [-s
replstr] [-p [rk.aemop]] [-zq]

GSU7189 [-o [from=codeset,][to=codeset]] [-
V volpattern] [pattern ...]

GSU7190 pax -w [-dituvX] [-b blocking] [-a]
[-f archive]] [-s replstr]

506 z/VM: 7.3 OpenExtensions Commands Reference

GSU7191 [-o [from=codeset,][to=codeset]] [-
x format] [-V volpattern]

GSU7192 [-Lzq] [pathname ...]

GSU7194 string: badly formed number:
command:

Explanation:
You specified an invalid number as the argument of a
–b option.

User response:
Specify a valid number.

GSU7195 string: overflow in blocking factor:
command:

Explanation:
You specified a blocksize argument to the –b option
that was too large.

User response:
Use a smaller value for blocksize

GSU7196 string: blocking factor of 0 not
allowed

Explanation:
You specified the –b option with an argument that
evaluated to zero.

User response:
Specify a nonzero value as the argument to the –b
option.

GSU7197 string: invalid archive format
selected: command:

Explanation:
You specified an argument to the –x option that is not
a supported format.

User response:
Check the description of pax, “pax -- Interchange
portable archives” on page 239, for a list of supported
archive formats.

GSU7199 string: medium not seekable

Explanation:
You tried to append to an archive that was not
seekable.

User response:
Create a new archive instead.

GSU7200 string: command: Not a directory

Explanation:
You specified pass mode with either the –p option
for cpio or the –r and –w options for pax, but the
destination given was not a directory.

User response:
Make sure that the destination pathname is a
directory.

GSU7203 string: error in string replacement:
command:

GSU7204 Warning: blocking factor blocksize
not portable to UNIX

Explanation:
You specified a blocking factor (blocksize) that was
larger than 20. This may create an archive that does
not work on a UNIX system.

User response:
To guarantee portability to a UNIX system, use a
blocksize of 20 or less. A larger value may work but
is not guaranteed.

GSU7205 TAR file already set

Explanation:
You specified the f option more than once on the
command line.

User response:
Specify the f option only once.

GSU7206 Must specify one of 'c', 'r', 't', 'u', or
'x'

Explanation:
tar requires that you specify one of the c, r, t, u, or x
options as the first character of its option string. You
did not do this.

User response:
Specify one of the required options at the beginning of
the option string.

GSU7207 string: "z" (compress) option
unavailable with command:

GSU7208 opening archive filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7209 string: tape archive medium not
seekable

Explanation:
You tried to use the replace (r) option on an archive file
that was not seekable.

User response:
Only use the r option with archive files that are
seekable.

GSU7210 string: 'u' function not
implemented--using 'r'

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7211 chdir to pathname

Explanation:

Appendix D. OpenExtensions Shell and Utilities Messages 507

A system error indicating the cause is displayed with
this message.

GSU7216 symbolic link to filename

GSU7218 string: command: name too long

Explanation:
The path name filename was too long to be included in
a tar archive.

User response:
Rename or move filename, such that its path name is
shorter.

GSU7219 string: command: Unknown mode
filename

Explanation:
The type of the file specified in the mode field of the
tar archive entry is not supported by the operating
system.

User response:
No action possible, as the file cannot exist on the host
system.

GSU7220 string: command: is a special file--
not dumped

Explanation:
You tried to dump a special file filename when writing
a non-USTAR tar file.

User response:
Do not specify special files to be included in tar
archives. If you want to archive special files, use a
USTAR format archive.

GSU7221 string: file command: hard link to
name1 ignored: tar format does
not permit links to pathnames
longer than name2

GSU7222 string: symbolic link command: tar
format does not permit symbolic
links to pathnames longer than
filename

GSU7223 tape read

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7224 string: incomplete tape block

Explanation:
When reading a tape archive header, a block that was
not the same size as the archive block size was read.

User response:
Check to see if the archive was corrupted.

GSU7226 string: command: name too long...
switching to USTAR format

GSU7227 string: command: grew in size

GSU7228 string: command: shrank in size

GSU7229 scratch file

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7230 sorting

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7231 updating archive

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7263 insufficient memory

Explanation:
There were not enough free system resources to
perform the requested operation.

User response:
Free up more system resources.

GSU7266 Width is insufficient

Explanation:
The line was not wide enough to hold the given
number of columns with the given column width; or
a column was not wide enough to hold the minimum
amount of data.

User response:
Use the –w option to increase the width of the page.

GSU7267 Too many files for merge(-m)
option; limit num

Explanation:
You specified too many files for the –m option to
handle. The limit was num files.

User response:
Specify fewer files.

GSU7273 string: can't access your terminal

Explanation:
The terminal associated with the standard input was
not accessible.

User response:
When running ps without a controlling terminal, you
must specify one of the –G, –g, –p, –t –U, or –u
options to identify the processes on which ps is to
report.

GSU7274 process table

Explanation:

508 z/VM: 7.3 OpenExtensions Commands Reference

A system error indicating the cause is displayed with
this message.

GSU7275 string: no matching processes
found.

Explanation:
ps did not find any find any processes which matched
the specified search criteria.

User response:
Confirm the command options for ps.

GSU7276 string: badly constructed format
string format

Explanation:
The output format string was not correct.

User response:
Check the description of ps, “ps — Return the status
of a process” on page 254, for a list of possible format
specifications.

GSU7277 string: more than command: items
in num list at option

Explanation:
You specified more than num items in the list given as
an argument to –option.

User response:
Specify no more than num items in the –option
argument list.

GSU7280 rm: not allowed to remove
filename

Explanation:
You specified either . (current directory) or .. (parent
directory) as a pathname. rm will not remove these
directories.

User response:
Do not specify . or .. as a pathname.

GSU7282 rm: use "-r" to remove directory
pathname

Explanation:
You tried to use rm to remove a directory without
specifying the –r option.

User response:
Specify the –r option when you want to use rm to
remove a directory.

GSU7283 rm: fatal error during "-r" option

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7286 cannot stat entry filename

Explanation:

A system error indicating the cause is displayed with
this message.

GSU7287 cannot open directory pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7288 Usage: rm [-firR] file ...

Explanation:
The rm command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7290 insufficient memory for buffers

Explanation:
There were not enough free system resources to
allocate as buffers.

User response:
Free up more resources.

GSU7291 "y" command may not be followed
by a newline

Explanation:
You followed the y command with a newline rather
than its required arguments.

User response:
Provide the missing arguments.

GSU7292 in y command, the strings set1 and
set2 must be the same length

Explanation:
You specified two strings set1 and set2 as arguments
to the y command that were not the same length.

User response:
Make sure that the set1 and set2 strings are the same
length.

GSU7293 non-matching "{" and "}"
commands

Explanation:
You specified a { command without the matching }.

User response:
Provide the missing }.

GSU7294 garbage after command

Explanation:
You specified invalid characters after a script
command.

User response:
Remove the surplus characters.

Appendix D. OpenExtensions Shell and Utilities Messages 509

GSU7295 number addresses given for
command expecting at most num1

Explanation:
You specified a command with num1 addresses that
uses a maximum of num2 addresses.

User response:
Use the correct number of addresses.

GSU7296 newline or end of file found in
pattern

Explanation:
sed encountered a newline or end-of-file character
when reading a pattern from the script or script file.

User response:
Check the pattern for a missing delimiter.

GSU7297 Missing script

Explanation:
You specified the –e option but did not provide a script
as its argument.

User response:
Provide the missing script.

GSU7299 label label not found in script

Explanation:
You specified label as an argument to the b or t
command, but label does not exist in the script.

User response:
Make sure that b and t commands refer to labels that
exist in the script.

GSU7300 cannot nest "!" command

Explanation:
You tried to execute one ! command from within
another.

User response:
Remove any nested ! commands.

GSU7301 "\" must terminate the "character"
command

Explanation:
You specified the cmd command, but you did not
provide the backslash (\) required to terminate its
input.

User response:
Provide the missing \.

GSU7302 End of file in cmd command

Explanation:
sed encountered an end of file while parsing the
command cmd.

User response:

Check the script file for missing closing quotes,
missing regular expression delimiters, and other
syntactical errors.

GSU7303 "character" command needs a
label

Explanation:
You specified a command that requires a label as an
argument, but you did not provide the label name.

User response:
Provide the missing label name.

GSU7304 sysconf(_SC_OPEN_MAX) failed

GSU7305 no memory file file table

Explanation:
There were not enough free system resources to
perform the requested operation.

User response:
Free up more resources.

GSU7306 badly formed file name for cmd
command

Explanation:
You specified the cmd which requires a file name as an
argument, but the given argument does not have the
syntax of a file name.

User response:
Specify a valid file name.

GSU7308 insufficient memory to compile
command

Explanation:
There were not enough free system resources for sed
to compile a given command.

User response:
Free up more resources.

GSU7309 bad regular expression delimiter
after \

Explanation:
You used a backslash (\) to indicate an alternate
regular expression delimiter, but you did not follow it
with a valid delimiter.

User response:
Provide a valid delimiter following the \ (that is, any
character other than newline, space, tab, or EOF).

GSU7310 no remembered regular
expression

Explanation:
You issued a command that tried to use a remembered
regular expression, but there was no remembered
regular expression.

User response:

510 z/VM: 7.3 OpenExtensions Commands Reference

Specify the regular expression explicitly.

GSU7311 script file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7312 Usage: sed [-n] script [file...] sed [-
nE] [-e script] [-f scriptfile] [file...]

Explanation:
The sed command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7313 sed: regular expression error:
regular_expression_error

Explanation:
You have entered a regular expression incorrectly. See
the regular expressions (regexp) section, Appendix B,
“Regular Expressions (regexp),” on page 471.

GSU7315 string: restricted

Explanation:
You were using the restricted version of the shell
(for example, by specifying the –r option for sh). The
restricted shell does not allow the use of the specified
command.

User response:
To use the specified command, you must be using a
nonrestricted shell.

GSU7316 string: readonly variable

Explanation:
You tried to change or remove the variable name which
was marked as read-only.

User response:
Do not attempt to change or remove a read-only
variable.

GSU7317 temporary file filename error using
here document

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7318 !cannot open script filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7320 missing command after -c

Explanation:

You specified the –c option but did not provide a
command as an argument.

User response:
Provide the missing command.

GSU7321 Unknown option option

Explanation:
You specified an option that is not valid for this
command.

User response:
Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU7325 return: not executing function

Explanation:
You specified a return command when you were not
executing a function.

User response:
Only use return to return from a function.

GSU7326 !reading script

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7327 signal number num not
conventional

Explanation:
You specified a conventional signal number num, but
this system does not use conventional signal numbers.

User response:
Use the corresponding signal name.

GSU7328 too many outstanding signals

GSU7329 <(command) and >(command) not
implemented

Explanation:
You tried to use <(command) or >(command), which
are not implemented in this version of the shell.

User response:
Do not use these constructs.

GSU7330 <<string unclosed

Explanation:
The shell encountered an end-of-file character while
reading a here-document before it encountered name.

User response:
Make sure that name appears in the text of the input
file.

GSU7331 too many << in line

Explanation:
You specified more than 10 here documents using <<.

Appendix D. OpenExtensions Shell and Utilities Messages 511

User response:
Simplify your command line to use fewer here
documents.

GSU7332 syntax error: got string1 expecting
string2

Explanation:
When processing your input, the shell encountered
string1 when it was expecting string2.

User response:
Check the description of sh, “sh — Invoke a shell”
on page 277, for the correct syntax for various shell
commands. Reenter your input with the correct syntax.

GSU7334 not an identifier

Explanation:
You specified a for, function, or select statement, but
did not follow it with a valid identifier.

User response:
Provide a valid identifier after the statement.

GSU7338 execute: internal error num

GSU7339 ambiguous redirection

Explanation:
You specified a file name in a redirection construct that
expands to other than a single word.

User response:
Ensure that the file name in a redirection construct
expands to a single word.

GSU7340 file descriptor fd already
redirected

Explanation:
You tried to redirect the file descriptor fd, which was
already being redirected in the same command.

User response:
Only redirect a file descriptor once.

GSU7341 bad file descriptor fd

Explanation:
You tried to read from, or write to, the file descriptor
fd, which was not open for that operation.

User response:
Open the file descriptor fd for the appropriate
operation.

GSU7342 file filename already exists

Explanation:
You tried to redirect output into an existing file, but you
have turned on the noclobber option (see set 1).

User response:
Use the construct >|filename to redirect the output
into an existing file or turn the noclobber option off
with set +o noclobber.

GSU7343 !cannot open filename for input/
output

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7345 no file descriptor available

Explanation:
You tried to redirect a file descriptor but none were
available. When a file descriptor is redirected, the old
value is remembered by the shell by duplicating it to
yet another file descriptor. The total number of file
descriptors is limited by the system and hence the
shell may run out while it looks like your command
is using far fewer than the maximum number of
descriptors.

User response:
Free up a file descriptor.

GSU7346 !no pipes available

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7347 !cannot open filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7349 only one co-process allowed

Explanation:
You tried to create more than one coprocess.

User response:
Do not attempt to create more than one coprocess.

GSU7350 e_cmd: negative result?

GSU7351 not found

Explanation:
You tried to execute a command that could not be
found.

User response:
Ensure that the command exists and that the PATH
environment variable is valid.

GSU7352 recursion too deep

Explanation:
You defined a function that has too many levels of
recursion.

User response:
Simplify the function to use fewer levels of recursion.

GSU7353 Usage: command:

Explanation:

512 z/VM: 7.3 OpenExtensions Commands Reference

The mv command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7354 "string" is not an identifier

Explanation:
You tried to use an nonalphanumeric name as an
identifier.

User response:
Use only alphanumeric names for identifiers.

GSU7355 bad file descriptor fd

Explanation:
You tried to read from, or write to, the file descriptor fd
which was not open for that operation.

User response:
Open the file descriptor fd for the appropriate
operation.

GSU7356 history not available

Explanation:
The shell was unable to open a history file when you
logged in.

User response:
Make sure that the environment variable HISTFILE is
set to a file which is named properly and for which you
have appropriate permissions. You may have to log in
again.

GSU7357 no active co-process

Explanation:
You tried to receive input from or send output to a
coprocess when there was no active coprocess.

User response:
Do not use the -p option when there is no active
coprocess.

GSU7358 no HOME directory

Explanation:
You tried to use cd to return to your home directory;
however, the environment variable HOME was not
defined.

User response:
Set the environment variable HOME to the path name
of your home directory.

GSU7359 no previous directory

Explanation:
You tried to use the command cd – to return to your
previous working directory; however, there was no
record of what your previous directory was.

User response:
Specify the desired directory explicitly.

GSU7360 pattern old not found in dir

Explanation:
You tried a command of the form cd old new. However,
the name of the current directory dir does not contain
any string matching the regular expression old.

User response:
Ensure that the name of the current directory contains
the regular expression old.

GSU7362 !writing

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7363 !reading

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7364 bad shift count expr

Explanation:
You specified an expression that did not evaluate
to a number in the range from 0 to the number of
remaining positional parameters.

User response:
Specify an expression that evaluates to a number in
the range from 0 to the number of remaining positional
parameters.

GSU7366 "string" not a valid trap name

Explanation:
You specified an unrecognized trap name.

User response:
Check that you spelled the trap name correctly.

GSU7367 base number not in [2,36]

Explanation:
You used the –i option to specify a base for an integer,
but the base was not in the range from 2 to 36.

User response:
Specify a base in the range from 2 to 36.

GSU7369 Cannot restore privileged state

Explanation:
You specified +o privileged or –p, but for some
reason, the shell cannot restore the affected values.

User response:
Exit the current shell and start a new one.

GSU7370 . file [arg ...]

GSU7371 alias [-tx] [name[=value] ...]

GSU7372 break [count]

Appendix D. OpenExtensions Shell and Utilities Messages 513

GSU7373 cd [dir] cd old new

GSU7374 command [-pvV] command ...

GSU7376 continue [count]

GSU7378 eval [arg ...]

GSU7379 exec [command ...]

GSU7380 exit [value]

GSU7381 export [-p] [name[=value] ...]

GSU7383 fc [-e editor] [-lnr] [first [last]] fc -s
[old=new] [num]

GSU7384 getopts opts name [arg ...]

GSU7385 jobs [-lnp] [job ...]

GSU7386 kill -l [status] kill [-s SIGNAL]
job ...

GSU7387 let expression ...

GSU7389 print [-nprRsu[n]] [arg ...]

GSU7390 read [-prsu[n]] [name?prompt]
[name ...]

GSU7391 readonly [-p] [name[=value] ...]

GSU7392 return [value]

GSU7394 shift [count]

GSU7396 time [-p] command ...

GSU7397 times [-p]

GSU7398 trap [action] [name ...]

GSU7400 type command ...

GSU7401 typeset [-f[tux]] [+-lrtuxH] [+-
LRZi[n]] [name[=value] ...]

GSU7403 unalias [-a] [name ...]

GSU7404 unset [-f] [name ...]

GSU7405 umask [-S] [mode]

GSU7406 wait [job ...]

GSU7407 whence [-v] command ...

GSU7409 fg [job]

GSU7410 insufficient memory available

GSU7411 cannot create temporary file

Explanation:
A temporary file was required to perform the
requested operations. The shell was unable to create
this file, for example, because the disk was full.

User response:
Free up more disk space.

GSU7412 no command matches command

Explanation:
You asked to edit a command beginning with a
particular string, but there was no such command in
the history file.

User response:
Use the fc command to browse through the history file
to ensure that string is entered correctly.

GSU7421 string is corrupt

GSU7422 string is not found

Explanation:
You specified a name that type was unable to find.

User response:
Check that the name exists, was spelled properly, and
that you have the appropriate permissions.

GSU7423 stack overflow

Explanation:
You specified an expression that was too complicated
for the stack to handle.

User response:
Try simplifying the expression.

GSU7424 misplaced subscript

Explanation:
The subscript for an array was missing or invalid.

User response:
Make sure that you provide a valid subscript for the
array.

GSU7425 unknown operator

Explanation:
You specified an unknown operator.

User response:
Check the Arithmetic Substitution subsection of the
description of sh, “sh — Invoke a shell” on page 277,
for a table showing the valid arithmetic operators.

GSU7426 base must be in [2,36]

Explanation:
You specified a base that was not in the range 2 to 36.

User response:
Specify a base in the 2 to 36 range.

GSU7427 unmatched ? :

Explanation:
You specified the ? operator without the :.

User response:
Specify the missing :.

GSU7428 expression: internal error

GSU7429 assign only to variable

Explanation:

514 z/VM: 7.3 OpenExtensions Commands Reference

You specified an assignment where the left hand side
that was not a variable.

User response:
Only use the assignment operators to assign values to
variables.

GSU7430 string in arithmetic expression
"string"

Explanation:
An error occurred in the arithmetic expression expr.

User response:
Look up error in the error listing for more details.

GSU7431 string in arithmetic expression
"string" near character

Explanation:
An error occurred in the arithmetic expression expr
near the substring substr.

User response:
Look up error in the error listing for more details.

GSU7433 string: No such job

Explanation:
You specified a nonexistent job identifier.

User response:
Use the jobs command to get a list of jobs that are
currently job controlled.

GSU7438 job control disabled

Explanation:
You tried to use the fg or bg command when set –o
monitor (or set –m) was not set.

User response:
Turn on monitor mode with set –o monitor or set –m.
This mode is not supported on all systems.

GSU7439 job job-id not job controlled

Explanation:
You specified the job identifier of a job which was not
being job controlled.

User response:
Use the jobs command to get a list of jobs currently
being job controlled.

GSU7440 !cannot continue job

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7441 "string" not a valid signal

Explanation:
You specified a non-integer signal for kill that was not
a valid signal name, or you specified a signal that is
outside the range of valid signal numbers.

User response:
Make sure that you specify a valid signal number or
name for signal.

GSU7442 "string" is not a job

Explanation:
You specified a job-identifier that is not valid.

User response:
Specify a valid job-identifier.

GSU7443 j_freejob(NULL)!

GSU7449 string: Unknown file type field
value pathname

Explanation:
A file with an invalid file type was encountered when
extracting or listing an archive's contents.

User response:
This archive is invalid. No action is possible.

GSU7453 Argument to -n must be numeric

Explanation:
You specified an argument to the –n option that was
not a number.

User response:
Specify a numeric argument for –n.

GSU7455 string: warning--file size error in
command: truncated

GSU7456 string: warning--file size error in
command: padded with spaces

GSU7457 string: checksum error on tape (got
command: expected hexnun1

Explanation:
A bad checksum was found in a tar header.

User response:
Check to see if the archive was corrupted.

GSU7458 string: non-USTAR header in
USTAR archive at command:

Explanation:
When reading a USTAR format archive, pax
encountered a header without the USTAR magic
number

User response:
Check to see if your archive has been corrupted.

GSU7460 string: try "c" option for ASCII
archive

Explanation:
The magic number in the cpio archive header
appeared to be in ASCII.

User response:
Try using the –x cpio option instead of –x cpiob.

Appendix D. OpenExtensions Shell and Utilities Messages 515

GSU7461 string: command: final component
of name too long

Explanation:
The USTAR format extends the old tar file name
limit from 100 to 256 bytes; however, this requires
breaking up the file name into one piece of 156 bytes
or less and another piece of 100 bytes or less. The
break occurs between directory components (that is,
at a slash). In the case of pathname, the second
component could not be made to fit into 100 bytes.

User response:
Move or rename pathname to have shorter path
components.

GSU7462 string: command: Unable to split
name to fit in tar header

Explanation:
The USTAR format extends the old tar file name limit
from 100 to 256 bytes; however, this requires breaking
up the file name into one piece of 156 bytes or less
and another piece of 100 bytes or less. The break
occurs between directory components (that is, at a
slash). In this case, the characteristics of pathname
would not allow it to be broken up in such a manner.

User response:
Move or rename pathname to have shorter path
components.

GSU7463 Usage: lp [-cmsw] [-d dest] [-
n number] [-o printer-option] [-t
title] [file...]

Explanation:
The lp command entered was not syntactically correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7473 Missing variable assignment

Explanation:
You specified the –v option but did not follow it with a
variable assignment.

User response:
Provide a variable assignment following the –v option.

GSU7475 string: command: is not a member
of group username

Explanation:
The user username is not included in the list of users
who are members of the group groupname, and the
group did not have a password.

User response:
See your system programmer about adding username
to the members of groupname.

GSU7476 -f filename invalid if message
given

Explanation:
On the logger command line, you used the –f to
indicate a file from which logger is to read log
messages; however, you also provided the argument
string to be used as a log message. You cannot use
both methods on the same command line.

User response:
Either specify a file to be read with the –f option or
provide a log message on the command line, but not
both.

GSU7477 Formatted log message too long --
limit LINE_MAX num

Explanation:
The formatted log message was longer than num
characters. num is the value of the configuration
variable LINE_MAX.

User response:
Shorten your log message.

GSU7478 Warning: newgrp utility probably
not setuid to root.

GSU7488 files too large, trying "-h" option ...

Explanation:
You specified the –H option, but there were not
enough free system resources to handle the files. diff
will now try to compare the files using the –h option.

User response:
If you are comparing these two files again, specify the
–h option on the command line for faster operation.

GSU7490 Missing field separator

Explanation:
You specified the –F option but did not follow it with a
field separator.

User response:
Provide a field separator following the –F option.

GSU7499 string: command: symbolic links
not supported by OS

Explanation:
You tried to extract a file specified as a symbolic link
in the archive. Symbolic links are not supported on all
operating systems.

User response:
Do not use symbolic links on this system.

GSU7501 string: bad substitution
expression: sub_pattern

Explanation:

516 z/VM: 7.3 OpenExtensions Commands Reference

You invoked with a –s option, but the sub_pattern
argument was empty, or did not contain a leading
delimiter.

User response:
Specify a valid sub_pattern argument, such as –s old/
new.

GSU7502 fifo special file filename fifo not
supported by local o/s

Explanation:
You tried to extract an archive file containing a FIFO
file, and the host operating system does not support
FIFOs.

User response:
Since the operating system does not support FIFOs, no
action is possible.

GSU7506 Unknown tape density num

Explanation:
You specified a tape drive number followed by an
argument that should be a tape density, but the
argument was not l, m, or h.

User response:
Specify a valid tape density (l, m, or h).

GSU7507 Missing file name after "f"

Explanation:
You specified the f option but you did not specify the
name of an archive file as its argument.

User response:
Provide the missing file name.

GSU7509 Missing blocking factor after "b"

Explanation:
You specified the –b option without providing an
argument that indicated the size of an output block.

User response:
Provide the missing block size.

GSU7513 Blocking factor blocksize is non-
numeric

Explanation:
You specified the –b option, but the blocksize
argument was not a valid number.

User response:
Specify a valid number as the value of blocksize.

GSU7514 Blocking factor larger than number

Explanation:
You specified the –b option, but the blocksize
argument that you provided is too large.

User response:
Use a smaller blocksize.

GSU7517 string: -O: Must specify -o option

Explanation:
You specified the –O option, but did not specify the –o
option.

User response:
To use the –O option, you must specify the –o option.

GSU7518 string: bad numeric ID at
command: option

Explanation:
You specified a numeric identifier for a process, group,
or session that was not a valid number.

User response:
Make sure that all numeric IDs are valid numbers.

GSU7519 string: unknown user ID at "-u
command:"

Explanation:
You specified an unknown login name or a bad user ID
as an argument to the –u option.

User response:
Check the arguments to the –u option carefully.

GSU7520 string: -I: Must specify -i option

Explanation:
You specified the –I option, but did not specify the –i
option.

User response:
To use the –I option, you must specify the –i option.

GSU7522 string: missing directory after -C

Explanation:
You specified the –C but did not provide a directory
name as an argument.

User response:
Provide the missing directory name.

GSU7524 Only one character allowed after -t

Explanation:
You specified a field separator that was longer than
one character as an argument to the –t option.

User response:
Use a one-character field separator.

GSU7673 Profiling timer expiry

GSU7674 CPU time limit

GSU7675 File size limit

GSU7676 I/O possible

GSU7723 -- core dumped

Explanation:
A program called by the shell terminated with a core
dump.

User response:

Appendix D. OpenExtensions Shell and Utilities Messages 517

Ensure that the program was called correctly.

GSU7725 !history

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7726 !cannot spawn

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7727 shell metacharacter in wordexp()

Explanation:
The wordexp function was called by the shell
to expand a string that contained special shell
characters.

User response:
Check the program which calls wordexp and ensure
that the string to be expanded does not contain any
special shell characters.

GSU7728 bad ${} modifier

Explanation:
You specified an invalid modifier in a ${} construct.

User response:
Check the description of sh, “sh — Invoke a shell” on
page 277, for a list of valid modifiers in ${} constructs.

GSU7729 missing closing char

Explanation:
You specified a {, =, \', ˋ, ", (, ((, or [and did not provide
the corresponding closing character.

User response:
Provide the missing closing character.

GSU7730 string: no expansion of unset
variables

Explanation:
You attempt to expand an unset variable when set –o
nounset was on.

User response:
Use set +o nounset to turn nounset off and retry the
expansion.

GSU7731 string: cannot assign part of the
undefined variable name in the
construct ${name=word} or as
part of the empty or undefined
variable name in the construct $
{name:=word}. name when using
these two constructs.

GSU7732 string: parameter null or not set

Explanation:

You specified a ${name?} construct where name was
not set and no message followed the ?.

User response:
Set name and specify a message after the ?.

GSU7733 no command substitution
permitted

Explanation:
The wordexp function was called by the shell to
expand a string that contained command substitution,
such as $(cmd) or f(CW'cmd'.

User response:
Check the program that called wordexp and ensure
that the string to be expanded does not contain any
command substitutions.

GSU7734 substitute: internal error

GSU7735 Null signal

GSU7736 Hangup

GSU7738 Quit

GSU7739 Illegal instruction

Explanation:
The shell received an illegal instruction signal. This
signal typically occurs when a process tries to execute
something that is not a valid machine instruction
recognized by the hardware.

User response:
Contact your system programmer.

GSU7740 Trap

GSU7741 Abort

GSU7742 Emulator trap

GSU7743 Floating point exception

GSU7744 Killed

GSU7745 Bus error

GSU7746 Segmentation violation

GSU7747 Bad system call

GSU7748 Pipe broken

GSU7749 Alarm clock

GSU7750 Terminated

GSU7751 User-defined signal 1

GSU7752 User-defined signal 2

GSU7753 Death of child

GSU7754 Power failure

GSU7755 Continued

GSU7756 Stopped (user)

518 z/VM: 7.3 OpenExtensions Commands Reference

GSU7757 Stopped (tty input)

GSU7758 Stopped (tty output)

GSU7759 Window size change

GSU7760 Urgent I/O

GSU7761 Pollable event

GSU7762 Virtual timer expiry

GSU7766 unbalanced []

Explanation:
You specified a [without providing the matching].

User response:
Provide the missing].

GSU7767 missing closing)

Explanation:
You specified a (as part of the test expression but did
not provide the closing).

User response:
Provide the missing).

GSU7768 Not a 'Shell Regular Built-in Utility'

Explanation:
You tried to execute a command that is not a regular
built-in utility.

User response:
Specify only shell regular built-in utilities.

GSU7769 Not enough memory

Explanation:
There were not enough free system resources to
perform the requested operation.

User response:
Free up more resources.

GSU7770 Too many arguments

Explanation:
The system limit for the size of an argument list was
exceeded.

User response:
Specify fewer arguments.

GSU7771 execl failed

Explanation:
The shell could not be executed to run a built-in shell
utility.

User response:
Have your system programmer ensure that the shell is
both accessible and executable.

GSU7773 Usage: sleep [#h#m]#[s]

Explanation:

The sleep command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7774 Usage: sort [-cmu] [-o outfile] [-
y[kmem]] [-zmaxrec] [-dfiMnrb] [-t
x] [-k keydef] [file...]

Explanation:
The sort command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7778 Missing -o file

Explanation:
You specified the –o option without providing a file
name as an argument.

User response:
Provide the missing file name.

GSU7780 -position "string" must follow
+position

Explanation:
You specified a –endpos option either before or
without a +startpos option.

User response:
Reverse the order of the – and + options on the
command line, or provide the missing +startpos option.

GSU7813 error setting termios attributes

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7814 string: unknown mode command:

Explanation:
You specified an unknown stty operand.

User response:
Check the description of stty, “stty — Set or display
terminal options” on page 308, for a list of valid stty
operands.

GSU7815 string: missing number after
command:

Explanation:
You did not specify a numeric value as the argument of
operand.

User response:
Supply an appropriate number as the argument of
operand.

Appendix D. OpenExtensions Shell and Utilities Messages 519

GSU7818 string: internal error 1

GSU7823 reading termios attributes

Explanation:
A call to tcgetattr() failed to return the necessary
information.

User response:
Contact your system programmer.

GSU7824 string: missing character after
command:

Explanation:
You did not specify a control character as the
argument of operand.

User response:
Supply an appropriate argument for operand.

GSU7825 string: badly formed command:
character operand

Explanation:
You specified char as the argument to operand but
char is not a valid control character.

User response:
Specify a valid control character.

GSU7826 string: missing speed after
command:

Explanation:
You did not specify a baud rate with the ispeed or
ospeed operand.

User response:
Supply a valid baud rate.

GSU7827 string: argument command: not
valid after arg

Explanation:
You specified an invalid baud rate, arg, after the
ispeed or ospeed operand.

User response:
Contact your system programmer or check your
reference manuals for a list of baud rates supported
by your machine.

GSU7835 not enough memory for buffering

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7836 re-opening file descriptor fd

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7853 creating file filename

Explanation:

A system error indicating the cause is displayed with
this message.

GSU7854 opening file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU7859 Bad date conversion

Explanation:
You specified an invalid date string on the command
line.

User response:
Specify a valid date string.

GSU7860 Only one -r (-f) or -t flag allowed

Explanation:
You specified a –f, –r, or –t option on the same
command line with one or more other –f, –r, or –t
options.

User response:
Remove the excess options, leaving only one –f, –r, or
–t option.

GSU7861 stat: age file filename inaccessible

Explanation:
You specified a filename that either does not exist,
or one for which you do not have appropriate
permissions.

User response:
Check that filename exists, was named properly, and
that you have appropriate permissions.

GSU7862 Missing argument to option option

Explanation:
You specified option without providing the required
argument.

User response:
Provide the missing argument.

GSU7865 Usage: tr [-cs] string1 string2 tr -s
[-c] string1 tr -d [-c] string1 tr -ds
[-c] string1 string2

Explanation:
The tr command entered was not syntactically correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7871 not a tty

Explanation:
The standard input was not associated with a terminal.

User response:
Check if tty was meant to be used on a redirected file.

520 z/VM: 7.3 OpenExtensions Commands Reference

GSU7872 Usage: tty [-s]

Explanation:
The tty command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7873 Usage: uname [-snrvma]

Explanation:
The uname command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7876 Missing number of fields to skip

Explanation:
You specified the –f option without providing the
number of fields to skip as its argument.

User response:
Provide the missing number of fields.

GSU7877 Missing character skip count

Explanation:
You specified the –s option without providing the
number of characters to skip as its argument.

User response:
Provide the missing number of characters.

GSU7878 skip not a number in string

Explanation:
You specified an argument to the +, –, –f, or –s option
that was not a valid number.

User response:
Specify a valid number.

GSU7879 Usage: uniq [-udc] [-f #fields] [-s
#characters] [input [output]] uniq
[-udc] [-#fields] [+#characters]
[input [output]]

Explanation:
The uniq command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU7945 Line too long

Explanation:

You tried to add text to a line that would cause
its length to exceed the maximum indicated by the
configuration variable LINE_MAX.

User response:
Make shorter lines.

GSU8028 string: more than command: bytes
of arguments

Explanation:
The resulting command line that was constructed was
larger than the maximum allowed.

User response:
Specify arguments and options that produce a shorter
command line.

GSU8029 string: more than command:
arguments

Explanation:
You specified more than 1023 arguments on the
command line.

User response:
Specify less than 1024 arguments.

GSU8030 size for option must be num

Explanation:
You specified a numeric argument for –option that was
greater than or equal to num.

User response:
Specify a numeric argument that is less than num.

GSU8031 string: -l number too large

Explanation:
You specified the –l option with a numeric argument
that was greater than 1023.

User response:
Specify an argument to the –l option that is less than
1024.

GSU8032 string: -n number too large

Explanation:
You specified the –n option with a numeric argument
that was greater than 1023.

User response:
Specify an argument to the –n option that is less than
1024.

GSU8049 gspace: should be num1 is num2

GSU8053 accept: j = num1 != nrule = num2

GSU8054 Code started at line num never
ends

Explanation:
Your grammar contained a yacc action that was not
terminated with a }.

Appendix D. OpenExtensions Shell and Utilities Messages 521

User response:
Provide the missing }.

GSU8055 union declaration started at line
num never ends

Explanation:
Your grammar contained a union { declaration that
lacked an ending }.

User response:
Provide the missing }.

GSU8058 Variables aren't allowed here

Explanation:
Your grammar attempted to set precedence/
association of a variable (nonterminal).

User response:
You can only set precedence or association of tokens.

GSU8059 Sorry, value num is reserved for
EOF/error

Explanation:
Your grammar attempted to use a yacc internal token
number.

User response:
Use a different token number.

GSU8060 Warning: name redefined

GSU8061 Start symbol must be a variable

Explanation:
Your grammar used a token as a start symbol.

User response:
You must use a variable (nonterminal) as a start
symbol.

GSU8062 Warning: start symbol redefined;
was value

GSU8063 %.hexnum prefix is already set to
prefix

Explanation:
Your grammar used more than one hexnum prefix
setting, or attempted to combine hexnum prefix with
the –p prefix.

User response:
Remove extra hexnum prefix, or avoid using both the
hexnum prefix directive and the –p option.

GSU8068 ITEM TOO BIG!

Explanation:
yacc was unable to create a human-readable state list
due to a lack of available system resources. This only
occurs when yacc reports on conflicts in the grammar.

User response:
Fix conflicts in the yacc grammar.

GSU8069 ITEM and lookahead TOO BIG

Explanation:
yacc was unable to create a human-readable state list
due to a lack of available system resources. This only
occurs when yacc reports on conflicts in the grammar.

User response:
Fix conflicts in the yacc grammar.

GSU8070 ispace: should be num1 is num2

GSU8071 Unknown reserved word: word

Explanation:
Your grammar contained a % keyword that yacc did
not recognize, most likely due to a misspelling in word.

User response:
Correct the spelling of word.

GSU8072 Comment started at line num
never ends

GSU8073 End of file in character constant

Explanation:
Your grammar contained a character constant that was
missing the closing quote.

User response:
Provide the missing quote.

GSU8074 Empty character string

Explanation:
Your grammar contained a quoted character string
with no characters.

User response:
Make sure that all quoted strings contain characters.

GSU8075 Sorry, value 0 is reserved for EOF

GSU8076 Mangled character constant

Explanation:
Your grammar contained an illegal character constant.

User response:
Check and correct grammar.

GSU8103 Out of memory at num bytes

Explanation:
yacc has run out of system resources for this input
grammar.

User response:
Simplify your grammar, or free more system resources.

GSU8105 pspace: should be num1 is num2

GSU8131 mangle bad action

GSU8143 topt: state num1 len num2

GSU8144 Bad goto mark in temp file

GSU8145 Undefined nonterminal 'name'

522 z/VM: 7.3 OpenExtensions Commands Reference

Explanation:
A grammar rule referenced a rule or token which is not
defined.

User response:
Add the appropriate grammar rule or token.

GSU8155 Missing keydefinition after -k

Explanation:
You specified the –k option without providing a key
definition as an argument.

User response:
Provide the missing key definition.

GSU8157 Usage: tail [-f] [-clnbkm
[+-]number] [+-number[clbkm]]
[file]

Explanation:
The tail command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU8181 String started at line num never
ends

Explanation:
Your grammar contained a string in a yacc action that
was not terminated.

User response:
Make sure the string is terminated.

GSU8183 Code segment started at line num
never ends

Explanation:
Your grammar contained a code segment that lacked
an ending %}.

User response:
Provide the missing %}.

GSU8189 Warning: precedence of name
redefined

GSU8211 Null to Expand

GSU8212 Expand recursing on Expand_buf

GSU8213 Invalid hop count: num

Explanation:
You specified the –h option, but the argument that you
provided with it is not a valid number.

User response:
Provide a valid number as the argument to the –h
option

GSU8214 Badly specified macro

Explanation:
The syntax of the macro is incorrect.

User response:
Use the correct syntax to specify the macro.

GSU8215 Usage: mailx [-defHiNn] [-u user]
[filename] mailx: [-dFinU] [-h
number] [-r address] [-s subject]
user ...

Explanation:
The mailx command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU8216 Characters after substitute
modifier ignored

GSU8219 tsmail: writing mailbox mailbox

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8223 Expansion too long

Explanation:
After expansion, the macro is too long for the supplied
buffer.

User response:
Modify the macro so that it expands to less than
STRING_SIZE (8192) bytes.

GSU8226 string: Error code command:

Explanation:
The indicated command in the recipe line returned
with a nonzero return code.

User response:
Make treats this as an error unless the .IGNORE
attribute has been used, or if the recipe line was
preceded by a - character. If a nonzero return code
is acceptable, modify the recipe line in the makefile
so that the return code from this command line is
ignored.

GSU8228 Freeing NIL pointer

GSU8229 Incomplete rule recipe group
detected

Explanation:
You specified a group recipe but omitted the closing].

User response:
Add the closing square bracket.

GSU8230 Cannot mix single and group
recipe lines

Appendix D. OpenExtensions Shell and Utilities Messages 523

Explanation:
You tried to mix recipe lines with group recipes for the
same rule.

User response:
Either make the entire recipe a group, or remove the
group.

GSU8231 Found unmatched ']'

Explanation:
You specified a] in your makefile for a group recipe
without providing the matching [.

User response:
Provide the missing [.

GSU8232 Expecting macro or rule defn,
found neither

Explanation:
Make expected this line in the makefile to contain a
macro or rule definition, but it didn't. This probably
indicates a syntax error in the makefile, or a comment
which is missing the # symbol.

User response:
Correct this line in the makefile so it follows Make
syntax rules. If the line is a comment, ensure that it
starts with the # symbol.

GSU8233 Illegal parser state num

GSU8236 Only a single % allowed in a target
pattern

Explanation:
A metarule target contained more than one '%'. It may
only contain one.

User response:
Remove the additional percent signs.

GSU8241 Unable to determine current
directory

Explanation:
make was unable to find out what its current directory
was.

User response:
Verify that you have all necessary permissions to
determine your current directory.

GSU8242 Operator after special target
treated as ':'

Explanation:
You specified a modifier, such as !, with a rule defining
a special target. make ignores any such modifiers.

User response:
Remove the extraneous modifier.

GSU8244 Multiple targets are not allowed in
% rules

Explanation:
You specified a metarule with more than one target. A
metarule can have only one target specified.

User response:
See the section in z/VM: OpenExtensions Advanced
Application Programming Tools on inference rules and
correct the makefile.

GSU8245 Special target must appear alone

Explanation:
You specified a special target which cannot appear
with any other target in a rule. For example, a rule
with .ERROR as a special target cannot mention any
other target.

User response:
Correct the line.

GSU8247 Syntax error in % rule, missing %
target

Explanation:
You specified your meta-rule incorrectly. The target
must contain a %.

User response:
Correct the syntax of the rule.

GSU8249 Missing targets or attributes in
rule

Explanation:
When reading input, make encountered a rule that had
no targets or attributes specified.

User response:
Correct the syntax of your makefile.

GSU8253 No .INCLUDE file(s) specified

Explanation:
You specified a .INCLUDE special target without
providing the names of the files to be included.

User response:
Refer to the description of the .INCLUDE target
in z/VM: OpenExtensions Advanced Application
Programming Tools and add the missing file names.

GSU8257 Attributes possibly ignored

Explanation:
A special target may inherit attributes, but only certain
attributes take effect on specific special targets.

User response:
Refer to the description of make, “make — Maintain
program-generated and interdependent files” on page
198, for more information about which attributes may
be applied to which special targets.

GSU8260 Nonglobal attributes ignored

Explanation:

524 z/VM: 7.3 OpenExtensions Commands Reference

You specified attributes that are nonglobal. make will
ignore them.

User response:
Remove the attributes.

GSU8263 Invalid library format

Explanation:
make attempted to access a library that was not in the
correct format.

User response:
Verify that your library is correct and rebuild it if
necessary.

GSU8267 Too many arguments -- limit num

Explanation:
Too many arguments were produced when make tried
to execute a line in a recipe.

User response:
Simplify the recipe line.

GSU8279 Unknown or missing operator in
symbolic audit mode operator

Explanation:
There is a missing or invalid operator in the specified
symbolic –audit or –aaudit.

User response:
Refer to the description of the find command, “find —
Find a file meeting specified criteria” on page 131 for
the correct values and reenter the command.

GSU8280 Octal audit mode may contain only
digits [0-7] in option

Explanation:
When you specify attributes in octal audit mode, the
possible values are expressed by some combination of
the digits 0 through 7 (for example, 777). You specified
a number outside that range or you have specified
characters along with or instead of digits.

User response:
Check the description of the find command, “find —
Find a file meeting specified criteria” on page 131, for
the correct values and reenter the command.

GSU8281 getgroupsbyname failed

Explanation:
This message indicates a system error.

User response:
Record any other messages and return codes that
appear with this one and consult your system
programmer or follow local procedures for reporting
a problem to IBM.

GSU8282 Invalid printer format: forms

Explanation:

You specified too many arguments for –d (dest) on the
lp command. "Destination_name", "class" and "forms"
are the only permissible arguments on –d. They must
be specified in that order.

User response:
Reissue the command with valid arguments on –d.

GSU8283 Invalid class: class

Explanation:
You specified the class operand of the lp command
incorrectly. class cannot be longer than one character.
Valid values are A-Z and 0-9, but your installation may
not have all valid values defined.

User response:
Reissue the command with an appropriate value for
class.

GSU8284 Unable to access printer.

Explanation:
The z/VM system did not recognize one or more of the
operands you specified on the lp command.

User response:
Check what you specified for "destination_name",
"class", and "forms". You may need assistance from
your local help desk or a system programmer.

GSU8285 Unable to open printer ddn (ddn)

Explanation:
The system could not OPEN the SYSOUT data set.

User response:
This message probably indicates a system error.
Consult your system programmer or follow local
procedures for reporting a problem to IBM.

GSU8288 logger: wto failed, rc=rc

Explanation:
The logger command could not write your message to
the operator console.

User response:
Record the return code and any associated messages
that appear with this one and consult your system
programmer.

GSU8565 tsmail: temporary file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8566 tsmail: writing temporary file
filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8697 Usage: tsmail user ...

Appendix D. OpenExtensions Shell and Utilities Messages 525

Explanation:
The tsmail command entered was not syntactically
correct.

User response:
Contact your sage displays the correct syntax for this
command. Reenter the command with the correct
syntax.

GSU8703 No 'makefile' present

Explanation:
make was unable to find Makefile or makefile, and did
not have any default rules.

User response:
Create the missing makefile, or add default rules to
startup.mk.

GSU8704 Missing .END for .IF

Explanation:
You specified a .IF statement without the
corresponding .END statement.

User response:
Provide the missing .END statement, or remove the
extra .IF statement.

GSU8705 No target

Explanation:
make had a makefile to process, but did not find a rule
defining a target to be made.

User response:
Add a target rule to your makefile, or specify a target
on the command line.

GSU8707 Openfile: bad name

Explanation:
make attempted to open a file with an invalid or NULL
name.

User response:
Edit the makefile and correct the file name.

GSU8714 No more memory

Explanation:
make was unable to allocate storage space.

User response:
Free up some resources and try again.

GSU8723 Unmatched "quote

Explanation:
You specified an opening “ on a line that did not
contain a closing ”.

User response:
Correct the line.

GSU8724 .ELSE without .IF

Explanation:

You specified a .ELSE statement without a
corresponding .IF statement.

User response:
Provide the corresponding .IF and .END statements (if
necessary), or remove the .ELSE statement.

GSU8725 Unmatched .END

Explanation:
You specified a .END statement without the
corresponding .IF statement.

User response:
Provide the missing .IF statement, or remove the
extra .ELSE statement.

GSU8726 No macro name

Explanation:
A macro assignment = appears without a macro name.

User response:
Correct the line.

GSU8728 Write error on temp file

Explanation:
An error occurred while trying to write on a diversion
or group recipe temporary file.

User response:
Ensure that there is space on the file system
containing the temporary file.

GSU8730 <+ diversion unterminated

Explanation:
You specified a <+ to begin a diversion, but did not
specify the corresponding +> to end it.

User response:
Provide the closing +>.

GSU8731 Directory stack empty in pop

GSU8732 <+ missing before +>

Explanation:
You specified a +> to end a diversion before specifying
the corresponding <+ to begin it.

User response:
Ensure that corresponding <+ and +> symbols appear
in the correct order.

GSU8734 cannot access file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8735 Too many mail folders specified on
command line.

Explanation:
The –f flag was specified, and more than one mail
folder was named on the command line.

526 z/VM: 7.3 OpenExtensions Commands Reference

User response:
List only one file name on the command line.

GSU8736 tsmail: invalid user user

Explanation:
The name user, which was specified as a recipient of
the message, is not a valid user on the system.

User response:
Check the spelling of the recipient's name, and try to
send your message again.

GSU8737 tsmail: cannot lock file filename

Explanation:
The mailbox filename could not be locked, so the
message could not be delivered.

User response:
Wait a little while and try to send the message again.

GSU8738 tsmail: re-opening temporary file
filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8739 tsmail: chowning mailbox mailbox

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8772 Internal Error:

Explanation:
An internal error occurred.

User response:
Contact your system programmer. Follow local
procedures for reporting a problem to IBM.

GSU8773 Warning: missing ; at end of rule

GSU8774 % prec needs a token; string isn't

GSU8775 Mangled $n construction

GSU8776 Warning: $n value number too big

GSU8778 Newline in string started at line
number

GSU8779 Warning: redeclaration of type of
name

GSU8780 Default action does not apply to
null rules

GSU8781 Default action causes type clash

GSU8782 Need a type for $$

GSU8783 "string" is not a token

GSU8784 Mangled %type construction

GSU8785 grammar file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8786 header file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8787 listing file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8788 parser file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8789 file I/O error

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8813 Warning: newline in character
constant

GSU8819 unlink temp file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8820 write error on temporary file
filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8821 file filename is binary

Explanation:
You specified the binary file filename as a diff input
file. diff only works on text files.

User response:
Only specify text files as diff input files.

GSU8822 file filename line too long: limit
LINE_MAX

Explanation:
The input line is too long.

User response:
Try again with a shorter input line.

GSU8824 yacc bug:

Explanation:
An internal error occurred.

User response:

Appendix D. OpenExtensions Shell and Utilities Messages 527

Contact your system programmer. Follow local
procedures for reporting a problem to IBM.

GSU8958 read error on filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8977 string: source name1 and target
name2 are identical

Explanation:
You specified source and target files that are actually
the same file (for example, because of links).

User response:
No further action is required.

GSU8978 string: target directory command:
on different file system than
source pathname

GSU8979 target filename must exist

Explanation:
The destination directory must exist for this utility to
work.

User response:
Check the command line arguments. You may need to
create the target directory.

GSU8980 cannot create parent directory for
target filename

Explanation:
An error occurred while trying to create the parent
directory of the specified target file.

User response:
Make sure you have permissions to create the
directory.

GSU8981 Error copying file file1 to file1

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8982 string: internal error: unknown
return code from m_cp: command:

Explanation:
An internal error occurred.

User response:
Contact your system manager.

GSU8983 Cannot reset times on file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8984 Cannot reset permissions on file
filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU8985 Cannot reset uid or gid on file
filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9007 Field delimiter specified by -d
must be one character

Explanation:
You specified a field delimiter (as an argument to the
–d option) that was more than one character long.

User response:
Specify a single character field delimiter.

GSU9008 file "[standard input]"

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9010 date: bad format or date output
longer than number bytes

Explanation:
The format string supplied to date is invalid, or the
output is longer than the size of the date buffer.

User response:
Confirm that the date format string on the command
line is valid.

GSU9011 number truncated records

GSU9012 number truncated record

GSU9013 number read errors

GSU9014 number read error

GSU9015 number write errors

GSU9016 number write error

GSU9086 no space for line table

Explanation:
There were not enough free system resources to
allocate initial resources for ed.

User response:
Free up more system resources and restart program.

GSU9087 Input line too long

Explanation:
You entered an ed command which was too long.

User response:
Simplify the command and try again.

GSU9088 no memory for pages

Explanation:

528 z/VM: 7.3 OpenExtensions Commands Reference

There were not enough free system resources to
allocate initial resources for ed.

User response:
Free up more system resources and restart program.

GSU9090 no memory for line number tables

Explanation:
There were not enough free system resources to
allocate initial resources for ed.

User response:
Free up more system resources and restart program.

GSU9091 Result of substitution would
produce a line too long

Explanation:
You specified a replacement string in a substitution
command that would produce a line that is too long for
ed to handle.

User response:
Specify a shorter replacement string or split the
original line into shorter lines before performing the
substitution.

GSU9092 Result line of join too long

Explanation:
You attempt to use the j command to join a range lines
into one line; however, the resulting line would be too
long for ed to handle.

User response:
Specify a smaller range of lines to be joined.

GSU9093 no space for expression or string

Explanation:
There were not enough free system resources for expr
to allocate for a string or expression.

User response:
Simplify the expression.

GSU9094 find: must specify a command
after -exec/-ok

Explanation:
You specified either the –exec or the –ok primary
without specifying a command to be performed.

User response:
Provide the missing command.

GSU9096 Usage: head [-c|l|n|b|k|m
number] [file ...] head [-number]
[file ...]

Explanation:
The head command entered was not syntactically
correct.

User response:

The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9098 string: command: illegal character
sequence(s) for codeset in input
file

GSU9164 Internal error: 10 too small in
Get_token()

Explanation:
An internal error occurred.

User response:
Contact your system programmer. Follow local
procedures for reporting a problem to IBM.

GSU9165 .IF .ELSEEND nesting too deep

Explanation:
The nesting of .IF .ELSEEND structures is too
deep.

User response:
Modify your makefile so that these structures are not
nested as deep.

GSU9169 Internal, buildList buffer too small

GSU9170 <+ diversion cannot be nested

Explanation:
You tried to put one <+ diversion inside another <+
diversion. make does not permit this.

User response:
Remove the nested <+ diversion.

GSU9174 !reading file

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9176 Detected circular dependency
using target

Explanation:
After expansion, a target depends upon itself. Make
does not permit this.

User response:
Modify the makefile to eliminate the circular
dependency.

GSU9179 seek past EOF on input

Explanation:
The seek offset specified on the command line was
greater than the size of the input file.

User response:
Check the offset and try again.

GSU9181 string: component too long.

Explanation:

Appendix D. OpenExtensions Shell and Utilities Messages 529

One of the components of the path name provided is
longer than is allowed by the filesystem (or by POSIX,
if –p was specified).

User response:
Try to shorten the component or components of the
path name.

GSU9182 string: pathname too long.

Explanation:
The length of the path name provided is longer than
that allowed by the filesystem (or by POSIX, if –p was
specified).

User response:
Try to shorten some of the components of the path
name, in order to reduce the overall length of the path
name.

GSU9183 string: Not searchable.

Explanation:
You specified a path name pathname that was not
searchable.

User response:
Specify a different path name.

GSU9184 string: requested format differs
from the existing archive format

Explanation:
You used the –a option with –x format, where the
archive already existed with a different format.

User response:
Do not specify the format when appending to an
existing archive, or specify the correct format.

GSU9185 Symbolic link name too long: Not
extracted

Explanation:
Couldn't allocate enough memory to hold the symbolic
link's name.

User response:
Archive contains symbolic name which is too large; no
action possible.

GSU9186 Missing format specification

Explanation:
You did not specify a format specification on the
command line.

User response:
Provide the missing format specification.

GSU9187 Usage: printf format [argument ...]

Explanation:
The printf command entered was not syntactically
correct.

User response:

The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9188 unused argument at arg

Explanation:
You specified a format string without any conversion
specifications.

User response:
Add at least one conversion specification to your
format string.

GSU9190 not a valid real argument string

Explanation:
You specified a format specification that was expecting
a real (that is,floating-point) number, but you provided
the argument string which was not a valid real number.

User response:
Provide a valid real number in place of string.

GSU9191 cannot allocate buffer for
pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9192 cannot determine working
directory

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9195 cannot unlink entry filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9196 cannot remove directory pathname

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9199 input line too long

Explanation:
A line in the input file was longer than 10240 bytes.

User response:
Make sure that the input file is a text file.

GSU9200 reading from file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9201 input file filename is binary

Explanation:

530 z/VM: 7.3 OpenExtensions Commands Reference

You specified the binary file filename as a sed input
file. sed only works on text files.

User response:
Only specify text files as sed input files.

GSU9202 Unexpected return value from
m_fgets(): value

GSU9203 unmatched {} commands

Explanation:
There is a '{' command in your script which does not
have a corresponding '}' to terminate it.

User response:
Make sure that there are as many '}' as there are '{'.

GSU9204 pattern space overflow during G
command

Explanation:
The content of the hold buffer was too long to be
appended to the pattern buffer.

User response:
Place a smaller amount of text in the hold buffer.

GSU9205 hold space overflow during H
command

Explanation:
You tried to "hold" more data than would fit in the sed
hold buffer.

User response:
Reorganize your script to require less data in the hold
buffer.

GSU9206 Can't chain cmd command

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9207 improper word after <<

GSU9208 !cannot redirect (dup2)

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9209 !cannot execute

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9210 Traced functions not effective
unless -o korn is set

Explanation:
"typeset -ft function" (turn on tracing for the named
function) was specified, but KornShell mode wasn't
enabled.

User response:

Don't specify "typeset –ft", or enable KornShell mode
with "set –o korn".

GSU9211 set [+-abCefhikKmnptuvx] [+-o
option] [-s] [+-A name] [arg ...]

GSU9212 Undefined functions not
implemented

Explanation:
typeset –fu specifies attributes for a function that will
be defined later. This is currently not implemented.

User response:
Specify the function's attributes when defining it,
instead of using typeset –fu.

GSU9221 !get limit failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9222 !set limit failed

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9224 bad number num

Explanation:
Invalid string given where a number was expected.
(MAILCHECK, TMOUT, OPTIND, HISTSIZE, and
COLUMNS environment variables, or array subscript.)

User response:
Specify a decimal number (containing only the digits 0
through 9) to the appropriate environment variables or
subscripts.

GSU9225 no memory: system_error

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9228 undefined variable

GSU9229 Reset tty pgrp from curr_pgrp back
to our pgrp old_pgrp

GSU9230 Internal error: j_close: no
processes

Explanation:
An internal error occurred.

User response:
Contact your system programmer. Follow local
procedures for reporting a problem to IBM.

GSU9244 Usage: sh string [-
abCefhikKLmnprtuvx] [-o
option] file [arg ...] sh
[--abCefhikKLmnprtuvx] [-o
option] [-s [arg ...] sh [--

Appendix D. OpenExtensions Shell and Utilities Messages 531

abCefhikKLmnprtuvx] [-o option] -c
command [name [arg ...]]

Explanation:
The sh command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9253 Usage: wc [-lw] [-c|-m] [file ...]

Explanation:
The wc command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9256 Symbol on left side of rule must be
a variable; name isn't

GSU9257 Mangled $<...> construction

GSU9258 It's too late to start using types

GSU9259 Need an explicit type for $n when
n <= 0

Explanation:
In a grammar with a union declaration, an action
references a Yacc symbol value $n, where n <= 0, but
no type is specified for $n.

User response:
Add an explicit type, of the form $typen.

GSU9261 Need a type for name

Explanation:
In a grammar with a union declaration, an action is
referencing a Yacc symbol value that does not have a
type associated with it.

User response:
Use %type type rule to assign a type to a rule, or
%token type tokenname to assign a type to a token.
Alternatively, you can use explicit types within the
action, in the form $\fItypen.

GSU9268 Too many makefiles specified.

Explanation:
You specified too many files using the –f option.

User response:
Combine one or more files into a single file.

GSU9270 Too many open files. Max nesting
level is num

Explanation:
You have exceeded the maximum limit of .INCLUDES.

User response:
Check to see if you have recursively included a make
file, or simplify your makefile.

GSU9271 Could not create string string1

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9275 Usage: awk [-f scriptfile] [-Fc]
[-v var=val] [script] [var=val ...]
[file ...]

Explanation:
The awk command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9276 can't pass scalar to var

Explanation:
You tried to pass a scalar value to a function expecting
an array parameter.

User response:
Correct your program.

GSU9277 can't pass array to var

Explanation:
You tried to pass an array into a function expecting a
scalar parameter.

User response:
Correct your program.

GSU9278 built-in var can't be used as a
parameter or auto variable

Explanation:
You tried to use the name of a built-in function or
variable as a parameter or local variable in a function.

User response:
Correct your program.

GSU9279 string() is not a function

Explanation:
You tried to use name as a function when it was not
defined as such.

User response:
Correct your program, or make sure that the spelling
of name is the same as was used when defining the
function.

GSU9280 'string' can only have values from
num1 through num2

Explanation:

532 z/VM: 7.3 OpenExtensions Commands Reference

You tried to assign a value to a built-in variable that is
outside the permitted range.

User response:
Check the description for the bc command, “bc
— Use the arbitrary-precision arithmetic calculation
language” on page 29, and correct your program to
use a value that is within the acceptable range for that
variable.

GSU9281 while executing function funcname

Explanation:
An error occurred while executing the named function.

User response:
Determined by remainder of message.

GSU9283 internal error: Converting wide
character back to MB

Explanation:
An internal error occurred.

User response:
Contact your system manager.

GSU9285 Number string not in range num1
num2

Explanation:
An invalid user ID was specified.

User response:
Ensure that the command line arguments are correct.

GSU9286 Usage: comm [-123] file1 file2

Explanation:
The comm command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9299 Usage: date [-cu] [+format] date [-
cut] <date_time>

Explanation:
The date command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9310 Badly formed line/byte count num

Explanation:
You gave an invalid number for the –n option.

User response:
Correct the command line.

GSU9311 Missing number after option option

Explanation:
You specified the –option option without providing a
number as its argument.

User response:
Provide the missing number.

GSU9312 byte count not in range num1

Explanation:
You gave an invalid byte count.

User response:
On the command line, correct the byte count to
a number that can be expressed by the machine
architecture.

GSU9356 string: Internal error: nextrecord:
Unexpected status return from
m_fgetws: command:

Explanation:
An internal error occurred.

User response:
Contact your system manager.

GSU9357 Writing to standard output

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9358 Writing unpaired records

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9363 unknown

GSU9364 Bad date conversion: string

Explanation:
The string passed to m_readdate was not in a format
that the function recognized.

User response:
Check the format of the date and try again.

GSU9367 Usage: logger [-t tag] [-siITu] [-
p priority] [-d destination] [-f
filename]/ logger [-t tag] [-siITu]
[-p priority] [-d destination] log-
message

Explanation:
The logger command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9368 string: Only printable characters
are permitted in log messages.

Appendix D. OpenExtensions Shell and Utilities Messages 533

Explanation:
You specified a nonprintable character in a log
message.

User response:
Replace the nonprintable character with one or more
printable characters.

GSU9374 string: Failed to strip file
command:

Explanation:
An error occurred while trying to strip an executable
file.

User response:
No action possible.

GSU9376 Macro macroname cannot be
redefined

GSU9377 WARNING: Macro macroname
redefined after use

GSU9378 Special target target cannot be a
prerequisite

Explanation:
You tried to use a special target as a prerequisite.

User response:
Edit the makefile, and remove the special target from
the prerequisite list.

GSU9379 Option -c failed to
change directory to pathname
system_error

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9380 string: Unknown option command:

Explanation:
You specified an option that is not valid for this
command.

User response:
Check the description in this book for the command
you were using to find the valid list of options for that
command.

GSU9381 string: Option command: argument
missing

Explanation:
You specified the –option option without providing its
required argument.

User response:
Provide the missing argument.

GSU9383 Configuration file filename not
found

Explanation:

Could not open the MAKESTARTUP configuration file.

User response:
The MAKESTARTUP file may be either misnamed or
missing. Ensure that the MAKESTARTUP file exists,
and that it is accessible. This may require setting the
*[MACRO MAKESTARTUP] macro or MAKESTARTUP
environment variable.

GSU9384 Unable to return to directory
pathname

Explanation:
Make could not set the directory back to the original
directory. The original directory may have been
deleted, renamed, or had its permissions changed
since Make was started.

User response:
Ensure that the directory exists and has the correct
permissions. Attempt the make operation again.

GSU9385 !file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9387 Unable to change directory to
pathname

Explanation:
Make could not set the directory back to the specified
directory. The specified directory may have been
deleted, renamed, or had its permissions changed
since Make was started.

User response:
Ensure that the directory exists and has the correct
permissions. Attempt the make operation again.

GSU9388 Left temp file filename

GSU9392 file is binary

Explanation:
A file that was supposed to contain rules contained
binary data.

User response:
Ensure that the correct file name is specified and that
the contents of the specified file are correct.

GSU9393 line too long: limit num

Explanation:
The makefile contains a line that exceeds the
LINE_MAX limit.

User response:
Shorten the line. You can use the continuation
character (backslash) to spread long rules over several
lines in the makefile.

GSU9394 !error reading file

Explanation:

534 z/VM: 7.3 OpenExtensions Commands Reference

A system error indicating the cause is displayed with
this message.

GSU9401 Inference rules result in circular
dependency for target

Explanation:
The inference rules result in a target that depends
upon itself.

User response:
Verify that the recipe lines are correct. Ensure that the
meta rules or suffix rules are correctly specified. In
some cases, you may need to use an explicit rule to
override the action of the inference rules.

GSU9407 Macro name macroname truncated
to shortname

GSU9412 [string] not remade because of
errors for target if time1 > time2

GSU9415 Don't know how to make target

Explanation:
Make does not know how to make the given target.

User response:
Ensure that the target is defined in the makefile. The
target may be declared directly by an explicit rule or
indirectly by an inference rule.

GSU9419 Mismatched braces in token token

Explanation:
The number of open braces ({) does not match the
number of close braces (}) in this token.

User response:
Edit the token so that each open brace has a matching
close brace.

GSU9420 Detected circular macro
macroname

Explanation:
The macro refers to itself, either directly or through
a chain of several macros. Macros cannot refer to
themselves.

User response:
Modify the macro so that it does not refer to itself after
expansion.

GSU9421 Unterminated pattern string:
string

Explanation:
The pattern string specified in the pattern substitution
is not terminated with a separator character
(normally /).

User response:
Modify the pattern substitution so the separator
characters are correctly placed. The first character
after the :s is used as the separation character.

GSU9422 Unterminated replacement string:
string

Explanation:
The substitution string specified in the pattern
substitution is not terminated with a separator
character (normally /).

User response:
Modify the pattern substitution so the separator
characters are correctly placed. The first character
after the :s is used as the separator character.

GSU9423 Modifier modifier can't be used in a
modifier list - ignored

GSU9424 Argument string to modifier must
be quoted with "

Explanation:
The argument to this macro expansion must be quoted
using double quotation marks.

User response:
Modify the macro expansion so that the argument is
quoted using double quotation marks.

GSU9425 Unterminated argument string
string for modifier modifier

Explanation:
The argument to this macro expansion must be quoted
using double quotation marks. The terminating double
quotation mark character was missing.

User response:
Modify the macro expansion so the argument is
properly quoted in double quotation marks.

GSU9426 Illegal modifier modifier in macro
macroname

Explanation:
You specified a character that is not a legal macro
modifier.

User response:
Modify the macro expansion expression to use only
legal modifiers.

GSU9427 Name too long pathname

Explanation:
You specified a path name that exceeds the maximum
length allowed for directory names.

User response:
Use a shorter path name for this directory. Move the
files higher up in the directory tree so the path name
does note exceed the maximum path length.

GSU9428 Ambiguity in target_list targets
target chose string

GSU9429 meta-rule too long: rule

Appendix D. OpenExtensions Shell and Utilities Messages 535

Explanation:
The meta-rule contained its maximum number of
characters before Make reached the end of the meta-
rule.

User response:
Shorten the meta-rule so it fits in DONE_STATE
characters.

GSU9430 Internal, bad current dfa state
num in node_name

Explanation:
An internal error occurred.

User response:
Contact your system administrator.

GSU9431 Only one .SETDIR attribute
allowed in rule line

Explanation:
You have a rule with more than one .SETDIR attribute.

User response:
If you want Make to search for a file in a number of
different directories, use the .SOURCE special target.

GSU9432 Duplicate entry target in target list

GSU9433 Duplicate entry prereq in
prerequisite list

GSU9434 Multiply defined recipe for target
target

Explanation:
You specified more than one recipe for target in
different rules, and the rules use the : operator.

User response:
Either use the : operator to handle independent
recipes, or correct your makefile.

GSU9435 Empty recipe for special target
target

Explanation:
The special target specified requires that a recipe also
be specified for it.

User response:
Refer to the documentation for the target and add an
appropriate recipe.

GSU9436 string ignored on suffix
rule .SETDIR

Explanation:
The attribute is ignored, so it cannot be applied to this
suffix rule.

User response:
Remove the attribute from the suffix rule.

GSU9437 Imported macro macroname not
found in environment

Explanation:
make attempted to import a macro that was not
present in the program environment.

User response:
Define the appropriate environment variable, remove
the import rule, or add the .IGNORE attribute to the
import rule.

GSU9439 Include file filename not found

Explanation:
make couldn't find the file filename.

User response:
Check that the file exists, was named properly and that
you have the appropriate permissions. Also check the
prerequisites of the .INCLUDIRS target to make sure
that it specifies the correct path.

GSU9440 string ignored on special
target .SETDIR

GSU9441 Target target cannot mix ':' and '::'
rules

Explanation:
You defined a rule for target using the :: operator, and
then followed this with another rule for target using
the :: operator.

User response:
Either modify the second rule to use :: or remove it.

GSU9442 WARNING: duplicate meta-rule
rule1 : rule2 new rule replaces old

GSU9443 Multiple .SETDIR for target ignored

GSU9444 Cannot find member defining
archive

GSU9450 Warning -- empty .SUFFIXES
target - suffix rules ignored.

GSU9452 (string): Can't extract library
member timestamp; using EPOCH

GSU9453 string(string): Can't touch library
member

GSU9454 string macro not defined

Explanation:
You tried to execute a recipe that required the shell
and either the *[MACRO GROUPSHELL] macro or the
SHELL macro was not defined.

User response:
Make sure that the macro is defined properly in your
makefile or startup.mk file.

GSU9455 Could not export env_string

GSU9456 Cannot open pathname

Explanation:

536 z/VM: 7.3 OpenExtensions Commands Reference

make was unable to open a temporary file for a
diversion or group recipe. You may not be able to write
to your TMPDIR directory.

User response:
Make sure that the TMPDIR environment variable
is set up properly, that you have the appropriate
permissions in that directory and that there is space
on the file system.

GSU9458 Usage: mkfifo [-m mode] [-p] file ...

Explanation:
The mkfifo command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9464 allocating buffer for backslash
interpretation

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9465 internal error: Converting "%%b"
format argument from wide to M B

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9466 internal error: unexpected return
value from bs()

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9467 argument arg

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9501 parsing format string

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9502 Usage: rmdir [-p] directory ...

Explanation:
The rmdir command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9503 cannot open file filename in cmd
command

Explanation:
The file named in the cmd command could not be
opened, either because the maximum number of files
was already open, or because you were not permitted
to write to file.

User response:
Either simplify your script, so that it requires fewer
open files, or check to ensure that you do have
permission to write to the file.

GSU9505 Warning: unknown process
process_id terminated

GSU9508 Usage: tee [-ia] [file] ...

Explanation:
The tee command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9510 Usage: touch [-amc] [-r|-f file] [-t
time] [date_time] file ...

Explanation:
The touch command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9528 file filename is binary

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9529 file filename line too long: limit
LINE_MAX

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9530 Usage: xargs [-l#][-L #] [-irepl][-I
repl] [-n#] [-tpx] [-s#] [-eeof][-E
eof] [cmd [args ...]]

Explanation:
The xargs command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9532 can't open parser resource file
filename

Appendix D. OpenExtensions Shell and Utilities Messages 537

GSU9533 disk error: cannot write temp file

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9535 Usage: yacc [-dhlmqstv] [-D hdr] [-
o out] [-p pfx] [-P proto] [-L[C|P]] [-
S states] [-V stats] [-b fpfx] gram.y

Explanation:
The yacc command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9536 no input file

Explanation:
No input file name was specified on the yacc
command.

GSU9538 yacc -- parser generator language
Usage: yacc [-dhlmqstvw] [-D hdr]
[-o out][-p pfx] [-P proto] [-L[C|P]]
[-S states] [-V stats] [-b fpfx] [-W
rcfile] gram.y -d generate header
file 'ytab.h' -h print this message
and stop -l disable generation of
#line directives in output parser
-m show memory usage and timing
statistics for each pass -q quiet
mode--no warnings -s write state
information to states.out -t define
YYDEBUG symbol for debugging
code and tables -v generate
verbose statistics file 'y.out' -w
create a Windows® compatible
resource file for tables -D hdr
generate header file into 'hdr' -o
out put parser into 'out' rather
than 'ytab.c' -p pfx all variables
will use prefix 'pfx' rather than 'yy'
and 'YY' -P proto parser prototype
is in 'proto' rather than '/etc/
yyparse.c' -LP generate Turbo
Pascal output into 'ytab.pas', and
header into 'ytab.hp'. -LC generate
C++ output into 'ytab.cpp', and
header into 'ytab.hpp' -S states
write state information into file
'states' rather than states.out -V
stats generate verbose statistics
like -v into file 'stats' -b fpfx
specify output files to begin
with 'fpfx' rather than 'y' -W
rcfile specify name of Windows
compatible resource file

Explanation:
Specifying -h attribute on the yacc command displays
this help message.

GSU9564 Insufficient disk space on device
or Bad temporary file (read)

Explanation:
Yacc encountered a problem while reading a
temporary file.

User response:
Ensure that the disk is not full or defective.

GSU9566 expanded length of string too long;
limit char_set_size

Explanation:
You specified a string that expanded to a length
greater than the number of characters in the character
set. Since a given character may appear only once in
the first string, you specified a character more than
once in that string.

User response:
Remove any repeated characters in the first string.

GSU9567 Starting endpoint hexnum1 does
not precede the second endpoint
hexnum2

Explanation:
The starting point of a range of characters is after the
end point you have indicated.

User response:
Reverse the start and end points of the range.

GSU9569 Invalid character class class

Explanation:
You specified a character class class that is not
defined in the locale indicated by LC_CTYPE.

User response:
Specify a character class that is defined in the locale
indicated by LC_CTYPE.

GSU9570 Collation string is not supported in
[=equiv=].

Explanation:
You specified a string for equiv in a [=equiv=]
expression that contained more that one character.
tr accepts only a single character for the equivalence
class.

User response:
Specify a one-character equivalence class.

GSU9571 syntax error in [x*n] expression
expression.

User response:
Provide the missing].

538 z/VM: 7.3 OpenExtensions Commands Reference

GSU9572 [x*0] construct may only occur
once

Explanation:
You tried to fill the string using the [x*0] construct
more than once.

User response:
Remove the second fill request.

GSU9581 !memory allocation failure

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9583 reading windowsize attributes

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9585 Only classes [:upper:] and
[:lower:] are valid as a translate
result, and then only if the
corresponding character class is
specified

Explanation:
You specified a class in a [:class: construct in string2
that was not lower or upper, or you specified [:lower:]
or [:upper:] in string2 without specifying the other one
at the corresponding spot in string1.

User response:
Specify string2 in a form that gives an equivalent
result without using the [:class:] construct, or specify
[:upper:] or [:lower:] (as appropriate) at the correct
point in string1.

GSU9586 input file filename

Explanation:
A system error indicating the cause is displayed with
this message.

GSU9587 string: input line to long in
command:

Explanation:
A line in the input file filename was longer than
LINE_MAX bytes.

User response:
Use cmp to compare non-text files.

GSU9588 string: input file command: is a
binary file

Explanation:
You specified filename as the input file; however,
filename is a binary file. uniq only works with text files.

User response:
Specify a text file as the input file.

GSU9591 string file filename

GSU9592 regular expression error in
regular_expression_error string

GSU9593 dd: only one of conv=ucase and
conv=lcase may be specified

GSU9594 dd: only one of conv=block and
conv=unblock may be specified

GSU9595 dd: only one character set
translation option may be
specified

GSU9596 non-numeric argument string

GSU9597 Options were given that can only
be used when sending mail.

GSU9598 History command number
commandnumber is not valid

GSU9599 too few or too many args

GSU9600 Usage: cmp [-blsx] file1 file2
[seek1 [seek2]]

Explanation:
The cmp command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9607 cut: list [string]: numbers must be
nonzero

GSU9608 Usage: df [-kPt] [file_system ...]
[file ...]

Explanation:
The df command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9610 cannot specify -m with either -e or
-f

GSU9611 Usage: diff [-befhHimnNrsw] [-
c[n]] [-C n] [-Dname] file1 file2

Explanation:
The diff command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

Appendix D. OpenExtensions Shell and Utilities Messages 539

GSU9612 Usage: bdiff [-befimnNrsw] [-c n]]
[-C n] [-Dname] file1 file2 n

Explanation:
The bdiff command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9613 Usage: diffh [-befimnNrsw] [-c[n]]
[-C n] [-Dname] file1 file2

Explanation:
The diffh command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9614 Usage: dircmp [-ds] dir1 dir2

Explanation:
The dircmp command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9618 Internal error: wcspagein

GSU9619 Internal error: wcspageout

GSU9620 !File read error

GSU9621 number line(s) too long --
truncated

GSU9625 string: Invalid variable name

GSU9626 Usage: getconf system_var getconf
path_var pathname getconf -a

Explanation:
The getconf command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9627 stringstring: input lines truncated -
result questionable

GSU9628 string: input lines truncated -
result questionable

GSU9629 out of space for pattern

GSU9631 file file line lineno error

GSU9632 line lineno error

GSU9633 Usage: egrep command: [-bI] [-e
pattern] [-f patternfile] [pattern]
[file ...]

Explanation:
The egrep command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9634 Usage: iconv -f from-codeset -t to-
codeset [-sc] [file ...]

Explanation:
The iconv command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9635 iconv -l [-v]

GSU9636 System does not support querying
the set of character sets

GSU9637 Warning: multibyte locale not
supported

GSU9638 Number numstring not in range
num1

GSU9639 Number numstring not in range
num1

GSU9640 Badly formed number in numstring

GSU9641 backtrack stack overflow:
expression generates too many
alternatives

GSU9643 Usage: locale [-a|-m]

Explanation:
The locale command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9644 locale [-ck] name ...

GSU9645 No archive operation specified

GSU9646 More than one archive operation
specified

GSU9647 Missing position name

GSU9648 Missing archive name

540 z/VM: 7.3 OpenExtensions Commands Reference

GSU9649 Missing member name

GSU9651 Filename filename too long

GSU9652 !creating extracted file filename

GSU9653 Usage: ar -d[Ilv] [-F format]
archive member ...

Explanation:
The ar command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9654 ar -m[abiIlv] [-F format]
[posname] archive file ...

GSU9655 ar [-pt[Isv]] [-F format] archive
file ...

GSU9656 ar -q[.clv] [-F format] archive
file ...

GSU9657 ar [-ru[abciIluv]] [-F format]
[posname] archive file ...

GSU9658 ar -x[CIsTv] [-F format] archive
file ...

GSU9659 string not found

GSU9660 Unknown command " Type
command for help.

GSU9661 pipe buffer

GSU9662 Command command is illegal in
command file.

GSU9663 Command command is illegal in
input mode.

GSU9664 Unknown command command

GSU9665 Unknown colon modifier
colon_modifier

GSU9669 Unrecognized scrolling command
command

GSU9670 Usage: make [-eEinpqrstuvVx] [-
k|-S] [-c dir] [-D macro=value] [-f
file] [macro=value ...] [target ...]

Explanation:
The cmp command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9673 string: Nonportable character
pathname char found.

GSU9674 string: Nonportable byte pathname
found.

GSU9679 Existing file filename exists; it will
not be overwritten

GSU9681 number illegal character
sequence(s) for codeset extracting
file num

GSU9682 Cannot append to compressed
archive

GSU9683 Warning: -o keyword Unknown
keyword value

GSU9685 invalid option on substitution letter

GSU9686 Usage: tar -[crtux][lpmovwzU[0-7
lmh]] [[-b blocks] [-f tarfile] [-V
volpattern] [file [-C pathname] ...]

Explanation:
The tar command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9687 Usage: pr [+#] [-# | -c # | -m] [-
adFfprtW] [-ec#] [-h header] [-ic#]
[-l #] [-nc#] [-H header-format] [-o
#] [-sc] [-w #] [file ...]

Explanation:
The pr command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9688 Options -c and -m are mutually
exclusive

GSU9692 Usage: ps [-Aacdefjl] [-G idlist] [-g
grouplist] [-n name] [-o format] ...
[-p proclist] [-s idlist] [-t termlist]
[-u|-U uidlist]

Explanation:
The ar command entered was not syntactically
correct.

User response:
The usage message displays the correct syntax for
this command. Reenter the command with the correct
syntax.

GSU9693 Address not in range numstring

Appendix D. OpenExtensions Shell and Utilities Messages 541

GSU9694 Improper sleep interval
specification seconds

GSU9695 "string" exceeds range seconds
seconds

GSU9696 !write error on file "string"

GSU9697 Badly formed sort key position pos

GSU9698 Must specify number in option

GSU9699 Mutually exclusive options: -o and
-c

GSU9700 too many key field positions
specified

GSU9701 key value in key out of bounds

GSU9702 invalid key specification key

GSU9703 Option option unknown in field
field

GSU9704 file file no newline at end of file

GSU9705 file filename line too long: limit
maxrec -- truncated

GSU9706 !read error on file file

GSU9707 file file line line non-unique key in
record

GSU9708 file file line line not ordered
properly record

GSU9710 !temporary file error filename

GSU9711 string must be in range from 0 to
127

GSU9712 Upper/lower case conversion must
be specified in the same relative
positions

GSU9713 Upper/lower case conversion
mutually exclusive with
complement (-c) option

GSU9891 Warning: unknown type: type

GSU9892 Warning: unknown type: type

GSU9893 Type is type1 should be type2

GSU9894 Unknown type: type

GSU9895 Warning: encountered literal
character token(s) with value
greater than 255

GSU9922 internal execution tree error at
string

GSU9923 unbalanced char

GSU9924 Unknown option option

GSU9925 invalid character char (hex hexnum

GSU9926 error reading file

GSU9927 error splitting record:
regular_express_error

GSU9928 invalid wide character %x

GSU9929 scalar name cannot be used as
array

GSU9930 array name cannot be used as a
scalar

GSU9931 variable name cannot be used as a
function

GSU9932 syntax error regular_express_error
in line

GSU9933 cannot assign to function
funcname

GSU9934 function funcname nesting level >
number

GSU9935 function "string" nesting level too
deep

GSU9936 wrong number of arguments to
function funcname

GSU9937 string function requires an array

GSU9938 string: asort is not a function

GSU9939 function funcname redefined

GSU9950 input lines truncated - result
questionable

Explanation:
The file being grep'ed is a binary file. grep assumes
that the file it is searching has records terminated
by new line characters. When it finds no new line
characters then it assumes that the input line has been
truncated, and quits.

User response:
Do not use grep to search binary files

GSU9952 !history file $HISTFILE pathname

Explanation
The system could not open the history file specified for
one of the following reasons;

• One or more of the directories in the path do not
exist.

• You are not authorized to write to the file.
• You are not authorized to write to one or more

directories in the path.

User response:
Ensure that the path and file name to be stored
in HISTFILE are correct. Ensure that you have the

542 z/VM: 7.3 OpenExtensions Commands Reference

appropriate permissions to access the file and each
directory in the path.

Appendix D. OpenExtensions Shell and Utilities Messages 543

544 z/VM: 7.3 OpenExtensions Commands Reference

Appendix E. Common Error Messages When Using
BFS Files

If you enter a command that interacts with a Byte File System (BFS) or Network File System (NFS), you
might receive error messages such as those listed below. For a detailed description of a message and the
suggested action to resolve the error, see z/VM: CMS and REXX/VM Messages and Codes.

Table 15. Common Error Messages while using BFS Files

Number Text Return Code

DMS029E Invalid parameter pathname 24

DMS062E Invalid character in pathname pathname 20

DMS099E This is not allowed in the CMS/DOS environment 40

DMS109E Virtual storage capacity exceeded 104

DMS132E File too large: pathname 104

DMS250E I/O error 100

DMS389E Invalid character: X'00' 24

DMS389E Invalid operand: operand 24

DMS389E Invalid positive integer: number 24

DMS512E This is not allowed in CMS subset mode 40

DMS1016E {PC-NFS | MOUNT [DUMP | EXPORT]} program is not available at foreign
host

99

DMS1017E Too many levels of remote file systems 88

DMS1018E Your username and password could not be authenticated. The PC-NFS
program returned an error

76

DMS1019E Network File System name is not allowed 28

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
network is down

55

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
network is unreachable

55

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
connection was terminated

55

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
connection was reset

55

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
connection timed out

55

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
connection was refused

55

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
host is unreachable

55

Common CMS Error Messages

© Copyright IBM Corp. 1993, 2022 545

Table 15. Common Error Messages while using BFS Files (continued)

Number Text Return Code

DMS1020E Foreign host cannot be reached. The request returned rc indicating the
host is down

55

DMS1021E Foreign host responded that {the file handle is stale|the cookie is bad} 28, 55

DMS1022E Not enough buffer space is available 104

DMS1023E An error was returned on a call to identify the host on which the
program is running

55

DMS1026E The operation is not supported for an object in an NFS-mounted file
system

28

DMS1073E No sockets are available for the request 55

DMS1131E Directory already exists: pathname 28

DMS1137E Object is locked; deadlock detected 70

DMS1139E You are not permitted to issue this command 76

DMS1147E Storage management error trying to free storage 104

DMS1151E File pool is unavailable 99

DMS1153E File pool is unavailable or unknown 99

DMS1153E File space is unavailable or unknown 99

DMS1155E CSL routine cslname {is not loaded|has been dropped} 40

DMS1162E Directory is not empty: pathname 40

DMS1174E The MAXCONN limit has been reached. You have tried to establish
more APPC/VM connections than is allowed for your user ID. There
are no inactive communication paths available for reuse for the current
request.

55

DMS1174E Your attempt exceeds the number of APPC/VM connections allowed for
file pool

55

DMS1176E Virtual storage capacity exceeded for file pool 99

DMS1184E A directory is not found, or your are not permitted to use a directory in
pathname

28

DMS1184E File not found or you are not authorized for it 28

DMS1259E File pool has run out of physical space in the storage group 99

DMS1311E {Object|File} already exists: pathname 28

DMS2105E Permission is denied 28

DMS2106E No space is available in the file system 40

DMS2107E Object is temporarily unavailable: pathname 70

DMS2108E Object is busy: pathname 70

DMS2108E Operation is interrupted on pathname 70

DMS2109E Object is a directory: pathname 40

DMS2110E Object is not a directory: pathname 40

Common CMS Error Messages

546 z/VM: 7.3 OpenExtensions Commands Reference

Table 15. Common Error Messages while using BFS Files (continued)

Number Text Return Code

DMS2110E A node in path name is not a directory for pathname 40

DMS2111E OPENVM limit exceeded 88

DMS2112E Path name or a component of path name is too long 40

DMS2112E Contents of the external link must be between 1 and 1023 characters 40

DMS2113E Object does not exist: pathname 28

DMS2113E File system is not mounted or not available 28

DMS2114E The file system is read only 36

DMS2115E Objects are on different file systems 88

DMS2116E A loop is encountered in symbolic links 40

DMS2117E Object is not {a BFS regular file | a regular file | a symbolic link or
external link | in the proper format to be an executable file | a BFS file
space} [:pathname]

28

DMS2119E Path name is not fully qualified: pathname 28

DMS2120E Unable to resolve current working directory for path name pathname 28

DMS2121E Operation may not be performed on {the file system root|. or ..} 88

DMS2122E Invalid symbolic link {content|length} pathname 40

DMS2123E File system is already mounted 40

DMS2124E Path name is part of the new name for pathname 40

DMS2125E Path name ends with a slash: pathname 40

DMS2126E You may not link to a directory 88

DMS2132E Error obtaining UID or GID. User not authorized 104

DMS2132E Error obtaining UID or GID. User not found 104

DMS2132E Error obtaining UID or GID. Database not available 104

DMS2132E Error obtaining UID or GID. Command not allowed in CMS/DOS
environment, in CMS subset mode, or on this level of CP

104

DMS2132E Error obtaining UID or GID. Group not found 104

DMS2132E Error obtaining UID or GID. User or group not found 104

DMS2134E Return code retcode and reason code reascode [X'hexreascode'] given
on call to routine rtnname [for pathname pathname.]

104

DMS2140R Enter operands: (enter a null line to indicate that you are finished) 0

DMS2140E No operands were entered for the OPENVM command 24

DMS2141E Missing quote or invalid quote specification 24

DMS2142E There are no characters in a quoted string or an extraneous quoted
string was specified

24

DMS2143E There is no external link data specified 24

DMS2153E File is migrated and DFSMS/VM is not available 51

Common CMS Error Messages

Appendix E. Common Error Messages When Using BFS Files 547

Table 15. Common Error Messages while using BFS Files (continued)

Number Text Return Code

DMS2154E File is migrated and implicit RECALL is set to OFF 50

DMS2510E Requested function is not supported for specified file object 99

DMS3085E You do not have permission to mount this directory or the remote NFS
server requires the use of low port numbers

99

DMS3995E You are not authorized to mount in read/write mode 76

Common CMS Error Messages

548 z/VM: 7.3 OpenExtensions Commands Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1993, 2022 549

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents information NOT intended to be used as Programming Interfaces of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe is either a registered trademark or a trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

550 z/VM: 7.3 OpenExtensions Commands Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Acknowledgments
InterOpen/POSIX Shell and Utilities is a source code product providing POSIX.2 (Shell and Utilities)
functions to the OpenExtensions services offered with VM. InterOpen/POSIX Shell and Utilities is
developed and licensed by Mortice Kern Systems (MKS) Inc. of Waterloo, Ontario, Canada.

Notices 551

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

Information in this document has been adapted from the InterOpen/POSIX Shell and Utilities User Manual,
supplied by Mortice Kern Systems (MKS) Inc. for use by licensees of their InterOpen/POSIX Shell and
Utilities source code product.

© Copyright 1985, 1993 Mortice Kern Systems, Inc.
© Copyright 1989 Software Development Group, University of Waterloo.

552 z/VM: 7.3 OpenExtensions Commands Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1993, 2022 553

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

554 z/VM: 7.3 OpenExtensions Commands Reference

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 555

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

556 z/VM: 7.3 OpenExtensions Commands Reference

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Additional Publications
XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 557

558 z/VM: 7.3 OpenExtensions Commands Reference

Index

Special Characters
_ environment variable 292
- in shell command syntax, explanation of 1
: (colon) command 73
! reserved-word command 280
. (dot) command 106
. (dot) script 106, 263
... (ellipsis) in shell command syntax, explanation of 2
.profile path name 277
[] in shell command syntax, explanation of 1
[] command 323
{ } reserved-word shell command 280
/etc/mailx.rc file 196
/etc/profile path name 277
& shell operator 279
|& shell operator 279
~ environment variable 293
$HOME/mbox path name 196
$HOME/mbox pathname 196
$MAILDIR path name 196
$MAILRC file 196

A
abnormal condition or interrupt, trapping 335
absolute path name 369
access permission, changing 61
access time

resetting 85
setting for destination files 82

alias
detecting 345
distinguishing in shell 356
removing definitions 345

alias command 6
allnet environment variable 192
analyzer, lexical 162
append environment variables 193
application program, developing or porting 467
ar command 9
arbitrary-precision arithmetic calculation language, using the
29
archive

copying files from directory 85
creating 85
extracting

components from the 239
contents 85

file
manipulating 318
reading and writing an 239

library 9
tapes 318

archive library
displaying symbol table 227

argument

argument (continued)
changing dates for 330
concatenating in the current shell environment 119
evaluating as an expression 123
evaluating in the current shell environment 119
obtaining from a list of parameters 142
printing 249
removing 264
returning from the shell 249
searching for pattern 144
writing to standard output 107

arithmetic calculation 29
arithmetic expression 160
arrangement of shell command options 1
ASCII to EBCDIC conversion 95
ask environment variable 193
askbcc environment variable 193
askcc environment variable 193
asksub environment variable 193
assign

values to variables 341
assigning attributes or values to variables 341
autoprint environment variable 193
awk command 13

B
backquoting 287
backup files 318
bang environment variable 193
basename command 28
basic regular expression (regexp) 471
bc command 29
BFS (byte file system)

access, changing 424
common error messages 545
comparing two files 68
copying regular files 393
defining file creation mask 453
displaying information about files 398
erasing an object 391
getting regular files 393
group of BFS object, changing 416
listing information about files 398
manipulating repeated lines in a file 350
messages, common error 545
owner of BFS object, changing 416
path name

absolute 369
component 368
creating an external link 377
description 368
directory components of 104
fully qualified 368, 369
quotes, using 368
reference to a 383, 385
relative 369

Index 559

BFS (byte file system) (continued)
path name (continued)

returning 28, 104
syntax 368
understanding 368
valid characters 370

redirecting input 71
removing from hierarchy 461
subdirectory tree, removing 461

BFS (byte file system) commands
OPENVM CREATE DIRECTORY 376
OPENVM CREATE EXTLINK 377
OPENVM CREATE LINK 383
OPENVM CREATE SYMLINK 385
OPENVM DEBUG 387
OPENVM ERASE 391
OPENVM FORMAT 392
OPENVM GETBFS 393
OPENVM LISTFILE 398
OPENVM MOUNT 407
OPENVM PARCHIVE 418
OPENVM PATHDEF CREATE 421
OPENVM PATHDEF DELETE 422
OPENVM PATHDEF QUERY 423
OPENVM PERMIT 424
OPENVM PUTBFS 427
OPENVM QUERY DEBUG 431
OPENVM QUERY DIRECTORY 432
OPENVM QUERY LINK 435
OPENVM QUERY MASK 438
OPENVM QUERY MOUNT 440
OPENVM RENAME 444
OPENVM RUN 446
OPENVM SET DIRECTORY 449
OPENVM SET MASK 453
OPENVM SHELL 456
OPENVM SHOWMOUNT 458
OPENVM UNMOUNT 461

bg command 44
blind carbon copy 182
bold typeface in shell command syntax, explanation of 1
Bourne shell 277
bracket expression (regexp) 472
brackets in shell command syntax, explanation of 1
break command 45
break file lines into shorter lines 136
buffer 268
building argument lists before running a command 357
built-in shell commands

: (colon) 73
. (dot) 106
alias 6
break 45
cd 56
cms 70
colon (:) 73
continue 81
dot (.) 106
echo 107
evaluate (eval) 119
exec 120
export 122
false 126
fc 127

built-in shell commands (continued)
getopts 142
let 160
list of 291
newgrp 225
print 249
pwd 259
read 260
readonly 262
return 263
set 273
shell 121
shift 298
test 323
time 327
times 329
trap 335
true 338
typeset 341
unalias 345
unmask 346
unset 352
wait 353
whence 356

byte count, calculating or displaying 66
bytes

counting 354
swapping 86

C
C escape sequences 236
c89/cxx command 46
calculating

arithmetically to arbitrary precision 29
checksum or number of bytes for each input file 66

case reserved-word shell command 280
cat command 54
cd command 56
CDPATH environment variable 293
changing

dates for arguments 330
file access times 330
file modification times 330
general access to a BFS object 424
group access to a BFS object 424
group of a BFS object 416
group owners 59
groups 225
groups of directories 64
groups of files 64
lines in file, length of 136
owner access to a BFS object 424
owner of a BFS object 416
owners of directories 64
owners of files 64
user ID connected with sessions 314
working directories 56
working directory from current to new 449

character
converting from one code set to another 149
counting 354
escaping 282
translating 333

560 z/VM: 7.3 OpenExtensions Commands Reference

character class expression 472
checking

conditions 323
path names 238

checksum, calculating or displaying 66
chgrp command 59
child process

displaying time accumulated 329
waiting for it to end 353

chmod command 61
chown command 64
cksum command 66
clocks 327
cloning output streams 321
closing

file descriptors 120
STDIN or STDOUT 289

cmd environment variable 193
cmp command 68
cms command 70
CMS commands

entering from the shell 70
OPENVM CREATE DIRECTORY 376
OPENVM CREATE EXTLINK 377
OPENVM CREATE LINK 383
OPENVM CREATE SYMLINK 385
OPENVM DEBUG 387
OPENVM ERASE 391
OPENVM FORMAT 392
OPENVM GETBFS 393
OPENVM LISTFILE 398
OPENVM MOUNT 407
OPENVM OWNER 416
OPENVM PARCHIVE 418
OPENVM PATHDEF CREATE 421
OPENVM PATHDEF DELETE 422
OPENVM PATHDEF QUERY 423
OPENVM PERMIT 424
OPENVM PUTBFS 427
OPENVM QUERY DEBUG 431
OPENVM QUERY DIRECTORY 432
OPENVM QUERY FORK 434
OPENVM QUERY LINK 435
OPENVM QUERY MASK 438
OPENVM QUERY MOUNT 440
OPENVM RENAME 444
OPENVM RUN 446
OPENVM SET DIRECTORY 449
OPENVM SET FORK 452
OPENVM SET MASK 453
OPENVM SHELL 456
OPENVM SHOWMOUNT 458
OPENVM UNMOUNT 461

cmsfile command 71
code page set, converting 149
collation sequence (regexp) 472
colon (:) command 73
COLUMNS environment variable 293
comm command 74
command command 76
command line 82
command mode 182
command syntax

OpenExtensions shell and utilities

command syntax (continued)
OpenExtensions shell and utilities (continued)

descriptions 1
command, OpenExtensions shell and utilities

constructing in the current shell environment 119
constructing with templates 357
displaying elapsed time 327
names, interpreting 356
running after constructing an argument list 357
specifying command lines for another command 120
substituting 287
summary table 463
template 357

command, OPENVM CMS, summary table 468
commands, Byte File System

OPENVM OWNER 416
common BFS error messages 545
comparing files 68, 99
compiling

C/C++ source file 46
link-edit object file 46
yacc command, with the 361

component directory 239
component file 239
compress command 78
concatenating

arguments in the current shell environment 119
files 54
lines 236
lines of input files 236
regular expressions 473

condition
testing for 323
trapping abnormal 335

configuration variable, writing values to standard output 138
conflicting path name 165
console log, saving messages in 170
constructing

argument lists before running a command 357
commands in the current shell environment 119

continuation prompt 294
continue command 81
control operator, shell 281
conventions for shell command descriptions 1
conversion buffer 97
converting

between EBCDIC and ASCII 95
between uppercase and lowercase 96
between variable and fixed records 96
characters from one code set to another 149
context-free LALR(1) grammar into tables 361
files 95

copy mode 239
copying

archive files with the tar command 318
BFS (byte file system) regular file 393
data

into a BFS 427
read from standard input to standard output 333
with format conversion 95

file
descriptors 120
from one directory to another 85
selectively 89

Index 561

copying (continued)
file (continued)

to target named by the last argument on command
line 82
with data conversion 95

in/out file archive 85
portable archive to and from tape 418
sections of files 89
standard input to each output file 321

counting bytes, characters, lines, and words 354
cpio archive 85
cpio command 85
creating

archives 85
BFS path name reference 383
BFSpath name reference 385
command aliases 6
directories for each named directory argument 215
directory (OPENVM) 376
executable file 46
external link 377
FIFO special files 217
libraries 210
library archives 9
link to files 165
path definition for OS ddnames 421
symbolic link 385

crt environment variable 193
current mail message 183
current working directory

changing
to new 449
to previous working directory 56

displaying
information about files in 398
path name of the 259

setting to value of the HOME environment variable 56
cut command 89

D
dash in shell command syntax, explanation of 1
data

manipulating 13
reading 95
removing from executable files 307
writing 95

database, joining two 155
date command 91
date, displaying the 91
dd command 95
DEAD environment variable 193
dead letter 193
debug, OPENVM command error messages 387
defining BFS file creation mask 453
delaying program execution 300
deleting

alias definitions 345
arguments 264
attributes of shell variables and functions 352
directory entries or directories 264, 266
information from executable files 307
path definition for OS ddnames 422
trailing part of file names 104

deleting (continued)
values of shell variables and functions 352

description section, shell command descriptions 3
descriptor file, opening, closing, and copying 120
destination file, setting destination or modification time 82
detecting

aliases 345
end of child processes or jobs 353

diff command 99
directory

changing modes, owners, or permissions 59, 64
copying files 85
creating for each named directory argument 215
moving files to a different 222
removing directories or directory entries 264, 266
setting owners and groups 64
substitution 283

dirname command 104
displaying

checksum for each input file 66
command aliases 6
current operating systems, names of 346
current working directory 432
currently exported variables 122
dates and times 91
differences between two files 99
elapsed time for a command 327
environment variable names and values 273
environments 117
external link, BFS 435
file creation mask values, BFS 438
file names 339
files 54
first part of files 147
information about BFS files 398
information about locales 168
last part of files 316
lines common to two files 74
names of current operating systems 346
names of environment variables 273
number of bytes in each input file 66
path name of working directories 259
process status 254
processor time 256
processors 327
symbolic link, BFS 435
system time accumulated by commands 329
terminal names 339
terminal options 308
unprintable characters 54
user ID (UID) of person who entered commands 172
user time accumulated by the shell 329
values of environment variables 273
what is mounted in your BFS hierarchy 440

dot (.) command 106
dot (.) script, returning from 263
dot environment variable 193
dot path name component 370
dot-dot path name component 370
double-spacing output 245
dumping files to standard output or in octal 232
duplicating output stream 321
dynamic scoping 37

562 z/VM: 7.3 OpenExtensions Commands Reference

E
EBCDIC to ASCII conversion 95
echo command 107
ed command 109
editing

ed command 109
red command 109
restricted 109
subcommands, starting 268

EDITOR environment variable 194, 293
electronic mail, sending and receiving 180
ellipsis in shell command syntax, explanation of 2
end of file 316
ending

jobs or processes 157
shell 121

entering a CMS command from the shell 70
env command 117
ENV environment variable 293
environment variables

_ 292
~ 293
allnet 192
ask 193
askbcc 193
askcc 193
asksub 193
autoprint 193
bang 193
CDPATH 293
cmd 193
COLUMNS 293
crt 193
DEAD 193
displaying names and values of 273
dot 193
EDITOR 194, 293
ENV 293
escape 194
FCEDIT 293
flipr 194
folder 194
header 194
HISTFILE 293
HISTSIZE 293
hold 194
HOME 192, 293
IFS 293
ignoreeof 194
indent 194
indentprefix 194
keep 194
keepsave 194
LANG 293
LC_ALL 293
LC_COLLATE 293
LC_CTYPE 293
LC_MESSAGES 293
LINENO 293
LINES 293
LISTER 194
LOGNAME 293
MAIL 192, 294

environment variables (continued)
MAILCHECK 294
MAILDIR 192
MAILPATH 294
MAILRC 192, 194
MAILSERV 194
MBOX 195, 294
metoo 195
names, displaying 273
OLDPWD 294
onehop 195
outfolder 195
page 195
PAGER 195
PATH 294
PID 294
prompt 195
PS1 294
PS2 294
PS3 294
PS4 294
PWD 294
quiet 195
RANDOM 294
record 195
Replyall 195
save 195
screen 195
SECONDS 295
sendmail 195
sendwait 195
SHELL 295
showto 196
sign 196
Sign 196
TMOUT 295
toplines 196
TZ 295
values, displaying 273
VISUAL 196

environment variables section, shell command descriptions
3
environment, displaying or setting for a process 117
equivalence class (regexp) 472
erasing a BFS object 391
escape character

cent sign xiii
using xiii

escape environment variable 194
escape sequences 282
escaping characters 282
eval command 119
evaluating

arguments
as an expression 123
in the current shell environment 119

arithmetic expressions 160
shell expressions 73

examples section, shell command descriptions 3
exception condition, trapping 335
exec command 120
executable file

displaying symbol table 227
executable file, creating 46

Index 563

execute permission 61, 424
exit code, returning a nonzero 126
exit command 121
exit shell subcommand 296
exit status, returning values of 0 338
exit values section, shell command descriptions 5
explanation of shell command 1
export command 122
export environment variables 122
expr command 123
expression, evaluating 123, 160
extended regular expression (regexp) 471
external link

displaying information about 435
identifying 175, 177

extracting
components from archives 239
contents of archive files 85

F
false command 126
FCEDIT environment variable 293
fg command 130
Fibonacci sequence 292
FIFO special files, creating 217, 219
file

archive or backup 318
calculating byte counts or checksum 66
changing

access permission of 61
access times 330
group owners 59
groups 64
modification times 330
owners 64

changing modes 61
comparing two 68, 99
concatenating lines into standard output 236
converting between EBCDIC and ASCII 95
copying

archive 318
to target named by the last argument on command
line 82
with data conversion 95

counting items in 354
creating 219
creating links to 165
creation permission-code mask, setting or returning 343
deleting information from 307
descriptor, opening, closing, and copying 120
display lines common to two files 74
displaying first part 147
displaying last part of the 316
dumping to standard output 232
FIFO special, creating 219
finding one that meets specified criteria 131
formatting in paginated form 245
interdependent, maintaining 198
lines, making shorter 136
manipulating repeated lines 350
merging corresponding or subsequent lines of files 236
moving 222
object

file (continued)
object (continued)

displaying symbol table of an 227
passing small amounts to 107
printing 173, 466
processing 13
program-generated, maintaining 198
redirecting input 71
removing information from 307
renaming 222
searching for specified patterns 144
searching hierarchy 131
sending paginated files to printer 245
setting destination or modification time 82
setting groups or owners 64
showing differences between two 99
text, finding strings in 471

file mode creation mask, setting or returning 343
file name

displaying 339
expanding on command line 107
generation 289

file-creation permission-code mask 453
files section, shell command descriptions 4
filter, passing small amounts to 107
filtering out repeated lines in a file 350
find command 131
finding

files that match specified criteria 131
group affiliation of invoking processes 151
identical lines within files 74
patterns or strings using regular expressions 471
user identity of invoking processes 151

fixed to variable-record conversion 96
flipr environment variable 194
fold command 136
folder environment variable 194
for loop, exiting from in a shell script 45
for reserved-word shell command 280
for reserved-word shell subcommand 279
fork (BPX1FRK) processing

displaying current setting 434
setting 452

format section, shell command descriptions 1
formatted output, writing 251
formatting files in paginated form 245
fully qualified BFS root 368
fully qualified path name 369
function reserved-word shell command 280
function shell subcommand 281
function, remove values and attributes of 352

G
generating

file names 289
programs for lexical tasks 162

getconf command 138
getopts command 142
getting

BFS (byte file system) regular file 393
configuration values 138
contents of archive files 85
options and their arguments 142

564 z/VM: 7.3 OpenExtensions Commands Reference

GID (group ID)
associated with objects in the BFS 399
changing 225, 416
displaying 151, 256
effective 225
finding 151
in header of a cpio file 87
parent directory 395, 429
permissions, setting 61
preserving in archive files 241
real 225
returning 151
searching file hierarchy to match the 131
setting 59, 64
setting for an executable file 424
setting permissions for 424
translating from group name 416

glob characters 289
glob patterns 289
grep command 144
group

affiliation, finding 151
changing 225
finding or returning affiliation 151
owner, changing and setting 59

GSU prefix messages 479

H
hangup signal 296
head command 147
header environment variable 194
header line 182
here document 289
hierarchy, remove BFS from your 461
HISTFILE environment variable 293
history file 127
HISTSIZE environment variable 293
hold buffer 268
hold environment variable 194
home directory 293
HOME environment variable 192, 293
hyphen in shell command syntax, explanation of 1

I
iconv command 149
id command 151
identify shell names 340
if reserved-word shell command 280
if reserved-word shell subcommand 279
IFS environment variable 293
ignoreeof environment variable 194
in/out file archives, copying 85
indent environment variable 194
indentprefix environment variable 194
input

file, concatenating lines 236
passing small amounts to filter or file 107

input mode 182
interactive shell 278
intercept, abnormal conditions, interrupts, and signals 335
interdependent file, maintaining 198

internal field separator 293
internationalization, explanation of 477
interpret command names 356
interrupt, trapping abnormal 335
Introduction 1
italic typeface in shell command syntax, explanation of 1, 2

J
job

ending 157
moving from background to foreground 130
moving to background 44
restarting a suspended 130
returning list of, in current session 153
running in background 44
waiting for it to end 353

jobs command 153
join command 155
join two databases 155

K
keep environment variable 194
keepsave environment variable 194
key sorting 302
kill command 157

L
LALR(1) grammar, converting 361
LANG environment variable 293
last lines of file 316
LC_ALL environment variable 293
LC_COLLATE environment variable 293
LC_CTYPE environment variable 293
LC_MESSAGES environment variable 293
Lempel-Ziv compression 86, 243
let command 160
lex command 162
lexical analyzer, syntax and tasks 162
library

creating and maintaining 9
making a 210

library of objects
displaying symbol table 227

limits section, shell command descriptions 5
line-oriented editor 109
LINENO environment variable 293
LINES environment variable 293
lines, counting in a file 354
link, creating for files 165
list mode 239
LISTER environment variable 194
listing

information about BFS files 398
variables and their attributes 341

ln command 165
locale

displaying information about 168
giving it control over a category 477

locale command 168
localization 477

Index 565

localization section, shell command descriptions 4
locating sorted files and identical lines within files 74
logger command 170
logging in 277
logging messages 170
login name, returning 172
login shell

starting a 277
logname command 172
LOGNAME environment variable 172
loop

exiting from, in a shell script 45
skipping to the next iteration of a 81

lowercase letters in shell command syntax 1
lowercase, converting to uppercase 96
lp command 173

M
mail

folder 194
sending and receiving 180

MAIL environment variable 192, 294
MAILCHECK environment variable 294
MAILDIR environment variable 192
maildir path name 196
MAILPATH environment variable 294
MAILRC environment variable 192, 194
MAILRC file 196
MAILSERV environment variable 194
mailx command 180
maintain

library archives 9
program-generated and interdependent files 198

make command 198
make libraries 210
making

directories for each named directory argument 215
FIFO special files 217

manipulate
dates 13
repeated lines in a file 350

matching strings
of text in text file 471
searching for 144

MBOX environment variable 195, 294
merge corresponding or subsequent lines of files 236
message

BFS common error 545
GSU 479
header line 182
logging 170
shell 479

message examples, notation used in xvi
metoo environment variable 195
mkdir command 215
mkfifo command 217
mknod command 219
mode

changing 61
command 182
input 182

modification time
of the last change 175

modification time (continued)
setting for destination files 82

MOUNT
OPENVM MOUNT command 407

MOUNT Command
OPENVM MOUNT command 407

moving
files 222
jobs from background to foreground 130
positional parameters 298

multiple volume support 86, 242
mv command 222

N
name argument, preventing changes to values of the 262
newgrp command 225
newline, counting 354
NFS (network file system)

path name
description 374
quotes, using 374
syntax 374
understanding 374

nickname, creating 6
nm shell command 227
nohup command 230
nonzero exit code, returning 126
notation used in message and response examples xvi
null command 73

O
object file

displaying the symbol table of an 227
object file, managing 198
object library

displaying symbol table 227
obtain options and their arguments 142
octal dump 232
od command 232
OLDPWD environment variable 294
onehop environment variable 195
OpenEdition shell commands

: (colon) 73
. (dot) 106
alias 6
ar 9
awk 13
basename 28
bc 29
bg 44
break 45
c89/cxx 46
cat 54
cd 56
chgrp 59
chmod 61
chown 64
cksum 66
cmp 68
cms 70
cmsfile 71

566 z/VM: 7.3 OpenExtensions Commands Reference

OpenEdition shell commands (continued)
colon (:) 73
comm 74
command command 76
compress 78
continue 81
cpio 85
cut 89
date 91
dd 95
diff 99
dirname 104
dot (.) 106
echo 107
ed 109
env 117
eval 119
exec 120
exit 121
export 122
expr 123
false 126
fg 130
find 131
fold 136
getconf 138
getopts 142
grep 144
head 147
iconv 149
id 151
introduction 1
jobs 153
join 155
kill 157
let 160
lex 162
ln 165
locale 168
logger 170
logname 172
lp 173
mailx 180
make 198
mkdir 215
mkfifo 217
mknod 219
mv 222
newgrp 225
nohup 230
od 232
paste 236
pathchk 238
pax 239
pr 245
print 249
printf 251
ps 254
pwd 259
read 260
readonly 262
red 109
return 263
rm 264

OpenEdition shell commands (continued)
rmdir 266
sed 268
set 273
sh 277
shift 298
sleep 300
sort 301
strip 307
stty 308
su 314
summary table 463
tail 316
tar 318
tee 321
template 357
test 323
time 327
times 329
touch 330
tr 333
trap 335
true 338
tty 339
type 340
typeset 341
umask 343
unalias 345
uname 346
uncompress 348
uniq 350
unset 273, 352
wait 353
wc 354
whence 356
xargs 357
yacc 361
zcat 365

opening file descriptors 120
OPENVM CMS commands

multiple line input 372
OPENVM CREATE DIRECTORY command 376
OPENVM CREATE EXTLINK command 377
OPENVM CREATE LINK command 383
OPENVM CREATE SYMLINK command 385
OPENVM DEBUG command 387
OPENVM ERASE command 391
OPENVM FORMAT command 392
OPENVM GETBFS command 393
OPENVM LISTFILE command 398
OPENVM MOUNT command 407
OPENVM OWNER command 416
OPENVM PARCHIVE command 418
OPENVM PATHDEF CREATE command 421
OPENVM PATHDEF DELETE command 422
OPENVM PATHDEF QUERY command 423
OPENVM PERMIT command 424
OPENVM PUTBFS command 427
OPENVM QUERY DEBUG command 431
OPENVM QUERY DIRECTORY command 432
OPENVM QUERY FORK command 434
OPENVM QUERY LINK command 435
OPENVM QUERY MASK command 438
OPENVM QUERY MOUNT command 440

Index 567

OPENVM RENAME command 444
OPENVM RUN command 446
OPENVM SET DIRECTORY command 449
OPENVM SET FORK command 452
OPENVM SET MASK command 453
OPENVM SHELL command 456
OPENVM SHOWMOUNT command 458
OPENVM UNMOUNT command 461
operating system, displaying name of the current 346
operators, shell 281
options

explanation of shell command 1
obtaining from a list of parameters 142
order of shell command 1

options section, shell command descriptions 3
order

of shell command options 1
of shell items on command line 2

OS ddname path definitions
creating 421
deleting 422
querying 423

outfolder environment variable 195
output file, copying standard input to each 321
output stream, cloning 321
overlaying commands 120

P
page environment variable 195
PAGER environment variable 195
paginated file, formatting and printing 245
parameter

positional, in shell 283
positional, setting and unsetting 273
positional, shifting 298
special, in shell 283
substitution 283

parent environment, displaying 117
parsing utility options 142
pass small amounts of input to filter or file 107
paste command 236
path definitions for OS ddnames

creating 421
deleting 422
querying 423

PATH environment variable 294
path name component, BFS 368
path name, BFS

absolute 369
checking for validity and portability 238
component 368
creating

external link 377
reference to a 383, 385

description 368
directory components of 104
displaying 259
fully qualified 368
quotes, using 368
reference to a 383, 385
relative 369
returning 28, 104
syntax 368

path name, BFS (continued)
understanding 368
valid characters 370

path name, NFS
description 374
syntax 374
understanding 374

path search 282
pathchk command 238
pattern

buffer 268
finding, using regular expressions 471
rules for 280
searching 144

pax command 239
permission-code mask 343
permissions

access 225
applied with umask 343
archive file 419
associated with objects in the BFS 399
bits 405, 424
changing 61, 424
character definitions 405
checking 411
controlling 454
default file 5
denying 453
determining 453
displaying 404, 438
execute 62, 424
external link 379, 425
file creation mask 438
file, default 5
file, description of 177
granting 86
group 424
group file 405
in effect 376
incorrect 134
link 383
lists 132
mask, file creation 453
matching 132
owner 62, 424
owner file 405
public 424
public file 405
querying 417, 438
read 61, 424
removing 425
renaming 444
replacing 425
resetting 454
restoring when extracting 319
screening out 343
search 62, 424
set-GID-on-execution 417, 425
set-UID-on-execution 417, 425
setting 61, 62, 424
symbolic link 385, 425
temporary access 425
temporary access to files 405
turning off 429

568 z/VM: 7.3 OpenExtensions Commands Reference

permissions (continued)
write 62, 424

PID (process ID)
adding to a message 170
child process 353
decimal value for parent 294
displaying 158, 256
environment variable 294
finding 158
message prefixed by 170
negative 158
of a process 158

pipe, creating 279
pipeline 279
placeholder information in shell commands 2
portability section, shell command descriptions 5
portable archive 418
positional parameter 298
POSIX conformance 5
POSIX.1 standard parameter names 138
POSIX.2 standard parameter names 140
pr command 245
prevent changes to values of the name argument 262
print command 249
printer, sending files to 173
printf command 251
printing

arguments 249
deleting trailing parts 104
files 466
formatted output 251
input files 173
paginated files 245

process
display time accumulated 329
ending 157
returning

file-creation permission-code masks 343
lists of 153
status of 254

sending signals to 157
setting

environment for 117
file-creation permission-code masks 343

process display
status of 254

processing
awk programs 13

processor
displaying 327
time 329

program
delaying execution of 300
generating, for lexical tasks 162
managing 198

program-generated file, maintaining 198
prompt continuation 294
prompt environment variable 195
prompt string 294
ps command 254
PS1 environment variable 294
PS2 environment variable 294
PS3 environment variable 294
PS4 environment variable 294

pwd command 259
PWD environmental variable 294

Q
querying

debug 431
directory 432
link 435
mask 438
mount 440
path definition for OS ddnames 423

quiet environment variable 195
quoting 282

R
RANDOM environment variable 294
read command 260
read mode 239
read permission 61, 424
reading

archive files 239
cpio archives 85
data 95
description of lexical syntax 162
electronic mail 180
lines from standard input 260

readonly command 262
receive, electronic mail 180
record environment variable 195
record separator character 15
red command 109
redirection 3, 288
redirection operator, shell 281
referencing files residing outside the BFS 377
regular expression

composition of 471
concatenating to form a larger regular expression 473
examples 475
explanation of 471
features that apply to OpenExtensions shell commands
474
matching 144
reading description of lexical syntax in the form of a 162
supported by awk 15
using to find patterns in files 471
using when finding strings in files 471

rejecting lines common to two files 74
related commands section, shell command descriptions 5
relative path name 369
removing

alias definitions 345
arguments 264
attributes of shell variables and functions 352
BFS 461
byte file system 461
directories 266
directory entries 264
duplicate files 350
files 264
information from executable files 307
subdirectory tree, BFS 461

Index 569

removing (continued)
trailing part of file names 104
values of shell variables and functions 352

renaming
BFS object 444
files 222
positional parameters 298

Replyall environment variable 195
report repeated lines in a file 350
reserved-word shell

commands
! 280
{ } 280
case 280
for 280
function 280
if 280
select 280
until 281
while 281

resetting access time 85
response examples, notation used in xvi
restarting suspended jobs 130
restricted edit 109
restricted shell 278
return command 263
returning

arguments from the shell 249
current operating systems, names of 346
directory components of path names 104
file mode creation masks 343
from . (dot) scripts 263
from shell functions 263
group affiliation of invoking processes 151
list of jobs in current session 153
login names 172
names of current operating systems 346
nonzero exit codes 126
path name of working directories 259
process status 254
to CMS 121
to the parent process 121
user ID of person who entered commands 172
user identity of invoking processes 151
user's terminal name 339
values of 0 338

rm command 264
rmdir command 266
running commands

after building an argument list 357
CMS commands from the shell 70
exec shell command 120
Run POSIX applications 446
shell 76
shell script in the current environment 106

S
save environment variable 195
saving messages 170
scale value 31
screen environment variable 195
search permission 61, 424
searching

searching (continued)
for strings 144
given file hierarchies 131
path and rules for 282

SECONDS environment variable 295
sed command 268
sed noninteractive stream editor 268
select loop, exiting from in a shell script 45
select reserved-word shell command 280
sending

electronic mail 180
files to printer 173
paginated files to printer 245
signals to processes 157

sendmail environment variable 195
sendwait environment variable 195
server options, NFS

credentials (UID or GID) 374
session, returning list of jobs in 153
set command 273
setting

BFS root directory 407
export attributes for variables 122
file mode creation masks 343
group owners 59
terminal options 308
working directory from current to new 449

settings, changing terminal 373
SFS (shared file system), listing CMS files 398
sh command 277
shell

archive 292
arrays 290
command guidelines 279
command syntax 278
commands 1
comments 278
compressing data 78, 365
copy file command (cp) 82
displaying variables 341
ending 121
evaluating arguments 119
evaluating expressions 73
execution environment 290
execution environment, removing aliases from 345
identifying names 340
interpreting command names 356
messages 479
removing aliases from execution environment 345
removing attributes of shell variables 352
reserved-word comments 280
returning arguments from 249
returning functions 263
script

exits from loops in a 45
running, with the . (dot) command 106
skipping to the next iteration of a loop 81

starting 277
starting an OpenExtensions shell 456
template for commands 357
uncompressing data 348
using regular expressions 471
variables 290
variables, displaying 341

570 z/VM: 7.3 OpenExtensions Commands Reference

shell (continued)
variables, removing attributes of 352

SHELL environment variable 295
shift command 298
shift positional parameters 298
short circuit evaluation 15
showexp 458
showing

current operating systems, names of 346
current working directory 432
currently exported variables 122
differences between two files 99
elapsed time for a command 327
environment variable names and values 273
environments 117
external link, BFS 435
file creation mask values, BFS 438
first part of files 147
information about locales 168
last part of files 316
lines common to two files 74
names of current operating systems 346
names of environment variables 273
path name of working directories 259
process status 254
processors 327
symbolic link, BFS 435
system time accumulated by commands 329
terminal names 339
user time accumulated by the shell 329
values of environment variables 273
what is mounted in your BFS hierarchy 440

showto environment variable 196
SID (session ID), displaying 255
SIGHUP signal, ignoring the 230
sign environment variable 196
Sign environment variable 196
signal

intercepting 335
sending to processes 157

simple shell command, running a 76, 281
skip to the next iteration of a loop in a shell script 81
sleep command 300
socket file type 177
sort command 301
sort-merge utility 301
sorted files, locating 74
sorting keys 302
source file, managing 198
special built-in commands 291
special parameter 283
special target 207
specifying command lines for another command 120
split output stream 321
starting

application to a CMS module in the record file system
446
BFS application 446
shell 277
sort-merge utility 301

status, displaying 254
STDIN (standard input)

closing 289
copying data read from 333

STDIN (standard input) (continued)
copying to each output file 321
explanation of 3
reading lexical syntax description from 162
reading lines from 260

STDOUT (standard output)
closing 289
copying standard input to each 321
displaying arguments to the 249
dumping file to 232
explanation of 3
sending paginated files to 245
writing arguments to 107, 251
writing configuration values to 138

stop shell 121
string

finding, in text files 471
searching for 144

strip command 307
stty command 308
su command 314
subscript-in-array condition 15
subshell environment 291
substitute commands 287
substitute directories 283
superuser

change owning GID or UID 416
changing authorization to 314, 463
command authority 314
environment 314
privileges 239, 314
process authority 158
session 314
shell, executing 314

suspending program execution 300
swapping bytes 86
symbol table

displaying the 227
symbolic link

creating a 385
displaying information about 435

SYMTAB symbol table 15
syntax

explanation of shell command 1
lexical, reading description of 162
shell command 1

syntax diagrams, how to read xiv
system files 323

T
tail command 316
tape archive 318
tar archive files 318
tar command 318
target 199
tee command 321
template, shell command 357
temporary files 115
terminal name, displaying 339
terminal options, displaying and setting 308
terminal settings, changing 373
test command 323
test condition 323

Index 571

text editor, ed and red command 109
text file

comparing two 99
concatenating 54
counting items in 354
displaying 54
finding strings in 471
retrieving information from 13

then statement - using null shell statement 73
tilde (~) environment variable 293
time

displaying 91
displaying processor 256

time command 327
times command 329
TMOUT environment variable 295
tokens in shell 281
toplines environment variable 196
touch command 330
tr command 333
tracked alias 282
translating characters 333
trap command 335
trapping abnormal conditions and interrupts 335
true command 338
tty command 339
type command 340
typeset command 341
TZ environment variable 295

U
UID (user ID)

associated with objects in the BFS 399
changing 314, 416
displaying 151, 172
effective 429
finding 151
in header of a cpio file 87
owning 395, 429
permissions, setting 61
preserving in archive files 241
returning 151, 172
searching file hierarchy to match the 131
setting 64, 66, 424
translating from user ID 416

umask command 343
unalias command 345
uname command 346
uncompress command 348
uncompressing data 348, 365
underscore (_) variable 292
undo change 113
uniq command 350
unique file lines 350
unmount 461
unprintable characters, displaying 54
unset command 273, 352
until loop, exiting from in a shell script 45
until reserved-word shell command 281
uppercase letters in shell command syntax 1
uppercase, converting to lowercase 96
usage notes section, shell command descriptions 5
USTAR format 318

V
valid BFS path name characters 370
variable

adding new 117
assigning attributes and variables to 341
changing existing 117
displaying 122, 341
explanation of 284
listing their attributes 341
parameters used by shell 283
records, converting to fixed records 96
removing values and attributes of shell 352
setting export attributes 122
unsetting values and attributes of shell 352

variable to fixed-record conversion 96
viewing contents of compressed files 365
VISUAL environment variable 196

W
wait command 353
wait for child process or jobs to end 353
wc command 354
whence command 356
while loop, exiting from in a shell script 45
while reserved-word shell command 281
while reserved-word shell subcommand 279
wildcard characters 289
word

counting 354
token as a 281

working directory
changing 56, 449
displaying path name of the 259
setting to value of the HOME environment variable 56

write mode 239
write permission 61, 424
writing

archive files 239
arguments to standard output 107
checksum for each input file 66
configuration values to standard output 138
cpio archives 85
data 95
formatted output 251
number of bytes in each input file 66
shell scripts 467

X
xargs command 357
xtrace 341

Y
yacc command 361
yacc compiler, using the 361
YYDEBUG option 362

Z
zcat command 365

572 z/VM: 7.3 OpenExtensions Commands Reference

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6297-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Conventions Used in This Document
	Escape Character Notation
	Case-Sensitivity
	Typography

	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: OpenExtensions Commands Reference
	SC24-6297-73, z/VM 7.3 (September 2022)
	SC24-6297-01, z/VM 7.2 (September 2020)
	SC24-6297-00, z/VM 7.1 (September 2018)

	Chapter 1. OpenExtensions Shell Commands
	Reading the Command Descriptions
	Format Section
	Description Section
	Options Section
	Examples Section
	Environment Variables Section
	Localization Section
	Files Section
	Usage Notes Section
	Exit Values Section
	Limits Section
	Portability Section
	Related Commands

	Default File Permissions
	alias — Display or create a command alias
	ar — Create or maintain library archives
	awk — Process programs written in the awk language
	basename — Return the nondirectory components of a path name
	bc — Use the arbitrary-precision arithmetic calculation language
	bg — Move a job to the background
	break — Exit from a for, select, while, or until loop in a shell script
	c89/cxx — Compile C/C++ source code and create an executable file
	cat — Concatenate and display a text file
	cd — Change the working directory
	chgrp — Change the group owner of a file or directory
	chmod — Change the mode of a file or directory
	chown — Change the owner or group of a file or directory
	cksum — Calculate and write checksums and byte counts
	cmp — Compare two files
	cms — Enter a CMS command from the shell
	cmsfile — Redirect contents of standard input
	: (colon) — Do nothing, successfully
	comm — Show and select or reject lines common to two files
	command — Run a simple command
	compress — Use Lempel-Ziv compression
	continue — Skip to the next iteration of a loop in a shell script
	cp — Copy a file
	cpio -- Copy in/out file archives
	cut — Cut out selected fields from each line of a file
	date — Display the date and time
	dd — Convert and copy a file
	diff — Compare two text files and show the differences
	dirname — Return the directory components of a path name
	. (dot) — Run a shell file in the current environment
	echo — Write arguments to standard output
	ed — Use the ed line-oriented text editor
	env — Display environments, or set an environment for a process
	eval — Construct a command by concatenating arguments
	exec — Run a command and open, close, or copy the file descriptors
	exit — Return to the parent process from which the shell was called or to CMS
	export — Set the export attributes for variables, or show currently exported variables
	expr — Evaluate arguments as an expression
	false — Return a nonzero exit code
	fc, history, r -- Process a command history list
	fg — Bring a job into the foreground
	find — Find a file meeting specified criteria
	fold — Break lines into shorter lines
	getconf — Get configuration values
	getopts — Parse utility options
	grep — Search a file for a specified pattern
	head — Display the first part of a file
	iconv — Convert characters from one code set to another
	id — Return the user identity
	jobs — Return the status of jobs in the current session
	join — Join two sorted, textual relational databases
	kill — End a process or job, or send it a signal
	let — Evaluate an arithmetic expression
	lex — Generate a program for lexical tasks
	ln — Create a link to a file
	locale — Get locale-specific information
	logger — Log messages
	logname — Return a user's login name
	lp — Send a file to a printer
	ls — List file and directory names and attributes
	mailx — Send or receive electronic mail
	make — Maintain program-generated and interdependent files
	mkdir — Make a directory
	mkfifo — Make a FIFO special file
	mknod — Make a FIFO or character special file
	mount — See the OPENVM MOUNT command
	mv — Rename or move a file or directory
	newgrp — Change to a new group
	nm — Display symbol table of object, library, or executable files
	nohup — Start a process that is immune to hang-ups
	od -- Dump a file in a specified format
	paste — Merge corresponding or subsequent lines of a file
	pathchk — Check a path name
	pax -- Interchange portable archives
	pr — Format a file in paginated form and send it to standard output
	print — Return arguments from the shell
	printf — Write formatted output
	ps — Return the status of a process
	pwd — Return the working directory name
	read — Read a line from standard input
	readonly — Mark a variable as read-only
	return — Return from a shell function or . (dot) script
	rm — Remove a directory entry
	rmdir — Remove a directory
	sed — Start the sed noninteractive stream editor
	set — Set or unset command options and positional parameters
	sh — Invoke a shell
	shift — Shift positional parameters
	showexp — See the OPENVM SHOWMMOUNT command
	sleep — Suspend execution of a process for an interval of time
	sort — Start the sort-merge utility
	strip — Remove unnecessary information from an executable file
	stty — Set or display terminal options
	su — Change the user ID associated with a session
	tail — Display the last part of a file
	tar -- Manipulate the tar archive files to copy or back up a file
	tee — Duplicate the output stream
	test or [] — Test for a condition
	time — Display processor and elapsed times for a command
	times — Get process and child process times
	touch — Change the file access and modification times
	tr — Translate characters
	trap — Intercept abnormal conditions and interrupts
	true — Return a value of 0
	tty — Return the user's terminal name
	type — Tell how the shell interprets a name
	typeset — Assign attributes and values to variables
	umask — Set or return the file mode creation mask
	unalias — Remove alias definitions
	uname — Display the name of the current operating system
	uncompress — Undo Lempel-Ziv compression
	uniq — Report or filter out repeated lines in a file
	unset — Unset values and attributes of variables and functions
	wait — Wait for a child process to end
	wc — Count newlines, words, and bytes
	whence — Tell how the shell interprets a command name
	xargs — Construct an argument list and run a command
	yacc — Use the yacc compiler
	zcat — Uncompress and display data

	Chapter 2. OPENVM CMS Commands
	Understanding Byte File System (BFS) Path Name Syntax
	Understanding Network File System (NFS) Path Name Syntax
	OPENVM CREATE DIRECTORY
	OPENVM CREATE EXTLINK
	OPENVM CREATE LINK
	OPENVM CREATE SYMLINK
	OPENVM DEBUG
	OPENVM ERASE
	OPENVM FORMAT
	OPENVM GETBFS
	OPENVM LISTFILE
	OPENVM MOUNT
	OPENVM OWNER
	OPENVM PARCHIVE
	OPENVM PATHDEF CREATE
	OPENVM PATHDEF DELETE
	OPENVM PATHDEF QUERY
	OPENVM PERMIT
	OPENVM PUTBFS
	OPENVM QUERY DEBUG
	OPENVM QUERY DIRECTORY
	OPENVM QUERY FORK
	OPENVM QUERY LINK
	OPENVM QUERY MASK
	OPENVM QUERY MOUNT
	OPENVM RENAME
	OPENVM RUN
	OPENVM SET DIRECTORY
	OPENVM SET FORK
	OPENVM SET MASK
	OPENVM SHELL
	OPENVM SHOWMOUNT
	OPENVM UNMOUNT

	Appendix A. OpenExtensions Command Summary
	Shell Command Summary
	General Use
	Controlling Your Environment
	Managing Directories
	Managing Files
	Printing Files
	Computing and Managing Logic
	Controlling Processes
	Writing Shell Scripts
	Developing or Porting Application Programs
	Communicating with the System or Other Users
	Working with Archives

	Shell and CMS Commands that Work with Directories and Files

	Appendix B. Regular Expressions (regexp)
	Appendix C. Localization
	Appendix D. OpenExtensions Shell and Utilities Messages
	Appendix E. Common Error Messages When Using BFS Files
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement
	Acknowledgments

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Additional Publications

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

